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1. Introduction 

The chronological ordering of archeological material is an important question 
of the archeological investigation. For the solution of this problem, besides the 
classical archeological methods, various methods using tools of natural sciences 
and mathematics are known. 

In this paper we are going to describe a mathematical method based on the 
theory of regression. This theory gives a natural approach to the problem of chrono-
logical ordering. By the aid of this theory we are able to decide in which cases the 
chronological order obtained by the method of Brainerd-Robinson [1] and by 
similar methods can be accepted. The idea of the application of the theory of regres-
sion was given by an analysis of the methods of Brainerd-Robinson and Dempsey-
Baumhoff [2]. 

2. Prerequisites 

The purpose of this section is to summarize concepts and to state results which 
are familiar to mathematicians but not to archeologists and which will be used 
in what follows. Whenever the word 'set' is used it will be interpreted to mean a 
subset of a given set which will be denoted by S. If x is an element of S, and E is 
a subset of S, the notation x^E means, that x belongs to E; the negation of this 
assertion, i.e. the statement that x does not belong to E, will be denoted by x$E. 
If E and F are subsets of S, the notation Ea F means that E is a subset of F i.e. 
that every point of E belongs to F. Two sets E and F are called equal if and only 
if they contain exactly the same elements or, equivalently, if and only if EczF and 
FczE. 

If P(x) is a proposition concerning x then the symbol {x: P(x)} denotes the 
set of those elements x for which the proposition P(x) is true. In general the brace 
notation {...} will be reserved for the formation of sets. Thus for instance if x 
and y are elements then {x, y} denotes the set whose only elements are x and y. 

If E is any set of subsets of S, the set of all points of 5 which belong to at least 
one set of E is called the union of the sets of E; it will be denoted by U E or 
U{£ : E(i¥,}. For the union of a special set of sets various special notations are 
used. If for instance ^ = {EX,E2, ...,E„}, then U E is denoted also by ¿S jUi^U. . . 

. . . U 2 s „ o r U E - i . 
/ = 1 
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If E any set of subsets of S, the set of all elements of S which belong to every 
set of E is called the intersection of the sets of E; it will be denoted by fl E or 
D {E: £ € E } . 

Two sets E and F are called disjoint if they have no elements in common. A dis-
joint set is a set E of sets such that every two distinct sets of E are disjoint. 

If E and F a r e subsets of S, the difference between E and F, denoted by E—F, 
is the set of all elements of E which do not belong to F. The symmetric difference 
o f t w o se t s E a n d F, d e n o t e d b y , EAF is d e f i n e d b y EAF= ( E - F ) ( J ( F - E ) . 
It is the set of all elements which belong to one and only one of E and F. 

Let R be any set whose elements are called, for suggestivity, points. If to each 
-pair x, y of elements of R a non-negative real number, denoted by g(x, y) and called 
the distance of x and y, is attached such that 

(1) if x=y then g(x,y)=0, 
(2) if Q(X, J O = 0 t h e n x=y, 
(3) g(x,y) = g(y,x), 
(4) for each three elements x, y, z of R 

Q(x,y) ^ Q(X, z) + g(z, y), 

the resulting "space" M i s called a metric space over the groundset R with metric g. 
A function g which satisfies (1), (3), (4) only, is called a pseudo-metric and the 

resulting space is called a pseudo-metric space M over the groundset R with pseudo-
metric g. 

Let M be a pseudo-metric space and let D be the family of all sets Gx= 
= {y£M: if U £G x and v£Gy then 

g(u, v) s g(u, x) + g(x, y) + g{y, v) = g(x, y). 

Consequently, since in this case it is also true that x£Gu and y£Gtt,g(ti, v) = g(x, y). 
Let A and B be two members of D and let T (A, B) be equal to g(x, y) for every x 
in A and for every y in B. Thus D with the function %(A, B) is a metric space. In the 
sequel we shall call the set D with T(A, B) the metric space induced by the pseudo-
metric space M. A set N is called a subset of a metric space M provided TV is a sub-
set of the groundset R of M and the distance of any two points x, y of N is the same 
as their distance in M. If N and L are subsets of two metric space M and Q, res-
pectively, we say N is congruent to L provided there exists a one-to-one distance-
preserving correspondence between the points of N and the points of L\ that is 
for every pair x,y of points of N g(x, y) = g'(x\ y'), where x', y' are the points of L 
that correspond, respectively, to points x, y of N and g, g' denote the distance in 
N and L, respectively. 

A subset N of a metric space M is congruently imbeddable in a metric space 
Q provided there is a subset L of Q such that N is congruent to L. 

We shall apply in the sequel the theory of regression. We need the linear regres-
sion. For our purposes it is necessary to know only the following. We consider 
n points (Xj, yj), (x2, y2), . . . , (x„, yn) in the plane. It is convenient to write the equa-
tion of the straight line which we fit to these n points in the from 

0) / = a + b(x — x), 
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where x is the arithmetic mean of x1;x2, . . . , x„; b is the slope of this line and a 
is the y intercept on the line x = x. The y intercept on the y axis is a—bx. The problem 
is to determine the parameters a and b so that the sum of the squares 

¿ ( y - y i f 
1=1 

will be a minimum. When y' is replaced by its value as given by (1), it becomes 
clear that this sum is a function of a and b only. If this function is denoted by 
F(a, b) then 

F(a,b) = Z\yt-a-bixt-x)]*. 
/=1 

If this function is to have a minimum value, it is necessary that its partial derivates 
vanish there; hence, a and b must satisfy the equations 

r)F " 

dF " = 2 [ y i - a - i ( x , - x ) ] [ - * i - x l = 0 . 
When the summations are performed term by term and the sums that involve yi are 
transposed, these equations assume the form 

n n 
an + b 2 ( * ; - • * ) = 2 yi 

;= i ;= i 

a2(Xi~x) + b 2(xi-xf = 2(*i-x)yi-
/=1 i= i ;=i 

n 
Since 2 ( x ' ~ * ) ~ ^ e solution of these equations is given by 

,= i 
tl 

2(xi-*)yi 
a=y and b = — . 

i= i 

These values when inserted in (1) yield the line y'—y = b(xt—x) which is usually 
called the regression line. 

If we write 
1 " S*y = (xi-*)yi n — i , = i 

and 

S2
X = —^-r21(xi-x)2> n— 1 ,=i 

then we may write 

b = — • = r 
SX SXSY SX SX . 

5« 
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Here г — х ' is called the correlation coefficient. The value of r must satisfy 
JC у 

the inequality — l ^ r ^ l . The value of r will be equal to ± 1 if and only if, the points 
(*1>Л). (x2,y2,), •••ЛХпгУа) lie on the regression line. 

3. The archeological bases of the methods of Brainerd-Robinson 
and Dempsey-Baumhoff 

Let us assume that we compare n sites. We denote by S, ( /=1 , 2, . . . , ri) the set 
of the objects of /-th site and by T, ( /=1, 2, ..., n) the set of the types of the /-th 

n n 
site. Put S = U Si and T — U Ti - The number AKS. means the precentage of the 

i=i i=i 
objects of type К belonging to the /-th site. The correlation between site / and site 
j according to Brainerd and Robinson is defined by 

(2) Xij = 200- 2\Aks ~AKSj|. кет 

This may be written in the following from 

xu = 200- 2 ¿KS- 2 Aks- 2 
KgTj-Tj KiTj-Ti Kgr.nTj. 

From this one can easily seen that the method of Brainard-Robinson is based 
on the following principle, if two sites have types in essentially different percentages 
or if there are types which belong to one of the two sites, but absent other site then 
the two sites originate from different times. 

If Ti = Tj i.e. the /-th and the y'-th sites have the same types then in the above 
formula the first and second sums are equal to zero. Thus the agremeent between 
the /'-th and /-th sites is determined by third sum. If the desagreement is small between 
/-th and y'-th sites then the members of the foregoing sum ( 2 M K S , — AKS. |) 

кет .пту 1 ' 
are also small. This is the only case, according*to Brainerd-Robinson's method, 
the two sites are of an age. 

This means that the percentage of each type is approximately the same in the 
both sites. 

Even if the site St contains essentially more objects than the site Sj, consequently, 
the site St has a greater number of the objects of the type К than the site Sj. The 
point of view of archeology this is such a requirement regarding to two sites which 
only rarely holds. 

The element X-j of the matrix used in Dempsey-Baumhoff's method is given 
by formula 

(3) = к - 2 V 
KiT^Tj 

where N means the number of all types belonging to sites ( /=1, 2, . . . , /;)• Accord-
ing to this formula the method of Dempsey-Baumhoff is based on the following 
principle. If two sites have the same types than both sites are of an age. However 
there exist such types which belong to one of the two sites only then they originate 
from different times. 
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These principles show that the two methods are essentially different. Later we 
shall return this question and we shall formulate the difference between these methods 
in the language of mathematics. 

4. The mathematical analysis of the methods of Brainard-Robinson 
anS Dempsey-Baumhoff 

The first method assigns to each pair ( S t , Sj) (i,j =1,2, . . . , « ) of sites the 
number given by formula (2), the second one assigns the number given by for-
mula (3). 

Let us correspond to each pair Sj) either the number 

(4) 2 2- • . ' . . 
KZTiATj KiTiHT 

or the number 

(5) 2 1-
KiTiATj 

For the sake of brevity, let us denote the number (4) by r(Si, Sj) and the number 
(5) by Q(Si, Sj), respectively. The function corresponding to the first method is 
200—r(Si , Sj) and the function corresponding.to the second one is N—Q(Si, Sj). 
It is clear that the determination of chronological order we may use the function 
r(Si, Sj) instead of 200—r(5/5- Sj) in the case of the first method and the function 
Q{Si, Sj) instead of N—g(Si, Sj) in the case of the second one. 

We shall prove that the functions r and o satisfy the 

(6) QiS^Sj)^ Q(Sl,Sk) + Q(Sk,SJ) 

and 

(7) riS,, Sj) ^ riS^S^ + riS^Sj) 

inequalities, respectively. • 
First we prove the inequality (6). Let us correspond to each subset L of the set 

T the number of the element of L (that is the number of types contained in L) which 
we denote by n(L). The domain of the function p(L) is the set P(T) of all subsets 
of T and its values are non-negativ numbers. If L and M are disjoint subsets of 
T then 

p(L U M) = n(L)+n(M), 

i.e. the function n(L) is additive. 
The function Sj) can be given with the aid of function ¡i(L) as follows 

Q(Si,SJ) = fi(TiATJ). 

Thus the inequality (6) obviously follows from the additivity of //. 
After this we are going to prove the inequality (7). This may be rewritten in 

the following form 

(8) 2 MjfSi- -dxSjl — . 2 Mxs,-— ^KSk\ + 2 Mks*- Aks \ . 
KIT^TJ K£T,UTK K£TK\JTJ 
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Now the left-hand side of (8) in detail is 

2 AKSi+ 2 AKSj+ 2 + KiT^tTjUT^ KdTj-(TjUT^ KaT,riT})~Tk 

+ 2 ¿ks,+ 2 A KSi+ 2 Mxs, ~AKSj\ 
Ke(TjnTk)-T, Ke(T,nTk)-Tj K(T,nTjDTk 

and the right-hand side of (8) 

2 aKS,+ 2 AKsk+ 2 AKSt + KiTi-iTjUTk) KeTk-(T,UTj) KZ(TiC\Tj)-Tk 

+ 2 2 AKSk+ 2 + 
(10) Ki<-T'C[Tk)-TJ « ( T . n r j - r , Kii Tir\TjOTk 

+ 2 AKSk + 2 AKS,+ • 2 AKSj KiTk-cr,r,Tj) K e T j - t f i U T j Ki(TinTJ)-Tk 

+ 2 + 2 2 \AKSk
 AKSj\ • K£(.T,nTk)-Tj KZlTjClTJ-Ti K(.TinTjriTk 

We omit f rom (9) and (10) the members occuring in the both (9) and (10). 
By the application of the triangle inequality we get 

(11) 2 \AKS,~ AKSj\ S 2 2 \AKSk-AKSj\; K£TinTJr\Tk Ker^TjCiT^. KiTiCiTjOT^. 
( 1 2 ) 2 \ A K S ~ •n-KSA - ZJ aKS: + 2 

K£(TiriTj)-Tk K£(TinTj)-Tk K(.(TtriTj)-Tk 

(13) 2 AKSt s 2 + 2 AKSk; KHT,nTk)-Tj -Ke(T,nTk)-Tj Ke(T,riTk)-Tj 
(14) 2 AKSj — 2 \AKSk~ AKSj 1+ 2 AKSk. 

The left-hand sides of (11), (12), (13), (14) add up the left-hand side of the (8) and 
similarly the right-hand sides of (11), (12), (13), (14) add up the right-hand side of 
the (8), disregarding the omitted members and the sum 

2 2 AKSk. KeTfc-crjUTj) 

From this we can infer that the inequality (8) and automatically the inequality (7) 
holds.. 

5. The application of the regression theory to the chronological 
seriation 

From the foregoing it can be easily seen that the function Sj) in the method 
of Brainerd—Robinson and the function Q{S,, SJ) in the method of Dempsey-
BaumhofT determine each a pseudometric space. In the prerequisites it was shown 
that a.pseudo-metric induces a metric on the set of all sets Gi = {Sj: Q(SI, Sj)}—0. 
Thus we may assume, with no loss of generality, that the function r (S i 5 Sj) and 
g(Si, Sj) are metrics. Arises the question what kind of a metric are induced by the 
function r and q in the set of the sites. Are they similar to the metric of the straight 
line or euclidean plane. Precisely, they are whether or not congruently imbedd-
able in the euclidean plane. It may happen that the imbedding is not possible. 
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Namely, let us consider, four sites A, B, C, D. Assume that each of the sites 
have the same types: I, J, K, L, M, N, P, Q. Assume moreover, that in the site A 
the type I occurs in percentage 25, the type M in percentage 45, and the other types 
occur in percentages 5 — 5; in the site B the type / occurs in percentage 25, the type 
N in percentage 45 and the other types in percentages 5 — 5; in the site C the type 
K occurs in percentage 25, the P in percentage 45 and the other types occur in percent-
ages 5 — 5; and finally in the site D the type L occurs in the percentage 25, the type Q 
in percentage 45 and the other types occur in percentages 5 — 5. 

By the method of Brainerd-Robinson 

i.e. the distance of each pair of the four sites is the same. Since we cannot find in 
the plane four distinct points such that any pair of them has the> same non-zero 
distance, the metric space determined by the set {A, B, C, D} and the metric r is 
not congruently imbeddable in the plane. We may make a similar example in the 
case of the method of Dempsey-Baumhoff. It is easy to see that in such" cases 
neither the Brainerd-Robinson's method nor Dempsey-Baumhoff's method cannot 
give a chronological order. 

In the reality, however, such cases occur only when we commit an error in the 
preparation of the archeological material or in our calculations. After a new examina-
tion we may find the trouble. 

We have seen the difference between principles on which the methods of 
Brainerd-Robinson and Dempsey-Baumhoff are based. This may the right time 
to straighten out the different in another way. Arises the question that the metric 
space induced by the sites and the metric g(S t , SJ) can be congruently imbeddable 
in the metric space induced by the sites and the metric r(Sr, Sj). In general this is 
not possible. Consequently, the chronological orders obtained by the two methods 
are not the same, because both methods determine the chronological order comparing 
the sizes of the distances of the sites. 

In order to establish the chronological seriation we need at least demand that 
the metric space induced by the set of sites and the function r or g be congruently 
imbeddable in the plane. But in this case it is reasonable to apply the theory of 
regression. First we must decide that the metric space induced by the function 
r(Si, Sj) on the set of the sites are imbeddable whether or not in the plane. If this is 
not possible then we must examine preliminary analyses particularly the isolation 
of the types. 

It is known various methods to decide the possibility of the imbedding. We may 
use the following general theorem [3]. 

An arbitrary metric space S with metric r is congruently imbeddable in euclidean 
/7-dimensional space if and only if (i) S contains an i + l-tuple p0,px, ...,p, (t = n) 
such that the determinant 

r(A, B) = r(A, C) = r(A, D) = r(B, C)=r(B, D) = r(C, D) = 120, 

0 1 

r2(PoPi) 
0 

D(p0,Pi, Pk) = 

0 

r2(PiPo) 
r2(PoPk) 
r2(PiPk) 

r2(PkPo) 0 
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where k = 1,2, . . . , / , has the sign of (— l ) t + 1 , (ii) for.every pair (x, y) of points of 
5 the determinants D(p0,p1, ...,/>,, x), D(p0,p1, ...,pt,y), D(p0,pl, ...,p,,x,y) 
vanish. We use this theorem in the case of n=2. Since each set of three points of a 
metric space is congruently contained in the euclidean plane, we must verify that 
for any four points p0, px, p2, p3 of the metric space of the sites the determinant 

D(pü,px,p2,pz) 

1 1 1 1 
• 0 r2(PoPl) r2(p0p2) r2(p0p3) 
r2(PoPÙ 0 r2(pip2) r2(pxp3) 
r2(PoP2) r2(pip2) 0 \P2Pz) 
r2(PoP3) r2(PiPs) r2(p2p3) 0 

vanish. If the metric space determined by the set of the sites and the metric r is imbed-
dable in the plane then we do imbedding (for example graphically). After this we com-
pute the coordinates of the points of the plane corresponding to the sites and with the 
aid of the theory of regression the regression line to points corresponding in the plane 
to the sites. The correlation coefficient shows the position of the points which represent 
the sites in the plane, relative to the regression line. If correlation coefficient is equal 
to + 1 or — 1 then every point lies on the regression line. If the correlation coefficient 
differs from + 1 then there exist points do not lie on the regression line. If the cor-
relation coefficient is close to ± 1 then the distances of the points from the regression 
line which are outside of the regression line are small. 

Inasmuch as each point is on the regression line, we consider the position of 
the points on this line as the chronological order of the sites. Otherwise we project 
the points onto the regression line perpendicularly, and we consider the position of 
the images as the chronological order. Thus the reliability of the chronological 
seriation depend upon the value of the correlation coefficient. If the correlation 
coefficient is close + 1 or — 1 then the chronological seriation is satisfactory. The 
advantage of this method is that we can control simultaneously the preciseness of 
the preliminary analyses. 

References 

[1] BRAINERD, G . W . , The place of chronological ordering in archeological analysis, Amer. Anti-
quity, v. 16, 1951, pp. 301—313. 
ROBINSON, W. S., A method for chronological deposits, Amer. Antiquity, v. 16, 1951, pp. 
293—301. 

[2] DEMPSEY, P . & M . BAUMHOFF, The statistical use of artifact distributions to establish chronolo-
gical sequence, Amer. Antiquity, v. 28, 1963, pp. 496—509. 

[3] BLUMENTHAL, L. M., Theory and applications of distance geometry, Oxford, 1953, p. 104. 

(Received March 23, 1970) 


