
Subdirectly irreducible commutative automata 

B y Z . ESIK a n d B . IMREH 

M . YOELI gave a characterization of finite subdirectly irreducible automata 
with a single input sign (cf. [9]). In [8] G. H. WENZEL generalized this result for 
the infinite case.. In this paper we present another result along this line. Namely, 
we characterize all subdirectly irreducible commutative automata and hence all 
subdirec-ly irreducible commutative semigroups as well. 

Notions and notations 

An automaton is a system K = {A, X, S) where A is a nonempty set, the set 
of states, X i s an arbitrary set, the set of input signs and, finally, 8: A XX—A is 
the transition function. As in general, we shall also use this transition function 
in the extended sense, i.e. as a mapping 5: AxX*—A. Here X* denotes the free 
monoid generated by X. The identity of X* is the empty word X and 
We use the notation 8P to denote the mapping induced by p: Sp(a)=S(a, p) 
(a£A, p€X*). If a sign induces a permutation of A then it is called a permuta-
tion sign. In this way we can divide X into two disjoint sets XP and XNP. XP is 
the set of all permutation signs and XNP=X\XP. 

The mappings 8P (p£X*) form a monoid with respect to the composition of 
mappings. The identity of this monoid is the identity mapping on A, This 
monoid 5(A) is called the characteristic semigroup of A. Sometimes another rep-
resentation of the characteristic semigroup is useful in the literature. However, 
there is no essential difference among these definitions. 

Each automaton A=(^4, X, 8) can be considered as a unoid, i.e. as a uni-
versal algebra equipped with unary operations only. Thus the notions such as 
subautomaton, homomorphism, congruence relation, quotient automaton, free 
automaton etc. can be introduced in a natural way. In connection with these notions 
we shall use the following notations: if B £ A then [5] denotes the subautomaton 
generated by B, C(A) denotes the lattice of all congruence relations of A, if 0£C(A) 
and ad A then 6 (a) denotes the block containing a in the partition induced by 
6, AA is the equality relation of A, if B^A then OlB=OOBxB, finally, if 06 C (A) 
then the quotient automaton induced by Q is denoted by A /6=(A/9 , X, 8). Ob-
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serve that we have used the same notation 5 for the transition function of A/0 as 
well. An automaton A is called subdirectly irreducible if either A has one state 
only, or AA7t n ( 0 : 06C(A), Q^AA). 

Each subautomaton B = { B , X , 8 ) of an automaton A = {A,X,5) can be 
viewed as a congruence relation (7B€C(A): aaRb if and only if a,b£B or a=b. 
And what is more, C(B) can be embedded into C(A) in a natural way, i.e. by the 
correspondence 0—0' where aQ'b if and only if aOb or a=b for any a, b^A. From 
this it follows that an automaton is subdirectly irreducible if and only if each of 
its subautomaton is subdirectly irreducible (cf. also [8]). 

In the sequel we shall need a more general concept of subautomata, too. The 
automaton B = { B , Y , 5 ' ) is an X-subautomaton of A = ( A , X , S ) if B^A, Y^X 
and <5|Bxy=d'. For the sake of simplicity we shall not make any distinction be-
tween <5 and 5'. A special X-subautomaton of A is the X-subautomaton 
B—(A, XP, It is called the permutational subautomaton of A. 

Various concepts of connectedness can be found in the literature. In what 
follows we shall use two of these concepts. An automaton A = ( A , X, d) is called 
strongly connected if each state a€A is a generator of A and it is called connected 
if for arbitrary a,b£A [a\C\[b}^9. 

Our results pertain to commutative automata. An automaton A=(A, X, 5) 
is said to be commutative if Sxy=5yx is satisfied for any x,y£X, i.e. xy=yx is 
an identity in A. It is well-known that A is commutative if and only if 8P is an 
endomorphism of A for every p£X*, and this is the reason why if A is generated 
by a state a then A is a free automaton with free generator a. 

Thus a strongly connected commutative automaton is freely generated by any 
of its states. This implies that each input sign of a strongly connected commutative 
automaton A is a permutation sign, i.e. 5(A) is a commutative permutation 
group on A. 

We have proved in [2] (cf. Theorem 1) that if a finite commutative automaton 
A has a generator state then C ( A ) ^ C ( 5 ( A ) ) and | ^ | = |5(A)|, where C(5(A)) 
denotes the lattice, of all congruences of 5(A). However, we have not used the 
finiteness of A in proving this statement thus this remains valid for arbitrary com-
mutative automaton as well. Consequently, if A is a singly generated commutative 
automaton then A is subdirectly irreducible if and only if 5(A) is subdirectly 
irreducible. This was also discovered by I . PEAK in [5]. 

Strongly connected commutative automata 

The previously mentioned fact helped us to prove in [2] that a finite strongly 
connected commutative automaton is subdirectly irreducible if and only if it is a 
cyclic automaton of prime-power order. In this section we extend this result to the 
infinite case. 

According to [3, 6] Abelian groups Zpx and Z p~ — where p is a prime — are 
called cocyclic. An automaton A = ( A , X , S ) is cocyclic, if its input-reduced sub-
automaton is (A, ^ - i somorphic 1 to a strongly connected X-subautomaton of 

1 An automaton A—(A, X,.d) is said to be (A, ^- isomorphic to an automaton B = ( f i , Y, 6') 
if there exist bijections ¡i\ A—B and v: X— Y such that n{&(a, x))=S'(fi(a), v(x)) for any a€A 
andxSA'. 
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an automaton obtained by viewing a cocyclic group as an automaton. (By the 
input-reduced subautomaton of an automaton A~(A, X, <5) we mean an ^-sub-
automaton B = (A, Y, <5) where 7 is a maximal subset of X with the property 
that y19£y2(^Y) implies B is unique up to isomorphism.) Observe 
that a strongly connected commutative automaton A is cocyclic if and only if 5(A) 
is a cocyclic group. It is known that an Abelian group is subdirectly irreducible 
if and only if it is a cocyclic group (cf. [3, 6]). Thus, by our previous remarks we 
obtain the following 

Statement. A strongly connected commutative automaton is subdirectly ir-
reducible if and only if it is a cocyclic automaton. 

The general case 

In this section we shall characterize all subdirectly irreducible commutative 
automata. First we need some definitions. 

Let A=(A, X, <5) be an arbitrary commutative automaton and define the 
binary relation S on A as follows: a^b if and only if there is a word p(LX* 
satisfying 5(a,p)=b. It is not difficult to see that this relation is a preorder on 
A and it has the substitution property. Thus the relation ^ determines a con-
gruence relation 0€C(A): aOb if and only if a^b and b^a. Furthermore, the 
system (А/в, — where 0(a)s0(b) if and only if a^b — becomes a partially 
ordered set. It is obvious that if В = (В, X, д) is a subautomaton of A then 
B= U(0(6): b£В) and В/в is an upper ideal in (А/в, s ) . Conversely, if В is ah 
upper ideal in А/в then ( U (0(b): в(Ь)£В), X, S) is a subautomaton of A. 

The automaton A is called quasi-nilpotent if the following three conditions 
are satisfied by A: 

i) (А/в, S ) has a greatest element 0(ao) and 0(a0) = {a0} where a0 is called 
the absorbent state, 

ii) А/в\в(а0) has a greatest element which will always be denoted by 0(ai), 
iii) 0(a)<(5(0(a), x) holds for any д б Л \ { а 0 } and x£X provided that 

6 x^idA i 9 holds in the factor automaton A/0. 
Observe that for a quasi-nilpotent automaton А=(Л, X, S) the condition 

<5*=idA/e is equivalent to the condition that x is a permutation sign of A. Further-
more, if A is quasi-nilpotent and finite then (А/в, XNP, d) is nilpotent. 

Let A—(A, X, 3) be again an arbitrary commutative automaton and let 
Р(А/в) denote the power set of'_А/в. Define the mapping / : Р(А/в)-Р(А/в) by 
/ ( C ) = C U m a x C where max С denotes the set of all maximal elements in the 
complement of C. It is easy to verify that / is a monoton mapping, i.e. / ( C ) s 
c / ( C " ) provided C s C ' . Thus, by Tarski's fixpoint theorem, (cf. J7]) / has 
a least fixpoint M'. M' is the smallest subset of А/в such that max M ' = 0 . Let 
M(A)= U (0(a): 0(a)£M'). 

On the other hand it is well-known that the least fixpoint of a monoton mapp-
ing on a complete lattice can be obtained as the least upper bound of a chain con-
structed from the least element of the lattice. Applying this construction to / we 
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get M'={j M'z — or equivalently. M'= (J M'x — where for an arbitrary ordinal 
a a-zfi 

a the set M'a is defined by transfinite induction as follows: 
i) М'0=тах А/в, 

ii) М'л = M'ai U max M'ai if «=«1+1 , 
iii) M'a— (J М'лх if a ^ O is a limit ordinal. 

ai<a 
It is obvious — by transfinite induction on a — that M'a is an upper ideal in 

{А/в, and M'a does not contain co-chains. (By an со-chain in a partially ordered 
set (R, we mean a subset Q= {q0, qlt such that q^q^.... «un-
chains are similarly defined just require <70>^1>... instead of the above condi-
tion.) As M'a is always an upper ideal in (А/в, the system Af a (A)=(U(0(a) : 
0(а)£ЛО, X, <5) is a subautomaton of A. Observe that if A was a quasi-nilpotent 
automaton then M0(A)={a0} and M1 (A) = {a0} U 0 (tfj). If there is no danger of 
confusion we shall omit A in Ma(A) and M(A). 

A quasi-nilpotent automaton A=(A, X, 5) will be called separable if for 
arbitrary states a¿¿b(LA such that {a,b)^.M1 there is a word p€X£P satisfying 
both {0(а,р),д(Ь,р)}Г)Мт±& and д(а, р)т±5{Ъ, p). 

We are now ready to state our main result. 

Theorem. A commutative automaton A=(A,X,3) is subdirectly irreducible 
if and only if one of the following three conditions is satisfied by A: 

(a) A is a cocyclic automaton, 
(b) A is a separable quasi-nilpotent automaton and the X-subautomaton 

(Л\{а0}, XP,8), i.e. its permutational subautomaton without the absorbent state 
a0 , is the disjoint sum of pairwise isomorphic cocyclic automata, 

(c) A is the disjoint sum of a cocyclic automaton and an automaton of one 
state. 

Proof. In order to prove the necessity of our Theorem assume that A is sub-
directly irreducible. First we shall consider the case when A is connected and show 
that (А/в, S ) has a greatest element. 

As A is connected there is at most one maximal element in А/в. Therefore, 
it is enough to show that each element of А/в has an upper bound which is max-
imal. Assume to the contrary that there is no maximal element in the upper ideal 
B' generated by an element в(а)£А/0. Let U(0(6): в(Ь)£В'). (В, X, <5) is exactly 
the subautomaton generated by a, i.e. - B=[a\. Let b£B be arbitrary. There is 
a state b'£B such that 0(b)<0(b'), thus am^ÁA. We shall show that 
П(<ГМ: Ь€В)=АЛ. 

Suppose that с?¿d and сат d holds for any b£B. Of course we have c,d£B. 
There is a state Б^В such that {c, Indeed, if в (с)=0 (d) then we may 
choose В such that 0(c)<0(5) if 0(c)<6(d) or 0(c) and 6(d) are incomparable 
then let B=d. We supposed that c<r[5] d. But this is possible only if c=d, a con-
tradiction. Therefore, П(<т[()]: b£B) = AA. 

Let 0(ao) denote the greatest element of А/в. Since в(аи) is maximal in А/в 
(0(ао), X, 5) is a subautomaton of A, furthermore, by the definition of 0, it is strongly 
connected. On the other hand we know that (0(ao), X, <5) has to be a subdirectly 
irreducible automaton, thus, by the previous statement, it is a cocyclic automaton. 
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Suppose that |0(a„)[=»l. We show that in this case 0(ao) = A, i.e. A satisfies 
condition (a) of our Iheorem. 

Assume that a£A and a$0(a o) . Because of 0(a)<0(a o) there is a word 
p£X* such that <5(a,p)=a0. Let g£C(A) be the congruence relation induced 
by the endomorphism Sp . As ¡>P\e{aj is a permutation of 0(ao) we have <?je<>0) = 
=Ae(A0) and QJ±Aa. Thus еП<тв(ао) = Л л . This, by |0(ao)|=-l yields that A 
is suboirectly reducible, which is a contradiction. 

Now consider the case 0 (aQ) = {«0} and A ^ {a0}. By the same order of ideas 
as we have shown that А/в has a greatest element one can easily prove that every 
element of А/в\в(а0) has a maximal upper bound in A/0\0(a0). But A/0\0(a0) 
can not have two distinct maximal elements, consequently, there exists a greatest 
element в(a,) in A/0\0(ao). Indeed, if both 0(a) and 0(6) are maximal in 
А/в\9(а0) then criajD(xibi—AA and a[a], are satisfied, contrary to the 
subdirect irreducibility of A. 

Let 0 ( a j be the greatest element of А/в\в(а0). Let us divide X into two dis-
joint sets X1 and X2: X1={x: x£X, 8(a1, х)£в(а1)}, X2= {x: x£X, 5(a1, x)=a0}. 
Since 0 is a congruence relation we have <5(0(aj), x)Q0(al) if x f X 1 and 
д(в(а1), x)=6(a0) if x£X2. Hence A1 = (0(a1), Xx, 5) is a strongly connected 
Z-subautomaton of A. We now show that Ax is a cocyclic automaton. 

Assume that Ax is subdirectly reducible, i.e. there exist congruence relations 
{ ^ C X A j ) : if J ) with f i f e : i€ f)=Ae(ai) and (/£/). Define the con-
gruence relations !Рг€С(A) (if I) by the equivalence а Ф ф if and only if а д ф or 
a=b {a, bf A). It can be immediately seen that П(!Р£: i f I ) = AA and f¡7*АЛ 
(i£l) are satisfied. This contradicts the subdirect irreducibility of A. Therefore, 
Aj is subdirectly irreducible and thus, by our Statement, it is a cocyclic automaton. 

Next we show that 8X is a permutation of A and 5 (0(a), x)^O(a) holds for 
any x£X1 and ad A- Indeed, 5X is injective since otherwise we would 'have 
ffe(«0)ue(«;and o e ( a o ) [ J e ( a i ) , q ^ A a where q£C(A) is the congruence 
relation induced by the endomorphism DX. Now let ADA be arbitrary and let 
rk be the order of 8X in ^ ( A J . Define qQAXA by cgd if and only if there is a non-
negative integer n such that either S(c, xnrk)=d or S (d, xnr") = c. It is obvious 
that в is reflexive and simmetric and has the substitution property, i.e. it is an in-
variant tolerance relation of A. By the injectivity of ¿ x , i t can be seen that it is 
transitive as well. Thus Q£C(A). It is not difficult to see that Q Псгв(0о)ив(л1)=^л 
while о-в(Яо)ив(Я1)^^л- O n the other hand qt±Aa holds if {8x<n(a): m^sl). 
Therefore, for every and a£A there is an integer / ¡ s 1 such that a=S(a, x"). 
Consequently, <5 (0(a), x ) £ 0 ( a ) and x"—X is an identity in [a] implying that 5X 
is a permutation of A. 

As X1QXP and X2QXNP we get Хг=ХР and X2—XNP. We have shown 
that if xeXP then 5 (в (a), 0(a) holds for each a£A. Conversely, if 
<5 (0(a), x)Q0(a) holds for some a£A\Q(a0) then also ¿ ( O ^ ) , х)Я=в(а1) i.e. 
x£XP. This can be seen immediately as follows. As <5(0(a), x)=0(a) holds in 
A/0 we obtain that x=X is an identity in [0(a)]. But 0(a1)6[0(a)], thus, 
д(в((а1), х)=в(а1) in A/0, i.e. <5(0^), x)gO(al) in A. 

So far we have proved that if A is subdirectly irreducible, connected, moreover, 
0(ao)={a0} and А^в(а0) then it is a quasi-nilpotent automaton. Next we show 
that in this case (0(a), XP, XP, 8) for any a£A\0(a0), hence the per-
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mutational subautomaton of A without the absorbent state is the disjoint sum of 
pairwise isomorphic cocyclic automata. 

Indeed, if a £ A \ 0 ( a o ) then there exists a word p£_X* such that 8 (a, p)=aL. 
By commutativity, the mapping <5P(e(a): 6(a)—6(a^ is a homomorphism of 
(0(a), XP, 5) into (e(aj), XP, d). As (Ofo), Xp, S) is strongly connected <5p|e(a) is 
an epimorphism. Now we shall show that <5P|e(a) is an isomorphism. Assume that 
b, c£6(a) satisfy the condition d(b,p)=8(c,p)=d. Since (9(a), XP, 8) is strongly 
connected there is a word q£Xp such that 8(b, q)=c. By commutativity, 
d(d,q)=d, thus, q=X is an identity in (9(ai), XP, 8). In other words 8q^e(ai) = 
—ide(a i ). Let us define the relation Q£C(A) by UQV if and only if there is an integer 
nSO such that either 8(u,q")=v or 8(v,q")=u. Obviously, QC\<^e(.a0)ue(a1)=AA, 
and,hence, by the subdirect irreducibility of A, f rom this it follows that Q=Aa. 
Thus b—c and 8P|e(0) is an isomorphism. 

It remained to prove that A is separable. Consider the set Z of all pairs (a, b) 
(a^bZA) such that {a, b}<^0(ao)U0(ai) and for every word p£X£P if 8(a,p)£M 
then 8(a,p)=5(b,p). We shall show that if (a, b)^Z and x£XP then a lso , 
(8(a, x), 8(b, x))£Z. Assume to the contrary (<5(a, x), 8(b, x ) ) $ Z . There are two 
cases. Either there is a word p£X*P with 8(8(a, x),p)G,M and 8(8(b,x),p)$M 
or 8(a, xp), 8(b, xp)£M and 8(a, xp)^5(b, xp). In the first case, by commutativity 
and the facts 8X(M)QM and ¿ x ( M ) g M it follows that 8(a,p)£M and 
8(b,p)$M. This contradicts (a, b)^Z. One can get a similar contradiction in 
the other case, too. 

Suppose now that A is not separable, i.e. Z ^ 0 . Let (a, b)£Z and denote 
by Q£C(A) the congruence relation generated by the pair (a, b). By Malcev's 
lemma (cf. Theorem 10.3 in [4]), Q is the transitive closure of the relation W given 
by cWd if and only if there is a word p£X* with {c, d}Q {8(a,p), 8(b,p)} or c=d. 
As (a,b)£Z and (8(a, p), 8(b,p))f_Z holds for every p£XP it is not difficult 
to see that if 0(u)>0(a) and uTv are valid for some states u,v£M then u—v. 
Consequently, ei(w\©(fl))nM=^(M\e(a))nM- If a60(ao)U0(a1) then 8(a,p)=a0 
holds for each p£X^P. Thus 8(b,p)=a0 is also valid for each p£X£P. But this 
is possible only if b£0(ao)(J0(al) contradicting {a, ¿>}i£0(ao)U0(ai). Therefore 
0(a)<0(tfi) and hence ^|e(ao)ue(a1)=^e(«0)ue(ai)- T h u s us(.a1>=AA, a 
contradiction. 

We have already proved that if A is a subdirectly irreducible connected com-
mutative automaton .then A satisfies condition (a) or (b) of our Theorem. Assume 
now that A is not connected. Then A is the disjoint sum of its' connected sub-
automata Bt=(Bt,X,S) 0'€/, We have D f o i W kl)=AA while if | / | & 3 
or | / | = 2 and | 5 f | s 2 (i£l) then aA\B^AA (i£l). Therefore, | / | = 2 — say 
/ = { 1 , 2 } — and |52 | = 1. As Bx has to be a subdirectly irreducible automaton 
and it is connected, one can show that B2 is a cocyclic automaton, i.e. A satisfies 
condition (c) of our Theorem'. This ends the proof of necessity. 

Conversely, by our Statement, it is obvious that if A contents condition 
(a) or (c) of the Theorem then A is subdirectly irreducible. Hence assume that 
condition (b) is. satisfied by A. . 

We shall show that Qie^ueia^ ^ h o l d s for each congruence rela-
tion f?€C(A) generated by two distinct'states a,b£ A. 
\ . This is quite obvious if a, bf0(aa){J0(a1). Hence suppose that {a, b}% 
^ 0 ( a o ) U 0 ( a i ) . a n d se t Z={Q(C)\ C^M, |O(C ) |>1} . S ince A . i s s e p a r a b l e t h e r e is 
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a word ptXJp such that — say — 8(a,p)£M and 8(a, p)^8(b, p). Thus 
Since M/0 does not contain co-chains there is a state c 0 £M such that g(c0)£Z 
and 9(c0)*9(c) holds for any Q(C)£Z. 

Let us distinguish three cases and let J06e(c0), d ^ c ^ . First assume that 
c0=a0. If i/o£0(a1) we are ready. If d0$9(a1) then there is a word pdX^P with 
8(d0,p)£d(a1). At the same time 8(a0,p)=a0 thus we get a0e5(d0,p), i.e. 
QWa^ue iaO^e^ueM- Secondly assume that co€0(fli). . If d0^9(a1) then we 
are again ready. If 9(d0)<9(aJ then there is word p f X J p such that 8(d0, p)£9(al). 
But 8(c0,p)=a0 thus, a0e3(dQ,p). Finally, let 0(ao)U0(tfi). By separability, 
there is a word pfX^P with 8(c0, p)^8(d0, p). But 8(c0,p)£M because (M, X, 8) 
is a subautomaton of A and 9(S(c0,p))>9(c0) since A is quasi-nilpotent. Con-
sequently, (8(c 0 ,p) , 8(d0,p))eZ contradicting the maximality of 0(co). 

We have proved that every congruence relation g£C(A) generated by two 
distinct elements of A satisfies eioc^uct^) flta^uscao • Therefore, A is subdirectly 
irreducible if and only if (0(ao)U0(ai), X, 3) is subdirectly irreducible. On the 
other hand (Oid^UflCaj), X, 3) is subdirectly irreducible. This ends the proof of 
the Theorem. 

Commutative automata with a finite set of input signs 

In this section we shall point out that there is a somewhat simpler characteriza-
tion of subdirect irreducibility in case of commutative automata with a finite set 
of input signs. Actually, we prove 

Corollary 1. Let A=(A, X, 8) be a commutative automaton with finite X. 
Then A is subdirectly irreducible if and only if one of the following three conditions 
are satisfied by A: 

(a) A is a cyclic automaton of prime-power order, 
(b) A is a quasi-nilpotent automaton and its permutational subautomaton 

without the absorbent state is the disjoint sum of pairwise isomorphic cyclic auto-
maton of prime-power order, furthermore, for any a^b^A such that [a, b}% 
^0(a o )U0(a 1 ) there is a sign xfXNP with 8 (a, x)?i8(b, x), 

(c) A is the disjoint sum of a cyclic automaton of prime-power order and 
an automaton of one state. 

Proof. The proof follows by our Theorem and the fact that if A is quasi-nil-
potent then we have A = M(A). This latter equality can be seen by showing that 
if A is quasi-nilpotent then A/0 can not contain an co-chain. 

Assume to the contrary A is quasi-nilpotent and 0(Z>O)<0(61)<... is an co-
chain in (A/9, Let X={xlt ..., xr}. As 9(aj) is the greatest element of 
A/0\9(alj) there is a word q„=x^ ...x*? with 8(bn, q„) = for any wsO. Let 
«(") denote the vector consisting of the exponents occuring in qn, i.e. a(n) = 
— (a(n), . . . , ar

in)) (ra^O). By induction on t (t=0, ..., r) we show that there is an 
infinite sequence of indices {0, 1, ...} such that a ^ ^ a ^ holds if s ^ t and 
/</£/ , . If i = 0 then let / , = {0,1,...}. Assume that we have already constructed 
the set / ,_! ( f ^ l ) and consider r={(a , ( i ) , ..., Supposing r is finite 
we obtain integers / < / (i, with (oe(

(i), . . . , a ^ ^ a P , .. . , a r
0)). Let 

B y commutativity, . 5(b'i, qd^b^q^Sib^wq,)^: 
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On the other hand, by 9(b,)^8(bj), there is a word p£XNPX* with 5(0(bt),p) = 
= 9(bj). Or even, we may choose p in such a way that 8(bi,p)=bj. Thus a 0 = 
= 5(5(b-„ qi),p) = 8(8(bi,p)q^=8(bJ, q^5(bj, qiw) = 8(bj, wq^=a1, i.e. a0s= a i 
yielding a contradiction. We have shown that r is infinite from which the existence 
of I, follows. 

Now let 1=1, and / < / (/, jd l ) . Applying the same sequence of ideas for 
the corresponding states bt and bj one can get a similar contradiction-. This ends 
the proof of Corollary 1. 

It is interesting to note that if A—(A, X, 8) is a subdirectly irreducible com-
mutative automaton and X is finite then A=Mm(A). This can be seen as follows. 
We have proved that A=M and one can prove in a similar way that there is no 
commutative automaton B with a finite set of input signs which is generated by 
one state such that (5/0, s ) contains an o0p-chain. Now, to see that A=Mm(A) 
assume to the contrary max and let 0(a)£max M'a. Set Z = {0(b): 9(a)< 
-=0(6)} and let Z0 consist of all minimal elements of Z (with respect to the or-
dering Of course ZQM'a. For every 0(b) £Z0 there exists a sign x£X with 
5(a, x)0(b). Thus Z0 is finite, Z0={0(b1), ...,0(b„)}. On the other hand Z can 
not contain Mop-chains since otherwise [a]/9 would contain to°p-chains. Thus, to-
gether with the fact that M'm is an upper ideal, Z={0 (b): (30 (i£ {1, ...,«}, 0(6f) < 0(6))}. 
As M'm= (J M'k, there corresponds an integer kt to each /€{1, •••,«} such that 

0(bi)£M'k. Let k= max kt. Obviously, Z Q cM' k and, since M'k is an upper ' ¡ = 1 n 

ideal as well, ZQMk. But in this case if 0(b) is such that 0 (a) < 0 (b) then 
9(b)£M'k, therefore, 0(a) is maximal in M'k, too. This results that 9(a)£Mk+1<^M'C0 

contradicting our assumption 9(a)£M'a,. 
Also observe that if A = ( A , X, 8) is a subdirectly irreducible commutative 

automaton with finite X and if A is generated by one state then A is finite, too. 
Indeed, we know that A = M a holds, thus, a0ZMm where a0 denotes an arbitrary 
generator of A. But Ma= | J M„, therefore, there is an integer n such that 
a0dMn and hence, A=M„. On the other hand the finiteness of X implies the 
finiteness of M„. 

The following simple example shows that the equality A=M(A) does not 
hold in general for arbitrary subdirectly irreducible commutative automata. In-
deed, let A={al,bi\ ¿SO}, /SO} and let 5: AxX-A be defined by: 

if i > 0 
(a) 

(b) 

(c) 
&(ai,yj) = a0 (iJ^O), 

8(bi,x) = bi+1, 

(d) 

It can be seen by an easy computation that A = ( A , X , 5 ) is a subdirectly 
irreducible commutative automaton with M(A) = {a„, ax, ...}. 
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Subdirectly irreducible commutative semigroups 

Our Theorem makes possible for us to describe all subdirectly irreducible com-
mutative semigroups. 

First we note that if S is a commutative semigroup which has no identity then 
S is subdirectly irreducible if and only if S 1 is subdirectly irreducible where S 1 

is S equipped with a new element 1, the identity of S1. The sufficiency of this state-
ment is obvious and does not require the commutativity of S. Conversely, assume 
that S 1 is subdirectly reducible, i.e. there are congruence relations Qi^AsI ( :£/) 
of S1 such that 0 (2 , ; / ) = J s i . We shall show that | s ^ is satisfied for each 
/ £ / . Suppose that e ; | s = As. There is exactly one element S with i g j l . Let s'£S 
be arbitrary. As gt is a congruence relation of S1ss'gis'. As S is closed under 
composition and ÖÍ|S=^S from this we obtain ss'=s'. This means that s is a left 
identity, and by commutativity, an identity. This contradicts our assumption on S. 

In the next corollary we use the notations in accordance with [1]. Observe 
that the congruence relations 9 of the previous section corresponds to the Green's 
congruence relations / of commutative semigroups. 

Corollary 2. A commutative semigroup S is subdirectly irreducible if and only 
if one of the following conditions is satisfied by S : 

(i) S is a cocyclic group, 
(ii) S is a commutative monoid with zero element and 
(a) there is a least O-minimal ideal R in S, 
(b) Jx is a cocyclic group, (Js, J1 |/s) = under the correspondence 

(a£ J±) if s^O furthermore, JS^JSJS,, for arbitrary s € 5 \ { 0 } and s ' ^ S X ^ , 
(c) for any {jj , ( s ^ s ^ there is an element sf S\J± with {íjJ, í 2 j } n 

HM7Í0 and s^^s^s where M denotes the least ideal in S such that M / f does 
not contain maximal elements with respect to the ordering JS=JS> if and only 
if s | s ' (s,s'£S), 

(iii) S does not contain identity element and S1 satisfies condition (ii) with 

Every finitely generated subdirectly irreducible commutative semigroup is 
finite. 

Proof. By our Theorem, Theorem 1 in [2], the representation theorem of semi-
groups and our previous remarks. 

This Corollary implies Corollaries IV.7.4. and IV.7.5. in [6]. 
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