
On finite nilpotent automata 

B y B . IMREH 

In this paper we consider the isomorphic and homomorphic realizations of 
finite nilpotent automata. First we characterize all finite subdirectly irreducible 
nilpotent automata. Secondly we give necessary and sufficient conditions for a 
system of automata to be isomorphically complete for the class of all finite nilpotent 
automata with respect to the af-products (see [2]). Finally, we characterize the 
homomorphically complete systems for the class of all finite nilpotent automata 
with respect to the «¡-products. 

The terminology and notations will be used in accordance with [3]. By an 
automaton we always mean a finite automaton. It can be seen from the definition 
of nilpotent automata that if A=(X, A, <5) is a nilpotent automaton with absorbent 
state a0 then 

(i) A is connected in the sense that for any a, b£A there exist p, q^X* with 
ap=bq, 

(ii) the binary relation (pdX* & ap=b) is a partial ordering in 
A and a0 is the greatest element in (A, s). 

Theorem 1. A nilpotent automaton A=(X, A, 5) (\A\^2) is subdirectly ir-
reducible if and only if 

(1) there exists an such that a, is the greatest element in 

(2) for any a,b£A if a^b and {a,b}%{a0,a^ then there exists a p£X+ 

with ap^bp. 

Proof. Theorem 1 will be proved in a similar way as the corresponding state-
ment for commutative automata in [1]. 

In order to prove the necessity assume that A is subdirectly irreducible and 
(1) does not hold. Then (/4\{a0}, S ) has at least two maximal elements. Denote 
them by ax and a2. Consider the following relations: for any a,b£A 

aOib if and onyl if {a, {a0, a,} or a~b, 
aa2b if and only if {a, {a0, a2} or a=b. 

It is not difficult to see that CT2 and a2 are nontrivial congruence relations of A and 
a1C\a2=AA, where Aa denotes the equality relation of A. This is a contradiction. 
Now assume that (1) holds and (2) does not hold. Then there exist u, v£A such 
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that u^v, {w, {a0, a,} and up=vp for any p£X+. Consider the following 
relations: for any a,b£A 

aoxb if and only if {a, b}Q {a0, a2} or a=b, 
ca2b if and only if {a, {u, v} or a=b. 

It is clear that AX and cr2 are nontrivial congruence relations of A and A1PA2=AA, 
which is a contradiction. 

To prove the sufficiency assume that (1) and (2) are satisfied by A, and A is 
subdirectly reducible. Then there exists a congruence relation Q of A such that 
Q=AAa and By Q^Aa, there exist U^V^A with II=V(Q). Consider 
the nonvoid set 

B = {{a, b}: a, b£A, a ^ b, (Bp) (p€X* and {M, v}p = {a, £>})}. 

Define the binary relation s on B as follows: {a, b}^{a',b'} if and only if there 
is a word p£X* satisfying {a, b}p— {a', b'}. It is obvious that i is a partial or-
dering in B. Let {a, 5} denote a maximal element of B. Then, by the definition 
of B, a^b and a=5(g). Therefore, {a, 5}^= {a0, a j . On the other hand, {a, E} 
is a maximal element in (B, s ) , thus, ap=Bp for any p£X+, contradicting con-
dition (2). This ends the proof of Theorem 1. 

By Theorem 1, we can give all subdirectly irreducible nilpotent automata 
directly. Indeed, let m ^ l be a fixed natural number and consider the input set 
Xm={Xl, ...,xm). Take the sets A^ = {0}, Ai"'> = {0, 1}, 

= •••> " J : «i, and { M l , . . „ u j n ^ V i ^ i ) ^ 0 } 

for all Now, define the automata A<m) n = l , 2 , ... in the following way: 

AJ"> = (Xm, A<T\ 5,), where <5X(0, xt) = 0 (/ = 1, .,., m), 

Mm) = {xm, 4 " % ) , where S2(0, x.) = d2(1, xt) = 0 (i = 1, ..., m), 
and in case of « > 2 

K m ) = S„) with S„,AMxXm = <5„_! and Sn((ulf ..., u j , x,) = u, 

(t=l,...,ni) for any (M15 . . . , um)£A^m)\A^'H.\, where the,restriction of 8„ to 
A i l \ x x m is denoted by 

Using Theorem 1 it is not difficult to prove that a nilpotent automaton A 
with the input set Xm is subdirectly irreducible if and only if there exists a natural 
number n such that A can be embedded isomorphically into a quasi-direct product 
A [ m ) (X m , (p) of A<m) with a single factor. From this we get the following 

Corollary. A system I of automata is isomorphically complete for the class 
of all nilpotent automata with respect to the quasi-direct product if and only if 
for any pair (n, m) of natural numbers n, m^l there is an automaton AgE such 
that A^m) can be embedded isomorphically into a quasi-direct product of A with 
a single factor. 

This Corollary shows that there exists no system of automata which is iso-
morphically complete for the class of all nilpotent automata with respect to the 
quasi-direct product and minimal. 
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We say that an automaton A can be realized homomorphically by an a,-product 
- of automata A, (i—1, . . . ,k ) if there exists a subautomaton B of an a rproduct 

of automata A, ( i = l , ..., k) such that A is a homomorphic image of B. 
We are going to use the following obvious statements. 

Lemma 1. If an automaton A can be embedded isomorphically into an 
a0-product of automata A, (/ = 1, .. . , k) and for some 1 the automaton A ; 
can be embedded isomorphically into an a0-product of automata By 0 = 1, . . . , s ) 
then the automaton A can be embedded isomorphically into an a0-product of 
automata A1 ; ...,AI_1,B1, . . . ,BS , A i + 1 , . . . , A t . 

Lemma 2. If an automaton A can be realized homomorphically by an 
a0-product of automata A, ( /=1 , ..., k) and for some l^i^k the automaton A, 
can be realized homomorphically by an a0-product of automata B; (j= 1, ..., s) 
then the automaton A can be realized homomorphically by an a0-product of auto-
mata A1 ; . . . , A,--!, B1; ..., Bs, A i + 1 , ..., Ak. 

Let us denote by R„=({x1 ; ..., x„_i}, {1, ..., n}, 8„) the automaton, where 
dnOi * s )=min (i+5, n) for any l^t^n, xsf {x1( ..., x„_1} and « s 2 . 

Concerning the isomorphic realizations of nilpotent automata with respect 
to the a0-product we have the following result. 

Theorem 2. A system 1 of automata is isomorphically complete for the class 
.of all nilpotent automata with respect to the a0-product if and only if one of the 
following four conditions is satisfied by I : 

(1) there exists an automaton in I which has three different states b, c, d 
and four input signs y, z, v, w (need not be different) such that by=b, bz—c, cv= 
= dv=bw = d hold, 

(2) I contains an automaton which has two different states b, c and two input 
signs y,z such that b=cy=by and bz=c hold, 

(3) I contains an automaton which has two different states b, c and two in-
put signs y, z with b = by, bz=cz=c, 

(4) for any natural number « S 3 there exists an automaton in I which has 
n different states a,(t= 1, .. . , n) and input signs x^ (t= 1, ..., «—1) (k=l, ..., n — t) 
such that arx(

k
!)=al+k if l^t^n—1, l^k^n — t furthermore, anx{"'1)=an hold. 

Proof. In order to prove the necessity assume that I is isomorphically com-
plete for the class of all nilpotent automata with respect to the a0 -product. Let 
MS3 be arbitrary and consider the automaton R„. Since R„ is nilpotent, by our 
assumption, R„ can be embedded isomorphically into an a0-product 
' s 
JJ At({xL, ..., xn_1}, <p) of automata from I. Let /i denote a suitable isomorphism, 
t=i 
and for any if {1, . . . ,«} let (an, ...,ais) be the image of i under ¡x. Denote by 
tyi the least index for which a„m9±an_lm holds. Observe that if aim—anm for some 

1 then (2) holds, while (3) holds if aim=a„_lm. Furthermore, if 
aim^{a„-lm,a„m}(i=l,...,n-2) arid aim-ajm for some indices 
then I satisfies condition (1) by Am. In the remaining case the elements aim 
( i= 1, . . . ,«) are pairwise different and this implies , that Am has the property re-
quired in (4). Therefore, since n was arbitrary, if none of conditions (1), (2) and 
(3) is satisfied by I then (4) holds. 

3 Acta Cybernetica V/3 
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We have already shown the necessity of our statement. Conversely, assume 
that (1) holds by BGI. We shall prove that every nilpotent automaton can be 
embedded isomorphically into an a0-power of B. We proceed by induction on 
the number of states of the automaton. The case is trivial. Now let n > 2 
and assume that for any m^n the statement is valid. Denote by A=(A r, A, <5) 
an arbitrary nilpotent automaton with n states. If A is subdirectly reducible then 
A can be embedded isomorphically into a direct product of nilpotent automata 
with fewer states than n. Therefore, by our induction hypothesis and Lemma 1, 
the statement is valid. Now assume that A is subdirectly irreducible. Then A has 
elements a0 and ax satisfying (1) in Theorem 1. Define the congruence relation a 
of A in the following manner: for any a, b£A aab if and only if {a, b}^ {a0, a^} 
or a=b. The quotient automaton A1=A/<r is nilpotent with n — 1 states. Consider, 
the a0-product A i X B p f , <p), where cp1(x)=x and 

for any x£X, a(d)^Afa. It can be easily proved that the correspondence 

is an isomorphism of A into the a0-product A 1 XB(Z, q>). Therefore, by our induc-
tion assumption and Lemma 1, A can be decomposed in the required form. 

The sufficiencies of conditions (2) and (3) can be proved in a similar way as 
the sufficiency of (1). 

Now assume that condition (4) holds. We proceed by induction on the number 
of states of the automaton. The case is trivial. Let « > 2 and assume that 
the statement is valid for any c</ i . Denote by A = ( X , A , 5 ) an arbitrary nil-
potent automaton with n states. If A is subdirectly reducible then, by our induc-
tion assumption and Lemma 1, the statement is valid. Now assume that A is sub-
directly irreducible and let X— {xx, . . . ,xm}. Then, by the observation connecting 
with Theorem 1, there exists an automaton A<m) such that A can be embedded iso-
morphically into A^m)(Xm, [¡/). Denote by s the least natural number for which A 
can be embedded isomoriphcally into A'™\Xm, ip). Let n denote a suitable isomorp-
hism. Since I satisfies (4) there exists an automaton B£ I which has s different states a} 
( y = 1, . . . , s) and input signs x^0 (<=1, . . . , s— 1) (k=\,,.., s — t) such that a , = 
=at+k ( / = 1 , . . . , s—1) ( fc=l , . . . , s—t) and a s x i s - 1 ) = a s hold. Now consider the 
a0-product A1XB(A', q>) where Ax is defined in the same way as above and (p1(x)—x, 

<Pz(a(a),x) = 

y if a(a) <r(a0) and 5(a, x)£A\a(a0), 
z if c(a) c(a0) and <5(a, x) = 
w if a (a) ^ c(a0) and 5 (a, x) = ag, 
v if a (a) = <r(a0), 

(<r(a),b) if a€A\<r(a0), 
v(a) = (<r(a), c) if a=a1, 

(<r(a),d) if a = a0, 0 ' 

q>2(a(a), x) = 

xfSj i+1) if f i ( a ) e A \ A ^ 2 for some 3 ^ ¡ g s arid 
n(5(a, xtyZA^Aj-.! for some 1 j < i or 
n(5(a, x))£Aj with j = 1, 

[ i f <r(a) = < 7 ( A 0 ) , 

i - l 
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for any x f X , <j(a)fA/a. It is not difficult to prove that the correspondence 

v(a) = 
(ff(a), fls-j+i) if /i(a)ZAl\Ai-1 for some 
(<r(a0), if n(a)£A2\A1, 
(<j(a0),aJ if fi(a)€A1, 

is an isomorphism of A into the a0-product A1XB(A', cp). Thus, by our induction 
assumption and Lemma 1, we have a required decomposition of A. This completes 
the proof of Theorem 2. 

The following theorem holds for a rproducts with / = 1. 

Theorem 3. A system I of automata is isomorphically complete for the class 
of all nilpotent automata with respect to the a rproduct ( / s i ) if and only if one 
of the following three conditions is satisfied by I : 

(1) there exists an automaton in I which has two different states b, c and three 
input signs y,z,v (need not be different) such that by=b and bz=cv—c hold, 

(2) I contains an automaton which has two different states b, c and three 
input signs y, z, v (need not be different) such that by—cv—b and bz=c hold, 

(3) for any natural number n s 3 there exists an automaton in I which has 
n different states aj(j= 1, . . . ,«) and input signs (t=1, ... ,n—\)(k=\, ...,n — t), 
y such that a,x^=at+k (t—l, ..., n — 1) (k= 1, ..., n — t) and a„y—an. 

Proof. The necessity of these conditions can be proved in a similar way as 
in the proof of Theorem 2. To prove the sufficiency, again, by Theorem 2, it is 
enough to show that an a0 -product of o^-products with single factors is an ar-
product. But this is immediate from the definition of the «¡-products. 

— 1 1 
For any natural, number n s l denote by I„=({x}, {1, ..., n), ¿¡„) the auto-

maton satisfying <5n(/, x)=min ( i+1, ri) for all if {1,. . . ,«}. Furthermore, for any 
natural number n s 3 denote by Q„=({x, y}, {1, . . . ,«}, <5„) the automaton for 
which <5„(r, x)=5„(i, _>>) = min 0 + 1 , ") for all i^n — 2, if {1, . . . ,«} and 8n(n — 2, x ) = 
=n-\,5„(n-2,y)=n. 

In the sequel we shall need a more general concept of a subautomaton. The 
automaton B=(Y, B, 8') is an X-subautomaton of A = (X, A, 5) if YQX, BQA 
and (5|Bxy=<5'. 

Take an automaton A = ( X , A , 5 ) . Let a f A and xfX be arbitrary. The 
X-subautomaton generated by a and x is called a cycle and it will be denoted by, 
(a, x). (Also, this notation (a, x) will be used to denote the set of states of this 
X-subautomaton.) For a cycle (a, x) there exist natural numbers « s i and m g l 
such that 

(i) n— 1 is the least exponent for which there exists a 1 with ax"~1=axt, 
(ii) m is the least nonzero natural number for which ax"~1—axn+m~1 holds, 
(iii) the states a, ax, ...,ax"+m~2 are pairwise different. 

In this case we say that (a, x) is a cycle of type (n, m). 
Observe an important property of cycles which we are going to use in the proofs 

of Theorems 4 and 5. Let A—(a, x) be a cycle of type (n, m) and let B={b, jt) 
be a cycle of type (n, m), where A and B have the same input sign x. Then the 
automaton B is a homomorphic image of A if and only if n^n and m\m hold. 
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Theorem 4. A system I of automata is homomorphically complete for the 
class of all nilpotent automata with respect to the a0-product if and only if one of 
the following three conditions is satisfied by I : 

(1) there exists an automaton in Г which has states b, c, d, input sign z 
and input wordsp, r, gsuch that | /> | s l , b^c, bz=cz, czq=c, dp = d and dr=b hold, 

(2) (i) I contains an automaton which has a state b and input signs xx , . . . , xk, у 
such that bx1...xk=b and bx^by, 

(ii) for any natural number n ^ 3 there exist a nonzero natural number m 
and an automaton in I having n + m-1 different states a, (t= 1, ..., n+m — 1) 
and input signs x, (1 + —1) for which a,x, = a,+1 ( 1 ё Г < л + ш - 1 ) and 
a n+m- i x n r i = an hold, 

(3) (i) for any natural number n s 3 there exists an automaton in I which 
has n different states b, (t=l,...,n) and input signs xt ( 1 ^ / < / j ) such that 
b,x, = bl+1 if l^t^n— 2 and bn_2x„_1=bn, 

(ii) for any natural number пШ3 there exist m ^ l and an automaton in 
I having n + m — 1 different states a, ( f = l , . . . , n + m—Y) and input signs x, 
( l ^ i < n + m - 1 ) for which a,x, = at+1 (l^t<n + m—l) and an+m-1xn_1 = an hold. 

Proof. In order to prove the necessity assume that I is homomorphically 
complete for the class of all nilpotent automata with respect to the a0-product. If 
I satisfies condition (1) then we are ready. Consider the case when I does not 
satisfy condition (1). We shall show that in this case (2) (ii) and, henceforth, (3) 
(ii) also hold. Indeed, let n ^ 3 and consider the automaton I„. As I is homo-
morphically complete I„ can be realized homomorphically by an a0-product of 
automata from Z, i.e. there exists a subautomaton A of an a0-product of automata 

s 
from I such that I„ is a homomorphic image of A. Let us denote by JJ A,({x}, <p) 

t=l 
such an a0-product and let /t be a suitable homomorphism. Let a be a counter image 
of the state 1 under /л, i.e. ц(а) = 1. Consider the cycle (a, x) in A. It is obvious 
that (a, x) is a cycle of type (n, m) for some m s l and пШп. From this we get 
that a cycle of type (и, m) can be embedded isomorphically into the a0-product 

5 

JJ A,({x}, (p). Let us denote by B = (6, x) the cycle of type (я, m) and by v the 
< = i 

isomorphism in question. Further on, we write bx = b, bt+1 = bx'(\^t^n + m— 1). 
For any t (l^t^n + m — l) let (atl, ..., als) be the image of b, under v. Now con-
sider the congruence relations л1Шп2 = ... = n s on В which are defined in the 
following way: for any l ^ r ^ s 6; = bj(nr) bh bj£(b, x) if and only if au=ajt 
( i= ' l , . . . , r ) . Since the quotient automaton В/я, is a homomorphic image of В 
we obtain that В/лг is a cycle of type (nr, mr) for some natural numbers nr,mr, 
where я г 3 и and mr\m. On the other hand, by we get 

NOW, if nx=n then the automaton AX has the property required 
in (2) (ii). In the opposite case there exists a natural number r (1 such that 
nr<n and nr+1=n. It is not difficult to see that in this case a cycle of type (n, mr+1) 
can be embedded isomorphically into the a0-product В/гггХА,+1({х}, ф), where 
ф^х^х, \j/2(7tr(b,), x) = (pr+1(atl, ...,atr, x) for any nr(b,)£B/nr. For the sake 
of simplicity let mr+1=m and denote by D — ( d , x ) and C=(c , x) a cycle of 
type (n, m) and (и,, mr), respectively. Therefore, we obtain that D can be embedded 
isomorphically into an a0-product CxA r + 1 ({x} , <p') under a suitable isomorphism т. 
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We write d^d, dt+1=dx* (Ist-^n + m—l), and for any t (l^t^n + m — 1) let 
(c„a,) be the image of d, under t . Since and mr\m, cni1=cn+m_1. From 
this it follows that a„_196an+m^1 and ôr+1(an_,, z) = ôr+1(a„+m_1, z) for some 
input sign z f X r + l . Now observe that the states a1} . . . , a„ are pairwise different 
and {alt ..., a„-i}n {a„, ..., a„+m_1}=0. Indeed, in thé opposite case it can easily 
be seen that the automaton A r + 1 has the property required in (1) and this is a con-
tradiction. On the other hand, if alt ..., an are pairwise different and {alt ..., a„_1}D 
fl {a„, ..., an+m_1}=& then it is not difficult to prove that A r + 1 satisfies the con-
ditions required in (2) (ii). Since n was arbitrary we get that E satisfies condi-
tion (2) (ii). 

Now assume that I does not satisfy condition (2) (i). We shall show that 
in this case (3) holds. Indeed, let « s 3 be arbitrary and consider the automaton 
Q„. By our assumption, Q„ can be realized homomorphically by an a0-product 

s 
}7 A,({x, y}), <p) of automata f rom I . Denote by /i a suitable homomorphism. 
«=i 
Let b bè a counter image of the state 1 under p. Consider the states bx=b, bt+1=bx' 
( l ^ i - c n —1), bn=b„-2y in the a0-product. They are pairwise different since their 
images under n are pairwise different. Let bt—(atl, ..., ats) for any t ( 1 S / S n ) . 
Denote by k the least index for which an^kj^a„k. It can be easily seen that if 
there exist indices i, j (1 with aik=ajk then E satisfies (2) (i) by Ak, 
which is a contradiction. Therefore, the states a,k ( l ^ i S n ) are pairwise different. 
Then Ak has the property required in (3) (i). Since n is arbitrary we obtain that 
I satisfies (3). This ends the proof of the necessity. 

The proof of sufficiency consists of two steps. First we shall show that if one 
of the conditions (1), (2), (3) is satisfied by I then the automaton Q„ can be real-
ized homomorphically by an a0-product of automata from E for any n s 3 ; Sec-
ondly, it is proved that every nilpotent automaton can be realized homomorphically 
by an a0-product of automata from {Q„: «S3}. By Lemma 2, this will complete 
the proof of sufficiency. 

Indeed, suppose that I satisfies (1) by the automaton A (61) . We show that 
the automaton I„ can be realized homomorphically by an a0-power of A for any 
« S 2 . This statement is proved by induction on «. Let n—2 and take the states 
b, c(£A) and the input sign z of A for which b^c and bz—cz. Consider the cycle 
(b, z). Let (k, I) be the type of (b, z). If k> 1, then I2 can be realized homomorph-
ically by an a0-product of (b, z) with a single factor. If k= 1 then, by b^c and 
bz=cz, it can be easily seen that c$(b,z). In this case I2 can be realized homo-
morphically by an a0-product of (c, z) with a single factor. Now let « > 2 and assume 
that our statement is valid for any m-=«. We distinguish two cases depending on 
the value of k. 

First suppose that 1 in the type (k , /) of (6, z). Since I satisfies (1) by 
A, there exist a state d(£A) and input words p, r with | /> | s l , dp=d, dr=b. Let 
p=x1...xl and let r=y1...yJ if r is nonempty. Consider the a0-product I ^ j X 
XA({x}, (p), where cp1(x)=x, 

v for some O i i x j , 
[for some O â c < i and u = 0, 1, ..: 

<p2(t, x) = 
z if t = n — 1, 
j>y_„ if |r | s 1 and t = n—2-
Xi_v if t = n—2—\r\ — ui — v 
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for all 1 Define the state a of A in the following manner: a=dy1...ye if 
| r | a l and n=j+2—v for some 1 a=d if n=j+2; a=dx1...xi-v 
if | r | s l and n=j+2 + ui + v for some 0 s c < i and w = 0,l , . . . ; a = 'bx1...xi-0 
if | r | = 0 and n=2+ui+v for some 0 a n d w=0, 1, . . . . It can be easily 
seen that I„ is a homomorphic image of the subautomaton generated by ( l , a ) in 
the a0-product I„_iXA({x}, (p). From this, by our induction assumption and 
Lemma 2, we obtain a required decomposition of I„. 

Now assume that k= 1. In this case c $ (b, z) and thus, by cz=bz, we have 
c^cz. On the other hand czq=c, thus q=z1...zi where i s 1. Consider the 
a0-product I„-iXA({x}, cp), where <p1(x)—x and 

fz if t = n — 1 — u(i-f-l) for some u = 0, 1, ... , 
< M . x) — jf t _ w — i — w(i-i-l)—» for some 1 g u S i and u = 0, 1, ... 

for all 1 Define the state a(£A) in the following way: a~cz if w = l + 
+ M ( I ' + 1 ) for some « = 0 , 1 , . . .; A=czz1 . . .z i_ t ) + 1 if n=\-\-u(i+l)+v for some 
1 ¿ v S i and m=0, 1, . . . . It is not difficult to see that I„ is a homomorphic image 
of the subautomaton generated by (1, a) in I„-iXA({x}, (p). This yields a required 
decomposition of I„. 

Now let « S 3 be arbitrary and consider the automaton Q„. We know that 
dx1...xi=d. We write d=d, and dt+1=dtx, Without loss of generality 
•we may assume that the states dt, . . . , dt are pairwise different. We show that there 
exist an index j ( l s / s i ) and an input sign w of A such that djXj^djW. Indeed, 
in the opposite case d,x,=dtx holds for any input sign x and dt (t=1, ...,/')• 
Since dxr—b and d±rzq=bzq—czq—c, there exist 1 ' with b=dtl and 
c=dh. On the other hand, bz=cz from which t1=t2 and, henceforth b=c 
follows, yielding a contradiction. (Observe that we have proved that A has the pro-
perty required in (2) (i).) Now let j (1 g / S ; ) denote an index such that djXj^djW 
for some input sign w of A. Take the following a0-product I„XA({x, y}, <p), where 
<Pi(x)=x, 

(Xj+„ if i > 1 and t = n—2+v for some O ^ p g i —j, 
X j + v - t if i > 1 and t = n—2+v for some i—j < v ^ 2, 
Xj^„ if i > 1 and t = n—2~v for some 1 
x ;_„ if i > 1 and t = n—2—j—ui—v for some O g i x i 

and u = 0, 1, ..., 
Xi if i = 1, 

<p2(t, x) = 

and 

9*(,t,y)= \w if = 

I<p2(t, x) otherwise, 

for all l S i ^ n . Define the state a(£A) in the following manner: a=dD+1 if 
i ^ l and n=j+2—v for some' 0 a = d t - v if 1 and n=j+3 + ui+v 
for some O^v^i and u~0, 1, . . .; a=dx if / = 1 . It can be easily seen that the 
automaton Q„ is a homomorphic image of the subautomaton generated by (1, a) 
in I„XA({x, y}, (p). By Lemma 2, we got a required decomposition of Q„, and thus 
we have proved the-homomorphic realizations of automata -Q„ by 2 if Z satisfies 
condition (-1). . .- -
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Now assume that X satisfies condition (2). First we show that the automaton 
I„ can be realized homomorphically by an a0-product of automata from I for any 
« s 2 . We prove this by induction on n. Let « = 2 . Since S satisfies (2) (ii), there 
exists an automaton A in I which has m+2 different states alt . . . , am+2 and input 
signs x, (l^t^m + 2) such that a,x,=al+1 if l^t<m + 2, and am+2x2=a3. 
Take the cycle (a2, x2) in A. If the type of (a2,x2) is (k, I) with ¿ > 1 then I2 is 
a homomorphic image of an a0-product of (a2, x2) with a single factor, and thus 
I2 can be realized homomorphically by an a0-product of A with a single factor. 
In the opposite case, it is not difficult to see that a m + 2 $(a 2 , x2), and thus I2 is 
a homomorphic image of an a0-product of the cycle (am+2, x2) with a single factor. 
Therefore, I2 can be realized homomorphically by an a0-product of A with a single 
factor. Now let n>2 and assume that our statement is valid for any j<n. Since 
I satisfies (2) (ii) there exists an automaton A in I having different states 
a,(t= 1, ..., n+m — 1) and input signs xt 1) such that atxt=at+1 if 
l^t<n+m — l and an+m_1xn_1=an. We distinguish two cases. 

First assume that 1 in the type (k, /) of the cycle (an_1, x„_1). Consider 
•the a„-product I n ^ X A d x } , (p), where q>1(x) = x and (p2(t,x) = x, for all 1 
It is clear that I„ is a homomorphic image of the subautomaton generated by (1, ax) 
in I„_iXA({x}, (p). From this, similarly as above, we get a required decomposi-
tion of I„. 

Now suppose that k= 1. Then one can prove that an+m^1^(atl_1, x„_x) and 
thus 1. Consider the cc0-product I„„1xA({x}, (p), where cp1(x)=x and 

for all Let a=an+m_1 if n = um + 2 for some u=0,1,... and 
a=a n + m _„ if n=\ + um+v for some 2 i n S m , M=0, 1, ... . It is not difficult to 
see that I„ is a homomorphic image of the subautomaton generated by (1, a) in 
I i i - iXA({4, (p). This yields a required decomposition of I„. 

It remained to decompose the automata Q„. Since condition (2) (i) is satisfied 
by I and only this condition was used in the previous decomposition of Q„ (see 
the observation made in the proof) the automaton Q„ can be realized homomorph-
ically by an a0-product of automata from I for any « S 3 . 

Now let us suppose that I satisfies condition (3). Since conditions (3) .(ii) 
arid (2) (ii) coincide, by the proof of the decomposition of automata I„ in the case 
I satisfies (2), . we have that the automaton I„ can be realized homomorphically 
by an a0 -product of automata from Z for any « s 2. Let n s 3 be arbitrary and 
consider the automaton ,Q„. Since I satisfies (3) (i) there exists an automaton 
B in I which has n different states b, ( / = 1, . . . ,«) and input signs x, ( l ^ i < n ) 
such that b,x,=bt+1 if —1 and b„_2xn_1=bn. Take the a0-product 
I„ X B ({x, y}, (p), where (px ( x )=x and 

<p2(t, x) = 
x„_! if t = n — \—um for some « = 0 , 1 , . . . , 
x„+m_„ if t = n — um — v for some and u = 0, 1, ... 

1 S i < « —2, 
otherwise, 

1 Si< n-2, 
otherwise, 
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for all l ^ t ^ n . It can be easily seen that Q„ is a homomorphic image of the sub-
automaton generated by (1, bj in I„XB({x, >>}, q>). Therefore, we have a required 
decomposition of Q„. This ends the first step of the proof of the sufficiency. 

To prove that arbitrary nilpotent automaton can be realized homomorphically 
by an a0-product of automata from {Qm: m s 3 } , by Theorem 2 and Lemma 2, it 
is enough to show that the automaton R„ can be realized homomorphically by an 
a0-product of automata from {Qm: m S 3 } for any n&3. 

Let « S 3 be arbitrary. In order to decompose R„ consider the automata 
R « ( l S / < « ) given by Ri ' ) = ( { * 1 , . . . , * . _ i } , { l , . - . . , n } , 5 « 0 , where 

" v' sJ I m i n { t + j , n ) if s - j , 
n - l 

for any l ^ t ^ n and xs£ { i j , . . . , x ^ J . Take the direct product [ J R ^ and let 
j=i 

W denote its subautomaton generated by (1, . . . , 1). Observe that a ( ^ a x holds 
if 1 ^ / s « —1 for any state (alt . . . , a„_i) of the subautomaton W. Therefore, if n - l 
a,=k holds for some and l^k^n then ( a f — a i ) — • N o w 

¡=2 
define the mapping /z: W-*{ 1, . . . , «} in the following way: 

. . . , a n _ a ) = m i n ^ a 1 + ^ ( a j , « ] . Ka 

By the observation above, it is not difficult to prove that the mapping /x is a homo-
morphism of W onto R„. 

Now let be arbitrary. For the decomposition of R^J) consider the 
automaton R $ = ( { x x , . . . , x„_:i}, {1, . . . ,«}, <5$) for all k (l^k^n — 1), where 

MJ) (t \ — / m i n ( i + s ' ") i f t = k a n d J = s> 
* X s ) ~ Imin (/ + 1 , n) otherwise, 

n - l 
for any l s i ^ « and jc4€{*I, • *„-i}- Take the direct product [ } R<J] and 

* = i 
denote by U its subautomaton generated by (1, . . . , 1). Observe that for any state 
(alt . . . , a„_i)€C/ 0 ^ a t — 1 holds provided and a,—r 
(t—r,...,n—2) if an_x=r for some r, where 1. Now define the mapping 
ft: t /—{l, . . . , «} in the following way: 

M a i> •••> a n- i ) = min [ a„_ i+ (fii~an-1)> «) • 

By the observation above, it can be seen that the mapping /i is a homomorphism 
o f U o n t o R « > . 

Now let l ^ f c s « — 1 be arbitrary. If j= 1 or n—2^k then Rfy can be em-
bedded isomorphically into an a0-product of Q„ with a single factor. Let us suppose 
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that 1 -=_/' and —2. For the decomposition of consider the a0-product 
n 

A = N Qj({*i> •••> *n-i}> where 
i=k + 2 

. f x if s?ij, , (y if a1 = k+2, 
= if , = j , = otherwise, 

, N Jy if «1 < «2 a t , . <pi+1(a1,...,ai,xs) = [x otherw.se; 

for any xg€{*i, . . . ,*„_!}, 2^iSn-k-2, {1, . . . , t+k+1} ( l S i S « - f c - 2 ) . 
Let v=n—k—1 and take the following sets of states of A: 

Ay = {0*i, •••,av): ax S fc+2 and at = a i + 1 (i = 1, ..., y -1 )} , 

= {(a l5 ..., av): a j = k + 2 and (3s) (2 ^ s ^ c and at < a ; + 1 if i S s— 1 and 

= a i + 1 if u)}, 

= {(ai> •••> av)'- a i = + 2 and (3s) ( l S s < s and at < ai+1 if 1 s i S s - 1 

and cii = as— 1 if s < i S t)}. 
3 

It can be shown, by a sort computation, that B = ( { x 1 ; . . . , xn_1}, | J Ah ¡=1 3 

8 x ) is a subautomaton of A. Now define the mapping u: M A,— 
( . u ^ J x t ' i x » - i > ¡ = 1 

— {1, . . . , «} in the following way: 

rmaxaj if (a1; ..., av)£A1UA2, 
^ f l l ' - ' a » ) = l m i n ( f l „ + j - l , n ) if (alt...,av)ZAv. 

It is not difficult to prove that the mapping /1 is a homomorphism of B onto Rtf l . 
This ends the proof of Theorem 4. 

The following Theorem holds for a rproducts with z'Sl. 

Theorem 5. A system Z of automata is homomorphically complete for the 
class of all nilpotent automata with respect to the a r produc t ( / s i ) if and only 
if one of the following two conditions is satisfied by I : 

(1) I contains an automaton which has a state b and input signs . . . , xk, y 
such that •bx1 ...xk=b and bx^by, 

(2) (i) for any natural number 3 there exists an automaton in I which 
has n different states b, ( i = l , . . . , « ) and input signs xt (1 such that 
b,xt=b,+1 if 1 1 and b ^ x ^ ^ h , 

(2) (ii) for any « S 3 there exist m s l and an automaton in I such that 
it has « + » i — l different states a, ( i = l , ...,n+m — 1) and input signs x, 
( l S i S w + m - 1 ) for which a,x,-at+1 (l^t<n+m-l) and an+m_iXn+m_1= 
=an hold. 

Proof. The necessity can be proved in a similar way as in the proof of Theorem 
4. (One need consider the homomorphic realization of Q„.) 
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In order to verify the sufficiency assume that I satisfies (1) by A.—(X, A, 8). 
From the proof of Theorem 4 it follows that every nilpotent automaton can be 
realized homomorphically by an a0-product of automata from {A}U{I,„: m s 2 } . 
Therefore, using the fact that the a„-product of ax-products is an o^-product, it 
is enough to show that the automaton I„ can be realized homomorphically by an 
oij-power of A for any ws2. Indeed, let n s 2 be arbitrary. Write b1=b and 
b,+1=btx, (t= 1, ..., k— 1). Without loss of generality we may assume that the 
states blt •••, bk are pairwise different. We distinguish three cases. 

First suppose that {b^y, bxy2, ...}n {bi, ..., bk}=Q. Then take the ax-power 
A" - 1 ({*}, (p), where cp1(ul,x)=y, 

(p,^, ..., u,,x) = 
y if {ul5 . . . .U j . i j n i f t i , ..., bk} = 9, 
Xj if {«J, . . . ^ ( . j n ^ ! , ..., bk} 0 and u, = bj, 
arbitrary input sign from X otherwise, 

for any state (wl5 ..., and — Define the state (a l t . . . , a n _ J 
of the ax -product in the following way: 

, ffei-i if «t — b.- for some 1 < j S k, 
a i = b i ' a ' " = \bk if at=b[ 

where t=l, ...,n—2. Let U denote the subautomaton of A"~1({x}, (p) which is 
generated by (a l s ..., an_1). It is not difficult to see that I„ is a homomorphic image 
of U and thus, we got a required decomposition of I„. 

Now assume that {bty, bly2, ...}n {bx, ..., and b1y$ {b1, ..., bk}. De-
note by the least natural number for which b1ys£ {Z ,̂ ..., bk). There exists 
such an s. Take the -power An_1({x}, cp), where 

<PI(MI, X) = 

y if u16{&iJ>i, ...,b1ys~1}, 
Xj if ux = bj for some 1 ^ j S k, 
arbitrary input sign from X otherwise, 

<P(("i, x) = < 

y if ut€ {hy, ...,b1ys~1}, 
y if = ^ and ut_1£{b1y,b1y2, ...}, 
Xj if u, = bj for some 1 < ^ k, 
Xj if «, = />! and { ^ y , b^ 2 , . . . } , 
arbitrary input sign from X otherwise, 

for any (M ,̂ . .., un_j£A"~i, 2st^n-l. Define the state ( a l 9 . . . , a^JZA"-1 in 
the following way: 

a'i = h?-1, ..., as-i = bxy, as = and 

(bj-! if a, = bj , for some 1 < j ^ k, 
: I bk if if a, = b u 

where 1. Denote by U the subautomaton generated by ... , a„_i). 
It can be seen easily that I„ is a homomorphic image of U, which yields, a required 
decomposition of I„. 
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Finally, assume that by {by, ..., Then fcs2 and b1y=bi for some 
M 2 , l ^ i ^ k . Let Z>={Z>2, . . . , Z>,_i} if zV'l and Z)={62, ..., if /=1 . Con-
sider the OLy-power A"_1({x}, <p), where 

q>y(uy,x) = 

q>t(uy, ...,u„x) 

y if Uy = by, 
Xj if Uy = bj for some 2 S j S / c , 
arbitrary input sign from X otherwise, 

y if u, = by and {i^, ..., ut_i)C\D = 0, 
if u, = bj for some 2 s j s fc, 

xx if ut = by and {k1; ..., Mf.iJDD ^ 0, 
.arbitrary input sign from X otherwise, 

for any (uy, . . . , m„_1)6̂ 4"~1, 1. Let Z>r denote that element of Z) which 
has the greatest index. Define the state (ay,..., a„_1)£A"~1 in the following way: 

ay = br, a2 = br_y, ..., ar = by and 

_(bj-y if at 

- \bk if a, 
bj for some 1 < j s k, 
by, 

where — 1. Denote by U the subautomaton generated by (a1, ..., a„_1). 
It is not difficult to prove that I„ is a homomorphic image of U and thus, we have 
a required decomposition of I„. 

It remained to prove the sufficiency of condition (2). But this can be seen 
easily, using Theorem 4 and the fact that the a0-product of aL -products is an 
ccx -product. This ends the proof of Theorem 5. 
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