Schützenberger's monoids*

By K. H. Kim and F. W. Roush

In [1], Schützenberger proposed the following problem. "Give an algorithm to construct inductively all finite monoids M which contain a submonoid P satisfying

$$
\begin{aligned}
& \left(U_{s}\right) m, m^{\prime} \in M \& m m^{\prime}, m^{\prime} m \in P \Leftrightarrow m, m^{\prime} \in P \\
& \left(N_{d}\right) m \in M \Rightarrow P \cap M m M \neq \emptyset
\end{aligned}
$$

and (to limit the problem to its essential) which are such that P is not a union of classes of a nontrivial congruence on M."

Definition 1. $A\left(U_{s}, N_{d}\right)$-submonoid of monoid M is a submonoid P satisfying the two conditions (U_{s}) and $\left(N_{d}\right)$. Such a submonoid is simple if P is not a union of classes of a nontrivial congruence on M.

Theorem 1. Let P be a simple $\left(U_{s}, N_{\mathrm{d}}\right)$-submonoid of a finite monoid M. Then P contains all invertible elements of M. If $x \in P$ and the \mathscr{H}-class of x is a group then P contains the entire \mathscr{H}-class of x. Some element of the lowest \mathscr{D}-class of M belongs to P. All \mathscr{H}-classes of the lowest \mathscr{D}-class D_{0} of M contain only one element. And P contains the centralizer of any element of $D_{0} \cap P$.

Proof. Let P be a simple $\left(U_{s}, N_{d}\right)$-submonoid of M, and let D_{0} be the lowest \mathscr{D}-class of M. Condition (N_{d}) is equivalent to stating that P contains some element z of D_{0}. Suppose x belongs to P and the \mathscr{H}-class of x is a group. Let e be the identity element of this \mathscr{H}-class and y any other element of the \mathscr{H}-class. Then $e x=x e=x$ implies e belongs to P. And $y y^{-1}=y^{-1} y=e$ implies y belongs to P. Therefore P contains the entire \mathscr{H}-class of x, and also the \mathscr{H}-classes of all elements of P in \dot{D}_{0}. Also P contains the \mathscr{H}-class of the identity element of M. Therefore it contains all invertible elements of M.

Let α be the equivalence relation $x \mathscr{L} y$ if and only if $x=y$ or $x, y \in D_{0}$ and $x \mathscr{H} y$. We claim α is a congruence. Let $x, y \in D_{0}$ and $x \mathscr{H} y$. Let e be the idempotent of this \mathscr{H}-class. Let $a \in M$. Then $a x=(a e) x$ and $a y=(a e) y$. The \mathscr{D}-class D_{0} is a finite simple semigroup, and $a e \in D_{0}$ and $x \mathscr{H} y$ in D_{0}. By the structure of

[^0]finite simple semigroups (Suschkevitch's theorem) this implies (ae)x $\mathscr{H}(a e) y$. Likewise xa \mathscr{H} ya. Therefore α is a congruence. If the \mathscr{H}-classes of D_{0} contain more than one element the congruence α is nontrivial. Since P is a union of classes of α, this would mean P is not simple. Therefore the \mathscr{H}-classes of P contain only a single element.

Let c belong to the centralizer of $z \in D_{0} \cap P$. Then $c z=z c=z z c=z c z=z(z c z) z$ since z is idempotent. But $z(z c z) z$ lies in the \mathscr{H}-class of z. Since this \mathscr{H}-class contains only one element $c z=z c=z$. Therefore $c \in P$. This proves the theorem.

Notation. (1) Let $|X|$ denote the cardinality of a set X.
(2) Let B_{n} denote the semigroup of binary relations on an n-element set.
(3) Let T_{n} denote the semigroup of transformations on an n-element set.

Corollary. Let M, P be as in the preceding theorem and let $|M|>1$, and let 1 be the monoid identity. Then M cannot be abelian, contain a zero, be an inverse semigroup, B_{n}, T_{n}, or $G L S(n, F)$.

Proof. The preceding theorem implies that D_{0} must contain more than one \mathscr{H}-class, else D_{0} would be a single zero element and $P=M$. For $|M|>1, P$ would not be simple. In particular M cannot contain a zero. This rules out all the above types of semigroups except T_{n}.

Suppose $M=T_{n}, n>1$. Then the symmetric group belongs to P. Therefore all rank 1 transformations belong to P. This implies all transformations belong to P, by condition $\left(U_{s}\right)$. Therefore for $n>1, M$ is not simple.

Proposition 2. Let P be a $\left(U_{s}, N_{d}\right)$-submonoid of the finite monoid M. Let α be the relation $x \alpha y$ if and only if for all $u, v \in M$ (uxv $\in P$ if and only if $u y v \in P$). Then α is a congruence on M and P is a union of classes of α. Let M_{0}, P_{0} be the quotients of M, P by α. Then P_{0} is a simple $\left(U_{s}, N_{d}\right)$-submonoid of M_{0}.

Proof. It is immediate that α is an equivalence relation, and a computation shows that α is a congruence. Suppose $x \alpha y$ and $y \in P$. Take $u=v=1$, the identity of the monoid. Then $x \in P$. Therefore P is a union of classes of α. Let M_{0}, P_{0} be the quotients of M, P by α. Suppose P_{0} is a union of classes of some congruence β. Let M_{1}, P_{1} be the quotients of M_{0}, P_{0} by β. Let $h_{1}: M \rightarrow M_{0}$ and $h_{2}: M_{0} \rightarrow M_{1}$ be the quotient homomorphisms. Let γ be the congruence on M such that $x \gamma y$ if and only if $(x) h_{1} h_{2}=(y) h_{1} h_{2}$. If β is a nontrivial congruence, there exist x, y such that $x \gamma y$ but not $x \alpha y$. By symmetry we may assume that for some $u, v \in M$, $u x v \in P$ and $u y v \notin P$. Therefore ($u x v$) $h_{1} h_{2} \in P_{1}$ but ($\left.u y v\right) h_{1} h_{2} \ddagger P_{1}$. But $(x) h_{1} h_{2}=$ $=(y) h_{1} h_{2}$. Therefore $(u x v) h_{1} h_{2}=(u y v) h_{1} h_{2}$. This is a contradiction. This proves the proposition.

Definition 2. Let G be a free monoid on generators $x_{1}, x_{2}, \ldots, x_{k}$. If W is a word of G a segment of G is a word formed by the i-th through j-th letters of W in order, for some $i<j$. If $i=1$, the segment is called initial. If $j=n$ the segment is called terminal. Let G_{n} be the homomorphic image of G in which $W_{1}=W_{2}$ if and only if W_{1} and W_{2} have the same length n initial segment or $W_{1}=W_{2}$.

Theorem 3. Let W_{0} be a word of length n in G such that no initial segment of W_{0} equals a terminal segment of W_{0}, other than the segment W_{0} itself. Let
$P=\left\{1, W_{0}\right\}$. Then P is a $\left(U_{s}, N_{d}\right)$-submonoid of G_{n}. Let α be the relation on G_{n} such that $x \alpha y$ if and only if for all $u, v \in G_{n}: u x v \in P$ if and only if uyv $\in P$. Then P / α is a simple $\left(U_{s}, N_{d}\right)$-submonoid of G_{n} / α. Suppose the last letter of W_{0} is not x_{1}. Let S be the set $\left\{1, x_{1}^{n}\right.$, all segments of $W_{0}, W x_{1}^{n-r}$ such that W is a terminal segment of length r of W_{0} which also equals a nonterminal segment of $\left.W_{0}\right\}$. Then S contains exactly one element from each class of α. Products in G_{n} / α can be described as follows. Take the product Y in G_{n} and reduce as follows. If $Y=$ some element of S, the product is Y. Suppose Y does not equal an element of S. Suppose an initial segment t of Y equals a terminal segment of W_{0} of length r, where r is a maximum. Then if t equals a nonterminal segment of W_{0} the product in G_{n} / α is $t x_{1}^{n-r}$. If t does not equal a nonterminal segment of W_{0} the product is t. If no initial segment of Y equals a terminal segment of W_{0}, then the product is x_{1}^{n}.

Proof. The set $P=\left\{1, W_{0}\right\}$ is a submonoid of G_{n} since $W_{0}^{2}=W_{0}$. Suppose for some $W_{1}, W_{2} \in G_{n}, W_{1} W_{2}=W_{2} W_{1}=1$. Then $W_{1}=W_{2}=1$. Suppose $W_{1} W_{2}=$ $=W_{2} W_{1}=W_{0}$. Then if $W_{1}, W_{2} \notin P$, some initial segment of W_{0} equals a final segment. This is contrary to assumption. Therefore P satisfies condition $\left(U_{s}\right)$. The lowest \mathscr{D}-class of G_{n} consists of all length n words. Therefore W_{0} belongs tò this lowest \mathscr{D}-class. Therefore P satisfies condition $\left(N_{d}\right)$. It follows from Proposition 2 that G_{n} / α is simple. It remains to describe the relation α. Suppose x has the property that x is not a segment of W_{0} and x is not 1 and no initial segment of x equals a final segment of W_{0}. It follows that $u x v$ equals W_{0} if and only if u equals W_{0}. Since x_{1}^{n} also has this property, $x \alpha x_{1}^{n}$. Suppose $x \notin S$ and an initial segment t of x equals a terminal segment of W_{0} of length r, where r is maximal. Suppose t equals a nonterminal segment of W_{0}. If $u x v=W_{0}$ then $u x=W_{0}$ since x is not a segment of W_{0}. Therefore $u t=W_{0}$. Therefore $u t x_{1}^{n-r}=$ $=W_{0}$. Suppose $u t x_{1}^{n-r} v=W_{0}$. Then $u t x_{1}^{n-r}=W_{0}$ since the length of $t x_{1}^{n-r}$ is n. Therefore $u t=W_{0}$ since the last letter of W_{0} is not x_{1}. Therefore $u x v=W_{0}$. This proves $x \alpha t x_{1}^{n-r}$. Suppose t does not equal a nonterminal segment of W_{0}. Then we have $x \alpha t$ by a similar argument. This proves that S contains at least one element from every class of α. Suppose $y \alpha z$ where $z=1$. Then $y \in P$. Therefore $y=1$ or W. But $z x_{1} \notin P$ implies $y x_{1} \notin P$ which implies $y \neq W$. So $y=1$. Suppose $y \alpha z$ where z is a nonterminal segment of W_{0}. Let $W_{0}=z_{1} z z_{2}$ in G. Then $z_{1} y z_{2}=$ $=W_{0}$. Suppose y had length greater than z. Then $z_{1} y z_{3}=W_{0}$ in G_{n} where z_{3} is obtained from z_{2} by omitting the last letter of z_{2}. But $z_{1} z z_{3} \neq W_{0}$. This contradicts $y \alpha z$. Therefore the length of y is not more than the length of z. So $z_{1} y z_{2}=$ $=z_{1} z z_{2}$ in G. So $y=z$. If z is a terminal segment of W_{0} which does not equal a nonterminal segment of W_{0}, we have shown above that $z \alpha z x_{1}^{n-r}$ where r is the length of z. Suppose $y \alpha z x_{1}^{n-r}$ where z is any terminal segment of W of length r. Then y does not equal a nonterminal segment of W_{0}. Let $W_{0}=z_{1} z$ in G. Then $z_{1} y=W_{0}$ in G_{n}. Therefore $y=z z_{2}$ for some z_{2}. Suppose an initial segment of y of length greater than r equals a terminal segment of W_{0}. Then $y \alpha z$ will be false. This proves no two elements of S belong to the same class of α. Moreover it completely describes the relation α. The description of multiplication in G_{n} / α follows. This proves the theorem.

Concluding Remark. This construction can be generalized in a number of ways. For certain words W_{0}, P will have more than two elements. More than one
word W_{0} of length n can be chosen. A similar construction can be made where G_{n} is replaced by the free monoid band on $x_{1}, x_{2}, \ldots, x_{k}$ and W_{0} is replaced by the word $x_{1} x_{2} \ldots x_{k}$. This will give (U_{s}, N_{d})-simple submonoids of semigroups which are bands.

Abstract

We study pairs, $P, M, P \subset M$ of monoids such that P contains an element of the lowest \mathscr{D}-class of M and $m m^{\prime}, m^{\prime} m \in P$ if and only if $m, m^{\prime} \in P$ for all $m, m^{\prime} \in M$. Such pairs are called simple if P is not a union of classes of a nontrivial congruence on M. We show that simple finite pairs P, M have certain characteristics which rule out most familiar semigroups. However we do construct an infinite family of simple, finite P, M pairs.

MATHEMATICS RESEARCH GROUP
ALABAMA STATE UNIVERSITY
MONTGOMERY, ALABAMA 36101
U. S. A.

Reference

[1] Schützenberger, M. P., Problem 15, Algebraic Theory of Semigroups, Coll. Math. Soc. János Bolyai 20, North-Holland Publishing Company, 1978.
(Received June 5; 1978)

[^0]: * This work was supported by Alabama State University Faculty Research Grant R-78-6.

