Completeness in non-simple and stable modal logics

Ву К. Тотн

In my work [1] I have defined the syntax and semantics of modal logics. Also, inference systems and completeness theorems for simple, non-stable logics have been included. Unfortunately, the methods used there cannot apply directly to nonsimple and stable logics. In this paper I give a modification of the method and prove completeness theorems for the cases not covered in [1]. In fact, this paper is a continuation to [1], all non-common notions and notations are introduced there.

§ 1. Completeness in non-simple logics

The notion of consistency is defined in [1].

DEFINITION. The set of formulae is complete if the following conditions are satisfied:

(i) α is consistent;

(ii) If A contains variables only from π(α), then either A∈α or ~ A∈α;
(iii) Let A contain variables only from π(α). If ∃xA∈α, then there exists a variable a∈π(α) such that a is free for x and A [x/a]∈α;

(iv) Let f be *n*-argument function symbol and let $x_1, \ldots, x_n \in \pi(\alpha)$. There exists a variable $a \in \pi(\alpha)$ such that for all classical formula \mathscr{A} the fact $f(x_1, \ldots, x_n)$ is free for a in \mathscr{A} implies that the two assertions $\mathscr{A} \in \alpha$ and $\mathscr{A}[a/f(x_1, \ldots, x_n)] \in \alpha$ are equivalent.

Theorem 1. If α is consistent, then there exists a complete set β such that $\alpha \subseteq \beta$.

Proof. Parallel to the proof of Theorem 5 in [1] using the following Lemma.

LEMMA. Let f be an n-argument function symbol, α a consistent set and $a \in \pi(\alpha)$. Moreover, let $\alpha' = \alpha \cup \{ \mathscr{A} : \mathscr{A} \text{ is a classical formula, } f(x_1, \ldots, x_n) \text{ is free for } a \text{ in } \mathscr{A} \text{ and } \mathscr{A}[a/f(x_1, \ldots, x_n)] \in \alpha \}$. Then α' is consistent.

Proof. In contrary, let us suppose that there exist the formulae $\mathscr{A}_1, \ldots, \mathscr{A}_k$, $\mathscr{B}_1, \ldots, \mathscr{B}_l$ such that $\mathscr{A}_1, \ldots, \mathscr{A}_k \in \alpha$, $\mathscr{B}_1[a/f(x_1, \ldots, x_n)], \ldots, \mathscr{B}_l[a/f(x_1, \ldots, x_n)] \in \alpha$

and $\vdash \sim (\mathscr{A}_1 \land \dots \land \mathscr{A}_k \land \mathscr{B}_1 \land \dots \land \mathscr{B}_l)$. Applying R2 and A6.b we have

$$\vdash \forall a \sim (\mathscr{A}_1 \land \dots \land \mathscr{A}_k \land \mathscr{B}_1 \land \dots \land \mathscr{B}_l)$$
$$\vdash \sim (\mathscr{A}_1 \land \dots \land \mathscr{A}_k \land \mathscr{B}_1[a/f(x_1, \dots, x_n)] \land \dots \land \mathscr{B}_l[a/f(x_1, \dots, x_n)])$$

which is a contradiction.

Definition of a complete system of formula-sets is just the same as in [1]-however, item (iii) can be omitted by the remark above.

The theorem remains valid for the new concept:

Theorem 2. If α is a complete set of formulae, then there exists a complete system of sets M such that $\alpha \in M$.

The completeness result follows easily from this theorem.

Theorem 3. Let a non-simple, non-stable modal logic be given. If \mathscr{A} cannot be derived in this logic, then $\sim \mathscr{A}$ is satisfiable.

Proof. By the previous theorems, there exist a complete set α and a complete system of sets M such that $\sim \mathscr{A} \in \alpha$, $\alpha \in M$. We assume, by the definition of a complete set, that is a function for which the following property holds: if $\alpha \in M$, f is *n*-argument function symbol, $x_1, \ldots, x_n \in \pi(\alpha)$, then $v(\alpha, f(x_1, \ldots, x_n))$ is a variable, such that for all classical formula \mathscr{B} , if $f(x_1, \ldots, x_n)$ is free for $v(\alpha, f(x_1, \ldots, x_n))$ in \mathscr{B} , then the two assertions $\mathscr{B} \in \alpha$ and $\mathscr{B}[v(\alpha, f(x_1, \ldots, x_n))/f(x_1, \ldots, x_n)] \in \alpha$ are equivalent.

Let us introduce the notations:

$$N = \{\beta \colon \beta \in M \text{ and } \beta^+ \neq \emptyset\};$$

If β , $\gamma \in M$, then $\beta R \gamma \Leftrightarrow ((\beta^+ \subseteq \gamma \text{ and } \beta^+ \neq \emptyset) \text{ or } (\beta^+ = \emptyset \text{ and } \gamma = \beta));$

$$|P(\beta)| = \pi(\beta);$$

$$f_{P(\beta)}(x_1, ..., x_n) = v(\beta, f(x_1, ..., x_n)), \text{ where } x_1, ..., x_n \in \pi(\beta);$$

$$r_{P(\beta)}(x_1, ..., x_n) \Leftrightarrow r(x_1, ..., x_n) \in \beta$$
, where $x_1, ..., x_n \in \pi(\beta)$.

It is clear that $\langle M, N, \alpha, R, P \rangle$ is a model. Let us extend the domain of v as follows: let $v(\beta, x) = x$, where $x \in \pi(\beta)$; and let $v(\beta, f(\tau_1, ..., \tau_n)) = v(\beta, f(v(\beta, \tau_1), ..., ..., v(\beta, \tau_n)))$, where $\tau_1, ..., \tau_n$ are terms containing variables from $\pi(\beta)$ exclusively. The following assertions can be proved by (the usual) induction:

Let k be an interpretation and \varkappa the corresponding valuation.

(i) If $\tau \in \mathscr{H}_k(\beta)$, then $\varkappa(\tau, \beta) = v(\beta, \tau[x_1, ..., x_m/k(x_1), ..., k(x_m)])$, where $x_1, ..., x_m$ are all variables occuring in τ .

(ii) If $\mathscr{B} \in \mathscr{H}_k(\beta)$, then $\beta \models \tilde{\mathscr{B}}[k] \Leftrightarrow \mathscr{B}[x_1, ..., x_m/k(x_1), ..., k(x_m)] \in \beta$; where $x_1, ..., x_m$ are all variables occuring in \mathscr{B} .

In particular, it follows that $\sim \mathscr{A}$ is valid in the model $\langle M, N, \alpha, R, P \rangle$. Properties K1—K3 can be proved just as in [1, Theorem 7].

§ 2. Completeness in stable logics

Theorem 4. If α is complete, then there exist a complete set β and a complete system of sets M such that $\alpha \subseteq \beta$, $\beta \in M$ and for every $\gamma \in M$, $\pi(\beta) = \pi(\gamma)$.

Before proving this theorem we give the completeness result for stable logics.

Theorem 5. Let a stable modal logic be given. If the formula \mathscr{A} cannot be derived in this logic, then $\sim \mathscr{A}$ is satisfiable.

Proof. Very similar to the proof of Theorem 3 above or Theorem 7 of [1] provided complete system of sets M, given by Theorem 4, is used in the construction.

§ 3. Proof of Theorem 4

We introduce the following notations: let α be a set of formulae. By $\psi(\alpha)$ we shall mean the set of all formulae which contain variables only from $\pi(\alpha)$.

Let R be a two-argument relation. We define the relation \mathbb{R}^n , n finite, by the following recurrence: \mathbb{R}^0 is the identity relation and let \mathbb{R}^{n+1} be defined by $\mathbb{A}\mathbb{R}^{n+1}B$ if there exists C such that $\mathbb{A}\mathbb{R}^nC$ and $\mathbb{C}\mathbb{R}B$.

Then, $\overline{R} = \bigcup_{n=0}^{\infty} R^n$, where \overline{R} is the reflexive, transitive closure of R.

In the following we shall deal with certain ordered triplets $\langle \alpha, M, R \rangle$. Without further mentioning we always suppose that the following conditions hold for $\langle \alpha, M, R \rangle$:

(i) M is a set of complete sets, $\alpha \in M$, R is a binary relation on M.

(ii) For every $\beta \in M$, $\alpha \overline{R}\beta$ and if $S \subseteq R$ and for all $\beta \in M \alpha \overline{S}\beta$, then R = S.

(iii) If $a \in \pi(\beta)$, then there exists γ such that $a \in \pi(\delta)$ if and only if $\gamma \overline{R} \delta$.

(iv) a) If $\beta R \gamma$ then $\beta^+ \cap \psi(\gamma) \subseteq \gamma$ and $\beta^+ \neq \emptyset$.

b) Let $\beta \in M$, $\langle \rangle \mathscr{A} \in \beta$. If there is a $\gamma \in M$, such that $\beta R\gamma$ and $\mathscr{A} \in \psi(\gamma)$, then there also is a $\gamma \in M$ with $\beta R\gamma$ and $\mathscr{A} \in \gamma$.

Assertion 1. For arbitrary triplet $\langle \alpha, M, R \rangle$ there is no $\beta \in M$ such that $\beta R \alpha$. If $\beta R \delta$ and $\gamma R \delta$ then $\beta = \gamma$.

Proof. (a) Consider the triplet $\langle \alpha, M, S \rangle$, where S is defined by $\beta S\gamma$ if and only if $\beta R\gamma$ and $\gamma \neq \alpha$. By the second clause (ii) above, R = S.

(b) Let us suppose that $\beta R\delta$, $\gamma R\delta$ and $\beta \neq \gamma$. Let S be defined as $\beta_1 S\beta_2$ if and only if $\beta_1 R\beta_2$ and $(\beta_1, \beta_2) \neq (\beta, \delta)$. Then conditions above will hold for $\langle \alpha, M, S \rangle$, but $S \subseteq R$ and $S \neq R$ which contradicts the second condition (ii).

DEFINITION. $\langle \alpha, M, R \rangle$ is called *n*-th order triplet if for every $\beta \in M$ there is a k ($0 \leq k \leq n$) such that $\alpha R^k \beta$. $\langle \alpha, M, R \rangle$ is totally *n*-th order triplet if it is an *n*-th order triplet and if $0 \leq k < n$, $\alpha R^k \beta$, $\langle \rangle \mathscr{A} \in \beta$, $\beta^+ \neq \emptyset$ then there exists $\gamma \in M$ for which $\beta R\gamma$ and $\mathscr{A} \in \gamma$.

It is clear, that for every $m \ (m \le n)$ the fact $\langle \alpha, M, R \rangle$ is an *n*-th order triplet implies that $\langle \alpha, M, R \rangle$ is an *m*-th order triplet too. Similarly, if $\langle \alpha, M, R \rangle$ is a zero order triplet, then $M = \{\alpha\}$, $R = \emptyset$, thus $\langle \alpha, M, R \rangle$ is totally zero order.

Let $\langle \alpha, M, R \rangle$ be arbitrary, $\beta \in M$. Let us set

$$M/\beta = \{\gamma: \beta \overline{R}\gamma\}, R/\beta = R \cap (M/\beta \times M/\beta).$$

Assertion 2. If $\langle \alpha, M, R \rangle$ is an *n*-th order triplet and $\alpha R\beta$ then $\langle \beta, M/\beta, R/\beta \rangle$ is an (n-1)-th order triplet.

DEFINITION. Let us define the operation L by the following items: if $\langle \alpha, M, R \rangle$ is a 0-order triplet, then $L\langle \alpha, M, R \rangle = \alpha$, if n > 0 and $\langle \alpha, M, R \rangle$ is an *n*-th order triplet, then let $L\langle \alpha, M, R \rangle = \alpha \cup \bigcup_{\alpha R\beta} \{ \langle \mathcal{A} : \mathcal{A} \text{ is a conjunction of formulae from the} \}$ set $L\langle \beta, M/\beta, R/\beta \rangle$.

Theorem 6. Let $\langle \alpha, M, R \rangle$ be an *n*-th order triplet. Then $L \langle \alpha, M, R \rangle$ is consistent.

Proof. We proceed by induction on n. If n=0 then the assertion clearly holds. Let n>0, and assume the contrary, i.e. there exist $\mathcal{A}_1, \mathcal{A}_2, \dots$ and a conjunction \mathscr{B}_1 of formulae from $L\langle \beta_1, M/\beta_1, R/\beta_1 \rangle$, a conjunction \mathscr{B}_2 of formulae from $L\langle \beta_2, M/\beta_2, R/\beta_2 \rangle$ etc., such that

that is

and

$$\vdash \sim \mathscr{A}_1 \lor \sim \mathscr{A}_2 \lor \ldots \lor \sqcap \sim \mathscr{B}_1 \lor \sqcap \sim \mathscr{B}_2 \lor \ldots$$

We can assume that all β_i , β_j are distinct, for if not, then can apply

 $\vdash \sim (\mathscr{A}_1 \land \mathscr{A}_2 \land \ldots \land \langle \rangle \mathscr{B}_1 \land \langle \rangle \mathscr{B}_2 \land \ldots)$

$$\vdash \Box \sim \mathscr{B}_i \lor \Box \sim \mathscr{B}_i \to \Box \sim (\mathscr{B}_i \land \mathscr{B}_i).$$

Hence we obtain a form in which all sets β_i , β_j are distinct. Let x be a variable of \mathscr{B}_1 such that $x \notin \pi(\alpha)$. It follows from Assertion 1 and condition (iii) that x does not occur in the formulae $\mathscr{A}_1, \mathscr{A}_2, ...$ or $\mathscr{B}_2, ...$ Apply rule R2 for all variables not occuring in $\pi(\alpha)$:

$$\vdash \sim \mathscr{A}_1 \lor \sim \mathscr{A}_2 \lor \ldots \lor \lor x_{11} \lor x_{12} \ldots \Box \sim \mathscr{B}_1 \lor \lor x_{21} \lor x_{22} \ldots \Box \sim \mathscr{B}_2 \lor \ldots$$

Since the fixed logic is stable we can repeatedly apply the axiom $\forall x \square \mathscr{A} \rightarrow \square \forall x \mathscr{A}$ and obtain

$$\vdash \sim \mathscr{A}_1 \lor \sim \mathscr{A}_2 \lor \ldots \lor \Box \forall x_{11} \forall x_{12} \ldots \sim \mathscr{B}_1 \lor \Box \forall x_{21} \forall x_{22} \ldots \sim \mathscr{B}_2 \lor \ldots$$

where all free variables are from $\pi(\alpha)$. Since bound variables can be substitued by suitable ones from $\pi(\alpha)$ we have

$$\vdash \sim \mathscr{A}_1 \lor \sim \mathscr{A}_2 \lor \ldots \lor \Box \forall x'_{11} \forall x'_{12} \ldots \sim \mathscr{B}'_1 \lor \Box \forall x'_{21} \forall x'_{22} \ldots \sim \mathscr{B}'_2 \lor \ldots$$

 α complete, so this possible only when some disjunctive terms, e.g. $\Box \forall x'_{11} \forall x'_{12}...$... ~ $\mathscr{B}'_{1} \in \alpha$. (For if ~ $\mathscr{A}_{1} \in \alpha$, then $\mathscr{A}_{1} \in \alpha$ which contradicts the completeness of α .) So

$$\forall x_{11}' \forall x_{12}' \dots \sim \mathscr{B}_1' \in \beta_1 \subseteq L \langle \beta_1, M | \beta_1, R | \beta_1 \rangle$$

$$\vdash \sim (\forall x_{11}' \forall x_{12}' \dots \sim \mathscr{B}_1' \land \mathscr{B}_1).$$

We concluded that $L\langle \beta_1, M/\beta_1, R/\beta_1 \rangle$ is consistent, wich proves the theorem.

Theorem 7. If $\langle \alpha, M, R \rangle$ is an *n*-th order triplet, $\alpha R \gamma$ and β is a complete set such that $L\langle \alpha, M, R \rangle \subseteq \beta$ then $\beta^+ \cup L\langle \gamma, M/\gamma, R/\gamma \rangle$ is consistent.

380

Proof. In contrary, let us assume that there are formulae $\mathscr{B} \in \beta^+$ and \mathscr{C} , a conjunction of elements from $L\langle \gamma, M/\gamma, R/\gamma \rangle$ such that $\vdash \sim (\mathscr{B} \land \mathscr{C})$ i.e. $\vdash \mathscr{B} \to \sim \mathscr{C}$. By R3, we obtain $\vdash \Box \mathscr{B} \to \Box \sim \mathscr{C}$ i.e. $\vdash \sim (\Box \mathscr{B} \land \langle \rangle \mathscr{C})$. In accordance with our conditions, $\Box \mathscr{B} \in \beta$ and so $\langle \rangle \mathscr{C} \in \beta$ which contradicts the completeness of β .

DEFINITION. We say that $\langle \alpha, M, R \rangle$ is a continuation of $\langle \beta, N, S \rangle$ if there exists a function $f: N \rightarrow M$, such that $f(\beta) = \alpha$, if $\gamma \in N$ then $\gamma \subseteq f(\gamma)$, and if $\gamma S \delta$ then $f(\gamma) R f(\delta)$.

Theorem 8. If $\langle \alpha, M, R \rangle$ is an *n*-th order triplet and β is a complete set for which $L\langle \alpha, M, R \rangle \subseteq \beta$, then there exists a totally *n*-th order triplet $\langle \beta, N, S \rangle$ which is a continuation of $\langle \alpha, M, R \rangle$.

Proof. We proceed by induction on *n*. If n=0, the assertion follows. Let n>0. If $\alpha^+=\emptyset$, then for all $\mathscr{A}\in\psi(\alpha)$, $\langle\rangle\mathscr{A}\in\alpha$, so $\langle\rangle\mathscr{A}\in\beta$. In particular if \mathscr{A} is a negation of a tautology, then $\vdash \langle\rangle\mathscr{A} \to \langle\rangle\mathscr{B}$, thus for every $\mathscr{B}\in\psi(\dot{\beta})$, $\langle\rangle\mathscr{B}\in\beta$, i.e. $\beta^+=\emptyset$. It is impossible that $\beta S\gamma$, by definition, hence $\langle\beta, \{\beta\}, \emptyset\rangle$ is a totally *n*-th order triplet and this is a continuation of $\langle\alpha, M, R\rangle = \langle\alpha, \{\alpha\}, \emptyset\rangle$.

Let $\alpha^+ \neq \emptyset$, and so $\beta^+ \neq \emptyset$. As we see $\langle \rangle \mathscr{A} \in \beta$ implies the consistency of $\beta^+ \cup \{\mathscr{A}\}$, hence we can assume that $\beta^+ \cup \{\mathscr{A}\} \subseteq \delta_{\mathscr{A}}, \delta_{\mathscr{A}}$ is complete. By the previous theorem, $\beta^+ \cup L\langle \gamma, M/\gamma, R/\gamma \rangle$ is consistent, too, provided $\alpha R\gamma$, thus there is a complete set δ_{γ} such that $\beta^+ \cup L\langle \gamma, M/\gamma, R/\gamma \rangle \subseteq \delta_{\gamma}$.

It is clear, that the new variables, introduced in these steps, may be chosen so that the sets $\pi(\delta_{sd}) \setminus \pi(\beta), \ldots, \pi(\delta_{\gamma}) \setminus \pi(\beta), \ldots$ are pairwise disjoint. As $\langle \delta_{sd}, \{\delta_{sd}\}, \emptyset \rangle$ is an (n-1)-th order triplet, and since $L\langle \delta_{sd}, \{\delta_{sd}\}, \emptyset \rangle \subseteq \delta_{sd}$ it follows that a totally (n-1)-th order continuation $\langle \delta_{sd}, M_{sd}, R_{sd} \rangle$ of $\langle \delta_{sd}, \{\delta_{sd}\}, \emptyset \rangle$ exists. Since $L\langle \gamma, M/\gamma, R/\gamma \rangle \subseteq \delta_{\gamma}$ by the induction hypothesis, it follows that there exist M_{γ}, R_{γ} such that $\langle \delta_{\gamma}, M_{\gamma}, R_{\gamma} \rangle$ is a totally (n-1)-th order triplet and it is a continuation of $\langle \gamma, M/\gamma, R/\gamma \rangle$.

We may assume that the common variables of any two sets $\pi(\bigcup M_{\mathfrak{A}}), \ldots, \ldots, \pi(\bigcup M_{\gamma}), \ldots$ are contanied in $\pi(\beta)$.

Let $\delta \in N$, provided $\delta = \beta$, or

if there is an \mathscr{A} , such that $\langle \rangle \mathscr{A} \in \beta$ and $\delta \in M_{\mathscr{A}}$, or

if there is a γ , such that $\alpha R \gamma$ and $\delta \in M_{\gamma}$.

Let δ_1 , $\delta_2 \in N$ and $\delta_1 S \delta_2$ provided

if $\delta_1 = \beta$ and there is an \mathscr{A} such that $\langle \rangle \mathscr{A} \in \beta$ and $\delta_2 = \delta_{\mathscr{A}}$, or

if $\delta_1 = \beta$ and there is an y for which $\alpha R \gamma$ and $\delta_2 = \delta_{\gamma}$, or

if there is an \mathscr{A} , such that $\langle \rangle \mathscr{A} \in \beta$ and $\delta_1 R_{\mathscr{A}} \delta_2$, or

if there is an γ , such that $\alpha R \gamma$ and $\delta_1 R_{\gamma} \delta_2$.

It is obvious, that the conditions (i)—(iv) hold for $\langle \beta, N, S \rangle$. Also, it is a totally *n*-th order triplet and is a continuation of $\langle \alpha, M, R \rangle$.

Now we can return to the proof of Theorem 4: Let $\langle \alpha_0, M_0, R_0 \rangle = \langle \alpha, \{\alpha\}, \emptyset \rangle$ i.e. a totally 0-order triplet. Let us suppose, that for some *n*, a totally *n*-th order triplet $\langle \alpha_n, M_n, R_n \rangle$ is defined. By Theorem 6, $L \langle \alpha_n, M_n, R_n \rangle \equiv \alpha_{n+1}$. By Theorem 8, hence there is a complete set α_{n+1} , such that $L \langle \alpha_n, M_n, R_n \rangle \subseteq \alpha_{n+1}$. By Theorem 8, there exist M_{n+1}, R_{n+1} such that $\langle \alpha_{n+1}, M_{n+1}, R_{n+1} \rangle$ is a totally (n+1)-th order triplet and it is a continuation of $\langle \alpha_n, M_n, R_n \rangle$. Thus, there exists a function $f_n: M_n \to M_{n+1}$ such that $f_n(\alpha_n) = \alpha_{n+1}$ and $\beta \in M_n$ implies $\beta \subseteq f_n(\beta)$ and if $\beta R_n \gamma$, then $f_n(\beta) R_{n+1} f_n(\gamma)$. Let $\beta = \bigcup_{n=0}^{\infty} \alpha_n$ and $M = \left\{ \bigcup_{n=k}^{\infty} \gamma_n : \gamma_k \in M_k \text{ and for all } i \ge k, \gamma_{i+1} = f_i(\gamma_i) \right\}$. Since union of increasing complete sets is also complete we have that every element of M is complete.

Let $\gamma \in M$, $\gamma^+ \neq \emptyset$, and $\langle \rangle \mathscr{A} \in \gamma$. For $\gamma = \bigcup_{n=1}^{\infty} \gamma_n$, there exists an *l*, such that $\langle \rangle \mathscr{A} \in \gamma_i$ and hence there also exists δ_i for which $\gamma_i R_i \delta_i$ and $\mathscr{A} \in \delta_i$. Let $\delta = \bigcup_{n=1}^{\infty} \delta_n$. $\gamma^+ = \bigcup_{n=l}^{\infty} \gamma_n^+ \subseteq \bigcup_{n=l}^{\infty} \delta_n = \delta$ and $\mathscr{A} \in \delta$, thus *M* is a complete system of sets. Let $a \in \pi(\beta)$. For some $k, a \in \pi(\alpha_k)$, and if l > k, then $a \in \pi(\alpha_k)$, too. If $\delta \in M$, then for some *i*, $\delta = \bigcup_{i=1}^{\infty} \delta_n$. We may assume that k < i and so $a \in \pi(\alpha_i)$. Since

 $\langle \alpha_i, M_i, R_i \rangle$ is a totally *i*-th order triplet, we have $\pi(\alpha_i) \subseteq \pi(\delta_i)$, and thus $a \in \pi(\delta)$. Let $a \in \pi(\delta)$ for some $\delta \in M$. We may assume that $\delta = \bigcup_{n=k}^{\infty} \delta_k$ and $a \in \pi(\delta_k)$. For $L\langle \alpha_k, M_k, R_k \rangle \subseteq \alpha_{k+1}, a \in \pi(\alpha_{k+1})$ and hence $a \in \pi(\beta)$. We gained, that for every $\delta \in M$, $\pi(\beta) = \pi(\delta)$ which completes the proof of

Theorem 4 and also the completeness theorem.

References

[1] TOTH, K., Modal logics with function symbols, Acta Cybernet., v. 4, 1979, pp. 291-302. (Received July 13, 1979)