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Introduction 

A rewriting system G generates a set of sentential froms sent G (see, e.g., [9]). 
If G is "pure" (see. e.g., [5]), i.e. it does not use nonterminals, then sent G forms 
also the language of G, denoted L(G). In this sense every sentential form of G is 
successful. If G is not pure, i.e. it uses nonterminals, then the language of G consists 
of only those sentential forms that do not contain nonterminal symbols. In this case 
a sentential form is (potentially) successful if it can be rewritten (perhaps in a number 
of steps) into an element of L(G). 

Thus, naturally, sent G gets divided into "blocking" and "nonblocking" (hence 
successful) sentential forms. 

The possibility of having blocking sentential forms in a grammar is often use-
ful. In a particular derivation of a word w, G may "guess" a property of a senten-
tial form currently rewritten and if the guess was incorrect G will take care of the 
fact that the derivation is dead-ended. This is a typical way of programming a lan-
guage through a context-sensitive grammar (see, e.g., [9]). Also the synchronization 
mechanism in E(T)OL systems (see for example [7] and [8]) is a typical example of 
the use of a blocking mechanism. 

In this paper we investigate the role that this blocking mechanism plays in re-
writing systems. In particular, we do this for the grammars of the Chomsky hierarchy 
(Section II), EOL systems (Section III) and ETOL systems (Section IV). 

I. Preliminaries and basic definitions 

We assume the reader to be familiar with the rudiments of formal language 
theory as, e.g., in the scope of [7] and [9]. In order to fix our notation we recall some 
basic notions now. 

For a word x, |x| denotes its length and alph x denotes the set of letters occur-
ring in x. For a language K, alph K= U alph x. The empty word is denoted by A. 

xiK 
Let I 1 and I be alphabets, such that I i Q Z. Then the homomorphism 

Pres r Tl from I* into I* is defined as follows. If a i l then Pres r r | a = g 
and if a e l X Z j , then Pres y T l a—A. To avoid cumbersome notation we often 
write Pres l i instead of Pres£ El, whenever X is understood from the context. 
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The mapping mir from Z* into Z* is defined by: if w=xy, with xeX* and 
y£Z, then mir w=y mir x; mir A = A. 

Definition 1.1. (i) A grammar is an ordered quadruple G = (V,Z,P,S), 
where V is a finite non-empty alphabet, the total alphabet of G, I c V is the ter-
minal alphabet of G,V\Z is the nonterminal alphabet of G, S€V\Z is the 
axiom of G and P is a finite subset of l/*(y\Z)V*xV*; the elements of P are 
called the productions of G and for (a ,P)ZP we write a—/?. 

(ii) A word v€V* directly derives a word w€V* according to G, denoted 
v=>w, if there are x,y,<x,PtV* such that v—xay, w=xfiy and a—/? is a pro-

c 0 n 
duction of G. We write x^-x for every x€V* and for n s l , x=>y if for some 

G G 
n-1 + * Mm t 

z€V*, x=>z=>y. We write x=>y (x=>y, x =>• y, respectively) if x=>y for some 
G G G G G G 

integer ?>0 (iSO, t ^ m , respectively). If no confusion is possible we use, =>, 
+ * n ^n -f * n ^n 
=>-, =>, =>, => rather than =», =>, =>, =>,=>. 

C G G G G 
(iii) The set of sentential froms of G, denoted sent G, is defined by sent G = 

G 
* 

(iv) The language of G, denoted L(G) is defined by L(G) = {weX*: S=>w}= 
= sent Gf l I*. c 

Definition 1.2. Let G = (F, Z,P, S) be a grammar. 
(i) G is termed regular, if <x-~p&P implies a € V \ Z and pzZ(V\Z) or P^Z. 

(ii) G is termed context-free, if a—/?€.P implies a€V\Z and P<iV+. 
(iii) G is termed context-sensitive (monotonic) if a —PiP implies |a |s | j? | . 
The families of languages generated by regular, context-free, context-sensitive 

and arbitrary grammars will be denoted by i f (Reg), if7 (CF), i f (CS) and i f (RE) 
respectively. 

Definition 1.3. (i) An ETOL system is an ordered quadruple H=(V, Z, 0>, a>), 
where V, Z and V\Z are as in the definition of a grammar, co£V+ is the axiom 
of H and & is a finite non-empty set of tables Plt ..., P„, n fe l . A table P-„ 1 ^ 
^i^n, is a finite subset of VxV*, such that for each adV there exists a fiiV* 
with (a, P)iPi- An element (a, p) of Ph 1 ^ / S n , is called a-production and is usu-
ally written as a—/? -a— P is called an a-production and the fact that a— P belongs 
to Ph l ^ i S n , respectively to 0>, is often abbreviated as a —J?, respectively 

p, 
a^p. 

(ii) A word ueV* directly derives a word u£V* according to H, denoted 
u=>w, if v = a1...ak, a^V for 1 ^i^k, u = pi...pk, P^V* for 1 ^i^k, and 

H • 
0 

there exists a _/€ {1, ..., n} such that a f o r all /€ {1, ..., n). We write x=>x 
PJ , » n It — 1 

for every x€V* and for n^l,x=>y if for some z£V*, x=>z=>y. We write 
n H H 

J 



On the role of blocking in rewriting systems 391 

+ * mm I 
x=>y(x=>y, x=>y, respectively) if x=>y for some integer / > 0 (/ = 0, ( S m , 

H H H H 
-f * n mn 

respectively). If no confusion is possible we use =•, =>, =•, =•, =>• rather than 
+ * n Sn 

=>, =>-, , =>•, =>•. 
H H H H H 

(iii) The set of sentential forms of H, denoted sent H, is defined by sent H— 
* 

= {veV*: co=>t)}. 
H 

* 

(iv) The language of H, denoted L{H) is defined by L(H) = {veZ*: a>=>v} = 
= sent HO I*. H 

Definition 1.4. Let H=(V, I , a) be an ETOL system, with 0> = 
= {P1,...,Pn}. 

(i) If 2P consists'of one table only, say &>={P}, then H is termed an EOL 
system and denoted H=(V, I,P,<x>). 

(ii) If, for every a — /?, then H is termed a propagating ETOL system, 
9> 

denoted EPTOL system. 
(iii) If for all /€{1, ••.,«}, a — P and a — y implies = then i f is termed 

Pt P> 
a deterministic ETOL system, denoted EDTOL system. 

(iv) If Z = V, then H is termed a TOL system. 
From the above definition it follows that we consider OL, POL, DOL, PDOL, 

TOL, PTOL, DTOL, PDTOL, EOL, EPOL, EDOL, EPDOL, ETOL, EPTOL, 
EDTOL and EPDTOL systems. The family of languages generated by X systems, 
where X stands for one of the above mentioned abbreviations, will be denoted 
by se{xy 

Let H be an ETOL system. If the sequence D=(x 0 , ..., x„) is such that 
Xi=>xi+1, 0 ^ / ' < n , then each occurrence of a letter in every word from x0, ..., x„_x 

H 
has a unique contribution to x„. If A is an occurrence of a letter in x ; , 0 s / < « , 
then we use ctr n Tj A to denote this contribution. 

Two languages, Ly and L2 , are considered to be equal if LXU {A}=L2\J {A}. 
We consider two families of languages, and Jz?2, to be equal if they differ at most 
by {A}. Two language generating devices G and H are said to be equivalent if 
L(G)—L(H). 

Definition 1.5. Let H=(V, I , P,to) be an EOL system. If there exists a 
subset 0 Q V \ Z such that for all a ^ Z U ^ , a - / ? implies P£<P+, then if is 

p 
called a synchronized EOL system, abbreviated sEOL system. $ is called the set of 
synchronization symbols of H. 

The following result is well known, see, e.g., [3]. 
Lemma 1.1. For every EOL system, there exists an equivalent sEOL system. 
The following is the central notion of this paper. 

Definition 1.6. (i) A grammar G = (V, I , P, S) is nonblocking if for every 

word v6sent G there exists a word uiZ*, such that v=>u. 
G 

i* 
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(ii) An ETOL system H—(V, I , co) is nonblocking if for every word 
* 

a g sent H there exists a word uiZ*, such that v=>u. 
H 

REMARK. Note that if G is a nonblocking grammar or a nonblocking ETOL 
+ 

system, then either Z.(G)\{/l}7i0 or S=>A and L(G)={A}. 
G 

The families of languages generated by nonblocking regular, nonblocking 
context-free, nonblocking context-sensitive, nonblocking arbitrary grammars or by 
nonblocking X systems (where X stands for ETOL or one of its subclasses) will be 
denoted by <£(nbReg), J&?(nbCF), if(nbCS), ¿f(nbRE) and &(nbX), respectively. 

Lemma 1.2. If Xi {Reg, CF, CS, RE} or X stands for ETOL or one of its 
subclasses, then ^ ( n b X ) Q ^ ( X ) . 

II. The Chomsky hierarchy 

In this section we impose the nonblocking condition on regular, context-free, 
context-sensitive and arbitrary grammars. 

We start by recalling a well known fact concerning the first two types of gram-
mars. 

Lemma II.l . For every context-free (regular) grammar generating a non-empty 
language, there exists an equivalent nonblocking context-free (regular) grammar. 

Proof. Since for every context-free (regular) grammar, there exists an equiva-
lent context-free (regular) grammar in which every nonterminal is useful (see, e.g., 
[9], otherwise the generated language is empty) the lemma holds. • 

Thus we get the following result. 

Theorem II.l. (i) JS?(nbReg) = J2'(Reg). 
(ii) (nbCF) = ¿5? (CF). 

For context-sensitive grammars generating non-empty languages we have a 
similar situation. However, the proof is much more involved. For this reason we give 
only an intuitive description of the proof. For a formal, detailed proof, we refer the 
interested reader to the Appendix. 

/ 

Lemma II.2. For every context-sensitive grammar, generating a non-empty 
language there exists an equivalent nonblocking context-sensitive grammar. 

Proof. Let KQ I* be a non-empty language, generated by a context-sensitive 
grammar. We distinguish two cases. 

(i) K is finite. Then, obviously, the context-sensitive grammar ( £ U {5}, I , 
P, S) with P={S^x:x£K} is nonblocking and generates K. 

(ii) K is infinite. Let I' = {[a, b, c, d]: a, b, c, de 1} U {[a, b, c]: a, b, c € £} U 
U{[a, b]: a, ¿>€27}U {[«]: atZ}; let h be the homomorphism from I'* into I* de-
fined by h([a, b, c, d])—abcd, h([a, b, c])—abc, h([a, b])=ab and h(\a])—a. Let 
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K' = {[«!, fl2j aa, fl4]---[a4n-3, «4B-2, «4n-i= ain]: n*s2, a^-.a^K)U 
{[a1( a2, a3, a4].. [«4„_3, «4„_2, «4„][«4„+i]: w^2, ar1...i/4n+1eJSr}U 
{[«1» «2, «3. « J - «4/1-2, «4/1-1, «4/>] [«4/1 + 1 > «411 + 2]: « S 2 , i7x.. .fl4n + 2 € K) U 
{[«1, fl2> «3, ^4] • - - [a4n — 3 J «4/1-2) «4/1-1 > «4/i][«4/i + l> «4/1 + 2) «4/1 + 3]: 

Clearly K' is context-sensitive, say it is generated by a context-sensitive grammar 
G'=(V, I',P', S'). Moreover h(K')=K\{xeK: |x|<8}. Now we can construct 
a nonblocking context-sensitive grammar G=(V, I , P, S) generating K. It works 
as follows. 

(1) S-x is in P for xiK with |x |<8. 
(2) P'QP. 
(3) S directly derives 5" surrounded by markers. Hence K' can be derived, 

surrounded by these markers. A successful derivation in G terminates by rewriting 
elements of I ' into elements of I (after it was checked by markers that a current sen-
tential form consists of letters from I ' ) and making the markers disappear. (The 
deletion of markers and rewriting symbols of I ' into symbols of I is paired together 
so that the monotonicity of the productions is guaranteed). 

(4) From the above it follows that KQL(G). 
(5) At any stage in the derivation process of a word from K' (modulo markers) 

a "dead" symbol N can be introduced. Then all symbols (except the leftmost and 
rightmost marker) in the current sentential form can (and will) eventually be re-
placed by N; to the right of the rightmost marker (which now also changes into N) 
the axiom S' of G', surrounded by markers, will be introduced again. This process 
may be repeated an arbitrary number of times. 

(6) If from S' a word w of K' is derived, then termination can take place if w 
is long enough (K' is infinite!) to "absorb" all dead symbols and markers, when the 
symbols of 2" are rewritten into symbols of I . Again, during this termination proc-
ess, there still is a possibility to change all symbols of the current sentential forms 
into N's and to place S', surrounded by markers to the right of this string. In this 
case the derivation process "switches" again into state (5). 

(7) Now (5) and (6) imply that L(G)QK, G is nonblocking and monotonic. 
This together with (4) implies the result. • 

Corollary II . l . For every arbitrary grammar, generating a non-empty language, 
there exists an equivalent nonblocking grammar. 

Thus we have the following result. 

Theorem II.2. (i) i f (nbCS) = i f (CS). 
(ii) i f (nbRE) = i f (RE). 
Although it follows from Lemma II.2 that for any context-sensitive grammar, 

generating a non-empty language, there exists an equivalent nonblocking context-
sensitive grammar, the proof of this fact was not effective; it is well known that it 
is not effectively decidable whether or not the language generated by a context-
sensitive grammar is finite (see, e.g., [9]). Moreover, there is no algorithm which, 
given an arbitrary context-sensitive grammar G (generating a non-empty language) 
yields an equivalent nonblocking context-sensitive grammar. We also show that 
it is undecidable whether or not an arbitrary context-sensitive grammar G itself is 
nonblocking. 
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We prove the above two statements using Post's Correspondence Problem (see, 
e.g., [9]). 

Definition II. 1. An instance of Post's Correspondence Problem over an alpha-
bet Г is a pair (A, B), where A = {a1, ...,ап}, В={Рг, ...,/?„}, witha i6Z'+ and 
/?,£X + , for l^i^n. (A, B) is said to have a solution if there exists a non-empty 
finite sequence of indices {/г, . . . , 4}, O^O- •••, "} for 1 ^ j ^ k , such that ail...<xik = 

Theorem II.3. There is no algorithm to decide whether or not an arbitrary 
instance of Post's Correspondence Problem over a two letter alphabet has a so-
lution. 

Theorem II.4. There is no algorithm that given an arbitrary context-sensitive 
grammar generating a non-empty language constructs an equivalent nonblocking 
context-sensitive grammar. 

Proof Let (A, B) be an arbitrary instance of Post's Correspondence Problem, 
A = {<*!, . . . ,a„} and B= {/?l5 ..., /?„}, with л й 1 , a,€{a, b}+ and for 
l S / S f l . The context-sensitive grammar G is defined as follows. G — (V, {c, d}, P, S), 
where V= {S1, Z, a, b, M, M, Ma, Mb, Ma, Mb, Q, N, c, d} and P is given in (1) 
through (9). 

(1) S—c. 
(2) 5—c«,Zmir/ j ,c , for and Z—a,Zmir/?,-, for 1 ^ Ш п . 
(3) Z-*Md. 
(4) aM—A/a, for a e{a,b,d}, and cM—cM. 
(5) MOL-~CMX, for a6 {a, b}, and Md-*dQ. 
(6) for ft6{a, b, d}, and Mac^Mac, for a€{a, b). 
(7) aMx-*Mc, for a<i{a, b). 
(8) PMx-~Nc, for a, ^ {a, b) and ос 
(9) Qa ^Nc, for a 6 {a, b) and Qc-»cc. 
It is rather easy to see that L(G) — {c} if (A, B) has no solution and that L(G) 

is infinite otherwise. 
Assume that we could effectively construct an equivalent nonblocking grammar 

* 

G' = (V, {c, d}, P', S') for G. Let w0=min {|w|: S'=>w and И S 2}. Obviously 
с 

we can effectively decide whether or not n0 exists because G' is monotonic. Since G' 
is nonblocking, if n0 exists then L{G')—L{G) contains a word of length at least two 
and so (A, B) has a solution. If n0 does not exist, then L(G')=L(G)= {c} and hence 
(A, B) has no solution. 

Hence if the algorithm in question exists then Post's Correspondence Problem 
is decidable; this contradicts Theorem II.3. • 

Theorem II.5. It is undecidable whether or not an arbitrary context-sensitive 
grammar generating a non-empty language is nonblocking. 

Proof. Let (A, B) be as in the proof of Theorem II.4. Let H={V, {c, d), P", S) 
be the context-sensitive grammar which is defined as follows. V and S are as in the 
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grammar C = (V, {c,d},P, S) defined in the proof of Theorem II.4. P" is defined 
by (1) through (8) as stated there and additionally by: 

(9') Qa —<xQ and aQc-+Ncc for ae{fl, b) and 
(10) aN^Nc, for oce{a,b}, dN^Nd and cN^cc. 

Hence L(H) ^ 0 ( c t L ( H ) ) and H is nonlocking if and only if (A, B) has no so-
lution. 

Thus, if we would have an effective decision procedure for the nonblocking 
property of context-sensitive grammars, then Post's Correspondence Problem would 
be decidable. This contradicts Theorem II.3. • 

We conclude this section with the following observations. 
For an arbitrary grammar generating a non-empty language, there exists an 

effective procedure to construct an equivalent nonblocking grammar. This is a conse-
quence of the possibility of using length-decreasing productions for the markers 
and the dead symbols (as used in the proof of Lemma II.2). Hence we do not need 
arbitrarily large words to "absorb" all those garbage symbols. Consequently, it 
is not needed anymore to distinguish between the case of a finite and the case of an 
infinite language (which made the proof of Lemma II.2 ineffective). 

It is well known that it is not decidable whether an arbitrary context-sensitive 
grammar generates the empty language (see, e.g. [9]). Consequently it is not decid-
able whether or not an arbitrary context-sensitive grammar has an equivalent non-
blocking context-sensitive grammar. Note that in the case of context-free grammars 
these questions are decidable: finiteness and emptiness are decidable for those gram-
mars. 

III. Systems without tables 

We will now investigate the effect that the nonblocking condition has on the 
language generating power of E(P)(D)OL systems. 

First we compare EOL and nbEOL systems. 
It turns out that the nonblocking restriction is a real restriction. This result should 
be compared with the results of the previous section. 

Lemma III. l . (EPOL) \ i f (nbEOL) ^ 0 . 

Proof. We will prove that K= {a3} U {aT: n & 0} g J5f ( E P O L ) \ i ? (nbEOL). 
(i) Let G be the EPOL system which is defined by 

G = ({5, A, N, a}, {a}, {S -a 3 , S^A, A-*AA,A^a, N-+N), S). 

Obviously L{G) = K. Thus EPOL). 
(11) The fact that <£(nbEOL) is proved by a contradiction. Assume that 

Ke Ja? (nbEOL). Then there exists a nbEOL system H—(V, E, P, to) such that 
L(H) = K or L(H) = KU{A}. 

* 

Since H is nonblocking for every veK, v=>v'ea* holds. Since H is an EOL 
+ 

system, it must be that v=>v'£a* holds for all v£K. + 
In particular a3=>ak, for some ke{0, 3}U {2": nSO}. 
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+ + 
(1) Assume that (F=>A. Hence a=>A. Then for each aiV such that 

+ mt 
a =>x£a+ it holds that a=>/l where t equals the cardinality of V. Choose r such 

that 2 r>max({y: a=>aJ', a g F } U {0,3}). Thus a2 r + 1eLCff) and by the choice 
* t 

of r we may write a)=>x1ax2=>y1zy2 = a2r+1 such that aeV, xlx2çV+, y1y2^a+, 
t * t 

a =>z and l s | z | < 2 " . On the other hand we have co=>-x1ax2=>y1y2£a+ and 
2 r + 1 —2r = 2 r<|>'i>'2 |<2 r + 1 ; a contradiction. 

+ t 
(2) Assume that a3=>a^ Hence there exists a t such that a=>a. Consider 

the i t h speed up H o f H , L(H)=L(H). (See, e.g., [7]). Hence H must have a produc-
tion a—a. This implies L(H)e£f(CF) (see. e.g., [7]); a contradiction. + + 

(3) Assume that a3=>a2". If « g 1, then a=>A which yields a contradiction 
+ + 

as in (1). Hence This implies that a=>al for some ¿>1. Hence 
a contradiction. • 

It follows from the above that there are EOL languages that are not nbEOL 
languages. However the following theorem demonstrates that there is only a "small 
difference" between nbEOL and EOL languages. 

Theorem 1II.1. Let K<iS£(EOL) and let § be a symbol, §$alph K. Then 
/iU§+€JSf(nbEPOL). 

Proof. Let K and § be as in the statement of the theorem. Let G=(V, I , P, S) 
be an sEPOL system such that SiV\Z and L(G)=K. Moreover assume 
without loss of generality that N is the synchronization symbol of G,a — N for 

p _ 
each aëV, and a—TV is the only a-production for a€TU{¿V}. Then let G -
= (V,Z, P, S) be the EPOL system which is defined as follows. 

(i) W={[p]: p£P}, WTl(FU{§})=0, and F = FUIFU{§}. 
(ii) i = r u { § } . 

(iii) P = { a - [ / ) ] : p = a - x } U { [ / 7 ] - x : p = a-x}U{aaeF}U{§-iV, §-NN}. 
p _ p _ 

(1) We first show that L ( G ) = / n j § + . Let xiL(G) and let D: S=>x1=> 
. . . - G c 

=^-x2=>...=>xn=x£Z+ be a derivation in G . If x£l+, then clearly n is even 
G G G 

and all productions used in D belong to {a-•[/>]: p = a — x}U {[/>]—x: p=a-+x). 
p p 

Hence D': S=>x2=>xt =>xn—x is a derivation in G and thus xeK. If 
G G g G _ 

§€alph x, «must be odd and consequently (the form of P implies that) x€§+ . 
Thus_ L(G) Q KU§+. Since each derivation step in G can be simulated in two steps 
in G,K<gL{G). Moreover S=>§=>N2=>§2=>N3=>..., yields § + g L ( G ) . Thus 

G G G G G 
* U § + g L ( G ) . Hence L(G)_=/s:U§+. 

(2) Next we show that G is nonblocking. Let x g sent G. A close inspection of 
F yields that either x g F + or xeffVU {§})+. If x€(« /U{§})+ then x=>y£V+. 

G 



On the role of blocking in rewriting systems 397 

S2 
Ii xel/+ and (JXT|=then x=>§k. Thus x=>-z€§ + for all xgsent G. Hence G 

G G 
is nonblocking. • 

We now turn to the comparison of the language families if(EA'OL), 
i f (nbEADL), &(XOL) where X denotes either P, D, PD or the empty word. We 
need the following lemmas. 

Lemma III.2. (i) J*? (EDOL) g i ? (nbEOL), and 
(ii) (EPDOL) Q (nbEPOL). 

Proof, (i) Our first observation is that every EDOL system generating an in-
finite language can be considered as an nbEOL system. Every finite non-empty 
language K with alph K— 1 can be generated by a nbEOL system, namely G = 
= ( { S } U I , x , {a—a: a€X} , S). 

The two observations from the above conclude the proof of (i). 
(ii) Analogous to (i). • 

Lemma III.3. (DOL)\J5? (nbEPOL) ^ 0 . 

Proof. We will prove that K— {ab} U {a2"bc: « s 1} € ( D O L ) \ i ? (nbEPOL). 
(i) Let G be the DOL system which is defined by G=({a, b, c}, {a, b, c}, 

{a-*a2,b~bc,c-~A},ab). Obviously L(G) = K. Thus ^€=5?(DOL). 
(ii) The fact that (nbEPOL) is proved by a contradiction. Assume that 

J?(nbEPOL). Then K—L(H) for an nbEPOL system H={V, I , P, co). 
+ . < 

Since H is nonblocking, for each vi.K, v=>v'£K. Thus a2bc=>xzK for a positive 
H H 

integer /. Since H is propagating, |xj S 4 . Moreover x cannot equal a2be because this 
t t 

would imply that K is context-free. Thus a2bc=>a2"bc for an h S 2 . Clearly a=>y 
H H 

t t t 
implies thus a=>a' for an /=-0. b=>akb (b=>ak respectively), /c>0 is 

H H H 
t t 

impossible because then ab=>ai+kb (ab=>ai+k respectively) which contradicts the 
H H 

t t 
fact that L(H)=K. Hence we must have a=>a', / > 1 and b=>b. But then 

H H t 
ab^a'b which again contradicts the fact that L(H) = K. Thus S£(nbEPOL). 

H 

Then (i) and (ii) yield the lemma. • 

Lemma 1II.4. ¿ f ( P O L ) \ ^ ( E D O L ) T i 0 . 

Proof. Let K= {a":n^\}. It is proved in [6] that KeSC(POL)\£>(EDOL). O 

Lemma 1II.5. i f ( E P D O L ) \ i ? ( n b E D O L ) ^ 0 . 
Proof. We will prove that K— {a2b2, 64(ac)2}eif ( E P D O L ) \ i f ( n b E D O L ) . 
(i) Let G be the EPDOL system which is defined by G=({A, a, b, c}, {a, b, c}, 

{A^A,a^b2.b-*ac,c^A),a2b2). Obviously L(G) = K. Thus KdZ (EPDOL). 
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(ii) The fact that .5? (nbEDOL) is proved by a contradiction. Assume that 
X6JSf(nbEDOL). Then K=L(H) for an nbEDOL system H=(V, Z, P, a>). 

t 
Since H is deterministic there exists a positive integer t such that either a2b2=>bl • 

H 
i i t 

• {ac)2 or b4(ac)2=>a2b2. The latter implies ¿=>/1 and (ac)2=>a2b2 which is clearly H H H 
I 

impossible. Hence a2b2=>b*(ac)2. There are three cases to consider. 
H 

< t 
(a) a=>A. Then however b2=>bi(ac)2 which contradicts the fact that H is 

H H 
deterministic. 

t t 
(b) a=>b. Then however b2=^b2{ac)2 which contradicts the fact that H is 

H H 
deterministic. 

t t t 
(c) a=>b2. Then b~=>{ac)-. The fact that H is deterministic yields b=>ac. 

H H H 
Observe that 

* * t 
(111.1)... a=>x implies |x |&l , and b=>x implies | x C l e a r l y a2b2=>b* • 

// H H 

• (ac)2=>(ac)i(b2x1)2=>(b2x1)i({ac)2xi)2=z for some x1,x2^V*. 
H H 

Now the form of z and (III.l) yield that 
* 

(111.2)... for all words v such that z=>v, | u | s l 2 . Since the longest word of 
H 

L(H) = K has length 8, (III.2) contradicts the fact that H is nonlocking. Having 
established a contradiction for all possible cases, we get that (nbEDOL) 
which concludes the proof of (ii). 

Hence the lemma holds. • 

Lemma III.6. jSf ( nbEPDOL) \ i f (OLM0. 

Proof. We will prove that K= {a?nb: n=sO}U{a2*" + 1c: « ^ 0 } e i ? ( n b E P D O L ) \ 
\JSP(OL). 

(i) Let G be the nbEPDOL system which is defined by G = ({A, B, C, a, b, c}, 

{a, b, c}, {A-~c, B^C, C-b, a-aa, b-*A, c-+B} ,ab). Obviously L(G) = K. Thus 

K££e{ nbEPDOL). 
(ii) The fact that OL) is proved by a contradiction. Assume that 

ZS£(OL). Then K=L(H) for a OL system H={V, V, P, to). Without loss of 
generality we can assume that V= {a, b, c}. 

(11.1) Clearly a—x implies xta*, b — x implies xga*6Utf*c; and c —x p p p 
implies x£a*bUa*c (otherwise L(H) would contain words not belonging to K). 

(11.2) The set P contains only one «-production. For assume to the contrary 
that there exist two different «-productions in P, say a—a' arid a-*a', i j. Let 
¿—x be an arbitrary ¿-production of P. Then for all «SO, a2hnb^>a2Sn i x and 

H 
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a2hnb^a№" i'i+ix. Thus for all nSO, a2'nix and a25" i - i + J x belong to L(H) 
H 

which (for n large.enough) contradicts the fact that L(H) = K. 
(11.3) The only a-production of P cannot be a — A otherwise L(H) would be 

finite, a contradiction. 
(11.4) Analogously to (ii.2) we can prove that P contains only one ¿-pro-

duction and one c-production. 
Now (ii.l) through (ii.4) yield that H must be a PDOL system. 
Hence ab=*a*c=>a32b. There are four cases to consider. 

H H 
(a) a=>a and b=±a3c. Then however a32b=±a3bc\ a contradiction. 

H H H 
(b) a=>a3 and b=>a2c. Then however a32b=>a66c; a contradiction. 

H H H 
(c) &=>ct3 and b=>ac. Then however a32b=>a91 c; a contradiction. 

H H H 
(d) a =>a4 and b=>c. Then cfc=>a32b, a^a* and the fact that H is deter-

H H H H 
ministic yield c=>a™b. Then however a128c=>a5286; a contradiction. 

H H 
Having established a contradiction for .all possible cases, we get Â^ i f (OL) . 

Then (i) and (ii) yield the lemma. • 
We are now ready to state the main result of the section. As expected, if X 

denotes either P, D, PD or the empty word, we have that i f (ADL) c if(nbEJTOL) c 
c&iEXOL). 

where, if there is a directed chain of edges in the diagram leading from a class X 
to a class Y then Xd Y\ otherwise X and Y are incomparable but not disjoint. 

Proof. It is well known that i f (EOL) = i f (EPOL) (see, e.g., [7]). Inclusions 
follow from the definitions and Lemma III.2; strict inclusions and incomparabilities 
follow from Lemma III. 1 and Lemmas III.3 through III.6. • 
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IV. Systems with tables 

In the case of E(P)TOL systems the nonblocking restriction turns out to be no 
restriction with respect to the language generating power. This contrasts the results 
of the previous section. 

Theorem IV.l. i f (nbEPTOL) = i f (nbETOL) = i f ( E P T O L ) = i f (ETOL) . 

Proof. We shall show that i f (ETOL) g i f (nbEPTOL). The theorem then 
follows from the definitions. Let /^g J? (ETOL). Then (see [6]) there exists a PTOL 
system G=(F,V, {Pt, P2, ..., Pk}, of), and a A-free homomorphism h: 
V*-Z*, such that h{L(G)) = K. Without loss of generality assume that VDZ= 
= 0. For l ^ i s f c let Q ^ P i U i a - c r a g X } . Let_ Q = {a- / i (a ) : ccgK}U { a - a : 
a g l } . Finally define the EPTOL system G by G = (VU Z, Z, {Qu Q2, ..., Qk, 
Q},co). Clearly G is nonblocking and L(G) = K. Thus ^ g i f (nbEPTOL). Hence 
i f (ETOL) g i f (nbEPTOL). • 

Even in the case of E(P)DTOL systems the nonblocking condition has no con-
sequences for the generating power of those systems. We first prove the following 
lemma. 

Lemma IV.l. i f (EPDTOL) Q i f (nbEPDTOL). 

Proof Let G=(K, Z, 0>, S) be an EPDTOL system where 0>= {Plt P2, ..., 
..., Pk},k^l. Without loss of generality assume that SeV\Z, L ( G ) ^ 0 and 
alph L(G) = Z. Let V= {a: aeK}, KHK=0 and let fi be the homomorphism on 
V* defined by / j (a )=a for agK. For each let wx be a fixed word such 
that alph wx=X and each letter occurs precisely once in wx. Furthermore let Gx = 
= (V, Z, 0>', E(wx)) be the ETOL system which is defined as follows. V'=V(JV, 
and 0>'={P'\P<i&} where for Pi0>, P' = P[J {h(oi)-x: oc-x}. Then SUC(G) = 

= {0P±X^V:L(GX)?£0}, in o t h e r w o r d s f o r a WEV+, a l p h w g S U C ( G ) if a n d o n l y 
+ 

if there exists a w'eZ+ such that w=>w'. For XgSUCiG) we define next X= 
G 

= {/': Pii^, wx=>y, alph jgSUC(G) or alph yQZ}. Now we will construct an P( 

nbEPDTOL system H such that L(G)=L(H). We proceed as follows. 
V={S}UZ U {[a, X]i'. a € alph X, next X}, f n (V\({S}U Z)) = 0. For 

XgSUC(C) 
/€next{S}, define = {S}] ,}U{a-a : a<E K\{5}}. For JTgSUC(G), 
wx=>y, a lphy = yeSUC(G) and /gnext Y define 

P; 

QX.U=1L*,X]I~[PL Y]j[PT, Y]j-[PM, Y]J• «ZX,*-PIP2...PM, FOV 
p t 

f o r 1 s / g f f l } U { a - a : ctg V\{[P, X],: P^X}}. 

For A'gSUC(G), wx=>y, a l p h j g i define 

Qx.i. fin = {[a, : a € JT, a - r } U {a - a : .a € V\{[P, X]t: p g X}}. P, 
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Let P = { 0 i n , i : / e n e x t {5}}U{e*.i , j : ^€SUC(G) , wx=>y, alph ^ = F g S U C ( G ) 

and ye next y}H{Qx,uin-^eSUC(G), wx=>y, alph YQ 27}.' 

Finally let H be the EPDTOL system defined by H=(V, I , SP, S). First we 
show that L(H)=L(G). For XgSUC(G) and /gnext X the homomorphism 
hx i on V* is defined by hx ¡(a) = [a, A'],- if a g F ; furthermore the homomorphism 
g on V* is defined by g(ot) = a if a g { 5 } U I and g([<x, *],) = <x if XgSUC(G), 
aiX and ¿gnext X. Let xgL(G), thus S=x0=>x1=>x2=>•••=>xn=x, « £ l , ..., 

P: Pi J>; 'l '2 'n 

... ,/„g{l, . . . , k). Then obviously, if for we denote a lphx^A" , , 

5 hxo.hi.Xo) => => hx„ _ i, /„ iXn—i) => xn = x. Q * Qxn-i,<n--L>>n fin 
Consequently xdL(H). Hence LiG)QL(H). 

Conversely let x£L(H) and let D: S—x0=>x1=>x2=>...=>x„ = x be a shortest 
H H H H 

derivation of x in H. Thus, if for O^l^n we denote alph g(x,) = Xt, 

D. S —• XQ —R X2 —••• XJJ-I —^ XN — XJ 

Sin,.! Qxitiltit
 QX„-i,i„-2,i„-l Q * „ - l . f „ - l . fin 

/ j s 2 and «!,.. . , /„_1g{l, ..., k). Consequently 
S = x0=> g(x2) => ... => g(xn_x) => g(xn) = x 

P; ' P: P: P, '1 '2 n — 2 'n-1 

and thus xgL(G). Hence L(H)QL(G). 
We end the proof of the lemma by showing that H is nonblocking. Let xgsent / / . 

Then there are three possible cases: x=S or x g T + or x=hXi(v), veV+, X€ 
gSUC(G) and /gnext X. Since L(H) = L(G)r£Q it suffices to consider sentential 
forms of the third kind. Thus x=hXi{p), viV+, ZgSUC(G) and ¿gnext X. 

* 

Hence there exist v' and v" such that v=>v'=>v"£Z+. Then inspecting the proof 
p, c 

* 
of L(G)Q,L(H) one can easily see that x=hXi(v)=>v" which shows that H is 

11 
nonblocking. • 

As a corollary we obtain the answer to an open problem stated in [6]. 

Definition IV. 1. A language L is contained in i f ( N P D T O L ) if and only if 
there exists a PDTOL system H and a non-erasing homomorphism h such that 
L = h{L(H)). 

Corollary IV.l. i f (NPDTOL) = i f (EPDTOL). 

Proof. We will use the notation from the proof of Lemma IV.l. Fix a w s g l + 
+ + 

such that S=m5 and for each A'gSUC(G) let Dx: wx^uxt E+ be a fixed deri-
G G 

vation. Then define the /1-free homomorphism h on V* as follows: h(S) = us, 
hi[tx,X]l)^ctT_Dx_Wxa. if XeSUC(G), a g a l p h X and ¡gnext X, and !i(<x)=a if 
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a € l . Let H' be the PDTOL system defined by H' = (V,V, S). Clearly L(G) = 
= h(L(H'j). Hence i f (EPDTOL) g i f (NPDTOL). Since also i f (NPDTOL) £ 
g i f (EPDTOL) (see [6]), the corollary holds. • 

For the deterministic case we obtain a result analogous to the statement of 
Theorem IV. 1. 

Theorem IV.2. i f (nbEPDTOL) = i f (nbEDTOL) = i f (EPDTOL) = if(EDTOL). 

Proof. From the definitions we get i f (nbEPDTOL)g i f (nbEDTOL)g 
g i f (EDTOL). It is well known (see, e.g., [1]) that i f ( E D T O L ) = i f ( E P D T O L ) . 
From Lemma IV. 1 we get i f (EPDTOL) Q i f (nbEPDTOL). Combining the above 
results, the theorem immediately follows. • 

Let X and Y denote P, D, PD or the empty word. Then Theorem IV. 1 and 
Theorem IV.2 show that i f (nbEATOL) = i f (EATOL). Thus comparing 
i f (nbEJTTOL) and i f ( F T O L ) is the same as comparing i f (EXTOL) and i f (7T0L) . 
For completeness only we present here the diagram in the case of tabled L systems. 
The proof is given using well known results from the literature. 

Theorem IV.3. The following diagram holds: 

i f (ETOL) = i f (nbETOL) = 
j / \ = i f (EPTOL) = i f (nbEPTOL) 

i f (EDTOL) = i f (nbEDTOL) = / \ 
= i f (EPDTOL) = i f ( n b E P D T O L ) \ / \ [ ( T O L ) 

\ i f ( P T O L ) 
i f ( D T O L ) \ / 

Xá'ÍPDTOL) 

where, if there is a directed chain of edges in the diagram leading from a class X 
to a class Y then I c Y; otherwise X and Y are incomparable but not disjoint. 

Proof. Inclusions follow from the definitions, equalities follow from Theorem 
IV. 1 and Theorem IV.2. Strict inclusions and incomparabilities follow from the fol-
lowing three observations. 

(i) {ba2": nsO}U}6c3": n ^ 0 } € i f ( D T O L ) \ i f ( P T O L ) (see, e.g., [3]). 
(ii) {we{a, b}*: \w\ — 2" for some n £ 0 } e i f ( P T O L ) \ i f (EDTOL) (see, e.g., [7]). 

(iii) All finite languages are in i f (EDTOL) and there are finite languages which 
are not TOL languages (see, e.g., [3]). • 

Since emptiness is a decidable property for ETOL systems (see, e.g., [7]) and 
since all constructions used in this section are effective, it follows that for every sys-
tem, considered in this section, generating a non-empty language, there exists ef-
fectively an equivalent nonblocking system. This contrasts Theorem II.4. Moreover 
it turns out that nonblocking is a decidable property for ETOL systems. This result 
should be compared with Theorem II.5. 
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Theorem 1V.4. Let G be an ETOL system. Then it is decidable whether or not 
G is nonblocking. 

Proof. Let G = (V, Z, 0>, of) be an ETOL system. Let F = { a : a<EK}, Fi"lF=0 
and let h be the homomorphism on V* defined by li(a) = a for aiV. For each 
Q^XQV let wx be a fixed word such that alph wx = X and each letter occurs 
precisely once in wx. Furthermore let GX = (V, Z, SP', R(wx)) be the ETOL system 
which is defined as follows. V' = VUV, and &>'= {P': Pi0>} where for Pe0>, 
P'=PU {K(a)->-x: a —x}. Let sent CD {xtX*: alph x = X } ^ 0 } . Ob-

p 
viously G is nonblocking if and only if and for each Hisi, L(H)^0. The 
decidability of the latter question follows from the closure properties of JSf(ETOL), 
the effectiveness of the construction of s4 and the decidability of the emptiness prob-
lem for ETOL systems. Hence the theorem holds. • 

Discussion 

In this paper we have investigated the effect that the nonblocking restriction 
has on the language generating power of various classes of rewriting systems. Since 
the blocking facility forms a typical "programming tool" in generating a language, 
we believe that our results shed some light on the nature of the generation of languages 
by grammars. 

The research started in this paper can be continued in several directions. 
(1) The class of languages generated by the "nonblocking subclass" of a class 

X of rewriting systems should be often investigated on its own (whenever the non-
blocking restriction influences the language generating power of the class X). Such 
a typical candidate to investigate is i f (nbEOL); for example the closure properties 
and the combinatorial properties of languages in this class. Also the decidability 
status of the question "Does an arbitrary EOL system generate a language in 
i f (nbEOL)?" forms an interesting open problem. 

(2) The role of the nonblocking restriction in classes of rewriting systems dif-
ferent from those investigated in this paper should also be investigated. 

(3) Clearly the way that we have formally defined the nonblocking of a rewriting 
system is only one of several possibilities. Other possibilities should also be investi-
gated. 

(4) A nonblocking condition can be also defined for various types of automata, 
for example one could require that for every state of an automaton there exists a 
computation that leads from this state to an accepting state. (Conditions of this 
type are often considered in the theory of Petri-nets (see, e.g., [2]), where they are 
referred to as "liveness conditions".) The effect of nonblocking on the generative 
power of various classes of automata should be investigated. 



404 H. C. M. Kleijn, G. Rozenberg, R. Verraedt 

Appendix 

Here we give the full proof of Lemma 11.2. 
For every context-sensitive grammar, generating a non-empty language there 

exists an equivalent nonblocking context-sensitive grammar. 

Proof. Let KQ Z* be a non-empty language generated by a context-sensitive 
grammar. 

1) If Ais finite, then let G=(2 'U {5}, Z, P, S) be the context-sensitive grammar 
with P= {S—x: x^K). Obviously; G is a nonblocking context-sensitive grammar 
and L[G)=K. 

2) If K is infinite, we proceed as follows. Let Z'= {[a, b, c, d]: a, b,c,diZ}U 
\J{[a,b,c}-. a,b,c<iZ}{J{[a,b]: a, 6e l}U{[a] : a<El} with I ' D X = 0 . 

Let K'— {[«i,a2> «3. «4]• • • [«4n—3, «4n—25 «4«—1 s a^V- « = 2 , a^Z, for 1^/^4/7, and 
a i a 2 - «4„e^}U{[fli, a2, a3, a4] ...[a4n_3, ain_l5 a4„][«4„+1]: n^2, r , f o r 1 =£/=s 
^ 4 « + l , and aia2...ain+1eK}{J{[aua2,a3,ai]...[a4n_3,ain_2,ain.l,ain][ain+1,ain+2]: 
: / i s 2 , a i 6 l , for l s / g 4 n + 2, and ... a4n+2e.K} U {[al5 a2 , a3 , a4]... 
•••[«4n-3, «4B-2, fl4n-i> ftJkm+i, fl4n+2, «4n+3] : " = 2, a, € X, for 1 =§4n + 3, and 

^ f l a — f l i B + s ^ ^ } -

Let h be the homomorphism from Z'* into Z* defined by h([al5 a2,a3, fl4]) = 
= axa2a3at,h([«!, a2, a3]) = axa2a3, h([a^, a2])=ava2 and h([ax]) = ax, for atZZ, 
1 S / S 4 . Clearly h(K') = K\{xiK: |.x|<8} and hence A"ei?(CS). (See, e.g., 
[4].) Let G'=(V, Z', P\ S') be a context-sensitive grammar, such that ( K ' \ Z ' ) n 
fl ¿ = 0 and L(G')=K'. Without loss of generality we assume that no terminals 
occur in the left-hand side of any production of P'. 

The context-sensitive grammar G=(V, Z, P, S) is defined as follows. V= 
= VUV'UZ, w h e r e F = { 5 , L, R, LU RU N, NL, N, B, B, M0, M0, MV, MX, M2, 
M2, M3, M3, XLT X2) and F n ( K ' U 2 ) = 0. 

P consists of the following productions. 

(1) S-x, if x<LK and |x |<8. 
(2) S-*-LM0S'R. 
(3) All productions from P'. 
(4) M0a—aM0, if aeX'. 
(5) M0-B. 
(6) [al3 a2, a3, at]M0Rj-*M0tficr2a3a4, 

[au a2, a3, a4][cr5]M0R_-+ A/0 t r ^ 2 a3 a4 a5 , 
[%, a2, a3, a4][as, a0] Rj*Maa3a4a-aa6 and 
[fit1,a2,a3,a4][a6,a6,a7]M0i?—ji?0a1fl2fl3fl4a5a6a7, for ateZ, l S / ^ 7 . 

(7) OLB-BN, if a € F " U Z U {N, LX, N, M2, M 2 } . 

(8) LB-NLB a n d NLB-NLB. 

(9) a2, a3, a4][fl5, a6 , a7, a8]M0-[au a2, a3, a4]M0a5a6fl7a8 for a^ Z, 
l 3 = i S 8 . 

(10) L[alt a2, a3, a4]M0—axa2a3a^ for a^Z, l S / ^ 4 . 
(11) BA-NB, if a e K ' U {TV}, 
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(12) BR—•NL±M^'Ri and ÊR^N^M^'Rj,. 
(13) M1(x--oiM1, if a e r . 
(14) M ^ B . ^ 
(15) M^R1—M1R1. 
(16) aA^-A^oc, if a 
(17) L1Ml-+NM2. 
(18) NM2^M2N. 
(19) NlM2*NlM2. 
(20) Not. —aiV, if a 61. 
(21) N[alt a2, û3, for a^I, l=s/=s4. 
(22) N[au a2, a3]—BN, vVK, a2]~BN, N^^BN and NR^BNR,, for 

diZX, l3=is=3. 
(23) M 2 a - a M 2 , if a e l . 
(24) M J ű i , a2 , a3 , ű 4 ] -ű 1 a 2 a 3 a 4 M3, for « ¡ e l , l=s/=s4. 
(25) M a f ö i . ^ ^ s l - i ^ , M2[a1 ; a2]-~BN, M^a^BN and M2R1-*BNR1, for 

a . e l , l ^ z = s 3 . 
(26) M^a-t, a2, a3, a4] —M^, a2, a3,jz4], for a^I, 1 
(27) M^a^a^'BN, M ^ , a2]^BN, M^a^BN and M3R^BNRU for 

ű , e r , l ^ í ' ^ 3 . 
(28) aM3^M3a, if aeZ . 
(29) NLM3-*X1X2. 
(30) A ^ a - o c X ^ , if a € l . 
(31) A^Za^i, űf2, a3 , a4][a5, a6 , a7 , a8]-a1a2a3a4A'1X2[a5, aG, a7 , a8], for 

(32) XjZJ«! , ű2, a3, a4][a5, a6 , a7] -Ri ^a2a3atabö6a-t, 
[ ö l a 2 , a3, a 4 ] [ a 5 , ae l^ i— a iÖ2Ö3 ö 4 ö 5 ö 6> 
î«i> a3, ŰE4][a6] jRj—axa2a3a^a% and 

X1X2[a1,a2,a3,ai]R1->-a1a2a3ai, for a^I, l s / ë 7 . 
First we show that L(G)QK. Starting from the axiom S only productions 

from (1) and (2) can be applied, resulting either in a word xeK, |x |<8 , or in a word 
of sent G of type A, i.e. of the form LxM0yR, with x e l ' * and xygsent G'. 

The productions, applicable to words of sent G which are of type A belong to 
(3), (4), (5) and (6). If a production from (3) or (4) is applied to a word of type A, 
the resulting word again is of type A. 

If a production from (5) is applied to a word of sent G of type A, we get a word 
of type B, i.e. of the form LxByR, with x;>e(K'U {A'})*. If a production from (6) 
is applied to a word of type A, the resulting word is of type C, i.e. of the form LxM0y, 
with x € l , + , yíl+, h(x)yiK and |A(x).)>|s8. 

The productions, applicable to words of type B come from (3), (7) or (8). Appli-
cation of productions from (3) and (7) to a word of type B again yields a word of 
type B, whereas application of productions from (8) yields a word of type D, i.e. 
of the form NLN*ÊxR or NLN*BxR1, x e ( F ' U {N})*. 

The productions, applicable to words of type C belong to (9) or (10). Applica-
tion of a production from (9) to a word of type C yields a word of the same type, 
whereas application of a production from (10) yields a word of K. 

2 Acta Cybernctica V/4 
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The productions, applicable to words of type D belong to (3), (11) or (12). The 
application of a production from (3) or (11) to a word of type D results in a word 
of the same type; the application of a production from (12) yields a word of type E, 
i.e. of the form N,.N+L, i M , yR,, xi Z'*, xygsent G'. 

The productions, applicable to a word of type .E come from (3), (13), (14) or (15). 
Application of a production from (3) or (13) to a word of type E yields a word of 
the same type. Application of a production from (14) to a word of type E yields 
a word of type F, i.e. of the form NLxByRY with xyi{V'[J{L1, N})*. Application 
of a production from (15) to a word of type E yields a word of type G, i.e. of the form 
NLN+L1xM1yR1 with xy€ Z'+, h(xy)€X and \h(xy)\^S. 

The productions, applicable to a word of type F come from (3), (7) or (8), and 
if applied, yield words of type F, type F and type D respectively. 

The productions, applicable to a word of type G, belong to (16) or (17), and, 
if applied, yield respectively words of type G and type H, i.e. of the form 
NLN*M2({N}\J Z)*Z'*RX, and furthermore if a word has this form, then also 
¿(Presnis/ w) = w ' t K with . |w ' | s8 . 

The productions, applicable to a word of type H belong to (18),-(19), (20), (21) 
or (22) and then yield words of type H, type /, type H, type H or type J respectively, 
where type I and type J are defined as follows. 

A word w is of type / if wtNLZ*M2({N}U Z)*!^ and A(Pres I n i , w) = 
= w'£K, with 

A word is of type J if it is of the form NLN*M2xBN+R1, with xg(2;U{Ar, N})*, 
or NLZ*M2yBN+Ru with j>e(IU {N,~N})*, or NLZ*BN+R1. 

The productions, applicable to words of type / belong to (20), (21), (22), (23), 
(24) or (25) and then yield words of type I, type /, type J, type I, type L or type J 
respectively, where type L is defined as follows. 

A word is of type L if it is of the form Nj^xM^yRi, with x£Z*, y£Z'+, xh{y)^K 
and |xA0>)|s=8. 

The productions, applicable to words of type J belong to (7), (8), (18), (19), 
(20) or (23) and then yield either a word of type J or type D. 

The productions, applicable to words of type L come from (26) or (27) and then 
yield words of type M ox J respectively, where type M is defined as follows. A word 
is of type M if it is of the form NLxM3yR1 with XÇ.Z*, y£Z'+, xh(y)Ç.K and 
\xh(y)\^S. 

The only productions, applicable to a word of type M come from (28) through 
(32) and they lead in a deterministic way to xh(y) if the word, they were applied 
to, was NLxMayR1. 

The above reasoning shows that L(G)QK. 
That KQL(G) can be seen as follows. 

If x^K and |x[<8, then S=>x and hence x£L(G). 
G 

If xiK and | x | ë8 , say x=a1...ak, a^Z for 1 and k^8, then 

S=>LM0S'R=>LM0 yR, with yf,K' and h(y) = x and LM0yR=r LyM0 R => G G G G 

=>LyM0R=*x. Thus *€L(G) . We conclude KQL(G). 
G G 
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We end the proof by showing that G is nonblocking. To this aim we have to 
* 

show that for each ivesent G, there exists a WEL(G) such that W=>W. From the 
G 

proof that L(G)QK it should be clear that it suffices to prove that each word of 
sent (G) which is of type A through M can lead to a terminal word. For words of 
types C and M this was already proved in the above. Inspecting the productions of 
G, we make the following observations. Let we sent G. 

* 

If W is of. type A, then W=>W' for a W' of type B. 
G * 

If W is of type B, then W=>W' for a W' of type D. 
G 
* 

If w is of type E, then w=>w' for a w' of type F. 
c 
* 

If W is of type F, then W=>W' for a w' of type D. 
G 
* 

If w is of type G, then W=>W' for a w' of type H. 
a 
* 

If w is of type H, then w=>w' for a w' of type /. 
G 

* 
If W is of type /, then W=>W' for a W' of type J or L. 

G 
* 

If W is of type J, then W=>W' for a W' of type D. 
G 
* 

If W is of type L, then W=>W' for a w' of type J or M. 
G 

Hence for each W e sent G of type A, B, D through M, there exists a Resen t G 
• * 

such that W=>W' and W' is either of type D or of type M. 
Since each word of sent G of type M can derive a word of K, it remains to show 

that each word of sent G of type D can derive a terminal word. 
This is seen as follows. Let we sent G and w is of type D. Then 

* . — 
W^NlN'L^M-lS'R-l for some / > 0 . Since K is infinite, K' is also infinite. Hence there 

G 

is a word x=a1...ak, with a^l', 1 = j= / c , such that xzK' and 4. Then 

N l N ' L ^ S ' R ! ^ NLNIL,M1xR1 Z NLN'L1XM1R1 =1 NLN'LlxMlR1 => 
G G G G 

4 N l N ^ M & R J * NLN' + 1 M 2 X R 1 NLM2Ni+1a1a2...ai+1ai+2ai+3...aKR1 
G G G 

* * _ 
• +1)^1 + 2^1 + 3 • • • 1 

G G 

* — * _ 
" => NLh(a1...ai+1)M2al+2ai+3...akR1 => NLh(a1...ai+2)M3ai+3...akR1 

G G 

2* 
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* _ * 

=> NLh(al...aH.^)M3aH.a...akR1 =» NLM3h(a1...ai+2)ai+3...akR1 
a G 
* * * 

=> X1X2h(a1...ai + 2)ai+3...akR1=> h(al...ai+2)X1X2ai+3...akR1^>- hiai.-.aj. 
1 G G 

Since a1...aki.K\ h(a1...ak)€.K and hence w derives a word of K. 
Thus G is a nonblocking context-sensitive grammar such that L(G)=K. Hence 

the lemma holds. • 
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Abstract 

A rewriting system G is called nonblocking if every sentential form of it can be rewritten into 
a word of the language of G; otherwise G is called blocking. The blocking facility is often used in 
generating languages by rewriting systems (for example in context-sensitive grammars and EOL 
systems). This paper initiates the formal investigation of the role that the nonblocking restriction 
has on the language generating power of various classes of rewriting systems. We investigate gram-
mars of the Chomsky hierarchy as well as context independent L systems with and without tables. 
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