
On attributed tree transducers 

B y Z . FÜLÓP 

Introduction 

The concept of attribute grammar was introduced by Knuth in [1] as a formal 
tool for defining the meaning of sentences generated by a context free grammar. 
Taking trees over some ranked alphabet instead of derivation trees of a context 
free grammar, and allowing the values of attributes to be only trees over another 
ranked alphabet, finally, restricting the semantic functions to tree-concatenation 
we obtain the notion of attributed tree translators. 

In this paper we study some basic properties of attributed tree transformations. 
Namely, we point out that each completely defined top-down tree transformation 
can be induced by an attributed tree translator while the class of all completely 
defined bottom-up tree transformations and the class of all attributed tree trans-
formations are incomparable. Finally, we prove some results concerning the com-
position of attributed tree transformations. _ 

I. Notions and notations 

Before turning to the discussion of attributed tree transducers we recall some 
fundamental notions and notations. . 

By a type, or ranked alphabet, we mean a finite nonempty set F of the form 
F— f 0 U-FVU.. .UF v ( F ) , where the sets F„ (N=0, . . . , v(F)) are pairwise disjoint. 
The elements of FN are called w-ary operator symbols. 

• For arbitrary ranked alphabet F and set S the set of trees over S of type F 
is the smallest set TF(S) satisfying 

( i ) F 0 \ J S ^ T F ( S ) a n d 
(ii) if / 6 F „ ( « ^ 0 ) ; plt ...,pn£TF(S) then f ( P l , ..., pn)<iTF(S). 
We can define the height (ht (/>)), rank (rn (/?)), root (root (p)) and the set of 

subtrees (sub (p)) of a tree p(ETF(S)) as follows: if p^F^US then ht (/?)=0, 
rn (/?)= 1, root (p)=p and sub (p) = {p} else, if p is of form f ( p i , -..,pn) for 
some « ( S I ) and / ( € F „ ) , then ht (/>) = max {ht ( / ^ I I ^ / S S M J + I , r n ( p ) = l + 

+ ¿ r n f o ) , - r o o t ( p ) = / and , sub( /7 )=(Úsub(A)]u{ />} . (=1 V;=i ) 
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Next we define the set path (p) of paths being in p as a subset of N* (where 
N* is the free monoid generated by the natural numbers, with identity A) in the 
following way: 

There,is a corresponding label Ibp(iv) and a subtree str„ (vv) for each path w 
in a tree p(£TF(S)). They are defined as follows: 

In the rest of the paper the pairwise disjoint sets of variables X—{xlt x2, ...}, 
Y={y! ,y 2 , •••}, £/={"i . »2> •••} and Z={z 0 , zx, ...} are kept fix. The variables, 
z0, z1, ... are used as auxiliary variables. For an arbitrary integer w(sO) the nota-
tions Xn,Y„,Un, Z„ are used to denote the sets {x1; ..., xn), {ylt ..., y„}, {w1; ..., «„}, 
{z1; . . . , z„}, respectively. 

If at most the auxiliary variables z1, ..., z¡ (/SO) appear in a tree p, then p 
is also denoted by p(zlt ..., z,). Substituting the elements s^, :.., s, of a set S for 
the auxiliary variables zx, . . . , z, in a tree p(z l 5 ..., z¡), respectively, we obtain an-
other tree which is denoted by p(s1, ...,s¡). 

Sets of form T(QTF(Xn)XTG(Ym)) (n,ms0) are called tree transformations 
and if (p, q)£ T then q is called an image of p. 

By a bottom-up tree transducer we mean a system A=(TF(X„), A, TG(Ym), 
A',P) where 0 are integers, Ais a nonempty finite set, A'QA, finally, 
P is a finite set of rules (or rewriting rules) having one of the following two forms: 

( a ) / ^ ! , ...,akz¿-aq{zh, ...,zt) where k, Is?0; f£Fk; a, ax, ..., ak£A; 
5€r c (ymUZ,)_; 1 and _ 

(b) Xj—aq where 1 ^j^n, a£A, q£TG(YJ. 
If there is a rule of form (a) in P for each f(dFk)\ a1; ..., ak (6/4) 

as well as a rule of form (b) for each j ( l s y ^ n ) , then A is said to be completely 
defined. Furthermore, if different rules have different left sides, then A is called 
deterministic. Let p, q£TF (Xn U(AXTG( Ym))). We say that q is directly derived 
from p — written p=>q — if q appears from p in one of the following two ways: 

(i) the tree aq(ptl, ...,pi) is substituted for a subtree f(a1p1, ..., akpk) of 
p and the rule (a) is in P; 

(ii) the tree aq is substituted for a subtree Xj of p and the rule (b) is in P. 
* 

Let us denote by => the reflexive, transitive closure of the relation =>. Then 
A A 

the transformation T(A) induced by A is: 

{A} if p £ F 0 U S 

path(p) { j v v | w 6 p a t h (p . ) } )u{A} if p=f(p1,...,pn) 

and 

root (p) if w = A 

lbPj(y) if w = jv, p = / ( p l 5 ..., p„), 1 S j S n , 

rp if w = A 
-strpj(u) if w = jv, p =f(pL, ..., p„), I á j á n . 

r (A) = {(p, q)\piTF(Xn), q£Ta(Ym) and p^>aq for s o m e a ( ^ ' ) } . 
A 
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Another type of tree-transducers is the top-down tree transducer. The system 
A(=(TF(Xn), A, TG (Ym), A', P)) is called a top-down tree transducer if A is a 
finite nonempty set, A'QA and finally P is a finite set of rules of the following 
two forms: 

(c) af(z1> ..., zk)^q(a1 z¡i, ..., a,zti) where k, / ^ 0 ; a, ax, ...,a¡£A; f£Fk; 
\Si1,...,il^kjq£Ta(YmUZiy> 

(d) axj-q where a£A, Imj^n, q£Ta(Ym). 
Consider the trees p, q(£TG(Ym{J(AxTF(X„)))]. The relation is now de-

fined as follows: p=>q if q appears from p A 
(i) by substituting the tree q(álP¡^, ..., a¡ p¡) for a subtree af(p1, •••, pk) of 

p if the rule (c) is in P, or 
(ii) by substituting the tree q for a subtree ax • of p if the rule (d) is in P. 

* 

Again, =»• denotes the reflexive, transitive closure of => and the transformation 
A A 

T(A) induced by A is given by 

T{A) - {(p, q)\PeTF(Xn), q£TG(Ym) and ap f q for some a^A% A 

If for all a(£A), 0), /(£ Fk) there is a rule of form (c) in P, moreover, for 
all a(£A), j(=\, ..., ri) there is a rule of form (d) in P then A is called completely 
defined. Finally, if different rules have different left sides and A' is a singleton set 
then A is called deterministic. 

The cardinality of a set S is denoted by |S | and we write s instead of the 
singleton {s}. 

II. Attributed tree transducers 

We now introduce the concept of attributed tree transducers. 

Definition 2.1. The system A(=(TF(Xn), A, TG (YJ, A's, P, rt)) where n, m s O 
is called an attributed tree transducer — shortly, AT transduder — provided 

(a) F and G are ranked alphabets; 
(b) A is a finite set, the set of attributes which can be written in the form 

A=ASUA¡ where As is the set of synthesized, A¡ is the set of inherited attributes 
with A sC\Ai=9; 

(c) A'SQAS; 
(d) rt is a mapping of Ai into nonempty, finite subsets of TG(Ym) (if At = Q 

then ri is not specified); 
(e) the set of rules (J Jp /)U ^ U is a finite subset of the set (Ax 

X(TF(Z)UX„))xTG(YmU(AxZ)). For tic sets Pf, for all fc(sO) and f ( f F k ) , it 
holds: 

(i) for each a(£As) at least one rule of the form af (z1, ..., zk)->-q(a1z¡i, ..., 
a¡Zi) ( / s 0 ; 0 ^ / j , ax, ...,a,eA; q^TG(YmUZl)) is in Pf, 

(ii) for each a(€A¡) and l S / S f c at least one rule of the form azj*-q(a1z¡i, 
•••> aizi) (/SO; O^h, alt ...,a£A; q£TG(Ym{JZ,j) is in Pf, 
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(iii) Pf contains only rules of type (i) and (ii). For PXj (for each j (= 1, ..., n)) 
it holds that for any a(£As) at least one rule of form aXj*-q{axzQ, . . . , a,z0) is in 
Px and there is no other rule in PX]. (Observe that here, as well as in the rest of 
this paper, the elements (x, y) of P are written x—y.) 

If we write "one and only one" instead of "at least one" in (e) moreover re-
quire A's and rt (a) (for each a£At) to be a singleton then we obtain the concept 
of deterministic AT transducer. 

Now let A be an AT transducer defined in 2.1 and take the trees TF (Xn U Z)), 
q, r(£TG(YmU(AXpath (p))U(AxZ))). We say that r is directly derived from q 
in p — and write q<=r — if r appears from q by one of the following manners: 

p, A 
(a) substituting the tree q((a vx), ..., (ah v,)) for some leaf (a, w)(6 A Xpath (p)) 

of q if the following conditions hold: 
(i) a£As, 

(ii) l b p (w)= / (€F f c for some i s O ) , 
(iii) af(zx, ..., zk) - q(ax zh, ..., a, zu)£Pf, 

(w if ij = 0 
(lv) Vj = \wij if 1 — ij — k (;= 1, ..., /); 

(b) substituting the tree q((a1, iv), ..., (a,, u>)) for some leaf (a, w) of q if 
(i) a e A s , 

(ii) ibp (w)=xj (ex„), 
(iii) axji-q(a1za, ..., a,z0)£PXj hold; 
(c) substituting the tree q((ax, vx), ..., (a{, v,)) for some leaf (a, iv) of q if 

the following conditions hold: 
(i) a£A„ 

(ii) w=vj (v£ N*, j£ N where N is the set of natural numbers), 
(iii) l b p ( v ) = f (dFk for some 
(iv) 1 ^ j ^ k , 
(v) azj—q(a1z i i , . . . , a ^ i ^ P j - , 

ro if /', = 0 
(vi) v, = \vi, if (i = l, . . . , / ) ; 

(d) substituting a tree in rt(a) for some leaf (a, u>) of q if 
(i) w=X, 

(ii) (¡(¿Ai hold; 
(e) substituting the tree (a, z}) for some leaf (a, w) if lbp (w) = ZJ(fZ) holds. 
Let « = denote the reflexive and transitive closure of the relation <== . (Some-p, A p, A * • 

times, if A is clear, instead of the notations < = ' -<= we simply write <=, <=, re-
p,A' p,A p p 

spectively.) 
Definition 2.2. Let A be the AT transducer defined in 2.1. By the transforma-

tion induced by A we mean the set 

nA) = {(p, q)\PiTF(Xn), q(LT (Ym), (s0, ).) for some s 0 ( € ^ ) } . Pi A 
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Observe that, in order to define the .transformation induced by an AT trans-
ducer, it would have been enough to introduce the concept of derivation in a simpler 
way. Namely, it would have been enough to take p from TF(Xn) and the trees q, r 
from T ^ y ^ L M X p a t h (/>))) — hence, (e) would have disappeared. The previously 
given more general notion of derivation will be needed only in Section IV. 

Definition 2.3. Let A be an AT transducer. We say that A is circular if there 
exist p(eTF(X„)),Q(€TG(FmUAXpath(p))) and (a,w)(€AXpath (/>)) such that 
(a, vt>)<= q holds and (a, iv) occurs in q as a leaf (where <== is the transitive closure 

p, A p, A 
of -<==). D . E . K N U T H has pointed out in [1] that the circularity problem of attribute 

p, A 
grammars is decidable. The algorithm presented by Knuth, with a small modi-
fication, is suitable to decide whether an AT transducer is circular or not. In the 
rest of this paper we shall always confine ourselves to noncircular AT transducers. 

Therefore, it is clear that for an arbitrary AT transducer A(=(TF(XN), A, 
TG(Ym),A's,P,rtj), and for each p(fTF(X„)) and (a, w)(€v4xpath (p)) there 

* 

exists a tree q(£TG(Ym)) (if A is deterministic then only one) for which (a, w)<=q 
p 

holds. Thus we may say that A is completely defined and this way of speaking is 
in accordance with the discussion of bottom-up and top-down tree transducers. 
Since A is completely defined it is clear that the domain of T(A) is the set TF(X„). 
Furthermore, if A is deterministic then T(A) is a mapping of TF(X„) into TG(YM)^ 

Definition 2.4. The AT transducer (defined in 2.1) is called reduced if the 
following two conditions are satisfied by any leaf (a, z)£(AXZ) appearing on 
the right side of a rule in P: 

(i) if z = z 0 then a£Ait 

(ii) if z € Z - { z 0 } then a€As. 
Concerning attribute grammars the property being reduced means that no 

semantic rule may depend on a synthesyzed attribute of the left side or an in-
herited attribute of a nonterminal appearing in the right side of the corresponding 
context-free rewritting rule. 

It is easy to show that for every AT transducer A(=(TF(X„), A, TG(YJ, A'S, 
P, rt)) there exists an AT transducer A'(=(TF(XN), A, TG(YM), A'S, P', rt)) which 
is reduced and equivalent to A in the sense that T(A)=T(A'). P' can be obtained 
from P by a suitable substituting of rules in P in each other, and this process will 
terminate because A is noncircular. 

Similary to the concept of dependency graph introduced by D . E . K N U T H 
• 

in [1], for every AT transducer A, each derivation (a, w) can be represented 
p, A 

by a directed graph. The nodes of this graph are the elements of / iXpathQ?), 
moreover, if, in the derivation mentioned above some leaf (b, v) is substituted by 
some tree q((b1, v^, ..., (bt,«,)), then there are directed arcs from nodes 
(61; %), ... ,(bt, vt) to the node (b,v). This representation of derivation makes 
the notions and proofs clearer. E.g. the notion of circularity means that the de-
pendency directed graph corresponding to some derivation contains a directed 
circle. 
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We shall name the elements of A X path (/>) attribute occurences in accordance 
with the above representation. 

Further on we shall not always study the properties of AT transducers on 
the whole input set TF(Xn). The restriction of T(A) to some R(QTF(Xnj) will 
be denoted by T(A)|R . 

EXAMPLE 2.1. Let n=m = 3 and A=(TF(X3), A, TF(X3), s0, P, rt) where 

( i ) F= F1UF2, FX= {g}, F,_ = { / } ; 

(ii) A = ASU A,, As= {s0, s j , At = {/}; 

(iii) P = P ^ U P y U i u i Ü , 
v= i / 

p
g = fcogOi) g(sozi). Sig(^i) - arbitrary tree, izl - s ^ } , 

Pf - {s0/(zi, z2) s0z2, z2) SjZj, izL — arbitrary tree, iz2 ^ / ( j z 0 , ^z , )} , 

PXJ = {^0xj- — iz0, Sĵ Xj- -«- Xy}, j = 1, 2, 3; 

(iv) rt is an arbitrary mapping. 
It is obvious that A is a deterministic and reduced AT transducer. Take the 

t r e e p = g ( / ( x 2 , f ( X l , x3)))(62>(X3)). The derivation (s0, A) <=g((s0, 1)) 12)) 
<=*((50, 122)) <=#((/, 122)) <= g(f((i, 12), 122))) <= / ( / ( ( ' > 1), U , " 12)), ' p p p p 

(su 1 2 2 ) ) ) < = g ( / ( / ( ( i l , 1), ( S l , 12)), ( S l , 122))) <= g { f ( f ( x 2 , xL), x3)) = qholds, con-p p 
sequently (/>, q)£T(A) (see Figure 1). 

We can see the directed graph corresponding to this derivation in Figure 2. 
The path components of the elements of Ax path (p) are left for the sake of clarity. 

X2 Xj 
Fig. I Fig. 2 

Let us introduce the notation 

R = {g(/K>/(*;=> ••;f(xin_l, X , „ ) . . . ) ) ) | N s 2, 1 s ..., in s 3}. 

One can show that 

r (A) | R - {(g( /(x„, . . . , / (x l n . 1 , x j . . . ) ) , g ( / ( / . . . / ( x 1 1 , xl2), ..., x,-^), x,n))|/i ^ 2}, 
hence A does not change the frontier of trees of R. 
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III. Comparing between AT transducers and classical tree transducers 

Let us denote thé class of all tree transformations induced by 
(i) AT transducers, 

(ii) AT transducers having only synthesized attributes, 
(iii) deterministic AT transducers, 
(iv) deterministic AT transducers having only synthesized attributes, 
(v) completely defined top-down tree transducers, 

(vi) completely defined deterministic top-down tree transducers, 
(vii) completely defined bottom-up tree transducers, 

(viii) completely defined deterministic bottom-up tree transducers 
by 

(i) F s t , 
(ii) 3-s4 s , 

(iii) F & s t , 
(iv) ST2ssé5, 
(v) .TSr, 

(vi) ST 
(vii) . 

(viii) 
Before we shall go further let us introduce the concept of length of a derivation. 

L e t A(=(TF(XN), A, T G ( Y J , A'S, P, rt)) b e a n A T t r a n s d u c e r a n d le t p(<ETF(X„)), 

(a, w)(€^4Xpath (p)) and q(£TG(Ym)) satisfy the derivation d=(a,w)*=q. The 
p 

length It (d) of the derivation d is the least integer ra(^l) such that (a, w)<=q, 
p 

where <= denotes the n-th power of the relation <=. p p 

By induction on the length of derivation it is easy to prove: 

Lemma 3.1. Let A(=(7>(Z„), A, TG(YM), A'S, P)) be a reduced AT trans-
ducer satisfying A; = 0. Then the following equivalence holds for each P(Ç TF(X„)), 
(a, w)(£AX path (p)), q(£Ta( Y J ) and partition w=uv * # 

(a, w) -<= q if and only if (a, v) < = = q. • 
P strp(u) 

The next theorem has essentially appeared in [2] but we mention it for the sake 
of completness. 

Theorem 3.1. : -
Proof. First we are going to show that Sr<g$~SÉS. Indeed, let A( = (TF(XN), 

A, TG(YM), A', P)) be a completely defined top-down tree transducer." Consider 
the A T transducer B(=(TF(XN), B, TG(YJ;B's, P')) where 

(i) B=BS=A, ' — 
(ii) B'S=A', -

(iii) P'=P. . . , 
It is easy to show by induction on ht (p), and making use of Lemma 3.1, that 

for any p(eTF(Xn)), a(£A) and q(ÇTe(YJ) • ; ' 
* * 

ap=>q if and only if (a, X) q, 
A p,B . . 

2 Acta Cybernetica V/3 
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consequently, r ( A ) = r ( B ) . Conversely, take an arbitrary completely defined AT 
transducer B(=(TF(Xn), B, TG(Ym), B's, P'j) with B~9. We may assume with-
out loss of the generality that B is reduced. Define A(=(TF(X„), A, Ta(Ym), A', P)) 
by the equalities from (i) to (iii). Then, as earlier, we have r ( A ) = r ( B ) . This 
proves ¿ T • 

It is obvious that if A was deterministic in Theorem 3.1 then B would have 
been deterministic and conversely, hence we have 

Corollary 3.1. STQ)3'=S'g)s4s. • 

However, it is easy to see that the tree transformation given in Example 2.1. 
can not be induced by a (deterministic) top-down tree transducer. Therefore, it 
is valid 

Corol lary 3 .2 . 2T 2T czST si a n d STQiSTczSr3>sl. • 

Now we are going to see that these inclusions are not true in the bottom-up 
case. 

Theorem 3.2. The class and ST® si are incomparable. 

Proof. The tree transformation given in Example 2.1. is in 2T3)st but it can , 
not be induced by deterministic bottom-up tree transducers. 

On the other hand the following deterministic bottom-up tree transformation 
will not be in ST Si si. 

Let A ( = T F ( X 2 ) , A, TF,(X2), A', P)) be the bottom-up tree transducer where 
(i) F=F1= { / , g}, F' = Fi = { f i , /2, g}; 

(ii) A=A'={a1,a2}; 
(iii) P consists of the following rules: 

Xi a^Xi, x2 u2x2, 
g(tfiZi) - fligOx), g(«2zi) - flag^i), 

f(ai*i) - ax/i(zi)> /(a2Zi) - a2f2(zj). 
It is obvious that A is completely defined and deterministic. Consider r (A) |R where 

It is easy to see that 

r (A) |« = {(/ngm(*i),/ig' , ,(*i))l"> m s 0} U {( /"g m (x 2 ) , f2 gm(x2))|n, m S 0}. 

Suppose that T(A) is in STQlsi i.e. T(A) can be induced by a deterministic AT trans-
ducer B(=(J i,(A'2), B, TF.(X^, ¿>0, P', rt)) and suppose that B is reduced. Then 
j ( A ) | R = r ( B ) | R , necessarily. Let 

K=\B,\, L = \Bt\ (where B = Bs U Bt), 

Af=max {ht (q) \q is the right side of some rule of P'}, let n>2NL{K+L) 
be fixed, and consider the trees p^ =f"gj ( x j , q^ =f? gJ ( x j , pf)=fgJ(x2), q^ = 
=f"gJ(x2) for all j (=0 , 1 , . . . , L). (In the special case when the operator symbols 
appearing in some tree p are of arity 0 or \,p is called unary. If p is unary then 
the elements of path (p) are of the form 1', further on simply written /.) 
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Now let us fix an arbitrary index j(=0, 1, ..., L) and denote p(jl), qf ], p f ' , gj2) 

by pa\ 9 ( 1 ) , p ( 2 ) , q(i\ respectively. Then 0 ( 1 ) , <7(1))€r(B), i.e. (Z>0, 0) ^ g ' 1 ' . This 
derivation can be written as 

(bo,0)^q((s,n+j))<^qV (1) 

for some q(^TF,(Z^)) and s(£Bs), since otherwise the derivation (b0, 0) <==qm 

would be true, and it is obviously a contradiction. (1) means that the derivation is 
to depend on some synthesized attribute of Xj. Furthermore, as B was reduced, 
we may suppose that for any tree q((b, w)) TF.(Zj), (b, w)G5Xpath (p(1>)) if 

then w-^n+j is true. On the other hand we must have q=zx i.e. 

( b o , 0 ) £ ( s , n + j ) (2) 

If (2) would not be true then, by (¿>0, 0) q((s, n+j)), we would have trees 
qm,qi2){£TF,(X2j) with q(q(1)) = q(1) and q(q^) = q<-2\ yielding a contradiction. 

In Fig. 3, a heavy line views of the directed graph corresponding to the deriva-* 
tion (bQ, 0) <==(s, n+j). Take into account that in case of unary input and output 
trees the directed graph corresponding to any derivation is a directed "line". 

Now we are going to study the derivation (s, n+j) <=qa\ Since there are 
n operator symbols fx in q(t> and n>2NL(K+L), for some c(£Bt) and 
r(<iTF.(Z-S) we have 

(s,n+j)<=r((c,n-L))<=q^ (3) 

. and 
(i) r=zx or r contains operator symbols ft only, 

(ii) if for some tree q((b, w)) the derivation 

(5, n+j) ¿ 5 ( 0 , w)) « J r((c, n-L)) ^ 
holds then w^n—L. 

This follows easily by taking into account that each attribute occurence may 
appear at most once in a derivation and at most 2 L ( K + L ) attribute occurences 
are in the top n—L-th level, moreover, that B is reduced. 

As B is reduced there exist trees /•,(£!>. (Zj)) and attributes ii(£B t) 
/ ( = 0 , 1, . . . , L) such that 

(S, n+j)p=r0((i0, n ) ) ^ r x ( ( n - l ) ) . . . < = r L ( ( i L , n-L)) = 

= r ( ( c , n - L ) ) ^ \ . ( 4 ) 

furthermore, if for some tree q((b,w)) (s, n+j)c=q((fc, w)) <= r0((i0 , n)) then w 
Consider the attributes '/„, iu ..., iL(£B,). Since L-\Bt\ there exist indices 

k, I with ik=it. Let i=ik(=il), then (4) can be written as 

2» 
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K synthesized L inherited 
/ A \ / ' \ 

s 
• ® o o o \ O o 
9 « o o O \ O o 

/ ¿ 0 

I' \ 
t' 

> m times 

Fig. 3 

Let us introduce the notations u=n—k, v=l—k and t=rk. Then there exists 
a tree such that ' / • , ;=« ' . 1 Thus (5) can be written as 

* 

.pTT) is> n + j y ú '((*> »)) i «'((«'. « "¿0) ^/((c, n-L)) p<l) " " ~'> p(l) 

1 If f.and /'.are trees we often write tt' instead of /(/')-

( 5 ) 

(6 ) 
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Observe, that both t and t' may contain operator symbols j\ only. Let m 
be the greatest integer number satisfying u—mv^O. It follows from (6) that 

(s, n + j ) < ^ t ( t T { ( i , u - m v ) ) ¿ = q V * (7) 

(see Fig. 3). Finally, introduce the notation y=u—mv. Consider the tree t" for which 
* / * (/, u) t"[(d, u—y)j holds for some d(£B¡) and which satisfies that if (/, it) •<== 

q((b, w))<^=t"{(d, w - j ) ) is valid for a tree 7>, (Zx)) and (b, w)(€-BXpath (p(1))) 
then w>u—y holds. It follows from the definition of t" that 

(i,u-mo)^t%d, 0)) (8) 

and i "=z x or t" contains operator symbols fx only, as t' does. 
We have from (2), (7) and (8) that 

(b0,0)£)t(tTt'\(.d,0])<==qW. (9) 

Do not we forget that we have fixed j, therefore, t,t',t", m and d depend on j-
But from (9), we can read that for each j(=0, 1, ...,L) there exists a tree 

tj as well as an inherited attribute d¡ such that 

moreover, t} contains operator symbols fx only. Consider the inherited attributes 
d0,...,dL. Then there exist indices k',l' such that k'^l' ánd dk.—dv. This 
implies that the trees and q[Pare of form tk.(s) and ti-(s), respectively, where 
s=rt(dk.)=rt(dv). But it is a contradiction which arises from r ( A ) = r ( B ) . There-
fore T(A) is not in ¿T9)s4. • 

By a slight modification of the preceeding proof we get that T(A) can not 
be induced by nondeterministic AT transducers. It is clear, besides, that the tree 
transformation given in Example 2.1 can not be induced by (nondeterministic) 
bottom-up tree transducers. Thus we obtain ' 

Corollary 3.3. The classes 38 and ST si are incomparable. • 

IV. Compositions of attributed tree transformations 

First of all we are going to enter some notions. For any tree transformations 
T^QTpiXJxTciYj), T2(QTG(Ym)XTH(Ur)), the composition of 7\ and T2 is 
the following transformation: 

Tl0T2= {(p, q)\(p, r)£Tx and (r, q)£T2 for some r}. 

n times 
2 If t is a tree then (?)" means tt...t. 
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Let and <6, be classes of tree transformations. The composition of ^ and 
is the class 

<fxoif2 = { 7 \ o T ^ T ^ and 7 ^ } , 

and for any class (€ and nonnegative integer n if" is defined by induction 

W = <g, 

= <€»o<4 if ( 1 g l . 

We shall need the next Lemma. 
Lemma 4.1. Let n, m^O and let A( = (TF(Xn), A, Ta(Ym\ A"s, P, rt))be> an 

AT transducer. Then there exists a constant N such that rn (q)^Nrn(p) holds 
for all (p, g)(£T(A)). 

Proof. Let us enter the notations: 

K=\AS |, 

L = \AJ\ where A=ASUAIT 

M = max {ht(#)|ijr is the right side of some rule of P}. 
* ' i 

Let (p,q)£T(A), i.e. assume that cl=(s0, A) <=q for some Since A 
P.A 

is noncircular ht (q)^(K+L)Mm (p) follows. It is obvious that there exists 
a constant R such that rn (q)^RbHq) for all q(£TG(Ym)). It follows f rom the 
two latter inequality that the choice iV=7? ( K + L ) M will be right for our purposes. • 

T h e o r e m 4 . 1 . ST 3>sin<z FOlstsoSr2)sin 

Proof. The inclusion 9'3>sdn<ikSri3>s4so2T<2)sdn is obvious. In order to show 
that the inclusion is proper consider the transformation T in the class ST&sdso2T3istfn 

defined in the following way. 

Let A(=(TF(X1) , A, TG(Xj), 5, P)) be a deterministic AT transducer with 

(i) F = F X = {/}, G = G2= {g}; 

(ii) A = As = {s}; 

(iii) P = PfUPXl, where 

Pf = { S / O I ) - G(SZL5 SZJ)}, 

PXl = - Xi}. 
If we denote by qm the balanced tree over Xl of type G, the height of which is m, 
then it is obvious that 

T(A) = {(/m(*i), qm)\m S 0}. (10) 
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Moreover, let B(=(r c(A r
1) , B, b, P', rt)) be the deterministic AT trans-

ducer, where 

(i) G = Gz = {g}; 

(ii) B = B,UBt and Bs = {b}, = 

(iii) P' = PgiJp'Xl, w h e r e 

P'g = { b g ( z 1 ; z 2) — g(bz1,bz1), izx —bzz, iz2 iz0}, 

= {bxx - g(<z0, iz0)}; 
(iv) rt(l) = Xx. 

Figure 4 shows the effect of B on balanced trees of type G. Let R= {qm\m^0}. 
If we take into account, that for each 
w(SrO) the rank of qm is 2 m + 1 - l then 
we can easily prove that 

T(B)\R = 

= {(qm, qm,)\m ^ 0, m ' = 2m+ 1-1}. 

Now let T=T(A)oT(B)o...oT(B), 
.V n times 

hence T ^ P ^ r f s o 3 T S i ^ n . It follows from (10) and (11) that 

{. 2m+1 

_ . 22' - 1 } (11) 
and this means that the rank of the image of the tree fm(xj) at T is 

{. 2m + I 

22' - 1 (12) 
for each m ( s 0 ) . 

We show that Indeed, in the opposite case we would have a de-
composition T=T[o...oT'n where T- = T(A'j) for some deterministic AT trans-
ducers A j ( j = l , . . . ,«) . Thus, for each j(—\,...,ri), Lemma 4.1 would give 
a constant Nj belonging to A'j such that rn (q)^Nr"'p) if (p,q)£ Tj holds. From 
it would follow that the »rank of the image of fm(xa) at T would be at least 

N-.n-1 

for each m(^0) . This contradicts to (12). • 

Taking into consideration the inclusion 2 T Q ) s i a n d the fact that 
Lemma 4.1 is true for nondeterministic AT transducers, we have 

Corol lary 4 . 1 . STQ>si" '(^STQ)and • 
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As we have seen, the proof of Theorem 4.1 depended on the fact that the A T 
transducers can "greatly" augment the rank of the trees. The question arises, 
whether the above inclusions will be true if we study a smaller class, of A T trans-
ducers which can not do it. For this purpose we introduce the concept of linear 
AT transducer. 

We say that an AT transducer A(=(7>(A'n), A, Ta(YJ, A's, P, rt)) is linear 
(where n, m^O) if there exists a constant K such that f rom (p, q)£T(A) it follows 
that rn (q)^Km (p). Let us denote the class of tree transformations induced by 
(deterministic) linear AT transducers by (9~2)S£si) si. 

Theorem 4.2. The classes 9~2¡si and ST3¡<£s2og~Q¡<£si are incomparable. 

Proof. It is obvious that there are tree transformations which are in &~3>si but 
not in Srg><£sto&-2)£st . • • 

As we have seen the tree transformation T(A) defined in Theorem 3.2 is not 
in F@si. On the other hand T(A) can be decomposed in the following way. Let 
B ( = ( r F ( X 2 ) , B,TF(X2), P', b, rt')) be the AT transducer where 

(i) K = Fx = {/, g}, 

(ii). B = B¡\JB„ Bs = {b}, B¡ = {b^b,}, 

(iii) P' = P}UP'gU (U P'J with 
> . v = i ' 

Pf = {bf(zi) rr bzx, b1z1 - f(b\z0), b2zx -/(fc2z0)}, . ,. 

Pg = {bgizJ.~T.bz!, bxzx gibxz0), b2zx - g(f>2z0)}, 

P'XJ= {bXj + bjzJ ( ; = 1,2), 

(iv) rt'ibj) = X j , ( / = 1 , 2 ) ; 

and C(=(7>(X 2 ) , C, Tf,(X2),P", c, rt")) be the AT transducer where 

(i) F' = F{ ={fx,f2,g}, 

(ii) C=CS{JCU Cs = {c}, Ci = {cl5 c2}, 

(iii) P" = P"fUP"gU [\J P"x^ with 

Pf = WizJ - czx, cxzx fxicxz0), C2Zx - / 2 ( c 2 z 0 ) } , 

P'g = {cg(Zi) - CZX, CXZX - g(cxZ0), c2zx - g(c2z0)}, 

P'xj = {cxj - CjZ0} ( j = 1, 2),. • 

(iv) rt"(Cj) = Xj a = 1,2). 

It is easy to see that both B and G is deterministic and linear, moreover, that 
7 ,(A) = r (B)o7 , (C) holds. This ends the proof. • 

In case of. n= 1 Theorem 4.1 says that ^3)si<zSr3¡si soST3)s4. If we ex-
change the factors of the composition then we have 
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Theorem 4.3. 

Proof. First we prove the inclusion o S T Q s i . 
For this purpose let A(=(TF(X„), A, TG(Ym), a^, P, rt)) and B( = (ro(>',„), 

B, TH(Ur), b0, P')) be deterministic AT transducers and suppose that B has only 
synthesized attributes. 

Consider the AT transducer C(=(TF(Xn), C, TH(Ur), c0, P", rt")) defined as 
follows: : 

(a) C = C S U C ; where CS=BXAS, C—BXAI (A=ASUAI); 
(b) c0=(b0, a0); 
(c) P " is built in the way: 
(i) for ekch a(€As), t>(€B), A(=s0) and f(£Fk), if a / - q(alZii, . . . , a ^ p j 

(/fe 0 ; q£TG(Ym{JZi)) a n d (b, )•) <=q{{bi, zh), ...,(b„Zj)) 

(/ = 0; ..., jt=l\ q£TH(UrUZ,)) then take into Pj the rule (b,a)f ^ 
~q{(b1,aj)zih,...,(bt,.a])zi.)\ . ..... - ,, 

(ii) for each a(£AJ, b(£B), Xj(eXn) if ax^q{axz^ ..... aiz0)ePXj(l^O, 
5 6 r G ( 7 m U Z i ) ) a n d ( b ^ j ^ q d b ^ z j j , ...,{bt,Zj))(t^- . . . ,_/,==/; q£TH 

(C/,UZ,)) then take into P"Xj the rule (b, ^Xj — q^b,, ah)za, ..., (bt, aJt)z0); 
(iii) for e a c h i ( d A ^ b(iB),k^\), f(£Fk) and l ^ j ^ k if izj*-q(axzh, 

<r,atzt)ZPf ( /SO; . 0 1 , 3 - * ; qZTG(YmUZ,)) and(Z>, D ^ q ^ h , zA), ... 
...,{bt,zj)) (tsO; I S A , ..., 7 t S / ; qeTH(UrUZt)) then take into P/ the rule 
(b, i)zj-q((¿>x, ztj , ..., (bt, aj)zi; ); 

(d) for each (b, /)(€C,) let /-/"((A, i)) = q{eTH(Ur)) if rt(i) = q(tTa(YJ) and 
(6, ;.)< :t-<7 hold. ' _ • ' 

We can prove the following: for each /?(€7> (*„)), q(£TH(Ur)), a(£A), b(£B) 
and » t^pa th (/>)): ( 3 ? ' ( e r c ( r j ) ) ((a, and (b, X)<J=q) if and only if 

P, A 

((6, «), »<') < > <"/• : 
p,C 

The proof of the only if part is performed by an induction on the length of 
* . . 11 - :'' - . '' * ; 

the derivation (a, w)<=q'. 
P,A. 

If It ((a, w ) < = q ' ) = 1 then one of the following cases is valid: 
p. A 

a€As, lb p(w)=f, af*-q:ePf; ' (13) 

a£As, lbp(w) = Xj, axj *-q'£PXj] (14) 

aeAw=.vj (v€N*,j€N),-lbp(v)=№Fk,h*l),.- . ^ 

1 -- k and azj — q £Pfl 

• a£Ah w = X, q' = rt(a). (16) 

Thus, what we wanted to prove it holds by definition in all of the four cases. 
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Now let It ((a, w)<=^=q')>\. Then the derivation (a, iv) can be 
P. A p, A 

written as 
(a, w) <== 9o(( a i . wi). •••> (a/, w,)) 9o(<?i: •• -,?/') = q' 

P.A x ' p,A 

( / S i ; ai,...,atiA; qi€T0(YmUZ,)). 

Let q0(fTH(Z,)) be the tree for which 

(b, A) <== ?o((&i> zh), ..., (b„ zj)) ( / ^ 0 ; 1 ...J, ^ I) (18) 
9oB 

* 

is valid. Then the derivation (b, ?.)<== q can be specified in the following form: 

(&> X) <r= »i)> •••> On •••> ?<) = <7 (19) q t o q, B where str,.(j;J)=9y j for all j ( = 1 , ...,?)• Taking into account this latter fact 1 * 
as well as the derivation (bs, vs) <= qs (s= 1, ..., t) by Lemma 3.1 we get 

i ' . B 

(bs,X)^=qs (s=l,...,t). (20) 
«7VB 

Studying (17) we can say that three cases are possible, namely 

a£As, lbp(w) =f(£Fk for some k S 0); (21) 

a€A„ l b p(w) = Xj(€X„); ( 22 ) 

w = vj, lbp(z>) = / ( £ F k for some k(s 1) and U j s k). (23) 

We only detail case (21) because the others can be done similarly. Then, from (21) 
and (17) we obtain 

af(zi> •••> zk) q^(<i\Zh, ..., aizi)fPs (0 ^ .. . , i, k) (24) 
and 

K , ws) ti for all s (= 1, ..., 0- (25) 
PI A 

Taking into account the relations (18) and (24), by the definition of P" it follows 
that 

(b, a)f(zl ,...,zk)-q0 ({b,, aA) zlh ,...,(b„ aJt) z ^ P p . (26) 

Since 1 =7i, . . . t h u s , from (25), 
(27) 

follows for all j ( = 1 , .. . , 0) moreover, from this and by (20) and the induction 
hypothesis, we obtain ((bs, aJs), wjs) <=*= q)t ( i= . l , . . . , t). Finally, from these latters 

PI C * 

and the derivation ((6, a), w) <== q0((b1, aA) wh, ..., (b„ aJt) wJt) (flowing from (26)) 
PT L 

we have what we wanted to prove. 
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In order to prove the if part of our Theorem let us suppose that the derivation 
jjc 

d=((b,a),w)-<^=q holds and let It {d) = \. There are four possible cases. Three 
P.C 

of them can be specified as (21), (22) and (23) and the fourth is the case a£A h 
w=L Because of similarity, we deal with case (21) only. Since It (d) = l thus 
(b, a)fi-q(LPf follows by the definition of the length of a derivation. From this 
we get af(zx, ..., zk)^q'0(axzh, ..., a ^ P 0 ; OsS ix, ...J^k; q'0£TG(Ym{J Z,)) 
and (b, X)*==q. Consider the derivation (a, w)<=q^((ax, w j , ..., (a,, w,)) 

i i , B p. a 

<=q'u(q'x, ..., q[), which exists because of A is completely defiend. If we take 
p, A 

* 

the tree q,=qi{qi, --,qi) then {b, /.)<=q holds obviously. 
i ' . B _ 

Suppose now that It (d) > 1. Then d can be written in the following form: 

((b, a), w)<~^q0((b1, ax)wx, ..., (bt, a,)w,)^q0(qx, ..., q,) = q. (28) 

Then three different cases exist, namely (21), (22) and (23). Again, since these cases 
are similar we deal with case (21) only. In this case, (28) means that 

(b, a)f(zx, ...,zk) q^b,, a Jzh,..., (bt, at)z-^P'}, (29) 
moreover, 

((bs, as), vvs) 4= qs for all s(= 1, ..., t). (30) 

By the definition of PJ, this implies that 

af(z1,...,zk)~-qt(a'1z'1,...,aizi)£Pf (31) 

for s o m e / ( s 0 ) and q'0(f r c(Z;)) , furthermore, 

(b, A) <== q0 (bxzh, ..., b, zit) (32) 
i o . B 

and as=a'., zt =z'. (5=1, ..., t). Then from (31), it follows that 
s  l

s 

(a, w) 4 <?„' ((ai, vvi), • • •, (a,', w,')), (33) 
P, A 

furthermore, ws — w't for all s ( = 1, ..., t). Then, by the induction hypotesis and 
(30), we obtain 

(3 qD((as, ws) ^ q: and (b, A) qs) for all s(= 1, ..., t). (34) 
P, A 9 S , B 

Define the trees q'r(£Ta(Ym)) (r=l, . . . , / ) as follows 

<3r = 
q" if r = is for some s ( = l , . . . , / ) 
the tree which can be derived from 
(a'r,w'r) in pwith A, otherwise. 

(Note that if in the above definition both r=is and r=is, hold for some 
r ( = l , . . . , / ) and st^s' then ws=ws, holds because of w'. =w'. and af=as, 
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holds because of a'. =a'. . Thus, also q"=q",. On the other hand if r=i. does 's v 1 s . 
not hold for any s then q'r exists because A is completely defined.) • 

Finally, we are going to show that the tree q'=q'0(.q'i, ...,qI) (€TG(Ym)) is 
suiiable.. Indeed, it follows from (33) and the definition of q, (r=l, . . . , /) that * * 
(a, vv) ^=q'. Moreover, it follows from (32) that (b, X) <= q0(b±... , b,v,) 

pt A ' B 
and str„'(vs) = q'. for all s(= 1, ..., /)• Taking into account that q' = q", from t s - 'j* s 

* 
(33) and by lemma 3.1, we. have (b, X) <=q. This ends the proof of the if part. 

<{ .B 
If we choose a=a0, w=X then we have STtystfo$~2)s>i¡CLSTQlsd. ---•> 
The equality follows from the fact that every tree transformation being in STQisi 

can be decomposed by itself and the identity and this latter is in 3~ Si s i s . • 
If in the former theorem A~0 then |C f =0, hence, we obtain 

Corollary 4;2. ¡ ¿ s i ^ o S T $ s t % = Z T • 

Finally, we want to show that if we apart from the condition that A is de-
terministic in Theorem 4.3 then this equality does not remain valid. Namely, we 
have the stronger 

Theorem 4.4. The classes S T s and ST$i are incomparable. 

Proof. It is easy to show that the tree transformation given in Example 2.1 
is not in 

On the other hand consider the AT transducer k( = {TF(X1), A, TQ(Xx), a, P)) 
where N . . 

(i) F = Fx={f}, = {g l ,g2}; 

(ii) A = AS= {a}; 

(iii) P = P P X i , where ' -

Pf = WOi) - gi(azi)> a f ( z i ) - g 2 ( a z i ) } , 

PXI = IA*I -

and the AT transducer B (= ( r c (Z 1 ) , B, T^X^, b, P'j) where 

(i) H = H^H2, {hj, H2 = {h2}; 

(ii) B = Bs={b}; 

(iii) P' =p'gi{jp'g^p'xi where 

< = {bg^i) - KibzJ}, />; = {bgt(zj - h2(bZl, bzj}, 

PXl = {bxx - -vj. 

Let 7\ = :r(A), r 2 = T(B) and T=T1oT2. Obviously, T^.TT2£F3)sts. 
Since both A and B contain only one synthesized attribute it is obvious to show 

by. induction on n that 



On attributed tree transducers 26,7 

for each Taking into account that T\Xl=(xx, it is easy to show that 
the images of tree f { x j are "simmetrical" for all n ( s l ) . Moreover, it can be 
seen that the tree / " ( x j ) has 2" images, and 2 " - 1 of them are of form h2(q, q). 

Assume that T=T(C) for some AT transducer C(=(TF(X1), C, TH(XJ, 
C's,P",rt)). Let 

K=\CS\, L = ]C;| (where C = CSU C;), 

M = \{q\q is the right side of some rule of P" and has the form h2(q1} <72)}|. 

Let us fix an arbitrary integer « ( s i ) . Consider the derivátion of some image 
<7) °f th e tree p — f ( x j . This derivation can be written in the following way: * 
{a, X) w) <= fe2(9i((au vi)> ••• = (a„, vn)), q2((b1, w j , ...,(bm, w j j ) 

(35) 

• P, C 

for some a(dC's). Observe that it holds: if (a-, Vj) r) then rj=r', (j= 1, ..., n) 
* 

and if (bk, wk) <== s'k then sk=sk (k= 1, ..., m). Indeed, in the opposite case if 
p, c -

rj7if'j would hold for some j ( = 1 , . . . ,« ) then — since the images of p are sim-
metrical — we should have q-Jj^, . . . , rj, . . . , r„) = q and q^r^, ..., r'j, ..., r„)— q 
and it is a contradiction. 

Thus, each derivation (35) is determined by the attribute occurence (b, w) 
and the alternative of the rule applied there. As the number of attribute occurences 
is (K+L)(n+1) and the number of alternatives of a rule is at most M we obtain 
that the number of images of p, which has the form h2(q, q), is at most (K+ L)M(n+1). 
This is again a contradiction provided n is sufficiently large. • 
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