Schützenberger's monoids*

By K. H. KIM and F. W. ROUSH

In [1], Schützenberger proposed the following problem. "Give an algorithm to construct inductively all finite monoids M which contain a submonoid P satisfying

 $(U_{\bullet}) m, m' \in M \& mm', m' m \in P \Leftrightarrow m, m' \in P$

$$(N_d) m \in M \Rightarrow P \cap MmM \neq \emptyset$$

and (to limit the problem to its essential) which are such that P is not a union of classes of a nontrivial congruence on M."

Definition 1. $A(U_s, N_d)$ -submonoid of a monoid M is a submonoid P satisfying the two conditions (U_s) and (N_d) . Such a submonoid is simple if P is not a union of classes of a nontrivial congruence on M.

Theorem 1. Let P be a simple (U_s, N_d) -submonoid of a finite monoid M. Then P contains all invertible elements of M. If $x \in P$ and the \mathscr{H} -class of x is a group then P contains the entire \mathscr{H} -class of x. Some element of the lowest \mathscr{D} -class of M belongs to P. All \mathscr{H} -classes of the lowest \mathscr{D} -class D_0 of M contain only one element. And P contains the centralizer of any element of $D_0 \cap P$.

Proof. Let P be a simple (U_s, N_d) -submonoid of M, and let D_0 be the lowest \mathscr{D} -class of M. Condition (N_d) is equivalent to stating that P contains some element z of D_0 . Suppose x belongs to P and the \mathscr{H} -class of x is a group. Let e be the identity element of this \mathscr{H} -class and y any other element of the \mathscr{H} -class. Then ex = xe = x implies e belongs to P. And $yy^{-1} = y^{-1}y = e$ implies y belongs to P. Therefore P contains the entire \mathscr{H} -class of x, and also the \mathscr{H} -classes of all elements of P in D_0 . Also P contains the \mathscr{H} -class of the identity element of M. Therefore it contains all invertible elements of M.

Let α be the equivalence relation $x \mathscr{L} y$ if and only if x = y or $x, y \in D_0$ and $x \mathscr{H} y$. We claim α is a congruence. Let $x, y \in D_0$ and $x \mathscr{H} y$. Let e be the idempotent of this \mathscr{H} -class. Let $a \in M$. Then ax = (ae)x and ay = (ae)y. The \mathscr{D} -class D_0 is a finite simple semigroup, and $ae \in D_0$ and $x \mathscr{H} y$ in D_0 . By the structure of

* This work was supported by Alabama State University Faculty Research Grant R-78-6.

finite simple semigroups (Suschkevitch's theorem) this implies $(ae)x \mathcal{H}(ae)y$. Likewise $xa\mathcal{H}ya$. Therefore α is a congruence. If the \mathcal{H} -classes of D_0 contain more than one element the congruence α is nontrivial. Since P is a union of classes of α , this would mean P is not simple. Therefore the \mathcal{H} -classes of P contain only a single element.

Let c belong to the centralizer of $z \in D_0 \cap P$. Then cz = zc = zcz = z(zcz)zsince z is idempotent. But z(zcz)z lies in the *H*-class of z. Since this *H*-class contains only one element cz = zc = z. Therefore $c \in P$. This proves the theorem.

NOTATION. (1) Let |X| denote the cardinality of a set X.

(2) Let B_n denote the semigroup of binary relations on an *n*-element set.

(3) Let T_n denote the semigroup of transformations on an *n*-element set.

Corollary. Let M, P be as in the preceding theorem and let |M| > 1, and let 1 be the monoid identity. Then M cannot be abelian, contain a zero, be an inverse semigroup, B_n, T_n , or GLS (n, F).

Proof. The preceding theorem implies that D_0 must contain more than one \mathscr{H} -class, else D_0 would be a single zero element and P=M. For |M|>1, P would not be simple. In particular M cannot contain a zero. This rules out all the above types of semigroups except T_n .

Suppose $M = T_n$, n > 1. Then the symmetric group belongs to P. Therefore all rank 1 transformations belong to P. This implies all transformations belong to P, by condition (U_s) . Therefore for n > 1, M is not simple.

Proposition 2. Let P be a (U_s, N_d) -submonoid of the finite monoid M. Let α be the relation $x\alpha y$ if and only if for all $u, v \in M$ ($uxv \in P$ if and only if $uyv \in P$). Then α is a congruence on M and P is a union of classes of α . Let M_0, P_0 be the quotients of M, P by α . Then P_0 is a simple (U_s, N_d) -submonoid of M_0 .

Proof. It is immediate that α is an equivalence relation, and a computation shows that α is a congruence. Suppose $x\alpha y$ and $y \in P$. Take u=v=1, the identity of the monoid. Then $x \in P$. Therefore P is a union of classes of α . Let M_0, P_0 be the quotients of M, P by α . Suppose P_0 is a union of classes of some congruence β . Let M_1, P_1 be the quotients of M_0, P_0 by β . Let $h_1: M \to M_0$ and $h_2: M_0 \to M_1$ be the quotient homomorphisms. Let γ be the congruence on M such that $x\gamma y$ if and only if $(x)h_1h_2=(y)h_1h_2$. If β is a nontrivial congruence, there exist x, y such that $x\gamma y$ but not $x\alpha y$. By symmetry we may assume that for some $u, v \in M$, $uxv \in P$ and $uyv \notin P$. Therefore $(uxv)h_1h_2 \in P_1$ but $(uyv)h_1h_2 \notin P_1$. But $(x)h_1h_2 =$ $= (y)h_1h_2$. Therefore $(uxv)h_1h_2=(uyv)h_1h_2$. This is a contradiction. This proves the proposition.

Definition 2. Let G be a free monoid on generators $x_1, x_2, ..., x_k$. If W is a word of G a segment of G is a word formed by the *i*-th through *j*-th letters of W in order, for some i < j. If i=1, the segment is called *initial*. If j=n the segment is called *terminal*. Let G_n be the homomorphic image of G in which $W_1 = W_2$ if and only if W_1 and W_2 have the same length n initial segment or $W_1 = W_2$.

Theorem 3. Let W_0 be a word of length n in G such that no initial segment of W_0 equals a terminal segment of W_0 , other than the segment W_0 itself. Let

Schützenberger's monoids

 $P = \{1, W_0\}$. Then P is a (U_s, N_d) -submonoid of G_n . Let α be the relation on G_n such that $x\alpha y$ if and only if for all $u, v \in G_n$: $uxv \in P$ if and only if $uyv \in P$. Then P/α is a simple (U_s, N_d) -submonoid of G_n/α . Suppose the last letter of W_0 is not x_1 . Let S be the set $\{1, x_1^n, all \text{ segments of } W_0, Wx_1^{n-r}$ such that W is a terminal segment of length r of W_0 which also equals a nonterminal segment of W_0 }. Then S contains exactly one element from each class of α . Products in G_n/α can be described as follows. Take the product Y in G_n and reduce as follows. If Y =some element of S, the product is Y. Suppose Y does not equal an element of S. Suppose an initial segment t of Y equals a terminal segment of W_0 the product is t. If no initial segment of Y equals a terminal segment of W_0 the product is t. If no initial segment of Y equals a terminal segment of W_0 the product is x_1^n .

Proof. The set $P = \{1, W_0\}$ is a submonoid of G_n since $W_0^2 = W_0$. Suppose for some $W_1, W_2 \in G_n, W_1 W_2 = W_2 W_1 = 1$. Then $W_1 = W_2 = 1$. Suppose $W_1 W_2 = 0$ $= W_2 W_1 = W_0$. Then if $W_1, W_2 \notin P$, some initial segment of W_0 equals a final segment. This is contrary to assumption. Therefore P satisfies condition (U_s) . The lowest \mathcal{D} -class of G_n consists of all length *n* words. Therefore W_0 belongs tò this lowest \mathcal{D} -class. Therefore P satisfies condition (N_d) . It follows from Proposition 2 that G_n/α is simple. It remains to describe the relation α . Suppose x has the property that x is not a segment of W_0 and x is not 1 and no initial segment of x equals a final segment of W_0 . It follows that uxv equals W_0 if and only if u equals W_0 . Since x_1^n also has this property, $x \alpha x_1^n$. Suppose $x \notin S$ and an In a equals W_0 . Since x_1 also has this property, x_0x_1 . Suppose x_0 is and an initial segment t of x equals a terminal segment of W_0 of length r, where r is maximal. Suppose t equals a nonterminal segment of W_0 . If $uxv = W_0$ then $ux = W_0$ since x is not a segment of W_0 . Therefore $ut = W_0$. Therefore $utx_1^{n-r} = W_0$. Suppose $utx_1^{n-r}v = W_0$. Then $utx_1^{n-r} = W_0$ since the length of tx_1^{n-r} is n. Therefore $ut = W_0$ since the last letter of W_0 is not x_1 . Therefore $uxv = W_0$. This proves $x \alpha t x_1^{n-r}$. Suppose t does not equal a nonterminal segment of W_0 . Then we have $x \alpha t$ by a similar argument. This proves that S contains at least one element from every class of α . Suppose $y\alpha z$ where z=1. Then $y \in P$. Therefore y=1 or W. But $zx_1 \notin P$ implies $yx_1 \notin P$ which implies $y \neq W$. So y=1. Suppose $y\alpha z$ where z is a nonterminal segment of W_0 . Let $W_0 = z_1 z z_2$ in G. Then $z_1 y z_2 =$ $= W_0$. Suppose y had length greater than z. Then $z_1 y z_3 = W_0$ in G_n where z_3 is obtained from z_2 by omitting the last letter of z_2 . But $z_1 z_3 \neq W_0$. This contradicts yaz. Therefore the length of y is not more than the length of z. So $z_1 y z_2 =$ $=z_1zz_2$ in G. So y=z. If z is a terminal segment of W_0 which does not equal a nonterminal segment of W_0 , we have shown above that $z\alpha z x_1^{n-r}$ where r is the length of z. Suppose $y\alpha z x_1^{n-r}$ where z is any terminal segment of W of length r. Then y does not equal a nonterminal segment of W_0 . Let $W_0 = z_1 z_2$ in G. Then $z_1 y = W_0$ in G_n . Therefore $y = zz_2$ for some z_2 . Suppose an initial segment of y of length greater than r equals a terminal segment of W_0 . Then $y\alpha z$ will be false. This proves no two elements of S belong to the same class of α . Moreover it completely describes the relation α . The description of multiplication in G_n/α follows. This proves the theorem.

CONCLUDING REMARK. This construction can be generalized in a number of ways. For certain words W_0 , P will have more than two elements. More than one

word W_0 of length *n* can be chosen. A similar construction can be made where G_n is replaced by the free monoid band on $x_1, x_2, ..., x_k$ and W_0 is replaced by the word $x_1x_2...x_k$. This will give (U_s, N_d) -simple submonoids of semigroups which are bands.

Abstract

We study pairs, $P, M, P \subset M$ of monoids such that P contains an element of the lowest \mathcal{D} -class of M and $mm', m'm \in P$ if and only if $m, m' \in P$ for all $m, m' \in M$. Such pairs are called simple if P is not a union of classes of a nontrivial congruence on M. We show that simple finite pairs P, M have certain characteristics which rule out most familiar semigroups. However we do construct an infinite family of simple, finite P, M pairs.

MATHEMATICS RESEARCH GROUP ALABAMA STATE UNIVERSITY MONTGOMERY, ALABAMA 36101 U. S. A.

Reference

[1] SCHÜTZENBERGER, M. P., Problem 15, Algebraic Theory of Semigroups, Coll. Math. Soc. János Bolyai 20, North-Holland Publishing Company, 1978.

(Received June 5, 1978)