
Iterated grammars

B y L . CSIRMAZ

1. Notations and definitions

1.1. Let I be any, finite or infinite, set. S* denotes the set of finite se-
quences of elements of I including the empty sequence which is denoted by e. I +

stands for I * — {e}. If then |a| is the length of the sequence, in particular
|e|=0. The elements of I * are called words. The mirror image of a word a is
denoted by a - 1 .

If I is finite we refer it as an alphabet. The subsets of £* are the languages
over I .

If I does not contain the comma symbol, we define Is as the set of sequences
of elements of I separated by commas. For example, if 1= {ab, a, b} then
"a,b,ab" and "ab" are elements of Xs. Clearly r n i s = I U { s } . If a€2?
then ||a|| denotes the length of the sequence, i.e. the number of commas in a plus
one. For example ||a, b, ab\\ =3 , \\ab\\ = 1, ||e|| = 0 but \a,b,ab\=6.

1.2. A grammar or metagrammar is a 4-tuple tS={N, T, P, S) where N and
T are disjoint finite sets of nonterminal and terminal symbols, respectively, P is
a finite set of production rules of the form a—P where adN+, f}£(N{J T)*, and
S£N is the starting symbol, i f (^) denotes the language generated by 'S.

Grammars are.,classified by the structure of their production rules as it can
be seen in Table 1 below. The language LczT* is of type x (=0 , 1, 2, 3) if there
is a grammar of type r generating L. The family of languages of type T is denoted
by xCO-

is of type if a ->- P £P implies

0 (phrase structure) anyway

1 (context sensivite) 5 does not occur in /? and either |a| s \P\ or a =S and fi '—e

2 (context free) |a| = l

3 (regular) |a| = 1 and either \[t\ ^ 1 or /? is of the form in where t£T and n£N

Table 1.

44 L. Csirmaz

1.3. An iterated grammar is a 5-tuple J={Z, N, T,P, S) where Z and T
are disjoint finite sets none of them containing the symbols =>• and , (double arrow
and comma). NQZ+ is the set of nonterminal symbols, T is the set of terminal
symbols. P is the set of production rules of the form a=>/? where a£Ns— {e},
Pd(N{JT)s and S£N is the starting symbol. The sets N and P may be infinite. The
language ££(J) generated by the iterated grammar J is a subset of T* the elements
of which can be derived from S in the usual way using finitely many production
rules only. During the derivation the commas serve as separators between the
symbols but they are abandoned at the end.

Iterated grammars are classified also as Table 2 shows.

J is of type if a =» implies

0 anyway

1 S does not occur in P and either | |a| | s ||/?|| or a = S and /? = S

2 llall = 1

3 ||a|| = l and either | | /? | | s l or is of the form /, w where / g r a n d W£N~

Table 2.

The iterated grammar J = (Z, N2,T2, P2, S2) is said to be generated by the
metagrammar <S={N1, Tx, Px, Sx) if

Z = Tx-T2 ?t 0, N2 = Z+,- r 2 g r i ; P2= <£(<§).

An iterated grammar is of type (a, T) if it is of type T and there is a metagrammar
of type <r which generates it. A language L is of type (cr, T) if there is an iterated
grammar of type (a, T) generating L. The family of languages of type (a, T) is de-
noted by /(<7, T).

2. The theorems

Because every finite language is regular, and y(t)Qy_(z') if i g t ' we have
the following

PROPOSITION. If a ¡ s o ' a n d T ^ T ' t hen

Z(R) G Z(3, T) G Z(CR, T) G x(< T') I *(0).

Theorem 1. / (3, T)=/(T) for T=0, 1, 2, 3.

Proof. For T=0 the Proposition implies the statement. For the other cases
first we need a

LEMMA. Let L g (TU {A})* be a regular language, a (j r . Then there is a finite
set R, a regular language KQR* and regular languages K b ^ T * for every b£R
such that

L = {w1aw2a... aw„\ w^K^ and bxb2...bn£K}.

Iterated grammars 45

REMARK. The converse of the Lemma is evidently true, i.e. if K and the Kb's
are regular languages then L is regular, too.

Proof of the lemma. It is well-known (see, e.g., [1]) that L — {e} can be generated
by a regular grammar <^={N^T\J{a}, P, S) where P consists of rules of the
form A-+x and A-xB only (A, B£N, x£ TU {a}). Now define P0, Q0, QtQP
as follows.

P0 = {x£P: a = A - aB for some A, B£N},

P± = {a£P: a = A - xB for some A\ B£N, x£T),

Qo = {«€7*: a = A — a for some

Q1 = {<x£P: a = A - x for some A£N, x g r } .

Obviously, / , = P o U / , i U 0 o U 0 1 . Let s and / be two new symbols (for start
and finish) and define

R ={<«,/*>: a, P£P0UQ0}U {(s, /?): jSePoU0o}U {<«,/>: «6/»0Ue0}U {<s, />}•

The languages for (a, P)£R will be the "cuts" starting after symbol a generated
by the rule a and ending before the next symbol a generated by the rule fi. We need
two more definitions. For A£N let

f {A -» e} if A — aB£P0 for some B£N or A - a£Q0,
Po(A)={0 otherwise,

PJA) = P1U{B-»x: B ^xACPj.

Now we are ready to define the languages for all (a, /})£ R. If a £ g 0 , P£P0UQ0
then let K<Xifi> = &, K<Xif> = {s}. If <x = A^aB£P0 and either P = C^aD£P0 or
fi=C^a£Q0 then K^ ^ is the language generated by the grammar (N, T, Pa(B){J
UPi(C), B), K(SiP) is the language generated by (N, T, Pa(S)U P1(C), S) and KM)
is generated by <N, T, P 0 (5) U / ' 1 U 2 1 , Finally, JsT(s,/> is the language generated
by <N, T, P1UQ1, S) plus the empty word if it was also in L.

What remained is to define the language K. It is the one which is generated
by the grammar

(P0UQ0U{s,f},R,PK,s)
where

<oe, /?>/?: (a, (1)£R, p ^ f and * 0}U

U {a - (a, / > : (a, f)£R and K(7<f> * 0}.

It is easy to check that R, K and the Kb's satisfy the requirements. •

Now we return to the proof of the Theorem 1. Let P be the regular set of pro-
duction rules of the iterated grammar N, T, P, S). In this case
P g (I U T U (=>}U { , })* and neither the double arrow nor the comma is an
element of EUT. The double arrow must occur exactly once in every production
rule, so, by the Lemma, there are regular languages Pf and Pf over XUT\J { , }
such that P is the finite union of languages

{wx =>• w2: w^Pj, w2£Pf}.

46 L. Csirmaz

Applying the Lemma to the languages Pf and Pf with the comma as the special
terminal symbol, we get languages Kf and Kf over disjoint alphabets Rj and Rf
for each j, and finitely many regular languages Kt over IUT indexed by the ele-
ments of / = g (RjURf). To be more precise the K?s are subsets of I + U T .

j
For define the relation w x s w2 as w1£Ki~-*w2£Ki for all id I.

It is clear that this is an equivalence relation and there are finitely many equivalence
classes (no more than 2k where k is the cardinality o f /) . The definition of equivalence
means that if a £ P is a production rule, is a nonterminal symbol in it and
WJEWJ then putting w2 in places of the nonterminal occurences of vvt in a the re-
sulting word is in P, too. Therefore every derivation can be rewritten so that it
contains at most one element from each equivalence class, i.e. only finitely many
different nonterminal symbols are used. It means that the languages A", can be
assumed to be finite, or, equivalently, to have one element. This element will be
denoted by n(i).

We now have finitely many regular languages Kf and Kf over the finite set I,
and a function I—(NUT) such that range (/¿). The set of production rules
was reduced to the finite union of sets

{wi=>wt: w^Pj, w ^ P f)
where

PLi = M'i), Kh), •••> fi(i„)- hh-hiKj),

Pf = PO'i). •••> M'n): hU.-.i^Kf).
Our next aim is to show that the Kf's are finite languages. If- not, there are arbitrary
long elements in K f , i.e. fixing some w2£Pf there is an x£Kf such that |-x|>||w2|| +1-
Let w ^ P f be the word belonging to x. Then | | iv j = |x| >||vv2|| + 1 which contradicts
the assumption that r) with t > 0 .

If in the languages Kf we replace /£ / by pi(i) if p(i)dT then the following set
of production rules

2 = UK-vv2: w^Kj, w2£Kf} j
generates the same language as P does. Moreover if all of the rules of P are of
type T, then the same is true for Q.

Now we are able to give a finite grammar which generates the same language
as J does. It is enough to start from Q and we may assume that TQI and I—T
is the set of nonterminal symbols of Q.

Case t = 3 . The same argument as above shows that the languages Kf must
be finite. Therefore Q is finite and obviously of type 3.

Case T=2 . Because Kf is a regular language it is generated by some type 3
grammar (Sj={Nj,I,Pj, Sj> where Nj and I are disjoint sets, SJ^NJ and the
JV/s are disjoint for different j's. The grammar Q is of type 2 so w£Kf implies
>v£/. Now take the following set of rules:

Qj = {w - Sj: w£Kj}{JPj.

Obviously, U Qj is finite and of type 2 and S£(Q)=J5?((j Qj)-J j
Case T=1. Kf is finite, so we may assume that it contains only one word,

w{, and let 1^1=«^. The lengths of the words of Kf are at least n}, except if w{

Iterated grammars 4T

is the starting symbol, then Kf may contain the empty word, too. If we fix the first
tij symbols of the right hand side of a rule then the remaining part forms a regular
language, which may be empty. There are only finitely many words of length rij,
therefore we may drop them into different sets, i.e. we arrive at

2 = U M - w£Kf}UQ* j

where = Kf is regular, and Q* is either empty or contains the rule <S—e
only. The method of Case 2 now gives immediately a finite language of type 3
generating only a little care should be taken of the empty word in K f . •

REMARK. A close examination of the proof shows that given some regular
metagrammar 'S and an iterated grammar J- generated by <&, there is an effective
procedure which gives from ^ and J a grammar ^C for which

Theorem 2 . / (2 , 3)=x(0).
Proof. By the Proposition, it is enough to prove that '¿(2, 3)5x(0) . Let

^ = (N, T, P, S) be a type 0 grammar and assume that the comma and the double
arrow are hot in NUT. We give the iterated grammar of type (2, 3) simply by list-
ing its production rules, which form evidently a context free language, or, what
is more, a deterministic one.

Choose a new symbol f for each i£Tand let T={i: t£T). Change all terminals
in the production rules to their counterpart, let P be the resulting set. Let Z=N(J T
and R a new symbol not in Z or T. The desired iterated grammar is

J = {I\J{R},(I\J{R})+,T,Q, S)
where Q consists ̂ of

¡ i i a - ^ a] ! for.each a€Z*
yx5 ^Rd^p^y'1 for each y, d£Z* and a - p£P
[fa =>t, Ra.-1 for each t£T and a£Z*.

The production rules of J are of type 3, the derivations of the grammar ^ a re
encoded in the nonterminals of in a straighforward way. •

, Abstract

The definition of the programming language Algol 68 [2] raised the following problem: I f
a grammar is not given by some finite description but itself is a language generated by some meta-
grammar, what strength may the iterated grammar have? We show that a regular metagrammar
does not increase the strength of the iterated grammar, but a context free metagrammar (even a de-
terministic one) with a regular iterated grammar has the strength of the phrase structure grammars..

M A T H E M A T I C A L I N S T I T U T E O F T H E
H U N G A R I A N A C A D E M Y O F SCIENCES
R E A L T A N O D A U. 13—15.
BUDAPEST, H U N G A R Y
H—1053

References
[1] HOPCROFT and ULLMAN, Formal languages and their relation to automata, Addison-Wesley, 1967 . .
[2] VAN WIJNGAARDEN A, et al., Revised report on the algorithmic language Algol 68, Springer, 1976..

(Received May 31, 1979)

