On graphs satisfying some conditions for cycles, II.

By A. Ádám

Introduction

In this paper we study another class (containing all cycles) of finite directed graphs, than in Part I. Let a class be introduced as follows: (i) all cycles belong to the class, (ii) whenever a graph G_{0} is contained in the class and we replace a simple vertex P of G_{0} by a cycle, then the new graph G is again an element of the class, (iii) the class is as narrow as possible with respect to the rules (i), (ii). The members of this class are called the A-constructible graphs. (A more detailed definition will be given in § 1.)

An advantage of this recursive definition is its simplicity; it has, however, the disadvantage that is does not give the A-constructible graphs uniquely (the same graph can be produced in essentially different ways). Therefore another recursive procedure (called Construction B) will be exposed such that it admits a decomposition statement (Theorem 1) and it yields all the A-constructible graphs (Theorem 2). (As it may be foreseen, Construction B is described more elaborately, than Construction A.) Finally, it is shown that the class of B-constructible graphs is wider, than the class of the A-constructible ones. We deal with the question (without solving it completely) how the A-constructible graphs can be characterized in terms of Construction B.

§ 1. The Constructions A, B

1.1.

Construction A. The construction consists of an initial step and a finite number $(\geqq 0)$ of ordinary steps.

Initial step. Let us consider a cycle of length $n(\geqq 2)$.
Ordinary step. Suppose that the preceding (initial or ordinary) step has produced the graph G_{0}. Consider G_{0} and a cycle z of length $m(\geqq 2)$ such that G_{0}, z are disjoint. Choose a simple vertex P in G_{0}; denote by e_{1}, e_{2} the edges incoming to P or outgoing from P, resp. Furthermore, choose two different vertices A, B in z. Let us
unite G_{0} and z such that P is deleted, A becomes the new final vertex of e_{1} and B is the new initial vertex of e_{2}.

A graph G is called A-constructible if G can be built up by Construction A^{1}.
1.2. Let G be a graph. We denote by $K(G)$ the maximum of the numbers $Z(e)$ where e runs through the edges of G. An edge e_{0} (of G) is called extremal if $Z\left(e_{0}\right)=K(G)$. Denote by G^{\prime} the subgraph of G consisting of the extremal edges (in G) and the vertices incident to them. G^{\prime} is not connected in general. The connected components of G^{\prime} are called the extremal subgraphs of G. If an extremal subgraph is a path only (having one or more edges), then we call it an extremal path.

1.3.

Construction B. The construction consists of a finite number ($\geqq 1$) of steps any of which is either an inital step or an ordinary one in the following sense.

Initial step. Let us consider a graph G such that
either G is a cycle (of length $\geqq 1$),
or G is I^{*}-constructible ${ }^{2}$ and G has no cut vertex (and, of course, G has neither a loop nor a pair of parallel edges with the same orientation).

Ordinary step. Let us consider a graph G_{0} and a matrix

$$
\left(\begin{array}{cccc}
A_{1} & A_{2} & \ldots & A_{k} \\
B_{1} & B_{2} & \ldots & B_{k} \\
G_{1} & G_{2} & \ldots & G_{k} \\
P_{1} & P_{2} & \ldots & P_{k}
\end{array}\right)
$$

(having four rows and $k(\geqq 1)$ columns) such that
(α) any of the $k+1$ graphs $G_{0}, G_{1}, G_{2}, \ldots, G_{k}$ is isomorphic to a graph produced in some earlier step of the construction, ${ }^{3}$
(β) $K\left(G_{0}\right) \geqq \max \left(2, K\left(G_{1}\right), K\left(G_{2}\right), \ldots, K\left(G_{k}\right)\right)$,
(γ) $A_{1}, A_{2}, \ldots, A_{k}, B_{1}, B_{2}, \ldots, B_{k}$ are pairwise different simple vertices of G_{0},
(δ) for any subscript $i(1 \leqq i \leqq k), G_{0}$ has an extremal path ${ }^{4} a_{i}$ with the following properties:
A_{i} precedes B_{i} along a_{i}, and
the set of vertices lying between A_{i}, B_{i} on a_{i} is disjoint to the set $\left\{A_{1}, A_{2}, \ldots\right.$, $\left.A_{k}, B_{1}, B_{2}, \ldots, B_{k}\right\}$,
(ε) for any $i(1 \leqq i \leqq k), P_{i}$ is a simple vertex of G_{i} and $Z\left(P_{i}\right)=1$ holds (in $\left.G_{i}\right)$.
Denote by $e_{1}^{(i)}, e_{2}^{(i)}$ the edges incoming to P_{i} and outgoing from P_{i}, resp. (in G_{i}).

[^0]Let us construct a new graph such that, for every subscript $i(1 \leqq i \leqq k)$, we delete P_{i} (out of G_{i}), A_{i} becomes the new final vertex of $e_{1}^{(i)}$ and B_{i} becomes the new initial vertex of $e_{2}^{(i)}$. (This means that the situation (a) is replaced by the situation (b) . on Fig. 1.)

A graph G is called B-constructible if G can be built up by Construction B.

1.4.

Proposition 1. Suppose that G is produced by an ordinary step of Construction B. Then G has precisely k extremal subgraphs,

(b) namely, the part a_{i}^{\prime} of a_{i} from A_{i} to B_{i} for each $i(1 \leqq i \leqq k)$.

Proof. Denote by $Z(e), Z_{i}(e)$ the number of cycles containing an edge e, meant in G, G_{i}, respectively. The rules in the ordinary step (chieffy ($\left.\delta\right)$) imply

$$
Z(e)=1+Z_{0}(e)=1+K\left(G_{0}\right)
$$

whenever e belongs to some a_{i}^{\prime}. It is clear that

$$
Z(e)=Z_{0}(e) \leqq K\left(\mathcal{G}_{0}^{\prime}\right)
$$

is true for the other edges of G_{0} and, for any $i(1 \leqq i \leqq k)$,

$$
Z(e)=Z_{i}(e) \leqq K\left(G_{i}\right) \leqq K\left(G_{0}\right)
$$

${ }^{-}$holds (by $\left.(\beta)\right)$ if e is an arbitrary edge of G_{i}.
The above proof and (β) guarantee the following assertion, too:
Proposition 2. If G can be represented as the result of an ordinary step Construction B, then

$$
K(G)\left(=1+K\left(G_{0}\right)\right) \geqq 3 .
$$

Proposition 3. If G is B -constructible and $K(G) \geqq 2$, then each extremal subgraph of G is a path and the inner vertices of the extremal paths of G are simple.

Proof. Case 1. G results by an initial step (of Construction B) only. We assumed $K(G) \geqq 2$, it is hence obvious that $K(G)^{\prime}=2$ and G is I^{*}-constrictible. The conclusion is fulfilled because of Construction I in [1].

Case 2. G is produced by an ordinary step. We use induction: we suppese that G_{0} satisfies the conclusion of Proposition 3. Proposition 1 implies trat each extremal subgraph of G is a part of an extremal path of G_{0}, thus Propcsition 3 is valid also for G.

The next result is implied immediately by Propositions 1, ? ard the assumptions in Construction B:

Proposition 4. Let the graph G be represented as the result of an ordinary step of Construction B. Denote the extremal paths of G by $a_{1}, a_{2}, \ldots, a_{k}$; let the initial vertex of a_{i} be A_{i} and the final vertex of a_{i} be B_{i} (where $\left.1 \leqq i \leqq k\right)$. Then
the degree of A_{t} is $(2,1)$ and we have $Z\left(e_{i}^{(1)}\right)=1, Z\left(e_{i}^{(2)}\right) \geqq 2$ where $e_{i}^{(1)}$ and $e_{i}^{(2)}$ are the edges incoming to A_{i} with appropriate superscripts,
the degree of B_{i} is $(1,2)$ and we have $Z\left(e_{i}^{(3)}\right)=1, Z\left(e_{i}^{(4)}\right) \geqq 2$ where $e_{i}^{(3)}$ and $e_{i}^{(4)}$ are the edges outgoing from B_{i} with appropriate superscripts. ${ }^{5}$

§ 2. Some notions concerning Construction B

2.1. Let us consider a particular application of Construction B consisting of q steps. We say that the relation $i<j$ is true (where $\{i, j\} \subseteq\{1,2, \ldots, q\}$) precisely if $i<j$,
the j-th step is ordinary, and
the graph G resulting in the i-th step is isomorphic to one of the graphs G_{0}, G_{1}, G_{2}, \ldots, G_{k} used in the j-th step.

We denote by $<$ the transitive extension of the relation \prec (in the set $\{1,2, \ldots, q\}$). It is obvious that $<$ is a partial ordering and $i<j$ may hold only if $i<j$. The definition of Construction B implies that, to any fixed $j, i<j$ is satisfiable (by some i) exactly if the j-th step is ordinary.

An application of Construction B , consisting of q steps, is called connected when all the $q-1$ relations $1 \varangle q, 2 \varangle q, \ldots, q-1 \varangle q$ are true.
2.2. Two initial steps, occurring in particular performances of Construction B , are called isomorphic if the graphs appearing in them are isomorphic.

Let us consider two ordinary steps (again in Construction B) such that the number k is common. Denote the graphs and vertices, occurring in the first of these steps, by $G_{0}^{\prime}, G_{1}^{\prime}, A_{1}^{\prime}, B_{1}^{\prime}, P_{1}^{\prime}, \ldots, G_{k}^{\prime}, A_{k}^{\prime}, B_{k}^{\prime}, P_{k}^{\prime}$; analogously, let the graphs and vertices of the second step in question be $G_{0}^{\prime \prime}, G_{1}^{\prime \prime}, A_{1}^{\prime \prime}, B_{1}^{\prime \prime}, P_{1}^{\prime \prime}, \ldots, G_{k}^{\prime \prime}, A_{k}^{\prime \prime}, B_{k}^{\prime \prime}, P_{k}^{\prime \prime}$. We call the considered steps to be isomorphic if there exist
(i) an isomorphism α of G_{0}^{\prime} onto $G_{0}^{\prime \prime}$,
(ii) a permutation π of the set $\{1,2, \ldots, k\}$, and
(iii) for every choice of $i(1 \leqq i \leqq k)$, an isomorphism β_{i} of G_{i}^{\prime} onto $G_{\pi(i)}^{\prime \prime}$ such that the equalities

$$
\alpha\left(A_{i}^{\prime}\right)=A_{\pi(i)}^{\prime \prime}, \quad \alpha\left(B_{i}^{\prime}\right)=B_{\pi(i)}^{\prime \prime}, \quad \beta_{i}\left(P_{i}^{\prime}\right)=P_{\pi(i)}^{\prime \prime}
$$

are fulfilled for each $i(1 \leqq i \leqq k)$.
If two ordinary steps are isomorphic, then the originating graphs are again isomorphic.

A performance of Construction B is called simple if the i-th and j-th steps in it are not isomorphic unless $i=j$.

[^1]2.3. Two applications Q_{1}, Q_{2} of Construction B are said to be similar if the number q of their steps is the same and there exists a permutation σ of the set $\{1,2, \ldots, q\}$ such that
the relation $i<_{1} j$ holds if and only if $\sigma(i)<_{2} \sigma(j)$ (where $<_{l}$ means the relation $<$ with respect to $Q_{l}, 1 \leqq l \leqq 2$), and
in case of any $i(1 \leqq i \leqq q)$, the i-th step of Q_{1} is isomorphic to the $\sigma(i)$-th step of Q_{2}.

§ 3. The inverse construction

3.1. Suppose that a graph G results by an ordinary step of some particular application of Construction B. The main goal of this \S is to produce the $k+1$ graphs $G_{0}, G_{1}, G_{2}, \ldots, G_{k}$ and the $3 k$ vertices $A_{1}, B_{1}, P_{1}, A_{2}, B_{2}, P_{2}, \ldots, A_{k}, B_{k}, P_{k}$ (occurring in the ordinary step) by using the properties of G solely. This will lead to the statement that each B-constructible graph can be represented by (one and) only one simple, connected performance of Construction B apart from similarity.

Proposition 5. If G is a graph mentioned in the initial step of Construction B, then there-is no Construction B which would give G as the result of an ordinary step.

Proof. Since any graph G occurring in the initial step satisfies $1 \leqq K(G) \leqq 2$ evidently, the statement to be proved follows immediately from Proposition 2.

3.2.

Construction C. Let G be a (finite) graph such that
[α]

$$
K(G) \geqq 3
$$

[β] every extremal subgraph of G is a path (denote them by $a_{1}, a_{2}, \ldots, a_{k}$; let the initial and final vertex of a_{i} be A_{i}, B_{i}, resp., where $1 \leqq i \leqq k$),
[γ] for any i, each inner vertex of a_{i} is simple,
[δ] for any i, the degree of A_{i} is $(2,1)$ moreover, $Z\left(e_{i}^{(1)}\right)=1$ and $Z\left(e_{i}^{(2)}\right) \geqq 2$ hold for the edges incoming to A_{i} if they are denoted appropriately,
[ε] for any i, the degree of B_{i} is (1, 2), furthermore, $Z\left(\dot{e}_{i}^{(3)}\right)=1$ and $Z\left(e_{i}^{(4)}\right) \geqq 2$ are true for the edges outgoing from B_{i} if they are denoted suitably,
$[\zeta]$ for any i, the pair $e_{i}^{(1)}, e_{i}^{(3)}$ can be connected by a chain which contains neither A_{i} nor B_{i} as an inner vertex; the analogous statement is true for the pair $e_{i}^{(2)}, e_{i}^{(4)}$ too,
[η] for any i, each chain connecting $e_{i}^{(1)}$ and $e_{i}^{(4)}$ contains either A_{i} or B_{i} innerly and the chains connecting $e_{i}^{(2)}, e_{i}^{(3)}$ do the same.

Let us form $k+1$ new graphs $G_{0}, G_{1}, G_{2}, \ldots, G_{k}$ (from G) in the following way:
(1) we take k new vertices $P_{1}, P_{2}, \ldots, P_{k}$,
(2) for any $i\left(1 \leqq i \leqq k\right.$), let $e_{i}^{(1)}$ go into P_{i} (instead of A_{i}) and let $e_{i}^{(3)}$ come out of P_{i} (instead of B_{i}); denote the resulting (non-connected) graph by G^{*},
(3) let $G_{0}, G_{1}, G_{2}, \ldots, G_{k}$ be the connected components of G^{*} with such subscripts that ${ }^{\mathbf{6}}$ whenever $1 \leqq i \leqq k$, then G_{i} contains $e_{i}^{(1)}, e_{i}^{(3)}$, and G_{0} contains none of $e_{1}^{(1)}, e_{1}^{(3)}, e_{2}^{(1)}, e_{2}^{(3)}, \ldots, e_{k}^{(\mathbf{1})}, e_{k}^{(3)}$.

[^2]Thus Construction C is completed.
It is evident that, if $[\alpha]$ - $[\eta]$ are fulfilled, then G uniquely defines k and the graphs $G_{0}, G_{1}, G_{2}, \ldots, G_{k}$ resulting by Construction C (apart from the numbering of $G_{1}, G_{2}, \ldots, G_{k}$).

3.3.

Proposition 6. Assume that the graph G results by an ordinary step of Construction B such that the graphs and vertices (occurring in the step) are $G_{0}^{\prime}, G_{1}^{\prime}, G_{2}^{\prime}, \ldots, G_{k}^{\prime}$ and $A_{1}^{\prime}, B_{1}^{\prime}, P_{1}^{\prime}, A_{2}^{\prime}, B_{2}^{\prime}, P_{2}^{\prime}, \ldots, A_{k}^{\prime}, B_{k}^{\prime}, P_{k}^{\prime}$, respectively. Then Construction C is applicable for G. Let us apply Construction C for G; denote the resulting graphs by $G_{0}^{\prime \prime}, G_{1}^{\prime \prime}, G_{2}^{\prime \prime}, \ldots, G_{k}^{\prime \prime}$ and the vertices, playing essential roles in the construction, by $A_{1}^{\prime \prime}, B_{1}^{\prime \prime}, P_{1}^{\prime \prime}, A_{2}^{\prime \prime}, B_{2}^{\prime \prime}, P_{2}^{\prime \prime}, \ldots, A_{k}^{\prime \prime}, B_{k}^{\prime \prime}, P_{k}^{\prime \prime}$. In this case $G_{0}^{\prime}=G_{0}^{\prime \prime}$ and there exists a permutation π of the set $\{1,2, \ldots, k\}$ which satisfies

$$
G_{i}^{\prime}=G_{\pi(i)}^{\prime \prime}, \quad A_{i}^{\prime}=A_{\pi(i)}^{\prime \prime}, \quad B_{i}^{\prime}=B_{\pi(i)}^{\prime \prime}, \quad P_{i}^{\prime}=P_{\pi(i)}^{\prime \prime}
$$

for each $i(1 \leqq i \leqq k)$.
Proof. Let us take into account the obvious fact that the cycles of G_{0}^{\prime} and (essentially) the cycles of $G_{1}^{\prime}, G_{2}^{\prime}, \ldots, G_{k}^{\prime}$ become the cycles of G, moreover, G does not contain any other cycle.

The conditions $[\alpha]-[\eta]$ of Construction C are true for G; in detail,
$[\alpha]$ is ensured by Proposition 2,
$[\beta],[\gamma]$ are by Proposition 3,
[δ], [$\varepsilon]$ are by Proposition 4,
$[\zeta]$, $[\eta]$ follow from the suppositions $(\gamma),(\delta),(\varepsilon)$ occurring in the ordinary step of Construction B.

The applicability of Construction C has been shown. Using Proposition 1, we can convince ourselves that $G_{0}^{\prime \prime}$ coincides with G_{0}^{\prime} and the system $\left\{G_{i}^{\prime \prime}, G_{2}^{\prime \prime}, \ldots, G_{k}^{\prime \prime}\right\}$ equals the system $\left\{G_{1}^{\prime}, G_{2, \ldots,}^{\prime}, G_{k}^{\prime}\right\}$ (up to labelling). Hence also the coincidence of the vertices A_{i}, B_{i}, P_{i} (as stated in the Proposition) follows.

Theorem 1. Let two applications Q_{1}, Q_{2} of Construction B be considered such that they produce the same graph G. If Q_{1} and Q_{2} are simple and connected, then they are similar.

Proof. Denote the number of steps of Q_{1}, Q_{2} by q_{1}, q_{2} respectively. In the sequel, we shall apply Proposition 6 and the last sentence of Section 3.2 without any particular reference.

Let a relation ϱ be defined between the sets $R_{1}=\left\{1,2, \ldots, q_{1}\right\}$ and $R_{2}=\left\{1,2, \ldots, q_{2}\right\}$ followingly: $\varrho(i, j)$ holds precisely when the graph resulting in the i-th step of Q_{1} is isomorphic to the graph originating in the j-th step of Q_{2} (where $1 \leqq i \leqq q_{1}, l \leqq j \leqq q_{2}$). Because Q_{1} and Q_{2} are simple, ϱ is a one-to-one assignment between some subset R_{1}^{\prime} of R_{1} and some subset R_{2}^{\prime} of R_{2}. We can write $\sigma(i)=j$ instead of $\varrho(i, j)=\uparrow$.

Our next purpose is to show that $R_{1}^{\prime}=R_{1}$ and $R_{2}^{\prime}=R_{2}$. Put $i \in R_{1}$. Since Q_{1} is connected, there exists a sequence $i_{0}, i_{1}, i_{2}, \ldots, i_{s}$ such that

$$
i=i_{0} \prec_{1} i_{1} \prec_{1} i_{2} \prec_{1} \ldots \prec_{1} i_{s}=q_{1}
$$

($s \geqq 0$). It is obvioús that $\sigma\left(i_{s}\right)=q_{2}$, thus $i_{s} \in R_{1}^{\prime}$. Whenever $i_{t} \cdot$ belongs to R_{1}^{\prime}, then i_{t-1} does the same ($1 \leqq t \leqq s$). Consequently, $R_{1}^{\prime}=R_{1}$ and the equality $R_{2}^{\prime}=R_{2}$ follows by an analogous inference (therefore $q_{1}=q_{2}$).

We are going to verify that σ establishes a similarity. In order to do this, it remains to show that σ preserves the relation $<$ (in both directions). If $i<_{1} i^{*}$, then

$$
i=i_{0} \prec_{1} i_{1} \prec_{1} i_{2} \prec_{1} \ldots \prec_{1} i_{w}=i^{*}
$$

for suitable numbers $i_{0}, i_{1}, \ldots, i_{w}$. For any $t(l \leqq t \leqq w)$, the graph resulting in the $\sigma(t-1)$-th step of Q_{2} is utilized in the $\sigma(t)$-th step of Q_{2}, thus $\sigma(t-1)<\sigma(t)$ (since Q_{2} is simple) and $\sigma(t-1)<_{2} \sigma(t)$. Hence $\sigma(i) \varangle_{2} \sigma\left(i^{*}\right)$. - Conversely, $i<_{2} i^{*}$ implies $\sigma^{-1}(i) \alpha_{1} \sigma^{-1}\left(i^{*}\right)$ by a symmetrical inference.

Corollary. Let Q_{1}, Q_{2}, G be as in the first sentence of Theorem 1. Denote the number of the steps of these constructions by q_{1}, q_{2}, respectively. If Q_{1} is simple and connected, then $q_{1} \leqq q_{2}$.

Proof. We can reduce Q_{2} into a simple and connected construction Q_{2}^{\prime} followingly:
whenever $1 \leqq i<q_{2}$ and neither the i-th, q_{2}-th steps are isomorphic nor the relation $i \varangle q_{2}$ holds, then the i-th step is deleted,
whenever $1 \leqq i<j \leqq q_{2}$ and the i-th, j-th steps are isomorphic, then the j-th step is deleted.

Let us define r as the smallest, number with the property that the r-th and q_{2}-th steps of Q_{2} are isomorphic. It is easy to see that
each of the $(r+1)$-th, $(r+2)$-th, \ldots, q_{2}-th steps of Q_{2} is deleted by virtue of the above rules, and:
the r-th step of Q_{2} becomes the last step ${ }^{7}$ of Q_{2}^{\prime}.
We get $q_{1}=q_{2}^{\prime} \leqq q_{2}$ where q_{2}^{\prime} is the number of steps of Q_{2}^{\prime}.

§ 4. Interrélations between A-constructibility and B-constructibility

4.1.

Theorem 2. Each A-constructible graph is B-constructible.
Proof. For cycles the assertion is trivial. Otherwise, we use induction for the number of edges. Let an A-constructible graph G be considered, suppose that every A-constructible graph, having a fewer number of edges than G, is B-constructible. By the definition of the A-constructibility, there is an A-constructible graph G^{*} and a simple vertex P of G^{*} such that G can be produced if we insert a cycle (of length l) for P in G^{*} (in sense of the ordinary step of Construction A). G^{*} is B-constructible by the induction hypothesis.

[^3]Let us consider a performance Q^{*} of Construction B which produces G^{*}. In what follows, our aim is to modify Q^{*} such that the new construction should give G. For the sake of simplicity, we agree that the construction steps of Q^{*} will always be mentioned as they are numbered in Q^{*}.

We define a sequence

$$
D_{1}, D_{2}, \ldots, D_{s} \quad(s \geqq 1)
$$

of vertices and a sequence

$$
j_{1}, j_{2}, \ldots, j_{s} \quad\left(j_{1}>j_{2}>\ldots>j_{s}\right)
$$

of numbers (indicating steps) in the following (recursive) manner:
D_{1} is P (a vertex of the graph G^{*} resulting in the last step of Q^{*}) and j_{1} is the number of the steps of Q^{*},
if D_{i} has already been defined, it belongs to the graph originating in the j_{i} th step of Q^{*} and the step in question is ordinary, then let $j_{i+1}\left(<j_{i}\right)$ be such a number that the result of the j_{i+1}-th step occurs among the graphs appearing (as $G_{0}, G_{1}, G_{2}, \ldots$, \ldots, G_{h}) in the j_{i}-th step and D_{i} corresponds to some vertex D_{i+1} of the result of the j_{i+1}-th step (by virtue of an isomorphism mentioned in Construction B, (α)),
if D_{i} has been defined as a vertex of a graph originating in the j_{i}-th step of Q^{*} such that this step is initial, then we put $s=i$ and the process terminates.

We remark that each D_{i} is a simple vertex of the containing graph.
Next we define s or $s+1$ new construction steps which are called j_{1}^{\prime}-th step, j_{2}^{\prime}-th step, \ldots, j_{s}^{\prime}-th step and, in some cases, j_{0}^{\prime}-th step.

Case 1. $Z\left(D_{s}\right)=1$ in the graph $G^{(1)}$ resulting by the j_{s}-th step. $G^{(1)}$ is I^{*}-constructible. The graph $G^{(1)}$ originating from $G^{(1)}$ by inserting a cycle of length $/$ at D_{s} (as in the ordinary step of Construction A) is again I^{*}-constructible. Let the j_{s}^{\prime}-th step be initial, let it produce $G^{\prime(1)}$. - Suppose that the j_{i}^{\prime}-th step has been defined ($1 \leqq i<s$), we define a new construction step and call it the $j_{i+1}^{\prime} 1^{\text {th }}$ one in the following manner: the new step differs from the j_{i+1}^{\prime}-th one only in that respect that now the (uniquely determined) graph containing D_{s-i} is replaced by the result or the j_{i}^{\prime}-th step. (The graph resulting in the j_{i+1}^{\prime}-th step will contain a cycle of length l instead of D_{s}, otherwise it will coincide with the graph originating in the j_{s-i}-th step.)

Let us draw up a new construction Q followingly:
it contains all the steps of Q^{*} except the last one (in the original ordering),
for every $i(1 \leqq i<s)$, let the j_{i}^{\prime}-th step be inserted between the j_{s-i+1}-th and ($j_{s-i+1}+1$)-th ones,
the last step of Q is the i_{s}^{\prime}-th step.
It is obvious that Q is an application ${ }^{8}$ of Construction B and Q produces G.
Case 2. $Z\left(D_{s}\right)=2$ in the result $G^{(1)}$ of the j_{s}-th step. Let an initial step, called j_{0}^{\prime}-th one, be defined in such a manner that it produces a slighthly modified copy of $G^{(1)}$ with the single difference that D_{s} is replaced by the path a whose length equals the (directed!) distance d of A and B in the last step of the performance of Construction A producing G.

[^4]Now the j_{1}^{\prime}-th step is ordinary such that
$k=1$,
G_{0} is the result of the j_{0}^{\prime}-th step,
G_{1} is the cycle of length $l-d$,
A_{1} and B_{1} are the beginning and final vertices of a (see how the j_{0}^{\prime}-th step is defined), respectively,
P_{1} is an arbitrary vertex of G_{1}.
The further treatment of Case 2 is similar to Case 1 . Now both the j_{0}^{\prime}-th and i_{1}^{\prime}-th steps (in this ordering) are inserted between the j_{s}-th and ($j_{s}+1$)-th ones.
4.2. The collection of A-constructible graphs is properly included in the family of B -constructible ones. An example for a B-constructible graph which is not A-constructible may be the cycle of length 1 ; a less trivial counter-example can be seen on Fig. 2. (One can check by applying Construction C that this graph is B-constructible. On the other hand, it does not contain any cycle which would be resulted in the last step of Construction A. - The numbers in Fig. 2 indicate the values of $Z(e)$.)

Fig. 2
4.3. The existence of counter-examples (similar to the above one) disproves the following statement: whenever each of $G_{0}, G_{1}, G_{2}, \ldots, G_{k}$ in an ordinary step of Construction B is A-constructible, then G is again A-constructible. However, the converse assertion is valid:

Proposition 7. Let the graph G be the result of an ordinary step of a performance of Construction B. If G is A-constructible, then each of the graphs $G_{0}, G_{1}, G_{2}, \ldots, G_{k}$ (in the step) are likewise A-constructible.

Proof. It is clear that each step of Construction A augments the number of cycles (of the constructed graph) by one. Moreover, let a performance of Construction A be given and denote the number of steps by r. Let us define a mapping γ of the set $\{1,2, \ldots, r\}$ in the following (recursive) way:
$\gamma(1)$ is the result of the beginning step,
if $(\gamma(1), \gamma(2), \ldots, \gamma(j-1)$ are defined and) we execute the j-th step of the construction, then the meaning of $\gamma(1), \gamma(2), \ldots, \gamma(j-1)$ remains the same in G as in G_{0} (with the small modification that P is now substituted by the path from A to B) and $\gamma(j \text {) is defined as the new cycle } z \text { (of } G)^{9}$. It is clear that γ is a one-to-one correspondence whose range equals the family of cycles of the constructed graph.

[^5]On the other side, we can convince ourselves by analyzing the ordinary step of Construction B that whenever z is an arbitrary cycle of the constructed graph G, then z has been present in exactly one of $G_{0}, G_{1}, G_{2}, \ldots, G_{k}$ (if this graph is G_{i} with $i>0$, then apart from the change that P_{i} is replaced by the chain from A_{i} to B_{i}).

Let now G and some $G_{i}(0 \leqq i \leqq k)$ be as in the Proposition. Denote by Q_{2} the application of Construction B in question (yielding G) and let Q_{1} be a performance of Construction A which produces again G. Let us define the increasing sequence

$$
j_{1}, j_{2}, \ldots, j_{s}
$$

containing precisely those numbers j for which $\gamma(j)$ is present in $G_{i}(\gamma$ is now defined for Q_{1}). We can compile a performance $Q^{(i)}$ of Construction A from the j_{1}-th, j_{2}-th, \ldots, \ldots, j_{s}-th steps of Q_{1} (with some modifications which may be left to the reader), it is evident that $Q^{(i)}$ produces G_{i}. This can be done for every value of i running from 0 to k.

Having Proposition 7, the characterization of A-constructible graphs among the B-constructible ones requires still to clear up the following question:

Problem. Suppose that $G_{0}, G_{1}, G_{2}, \ldots, G_{k}$ are A-constructible graphs ($k \geqq 1$). Let us apply the ordinary step of Construction B for them (with some choices of the vertices having distinguished roles in the step). Let a necessary and sufficient condition be given in order the resulting graph G be again A-constructible.

О графах удовлетворяющих

некоторым условиям для циклов, II.

Пусть класс конечньхх ориентированных графов быть вводим следуюшим рекурсивным образом: (1) каждый цикл содержается в классе, (2) если G_{0} - граф содержаемый в классе и мы заменяем некоторую точку степени $(1,1)$ графа G_{0} циклом, то новый граф находится опять в классе, (3) класс является минимальным ввиду правил (1) и (2). Члены этого класса называются А-конструируемыми графами.

Эта рекурсивная процедура не даёт возможность для однозначного разложения результируемого графа. Вводится другая процедура (называема конструкцией В) так, что она допускает почти единственную декомпозицию и все A -конструируемы! графы являются B -конструируемыми.

MATHEMATICAL INSTITUTE OF THE
HUNGARIAN ACADEMY OF SCIENCES
H-1053 BUDAPEST, HUNGARY
REALTANODA U. 13-15.
(PERMANENTLY)

MATHEMATICS DEPARTMENT OF THE
ARTS AND SCIENCE UNIVERSITY
RANGOON, BURMA
(IN A PART OF THE TIME OF
PREPARING THIS PAPER)

References

[1] ÁDÁm, A., On some generalizations of cyclic networks, Acta Cybernet., v. 1, 1971, pp. 105-119.
[2] ÁdÁM, A., On graphs satisfying some conditions for cycles, I. Acta Cybernet., v. 3, 1976, pp. 3-13.

[^0]: ${ }^{1}$ I.e. if there exists a finite sequence of steps such that the first one is an initial step, the other ones are ordinary steps and the last step produces G.
 ${ }^{2}$ We call a graph I^{*}-constructible of it can be produced by Construction I exposed in $\S 3$ of [1]. The term " I^{*}-constructible" has been used in the same sense in [2].
 ${ }^{3}$ It is permitted that both $G_{j_{1}}$ and $G_{j_{2}}$ are isomorphic to the result of the same previous step, though $j_{1} \neq j_{2} . G_{j_{1}}$ and $G_{j_{2}}$ are considered to be disjoint even in this case.

 1 The paths $a_{1}, a_{2}, \ldots, a_{k}$ are not necessarily different.

[^1]: ${ }^{5}$ It is clear that $e_{i}^{(1)} ; e_{i}^{(3)}$ have been taken from $G_{i} ; e_{i}^{(2)}, e_{i}^{(4)}$ have been taken from G_{0}.

[^2]: ${ }^{6}[\zeta]$ and $[\eta]$ guarantee that the number of connected components is $k+1$ and the conditions to be posed are satisfiable.

[^3]: ${ }^{7}$ It may happen that some of the first, second, $\ldots,(r-1)$-th steps of Q_{z} are also deleted.

[^4]: ${ }^{8} Q$ is not simple and connected in general even if Q^{*} has these properties.

[^5]: ${ }^{9} G_{0}, G$ are now used as in describing the ordinary step of Construction A.

