Recognition of monotone functions

By H.-D. O. F. GRONAU

Let $n, k, k_1, k_2, ..., k_n$ be integers with $n \ge 1$, $k \ge 1$ and $1 \le k_1 \le k_2 \le ... \le k_n$. Moreover, let $E = \{0, 1, ..., k\}$ and $E_i = \{0, 1, ..., k_i\}$ for i = 1, 2, ..., n. We consider functions

$$f(x) = f(x_1, x_2, ..., x_n)$$
: $N = E_1 \times E_2 \times ... \times E_n \rightarrow E$.

We always may assume that f takes each value of E. If $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$ are vectors from N, let $x \le y$ if and only if $x_i \le y_i$ for i = 1, 2, ..., n. f is said to be monotonically increasing if $x \le y$ implies $f(x) \le f(y)$. Let $M(k_1, k_2, ..., k_n, k)$ denote the set of all such monotone functions. M(1, 1, ..., 1, 1) is the set of monotone Boolean functions.

Let P(f) be a minimal set of vectors x on which f has to be known for knowing the function completely. Let

$$\chi(k_1, k_2, ..., k_n, k) = \max_{f \in M(k_1, ..., k_n, k)} [P(f)].$$

Furthermore, let $\varphi(k_1, k_2, ..., k_n, k)$ denote the minimal number of operations of the best algorithm for the recognition of an arbitrary function f of $M(k_1, k_2, ..., k_n, k)$. Clearly,

$$\varphi(k_1, k_2, ..., k_n, k) \ge \chi(k_1, k_2, ..., k_n, k).$$

G. HANSEL [1] proved in case $k_n = k = 1$ that

$$\varphi(1, 1, ..., 1, 1) = \chi(1, 1, ..., 1, 1) = {n \choose \left[\frac{n}{2}\right]} + {\left[\frac{n}{2}\right]} + 1.$$

It is conjectured that $\varphi = \chi$ is also true in the general case. Therefore, it is important to known χ exactly, not only a lower estimation. The aim of this note is to determine the exact value of χ . Let $m = \sum_{i=1}^{n} k_i$, $m(x) = \sum_{i=1}^{n} x_i$ and $S_m^l(N) = |\{\underline{x}: \underline{x} \in N, m(x) = l\}|$. We have

Theorem 1.

$$\chi(k_1, k_2, ..., k_n, k) = sum of the 2k largest values $S_m^l(N)$.$$

Proof. A chain $(x^1, x^2, ..., x^m)$ of length m is a sequence of m different vectors from N satisfying $x^1 \le x^2 \le ... \le x^m$. P(f), where f is an arbitrary function belonging to M, contains no chain of length 2k+1. Assume the contrary. Then there are 3 consecutive members x', x'', x''' of the chain satisfying f(x') = f(x'') = f(x''') = i, where $i \in \{1, 2, ..., k-1\}$, or we have $f(x^2) = 0$ or $f(x^{m-1}) = k$. Since $i = f(x') \le f(x'') \le f(x''') = i$, $f(x^1) \le f(x^2) = 0$ or $f(x^m) \ge f(x^{m-1}) \ge k$, f(x''), $f(x^1)$ or $f(x^m)$, respectively, would follow from the others immediately, i.e. x'', x^1 or x^m could be omitted in P(f), in contradiction to our supposition that P is minimal. By J. Schönheim's result ([2], Theorem 2) we obtain for each f:

$$|P(f)| \leq sum \ of \ the \ 2k \ largest \ values \ S_m^l(N)$$
.

Now we consider the function

$$f(\underline{x}) = \begin{cases} k & \text{if } \left[\frac{m}{2}\right] + k & \leq m(\underline{x}), \\ i & \text{if } \left[\frac{m}{2}\right] + 2i - k \leq m(\underline{x}) \leq \left[\frac{m}{2}\right] + 2i - k + 1 & (i = 1, \dots, k - 1), \\ 0 & \text{if } m(\underline{x}) \leq \left[\frac{m}{2}\right] - k + 1. \end{cases}$$

f(x), where $\left[\frac{m}{2}\right] - k + 1 \le m(x) \le \left[\frac{m}{2}\right] + k$, cannot be inferred by f of the other vectors.

J. Schönheim's remarks ([2], Remarks 4 and 5) complets the proof. \Box

In case $k_n = 1$ we obtain

Corollary 1.

$$\chi(1,1,\ldots,1,k) = \sum_{i=\left\lceil\frac{n}{2}\right\rceil-k+1}^{\left\lceil\frac{n}{2}\right\rceil+k} \binom{n}{i}.$$

In case $k_n = k = 1$ we obtain partly G. HANSEL's result.

Corollary 2.

$$\chi(1, 1, \dots, 1, 1) = {n \choose \left[\frac{n}{2}\right]} + {n \choose \left[\frac{n}{2}\right]} + 1$$

Theorem 2.

$$\varphi(1,1,\ldots,1,k) = \sum_{i=\lceil \frac{n}{2} \rceil - k+1}^{\left\lceil \frac{n}{2} \right\rceil + k} \binom{n}{i}.$$

Proof. We use $\varphi \ge \chi$ and Corollary 1 on one side and the special symmetrical chain method by G. Hansel on the other side. Let f be known on all chains having a length $\le a$. Furthermore, let c be an arbitrary chain of length a+2. Then f is known on many of the members of c immediately. More precisely, at most on 2 vectors of c we do not know if f takes the value 0 or a value of $\{1, ..., k\}$. Then at most on 2 vectors of c we do not know if f takes the value 1 or a value of $\{2, ..., k\}$; and so on. Finally, f is unknown at most on 2k members of c. By Hansel's argument the theorem follows immediately. \Box

Finally, we want to mention that HANSEL's special symmetrical chain method cannot be generalized to the general case $k_n \ge 2$. N is then partitionable too, but not in HANSEL's special symmetrical chains. This can be verified easily in the case n=2, $k_1=1$ and $k_2=2$.

WILHELM-PIECK-UNIVERSITÄT SEKTION MATHEMATIK DDR—25 ROSTOCK UNIVERSITÄTSPLATZ 1

References

- [1] HANSEL, G., Sur le nombre des fonctions booléennes monotones de *n* variables, C. R. Acad. Sci. Paris, v. 262, 1966, No. 20, pp. 1088—1090.
- [2] SCHÖNHEIM, J., A generalization of results of P. Erdős, G. Katona, and D. J. Kleitman concerning Sperner's theorem, J. Combinatorial Theory, v. 11, 1971, pp. 111—117.

(Received April 3, 1979)