The cardinality of closed sets in pre-complete classes
in k-valued logics

By J. DeMETROVICS and L. HANNAK

Introduction

Let E,={0,1,...k—1}. By a k-valued function we shall mean a function
f:Ep—~E,, and by P, we denote the set of all those functions. If A4 is a subset
of P, [A4] will stand for the set of all superpositions over A. (The definition of
a superposition over A is the following:

1. f€ A is a superposition over A. : '

2. I go(xyy ooes X0)s 81(Xa15 -oos Ximp)s - 8n(Xm1s --o» Xum,) aT€ either superpositions
over A or g(Xu, ..., Xim)=X; (=1, ..., n) then go(g(x13 -+ Xmy)s -o» &K1 - Xom,))
is a superposition over A.)

The set AcCP, is closed if A=[A4]. We call 4 complete if [4]=P,. The
closed set .# is precomplete if #EAC P, implies [A]=P,. 1. ROSENBERG [8§]
has given a complete description of the precomplete classes in P,. In order to
formulate his theorem we need some definitions. An A-ary relation R is a subset
of E}. If g is an n-ary k-valued function and R 1is an h-ary relation we say that
. f preserves R if (f(xl, ..., x), ..., f(x}, ..., x}))€R whenever . (x}, ..., X))ER, ...
vy (X7, .., XDER an h-ary relation R is called central if it fulfils the following
conditions:

1. (ay, ..., a)€R whenever not all of a,, ..., a, are distinct, .

2. for each permutation # of 1,2, ..., 4, (a,...,a)ER if and only if
(an(l)’ ey an(h))ER’ :

3. 0 N {cl(ay, ..., ay_1, )ER}#E,.
@y, o an_DEERY

For acE, we denote by [a], the /-th digit (/=0, ..., m—1) in the expansion
m—1
a= 2 [a];-# of a in the scale of .
I=0

We may now state the theorem of Rosenberg as follows:

There are 6 types of precomplete classes in P, and every proper closed subset
of P, is contained in at least one precomplete class.
This 6 types are the following:
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1. A, the set of all functions which preserve a partial order pu of E, with
greatest and least element.

2. S., the set of all functions which preserve the graph of a nonidentical
permutation = where = is the product of cycles with the same prime length.
3. L, the set of all functions which preserve the quaternary relation

o= {(ala a, as, az)/a; +a, = “3+a4}

where (E,, +) is an elementary Abelian p-group.

4. K,, the set of all functions which preserve the non trivial equivalence-rela-
tion 6 of E2.

5. C,, the set of all functions which preserve the A-ary central relation
e A=h=k).

6. Hg, the set of all functions which preserve the relation R, where R is
for some h (3=h=k) and for some surjection @: E,—~E,~ the h-ary relation

H®GDliy - [P < b for 1=0,..,m—1.

(Such a relation R 1is called A-regular.)

If A is a closed subset of P,, v(A4) will denote the cardinality of the set of all
closed sets contained in 4. Let us denote by ¢ the cardinality of the continuum.

Ju. 1. Yanov and A. A. Mutnix [5] have proved that v(P)=c¢ for k=>2.
The general result of E. PosT [10] implies. that v(P,)=2R,.

It is a natural question to determine v(4) when A4 is a precomplete class.
In this paper we shall prove the following three statements:

I. if k=2 and M is a precomplete class of type 1., 4., 5., or 6. then v(M)=c¢,

1. if k=2 then v(S,)=R, for all precomplete classes of type 2.,

III. v(S,)=c¢ if k is not prime.

The precomplete class L, was investigated by many authors. A. SALOMAA [8]
J. DemeTROVICS and J. BagYiNszKI ([2] and [3]) proved v(L,)<¥, in the case if k
is prime. J. BAGYINszKI [1] and A. SzeNDREI [9] showed that if & is square-free then
there are finitely many closed linear classes in P,. A. SALOOMA [8] proved, that
v(L,) =¥, if k is not square-free and D. LAU [7] showed that v(L,)=§, in this case.

1§

The proof of the first statement is based on the construction of Ju. 1. JaNov
and A. A. Mu¢nik [5]. They have proved, that the set of functions {g;} defined by

b if [{jlx;=c}f =i or
{jlx;=b}{=1 and

g,(xl,...,X,) |{]IXJ=C}| —=i—1
a in all other cases
has the property
gt [L#) gj]
JF=i

(a,b and ¢ are pairwise distinct fixed elements of E,, k=2).
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Let p be a fixed partial order of E,, let a be its least element, ¢ its greatest
one and a<b<c such that {x|b<x<c}=0. In this case every g; preserves u,
that is v(#,)=c. If 6 is a non-trivial equivalence, then we can choose a=b such
that a= b(0) Let ¢ be an arbitrary element of E, (c#a, cb). Since
gi(xy, ..., x)e{a, b} all g; preserve 8 and v(Ky)=c. If ¢ is a central relation
of E, then g; preserves o whenever a is an element of the centre of ¢. Hence
v(C,)=c.
ng R is an h-regular relation, then we can chose arbitrary distinct elements
a, b, c. Every g; preserves every h-regular relation of E,.
Thus we have proved

Theorem 1, If k=2 then

(M) =c
v(Kp) =¢
v(C) =¢
v(Hg) =¢

for all pu, 8, ¢, R defined in 1. ROSENBERG’S theorem.
A permutation of E,,n can be written as a product of disjoint cycles. Such
a cycle will be denoted by ¢;. If -

T=o¢..c, and ¢; = (G, ..., Am,)
then {c;} will denote the set {a, ..., @y }.

Lemma 1. Let k=3, = be a permutation in the form n=c¢, ...¢c,. If m=1
and there are i, j=m such that i=j,

e}l = ki, e} =ky and kylk, (k; devides k,)
then a set of closed classes of cardinality ¢ preserving n can be constructed.

Proof. We can assume, that

=0, ..,a), &=(,2..,a,) and [{c}||l{c.}

May be that {¢,}={0} or {c,}={1,2}.
Let m=3 and
[ bec,, if {ay,...,a,}c {c,} and |{]|a = b}|=1 and
all a;#b is equal to n~1(b),
gnlay, s ay) =3 d€cy, if {ay, ..., a,}C {c;}U{c.} and the previous
condition does not hold,

a, in all other cases.
One can easily see, that since |{c1}||[{c2}| gm(X1, ...y X,,) DrESCIVES TI.
We shall prove that g,,¢ [ | g;]=G, for all m=3. Let us suppose that ng Giie.
m#=j

Gy vees X)) = Wy, oovy Xp)

3
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where U is a superposition ovér G,. Let g, (x;, ..., x;) be a function in U. If s<k
then we can find an x, such that x;¢ {x;,, ..., x; }. If we choose x,=1 and x,=x,, ...
cees Xj—1=X; 41, -, X, =2 then, by the definition, gi(x,, ..., x)=1, and g,(x;,, ...,X; )€
€c, thatis As<1 holds. (All g, preserve the set {cl}U{cz} and{al, e @y €, 79,
{ay, ..., axyc{c,}U{c,} imply g,(ay, ...,a,)€c,. If s=k then we have at least
one pair :

X;

x;, such that i, = 1,

lk’ H}

Let x;, =x;,=1 andall x; —2 with j>¢i,. Inthis case we have also gs(v,l, ey X, )€€
and gk(\l, vy X)) =1, whlch is a contradiction. Thus Lemma 1 is proved.
Asa corollary of Lemma 1 we obtain

Theorem 2. If k=2 and k is not prime then v(S,)=c for all precomplete
classes S;.

Lemma 2. Let k>2, and n be a permutation which contains at least one
cycle of length g=3. Then a set of closed classes of cardinality ¢ preserving =
can be constructed.

Proof. We will give a set of functions- {#;} such that #¢[ U #]=T; and
. . ik

preserves .
Let_

b if (ag,...a,)=(b,b,..,b) or

(@1 o5 @1, Ajiqs oo a,)=(b, b, ..., b)
_ and a; =n"4(b) '
(@1 - On) =\ 1-1(p) if {ay, ..., a,)e{n=2(b), b)"

and {jla;= b}l c m—1

lal in all other cases.

(b is an element of a cycle which has the length g=3).
The definition implies that 7, preserves m, and ¢, ({n‘l(b), }"')E{n‘l(b) b}
A vector a=(ay, ..., a,) is called characteristic if

[{jla; = b} = m—1
{jla; ="' (B)} = 1.

Let us suppose that ¢, (v, ..., x,,)=% where U is a superposition over T,,.
In this case we can choose a formula A* such, that A*=¢, (B,, ..., B,), A* equals
b on all characteristic vectors and for every B, there is a characteristic vector
a' such that B, (@')=b. (Le. A* is “minimal”.)

By the assumption we have s=>m. Let v* denote the characteristic vector
with x,=n"%(b). Consider the matrix

B, (0) ... B, (v)
B, (v?) ... B,(v?)

and

B, (") ... B, (")
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By the “minimality” of U* every column of the matrix contains at least one
occurrence of n~(b). s=>m implies that at least one row of the matrix contains
two or more occurrence of n~(b). If the /th row contains at least twice n~1(d)
then A*(v)=n—2(b) which is a contradiction as #,(v/)=b for all je{1,2, ..., m}.
Thus Lemma 2 is proved. :

As an immediate consequence of Lemmas 2 and 1 we have

Theorem 3. If k=3 then for all precomplete classes S, v(S,)={&, holds.
If k£ is not prime, then v(S,)=c.
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