
Tree transformations and the semantics of loop-free programs 

B y M . A . A R B I B * a n d E . G . M A N E S * * 

In memory, of László Kalmár 

Alagic [1975] gave a category-theoretic treatment of natural state transforma-
tions which generalized the work of Thatcher [1970], and so, in particular, gave 
an elegantly general perspective on tree transformations. Arbib and Manes [1977] 
modified Alagic's approach to provide a somewhat more concrete category-
theoretic approach to what they called process transformations, which they showed 
to embrace recursion theory, bottom-up tree transformations and linear systems. 
Section 1 of the present note specializes the theory of process transformations to 
show how pure bottom-up tree transformations may be expressed in category-
theoretic form. Section 2 then shows , how this formulation may provide insight 
into the semantics of loop-free programs. Later papers will consider the effect 
of loops. Necessary category-theoretic background may be found in Arbib and 
Manes [1975], especially Chapter 7 and Section 10.1. 

1. Bottom-up tree transformations: A category-theoretic characterization 

We first recall the 'machines in a category' approach to tree automata (i.e. 
i?-algebras). 

1. Definition. An operator domain Q is a sequence (i2„|w£N) of (possibly 
empty) disjoint sets. An Q-algebra is a pair (Q, 5) where Q is a set and S = (5n) 
is a sequence of maps d„: Q"XQn-*Q. We write <5ra for <>(—,co):0"—Q for 
<i)£Qn. Q is the carrier of the algebra. 

Given Q, we define a functor XQ: Set—Set by 

QXa={jQ"XQn (2) 
nsO 

while, for h . Q ^ Q ' 
kXaiqi, ...,q„,co) = (hq1, ..., hqn, toi). (3) 

We now observe that an ^ - d y n a m i c s in the sense of Arbib and Manes [1974] 
— i.e. a map QXa — Q — is just an i2-algebra, and that an A^-dynamorphism 
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is just an Q-homomorphism, since the equation b' • hXQ = h-5 which characterizes 
a m a p h: Q-—Q' as a dynamorphism h: (Q, 8)-<-(Q', 8') unpacks to 

h8a(q1,...,qn) = 8'(a(hq1,...,hq„) for (d£Q„, (qx, ..., qn)£Qn. 

Moreover, Xn is a recursion process (which is the same as an input process' 
in the sense of Arbib—Manes), which means that there exists an £2-algebra 

(AX®, Afi0) equipped with an inclusion of generators Ar\: A^AX® such that f o r 
any i2-algebra (Q, 5) we may extend each map r : A—Q uniquely to a homo-

morphism r : (AX®, A^t0)-^(Q, 8). AX® is the carrier of the well-known free Q-
algebra generated by A, and may be defined by the usual inductive definition. 
(Birkhoff [1935]): 

A c AX® 

If co£i2n, i l 5 . . . , tnZAX®, then cot^.-t^AX®. (4) 

Thus the elements of AX® may be regarded as finite rooted trees, with nodes of 
outdegree n labelled by elements of Qn, save that some leaves (nodes of outdegree 0) 

may be labelled by elements of A. We abbreviate X® to Tn. We may define 

At]: A — ATa, a>-— a 

An0: ATnXa — ATq: (t1, ...,/„, co) h- OJ^.. 

If (Q, d) is any i2-algebra and T : A i s any map 

AnJ ALL O 

a — L A T,< ^ A TUXU 

(5) 

Q * — QX„ 

then the unique dynamorphic extension r.ATn-»Q of T is given by 

r(a) = r (a) 

r(0)t1...t„) = da(rh, ..., rtn). 
(7) 

Note that this reduces to the dynamics <5: QXX0-~Q of a sequential machine if 
we take Q1=X0 while Q„=0 for n ^ l . 

Suppose that Q and I are two operator domains. We consider ' bo t tom up ' 
(i.e. working f rom the leaves to the root) transformations of trees in ATn into trees 
in BTX: (The following transformations are 'pure' in that no internal state is used 
in processing the trees. The more general definition is given in Arbib and 
Manes [1979].) 
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8. Definition. Given operator domains Q and I , and sets A and B, a bottom-up 
Iree transformation (A, Q)-*(B, I ) is given by a map a:/1—2?, together with a 
sequence /? = (/?„) of maps 

/?„: i ? „ - { l , . . . ,«}TV. (9) 

The response of (ct, fi) is y: AT(i-^BT1 defined inductively by: 
Basis step: 

y(a) = a ( a ) (10 ) 
Induction step: To define 

y(u)ti...1n), let y(tj) = Sj, (11) 

.and let « 

P(o)= 

Then 1 » 

y(a>t1...tn) = 

The following result in the style of the Yoneda Lemma (Mac Lane [1971]) 
;allows us to view /? as a natural transformation. (For an exposition of the concept 
of a natural transformation of functors, see Arbib and Manes [1975, Section 7.3].) 
This theorem is generalized in (Arbib and Manes [1977]). 

12. Theorem. Let Q be an operator domain, and let Y be any functor Set—Set. 
Then there exists a canonical bijection 

Q„—~ nY 
(13) 

between natural transformations /? and sequences (/?„) of functions. Mutually in-
verse passages are given by 

P„ = Qn—-nXa-^nY where k(co) = (1, ..., n, co) (14) 

Afl: AXa AY, (al,...,an,o>)~(a1,...,an)Y-pn(cS). (15) 

To explain the notation in (15), (a l 5 . . . , a„) is a function g: n—A. Thus (at, ...,a„)Y 
is a function gY\nY-*AY. 

Proof To see that (15) describes a natural transformation, we must verify 

AXn-^-~AY 
hX„ I I hY 

1 BB 1 
BXa—¡-—BY 

fo r arbitrary h: A^B. But starting f rom (g, oj)£AnXQn, the upper path yields 
JiY •gY(fi„(co)) and the lower path yields (hg)Y-P„(co) and these are equal since 
Y is a functor. 
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so that 

We now verify that (14) and (15) are inverse. 
Now if ( P n ) ~ P ~ ( P n ) , we have 

/?„(©) = »10(1, . . . , n , < B ) 

= np(idH,a>) for id„€nn 

= id„y •/*.(©) = pn(a>). 

Conversely, if /?>—/}„>—• p, then for g€A" we have the naturality square 

nXn-^~nY 
gXa\ JR \gY 

A X q ^ A Y 

We thus conclude 

(Ap)(g, o>) = (gY)(Pn(co)) 

= (gY)(nP(id„, co)) 

= (Ap)gXa(idn, co) 

= (Ap)(g, co). • 

16. Observation. A bottom-up tree transformation from i^trees to 1 - t r e e s 
s equivalently given by a natural transformation 

P:Xn 
11 

together with a map a: A—B. The response y: ATil—BT1 is uniquely def ined 
by the diagram 

A A Tq * A TQ XQ 

«1 I y \ y x a ( 1 7 > 

Proof. The left-hand square provides the basis step of the inductive definition; 
of r given in Definition (8), while the right-hand square expresses the way in which. 
y(cot1 ...tn) depends.on y(tj) for 1 = / ' = « . • 

• 2. Transforming loop-free flow diagrams 

In this section, we capture the essential ideas of Reynolds' [1977] "Semantics-
of the domain of flow diagrams" by giving a succinct account of the relat ion 
between general flow diagrams and linear flow diagrams which provides the p a r a -
digm for the other relations discussed in that paper. We fix a set P of p red ica te 
symbols and a set F of function symbols. A general flow diagram may be represented1 

by a I- t ree where -
I0 = F, I1 = 0, X2 = P U { ; } - .. (18> 
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and we interpret the following element of 07V 

/ \ 
; p' (19) 

/ \ / \ 
h f g f 

as "If the p-test yields true, execute h then / ; whereas if the test yields false, carry 
out the /»'-test, executing g if the outcome is true, / if the outcome is false." 

A linear flow diagram is one in which we cannot compose arbitrary opera-
tions using " ; " , but instead apply one / at a time. They correspond to i2-trees 
where 

G o ^ F X j O } , G ^ F X O } , Q2 = P (20) 

and (19) corresponds to the following element of $T a 

/P\ 
h p' (21) 

f . g f 

We now show that that transformation f rom linear flow diagrams (as represent-
ed by i2-trees) to general flow diagrams (as represented by Z-trees) is given by the 
tree transformation /?„:&„ — {1, . . . , n}Ts where 

P o ( f , 0 ) = f 

Pi(g, 0 = ; 
. • / \ 

i 1 (22) 

MP) = P 
/\ 
1 2 

The response 0 r o — 0 7 ^ does indeed transform (21) into (19), and the reader may 
see that i t :also yields the following typical transformation: 

(23) 
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Now Reynolds provides for each direct (resp., continuation)-semantics for general 
flow diagrams a corresponding semantics for linear flow diagrams. But each se-

.mantics for a general (respectively linear) flow diagram is nothing more nor less 
than a I - (respectively Q-) algebra. Any particular choice of a t ransformation of 
semantics which "preserves meaning" with respect to a particular t ransformation 
of flow diagrams is subsumed in the following result (which works just as well 
when 7V and Ta are replaced by arbitrary algebraic theories Tl and T2, see Manes 
[1976, Section 3.2]): 

24. Proposition. Let Q and I be operator domains, and let t: RXE-~R be 
a given l-algebra. Further, let the family of maps 

pn: Qn~ {l, ..., n}T; 

define a tree transformation. Then there exists an £>-algebra 3: RXn-<~R such that 
the result of running 8 on any £>-tree equals the result of running £ on the trans-
formed I- t ree. 

Proof. By (13), f}„ is equivalent to a natural transformation 

P - Xn-Tz 
yielding, in particular, the map 

Rfi: RXn - RTf (25) 

Now we define the run map i®: RTZ—R of (R, by the diagram (compare (6)) 

/ V fyo 
R — ^ R 7 > — - — R TrXi; 

i d X r fi 
R< R X , 

(26) 

and we may then define an i2-algebra (5, R) by 

8 = RXn-^RT£ R. (27) 

To show that 5 has the claimed property, we must look at the response y: RTa-~RT£ 
of the tree transformation with A=B — R and a = idR. Then (17) becomes: 

R»Q Rii" 
R — ^ R T ^ - RToXi 

n  R T z T zliT#  R T x X o  
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We have to show that ô® = R T i } ~ R T s ^ - R to complete the proof of the pro-
position. But this is immediate f rom the following diagram: 

(29) 

where I and II are just (28), III and IV extend (26), V is a naturality square for 6, 
and VI is the definition of 5. Thus £® • y satisfies the diagram which defines <5® 
uniquely. • 

• COMPUTER A N D INFORMATION SCIENCE 
UNIVERSITY OF MASSACHUSETTS 
AMHERST, MASSACHUSETTS 01003, USA 

»• MATHEMATICS DEPARTMENT 
UNIVERSITY OF MASSACHUSETTS 
AMHERST, MASSACHUSETTS 01003, USA 
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