On some types of incompletely speciﬁed'automata

By M. K. CHIRKOV

1. Preliminaries

In this paper the most general definition of an incompletely spec1ﬁed (or par-
tial) finite automaton (generalized, probabilistic and deterministic) is proposed
and some special classes of such automata are introduced. The conceptions of
this paper are the further development of the author’s ideas, stated in the book
[1]. The known notions of partial finite automata (for example {1], [2], [3] and [4])
are included in the proposed definitions as exeptional cases. For the notations
and notions that will not be defined here, the author refers to the books [1] and [5].

First of all it is useful to recall some definitions of the completely specified
finite automata theory [1] and [5], and introduce some further notations.

By an alphabet X we mean a finite non-empty ordered set of elements. A finite
sequence X V=X, X, ... X;, (X,,€X, r=0) is called a word over X, and r=|X¥|
is the length of X (') We use the notations X* and X* for the set of all words over
X and for the set of all words of length ¢ over X, respectively. Besides the following
notations are used for the sets of all real numbers, vectors and matrices:

R=(—o0, ), RBA"={rlr=(ry,rs ..., N€R, i =1,m},
%m'" = {RIR = (rij)m’n, rijE.%, i= 1, m, j = I,_n}.

A vector is called stochastic (or probabilistic) if all its entries are non-negative
and the sum of its entries is equal to 1. A matrix is called stochastic (or probabilistic)
if all its rows are stochastic vectors. A stochastic vector is called degenerate if one
of its entries is 1 and the other are equal to 0. A stochastic matrix is degenerate
if all its rows are degenerate stochastic vectors. The following notations are used for

the sets of all stochastic (degenerate stochastic) m-dimensional vectors and (mXn)-
matrices:

'@m = {plp = (pla P2, -"’pm): p,E[O, 1]’ i= 1,—771, Zpl = 1}’
@m = {dld = (d19 dz, LR dm): dIE{O’ l}a i= l’_ms Zdl = 1},
gm,n = {PlP = (pij)m,n’ pijE[O; 1]’ Zpij = 1, i :.la m’ ] = 1, n}’

Q™" = {DlD (du)m n» duE{O 1} Zdu = ’ = 1’ s ] =15 n}‘
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CLet X={X;, Xs, ..., X,}, A={dy, 4s, ..., A}, Y={¥;,Y,, ..., Y} be the
alphabets of inputs, states and outputs, respectively. Then a finite generalized auto-

maton is a system
A, =(X, 4,Y,r9 R) )

where r®@¢#™ is the initial vector and R (€%#"™*™) is the transition-output matrix,

which presents a mapping of XX AX YX 4 into the set of real numbers #. The ma-

trix R is usually represented by a combination of its nk square submatrices {R(X, ¥;)}

such that

R(X:,Y) R(X1,Yy) ... R(X1, 7))

R= P R R I R R R N I .
R(Xn’ Yl) R(an Y2) R(Xn’ Yk)

In this case it may be said that R presents a mapping of XX Y into #£™™. The

domain of this mapping is extended from XX Y to (XXY)' (t=1,2,...), where

(XX Y)' — {(X(t)’ Y('))IX(')G X, Y(l)eYt}
and : :

¢
R(X(x)’ Y@ = II R(X,,Y,),
i=1

with _
X0 =Xx,X, ..X

5e

YO =v,Y,..Y,.
The generalized mapping @ induced by a generalized automaton A,., (in notation:
P A,.,) is the mapping of
. (XX Y)* — {(X(t)’ Y('))IX(')EX', Y(t)eYt’ t=0,1, }’
into # defined by ‘ ' '
t
(D(X(t), Y(t)) = H R(Xsi,Y,',) e,
i=1

where e is the m-dimensional column vector whose each entry is 1.
Hereafter we use the term automaton to mean a finite automaton.
A probabilistic automaton

A, = (X, 4,7, p, P) ()

is a generalized automaton (1) such that 7@ =p® ¢ 2™ and R=Pc2"™*" p©® js called
the initial probabilistic distribution on the state set 4 and P is called the transition-
output probability matrix of the automaton A,,. The elements of P are treated as

Dsi,ij = Pr(Y; Ajl X, 4).

A probabilistic automaton A, induces the probabilistic mapping ® of (XX X)* into
the closed real interval [0, 1] defined by

- t
(X9, Y0) = PrYOIx®) = p© J[P(Y,|X,)e,
i=1

where P(Y,|X;,) is the proper square submatrix of R.
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A deterministic automaton :
Adet = <X’ A: Ys d(O)’ D>

is a probabilistic automaton (2) such that p®@=4®¢g™ and P=Dec@"*m If
d9=(d,, d,, ..., d,), dj=1, d;=0, i#j, then 4; is called the initial state of Ay,.
A deterministic automaton Ay, with the initial state A; induces the deterministic
mapping . '

P X* Y™
given by '

o |
B (XV) =YD o d® [] D(X,,Y,)e=1.
i=1" -

2. Partial vectors, matrices and automata

Hereafter we use the term “partial” to mean “incompletely specified”. In
accordance with the classical automata theory an automaton A,., (A, or A, is
partial if some of the elements of r{?, R (p®, P or d®, D) are undefined and rep-
resented by “— ([2], [3] and [4]). The conditions under which this occurs are
usually treated as “don’t care conditions” when either some combinations of in-
put and present state never occur or the output (the next state) is of no concern
for some combinations of input and present state. Such an incomplete specification
is usually interpreted to mean that the designer may use these incomplete speci-
fications in arbitrary way to his advantage in obtaining a completely specified
automaton. It is clear that such an interpretation of partial automata is not
universal and does not embrace many interesting (as theoretical, so practical)
cases. For example, there are many such problems that an incomplete specification
of an automaton is the result of our ignorance of its exact structure or is the
effect of the opportunity to choose its structure from a certain restricted class of
structures. As a rule in practice theré are not free choises of the indeterminate
elements of r'®, R (p'@, P or 4, D) and the various ways of their specification are
closely interdependent. Thus it will be usefull to offer the most general interpre-.
tation of partial automata. :

Some more general classes of partial probabilistic vectors, matrices and automata
were proposed and studied by the author in the book [1]. Now we are going to make
the furthermost generalization of the concept of partial vectors, matrices and auto-
mata. The main idea of this generalization is that any partial object (vector matrix,
automaton) may be treated as a set of completely specified objects (vectors, matrices,
automata) which are the results of various ways of its specification. Thus it is possible
to describe this partial object by means of a set of objects and to investigate this set.

We shall now introduce the following general definitions. Any non-empty
subset 7 of the set #™ is called a partial m-dimensional vector. Any non-empty
subset R of the set #™" is called a partial (mXn)-matrix. For instance, the partial
(m X m)-matrix ~ -

R = {RIReA™", |R|<(0,2]}

is the subset of those (mXm)-matrices whose determinants have values lying in
the interval (0, 2].
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A partial generalized automaton is a system
Ay ={X, A, Y, 7O R) 3)

where X, A, Y are as usual the alphabets of inputs, states and outputs, 7@ (S %™)
is a partial initial vector and R (S #"™*") is a partial transition-output matrix.
A partial generalized automaton (3) defines the set of completely specified generalized
automata (1) such that

Agn€A,, o r9¢® & RcR.

By the partial generalized mapping & induced by A,., Wwe mean the followmg set of
mappings of (XXY)* into Z:

P = {D|P - Agen, Agen€ Agen}-

3. Partial p-vectors, p-matrices, p-automata

In accordance with above definitions any non-empty subset j of the set 2™
is called a partial probabzlzsttc vector, or shortly, a partial p-vector. Any non-empty
"subset P of the set ™" is called a partial probabilistic (m X n)-matrix, or shortly,
a partial p-matrix. Thus, any partial vector 7 (matrix R) is a partial p-vector (p-
matrix) if and only if all r&7 (R€R) are stochastic.

A partial probabilistic _automaton (a partial p-automaton) is a system

= (X, 4.Y, 5, P)
where POC pm P gprmkm and
A, €A, o pOVci® & PcP.

So far we have said nothing about methods of specification of 7O 5O R P.

As it was shown in [1] some problems of abstract theory of partial automata may be
investigated without indication of such a concrete specification method. But there
are many problems which may be solved only if this method is given. Many different
types of partial vectors, matrices and automata may be constructed by various methods
of specification of r(°’, 7®, R and P. Some of them will be introduced hereinafter. .

4. Partial f~vectors, f~matrices, f-automata

Let &,¢&,,...,¢, be g independent parameters and &y, G,, ..., G, be their

domains. Let f;(;,&,, ..., &) (izl—,—;;) be real single-valued functions. Then a
partial vector .

F= {rlr =(r13r23 ""rm)7 r; :fi(élaém q) = _—m_ f‘v65v, V= I,_q-} (4)

is called a partial f-vector and is presented as

F=(RUED LD, - fulde)) €Ei€6,, v=1,9)
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where

ft({é\}) =fi(€15 629 e éq)'
Accordingly, a partial matrix

,1? E = {RIR = (rij)m,m ri' =fij({fv}), i= m j = I’—n: évE&w V= ﬁ}s

where f;; is a real single-valued function (i=1,m, j=1,n),is called a partial f-ma-
trix and is presented as .

R = (fii({év}))m,n (év E&vs V= .I’_q)_ - (5)
For example, _
s [Eatsin, m] [ 1 ]
R= &L—& 2 516[2 ’»1]’ 626{0, 1, 2}

is a partial square f-matrix of order 2.

By substituting the different values of the parameters into f; or f;;, the various
completely specified vectors or matrices of # or R may be found.

We say that a function f({&,}) essentially depends on the parameter &, if there
exist by, b, €6, such that

FErs s Eyrrbrs Evrs cois E) FF(Ery ooy Eumry bay Epirs ey &)
holds.

A partial f-vector (4) essentially depends on £, if some of its elements essentially
depends on &,. Two partial f-vectors are called indepedent if there is no such parame-
ter on which both f-vectors essentially depend.

If every two rows of a partial f-matrix are mdependent partial f-vectors then
this matrix is called a partial f~matrix with independent rows and it may be represen-
ted in the form

R=(f;({EDD)mn V€69, i=1,m, v=1,4q),

where all parameters are independent.

If every two columns of a partial f-matrix are independent partial f- vectors then
this matrix is called a partial f-matrix with independent columns. Such a matrix
may be represented in the form

R=(f;;({E)mn EPeED, v=1,¢;,j=1,m).

[

For example,
5 [E +sin &Y VH&?’&%"]
WP +cosE® T 3EPED )
where

é&"e[%, 1], KD (0, 1,2,

1 T
@) - el
61 6[233 4)9 62 6[8, 4]’

is a partial square f-matrix of order 2 with independent rows.
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In accordanc;e with above definitions a partial generalized f-automaton is a system
Agen = (X, 4,Y,79, R), ©6)
7O = (LD LUED: - fu{ED)s
R= (fsi, i A& D mm km>  E,€E6,, vV =371

where _[i,_fsi,‘j are real single-valued functions defined on all &,(€é,, v=ﬁ)land
G, (v=1, q) are specified. -
Let R(X;, Y;) be a partial square f-submatrix of R defined by

'E(XS’ Yl) = (fsi,ljv({cv}))

i=1lm, j=1m.

Then the partial generalized mapping & (the set of mappings of (XX Y)* into £
induced by the partial generalized f-automaton (6) may be defined by

t —
FXO,Y0) = [[R(X,.Y)e (€5, v=T1,0).
i=1 :

5. Partial pf-vectors, pf~matrices, pf~automata
A partial f-vector (4) is probabilistic if and only if
0 éfl({év}) = 1 and Zfl({gv}) = 1 (EVE&\H V= 176) (7)

Such a partial f-vector is called a partial pf-vector. A partial f-matrix (5) is a partial
pf-matrix if

O=f;({&H =1 and If;EY=1 (€é,v=1qi=1,m. (8
For example, ' ‘
sin?¢  cos?¢

P=l2 | X [56[%%]]

T kit

is a partial square pf-matrix of order 2.

It is clear that there are no partial pf-matrices with independent columns, but
we shall say that a partial pf-matrix P is a partial pf-matrix with minimal dependent
columns if there is a partial f-matrix R with independent columns such that for
every completely specified stochastic (mXn)-matrix P,

PcP e PER
holds. :
A partial probabilistic f-automaton (i. e., a partial pf-automaton) is a system

A, = (X, 4,7, p©, P),
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where

5O = (LD FolEDr o S (ED),
0=flEN =1 IAED =1 IO

and

F = (fsi, lj({fv}))nm,km ]
0 §fsi,lj({év}) = 19 lz'fsi,lj({év}) = ]3 (10)

6. Partial /-vectors, /-matrices, /-automata

A partial fvector defined as
F=(f1, 2, ""fm),. fi= 2’ a‘(v)év’

i= l,»m, évE&v’ V= 1,‘] ‘
where a{” (v= 1, g, i=1, m) are teal coefficients, is called a partial I-vector. A partial

f-matrix defined as ~ .
R= (ﬁj)m,n’ f; = 2 a.(}')fv, :

v

i=1m, j=1,n, £E€6,, v=r,;,

is called & partial I-matrix. For example,

L (G2 &8 3G
‘R"'( 4 28+ 1 52]’

. (3 1 1 ]
ael2g) aelig)
A partial generalized l-automaton is a system

n = <X, A; Y’ F(O)s R>:

Age .
PO = (Fae,, 3 a8, 2 aR'Ey),
v v v

where

R = (Z ag;’,)lj év)nm, km>s
v

¢,€6,, v=1,q.

Accordingly, a partial /-vector (/-matrix, generalized /-automaton) is a partial
pl-vector (pl-matrix, p/-automaton) if for all its entries f;(f;;, f;, f,1;) the conditions
(M ((8), (9), (10)) hold. Some examples of partial p/-automata may be found in [1].
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7. Partial 6-vectors, 6-matrices, G-automata

A partial l-vector in form

F = (61, 62? cees éq) (évE&v, V= l,q)

where &, (v_l q) are defined subsets of 4, is called a partial vector with independent
elements or more briefly, a partial 6-vector and is specified as

1

F= (5'1, &2, Y 6-".)-

A partial /-matrix in form

(5:1)mn (6:166117 i

where 6;; (i=1,m, j=1,n) are defined subsets of %, is called a par tial &-matrix
(12

,m, j=1,n),

and is specified as )
: R = (&ij)m,rn

in form of matrix whose elements are defined subsets of #. For example
1 1 1 2
[=] e {7390

i =23 F+3
4 2°72) 184’2

1 0 {5|¢:—21,—, '1:1,2,‘..}

ie.,

"
it

It is useful to notice that each partial f~matrix with independent rows and

columns may be represented in form of a partial &-matrix
Accordingly with these definitions a partial generalized & -automaton is a system

= <X3 Aa Y9 F(O): E>3

F(O) = (&19 6-25 cevsy &m)9 R = (&si,lj)nm,km

where &;, 6; ;; are defined subsets of . If
Agen = (X, 4, 1O, R)
(13)

r(O) (7'1, LETIER rm), R = (rsi,lj)nm,km

is a completely specified generalized automaton then

Ageneégen <~ riea'i & I'S,-’,_I-Eé"s,-’,j for all S,‘i, l, j
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8. Partial pG-vectors, pj-matrices, pG-automata

A partial p-vector with minimal dependent elements is a subset of 2™ defined as
= {p]p = (le le, ree s Pm),PiE&i(::[O, 1]’ 2’ pi = 1}~
Such a partial p-vector is called a partial pé-vector and is specified in form

= (61, Gz, .. » O) (14)

where &; (i=1, m) are defined subsets of [0, 1] and the condmon Z’ p;=1 is omitted
as obv10us
A partial p-matrix defined as

F = {PIP (pu)m ns pl] GU = [0 1] 2[)1] = ’ 1 m, n}
may be specified in form B
P = (&ij)m,n (15)
where Gy; (i:l,_m, jzm) are defined subsets of [0, 1] and the conditions > p;;=1
J

(i=1, m) are omitted as obvious. Such a partial p-matrix is called a.partial pé-matrix.
It is clear that each partial pf-matrix with independent rows and minimal dependent
columns may be specified in form of a partial pg-matrix.

© We say [1] that a partial pé-vector (14) is correctly specified if 6;#0

6; €10, 11, i-——m) and for each p,;€4; there exists p,€6; (/) such that leszl

(j=1,m). A partial pé-matrix is correctly specified if each of its rows is a correctly
specified partial pG -vector. For example,

pa 72 4
0 {% 3} {4 2}

is a correctly specified partial pé-matrix.
A partial pé -automaton is a system

P=

=(X, 4,7, p°, P).

where 5 =(y, G5, ..., &,) is a correctly specified partial pG- vector (a partial prob-
abilistic distribution on the state set) and P=(Gy ;;)um xm i @ correctly specified
partial transition-output pé-matrix. ,
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9. Partial i-vectors, i-matrices, i-automata
Let us propose the following notations, where «, € {0, 1}:

( ifa=0, g () ifB=0,
|={ if =1 ={] ifg=1.

A partial &-vector (11) is called a partial vector with mterual elements (a partial
i-vector) if in (11)
B; —

~=|ai,b,~] (i:l, )

where a,,ﬂ €{0, 1}, a;, b,€ R, a;<b; if «;8,=0, a;=b; if o;f;=1. Thus a partial
i-vector is a partial ¢ -vector such that each of its ‘elements is an interval (closed or
unclosed) .

Accordingly, a partial i-matrix is a partial ¢-matrix (12) such that

ij |

b

6_|a

'.I

ijs

where a,,,/fUE{O 1}, aj, Bij€ R, a;j<b;; if oz,,/i,—O a;=b;; if ocij .,;=1. For

4] (]
( 2 2] [8’°°')

A partial generalized i-automaton is a system

R=

Agen = (X, 4, Y, 7O, R), ’ (16)

B Bo ' . B,
FO — [I ay, by |" | as, ba|s..s| aps by | ]
(51

] Im

-~ ﬂs},lj
R= l Agi,1js bsi,lj ek

i, 1j

A partial generalized i-automaton (16) deﬁnes a set of completely spemﬁed gen-
. eralized  automata such that

Botsr; '
AgenEAgm@rﬂ a;, b; | & 1y, ,,el agij> by | for all s, i, 1, j

x5 s, 15

where A,., is defined by (13).
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10. Partial pi-vectors, pi-matrices, pi-automata

A partzal pi-vector (a partial probabilistic vector with interval elements) is
a partial pé-vector (14) such that

_| a,,b | c[0,11 G=1,m).
A partial pt-matr:x 1s a part1a1 p&-matrix (15) such that

5'ij=| aij’bijl .g [0, 1] (l‘—‘ j=1n).
For example, Y
[0; 0,3) .[02; 04] (0,3; 048]
P=101; 02] (03; 05 [03; 0.6)
[02' 0,3] [0,5; 0,6] 0,2
is a correctly specified part1a1 square pz -matrix of order 3.
A partial pi-automaton is a system '

A, =(X, 4,Y, p°, P)

where 59 is a correctly specified partial m-dimensional pi-vector and P is a correctly
specified partial pi-matrix of size nm X km. In the case of closed intervals the problem
of partial pi-automata minimization was studied in [1].

11, The conditions of correct specification

Now we are going to find the conditions which must be satisfied for correct
specification of a part1a1 pi-vector (pi-matrix, pi-automaton). Such COIldlthIlS in

case of a;=p;=1 (i=1, m) were found in [1].

Theorem. Let p be a partlal pi-vector defined as

B '
.,l Qs bml ] ’ (17

m

o ﬂ1 l’z
P=(l alabllalaZ’b2|,
%y X
Vhere »

bt ‘A . o
I a;, b,l #0, I a;, b,' g[o, 1], l='1’

@ ay

ahen p is correctly spécified if and only if the following conditions hold for j=1, m-

(2) a;=1-3b, (18)
. . i;éjl .
and \ i
a;=1-2>b; & Jiti#j, B;=0= a; =0, (19)
‘ i) : :
(b) b;=1-Sa; ' (20)

=]
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bj=1-3a, & Jiti#j, o0,=0= p,=0. 21)

i=j
Proof. For the proof of the necessity let § be a correctly specified partial pi-
vector. Since p=0 thus 2 =1, Z’ b;=1, and for every j,

bjz1—-2'b;, a;=1-2a,. (22)
istj i .
Assume now that the condition (18) does not hold for any j and b;—a;>0,
a;<1-2b;. (23)
i#j
Then we take ’
p;= __2'fi__ 24)

8
Since (22) and (23) hold thus a;<p;<b; and pjela b; ]j Since j is correctly

spec1ﬁed thus there must be a probabilistic vector p (P1sPas s Pm)ED Such that
; has a value (24). Then for p,

a_,~+1—.2b,- aj+1—.2bi
Sp=l=— P 4 Zp=— 4 3,
; . 2 [y 2 fery’
holds. This implies that
. / a;=1—- 2 b;
ij

which contradicts our assumption (23). Therefore in the case b; —a;>0 the condition
(18) holds.
In exeptional case when 6;=[a;, a;]=a;, every probabilistic vector p&j has

p;=a; and, therefore,
Zpl_l_a +2Pl_a +2bn
i#=j i%j
i.e., the condition (18) also holds.

Assume now that a¢;=1— 2>'b; (i.e., q; +Zb =1) and there is an s>j such
i
that ;=0 but a;=1. Since j is correctly spec1ﬁed thus in this case there is a proba-

bilistic vector pEp such that p;=a;, p,<b,. Then for the vector p,

Sn=l=a;+ 3 p=<a;+ b,

i i#j i#%j

holds. But this contradicts our assumption. Therefore «;=0 and the condition (19)
holds. This ends the proof of the necessity of the conditions (a).

The necessity of condition (b) can be shown similarly.

Conversely, assume that conditions (a) and (b) hold for p. We prove that p

is correctly specified. Let us take any j and any p;€ |a;, J] It follows from (18)
and (20) that !

izj izj
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We take for i=j the following elements of a vector p=(py, Ps, -.-s D)

l—-p;— 2 a; .
P =a;+ _—Z'_(b—ﬂ_(bi_ a) G#)), (26)
izj

where 2 (b;—a)=0 (if Z’ (b;—a;)=0 then g;= b. (i=1,m) and p is a completely

spemﬁed probablhstlc vector) Then for the vector p,

l—p;— 2 a;
;’P; PJ+I#2; [a +T(bi_éi)J =1,

i.e., p is a probabilistic vector. Now we shall prove that p€p.
From (25) and (26) we have that p;=a; (i>%j) and for any i/,

p=ag;eb=a NV 1l-p = Z'a-.

If b;=a; then 6;,=[a;, a)]=a;. If 1-p;= Z'a then in accordance with (25), pi=
Bi=1, 1-b;= 2 a; and it follows from (21) that o;=1 (i%f). Thus if p;=g, for
any i#j then oc,-=1 and p;€6;=][a;, b; ]. Moreover, it folows from (25) that

l—p;— 2 a;= > (b;—a).

i=j izj

Therefore, p;=b; (i#j), and for any i},
p=beb=a V l-p—2a= 2(b~—

i=j i=j
If b;=a; then 6,=[a;, a]=a;. If 1 —p,— 2 a;= 2 (b;—a;) then 1—p;= Zb and,
ij

in accordance with (25), pj=a. o;=1. In thlS case the condition (19) 1mp11es Bi=1
(ij). Thus if p;=b; for any l?f_] then B;=1 and p;€6;=|a;, b]. Finally, if for

. B; ;
any i#j, a;<p;<b; then p,¢ ]al, b;|. Thus, we proved that the constracted vector

p is probabilistic and p€p. Therefore P is correctly specified. This completes the
proof of the Theorem.

12. Partial b-vectors, b-matrices, b-automata

A partial f-vector
F=(AUED i(ED, s fu{ED) (€,€{0, 1}, v=1,9), @7

where f;({¢,}) (i=1, m) are boolean (logical) functions, is called a partial boolean
vector (a partial ‘b-vector). A partial f~matrix

R =(f;({&DImn E€{0,1}, v=1,9) (28)
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where f;;({¢,)) (i=1, m, j=1, n) are boolean functions, is a partial b-matrix. For b-
vectors and b-matrices the domain of every parameter is {0, 1}, therefore it may be
omitted. For example, . -
L (Ve & &k ]
6263 52\/63 6152\/63 '

If a partial b-vector (b -matrix) is a partial G-vector (G- matrix) then its elements -
may be 0, 1 or {0, 1}. In this case it is convenient to replace {0, 1} by “—". For example,

0 —:1
R=|- 0o -
11 —

A partial generalized b-automaton is a system
Agen = (X A Y FO, R)

;O — = ({f1:S2 oo s Sm)s :(fij)mn
where f;=/£({¢,)), f.-,-—fij({f ) are boolean functions of the parameters &,, &,, ..., ¢,
&.€{0,1},v=19).

13. Partial d-vectors, d-matrices, d-automata

If a partial b-vector (27) is also a partial p-vector then p =9™ and
fiijO E)) Vfi51-~ : . 29

Such a partial vector is called a partial d-vector. Thus if a partial b-matrix (28)
is also a partial p-matrix then it is of form

B=Upnm fufu=0 G#D Viy=1 G=Lm (30)

and D=2™". Such a partial matrix is called a partial d-matrix. Tt is useful to notice
that any subset of 2™(2™ ") may be specified as ‘a partial d-vector (d-matrix).
For example,
_fave && o
D = _6_1 5163 &6,
&l LVE 0
is a partial square d-matrix of order 3. '
If a partial d-matrix is a partial pé-matrix then {0, 1} may also be replaced

by “—”, but it is necessary to keep in mind the conditions (30).
A partial deterministic automaton (a partial d-automaton) is a system

Agee = (X, 4,Y,d©, D)

where d@=(f,,fs, ..., f,) is a'partial d-vector and D=(fsi, 1 umm 15 @ pértial
d-matrix.
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14. Automata programming

Above the most general definitions of incompletely specified finite automata
were proposed and some special classes of such automata were introduced. For
these automata all classical problems of the automata theory may be formulated.
Some of such problems were investigated, for example in [1]—[4] for certain
partial p-automata, partial pi-automata and partial d-automata. But a partial
automaton is a more interesting object for investigation than a completely
specified automaton and there are many special important problems in its theory.
One class of such problems which we shall call “the problems of automata pro-
grammmg may ‘be formulated in the following way.

Let Ag},,Agiz,, ..., A be partial automata (for example generalized) and
¥ be a mapping

P AL XA X ... XAL — 2.
It is necessary to find partial automata AE?,’, AQY, .., &g},’ such that

A CAD (i=1,q)
and
A;E,IEAg;’,,’ (i=14q) < VAL, AZ), ..., A

gen/ max

where
Y ax = Lnax, Y’(Aéi?u AZL, ., A

Such problems, for example, are very important for optimization of automata or
some systems and processes which may be described in terms of automata. One
such problem concerned with automata reliability was solved in [1].
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Budapest which provided him with ideal working conditions during two months.
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