Enumeration of certain words *

By K. H. Kim and F. W. Roush

1. Introduction

Both the content and methods of this paper are closely related to those of [2]. Let F denote a free semigroup on generators $x_{1}, x_{2}, \ldots, x_{m}$. We wish to enumerate, for fixed n and k, the number of length n words which do not have any segment which is the square of a length k word.

One reason for considering this problem is that it is related to the more difficult problem of enumerating words not containing any segment which is a square word. Goulden and Jackson [1, Corollary 4.1] have obtained our Theorem 1 by completely different methods.

2. A recursion formula

Definition 1. Let F^{1} be a free monoid. Let $w_{1}, w_{2} \in F^{1}$.
(1) $w_{1} \mid w_{2}$ if $x w_{1} y=w_{2}$ for some $x, y \in F^{1}$.
(2) $\left.w_{1}\right|_{i} w_{2}$ if $w_{2}=w_{1} y$ for some $y \in F^{1}$.
(3) $\left.w_{1}\right|_{f} w_{2}$ if $w_{2}=x w_{1}$ for some $x \in F^{1}$.
(4) $\left|w_{1}\right|$ denotes the length of $w_{1} ;|1|=0$.
(5) If $w_{1} \neq 1, \hat{w}_{1}$ is the unique word such that

$$
\hat{w}_{1}\left|w_{i},\left|\hat{w}_{1}\right|=\left|w_{1}\right|-1 .\right.
$$

Definition 2. Let F be a free semigroup on $m>1$ generators and F^{1} the associated free monoid. Fix $k>0$.

To any word w in F^{1} we assign a length $k-1(0,1)$-vector v as follows. The number v_{j} is 1 if and only if the $n-k+j+1$ letter of w equals the $n-2 k+j+1$ letter of w, and $n-2 k+j+1>0$. We assign an integer $a(w)$ to w by stating that $a(w)$ is the length of the longest terminal sequence of 1 components of v. Let $S(n, c)$ for $0 \leqq c \leqq k-1$ denote the set of length n words w_{1} of F^{1} such that $a\left(w_{1}\right)=c$ and if $\left|w_{2}\right|=k$ it is false that $\left(w_{2}\right)^{2} \mid w_{1}$.

* This work was supported by Alabama State University Faculty Research Grant R-78-6.

In other terms, given a word w_{1} consider the terminal segment w_{3} of length $2 k-1$ of w_{1}. Then $a\left(w_{1}\right)$ is the length of the longest initial segment of w_{3} which equals a final segment of w_{3}, or is $k-1$ if this length exceeds $k-1$. The set $S(n, c)$ is the set of words w of length n such that $a(w)=c$ and w is not divisible by the square of a word of length k.

Theorem 1. For $n>k, 0<c<k$,

$$
\begin{gathered}
|S(n, c)|=|S(n-1, c-1)| \\
|S(n, 0)|=\sum_{j=0}^{k-1}(m-1)|S(n-1, j)|
\end{gathered}
$$

Furthermore, $|S(n, 0)|=m^{n},|S(n, c)|=0$ for $n \leqq k, 0<c<k$.
Proof. Suppose $x \in S(n, c)$. Then $\hat{x} \in S(n, c-1)$. (Note that if $c=k-1$, the $n-k$ and $n-2 k$ letters of x must differ, else x would be divisible by the square of a length k word.) And if $y \in S(n, c-1)$ there is one and only one $x \in S(n, c)$ such that $\hat{x}=y$. Namely the last letter of x must equal the $n-k$ letter of y. Thus $|S(n, c)|=|S(n, c-1)|$. Also the function $x \rightarrow \hat{x}$ maps $S(n, 0)$ into $\bigcup_{j=0}^{k-1} S(n-1, j)$. Each element y of the latter set arises from exactly ($m-1$) elements of $S(n, 0)$. Namely we can add to y any letter except the $(n-k)^{\text {th }}$. Therefore

$$
|S(n, 0)|=(m-1) \sum_{j=0}^{k-1}|S(n-1, j)|
$$

This proves the theorem.
This formula can be recast into a matrix form. Let M be the $k \times k$ matrix

$$
\left[\begin{array}{lllll}
m-1 & 1 & 0 & \ldots & 0 \\
m-1 & 0 & 1 & \ldots & 0 \\
m-1 & 0 & 0 & \ldots & 0 \\
& \ldots & & \\
m-1 & 0 & 0 \ldots & 0
\end{array}\right]
$$

Let u be the vector $\left(m^{k}, 0,0, \ldots, 0\right)$. Then $|S(n, c)|$ is the $c+1$ component of $u M^{n-k}$, for $n \geqq k$. The characteristic polynomial of M is

$$
P(z)=z^{k}-(m-1)\left(z^{k-1}+z^{k-2}+\ldots+z+1\right)
$$

Definition 3. For $n<k$ put $f(n)=0$. For $n \geqq k$, let $f(n)$ be

$$
\sum_{j=0}^{k-1}|S(n, j)|
$$

Theorem 2. The generating function of $f(n)$ is

$$
\frac{m^{k} z^{k}\left(1-z^{k}\right)}{1-m z+(m-1) z^{k+1}}
$$

Proof. As in [2], the generating function of $f(n)$ must have the form

$$
\frac{q(z) z^{k}}{z^{k} p\left(\frac{1}{z}\right)}
$$

where $q(z)$ is some polynomial of degree at most $k-1$. In degree less than $2 k$, this quotient must be

$$
z^{k} m^{k}\left(1+m z+\ldots+m^{k-1} z^{k-1}\right)
$$

Therefore $q(z)$ is the portion of

$$
m^{k}\left(1-(m-1) z-\ldots-(m-1) z^{k}\right)\left(1+m z+\ldots+m^{k-1} z^{k-1}\right)
$$

having degrees no more than k. A computation gives the formula above (note that ($1-z$) can be cancelled from numerator and denominator).

3. Asymptotic values of $f(n)$

Lemma 3. The equation $P(z)=0$ has a unique positive real root r_{k} of multiplicity 1. This root exceeds the absolute value of any other root. We have $r_{k}>r_{k-1}$ and

$$
\lim _{k \rightarrow \infty} r_{k}=m
$$

Moreover

$$
m-\frac{m-1}{m^{k}}>r_{k}>m-\frac{m-1}{r_{j}^{k}}
$$

for $j<k$.
Proof. If $P(z)=0$ then $u=\frac{1}{z}$ satisfies

$$
u^{k+1}=\frac{m u-1}{m-1}
$$

as does $u=1$. However no straight line can cut the curve $y=x^{k+1}, x>0$ in more than two places since $y=x^{k+1}$ is concave upwards. Therefore 1 and $\frac{1}{r_{k}}$ are the only positive solutions of

$$
u^{k+1}=\frac{m u-1}{m-1}
$$

Therefore $P(z)=0$ has only one positive real solution r_{k} and $r_{k}>1$. Differentiation shows that r_{k} has multiplicity 1 . Let z be a root of $P(z)=0$ which is negative or complex. Then

$$
z^{k}=(m-1)\left(z^{k-1}+z^{k-2}+\ldots+1\right)
$$

implies

$$
|z|^{k}<(m-1)\left(|z|^{k-1}+|z|^{k-2}+\ldots+1\right) .
$$

So $|z|<r_{k}$ because for $|z| \geqq r_{k}$ we have $P(|z|)>0$. We have

$$
r_{k}^{k-1}=(m-1)\left(r_{k}^{k-2}+\ldots+1+\frac{1}{\dot{r}_{k}}\right)>\left(r_{k}^{k-2}+\ldots+1\right)(m-1)
$$

and

$$
r_{k-1}^{k-1}=(m-1)\left(r_{k-1}^{k}-2+\ldots+1\right) .
$$

This implies $r_{k}>r_{k-1}$. It also implies that

$$
r=\lim _{k \rightarrow \infty} r_{k}
$$

satisfies

$$
r=(m-1) \frac{1}{1-\frac{1}{r}}
$$

Therefore $r=m$.
From

$$
z^{k}=(m-1) \frac{z^{k}-1}{z-1}
$$

at $z=r_{k}$ we have

$$
z=1+(m-1)\left(1-\frac{1}{z^{k}}\right)
$$

This implies the last inequality of the lemma. This proves the lemma.
Theorem 4. The asymptotic value of $f(n)$ is

$$
\frac{m^{k}\left(1-u^{k}\right) u^{k-n-1}}{m-(m-1)(k+1) u^{k}}
$$

where $u=\frac{1}{r_{k}}$.
Proof. Expand the generating function in partial fractions. All other terms will be insignificant compared with the term

$$
\frac{A}{1-r_{k} z}
$$

This term can computed by letting z approach $\frac{1}{r_{k}}$ in the generating function. This proves the theorem.

Abstract

We study the number of words of length n, in m generators, divisible by the square of a length k word. We find a recursion formula, the generating function, and the asymptotic value of this number.

MATHEMATICS RESEARCH GROUP
ALABAMA STATE UNIVERSITY MONTGOMERY, ALABAMA 36101
U.S.A.

Reference

[1] Goulden, I. M. and D. M. Jackson, An inversion theorem for cluster decompositions of sequences with distinguished subsequences, Univ. of Waterloo, Dept. of Combinatorics and Optimization Research Report CORR 78/24, August 1978.
[2] Kim, K. H., M. S. Putcha and F. W. Roush, Some combinatorial properties of free semigroups, J. London Math. Soc. (2), v. 16, 1977, pp. 397-402.
(Received Nov. 9, 1978)

