
Tessellation transformations 
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I. Introduction. Notations 

In this paper we present some results on mappings induced by cellular automata. 
These mappings will be called here tessellation transformations. The notions and 
notations may be found partly in [2] and [7], but for the sake of the convenience 
of the reader, all necessary definitions will be given in this introductory part and at 
the beginning of the third section. 

In the second section we deal with semigroups consisting of all tessellation 
transformations in a given tessellation array, under a fixed number of internal 
states. They will be characterized up to isomorphism by two parameters. Some 
inclusion theorems for these semigroups are also proved. The third section of our 
paper concerns cellular automata with a quiescent state. The investigations are 
related to and may be considered as a continuation of Moore's and Myhill's results 
in this area. Among others, it will be shown that the density of the tessellation 
transformations which are one-to-one on the finite configurations is equal to zero 
in the set of all such transformations. This solves a problem raised by Moore in [5]. 

Now we shall list the basic concepts. 
A ¿/-dimensional cellular automaton (shortly: CA) is a quadruple 91 = (A, Ed, X , f ) , 

where 

1. A is a finite set called the state alphabet. Its cardinality is supposed to be 
at least two. 

2. Ed, called the ¿-dimensional tessellation array, is the set of all ¿/-tuples 
of integers called cells. Ed is an Abelian group with respect to the componentwise 
sum of the ¿/-tuples. Ed can be visualized as a Euclidean ¿/-space subdivided into 
cells which are ¿/-cubes of unit dimensions and whose centers have integer coordinates. 

3. X, called the neighbourhood template, is an «-tuple of distinct elements 
of Ed (n is a positive integer), i.e., 

X {¡(iEd, i=l, ...,». 

For any a£Ed, N(X, — + ..., a + £„) is said to be the neighbourhood of the 
cell a. 

4. / i s an arbitrary function from A" into A called the local transition function. 

We shall refer to a mapping c: Ed—A as configuration (more precisely: ¿/-dimen-
sional configuration over the alphabet A). The set of all configurations is denoted 
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by CAd. The image c(a) of a £ E d will be called the contents of the cell a under the 
configuration c. The restriction of c to N(X, a) is denoted by c(N(X, a)), i.e., 

c(N(X, a)) = + - , + 

The global transition function <i>a: CAd-~CAd of the CA is defined by 

(c<Pv)(a) = f(c(N(X, a))) for all a £ E d . 

II. Full semigroups of tessellation transformations 

Let A be a finite nonempty set (\A | s 2) and let d be a positive integer. A mapping 
CA^CA<d is said to be a tessellation transformation if there exists a CA 91 

such that its global transition function <P9! is equal to <£. The set of all such mappings 
will be denoted by MAd. 

Theorem 1. If <£, then <P'F£MA d , i.e. MA<d is a semigroup. 

Proof. According to the assumption of the theorem there are two CA 3I(1) = 
= (A, E", = . . . , £ « ) ) and 21 (2> = (A, Ed, = 
= (£i(2), • • • , № ) ) such that = 0 and = Let us consider a CA 21 = 
— (A, Ed, X , f ) , where 

1. The set of the components of X i s + cj2)11 ̂ / ^ n , l ^ j ^ m ) . 
2. We obtain / in the following way: Consider the function / ' = / ( 2 ) ( / ( 1 ) ( * i i -

..., xln), ..., / W (xml,..., xmn)). Identify xu with J. if + = № + t , f , 1 ^ /, 
i ' ^ n , \ Then we obtain from the function / ' a new function / " . Finally, 
writing the variables of f" in the order which corresponds to X we get f . It is easy 
to see that = 

We call MA<d the full semigroup of tessellation transformations. 
The transformations 93(S^Ed) defined by (cOi)(a) = c(a — d) for all a£Ed are 

called translations. They are obviously tessellation transformations. A c'£CAd 
is said to be a copy of c£CA i if there is a translation 9S such that c' — c9d. Clearly, 
if c=c9s for all 5£Ed, then there exists an a£A such that c(a)=a for all <x£Ed. It 
is evident that 9di9di = 6il+di for any 81,52£Ed, and if Td denotes the set of all 
translations we get Td~Ed. 

The transformations Qa (a£A) defined by (cQa)(a) = a for all a £Ed are called 
constant transformations (briefly: constants). They are tessellation transformations. 
It is trivial that the number of all constants is \A\. 

Lemma 1. A tessellation transformation <P is a central element of MA d if 
and only if 0 is a translation. 

Proof. Let Z(MA d) denote the center of MA>d. The set of all translations 
Td c Z{MA d) is trivial.' Now suppose that $ 6 Z(MA d) and suppose 91 = (A, Ed, X, f ) 
(X= , ..'., Q) is a CA such that tf>a, = <Z>. Consider a CA 23 = (A, Ed, Y, g) (Y= ( ^ , 

t]m)) such that every element of the set + t]j\ 1 ^ i s n, 1 ^ y ^ m ) has a unique 
representation as a sum of components of X and Y. (For any X there exists such a 
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Y with an arbitrary number of componens.) Under such choice of Y , <f>al = <f>a 

implies 
X1 M); ••• > ••• J ) ) = g ( f ( x 11, F ( X L M , ...,X„m)) 

for all x n , ..., x„m£A (see 2. in the proof of Theorem 1). Accordingly we obtain 
tha t /commutes with all functions defined on A. Hence it follows t h a t / i s a projection 
([3] pp. 128, Prop. 3.2.), consequently = is a translation. 

Lemma 2. A tessellation transformation <P is a right zero if and only if <£ is 
a constant. 

Proof. The sufficiency is trivial. Assume that $ is a right zero and let 
% = {A,Ed,X,f) (with /7-ary / ) be a CA such that <£,„=<£. Let c£CA,d be a con-
figuration for which 

A" = (c(N(X, a))\oL^Ed) (*) 

holds. Since is a right zero, we obtain (c<P)9s = c(<POs) = c(Os<P) = c<P for all trans-
lations 9S, whence there exists an at A such that (c<P){a) = a for all ct£Ed. According 
to ( * ) it follows that / ( x x , . . . ,x„) = a for any x1( ..., xn£A showing that <P is a 
constant. 

Theorem 2. MAlydl?z MA2ydi if and only if and d± = d2. 

Proof. The sufficiency is trivial. MAltdl^MAiyd2 implies that the numbers of the 
right zeros of M A l f d l and M A l t i i are equal, i.e., in view of Lemma 2 we have 
1^1 = 1̂ 21. Furthermore Z(MAl > ¿J = Z{MAi whence by Lemma 1 we get Tdi ss Td2, 
which implies Ed± = Ed*. Hence d1 = d2. 

According to Theorem 2 a full semigroup of tessellation transformations is 
determined up to isomorphism by two positive integers l(=\A\) and d. Therefore 
we shall denote this semigroup also by M, i d . 

Theorem 3. For any positive integer lx,l2 (S:2) and dx,d2 such that d^d2, 
the semigroup Mhtdl is the homomorphic image of a subsemigroup of Mludi. 

Proof. The reader can easily verify that, if d^d2 then M,tdl may be embedded 
in M/j((2 for any I. Therefore it is sufficient to prove the statement for d± = d2 = d. 
Let A1 and A2 be two sets with cardinality and /2. We have to prove that MAud 
is the homomorphic image of a subsemigroup of M A ^ d . 

1. First suppose that l ^ l ^ l ^ l - We may assume without loss of generality 
that A 1 C I A 2 . Thus we get CAl ddCAl d. Let us consider the subsemigroup M of 

M A ^ d defined by 

M = (<P\<P € MAitd and c$£CAl,d for all c£CAltd), 

and let Q be" a congruence on M defined by 

<P1Q<!>2 if and only if c<Px = c<I>2 for any C£CAlid. 

It is easy to see that M/q MAltd. 
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2. Now assume that l ^ l ^ l ^ l . For the sake of easier perspicuity we prove 
only in the case d=2. The proof for an arbitrary d is similar. On the base of the 
first part of the proof we may assume that \A2\ = 2, and we may also assume that 
A2=(0, 1). Let n be a positive integer such that 2 ( B - 4 ) , > / 1 . Let us subdivide the 
tessellation array E 2 into square blocks of size nXn. Every block is designated 
by an element of E2, as shown in Fig. 1. For any a^E2, Bx denotes the block designated 

by a. The subdivided tessellation array will be referred 
to as block structure of E2 denoted by E l . It may be 
considered a tessellation array whose cells are blocks. 

Let 5„_4 be a square block of size (n — 4) X {n — 4) 
and let A'2 be the set of all mappings from iS„_4 into 
A2. (E.g., Fig. 2 shows an element of A2). Since 
\A2\ == 2 ("~4)2>-/1, there is a one-to-one mapping 
t:A±-*A2. Now we define a one-to-one mapping 9: 
CAlt2 — CAit2. For any c£CAlw2, c9£CA?t2 is a con-
figuration whose restriction to an arbitrary block 
BJ^Eg), denoted by c9/Bx, is defined by the follow-
ing way: 

1. The restriction of c9 to the inner array of size (« — 4)X(n — 4) of the block 
Ba equals (c(a))r. 

2. Each cell belonging to the outside layer of size 1 of the block Bx contains 
state 1. 

n-4 

r r 
E >(-1 A) [ >(0, F<> t 1i 

R 

r I r I r 
I M ,0) I »(0 0) t OJ 

Fig. 1 

1 0 1 

0 0 1 

1 0 0 

>n- 4 

1 1 1 . . . 1 1 1 

1 0 0 . . . 0 0 1 

1 0 0 1 
(c(<Z))T 

1 0 0 1 

1 0 0 . . . 0 0 1 

1 1 1 . . . 1 1 1 

>n 

Fig. 2 Fig. 3 

3. Each cell belonging to the layer of size 1 around the inner array of size 
(n—4)X(w—4) of the block Ba contains state 0 (see Fig. 3). 

Let C be the subset of CAli 2 defined by 

C = (c|c — c'9, c' 6 CAlt2). 

(It may be seen from the definition of the elements of C that the block structure 
of c can be uniquely recognized for all c£C.) Now we associate a mapping W: C-—C 
with every <P£MAl 2 defined by c1?=((c9~1)'P)9 for all c£C. Let M be denote 
the set of such mappings, i.e., 

M = {vyp = 9~1$9, $<iMAlt2). 
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It is obvious from the definitions that M ^ M A l 2 . Thus it is enough to prove that 
M is a homomorphic image of a subsemigroup of M M 2 . For this it is sufficient 
to show that for any f Ç_M there is a such that the restriction of f ' 
to C is equal to f . 

Let ¥ = 9-1$$£M(<P(iMA l ,2) and let 91 = (A\ E2, X,f)(X=(^, ..., £„)) be a 
CA such that = <P. We associate with X a neighbourhood template XB in El de-
fined by XB = ( B S l , . . . , B 4 ) . The sequence ( B a + i l , . . . , B x + i ) (a£E2) is denoted by 
N(XB, B a ) . 

Fig. 4 

Now we define a CA 9& = (A2, E2, Y, g) such that the restriction of to C is 
equal to *P. 

1. Y is a neighbourhood template for which N(Y, P) contains all blocks which 
belong to N(XB, B J ( B S E l ) for all ( i i B a (see Fig. 4). 

2. Let c be an arbitrary element of C. We now show how we may determine 
g(c(N(Y, ft))) for any P ^ E 2 . Let P £ B x ( £ E 2

b ) . Since N(Y, P ) contains all blocks 
belonging to N(XB, B x ) and the block structure of c can be uniquely recognized 
we know ..., c\Bx+in and so we also know ^ " ^ a + ^j), ..., c9 - 1(a + £n), 
i.e., cQ-^NiX, a)). From this we can determine f(c^-1(N(X, a)))=((c&-1)^)(a) 
and ((c&~1)<P)9\Bx = c*l'\B0i as well. But we can uniquely determine the position of 
P in the block Bx, thus we can also determine g(c(N(Y, /?))) = (c!F)(/?) as the state 
contained in the cell P under c¥\Ba. 

Theorem 4. If d^d2, then MhdlxMhtd2 can be embedded in M,lhd2. 

Proof. In wiew of the remark at the beginning of the preceding proof we prove 
the statement for d1 — d2 = d only. Let A1 and A2 be two sets with cardinalities /, 
and l2. We have to sliow that M A l d x M A i d can be embedded in M A l y . M d . Let 
c£CAlXA2<d. Since c(a) = (ci(a),c2(a))(oi£Ed) we may write (cl5 c2) instead of c. 
Let $ : M A l t d X M A 2 < d ^ M A l X A 2 y i a mapping defined by 

c(<P8) = (Cl, c2) (<i>9) = (d^i, c2$2) (c = (d, c2) e CAlXAi d) 

for all <& = ($! , < P 2 ) £ M A l i d X M A 2 d . One can easy verify that <P9 is a tessellation 
transformation and & is an isomorphism. 

Remark. Mh dlXM,2 Jt is not isomorphic to Mhh d2 because Z(Mhh d2)ssEd\ 
Z(Mh,dlXMh,dl)9iEdi + dzandEd>.?iEdi+d>. 
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For a CA 91 = (A, E,X,f) we shall say that the global transition function i>SI 
has speed p, if the maximum of the absolute values of the coordinates of the compo-
nents belonging to X is p, i.e., 

P = max \ij\ 
1 SiSn 
l S j S d 

where X=(Ç1, ..., £„) and & = ('i» •••>'«f)> i=\,...,n. 

Lemma 3. Let C=(clt ..., ck) be a finite set of distinct configurations for 
which Rij = (a\<x£Ei and Ci(a)7^Cj(a)), is a finite set and no element 
of C is a copy of another element of C. For any transformation C—C there 
exists a tessellation transformation such that ci<P = ci

xP, i= 1, ...,k. 
k 

Proof. By the assumption R= U Rtj is a finite set. Therefore there is a positive 
i , j = i 

integerp such that R can be included in a ¿/-cube of size pXp. 
Let $ be a transformation of C and let — EJ, X , f ) be a CA, where the 

set of all components of X is equal to the square of size (2p+ \)X{2p +1) with 
center (0, ...,0)£Ed. Since N(X, a) contains R for all &Ç.R, one can easily define 
the local transition function/such that the restriction of <Pa to C equals <P. 

Theorem 5. Every finite semigroup is a homomorphic image of a subsemi-
group of Mld. 

Proof It is enough to prove the statement for the full transformation semi-
group on a finite set with arbitrary cardinality. This is trivial from Lemma 3. 

Corollary. Any Ml d generates the variety of all semigroups. 

Proof. Indeed, from Theorem 5 it follows that non-trivial identities do not 
hold on Mlid (for this Corollary consult [3]). 

III. Tessellation transformations with a distinquished state 

A CA (A, Ed, X , f ) is said to be an initial cellular automaton (shortly: ICA), 
if there is a state a0£A called the quiescent state, such that f(a0, ..., a0) = a0. In this 
case we shall use the notation (A, a0, Ed, X , f ) . 

For a set A(\A\^2) and a0£A, the symbol MA<i ao denotes the set of all tessel-
lation transformations in MA d induced by ICA with quiescent state a0. It is evident 
that MAtd ao is a subsemigroup of MA d. 

A cÇ.CA d is said to be a finite configuration if 

sup (c) = (a|a£Ed and c(a.) ^ a0) 

is a finite set. CF denotes the set of such configurations. In the sequel, if estimates 
are given for the number of configurations with some properties we shall not distin-
quish between two configurations if one is a copy of the other. Clearly, 'if 4>€MA d Oo 
and c£C f than c<P£CF. 

A c£C f is said to be an «-configuration if sup (c) may be included in a d-cube 
of size nXn, i.e., there is an a = (i1, ..., id)€Ed such that c(P) = a0 for all 
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P = (Ji, ...,jd)£Ed with jk<ik or jk>ik+n for at least one k, l^k^d. Every c£CF 
is an «-configuration for some «, and if c is an «-configuration then c is also an 
«j-configuration for all m ^ n . 

For any set RczEd and c£CAd, c|i? denotes the restriction of c to R. A c'^CF 
is said to be a subconfiguration of c £ C f , if 

c|sup (c') = c'|sup (c')-

For a <PÇ.MA i a0, a c£CF will be referred to as image configuration if c may 
be written in the form c '$(c 'ÇC f) and c will be called a Garden-of-Eden configura-
tion if no image configuration containing c as a subconfiguration. 

Garden-of-Eden 

1 1 1 
«-configuration 

Fig. 5 

3 3' 

I i 
i i i P 7 

0 j D g 
HL ? 2 

g 'A É ? g 2 
2 • 2 
'MMWMMW/M 

t I 

Fig. 6 

A compact formulation of Moore's and Myhill's results proved in [5] and [6] 
(which may be found in [4]) is the following: 

Theorem 6. The restriction of a <P£MAdao to CF is one-to-one if and only 
if there exists no Garden-of-Eden configuration. 

Let G„ denote the number of Garden-of-Eden «-configurations and let Hn 
denote the number of all «-configurations 

Theorem 7. For any <P£MA d a , lim GJHn = 0 or 1 according to whether the 
' ' rt — 

restriction of <P to CF is one-to-one or not. 

Proof. If <f> is one-to-one the assertion is trivial by Theorem 6. Suppose that 
<P is not ,bne-to-one on CF. Let d=2, in the case d^2 we may proceed similarly. 
Take \A\=l] then //„ = /"2. First we show that GJHn is a monotonous increasing 
sequence. If e.g. the left lower part of an (« + l)-configuration is a Garden-of-Eden 
«-configuration (as shown Fig. 5), then it is a Garden-of-Eden (« +^-configuration. 
Using this fact we get G„+1^GnI2n + 1. Thus 

G G • /2" + ! G G n +1 un 1 _ un _ un 
Hn + 1 - /<" + 1>2 ~ /"2 ~ H„' 

hence GJHn is a monotonous increasing sequence. Thus it is sufficient to prove 
the statement for a subsequence of GJHn. Let Gn — Hn — Gn. Since <P is not one-to-one 
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on CF there is a Garden-of-Eden /«-configuration for some m. Therefore Gm^{lmt — 1) 
and for any positive integer k, we have Gkm^{lm2 — \)k2. So we obtain that 

Finally we get 

u = / f = r-* ~ 1 H 

_ 1™ i l Gkm l im - i P - = l im = 1. 

Let us recall some definitions from [2]. Let RczE2 be a nonempty finite set. 
Identifying the positive y axis with the direction north we call the set of cells in 
R with maximum abscissas the eastern perimeter of R. The northern western and 
southern perimeters of R are similarly defined. The following cells are called extremal 
cells of R: 

1. The northernmost and southernmost cells in the eastern perimeter of R 
(cell 1 in Fig. 6). 

2. The northernmost and southernmost cells in the western perimeter of R 
(cells 2, 2'). 

3. The westernmost and easternmost cells in the nothern perimeter of R 
(cells 3, 3')-

4. The westernmost and easternmost cells in the southern perimeter of R 
(cells 4, 4'). 

A function / : A"-»A is said to be cancellative with respect to its z'-th variable, 
if / («! , ..., ai_1, at, ai+1, ..., a„)=f(a1, ..., ai_1, b, ai + l , ..., an) implies at = b for 
all a l s ..., an, b£A. 

Theorem 8. If for any ICA W = (A, a0, E2, X,f)(X=(^, ..., Q), the local 
transition function/is cancellative with respect to its i-th variable and cA is an extremal 
cell of X, then the restriction of <Pm to CF is one-to-one. 

Proof. We may assume without loss of generality that the extremal cell mentioned 
in the theorem is the northernmost cell in the western perimeter of X. Suppose that 
cx and c2 are distinct finite configurations. Then 

R = (a | a££ 2 and ^ ( a ) ^ c2(a)) 

is a nonempty finite set. Let /?££2 be a cell such that the northernmost cell in the 
western perimeter of N(X, ft) and the southernmost cell in the eastern perimeter of 
R are equal to each other. Using the cancellativity o f / we get 

f{Cl(N(X, f}))) * f{c2(N(X, p))), i.e., Cl<P 21 C2 <I>2l . 

The converse of Theorem 8 fails trivially. It may be expected, however, that 
if we restrict ourselves to considering local transition functions depending essentially 
on all variables associated with extremal cells of X, then the assumption is also 
necessary. The next counter-example shows that this is not true. 

Let us consider two ICA: 9 I« = ((0.1>, 0. Ex, ( - 1 , 0, 1) , / ( 1 )) and 21(2> = «0,1), 
0, E1, ( - 1 , 0, l ) , / ( 2 ) ) , where/ (1> and/* 2 ' are defined by Table 2. The restrictions of 
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Table 1. 

x2 Xi f i x J, X2, X3, X4, Xs) 

0 0 0 0 0 0 
0 0 0 0 1 0 
0 0 0 1 0 1 
0 0 0 1 1 0 
0 0 1 0 0 0 
0 0 1 0 1 0 
0 0 1 1 0 0 
0 0 1 1 1 1 
0 1 0 0 0 0 
0 1 0 0 1 0 
0 1 0 1 0 1 
0 1 0 1 1 0 
0 1 1 0 0 1 
0 1 1 0 1 1 
0 1 1 1 0 1 
0 1 1 1 1 0 

X2 * 3 X4 / O L J x2, x3, x4, x5) 

1 0 0 0 0 0 
1 0 0 0 1 0 
1 0 0 1 0 1 

1 0 0 1 L 0 

1 0 1 0 0 1 

1 0 1 0 1 1 

1 0 1 1 0 

1 0 1 1 1 1 

1 1 0 0 0 1 

1 1 0 0 1 1 

1 1 0 1 0 

1 1 0 1 1 1 

1 1 1 0 0 1 

1 1 1 0 1 1 

1 1 1 1 0 0 

1 1 1 1 1 1 

$a((D and (Paw to CF are one-to-one, because / ( 1 ) (resp. / ( 2 ) ) is cancellative with 
respect to its first (resp. third) variable. Then 91 = «0,1), 0, ( - 2 , - 1 , 0, 1, 2 ) , / ) , 
where / is defined by Table 1 is the ICA whose global transition function <i>4i is 
e q u a l s t o $m<d <£«(2>. 

It can be seen that / depends on its first and fifth variables, but f is not can-
cellative with respect to any of them. Thus the restriction of to CF is one-to-one, 
but 91 does not fulfil the assumptions of Theorem 8. 

Lemma 4. If for an ICA 91 = (A, a0, Ed, X , f ) (with n-ary / ) the restriction of 
to CF is one-to-one, then all the classes 

of the partition A"[fof^1 (partition on A" 
induced by / ) have the same cardinality. 

• k(2pH)f2p 

V 
Proof. Again we shall prove the state-

ment for d= 2 only. Take \ A | = /. Suppose that 
has speed p. Then X can be included in 

a square of size (2p + l)X(2/> + l) with center 
(0,0) £E2. We may assume without loss of 
generality that this square equals to X. In 
this case n = (2p+\)2. If there are classes of 
A" If of ^1 with different cardinalities, then 
there is an a£A such that | a / - 1 | s / " - 1 + l. 
Let k be an arbitrary positive integer and let 
Dk denote the number of all (k(2p + l) + 2p)-configuration which have a£A in the 
cells shown in Fig. 7. We have £)ft = /«<<2p+i)+2p)!!-''2. g e c a u s e ^ j j a s S p e e c j ^ 

is an (m -f 2p)-configuration for any /^-configuration c. Since <Piu is one-to-one 
with respect to CF and (n = (2p+1)2) we obtain that Dk is at least 

0 a a 

0 a a 

a a 0 

" F 
Fig. 7 

6 Acta Cybernetica 11/3 
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( / ( 2 P + i ) * - I + ] ) * ' . T h u s w e g e t 

(/(2p + l ) 2 - l_ j - 1)/!= g y«2p + l) + 2p)2-*2( 

whence 
. 4p(2p+l) ip-

1 -I : < / k & 

which is not true for all k. 

Remark. The converse of Lemma 4 is not true. One can easily verify that the 
next ICA is a counter-example: 1), 0, E1, (—1,0, l ) , / ( 3 ) ) , where /<3> is 
defined by Table 2. 

For a fixed neighbourhood template X and a state alphabet A (\A\—ri) with 
a quiescent state a0€A, the symbol K„ denotes the number of all tessellation trans-
formations induced by ICA (A, a0, Ed, X , f ) whose restrictions to CF are one-to-one. 
S„ will denote the number of all tessellation transformations induced by ICA 
(A, a0, E\ X , f ) . 

Theorem 9. lim KJSn = 0. 
n — - o o 

Proof. If X has k(^2) components, then S„=n("k~1) and using the result of 
Lemma 4 we get 

( w * - l ) ! 

( n k _ 1 ! ) n _ 1 ( / 2 ' t _ 1 — 1)! 
Thus 

K, («'-!)! nk\ 

^n — f„k-lt\n-l(„k-l 1 \ l — 2 ) . 

Sn ~ n(«k-l)(n*-] 1)! n"k{nk-1l)n 

Using Stirling's formula ! = |—j ^2nn • e12", 0 < < 9 „ < l j we get 

(k S 2). 

k, — fhirt-e" nkl ( e 
l im — k , , , = l im 
„-<» tin (n !)" 

t "in" I 

1 
e„k e„k -1 

= ^ J w v ^ - e l 2 " k = 1 = 0 2 ) " 
If k=l then S ^ r í " 1 and K„s(n-\)\. Thus 

K • ( " - 1 ) ' n if „ 

In the course of a conversation B. Csákány conjectured that for fixed A, d 
and a0, the set 5 of all bijetive transformations of CF induced by ICA form a group. 
We shall prove that this conjecture is false by giving an example which shows that 
5 is not closed under the formation of inverses. 
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Let 9Î=((0, 1), 0, E1, (—1, 0, 1) , / ( 1 )) be an ICA, where / (1> is defined by 
Table 2. The restriction of <Pn to CF is surjective (shown by Amoroso and Cooper 
in [3] pp. 163) and thus it is also bijective. Suppose that there is a W£M(0 1 0 
such that (c^s,)1? = c for all c£CF, and let 93 = ((0, 1), 0, E\ X , f ) be an ICA'such 
that <P<B=1J. Assume that has speed p. In this case (c4)

ai)(a)(aÇ£'1) is uniquely 
determined by c(ot—p), ...,c(a), ...,c{a+p) for any configuration c. Let us con-

Table 2. 

*з х3 / ( 1 ) ( * 1 > *з) /<2>(Х1 5 Х2 *з) / < 3 > ( х ! , х 2 , х3) 

0 0 0 0 0 0 
0 0 1 0 1 0 
0 1 0 1 1 0 
0 1 1 0 0 1 
1 0 0 1 0 0 
1 0 1 1 1 1 
1 1 0 0 0 1 
1 1 1 1 1 1 

sider the following two configurations and their image configurations under 
(see. Fig. 8). 

Ci(a) c2(a) 
1 1 

C l : . . .0_0_1 0 1...1 0 1 0 0... c2: 0 O j J J l 1...1 1 1 0 0... 

c ^ : ... 0 | 0 J 1 1 1...1 1 1 1 0... c2Ф<ц: 0 0[ÖJl 1...1 1 1 1 0... 

Fig. 8 

It сап be seen that ( с ^ я ) (P) = (с2Ф<я) (P), ct—p^pka+p, but ((ciФа,)Фш) (a) = 
= с1(а)^с2(а) = ((с2Ф^)Фв)(а), which is a contradiction. 

Мозаичные преобразования 

Исследуется зависимость строения полугрупп мозаичных преобразований от размер-
ности пространства-носителя, а также от числа состояний. Далее, рассматриваются преобра-
зования конфигураций, индуцированные мозаичными автоматами с состоянием покоя. 
Отвечая на вопрос, поставленный Э. Ф. Муром доказывается, что почти все мозаичные 
автоматы обладают взаимно стираемыми конфигурациями. 
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