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Introduction 

The branch of investigations to which this paper is devoted was initiated by 
U. Kling and Gy. Székely [14]. They studied some kind of electronical networks 
simulating certain nervous activities, and facilitating the quantitative treatment 
of such phenomena. The description of structure and function of such networks 
was continued in the articles [2], [7], [3] etc., using mathematical tools. 

This paper contains a (more or less detailed) survey of the mathematical con-
siderations mentioned above and — primarily — a list of numerous open problems. 
The article consists of four chapters. In Chapter I certain finite directed graphs 
are considered. The questions raised here may mostly be viewed as "variations 
on the theme" of describing graph classes each of which is a natural extension 
of the class of single cycles (in one or another sense). Chapter II starts with a sys-
tematization of the behaviour of autonomous continuous automata and, as a par-
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ticular case, deals chiefly with the network notions without supposing any special 
graph structure. In Chapter III the behaviour of networks with special structure 
is treated and the problem of speed of propagating actions is posed. In Chapter 
IV some questions of stochastic behaviour of networks are touched. 

The first half of the paper contains a number of assertions, too. Some of them 
(e.g. Proposition 8) are easy consequences of the concepts defined or are "folklorist-
ically" known to the specialists of the topics (as Propositions 12—14). Only the 
statements of § 4 and § 7 could be regarded as (more or less) original results. 

The subject of Chapter I has its own importance in the theory of graphs. The 
considerations referred to in Chapters II—IV may be estimated rather as an attempt 
how a certain type of questions admits an exact mathematical treatment, than 
settled, definitive scientific advances. 

The exposed problems are partly strictly determined ones (as Problem 14), 
partly proposals for making researches in some intuitively encircled field (e.g. Pro-
blem 7), or of transitional character between these extremities. 

In the assembling of the material of this paper I was not free from some sub-
jectiveness. The variety of ideas in the first chapter has followed from my affection 
for structural descriptions; on the other hand, the fact that I am no probability 
theorist has implied that the (very important) questions of stochastic behaviour 
appear in a smaller extent than they would deserve. 

I. Structural problems (Problems concerning graphs)1 

§1-

In this § we deal always with strongly connected directed finite graphs (see 
Chapter 16 of [12]). The graph with one vertex and without edges is excluded. We 
do not allow loops and parallel edges with the same orientation. By a cycle (of 
a graph) we mean a circuit (without repeated vertices) along which each edge e is 
passed through in sense of the orientation of e. For any edge e the number of cycles 
containing e is denoted by Z(e); similarly, Z(A) is the number of cycles in which 
a vertex A occurs. The strong connectedness implies Z(e) 1 for every edge and 
Z(A)^1 for every vertex of the graph. (Conversely, if a connected graph is not 
strongly connected, then Z (e )=0 for some edge of it.) 

If a graph G can be represented as the union of two subgraphs G1, G2 (each 
having at least one edge) such that G1 and (?2 have only one vertex A in common, 
then A is called a cut vertex2. If a vertex A of a graph G is contained in every 
cycle of G, then A is called a pancyclic vertex. 

Now let four properties (a), (/?), (y), (<5) of graphs be defined. (For the sake 
of brevity we shall say e.g. "(ajS)-graph" instead of "graph satisfying (a) and (/?)"•) 

(a) Z(e) ^ 2 for every edge e of the graph, 
(/}) Z(A)^2 for every , vertex A of the graph, 
(y) the graph has no cut vertex, 

1 Chapter I has already been propagated in preprint form under the title "Some open questions 
concerning finite directed graphs". 

2 The term "articulation vertex" is also used. 



On some open problems of applied automaton theory arid graph theory 189 

(¿) the graph has a pancyclic vertex. 
The main question to be proposed in this § is: / 

PROBLEM 1 (see [3]). Describe the structure of all (cc)-graphs. 

. In some particular cases, Problem 1 has been solved. § 3 of [3] deals with the 
structural description of (/J)-graphs, and any (/?)-graph is clearly an (cr)-graph. 
On the other hand, [4] is devoted to the description of (a}«5)-graphs and the extension 
of this to (a<5)-graphs. 

It seems that the difficulty of solving Problem 1 lies in getting an overview 
of the (ay)-graphs, therefore we formulate separately 

PROBLEM 2. Describe the structure of all (ay)-graphs. 

In § 7 we shall give a relative solution of Problem 1 presupposing that Problem 
2 is settled. 

The terminology of § 1 is continued, especially, the condition of strong con-
nectedness is maintained. Let us recall Property (<5) and define two related pro-
perties: 

(a) The graph has a vertex A such that 
for any choice of the vertex B there is a cycle containing both A and B, and 
for any choice of the edge e there is a cycle containing both A and e. 

(C) Each pair of cycles has at least one vertex in common. 
It is trivial that each (<5)-graph is an (e()-graph and each (sQ-graph is an (e)-

graph. The examples on Fig. 2 show that these inclusions (concerning the classes 
of (<5)-graphs, (eQ-graphs and (e)-graphs) are proper3. The connection of (e) and 
(() is questionable as follows: 

PROBLEM 3 . Does there exist a (Q-graph which does not satisfy (e)? 

§2. 

(A ) 
Fig. 2 

3 The graph on Fig. 2/b was called to my attention by Dr. B. Zelinka. 
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§3 . 

Let H be a set with 2) elements. A permutation a of H is called cyclic 
if a fixes q elements and permutes the remaining n—q ones cyclically (where 
O^qSn—2 or q=ri). a. is fully cyclic if it is cyclic with q=0. By a fully cyclic 
automorphism of a graph such an automorphism is understood which acts as a fully 
cyclic permutation on the set of vertices. 

In contrasting with § 1, now we do not restrict ourselves to connected graphs4. 
Let us choose some integers n, k, mlt m2, . . . , mk such that 

(3.1) k -c n, 1 S m1 < m2 < mk < n. 

We define the (labelled) graph G=G(n;m1,m2, •••,mk) as follows: 
the vertices of G are denoted by Plt P2, ..., P„, 
the edge from P; to Pj (where l ^ i ^ n , l^j^ri) exists in G if and only if 

there is a number h (1 ^h^k) for which the congruence 

Proposition 1. A graph G can be expressed as G{ji\m1,m2, ... if and 
only if G has a fully cyclic automorphism. 

Proof. Let G(n; mx, m2, ..., mk) be considered. The following (fully cyclic) 
vertex permutation a is obviously an automorphism: 

Conversely, suppose that a graph G (having n vertices) possesses a fully cyclic 
automorphism a. For an arbitrary vertex A, let us introduce the notation 

and let m 1 , m 2 , . . . , m k be defined by the conditions 

the edges PnP'mi, P„Pmi, ...,PnPmk exist in G, and 

there are no other edges from P„. 
It is easy to see that G equals G(n; m1; m2, ...,mk). • 

For given n and k, two sequences (m1, m2, . . . , mk) and {m'x, m'2, ..., mk) 
(fulfilling (3.1)) are called equivalent (for n) if there exists a number r ( l ^ r < n ) 
and a permutation n of the set {1,2, . . . , k} such that r is relatively prime to n and 
the congruences 

(3.2) rmx = rn'„m, rm2 = m'n{2), ..., rmk = m{„)k 

are valid modulo n. 

i —j = mh (mod rí) 
holds. 

A = Pu a(A) = P2, a2 (A) = P3, as(A) = P4, a"~1(A) = P, n 

4 The meaning of "graph" is unchanged in any other respect. 
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Proposition 2. The equivalence defined above is a reflexive, symmetric and 
transitive relation (in the set of all sequences (mls m2, ...,mk) when n and k are 
fixed). 

In the proof we shall use the fact that the residue classes, consisting of numbers 
relatively prime to n, form a multiplicative group. 

The reflexivity holds since 1 may be chosen for r. — If some r, n establish 
a connection of type (3.2), then the solution r' (1S/- '</ j ) of rr' = 1 (modn) and 
7t-1 establish a connection between the two sequences having interchanged roles. 
— If rmh=r'nm and r' m'h=m'^(h) (mod n), then let r" (1 ^r"<n) be defined 
by r"=rr' (mod/i); it follows r"mh = r'rmh = = (modn) (where 
h may be 1, 2, . . . , k). • 

Next we state an evident assertion: 
Proposition 3. If two graphs are described in terms of the formalism 

G(n; m1, m2, ..., mk) and they are isomorphic, then n and k are common. • 
Proposition 4. If (with the same n and k) the sequences (mL, m%, ..., mk) and 

(m[, m2, ..., m'k) are equivalent, then the graphs G — G(n; mx, m2, ..., mk) and 
G' = G(n; m[, m2, ..., m'k) are isomorphic. 

Proof. To an arbitrary vertex Pt of G, let /?(/>;) be the vertex P'v, of G' whose 
subscript is defined by ri=i' (modn) where the equivalence is established by 
r. We may check that P is an isomorphism. • 

Since Propositions 3 and 4 do not determine fully when two graphs in question 
are isomorphic, we raise 

PROBLEM 4. Let a condition for two sequences (m1, m2, ..., mk), (m[, m2, ..., m'k) 
be stated which is necessary and sufficient in order G(n; m1, m2, ..., mk) and 
G(n; m[, m'2, ..., m'k) be isomorphic. 

I have conjectured [1] that the converse of Proposition 4 is also valid, i.e. that 
the equivalence is necessary for isomorphism, too*. The counter-examples due to 
Elspas and Turner [10] show that the conjecture is false in the class of all graphs 
having a fully cyclic automorphism; namely, G(8; 1, 2, 5) is isomorphic to 
G(8; 1, 5, 6) and G(16; 1, 2, 7, 9, 14, 15) is isomorphic to G{ 16; 2, 3, 5, 11, 13, 14) 
although neither (1,2,5) and (1,5,6) (for n = 8) nor (1 ,2 ,7 ,9 ,14 ,15) and 
(2,3, 5,11,13,14) (for n = 16) are equivalent. 

It was proved by Dokovic, Elspas, Toida and Turner (see [9], [10], [16]) that 
my conjecture.is valid within each of the following four subclasses of the mentioned 
class: , 

(i) the class of graphs the number of whose vertices is a prime, 
(ii) the class of graphs whose adjacency matrices have non-repeated eigen-

values only, 
(iii) the class of graphs with k=3, m1+m3=n and m2=n/2, 
(iv) the class of graphs with k=4,m1+mi=m2+ms=n and (ml, n)=(m2, «) = 1 

(the parentheses denote here largest common divisor). 
They use — somewhat surprisingly — mostly tools lying outside graph theory 
(e.g. techniques of matrix theory). 

* Remark added in proof (November 21,1977). For category-theoretical generalizations see [18]. 
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§4. 

This § is5 a continuation of the preceding one. Our present aim is to 
re-formulate Problem 4 in terms of automorphisms. For the sake of simplicity, we 
do not make a distinction between a permutation n of the set {1 ,2 , . . . , ri) and 
the permutation of vertices defined by P ; —P„a). 

Let a vertex permutation n of the graph G(n;m1,m2, . . . , mk) be called special 
when nan'1 is an automorphism where 

ii + 1 if 1 s i < n 

Proposition 5. Consider a vertex permutation n of G = G(n;m1,m2,...,mk). 
Let us introduce another labelling P / , P2, . . . , P„' of the vertices of G by the equalities 
P[=PnU). If n is special, then G (provided with the new notation) equals 

G(n; TR_ 1(M1 + 7R(M)), 7R_1(7N2 + 7T(N)) , . . . , 7 T - 1 0 ^ + ^ 0 0 ) ) 

where the k sums (after the semicolon) are thought to be reduced modulo n and ordered 
increasingly. If n is not special, then the new notation of vertices does not allow to 
write G as G(n; m1,m2, ..., mk) (for any choice of the sequence {jnx,m2, ..., mk). 

Proof. Let n be special. This means that ncm~x is an automorphism. The deduc-
tions n(Pi)=PJl(0=Pi' and 

roxn-HPi) = na(P,) = n(Pi+1) = P'i+1 

show6 that rom-1 acts in the same manner as a in the sufficiency proof of Proposi-
tion 1. There are evidently k edges incoming to P^(—Pn(n)), these edges are 
outgoing from the vertices 

^>n(/i) + m1 -̂ >7i"1(7r(rj) +mx) 5 -̂ 7i(H)+m2 ^ " 1 (it(n) + m2) ' » ^n(n)+mk
 = Pn~1 (it(n) + mk) 

where the sums are meant mod« . 
Conversely, suppose that n is not special. There is a pair (PhPj) such that 

exactly one of the edges P ; P, and (nan*1 (Pi))(nun~1 (P,)) exists. We have the 
equalities 

Pi = P71 -1 ( 0 ' Pj — PK-^U) ' 

N A N - H P ̂  = 7TA(P X - I ( 0 ) = 7T(P1+n-. (0) = Pi + I t - i ( i ) , 

Ttoui-^Pj) = P x ' + n - i a ) 

(the subscripts have sometimes to be reduced mod n), thus the fully cyclic permuta-
tion P/— P,'+i is not an automorphism. • 

Proposition 6. The graphs G = G(n;m1,m2, ...,mk) and G' = G(n; m[, m2, ..., 
mk) are isomorphic if and only if there exists a pair (n, Q) satisfying the following 
three properties: 

6 The reader may neglect this § unless he is particularly interested in Problem 4. 
' We omit the separate treatment of the case i=n. 
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n is a permutation of the set {1, 2, ...,«} and — as,a permutation of the vertex 
set of G — 7i is special, 

Q is a permutation of the set {1,2, . . . , k], 
tlie congruence 

7i(m'eih)) = mh + n(n) (mod n) 
holds for each h (l^h^k). ' 

Proof Let p be an isomorphism of G onto G', denote by y the mapping of 
the vertex set of G onto the vertex set of G' satisfying y (P , )=Pi (1 ^i^ri). We 
introduce new notations P'i,P2, ..., P„" by the formula P(Pl')=P{, we can now 
write also G in the form G(n; m[, m'2, ..., m'k). Proposition 5 is applicable (with 

in the role of ri). 
Assume the existence of N and Q that satisfy the conditions. Proposition 5 

assures that G can be made isomorphic to G(n;m'1,m'2,...,mk) by introducing 
the notations P{' = Pn{i) (1 SiSre). • 

PROBLEM 5. Let a method be given which, for an arbitrary graph G = 
= G(n;m1,tn2, mk) gives a survey of all (different) systems 

{ n ^ ^ + nin)), n~1(m2 + n(n)), ..., 7 I _ 1 (M T + 7T(N))} 

where n runs through the special permutations of the vertex set of G and the sums 
are meant modulo n. • 

By virtue of Proposition 6, a solution of Problem 5 would imply the solution 
of Problem 4. 

§5. 

We study finite directed graphs without loops and pairs of parallel edges (with 
coinciding or opposite orientation). We denote by M(G) the. lenght of a shortest 
cycle of the graph G. If the number k satisfies7 2^k<M(G), then we assign a new 
graph 2l t(G) to the graph G in the following way: 

the vertex set of 2lfc(G) equals the vertex set of G, 
the edge AB exists in (G) if and only if (A^B and) there is a path in G 

from A to B the length of which is smaller than k. 
2(G) is G itself. If G is a cycle of length n, then <&k(G) = G(n; 1, 2, ..., k - l ) 

where the right-hand side is to be understood as in § 3. 

Proposition 7. If G is a subgraph of H (with the same vertex set as H), then 
there exists at most one number k fulfilling %k(G)=H. 

Proof Let-H equal 2l t(G) for some k. Denote by Ax, A2, ..., AM(G) the vertices 
of a shortest cycle of G (in the natural ordering). Suppose 2 ^ / c ' < M ( G ) and k'^k, 
denote by k" the larger of k and and k'. The edge AM(G)Ak„ exists in precisely one 
of 2I*(G) and 3Tt.(C), thus Wk(G)^W.k,(G). • 

7 The letter k is now used in another sense, than in the previous sections. 
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Let C be a class consisting of directed graphs. Then we denote by 91(C) the 
class of all graphs 2ift(G!) where G runs through the members of C and, for any 
G, k runs through the numbers satisfying 2^k~<M(G). 

By virtue of this definition, every member H of 91(C) has at least one subgraph 
G(£C) such that <Hk(G)=H for some k. C is called a decomposition class if every 
member H of 91(C) can be represented with exactly one G(6C) in the form 9I t(G). 

Proposition 8. The class C consisting of all cycles is a decomposition class. 

Proof. Let A be a vertex of a member H of 91(C). Denote the outdegree of 
A by Q(A) and the set of end vertices of the edges outgoing from A by A (A). Then 
Q(A) is common for the vertices of H and — denoting it by Q — \<R(A)\ = Q. 

Let G be an arbitrary cycle such that 91 k(G)=H. It may be seen easily that 
Q=k—1, furthermore, 

\a{A) PI a{B)\ = jfc-2 

if A and B are adjacent vertices in G but8 

\cr(A) fl o(B)\ ^ k —3 

for any other choice of A and B (A^B). 

We have reconstructed the pair (G, k) in terms of H only. • 

Let the notion of (/?)-graphs be recalled (see § 1). 
PROBLEM 6. Prove or disprove that the family of (fi)-graphs is a decomposition 

class. 
This problem was raised in § 4 of [3] as Conjecture 3 together with some related 

conjectures. . 
Problem 6 is a particular case of the subsequent question (of rather heuristic 

than exact nature): 

PROBLEM 7. Let us determine 
decomposition classes, comprehensive 
as far as possible, among the finite 
directed graphs. 

§6 . 

A graph G is called cyclically 
simple if the intersection of any pair 
of different cycles of G is (empty or) 
a path. The graph on Fig. 3 is not 
cyclically simple because the inter-
section of the cycles (.ABDEF) and 

<7 

Fig. 3 

8 We utilize here the fact k-=n where n is the length of G. 
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.(ACDEG) consists of two paths (of lenghts zero and one, resp.) being not connected 
with each other. 

The future development of the methods of analyzing directed graphs struc-
turally, with a particular emphasis to their cycles (see [3], [4], [5]), will perhaps 
enable us to make remarkable attacks towards the following general research di-
rection : 

PROBLEM 8. Let the structure of all cyclically simple graphs be described. 
I note that [5] terminates with an open question. This problem is somewhat 

particular, this fact and the lengthiness of the. previous definitions (before all, the 
B-constructibility) do not permit to recapitulate it here within reasonable size. 

§7.9 

Let V be a finite set and / 

§ = № , 4 . . . , ^ , } ' ( i s l ) 

be a family of subsets of V. The pair (V, § ) is called a hyper-tree if the following 
four conditions are fulfilled: 

( A ) H1\JH2U...UHT=V, 
(B) | # ; | S 2 for each i (ls/^i)» 
(C) \HiC\Hj\^ l whenever 1 
(D) to each pair (/, j) (where 1 there exists precisely one sequence 

. i = ¿o> h> h> •••> >m-) ( m = ! ) 

satisfying the properties (i), (ii): 
(i) z'0, it, ...,im are pairwise different numbers chosen from the set {1, 2, ..., r}, 

(ii) H, C\HT whenever 1 S p S m . 

Let some evident consequences of the above definition of hyper-tree be stated. 
H i%Hj if i ^ j (by (B) and (C)). The intersection in (ii) has exactly one element 
(by (C)). If 2=sp + l t h e n HIP C]HLQ is empty in (D) (by the unicity of the 
sequence). 

The elements of V are called the vertices of the hyper-tree, the nembers of 
§ are the hyper-edges of it. . 

CONSTRUCTION. The construction consists of three steps. 
S tep 1. Let a hyper-tree (V, § ) be considered. We assign to any vertex A(£ V) 

an (ay)-graph V(A). At the beginning of the procedure, V(A) and v(fi)^are viewed 
to be disjoint if A, B are different vertices. 

S tep 2. Let N(A, HT) be a mapping such that 
(a) N is defined on the set of pairs V), / / ¡ (£§) such that A £ HH 
(b) the value of ¡¿{A, HI) is a vertex of v(/4), and 
(c) i . ^ j implies FI(A, H^^FI^A, HJ) (where, of course, A^H^HJ). 

9 This § is addressed only to readers'interested in Problem 1 or how graphs are built up from 
their blocks. 

2 Acta Cy berne tica III/3 
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Step 3. For any / / , (€§) , let us identify all the v e r t i c e s / / ¡ ) with each 
other (A runs through the elements of //,). Denote the resulting graph by G. 

The description of the Construction is completed. 

In Step 3, any v(A) is embedded into G. We denote by v*(A) the result of this 
embedding. The graphs v*(A) are not necessarily disjoint, unlike the v(^)'s. 

Proposition 9. Let P be a vertex of the graph G (constructed above). P is a cut 
vertex of G if and only if there is a //;(£§) such that P is the result of the identification 
of the vertices fi(A, i/,) (in sense of Step 3). 

Proof. We use the following characteristic property of cut vertices: P is a cut 
vertex if and only if there exist two vertices Q, R such that Q and R are adjacent 
to P and every chain between Q and R contains P. 

Necessity. Suppose that P has not been produced by identification. Then P 
is a vertex of some (well-determined) v*(A) and any vertex adjacent to P (in Gf 
is in the same v*(A). v*(A) is an (ay)-graph, hence it has no cut vertex. For every 
choice of Q and R, these vertices may be connected by a chain within v*(A) which 
does not pass through P; the same holds obviously in G, too. 

Sufficiency. Assume that P originates from identification. Let us choose two 
elements A and B of . There is a.vertex Q in v*(A) and a vertex R in v*(B) such 
that they are adjacent to P, i.e. they can be connected by a chain aY whose vertices 
are Q, P, R (in this ordering). Suppose that there exists a chain a2 (in G) which 
connects Q and R and does not contain P. The union of a± and a2 is a circuit a. 
Passing along a and considering the common vertices of the subgraphs of type 
v*(A), we can form a sequence 

Hh,Hh,...,H^ (w^2) 

of some members of § such that every pair of neighbouring members of the sequence 
is a pair of distinct and non-disjoint elements, moreover also Hh and //¡w have 
an element in common. If w>2, then this contradicts the condition (D) in the 
definition of hyper-trees. The case w=2 is impossible by (C). • 

Proposition 9 implies immediately 

Proposition 10. The blocks of G coincide with the subgraphs v*(A) where A 
runs through the elements of V. • 

Proposition 11. Every graph produced by our Construction is an (<x)-graph 
and all (d)-graphs can be represented in this manner. 

Prpof. Any circuit (and, particularly, any cycle) of G is entirely included in 
some v*(A), thus the Construction leads to an (a)-graph if all the v(k)'s were (ot)-
graphs. 

Conversely, consider the blocks of an (a)-graph G. Every block is an (ocy)-
graph. If 

we assign an element A to any block, 
V denotes the set of the A's (| V\ is the number of blocks), 
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we assign a H t to the situation (whenever it occurs) that the same vertex of 
G occurs in two or more blocks, arid 

§ denotes the family of Ht's ( |§ | is the number of cut vertices of G), 
then the conditions of the Construction are obviously satisfied. • 

Remark. In this § we have utilized only very few properties of the (a)-graphs. 
Let us consider an arbitrary class of connected graphs (directed or non-directed) 
— say, the (z)-graphs — such that a graph G is a (x)-graph precisely if each block 
of G is again a (t)-graph.10 Then the connection of (t)-graphs and (xy)-graphs can 
be described analogously to the previous treatment. 

II. Problems on the functioning of networks 

§8. 

By an autonomous continuous automaton we understand in the sequel a partial 
function <p(x, t) fulfilling the seven conditions as follows: 

(i) x runs through the elements of a set X, 
(ii) t runs through the non-negative real numbers, 

(iii) each value of (p is an element of X, 
(iv) for any fixed x(£X), either <p(x, t) is defined-for every t or there exists 

a bound 6X(=0) (depending on x) such that cp(x,t) is defined precisely when 
0 ^t^bx, 

(v) (p(x,0)=x if the left-hand side is defined (i.e. if bx>0), 
(vi) whenever xp(x, 0) is defined, then there exists an /"x(>0) (depending 

on x) such that either _ 
0<t^rx implies (p(x,t)=x or 
0 < t ^ r x implies (p(x, t^T^.x, 

(vii) the equality 
(p(x, h + td = cp(cp (x, ¿2) (8:1) 

is required for every triple x(£X), t1(^0), t2(~0) (in such a sense that either both 
sides of (8.1) are defined or none of them). 

Now we turn to a heuristical explanation of what the definition of autonomous continuous auto-
mata expresses. The second variable t of <p is interpreted as time. The first variable x corresponds to 
the possible states of a system (working in time). The function rp itself has the following meaning: 
whenever the system is in a state x at the initial instant 0 and the function value q>{x, t) is defined, then 
the system will take the state <p(x, t) at the instant t. (The case when rp(x,l) in undefined means that 
our mathematical model is unable to say what will be the state of the system at t.) 

In (iv) three possibilities are allowed, namely, either bx is 0 or bx is a positive real number or 
bx does not occur. The situation bx=Q means that, at least in sense of the mathematical treatment 
of the system's behaviour, the system is not capable to take the state x. (In the following §§ this 
will arise when the edge PQ exists in a graph, and the state x attributes the value 1 to P and a value 
lying in the interval11 (0, 1] to Q.) If a positive bx exists, then our mathematical apparatus 

10 Of course, the blocks are (ry)-graphs. 
11 By (0, 1] the set of instants t fulfilling 0 1 is denoted. 
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describes the functioning of the system not longer than within a time interval having a finite 
(positive) length. When bx is not defined, then our model is able to prognosticate the system's 
states for every future instant. 

The aim of the condition (vi) is to exclude the automata whose functioning is very irregular. It 
does not permit the occurrence of the following (abnormal enough) situation: for any positive r 
(however small it be!) there exist two instants t, t' in the interval (0, r] such that the state of the system 
at t is x and its state at t' differs from x (i.e., roughly speaking, the state x is densely mixed with other 
state(s)in the neighbourhood of the initial instant). — Such situations can scarcely arise in the work 
of real systems, but they are logically imaginable. 

Condition (vi) is rather of technical character; in contrast with this, (vii) expresses an important 
characteristic feature of the considered automata. The notation <p(x, t) (containing no symbol deno-
ting effects which come from outside!) is interpreted that the automaton works autonomously; in 
addition to this, (vii) postulates that the laws of its functioning do not change with time, in other 
words, the distinguished role of the initial instant is abolished and t may be viewed as the length of a 
time interval (situated anywhere in the non-negative semiaxis). (We can also say, on the basis of 
(vii), that the system neither oldens nor learns.) 

In accordance with the above intuitive considerations, we introduce the follow-
ing terminologies. The elements of X are also called states (of the automaton A, 
to be defined later). The variable t is interpreted as time, thus its values are called 
instants. If <p(x, 0) is defined, then x is called a permitted state. The condition (vi) 
is said the quasi-continuity of <p, (vii) is said the homogeneity of <p in time. 

A pair A = ((p,x0) is called an initial autonomous continuous automaton (or, 
for the sake of brevity, an initial automaton) if <p is an autonomous continuous 
automaton and x0 is a (fixed) permitted element of X. We call x0 the initial state 
of A. <p(x(j, t) is said the state of A at the instant t. 

If x is a state of q>, then we denote by Hx the set of positive numbers t() satisfying 
<p(x, t0)=x. — We write also shortly H (instead of Hx) when only one state is 
considered. If some states x2, ... are viewed, then the simple notations H2, ... 
may be used (instead of HXl, HX2,..., resp). Similar simplifications will be used 
for other quantities depending on states too. 

Proposition 12. If x is a state of the autonomous continuous automaton cp such 
that Hx is neither empty nor the set of all positive numbers, then Hx contains a smallest 
element px. 

Proof. Suppose that H is not empty and (the existence of smallest element 
does not hold, i.e.) for every t0(€H) there "is a tx satisfying both 0 < < a n d 
ty$_H. Our aim is to show that every positive number belongs to H. By iterating 
the step of determining t l t we get an infinite decreasing sequence 

'o > h > h > t3 > ... 

consisting of elements of H. The difference di=tl — ti+1 converges to 0 if / tends 
to the infinity. We have 

<P(*, dd = <P{<P(x, ti+l>, di) =(p(x, ti + 1 + dd = <p(x, i;) = x 

(since (p is homogeneous in time) for each i, thus there exists an r such that 
(p(x,t)=x whenever 0 < / s r (by the quasi-continuity of cp). 
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•v 

Let now t* be an arbitrary positive number. There is an integer u and a (real) 
number v such that t*—ur+v and O s c < r ; hence 

(p(x,r) = x, . 

<p(x, 2r) = (p(<p(x, r), r) = (p(x, r) = x, 

(p(x, ur) = (p(<p(x, (u 1)R), r) = (p(x, r) = X, 

(p(x, t*) = cp(x, ur + v) = cp(<p(x, ur), V ) = <p(x, v) = X , 

this means t*£H. • 

In the set of 'permitted states of an autonomous continuous automaton, we 
introduce the (binary) relation a as follows: u(x,y) exactly if there exist two non-
negative numbers tls t2 such that <p(x,t1)=y and (p(y,t2)=x. It is obvious that 
tr is reflexive, symmetric and transitive, consequently the set of permitted states 
splits into equivalence classes modulo a (called a-classes). A c-class is said trivial 
if it consists of one element only. 

If (p(x, t) (is meaningful and) equals x for every non-negative t, then x is called 
a steady state. Any steady state forms a trivial cr-class (but the trivial er-classes are 
not. exhausted in this manner). If the cr-class containing x is non-trivial, then we 
say that x is a properly periodic state12 and its period is px. x is periodic if it is either 
steady or properly periodic. 

The behaviour of an initial automaton whose initial state x0 is steady is trivial. 
If x0 is properly periodic, then the behaviour may be derived from our next statement: 

Proposition 13. Let K be a non-trivial o-class of an autonomous continuous 
automaton. Then the following five assertions hold: 

(I) (the period px is common in K, i.e.) there exists a positive number pK such 
that px=pK for every x(f_K), 

(II) whenever x^K and then <p(x, t*) (exists and) belongs to K, 
(III) whenever x and y are arbitrary elements of K, then there exists one and 

only one instant t fulfilling both Os'i^ and <p(x,t)=y, 
(IV) whenever x^K and t*^pK, then cp(x, t*)=(p(x, v) where v is the single 

number determined by the inequalities 0 ̂ v<pK and the condition that (t* — v)/pK 
is an integer, 

(V) the cardinality of K is continuum. ' 

Proof. (I) Choose two arbitrary elements x,y of K. Since q>(x, t^—y is satis-
fiable with some /1;-we have 

<P(y> Px) = <P{<P(X, h), px) = <p(x, ti + px) = <p((p(x, px), tj) = <p(x, /J = j; 

hence py^px. A symmetrical inference shows that px=py- Hence px is the same 
for every choice of x in K. 

12 Proposition 13 will justify this terminology. 
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(II) Let u, v be two numbers such that t* = upx + v, 0 = o<p x and u is an in-
teger. An easy induction shows that <p (x, upx) (exists and) equals x for every u (sim-
ilarly to the final part of the proof of Proposition 12). Moreover, 

<p(x, t *) = ip(x, upx + v) = <p((p(x, upx), v) = (p(x, v) 

(where <p(x,v) is necessarily meaningful!) and 

<p(cp(x, t*), px-v) = q>(cp(x, v), px-v) = <p(x, v + px-v) = cp(x, px) = x, 

consequently, x and <p(x, t*) are in the same c-class. 
(III) We have <p(x, t*)=y with some t*(^0). The number v, seen in the 

preceding section of the proof, is a convenient v. We are going to show the unicity 
of t. Suppose (contrarily to this) that cp(x, t)=<p(x, t')=y where 
hence 

<P(x,pK+t-t') = <p{<p(x,t),pK-t') = 

= <p((p(x,t'),pK-t') = (p(x,t' + pK-t') = cp(x, pK) = x, 

this equality and the obvious inequalities 
0<G>K~t'-z)PK + t~t'< PK 

contradict the definition of px. 
(IV) This assertion was already verified in the proof of (II). 
(V) If x is fixed, then (III) establishes a one-to-one mapping between the ele-

ments (denoted by y) of K and the numbers being in the interval [0, pK). • 

Now we turn to the behaviour of an automaton when it starts with a non-
periodic state. 

Proposition 14. Let an autonomous continuous automaton be considered. Suppose 
that a permitted state x of it is not periodic. Then exactly one of the subsequent two 
assertions is valid: 

(A) The states q>{x, t) are pairwise different as far as they are defined (the bound 
bx may or may not exist). 

(B) There is a number <^(^0) such that 
(i) for all choices of t such that t>cx, the states (p(x,t) are (defined 

and) periodic and moreover, they belong to a common a-class K, 
(ii) for the choices of t such that 0^t<cx, the states (p (x, t) are non-

periodic and pairwise different, moreover, any of them differs from (p(x, cx), and 
(iii) if ( c x >0 and) (p(x, cx) is a periodic state, then it belongs to the class 

K mentioned in (i). 

Proof. Assume that (A) does not hold, i.e. there are two instants tx, t2 such 
that ( ( )<) / !< i2 and <p(x, /1)=<p(x, /2). We want to show that all statements of 
(B) are true. 

Case 1: there is a t' such that t x < t ' a n d <p(x> t')?±(p(x, tj). In sense 
of the formulae <p(<p(x, tj), t' — t1) = cp(x, t'), cp(<p{x, t'), t2 — t') = q>(x, t2) = cp(x, ix), 
<p(x, tj) and cp(x, t'j are in the same u-class K, hence they are properly periodic. 
Denote by / ( ^ 0 ) the set of all instants t* fulfilling cp(x, t*)£K. Proposition 13, 
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(II) implies that J is an interval of form (cx, or [cx, where cx is the infimum. 
o f / . The statements (i), (iii) are obvious, (ii).can be verified easily by indirect method 
(namely, supposing that t1; t2 may be chosen so that tx<t2<cx, we get a contradic-
tion with the definition of cx). 

C a s e 2: <p(x, t')=cp(x, tx) whenever t' is between tt and t2. It is clear that 
<p(x, ij) is a steady state. If we denote now by J the set of instants t* fulfilling 
(p(x, t*)=cp(x, tx), then J and its infimum cx will again satisfy (i), (ii), (iii). • 

A (non-periodic, permitted) state is called aperiodic or pre-periodic if it satisfies 
assertion (A) or assertion (B) of Proposition 14, respectively. The number cx is 
called the length of the pre-period. An aperiodic state x is called bounded aperiodic 
or boundless aperiodic depending on the existence of the bound bx. Table 1 shows 
the hierarchy of the notions introduced for states. 

PROBLEM 9. Analyze how the periodicity properties are modified if some of the 
conditions (i)—(vii) is replaced by a weaker one. 

(E.g. we can suppose, instead of (ii), that t varies on a totally ordered set T, 
the cardinality of T may differ from the continuum.) 

properly periodic 1 . ,. 
steady } P e n o d l c 

pre-periodic 
boundless aperiodic 1 . ,. I non-periodic 
bounded aperiodic } aperiodic 

permitted 

Table 1 

Remarks. In this § we have considered automata whose functioning starts 
with an instantaneous initial state. The somewhat modified notion when the be-
haviour in an interval of positive duration is regarded to be the starting condition 
has been studied by Konikowska [15].. 

It is worthy of mention that the behaviour of autonomous systems of diffe-
rential equations has certain similarities to the above results (see [17], § 15). 

§9. 

By a network we understand a triple (G, I , (p) such that 
(1) G is a finite directed graph whose vertices are denoted by Plt P2, ..., P„, 
(2) I is a subset of the set of real numbers, 
(3) the set of all mappings x of the set {-Pt, P2, • • •, P„} into E is denoted by 

X, and 
(4) (p is an autonomous continuous automaton, the set of states of cp is X, 

the function (p is given in terms of thé graph structure of G. 
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By virtue of the above definition a state of the network in question is denoted 
as a vector 

(x{PJ,x(PJ,...,x{Pj). (9 .1 ) 

For the sake of convenience, we write the simpler notation 

( x l 5 x 2 , . . . ,x„) (9.2) 

instead of the vector (9.1) and we identify the mapping x to (9.2). 
Thus (p(x,t) may be decomposed into « functions 

ct1(x,t),x2(x,i), ...,<x„(x,t) (9 .2 ) 

where a ;(x, t) is the ¡'-th component of the vectorial form of the state13 cp(x, t). 

This means that if x, is the state of the vertex Pt of the network at some instant ta (for any i, 
1 S i s n ) and we use the symbol x for thé sequence (JC, ; .r 2 , . . . , x j , then a,(x, t) denotes the state 
of some Pt at t0 + t. 

§ 10. 

Now we define a particular type of networks which will be called simple net-
works in the sequel14. This notion arises (by abstraction) f rom the networks studied 
in Chapter 2 of [14]. Let G be a graph (without loops and multiple edges). Let S be 
the closed interval [0, 1] (i.e. the set of real numbers y fulfilling 0 s j > ^ 1 ) . Let 
the positive number T, called recovery time (of the vertices), be characteristic for 
the network (T is the same for each vertex). The function <p is. determined by the 
subsequent four rules (in which {>>} is defined by 

f y if 0 r: .v < 1 
{ y } = = \ o if y = 1 . 

and Qx denotes the maximum of the values {x^, {x2}, . . . , {x„}): 
(1) a state x is permitted if and only if the equality x ; = l and the existence 

of the edge /¡jP, imply x,-=0 (for any i, j where l^i^n, l^j^n), 
(2) if x is a permitted state and 0 < / < ( l — QX)T, the we define 

(p(x,t) = (z1,z2,...,zn) 

13 The functions ^(x, t) are not autonomous continuous automata. (Indeed, let us recall the 
definition of autonomous continuous automata in § 8. If the set of states of the entire network is 
denoted by X, then (iii) is not satisfied; if X denotes the state of a single vertex, then (i) is not ful-
filled.) — We avoid the notation of type a, (Ar„ t) since' it lacks to be a function (because there are 
interactions among the vertices; hence a, (x, t) may depend on each of x-i, xt,..., x„, not only on x,). 

u The reader who is interested in this subject may find a more detailed explanation 
in [2] (mainly in Section 3). A short summary of the definition is contained also at the beginning 
of § 6 of [3]. 
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in the following manner: 

1 if x, = 1 
^ _ 0 if there is a j such that PjPi exists and Xj=\, 

x,-+— otherwise, 
T 

(3) if x is a permitted state, gx>-0 and there are two subscripts i, j such that 
PiPj exists and x—xj—q x , then <p(x, (1 — qx)t) is undefined, 

(4) if x is a permitted state, Qx > 0 and the assumption in (3) does not hold, 
then we define . • 

<p{x,(\-Qx)t) = ( z 1 , z z , . . . , z n ) . 

in the following manner 

10 if there is a j such that PjPi exists and 
ZI—\ one of the equalities XJ—Qx, Xj— 1 is true, 

. (min ( l , X;+1 — otherwise15. . 

It can be verified that we have defined an autonomous continuous automaton 
q> (among others, either the value (p(x, t) can be determined or the fact that <p(x, t) 
is not defined can be stated consistently by successive application of (1)—(4) for 
an arbitrary choice of the state x and . the non-negative instant t). 

Our next aim is to clear up the intuitive basis of the above definition. The vertices of the network 
represent (idealized) neurons, the edges of the network are inhibitory connections. Each neuron is (at 
an instant) either in inhibited state or in firing state (denoted by 0, 1, resp.) or in the so-named reco-
very state16 (being between these extremities). The inhibition is understood in such a manner that if a 
neuron P is in firing state and the edge PQ exists, then Q is in inhibited state. There is a permanent 
"background effect" manifesting itself in such a way that a neuron, being in recovery state, strives 
to be firing (unless, of course, it will be inhibited by another state in the meantime), and a firing 
neuron remain:', in firing state (till it gets an inhibition). The inhibition is produced instantaneously 
(and, more precisely, right-continuously), the duration of a full recovery phase (beginning with an . 
inhibited state and leading to a firing state) is r, this duration does not depend on which of the neurons 
is considered. If two neurons, connected with each other, reach the firing state at the same instant, 
then the behaviour of the network is studied no more. Let the state of a neuron, being in recovery 
state at an instant t, be considered; if the neuron is in recovery phase since a duration of length f„, 
then its state is denoted by t0/r (clearly 0 < /0/r-= 1), hence the firing state 1 will be reached conti-
nuously at the instant t + x—10 (except when the recovery phase is interrupted by a new inhibition) 
(see Fig. 4). 

16 The definition of QX implies that x, + 1 - QX > 1 if and only if x f = 1. 
18 The terminology "recovery" occurs in another, sense in the literature, too, than its 

meaning in the sequel. 
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Fig. 4 

It is shown in Sections 4—5 of [2] that the functioning of such a network happens 
in discrete steps substantially, and the essential instants can be calculated from 
the initial state. It follows from the treatment that no boundless aperiodic state 
occurs in this type of networks. A matrix 

n n .. 17/0 
• Xq + 1 

n n • • • + 1 

S T •• 
17fm • q + 1 

(having an infinity of rows) is there considered whose entries are sets of vertices 
(corresponding to the smaller or larger values of «¡(x, Tm) where x is the initial 
state and Tm is the m-th essential instant), and rules are stated how the entries of 
the m-th row may be expressed in terms of the entries of the (m — l)-th row. The 
following three problems are mentioned in the last section of [2] : 

PROBLEM 10. Express the entries ..., of ( 1 0 . 1 ) in terms of the 
entries f g , f J, ..., by formulae which are closed as far as possible. 

PROBLEM 11. Describe the periodicity properties of a network (starting 
with an arbitrary initial state) by use of the matrix (10.1). 

PROBLEM 12. Characterize the graphs G possessing the stability property 
that whenever x and y are periodic or pre-periodic. states, then there exist t and t' 
such that <p(x, t) = cp(y, t'). 

(Obviously, Problems 10 and 11 are closely related to each other.) 
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§ 11. 

It seems that from various considerations (belonging not to mathematics but 
to more or less experimental sciences) it is imaginable to derive various network 
types. In [2] it was elaborated only in one special case how some concrete type 
of networks can be introduced and analyzed. 

Among the diversity of possibilities, we turn now to the network type, suggested 
by Chapter 3 of [14] where they are called "complex networks". We are going to 
give a definition of these networks that uses mathematical tools (analogously to 
how the network notion appearing in Chapter 2 of [14] was abstractly defined in 
Section 3 of [2]). (The motivation will be given at the end of thé §.) The definition 
consists of four parts. • 

(I) The graph G contains 2n vertices which are presented in a matrix form: 

P, P, ... P„"1 

a a - . . . J - < 1 U ) 

The n edges PiQx, P2Q2, •••, PnQn are always present in G, every other, edge 
of G starts from some Qi-

(II) Z consists of the real numbers a satisfying either O s a ^ l or a —2. 
(III) A state • 

__(x{P1) x{Pe) ... x(-PJ) (xx x2 ... x„) .. • 
X ~ U ( ! 2 i ) X(Q2) ... x ( & , ) J . ~ U - J ( ' 

is permitted precisely when 
(a ) x19i2,x2^2, ...,xn^2, 
(b) x—l implies z ^ l , 
(c) z; = 2 implies x~l, 
(d) z—2. and the existence of QiPj imply Xj=0, and 
(e) Zf—2 and the existence of QiQj imply z} = 0. 
Before exposing the final part of the definition, we agree that two (fixed) positive 

real numbers zx , Tz are characteristic for the activity of the network, and we introduce 
some notations (concerning (11.2)). Let <r be the minimum of the positive numbers 
among the 2n quantities 

tx(1 -*i)> T,(1 -x2), ..., Tx(1 -x„), T z ( l - z j , T2(1 - z 2 ) , ..., Tz(1 -zn). 

rp is the set of subscripts i fulfilling xf = l . r«-2 and r ? > 1 are the sets of ¡"s satisfying 

Zj=2. or zf = 1, respectively. Ap and Aq are the sets of Vs for which x ; = l — — or 

z ; = l — — hold, respectively.17 If ¥ is an arbitrary subset of {1,2, .. . ,«}, then 

let zp{¥) be the set of those P ; ' s for which QjP, exists in G with a suitable ./(£ f ) . 
The set Xq(Y) (consisting of some Q t 's) is similarly defined (with Qj Qt). 

17 If tx or r^equalscr, thsn th; dsfiaitiois of Ap or J" must be somewhat modified. Thismay 
be left to the reader (for an analogy, see the definition of Ak and Footnote 4 in [2]). 
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(IV) Now define the values of the entries of the matrix 

f « i ( * i > 0 a 2 ( * 2 , 0 
<p(x, t ) = 

. . . «„(*, , , O Ï 

where x is the same as in (11.2) and t satisfies (separately) 0 
the following way: 

[a] if /<<7, then 
0 if Pi€xp(rq , z) , 

(T or t=a in 

<*i(xi> o = • 
i if i e r p 

x , + — otherwise, 

0 = 

(o if Q i ix^ r«*) 
1 if i t r«- 1 

2 if içr*-2 . 

[b] for t=a: 

Z;-l otherwise, 
T, • 

CT) = < 

0 if P t € X p ( J ' n J < ) 
1 if i e r " and P;<txp(Apn/1«) 
1 if A' 

x , + — otherwise 

tf) 

(0 if fte^'ru«) • 
1 if i e r « ' 1 - ( r * U and 

• e . - ^ o d m ^ ) 
2 if i e ^ ' n i r p u ^ " ) 
2 if ¿<E(r«'2Ur«'1)n(r*LUp) and 

e . c ^ n ^ ) 
z, + — otherwise. 

It may happen that this definition of a,(x;, er) or yf(z;, a) is not consistent 
(because the first and third conditions in both definitions do not exclude each other 
in general). If such a contradiction arises, then we do not define q>(x, t) for the 
instants that are S<r. 

If the values xt (x f, a) and y ¡fa, a) are meaningful, then the definition of <p 
can be continued such that 0 is replaced by A and some instant G'(XT) will play 
the role of a. This may be continued piece-wise till the infinity unless a contradic-
tion is sometimes produced (in the manner seen above). 

PROBLEM 13. Let the network type introduced in this § be studied, let the 
analogies and dissimilarities to [2] be discovered. 



•o 

excitatory connections. ^ 

•> ! inhibitory connections 8 

Fig. 5. A complex network. 
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Since the above definition of complex networks is awfully intricate, the reader may expect 
eagerly the usual elucidating considerations. The present notion is a modified (and, we can say, im-
proved) version of the simple networks (in § 10). There are two types of neurons (denoted by f s 
and Q's with subscripts, resp.) and the neurons constitute pairs of form (P¡, £?,). The edges of form 
PiQt express excitatory connections, the remaining ones (each starting from a Q¡) express inhibiting 
ones. The inhibited state is denoted by 0 and the recovery state is by numbers in the open interval 
(0, 1) (without any change). In contrast to the simple networks, now two kinds of firing state are de-
fined for the vertices Q,, they are denoted by the numbers18 1 and 2 (for the P¡ s only the firing state 
1 is permitted). A neuron Q, is in the state 2 if and only if both of Q, and Pt have finished a recovery 
phase (and they did not get inhibition in the meantime). If Q¡ is in the state 1, then Q, does not really 
produce an inhibiting effect (but it is ready to produce the effect instantaneously when it gets an 
excitation from its pair P(). The "background effect" acts similarly to the simple networks (but this 
effect alone is unable to produce the state 2 for a Q,). The recovery durations xx and T, (for the P,'s and 
Qi's, resp.) may differ from each other. The detailed prescriptions in (IV) are elaborated in analogy 
with Section 3 of [2]. Finally we specify the meaning of some formulae in (IV). xP (P"'2) is the of P,'s be-
ing inhibited by a Q, at the initial instant 0. xP(A TM") is the set of P,'s for which an inhibition setsin 
at the instant a. rg,1 — (rpUAp) is the set of subscripts / such that (1) the state of Q¡ was 1 during the 
interval [0, a) and (2) the state of.jP, does not reach 1 at a. / l T \ ( r p U 4 p ) is the set of i's such that 
(1) the state of Q, converges to 1 (from below) if t approximates a (from the left) and (2) the state of 
P, reaches 1 at a. ( f ^ l i rq<1)C)(rp{J Ap) is the set of i's such that (1) the state of Q, is 1 or 2 during 
[0, a) and (2) the state of P, reaches 1 at a. 

III. On the interconnections between structure and function 

§ 1 2 . 

The exact mathematical treatment of the behaviour of networks dealt with 
in Chapter 2 of [14] has been done in the article [7]. We applied in [7] the considera-
tions of [2] to the more particular type of networks whose structure is G(n; 1,2, ..., k) 
with some n and k where « S 3 (cf. § 3 and § 10 of this paper); this spe-
cialization enables us to deduce more explicit assertions on the behaviour in com-
parison to the case when (in [2]) we did not restrict ourselves to any special graph 
structure. 

We have introduced in [7] the notion of regular state in terms of certain equalities 
and inequalities between the values xlt x2, •••, xn. The main consequences are: 

any regular state is periodic and its period is a divisor of the number19 

l"^ (if ^ is properly periodic), 

any non-regular state is either'pre-periodic or bounded aperiodic and — respec-
tively to these cases — the corresponding number cx or bx does not exceed 2r. 

§§ 6—8 of [3] have been devoted to an extension of the results of [7] to the 
networks the structure of which belongs to the. graph class 31 (Cp) where C¡, is the 
family of (jS)-graphs (see § 1 and § 5). It was proved that — after a suitable defini-

18 The occurrence of the isolated number 2 in (II) means that we have given up certain conti-
nuity properties of the mathematical model. 

19 [a, b] denotes here the least common multiple of a and b. We say that a is a divisor of b if 
ac=b with some positive integer c (a and b are not necessarily integers). The word "period" is now 
meant as it was defined in § 8. (This is the same as "smallest period"in the terminology of the previous 
articles. Other changes in the terminology are that we say now "periodic" and "non-periodic" in-
stead of "cyclic" and "acyclic", resp.) 
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tion of regularity — each regular state is periodic; I did not succeed, however, 
in showing the expected converse of this statement. Let therefore the conjecture 
that terminates the article [3] be recalled as follows: 

PROBLEM 14. Decide whether or not there exists a properly periodic non-
regular state of a network lying in 1[(C/J). 

The next question is of comprehensive nature, it proposes further investiga-
tions in analogy with [7] (the activity of & network is thought again as it was stud-
ied in [2]): 

PROBLEM 15. For network classes corresponding, to various graph types 
affected in Chapter I of this paper, determine the sets of periodic states and the other 
periodicity properties. 

§ 1 3 . 

Let henceforward the network type of [2] be considered. We mention a mathe-
matical formulation of the question how rapidly the effects can be propagated 
in a network. 

Whenever a network and a permitted state x = ( x 1 ; x 2 , ..., xn) of it is given 
and the edge FJP¡ exists, then' we call PjPx a red edge or a green edge accordingly 
to which of x j < x t , x j > x ¡ is true20. For emphasizing the role of x we can speak 
of x-red and x-green edges. 

We say that the independence statement I(r,s,t) holds if 

ot;(x, t) = <x,(y, t) 

is true for every possible choice of G, i, x, y where the occurring symbols have the 
following meanings: 

(i) r and 5 are non-negative integers, at least one of them is positive, 
(ii) t is a positive real number, , 

(iii) (G, E, q>) is a network (as in § 10), 
(iv) the number of vertices of G is denoted by n, 
(v) i is an integer such that l^i^n, 

(vi) x = ( x 1 ; x 2 , . . . ,x„) and y=(yx, y2. y„) are states of (G, I , cp), each 
edge of G is supposed to be red or green concerning any of x, y, 

(vii) any integer j fulfils the condition: either X j = y j or each 
path from P¡ to P¡ (in (?) contains at least r x-red edges, at least r y-red ones, at 
least s x-green ones and at least s y-green ones. 

Conditions (i), (vii) imply x¡=y¡ since X j ^ y j is possible only if the number 
of edges, of an arbitrary path from P j to P¡ is at least / -+ i (>0) . 

We define n(r, s) as the largest number u (possibly possessing the following 
property: the independence statement I(r, s, t) is true for every t such that 0<?<MT. 

20 The edge is not coloured if xt = Xj. 
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PROBLEM 16. Let the function n(r, s) be studied. 

In the particular case s=0, I conjecture n(r, 0) = [—j""] (M denotes here 

the integer fulfilling a - l < [ a ] S a ) . 

Example. Let the graph with the four vertices P1, P 2 , P3, P4 and three edges 
Pi Pa, P2P3 , P^Pi be considered with the initial states x=(0.96, 0.97, 0.98, 0.99) 
and y=(0.95, 0.97, 0.98, 0.99). An easy discussion shows that 

(1) a2(x, 0 = a2(y, t) if t < 0.04t but 

. <x2(x, 0.04T) = 0 5* 1 = a2(y, 0.04T), 

(2) <x3(x, t) = a.3{y, t) if t S 0.04T but e.g. 

a3(x, 0.05t) = 0.01 ^ 0 = a 3 ( y , 0.05r), 

(3) a4(x, t) - oc4(y,t) if t < 1 .04T but 

A4(X, 1.04T) = 0 ^ 1 = a4(y, 1.04T). 

Hence this example implies n(l, 0)^0.04, TT(2, 0)^0.04, n(3, 0)^1.04. 

Remark. It may seem to be curious that red and green edges were distinguished 
in the above definition of n. Now we want to explain why this was done. In fact, 
one can introduce I * f a t ) and n*(q) in an analogous (but simpler) manner; this 
function 7r* is, however, identically zero. E.g. the discussion of the network having 
the edges P1P2, P2P3, P3Pi, P4P5 with the initial states x = ( 0 , 0.98, 0.97, 0.96, 0.95) 
and y=(0.99, 0.98, 0.97, 0.96, 0.95) shows TT*(4)^0.04. 

§ 14. 

Let the so-named complex networks be considered the formalized definition 
of which was contained in §11. 

Suppose that Hp and Hq are non-empty finite sets of positive integers such that 

HpUHq= {1,2,3,...,\Hp\ + \Hq\}. . 

(This equality implies HpC)Hq)~0). Let n, k fulfil n>k=\Hp\ + \Hq\; we denote 
by G(n; Hp, Hq) the graph whose vertices are P l 5 Q1, P2, Q2, ...,P„, Qn and the 
edges of which are determined in1 the following way: 

PiQi exists for every i (1 ^i^n), 
QiPj exists precisely when there is an h(£Hp) such that i—j=h (mod n), 
QiQj exists precisely when there is an h(£Hq) such that i—j=h (mod n). 
Chapter 3 of [14] gives a suggestion for raising the following question: 

PROBLEM 17. Let the complex networks (in sense of [14]J built up over the 
class of graphs expressible in the form G(n; Hp, Hq) be studied (in a manner analo-

. gous to [7]J. 
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IV. On the stochastic behaviour of networks 

§ 15. 

In the network type considered in § 10, the recovery time x was supposed to 
be (common for the vertices and) strictly determined. It may be a better simulation 
of real processes if the value of x is randomly chosen (at every occasion when a 
recovery phase takes place) according to some probabilistic distribution. E.g. the 
following question may be raised: 

PROBLEM 1 8 . Let a (stochastic) analogon of the investigations mentioned 
in § 10 and § 12 be given when x is a logarithmically normally distributed stochastic 
variable (i.e. x — e*. where x' is distributed normally). 
j , 

§ 16. 

Another possibility for probabilistic considerations arises if (x is deterministic 
but) the initial state of a network is not fixed. Namely, let the case be considered when 

(a) the components of the initial state are numbers chosen ' randomly (e.g. 
in sense of the uniform distribution) between 0 and 1, 

(b) the class of all (logically possible) manners of behaviour is partitioned 
to some subclasses K1,K2,... by virtue of some simple properties, and 

(c) we are interested in the probability P(K^) of the event that an initial state 
will lead to a behaviour belonging to K{. 

In § 5 of [7] we have proposed a problem of this type when the graph structure 
of the networks is G(n; 1) and a behaviour is defined to belong to the class Kt if 
it leads to a. regular state with precisely *'(—w/2) vertices being in the maximal 
state 1. 

In §§ 4—5 of the paper [6] an attempt was made for showing how a particular 
problem, being similar to the mentioned type, can be studied. The. following question 
was discussed: 

' (i) we consider the networks built up on finite trees with a- distinguished 
vertex (called root ot the tree) such that every edge is directed towards the root, 

(ii) the components of the initial state of a network are chosen randomly . 
(like in (a)), 

(iii) we separate five types < if the behaviour of the networks (each starting 
from an initial state) according tc> which of the following statements are fulfilled:21 

the state of the root is 1 somewhere in the open interval (0, x), 
the state of the root is 0 at T, 
the state of the root is 1 at t , 

(iv) the probabilities of the occurrence of the types are calculated such that 
the number of vertices of the tree is fixed and the trees (having this size) are chosen 
equiprobably with respect to an isomorphism notion. 

31 These three statements can be combined with each'other in eight manners. From among these 
(logically imaginable) cases, two ones are impossible, a third one is of zero probability. 
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§ 1 7 . 

In the last section of this paper a glance is thrown at the problem of genesis 
of networks, i.e. how a graph (underlying a network) may develope in a stochastic 
manner. In the article [11] the following version of this question is thoroughly studied 
(concerning non-directed graphs): 

at the beginning of the process there are given n isolated vertices (this set of 
vertices remains unchanged), 

after i steps we start with a graph having (the n vertices and) i edges from among 

the ^ possible ones, the ( /+ l)-th step is that we draw a further edge e such 

that e joins one of the ^ — / non-adjacent vertex pairs and is chosen equi-

probably, 
the procedure terminates after k steps.' 
Erdos and Renyi have determined in [11] which graphs may be typically formed 

in this manner (depending on the order of magnitude of-A:). It seems that these 
typical graphs are quite dissimilar from the graphs belonging to the classes dealt 
with in our Chapter I. Therefore, if one shares the opinion that the elements of 
our graph classes are particularly able as carriers of networks producing reasonable 
activities, then he must seek other principles in addition to the above principle 
of. „inserting a new edge" in sense of Erdos and Renyi. 

Such an additional principle may be that an edge ceases to exist under certain 
circumstances. If some condition, implying that edges are destroyed, is fixed, then 
one can study e.g. what happens typically when he starts with a complete graph 

(with n vertices and all the possible ^ edges, being the edges oriented randomly 

and independently of each other) and applies the "edge-destroying" principle 
in k steps. Of course, the principles of inserting and destroying may also be com-
bined with each other. 

Let us return again to the manner of functioning introduced in § 10. A concrete 
possibility how an edge may cease is illustrated in the following example. Let a 
network have four vertices PR, P2, P3,P4, f ou r edges PXP2, P2P3, P2PI, A A 

.and.the initial state (0.6, 0.7, 0.8, 0.9). A discussion of the activity of this network 
shows that it is defined only for the instants t smaller than 1.4z. When the instant 
1.4T is approximated, then both, of a3(/) and or4(Z) converge to 1; this fact and the 
existence of the edge P3PI imply that the working of this network remains undefined 
if t ^ 1.4T. It seems advisable to supplement the network definition by demanding 
that an edge e is deleted at such an instant when both vertices incident to e reach 
the value 1 simultaneously. 

PROBLEM 19. Let the activity of a network be understood as in §10. Which 
typical graph structures (depending on the order of magnitude of k) arise if we start 
with a complete graph with n vertices and we apply the edge-destroying principle, 
mentioned above, till when k edges had been deleted? 

. It is expectable that the stochastic considerations proposed in § 16 are closely 
related to the study of Problem 19. 
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О некоторых открытых проблемах прикладной теории автоматов 
и теории графов (возбуждаемых математическим моделированием неких 

нейрональных сетей) 

Статья [14] и . КНод-а и Оу. 8гёке1у-а брала инициативу к математическому моделиро-
ванию строении и функционировании некоторых нейрональных сетей, см. работы [2], [7], 
[3] и т. д. В настоящей статье даётся краткий обзор этих исследований и специфицировается 
ряд дальнейших нерешенных математических вопросов. В первой из четырёх глав работы 
содержаются проблемы относительно конечных ориентированных графов. 

M A T H E M A T I C A L INSTITUTE O F T H E 
H U N G A R I A N A C A D E M Y O F SCIENCES 
1053 BUDAPEST, H U N G A R Y 
R E Á L T A N O D A U. 13. 
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