Subdirectly irreducible commutative automata

By Z. Ésik and B. Imreh

M. Yoell gave a characterization of finite subdirectly irreducible automata with a single input sign (cf. [9]). In [8] G. H. Wenzel generalized this result for the infinite case. In this paper we present another result along this line. Namely, we characterize all subdirectly irreducible commutative automata and hence all subdires:ly irreducible commutative semigroups as well.

Notions and notations

An automaton is a system $\mathbf{A}=(A, X, \delta)$ where A is a nonempty set, the set of states, X is an arbitrary set, the set of input signs and, finally, $\delta: A \times X \rightarrow A$ is the transition function. As in general, we shall also use this transition function in the extended sense, i.e. as a mapping $\delta: A \times X^{*} \rightarrow A$. Here X^{*} denotes the free monoid generated by X. The identity of X^{*} is the empty word λ and $X^{+}=X^{*} \backslash\{\lambda\}$. We use the notation δ_{p} to denote the mapping induced by $p: \delta_{p}(a)=\delta(a, p)$ ($a \in A, p \in X^{*}$). If a sign $x \in X$ induces a permutation of A then it is called a permutation sign. In this way we can divide X into two disjoint sets X_{P} and $X_{N P} . X_{P}$ is the set of all permutation signs and $X_{N P}=X \backslash X_{P}$.

The mappings $\delta_{p}\left(p \in X^{*}\right)$ form a monoid with respect to the composition of mappings. The identity of this monoid is the identity mapping on $A, \delta_{\lambda}=\mathrm{id}_{A}$. This monoid $S(\mathbf{A})$ is called the characteristic semigroup of \mathbf{A}. Sometimes another representation of the characteristic semigroup is useful in the literature. However, there is no essential difference among these definitions.

Each automaton $\mathbf{A}=(A, X, \delta)$ can be considered as a unoid, i.e. as a universal algebra equipped with unary operations only. Thus the notions such as subautomaton, homomorphism, congruence relation, quotient automaton, free automaton etc. can be introduced in a natural way. In connection with these notions we shall use the following notations: if $B \subseteq A$ then $[B]$ denotes the subautomaton generated by $B, C(\mathbf{A})$ denotes the lattice of all congruence relations of \mathbf{A}, if $\theta \in C(\mathbf{A})$ and $a \in A$ then $\theta(a)$ denotes the block containing a in the partition induced by θ, Δ_{A} is the equality relation of A, if $B \subseteq A$ then $\theta_{1 B}=\theta \cap B \times B$, finally, if $\theta \in C(\mathbf{A})$ then the quotient automaton induced by θ is denoted by $\mathrm{A} / \theta=(A / \theta, X, \delta)$. Ob-
serve that we have used the same notation δ for the transition function of \mathbf{A} / θ as well. An automaton \mathbf{A} is called subdirectly irreducible if either \mathbf{A} has one state only, or $\Delta_{A} \neq \cap\left(\theta: \theta \in C(\mathbf{A}), \theta \neq \Delta_{A}\right)$.

Each subautomaton $\mathbf{B}=(B, X, \delta)$ of an automaton $\mathbf{A}=(A, X, \delta)$ can be viewed as a congruence relation $\sigma_{\mathbf{B}} \in C(\mathbf{A}): a \sigma_{\mathbf{B}} b$ if and only if $a, b \in B$ or $a=b$. And what is more, $C(\mathbf{B})$ can be embedded into $C(\mathbf{A})$ in a natural way, i.e. by the correspondence $\theta \rightarrow \theta^{\prime}$ where $a \theta^{\prime} b$ if and only if $a \theta b$ or $a=b$ for any $a, b \in A$. From this it follows that an automaton is subdirectly irreducible if and only if each of its subautomaton is subdirectly irreducible (cf. also [8]).

In the sequel we shall need a more general concept of subautomata, too. The automaton $\mathbf{B}=\left(B, Y, \delta^{\prime}\right)$ is an X-subautomaton of $\mathbf{A}=(A, X, \delta)$ if $B \subseteq A, Y \subseteq X$ and $\delta_{\mid B \times Y}=\delta^{\prime}$. For the sake of simplicity we shall not make any distinction between δ and δ^{\prime}. A special X-subautomaton of \mathbf{A} is the X-subautomaton $\mathbf{B}=\left(A, X_{P}, \delta\right)$. It is called the permutational subautomaton of \mathbf{A}.

Various concepts of connectedness can be found in the literature. In what follows we shall use two of these concepts. An automaton $\mathbf{A}=(A, X, \delta)$ is called strongly connected if each state $a \in A$ is a generator of \mathbf{A} and it is called connected if for arbitrary $a, b \in A[a] \cap[b] \neq \emptyset$.

Our results pertain to commutative automata. An automaton $\mathbf{A}=(A, X, \delta)$ is said to be commutative if $\delta_{x y}=\delta_{y x}$ is satisfied for any $x, y \in X$, i.e. $x y=y x$. is an identity in \mathbf{A}. It is well-known that \mathbf{A} is commutative if and only if δ_{p} is an endomorphism of \mathbf{A} for every $p \in X^{*}$, and this is the reason why if \mathbf{A} is generated by a state a then \mathbf{A} is a free automaton with free generator a.

Thus a strongly connected commutative automaton is freely generated by any of its states. This implies that each input sign of a strongly connected commutative automaton \mathbf{A} is a permutation sign, i.e. $S(\mathbf{A})$ is a commutative permutation group on A.

We have proved in [2] (cf. Theorem 1) that if a finite commutative automaton A has a generator state then $C(\mathbf{A}) \cong C(S(\mathbf{A}))$ and $|A|=|S(\mathbf{A})|$, where $C(S(\mathbf{A}))$ denotes the lattice of all congruences of $S(\mathbf{A})$. However, we have not used the finiteness of \mathbf{A} in proving this statement thus this remains valid for arbitrary commutative automaton as well. Consequently, if \mathbf{A} is a singly generated commutative automaton then \mathbf{A} is subdirectly irreducible if and only if $S(\mathbf{A})$ is subdirectly irreducible. This was also discovered by I. PeÁk in [5].

Strongly connected commutative automata

The previously mentioned fact helped us to prove in [2] that a finite strongly connected commutative automaton is subdirectly irreducible if and only if it is a cyclic automaton of prime-power order. In this section we extend this result to the infinite case.

According to [3, 6] Abelian groups $Z_{p^{k}}$ and $Z_{p^{\infty}}$ - where p is a prime - are called cocyclic. An automaton $\mathbf{A}=(A, X, \delta)$ is cocyclic, if its input-reduced subautomaton is (A, X)-isomorphic ${ }^{1}$ to a strongly connected X-subautomaton of

[^0]an automaton obtained by viewing a cocyclic group as an automaton. (By the input-reduced subautomaton of an automaton $\mathbf{A}=(A, X, \delta)$ we mean an X-subautomaton $\mathrm{B}=(A, Y, \delta)$ where Y is a maximal subset of X with the property that $y_{1} \neq y_{2}(\in Y)$ implies $\delta_{y_{1}} \neq \delta_{y_{2}} . \mathbf{B}$ is unique up to isomorphism.) Observe that a strongly connected commutative automaton \mathbf{A} is cocyclic if and only if $S(\mathbf{A})$. is a cocyclic group. It is known that an Abelian group is subdirectly irreducible if and only if it is a cocyclic group (cf. [3, 6]). Thus, by our previous remarks we obtain the following

Statement. A strongly connected commutative automaton is subdirectly irreducible if and only if it is a cocyclic automaton.

The general case

In this section we shall characterize all subdirectly irreducible commutative automata. First we need some definitions.

Let $\mathbf{A}=(A, X, \delta)$ be an arbitrary commutative automaton and define the binary relation \leqq on A as follows: $a \leqq b$ if and only if there is a word $p \in X^{*}$ satisfying $\delta(a, p)=b$. It is not difficult to see that this relation is a preorder on A and it has the substitution property. Thus the relation \leqq determines a congruence relation $\theta \in C(\mathbf{A}): a \theta b$ if and only if $a \leqq b$ and $b \leqq a$. Furthermore, the system $(A / \theta, \leqq)$ - where $\theta(a) \leqq \theta(b)$ if and only if $a \leqq b$ - becomes a partially ordered set. It is obvious that if $\mathbf{B}=(B, X, \delta)$ is a subautomaton of \mathbf{A} then $B=\cup(\dot{\theta}(b): b \in B)$ and B / θ is an upper ideal in $(A / \theta, \leqq)$. Conversely, if B is an upper ideal in A / θ then $(\cup(\theta(b): \theta(b) \in B), X, \delta)$ is a subautomaton of \mathbf{A}.

The automaton \mathbf{A} is called quasi-nilpotent if the following three conditions are satisfied by \mathbf{A} :
i) $(A / \theta, \leqq)$ has a greatest element $\theta\left(a_{0}\right)$ and $\theta\left(a_{0}\right)=\left\{a_{0}\right\}$ where a_{0} is called the absorbent state,
ii) $A / \theta \backslash \theta\left(a_{0}\right)$ has a greatest element which will always be denoted by $\theta\left(a_{1}\right)$,
iii) $\theta(a)<\delta(\theta(a), x)$ holds for any $a \in A \backslash\left\{a_{0}\right\}$ and $x \in X$ provided that $\delta_{x} \neq \mathrm{id}_{A / \theta}$ holds in the factor automaton A / θ.

Observe that for a quasi-nilpotent automaton $\mathbf{A}=(A, X, \delta)$ the condition $\delta_{x}=\mathrm{id}_{A / \theta}$ is equivalent to the condition that x is a permutation sign of A. Furthermore, if \mathbf{A} is quasi-nilpotent and finite then $\left(A / \theta, X_{N P}, \delta\right)$ is nilpotent.

Let $\mathrm{A}=(A, X, \delta)$ be again an arbitrary commutative automaton and let $P(A / \theta)$ denote the power set of A / θ. Define the mapping $f: P(A / \theta) \rightarrow P(A / \theta)$ by $f(C)=C \cup \max \bar{C}$ where $\max \bar{C}$ denotes the set of all maximal elements in the complement of C. It is easy to verify that f is a monoton mapping, i.e. $f(C) \subseteq$ $\subseteq f\left(C^{\prime}\right)$ provided $C \subseteq C^{\prime}$. Thus, by Tarski's fixpoint theorem, (cf. [7]) f has a least fixpoint $M^{\prime} . M^{\prime}$ is the smallest subset of A / θ such that $\max \bar{M}^{\prime}=\emptyset$. Let $M(\mathbf{A})=U\left(\theta(a): \theta(a) \in M^{\prime}\right)$.

On the other hand it is well-known that the least fixpoint of a monoton mapping on a complete lattice can be obtained as the least upper bound of a chain constructed from the least element of the lattice. Applying this construction to f we
get $M^{\prime}=\bigcup_{\alpha} M_{\alpha}^{\prime}$ - or equivalently. $M^{\prime}=\bigcup_{\alpha<\beta} M_{\alpha}^{\prime}$ - where for an arbitrary ordinal α the set M_{α}^{\prime} is defined by transfinite induction as follows:
i) $M_{0}^{\prime}=\max A / \theta$,
ii) $M_{\alpha}^{\prime}=M_{\alpha_{1}}^{\prime} \cup \max \overline{M_{\alpha_{1}}^{\prime}}$ if $\alpha=\alpha_{1}+1$,
iii) $M_{\alpha}^{\prime}=\bigcup_{\alpha_{1}<\alpha}^{\prime} M_{\alpha_{1}}^{\prime}$ if $\alpha \neq 0$ is a limit ordinal.

It is obvious - by transfinite induction on α - that M_{α}^{\prime} is an upper ideal in ($A / \theta, \leqq$) and M_{α}^{\prime} does not contain ω-chains. (By an ω-chain in a partially ordered set (R, \leqq) we mean a subset $Q=\left\{q_{0}, q_{1}, \ldots\right\} \subseteq R$ such that $q_{0}<q_{1}<\ldots . \omega^{\text {op- }}$ chains are similarly defined just require $q_{0}>q_{1}>\ldots$ instead of the above condition.) As M_{a}^{\prime} is always an upper ideal in $(A / \theta, \leqq)$ the system $M_{a}(\mathbf{A})=(\cup(\theta(a)$: $\left.\left.\theta(a) \in M_{\alpha}^{\prime}\right), X, \delta\right)$ is a subautomaton of \mathbf{A}. Observe that if \mathbf{A} was a quasi-nilpotent automaton then $M_{0}(\mathbf{A})=\left\{a_{0}\right\}$ and $M_{1}(\mathbf{A})=\left\{a_{0}\right\} \cup \theta\left(a_{1}\right)$. If there is no danger of confusion we shall omit \mathbf{A} in $M_{\alpha}(\mathbf{A})$ and $M(\mathbf{A})$.

A quasi-nilpotent automaton $\mathbf{A}=(A, X, \delta)$ will be called separable if for arbitrary states $a \neq b \in A$ such that $\{a, b\} \subseteq M_{1}$ there is a word $p \in X_{N P}^{+}$satisfying both $\{\delta(a, p), \delta(b, p)\} \cap M \neq \emptyset$ and $\delta(a, p) \neq \delta(b, p)$.

We are now ready to state our main result.
Theorem. A commutative automaton $\mathbf{A}=(A, X, \delta)$ is subdirectly irreducible if and only if one of the following three conditions is satisfied by \mathbf{A} :
(a) \mathbf{A} is a cocyclic automaton,
(b) \mathbf{A} is a separable quasi-nilpotent automaton and the X-subautomaton ($A \backslash\left\{a_{0}\right\}, X_{P}, \delta$), i.e. its permutational subautomaton without the absorbent state a_{0}, is the disjoint sum of pairwise isomorphic cocyclic automata,
(c) \mathbf{A} is the disjoint sum of a cocyclic automaton and antomaton of one state.

Proof. In order to prove the necessity of our Theorem assume that \mathbf{A} is subdirectly irreducible. First we shall consider the case when \mathbf{A} is connected and show that ($A / \theta, \leqq$) has a greatest element.

As \mathbf{A} is connected there is at most one maximal element in A / θ. Therefore, it is enough to show that each element of A / θ has an upper bound which is maximal. Assume to the contrary that there is no maximal element in the upper ideal B^{\prime} generated by an element $\theta(a) \in A / \theta$. Let $B=\bigcup\left(\theta(b): \theta(b) \in B^{\prime}\right) .(B, X, \delta)$ is exactly the subautomaton generated by a, i.e. $B=[a]$. Let $b \in B$ be arbitrary. There is a state $b^{\prime} \in B$ such that $\theta(b)<\theta\left(b^{\prime}\right)$, thus $\sigma_{[b]} \neq \Delta_{A}$. We shall show that $\cap\left(\sigma_{[b]}: b \in B\right)=\Delta_{A}$.

Suppose that $c \neq d$ and $c \sigma_{[b]} d$ holds for any $b \in B$. Of course we have $c, d \in B$. There is a state $\bar{b} \in B$ such that $\{c, d\} \Phi[\bar{b}]$. Indeed, if $\theta(c)=\theta(d)$ then we may choose \bar{b} such that $\theta(c)<\theta(\bar{b})$ if $\theta(c)<\theta(d)$ or $\theta(c)$ and $\theta(d)$ are incomparable then let $\bar{b}=d$. We supposed that $c \sigma_{[b]} d$. But this is possible only if $c=d$, a contradiction. Therefore, $\cap\left(\dot{\sigma}_{[b]}: b \in B\right)=\Delta_{A}$.

Let $\theta\left(a_{0}\right)$ denote the greatest element of A / θ. Since $\theta\left(a_{0}\right)$ is maximal in A / θ ($\left.\theta\left(a_{0}\right), X, \delta\right)$ is a subautomaton of \mathbf{A}, furthermore, by the definition of θ, it is strongly connected. On the other hand we know that $\left(\theta\left(a_{0}\right), X, \delta\right)$ has to be a subdirectly irreducible automaton, thus, by the previous statement, it is a cocyclic automaton.

Suppose that $\left|\theta\left(a_{0}\right)\right|>1$. We show that in this case $\theta\left(a_{0}\right)=A$, i.e. A satisfies condition (a) of our theorem.

Assume that $a \in A$ and $a \notin \theta\left(a_{0}\right)$. Because of $\theta(a)<\theta\left(a_{0}\right)$ there is a word $p \in X^{*}$ such that $\delta(a, p)=a_{0}$. Let $\varrho \in C(\mathbf{A})$ be the congruence relation induced by the endomorphism δ_{p}. As $\delta_{p \mid \theta\left(a_{0}\right)}$ is a permutation of $\theta\left(a_{0}\right)$ we have $\left.\varrho\right|_{\theta\left(a_{0}\right)}=$ $=\Delta_{\boldsymbol{\theta}\left(a_{0}\right)}$ and $\varrho \neq \Delta_{A}$. Thus $\varrho \cap \sigma_{\boldsymbol{\theta}\left(a_{0}\right)}=\Delta_{A}$. This, by $\left|\theta\left(a_{0}\right)\right|>1$ yields that \mathbf{A} is subdirectly reducible, which is a contradiction.

Now consider the case $\theta\left(a_{0}\right)=\left\{a_{0}\right\}$ and $A \neq\left\{a_{0}\right\}$. By the same order of ideas as we have shown that A / θ has a greatest element one can easily prove that every element of $A / \theta \backslash \theta\left(a_{0}\right)$ has a maximal upper bound in $A / \theta \backslash \theta\left(a_{0}\right)$. But $A / \theta \backslash \theta\left(a_{0}\right)$. can not have two distinct maximal elements, consequently, there exists a greatest element $\theta\left(a_{1}\right)$ in $A / \theta \backslash \theta\left(a_{0}\right)$. Indeed, if both $\theta(a)$ and $\theta(b)$ are maximal in $A / \theta \backslash \theta\left(a_{0}\right)$ then $\sigma_{[a]} \cap \sigma_{[b]}=\Delta_{A}$ and $\sigma_{[a]}, \sigma_{[b]} \neq \Delta_{A}$ are satisfied, contrary to the subdirect irreducibility of \mathbf{A}.

Let $\theta\left(a_{1}\right)$ be the greatest element of $A / \theta \backslash \theta\left(a_{0}\right)$. Let us divide X into two disjoint sets X_{1} and $X_{2}: X_{1}=\left\{x: x \in X, \delta\left(a_{1}, x\right) \in \theta\left(a_{1}\right)\right\}, X_{2}=\left\{x: x \in X, \delta\left(a_{1}, x\right)=a_{0}\right\}$. Since θ is a congruence relation we have $\delta\left(\theta\left(a_{1}\right), x\right) \subseteq \theta\left(a_{1}\right)$ if $x \in X_{1}$ and $\delta\left(\theta\left(a_{1}\right), x\right)=\theta\left(a_{0}\right)$ if $x \in X_{2}$. Hence $\mathbf{A}_{1}=\left(\theta\left(a_{1}\right), X_{1}, \delta\right)$ is a strongly connected X-subautomaton of \mathbf{A}. We now show that \mathbf{A}_{1} is a cocyclic automaton.

Assume that \mathbf{A}_{1} is subdirectly reducible, i.e. there exist congruence relations $\left\{\varrho_{i} \in C\left(\mathbf{A}_{1}\right): i \in I\right\}$ with $\cap\left(\varrho_{i}: i \in I\right)=\Delta_{\theta\left(a_{1}\right)}$ and $\varrho_{i} \neq \Delta_{\theta\left(a_{1}\right)}(i \in I)$. Define the congruence relations $\Psi_{i} \in C(\mathbf{A})(i \in I)$ by the equivalence $a \Psi_{i} b$ if and only if $a \varrho_{i} b$ or $a=b(a, b \in A)$. It can be immediately seen that $\cap\left(\Psi_{i}: i \in I\right)=\Delta_{A}$ and $\Psi_{i} \neq \Delta_{A}$ ($i \in I$) are satisfied. This contradicts the subdirect irreducibility of A. Therefore, \mathbf{A}_{1} is subdirectly irreducible and thus, by our Statement, it is a cocyclic automaton.

Next we show that δ_{x} is a permutation of A and $\delta(\theta(a), x) \subseteq \theta(a)$ holds for any $x \in X_{1}$ and $a \in A$. Indeed, δ_{x} is injective since otherwise we would have $\sigma_{\theta\left(a_{0}\right) \cup \theta\left(a_{1}\right)} \cap \varrho=\dot{\Delta}_{A}$ and $\sigma_{\theta\left(a_{0}\right) \cup \theta\left(a_{1}\right)}, \varrho \neq \Delta_{A}$ where $\varrho \in C(\mathbf{A})$ is the congruence relation induced by the endomorphism δ_{x}. Now let $a \in A$ be arbitrary and let r^{k} be the order of δ_{x} in $S\left(\mathbf{A}_{1}\right)$. Define $\varrho \subseteq A \times A$ by $c \varrho d$ if and only if there is a nonnegative integer n such that either $\delta\left(c, x^{n r^{k}}\right)=d$ or $\delta\left(d, x^{n r^{k}}\right)=c$. It is obvious that ϱ is reflexive and simmetric and has the substitution property, i.e. it is an invariant tolerance relation of A. By the injectivity of δ_{x}, it can be seen that it is transitive as well. Thus $\varrho \in C(\mathbf{A})$. It is not difficult to see that $\varrho \cap \sigma_{\theta\left(a_{0}\right) \cup \theta\left(a_{1}\right)}=\Delta_{A}$ while $\sigma_{\theta\left(a_{0}\right) \cup \boldsymbol{\theta}\left(a_{1}\right)} \neq \Delta_{A}$. On the other hand $\varrho \neq \Delta_{A}$ holds if $a \notin\left\{\delta_{x^{m}}(a): m \geqq 1\right\}$. Therefore, for every $x \in X_{1}$ and $a \in A$ there is an integer $n \geqq 1$ such that $a=\delta\left(a, x^{n}\right)$. Consequently, $\delta(\theta(a), x) \subseteq \theta(a)$ and $x^{n}=\lambda$ is an identity in [a] implying that δ_{x} is a permutation of A.

As $X_{1} \subseteq X_{P}$ and $X_{2} \subseteq X_{N P}$ we get $X_{1}=X_{P}$ and $X_{2} \doteq X_{N P}$. We have shown that if $x \in X_{P}$ then $\delta(\bar{\theta}(a), x) \subseteq \theta(a)$ holds for each $a \in A$. Conversely, if $\delta(\theta(a), x) \subseteq \theta(a)$ holds for some $a \in A \backslash \theta\left(a_{0}\right)$ then also $\delta\left(\theta\left(a_{1}\right), x\right) \subseteq \theta\left(a_{1}\right)$ i.e. $x \in X_{P}$. This can be seen immediately as follows. As $\delta(\theta(a), x)=\theta(a)$ holds in \mathbf{A} / θ we obtain that $x=\lambda$ is an identity in $[\theta(a)]$. But $\theta\left(a_{1}\right) \in[\theta(a)]$, thus, $\delta\left(\theta\left(\left(a_{1}\right), x\right)=\theta\left(a_{1}\right)\right.$ in \mathbf{A} / θ, i.e. $\delta\left(\theta\left(a_{1}\right), x\right) \subsetneq \theta\left(a_{1}\right)$ in \mathbf{A}.

So far we have proved that if \mathbf{A} is subdirectly irreducible, connected, moreover, $\theta\left(a_{0}\right)=\left\{a_{0}\right\}$ and $A \neq \theta\left(a_{0}\right)$ then it is a quasi-nilpotent automaton. Next we show that in this case $\left(\theta(a), X_{P}, \delta\right) \cong\left(\theta\left(a_{1}\right), X_{P}, \delta\right)$ for any $a \in A \backslash \theta\left(a_{0}\right)$, hence the per-
mutational subautomaton of \mathbf{A} without the absorbent state is the disjoint sum of pairwise isomorphic cocyclic automata.

Indeed, if $a \in A \backslash \theta\left(a_{0}\right)$ then there exists a word $p \in X^{*}$ such that $\delta(a, p)=a_{1}$. By commutativity, the mapping $\delta_{p \mid \theta(a)}: \theta(a) \rightarrow \theta\left(a_{1}\right)$ is a homomorphism of $\left(\theta(a), X_{P}, \delta\right)$ into $\left(\theta\left(a_{1}\right), X_{P}, \delta\right)$. As $\left(\theta\left(a_{1}\right), X_{p}, \delta\right)$ is strongly connected $\delta_{p \mid \theta(a)}$ is an epimorphism. Now we shall show that $\delta_{p \mid \theta(a)}$ is an isomorphism. Assume that $b, c \in \theta(a)$ satisfy the condition $\delta(b, p)=\delta(c, p)=d$. Since $\left(\theta(a), X_{P}, \delta\right)$ is strongly connected there is a word $q \in X_{P}^{*}$ such that $\delta(b, q)=c$. By commutativity, $\delta(d, q)=d$, thus, $q=\lambda$ is an identity in $\left(\theta\left(a_{1}\right), X_{P}, \delta\right)$. In other words $\delta_{q \mid \theta\left(a_{1}\right)}=$ $=\operatorname{id}_{\theta\left(a_{1}\right)}$. Let us define the relation $\varrho \in C(\mathbf{A})$ by $u \varrho v$ if and only if there is an integer $n \geqq 0$ such that either $\delta\left(u, q^{n}\right)=v$ or $\delta\left(v, q^{n}\right)=u$. Obviously, $\varrho \cap \sigma_{\theta\left(a_{0}\right) \cup \theta\left(a_{1}\right)}=\Lambda_{A}$, and hence, by the subdirect irreducibility of \mathbf{A}, from this it follows that $\varrho=\Delta_{A}$. Thus $b=c$ and $\delta_{p \mid \theta(a)}$ is an isomorphism.

It remained to prove that \mathbf{A} is separable. Consider the set Z of all pairs (a, b) $(a \neq b \in A)$ such that $\{a, b\} \subseteq \theta\left(a_{0}\right) \cup \theta\left(a_{1}\right)$ and for every word $p \in X_{N P}^{+}$if $\delta(a, p) \in M$ then $\delta(a, p)=\delta(b, p)$. We shall show that if $(a, b) \in Z$ and $x \in X_{P}$ then also $(\delta(a, x), \delta(b, x)) \in Z$. Assume to the contrary $(\delta(a, x), \delta(b, x)) \notin Z$. There are two cases. Either there is a word $p \in X_{N P}^{+}$with $\delta(\delta(a, x), p) \in M$ and $\delta(\delta(b, x), p) \notin M$ or $\delta(a, x p), \delta(b, x p) \in M$ and $\delta(a, x p) \neq \delta(b, x p)$. In the first case, by commutativity and the facts $\delta_{x}(M) \subseteq M$ and $\delta_{x}(\bar{M}) \subseteq \bar{M}$ it follows that $\delta(a, p) \in M$ 'and $\delta(b, p) \notin M$. This contradicts $(a, b) \in Z$. One can get a similar contradiction in the other case, too.

Suppose now that \mathbf{A} is not separable, i.e. $Z \neq \emptyset$. Let $(a, b) \in Z$ and denote by $\varrho \in C(\mathbf{A})$ the congruence relation generated by the pair (a, b). By Malcev's lemma (cf. Theorem 10.3 in [4]), ϱ is the transitive closure of the relation Ψ given by $c \Psi d$ if and only if there is a word $p \in X^{*}$ with $\{c, d\} \subseteq\{\delta(a, p), \delta(b, p)\}$ or $c=d$. As $(a, b) \in Z$ and $(\delta(a, p), \delta(b, p)) \in Z$ holds for every $p \in X_{P}^{*}$ it is not difficult to see that if $\theta(u)>\theta(a)$ and $u \Psi v$ are valid for some states $u, v \in M$ then $u=v$. Consequently, $\varrho_{\{(a a \backslash \backslash(a)) \cap M}=\Delta_{([a] \backslash \theta(a)) \cap M}$. If $a \in \theta\left(a_{0}\right) \cup \theta\left(a_{1}\right)$ then $\delta(a, p)=a_{0}$ holds for each $p \in X_{N P}^{+}$. Thus $\delta(b, p)=a_{0}$ is also valid for each $p \in X_{N P}^{+}$. But this is possible only if $b \in \theta\left(a_{0}\right) \cup \theta\left(a_{1}\right)$ contradicting $\{a, b\} \subseteq \subseteq \theta\left(a_{0}\right) \cup \theta\left(a_{1}\right)$. Therefore $\theta(a)<\theta\left(a_{1}\right)$ and hence $\varrho_{\mid \theta\left(a_{0}\right) \cup \theta\left(a_{1}\right)}=\Delta_{\theta\left(a_{0}\right) \cup \theta\left(a_{1}\right)}$. Thus $\varrho \cap \sigma_{\theta\left(a_{0}\right) \cup \theta\left(a_{1}\right)}=A_{A}$, a contradiction.

We have already proved that if \mathbf{A} is a subdirectly irreducible connected commutative automaton then \mathbf{A} satisfies condition (a) or (b) of our Theorem. Assume now that \mathbf{A} is not connected. Then \mathbf{A} is the disjoint sum of its connected subautomata $\mathbf{B}_{i}=\left(B_{i}, X, \delta\right)(i \in I,|I| \geqq 2)$. We have $\cap\left(\sigma_{A \backslash B_{i}}: i \in I\right)=\Delta_{A}$ while if $|I| \geqq 3$ or $|I|=2$ and $\left|B_{i}\right| \geqq 2(i \in I)$ then $\sigma_{A \backslash B_{i}} \neq \Delta_{A}(i \in I)$. Therefore, $|I|=2$ - say $I=\{1,2\}$ - and $\left|B_{2}\right|=1$. As \mathbf{B}_{1} has to be a subdirectly irreducible automaton and it is connected, one can show that \mathbf{B}_{1} is a cocyclic automaton, i.e. A satisfies condition (c) of our Theorem: This ends the proof of necessity.

Conversely, by our Statement, it is obvious that if \mathbf{A} contents condition (a) or (c) of the Theorem then \mathbf{A} is subdirectly irreducible. Hence assume that condition-(b) is satisfied by \mathbf{A}.

We shall show that $\varrho_{\| \theta\left(a_{0}\right) \cup \theta\left(a_{1}\right)} \neq \Delta_{\theta\left(a_{0}\right) \cup \theta\left(a_{1}\right)}$, holds for each congruence relation $\varrho \in C(\mathbf{A})$ generated by two distinct states $\dot{a}, b \in A$.

This is quite obvious if $a, b \in \theta\left(a_{0}\right) \cup \theta\left(a_{1}\right)$. Hence suppose that $\{a, b\} \nsubseteq$ $\Phi\left(a_{0}\right) \cup \theta\left(a_{1}\right)$ and set $Z=\{\varrho(c): c \in M,|\varrho(c)|>1\}$. Since \mathbf{A}. is separable there is
a word $p \in X_{N P}^{+}$such that - say - $\delta(a, p) \in M$ and $\delta(a, p) \neq \delta(b, p)$. Thus $Z \neq \emptyset$. Since M / θ does not contain ω-chains there is a state $c_{0} \in M$. such that $\varrho\left(c_{0}\right) \in Z$ and $\theta\left(c_{0}\right) \nleftarrow \theta(c)$ holds for any $\varrho(c) \in Z$.

Let us distinguish three cases and let $d_{0} \in \varrho\left(c_{0}\right), d_{0} \neq c_{0}$. First assume that $c_{0}=a_{0}$. If $d_{0} \in \theta\left(a_{1}\right)$ we are ready. If $d_{0} \notin \theta\left(a_{1}\right)$ then there is a word $p \in X_{N P}^{+}$with $\delta\left(d_{0}, p\right) \in \theta\left(a_{1}\right)$. At the same time $\delta\left(a_{0}, p\right)=a_{0}$ thus we get $a_{0} \varrho \delta\left(d_{0}, p\right)$, i.e. $\varrho_{\theta\left(a_{0}\right) \cup \theta\left(a_{1}\right)} \neq \Delta_{\theta\left(a_{0}\right) \cup \theta\left(a_{1}\right)}$. Secondly assume that $c_{0} \in \theta\left(a_{1}\right)$. If $d_{0} \in \theta\left(a_{1}\right)$ then we are again ready. If $\theta\left(d_{0}\right)<\theta\left(a_{1}\right)$ then there is word $p \in X_{N P}^{+}$such that $\delta\left(d_{0}, p\right) \in \theta\left(a_{1}\right)$. But $\delta\left(c_{0}, p\right)=a_{0}$ thus, $a_{0} \varrho \delta\left(d_{0}, p\right)$. Finally, let $c_{0} \notin \theta\left(a_{0}\right) \cup \theta\left(a_{1}\right)$. By separability, there is a word $p \in X_{N P}^{+}$with $\delta\left(c_{0}, p\right) \neq \delta\left(d_{0}, p\right)$. But $\delta\left(c_{0}, p\right) \in M$ because (M, X, δ) is a subautomaton of \mathbf{A} and $\theta\left(\delta\left(c_{0}, p\right)\right)>\theta\left(c_{0}\right)$ since \mathbf{A} is quasi-nilpotent. Consequently, $\left(\delta\left(c_{0}, p\right), \delta\left(d_{0}, p\right)\right) \in Z$ contradicting the maximality of $\theta\left(c_{0}\right)$.

We have proved that every congruence relation $\varrho \in C(\mathbf{A})$ generated by two distinct elements of \mathbf{A} satisfies $\varrho_{\theta \theta\left(a_{0}\right) \cup\left(a_{1}\right)} \neq \Delta_{\theta\left(a_{0}\right) \cup \theta\left(a_{1}\right)}$. Therefore, \mathbf{A} is subdirectly irreducible if and only if $\left(\theta\left(a_{0}\right) \cup \theta\left(a_{1}\right), X, \delta\right)$ is subdirectly irreducible. On the other hand $\left(\theta\left(a_{0}\right) \cup \theta\left(a_{1}\right), X, \delta\right)$ is subdirectly irreducible. This ends the proof of the Theorem.

Commutative automata with a finite set of input signs

In this section we shall point out that there is a somewhat simpler characterization of subdirect irreducibility in case of commutative automata with a finite set of input signs. Actually, we prove

Corollary 1. Let $\mathbf{A}=(A, X, \delta)$ be a commutative automaton with finite X. Then \mathbf{A} is subdirectly irreducible if and only if one of the following three conditions. are satisfied by \mathbf{A} :
(a) \mathbf{A} is a cyclic automaton of prime-power order,
(b) \mathbf{A} is a quasi-nilpotent automaton and its permutational subautomaton without the absorbent state is the disjoint sum of pairwise isomorphic cyclic automaton of prime-power order, furthermore, for any $a \neq b \in A$ such that $\{a, b\} \Phi$ $\Phi \theta\left(a_{0}\right) \cup \theta\left(a_{1}\right)$ there is a sign $x \in X_{N P}$ with $\delta(a, x) \neq \delta(b, x)$,
(c) \mathbf{A} is the disjoint sum of a cyclic automaton of prime-power order and an automaton of one state.

Proof. The proof follows by our Theorem and the fact that if \mathbf{A} is quasi-nilpotent then we have $A=M(\mathbf{A})$. This latter equality can be seen by showing that if \mathbf{A} is quasi-nilpotent then \mathbf{A} / θ can not contain an ω-chain.

Assume to the contrary \mathbf{A} is quasi-nilpotent and $\theta\left(b_{0}\right)<\theta\left(b_{1}\right)<\ldots$ is an ω chain in $(A / \theta, \leqq)$. Let $X=\left\{x_{1}, \ldots, x_{r}\right\}$. As $\theta\left(a_{1}\right)$ is the greatest element of $A / \theta \backslash \theta\left(a_{0}\right)$ there is a word $q_{n}=x_{1}^{\alpha_{1}^{(n)}} \ldots x_{r}^{\alpha_{r}^{(n)}}$ with $\delta\left(b_{n}, q_{n}\right)=a_{1}$ for any $n \geqq 0$. Let $\alpha^{(n)}$ denote the vector consisting of the exponents occuring in q_{n}, i.e. $\alpha^{(n)}=$ $=\left(\alpha_{1}^{(n)}, \ldots, \alpha_{r}^{(n)}\right)(n \geqq 0)$. By induction on $t(t=0, \ldots, r)$ we show that there is an infinite sequence of indices $I_{t} \subseteq\{0,1, \ldots\}$ such that $\alpha_{s}^{(i)} \leqq \alpha_{s}^{(j)}$ holds if $s \leqq t$ and $i<j \in I_{t}$. If $t=0$ then let $I_{t}=\{\overline{0}, 1, \ldots\}$. Assume that we have already constructed the set $I_{t-1}(t \geqq 1)$ and consider $\Gamma=\left\{\left(\alpha_{t}^{(i)}, \ldots ; \alpha_{r}^{(i)}\right): i \in I_{t-1}\right\}$. Supposing Γ is finite we obtain integers $i<j\left(i, j \in I_{t-1}\right)$ with $\left(\alpha_{t}^{(i)}, \ldots, \alpha_{r}^{(i)}\right)=\left(\alpha_{l}^{(j)}, \ldots, \alpha_{r}^{(j)}\right)$. . Let $w=x_{1}^{x_{1}^{(1)}-a_{1}^{(i)} \ldots x_{t-1}^{(j)}\left(a_{t}^{(i)}\right)}$. By commutativity, $\delta\left(b_{i}, q_{i}\right)=\delta\left(b_{j}, q_{j}\right)=\delta\left(b_{j}, w q_{i}\right)=a_{1}$.

On the other hand, by $\theta\left(b_{i}\right)<\theta\left(b_{j}\right)$, there is a word $p \in X_{N P} X^{*}$ with $\delta\left(\theta\left(b_{i}\right), p\right)=$ $=\theta\left(b_{j}\right)$. Or even, we may choose p in such a way that $\delta\left(b_{i}, p\right)=b_{j}$. Thus $a_{0}=$ $=\delta\left(\delta\left(b_{i}, q_{i}\right), p\right)=\delta\left(\delta\left(b_{i}, p\right) q_{i}\right)=\delta\left(b_{j}, q_{i}\right) \leqq \delta\left(b_{j}, q_{i} w\right)=\delta\left(b_{j}, w q_{i}\right)=a_{1}$, i.e. $\quad a_{0} \leqq a_{1}$ yielding a contradiction. We have shown that Γ is infinite from which the existence of I_{t} follows.

Now let $I=I_{r}$ and $i<j(i, j \in I)$. Applying the same sequence of ideas for the corresponding states b_{i} and b_{j} one can get a similar contradiction: This ends the proof of Corollary 1.

It is interesting to note that if $\mathbf{A}=(A, X, \delta)$ is a subdirectly irreducible commutative automaton and X is finite then $A=M_{\omega}(\mathrm{A})$. This can be seen as follows. We have proved that $A=M$ and one can prove in a similar way that there is no commutative automaton B with a finite set of input signs which is generated by one state such that ($B / \theta, \leqq$) contains an ω^{pp}-chain. Now, to see that $A=M_{\omega}(\mathbf{A})$ assume to the contrary $\max \overline{M_{\omega}^{\prime}} \neq \emptyset$ and let $\theta(a) \in \max \overline{M_{\omega}^{\prime}}$. Set $Z=\{\theta(b): \theta(a)<$ $<\theta(b)\}$ and let Z_{0} consist of all minimal elements of Z (with respect to the ordering \leqq). Of course $Z \subseteq M_{\mathfrak{c}}^{\prime}$. For every $\theta(b) \in Z_{0}$ there exists a sign $x \in X$ with $\delta(a, x) \in \theta(b)$. Thus Z_{0} is finite, $Z_{0}=\left\{\theta\left(b_{1}\right), \ldots, \theta\left(b_{n}\right)\right\}$. On the other hand Z can not contain $\omega^{\text {op }}$-chains since otherwise $[a] / \theta$ would contain $\omega^{\text {op }}$-chains. Thus, together with the fact that M_{ω}^{\prime} is an upper ideal, $Z=\left\{\theta(b):(\exists i)\left(i \in\{1, \ldots, n\}, \theta\left(b_{i}\right)<\theta(b)\right)\right\}$. As $M_{\omega}^{\prime}=\bigcup_{k<\infty} M_{k}^{\prime}$, there corresponds an integer k_{i} to each $i \in\{1, \ldots, n\}$ such that $\theta\left(b_{i}\right) \in M_{k_{i}}^{\prime}$. Let $k=\max _{i=1, \ldots, n} k_{i}$. Obviously, $Z_{0} \subseteq M_{k}^{\prime}$ and, since M_{k}^{\prime} is an upper ideal as well, $Z \subseteq M_{k}^{\prime}$. But in this case if $\theta(b)$ is such that $\theta(a)<\theta(b)$ then $\theta(b) \in M_{k}^{\prime}$, therefore, $\theta(a)$ is maximal in $\overline{M_{k}^{\prime}}$, too. This results that $\theta(a) \in M_{k+1}^{\prime} \subseteq M_{\omega}^{\prime}$ contradicting our assumption $\theta(a) \in \overline{M_{\infty}^{\prime}}$.

Also observe that if $\mathbf{A}=(A, X, \delta)$ is a subdirectly irreducible commutative automaton with finite X and if \mathbf{A} is generated by one state then A is finite, too. Indeed, we know that $A=M_{\omega}$ holds, thus, $a_{0} \in M_{\omega}$ where a_{0} denotes an arbitrary generator of \mathbf{A}. But $M_{\omega}=\bigcup_{n<\infty} M_{n}$, therefore, there is an integer n such that $a_{0} \in M_{n}$ and hence, $A=M_{n}$. On the other hand the finiteness of X implies the finiteness of M_{n}.

The following simple example shows that the equality $A=M(\mathbf{A})$ does not hold in general for arbitrary subdirectly irreducible commutative automata. Indeed, let $A=\left\{a_{i}, b_{i}: i \geqq 0\right\}, X=\{x\} \cup\left\{y_{i}: i \geqq 0\right\}$ and let $\delta: A \times X \rightarrow A$ be defined by:

$$
\begin{align*}
\delta\left(a_{i}, x\right) & =\left\{\begin{array}{lll}
a_{i-1}, & \text { if } i>0 \\
a_{0}, & \text { if } i=0,
\end{array}\right. \tag{a}\\
\delta\left(a_{i}, y_{j}\right) & =a_{0} \quad(i, j \geqq 0), \\
\delta\left(b_{i}, x\right) & =b_{i+1}, \tag{c}\\
\dot{\delta}\left(b_{i}, y_{j}\right) & =\left\{\begin{aligned}
& a_{j-i}, \text { if } j \geqq i \\
& a_{0}, \text { if } \\
& j<i .
\end{aligned}\right. \tag{d}
\end{align*}
$$

(b)

It can be seen by an easy computation that $\mathbf{A}=(A, X, \delta)$ is a subdirectly irreducible commutative automaton with $M(\mathbf{A})=\left\{a_{0}, a_{1}, \ldots\right\}$.

Subdirectly irreducible commutative semigroups

Our Theorem makes possible for us to describe all subdirectly irreducible commutative semigroups.

First we note that if S is a commutative semigroup which has no identity then S is subdirectly irreducible if and only if S^{1} is subdirectly irreducible where S^{1} is S equipped with a new element 1 , the identity of S^{1}. The sufficiency of this statement is obvious and does not require the commutativity of S. Conversely, assume that S^{1} is subdirectly reducible, i.e. there are congruence relations $\varrho_{i} \neq \Delta_{S^{1}}(i \in I)$ of S^{1} such that $\cap\left(\varrho_{i} ; i \in I\right)=\Delta_{S^{1}}$. We shall show that $\left.\varrho_{i}\right|_{S} \neq \Delta_{s}$ is satisfied for each $i \in I$. Suppose that $\left.\varrho_{i}\right|_{s}=\Delta_{s}$. There is exactly one element $s \in S$ with $s \varrho_{i} 1$. Let $s^{\prime} \in S$ be arbitrary. As ϱ_{i} is a congruence relation of $S^{1} s s^{\prime} \varrho_{i} s^{\prime}$. As S is closed under composition and $\varrho_{i \mid S}=\Delta_{s}$ from this we obtain $s s^{\prime}=s^{\prime}$. This means that s is a left identity, and by commutativity, an identity. This contradicts our assumption on S.

In the next corollary we use the notations in accordance with [1]. Observe that the congruence relations θ of the previous section corresponds to the Green's congruence relations \mathscr{J} of commutative semigroups.

Corollary 2. A commutative semigroup S is subdirectly irreducible if and only if one of the following conditions is satisfied by S :
(i) S is a cocyclic group,
(ii) S is a commutative monoid with zero element and
(a) there is a least 0 -minimal ideal R in S,
(b) J_{1} is a cocyclic group, $\left(J_{s}, J_{1} \mid J_{s}\right) \cong J_{1}$ under the correspondence $\alpha \rightarrow \alpha \mid J_{s}$ $\left(\alpha \in J_{1}\right)$ if $s \neq 0$ furthermore, $J_{s} \neq J_{s} J_{s^{\prime}}$, for arbitrary $s \in S \backslash\{0\}$ and $s^{\prime} \in S \backslash J_{1}$,
(c) for any $\left\{s_{1}, s_{2}\right\} \Phi R\left(s_{1} \neq s_{2}\right)$ there is an element $s \in S \backslash J_{1}$ with $\left\{s_{1} s, s_{2} s\right\} \cap$ $\cap M \neq \emptyset$ and $s_{1} s \neq s_{2} s$ where M denotes the least ideal in S such that \bar{M} / \mathscr{J} does not contain maximal elements with respect to the ordering $J_{s} \leqq J_{s^{\prime}}$ if and only if $s \mid s^{\prime}\left(s, s^{\prime} \in S\right)$,
(iii) S does not contain identity element and S^{1} satisfies condition (ii) with $J_{1}=\{1\}$.

Every finitely generated subdirectly irreducible commutative semigroup is finite.

Proof. By our Theorem, Theorem 1 in [2], the representation theorem of semigroups and our previous remarks.

This Corollary implies Corollaries IV.7.4. and IV.7.5. in [6].

References

[1] Clifford, A. H. and B. B. Preston, The algebraic theory of semigroups, Amer. Math. Soc. Surveys 7, Providence, Rhode Island, 1961.
[2] Ésik, Z. and B. Imreh, Remarks on finite commutative automata, Acta Cybernet., v. 5. 1981, pp, 143-146.
[3] Fuchs, L., Infinite abelian groups, Academic Press, New York, London, 1970.
[4] Gratzer, G., Universal algebra, Van Nostrand, Princeton, N. J., 1968.
[5] Peak, I., Автоматы и полугрупnb, II., Acta Sci. Math. (Szeged), v. 26, 1965, pp. 49-54.
[6] Petrich, M., Lectures in semigroups, Akademie Verlag, Berlin, 1977.
[7] Tarski, A., A lattice-theoretic fixpoint theorem and its applications, Pacific J. Math., v. 5, 1955, pp. 285-309.
[8] Wenzel, G. H., Subdirect irreducibility and equational compactness in unary algebras ($A ; f$), Arch. Math. (Basel), v. 21, 1970, pp. 256-263.
[9] Yoeli, M., Subdirectly irreducible unary algebras, Amer. Math. Monthly, v. 74, 1967, pp. 957-960.
(Received June 19, 1980)

[^0]: ${ }^{1}$ An automaton $\mathbf{A}=(A, X, \delta)$ is said to be (A, X)-isomorphic to an automaton $\mathrm{B}=\left(B, Y, \delta^{\prime}\right)$ if there exist bijections $\mu: A \rightarrow B$ and $v: X \rightarrow Y$ such that $\mu(\delta(a, x))=\delta^{\prime}(\mu(a), v(x))$ for any $a \in A$ and $x \in X$.

