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Zusammenfassung. Im § 3 werden gewisse Fragen der Abzahlung von Wurzel-
Bäumen betrachtet. Sei T ein Wurzel-Baum mit der Wurzel R, bezeichnen wir 
durch k die Anzahl der Kanten von T. Teilen wir die Kanten in Klassen durch 
die folgende Relation ein: zwei Kanten sind äquivalent, wenn sie auseinander ohne 
Berühren von R erreichbar sind. Existieren genau x¡ Äquivalenzklassen, die aus 
je i Kanten bestehen (wobei i die Zahlen 1, 2, 3, ..., k durchläuft), so sagen wir, 
daß die Partition von Tder Vektor K=(x1,x2, ist. Wir erhalten drei Formeln 
für die Anzahl SK(k) der numerierten Bäume von der Partition Kunter die Annahme, 
daß die Nummer der Wurzel als 1 fixiert wird und die übrigen Punkte die Nummern 
2, 3, .. . , k+1 (auf beliebige Weise) bekommen. Eine dieser Formeln stimmt im 
Wesentlichen mit einem (in verschiedener Weise bewiesenen) Resultat von J. Dénes 
überein. Aus unseren Ergebnissen ist auch die wohlbekannte Formel von Cayley 
ableitbar (Corollary 1). 

In den Paragraphen 4—5 wird ein zeitliches Verhalten dem Wurzel-Baum 
T laut des Modells der früheren Arbeit [1] zugeordnet, so daß die Kanten in die 
Richtung der Wurzel gerichtet sind und jeder Punkt P¡ einen im Intervall (0, 1) 
liegenden beliebigen Anfangswert /?(/',•) hat. Wir definieren fünf Typen von mit 
den Werten fi{P¡) versehenen Bäumen, die fünf charakteristischen Arten des Ver-
haltens entsprechen (Proposition 6). Im §4 studieren wir die Wahrscheinlichkeit 
des Ereignisses, .daß. der Baum zu einem oder anderem Typ gehört, wenn sowohl 
der Baum (als ein Graph) wie die Werte P(P¡) zufällig gewählt sind. 

§ 1. Introduction 

§3 is devoted to some enumeration questions of rooted trees. In Theorems 1, 
2 and Corollary 2 several formulae for the number of labelled rooted trees having 
a fixed partition of the number k of edges are obtained, supposing that the root is 
labelled by 1 and the other vertices by 2, 3, . . . , k + \ . From our results the well-
known Cayley enumeration formula can be deduced, too (Corollary 1). 

In §§ 4—5, a temporal behaviour is assigned to the rooted tree T in sense of 
the model exposed in the former paper [1], such that each edge is directed towards 
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the root and any vertex P, has an arbitrary initial value lying in the interval 
(0, 1). We define five types of trees, being supplemented with the values /? (/*,); 
these types correspond to five characteristic features of behaviour (Proposition 6). 
We study in §4 the probability of the event that the tree belongs to one or another 
type provided that the tree (as a graph) and the values are chosen randomly. 

A large collection of results and methods concerning the enumeration Questions 
of labelled trees is contained in the lecture note [4] of Moon. The articles of Denes 
[3] and A. Renyi [6] deal with subjects closely connected with the present paper; 
especially, our Corollary 2 follows easily from Theorem 5 of [3] (by adding a new 
vertex as a root to the graph and by connecting the root to one vertex in each com-
ponent). The publication [7] of C. and A. Renyi is devoted to the generalization of 
the questions of counting for the case of &-trees. 

§ 2. Preliminaries 

We suppose that the reader is familiar with the basic notions of graph theory. 
If the edge e and the vertex P are incident, then we say, equivalently, that P is a 
terminal of e. 

Let H be a finite set and H1, H2, ..., Hi be some pairwise disjoint non-empty 
subsets of H. If the union of H1, H2, ..., Hj equals to H, then we say that H1, H2, ... 
. . . , Hj form a set-partition of H. (The ordering of the //¡'s is indifferent.) 

Let k be a natural number. If the members of the vector 

K=(xlr x2, ..., xk) 

consisting of k non-negative integers satisfy the equality 

(2.1) 1 •x1 + 2-x2 + 3 ~x3-i b k - x k = k, 

then we say that AT is a numerical partition of the number k. 
We speak about a partition simply if the context makes doubtless whether a 

numerical one or a set-partition is dealt with. 
Let a set-partition H1, H2, ..., Hj of the set H consisting of k elements.be given. 

If, among the subsets H1, H2, ..., Hj, 
there are x1 subsets each consisting of 1 element, 
there are x2 subsets each consisting of 2 elements, 

and there are xk subsets each consisting of k elements, 
then ((2. 1) is obviously fulfilled and) we say that the numerical partition, assigned to 
the partition of H in question, is (x1,x2, ... ,xk). 

Denote by Qk the set of all numerical partitions of the number k. If we write 
then the summation must be taken for all elements K of Qk. 

"u 
Let a, b be real numbers such that a^b. By the closed interval [a, b] we mean 

the set of the real numbers x satisfying a^x^b. By the open interval (a, b) we under-
stand the set of the real numbers fulfilling a<x<b. In analogy, we define [a, b) 
and {a, b] by the conditions a^x<-b and a<.x^b, respectively. 

We shall often write exp x instead of ex where e is the base of natural logarithms 
(this is useful if a long expression occurs in the role of x). The Biirmann—Langrange-
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formula concerning the series expansion of inverse functions is supposed to be 
known (see [2]). We shall use the subsequent Proposition I, II (of analytic cha-
racter) : 

Proposition I. There holds the identity 

(2.2) {f{x) = ) n ( 2 = 1+2 Akx* 
j = l Xj = 0 Xj- ' k=1 

in the real interval (u, v) where 
k i 

A = 2 II a"jLi —r 
!}k j = 1 

if the power series on the right-hand side of (2. 2) is uniformly convergent in (w, v). 

Proof Let the expression on the left-hand side of (2. 2) be ordered according 
to the increasing powers of x. Then the coefficient of xk gets an additive contribu-
tion from all the possible partitions of the number k; the contribution of any single 

k x 1 partition is [ J a*Lx—¡-. 
j=1 Xj' 

Before stating Proposition II, we introduce three notations zm, Tr(x), Z(x) 
as follows : 

Tr (x) =cos (r arccos x) 

(i.e. Tr(x) is the Chebyshev polynomial of degree r), 
zm = 6 . 2 1 ' 2 7 r - 3 / 4 m - 1 / 4 e - 4 ^ ( l + 0(w-1 /2)) if 

(2.3) Z(x) = ^ [ z 0 + 2 ^ ( - i r z m r 2 m ( l | | where x ^ l . 

Proposition II.. There holds the identity 

n-r(n) = n\ = (2;r)1/2 • «" + 1/2 • exp {-n + Z{n)), 

consequently, the right-hand side of the definition (2. 3) is convergent. 
The proof of Proposition II may be found in [5]. We note that the analogon 

of the convergence conclusion of this proposition does not hold for Stirling series. 

§ 3. The enumeration of rooted trees 

A rooted tree is a finite connected undirected graph without circuits in which 
a vertex is distinguished. The distinguished vertex is called the root of the tree. If 
R is the root and P is an arbitrary vertex in a rooted tree, then the distance of R and P 
is called also the height of P.1 

1 In §§ 4—5 we shall consider the rooted trees as directed graphs in such a manner that each 
edge is oriented toward the vertex of smaller height. 

l* 
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Let T be a rooted tree and R the root in it; suppose that the degree of R is 1. 
We say that the partition of the tree T is 

1 2 3 <1-1 k 

= < 0 , 0 , 0 , . . . , o,T>. 

Denote by P the single vertex adjacent to R. If we delete R and the edge between 
P, R, then we get a tree T'; we agree that P should be the root of T'. The rooted tree 
T', defined in this manner, is called the truncated tree of T. (It is defined only if 
the degree of the root is one.) If the number of edges of T is k, then T' has A: —1 
edges (consequently, k vertices). 

Now let T be a rooted tree (with the root R) such that the degree d of R is at 
least two. Denote the edges incident to R by eL, e2, ..., ed, and their terminals, 
different from R, by Plt P2, ..., Pd, respectively. We define d new rooted trees 
Ti, T2, ..., Td in the following four steps: 

(i) we delete R, e1,e2, ...,ed, 
(ii) we introduce d new vertices RX,R2, ..., Rd and d new edges e[, e2, ... ,ed, 

(iii) for each number i (1 ^i^d), let e\ be incident to i?f and Pt, 
(iv) for each i (1 sisd) let 7) be that connected component of the graph, 

built up in the previous steps, which contains let be the root of Tt. 
The process, described in (i), (ii), (iii), (iv), is called the dismembering of the 

tree T (having a root of degree =-1) and every 7) is called a branch of T. 
If, for each number j (l^jSk), there are exactly y.j branches Tt such that 

the number of edges of any Tt equals to j, then we say that the partition of T is 

x2, ..., xk). 

Evidently, this expression is a partition of the number of edges of T. 
Let T be a rooted tree with k edges. T has fc+l vertices. Let us assign k+1 

different natural numbers to the vertices of T. The tree T together with such an 
assignment is called a labelled rooted tree. If we require, in addition, that the assigned 
numbers should be 1, 2, 3, . . . , k, k + 1 and, especially, the root should have the 
number 1, then we speak on a standardly labelled rooted tree. 

We denote by N{k) the number of the (non-isomorphic) labelled rooted trees 
with k edges when the set of numbers, corresponding to the vertices, is fixed. Fur-
thermore, we denote by S{k) the number of the standardly labelled rooted trees 
with k edges. If K is a partition of A: and only the trees having partition K are counted, 
then the analogous numbers are denoted by NK{k) and SK{k), respectively. Ob-
viously, 

N(k) = ZNK(k) and S(k) = 2SK(k). 

In case k = 1 we have evidently 

Proposition 1. For the single partition K0={\) of 1 

Ar(l) = ^ K o ( l ) = 2 and S( l ) = SX o(l) = l 
hold. 

Proposition 2. If K is an arbitrary partition of k, then 

NK(k) = (k+l).SK(k). 
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Remark. We get from (3.1) N(k) = (k + l)S(A-) by summarizing for all parti-
tions K. 

Proof. We can suppose (without an essential restriction of the generality) 
that the vertices.are labelled with the numbers 1,2, . . . , k + 1 in the non-standard 
case too. Let the set © of all the trees (with k edges) labelled with these numbers 
be considered. For any element T of ©, let us consider the vertex P to which 1 cor-
responds. If we interchange the labelling of R and P, then we get a standardly la-
belled tree. In the mapping, defined by this interchanging, every standardly labelled 
tree is obtained exactly k+1 times. 

Proposition 3. For the partition KQ = (0,0, ... ,0 , 1) of k, the equality 
SKo(k) = N(k- 1) 

is satisfied. 

Proof. Let us consider the set of the standardly labelled trees T (with k edges) 
the partition of which is K0. If we form the truncated trees of the T's, we get a one-to-
one correspondence with the set of the trees with k — 1 edges, being labelled with 
the numbers 2,3, ... , fc+1. 

Theorem 1. Let K=(xx, x2, be an arbitrary partition of the number k. 
Then 

(3.2> « l ^ i r a . 

Remarks. N(0) is regarded to be 1. If X;=0, then the i'-th factor of the product 
in (3. 2) equals to 1. 

Proof. Let us consider the set © of all the standardly labelled rooted trees, 
with k edges, having the numerical partition K; moreover, all the set-partitions 
A of the set {2, 3, . . . , £ + 1 } to which the numerical partition K corresponds. To 
each element Tof ©, we assign a set-partition A as follows: two numbers i,j belong 
to a common class precisely if the vertices, labelled with i and j, are in the same 
branch of T. Let the set-partition T of S be defined so that T( 6 S ) and T\ £ ©) 
are in a common class when the same set-partition A is assigned to them. 

It is easy to see that the number of the set-partitions A is 

Furthermore, for any fixed A, there exist . 

nim-i))"' i=i 
trees T lying in a common class modulo T (this can be pointed out if one considers 
the forest consisting of the truncated trees of the branches of T). The product of 
the obtained quantities yields the formula exposed in the theorem. 

In the remaining parts of this §, we shall show that the well-known formula 
of Cayley may be deduced as a consequence of Theorem 1, moreover, two explicit 
formulae for the quantity SK(k) will be given. 
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Corollary 1 (the enumeration formula of Cayley). 

S(k) = (k + lY-\ 

Proof. Let us summarize both sides of (3. 2) for all the partitions of k. We get, 
by use of (3. 1), the recursion 

(3.3) 

This recursion can be solved by the method of generating functions. Let the 
exponential generating function of S(k) be defined as 

fc=o o 
(the empty product ] J is regarded to be 1). By utilizing (3. 3) and Proposition I, 

7 = 1 
we get the functional equation 

G(x) = [ y 7 7 1 11 - x f r \ y f-STQ-— D ^ T 1 ] 
YX l / i l O - D ! J ( 7 - 1 ) ! J Xjl 

pGU) 

for G(x). Since the Burmann-Lagrange series expansion formula (see [2], p. 22) 
implies that the single solution of the functional equation 

x=G(x)e~c<x> 

G(x) = Z 
( f c + i y - 1 

(3.4) 

is 

(3. 5) 

the assertion is proved. 

The next statement is essentially the same as a result of Denes ([3], Theorem 5), 
proved by him with other methods. 

kl 

Corollary 2. 

(3. 6) 

Proof We get from (3. 2) the formula. (3. 6) by substituting i ' " 2 for S ( / - l ) 
(in sense of Corollary 1). 

Corollaries 1, 2 imply at once 

(3.7) 

Corollary 3. Denote the quotient SK (k)/S(k) by Fk (K). Then 

lc 
7 i = l 

k!_ 
(k + lf 

(¡1-1 y, , 
; ! 
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Theorem 2. For any partition K=(x1, x2, xk) of k, we haue 

SK(k) = (2;r) V + 2 (A** , ! ) )^ e x p [ z { k ) - J x£Z(/)j 
/=1 ;=i 

where x = xt+x2-i—+xk (Z(n) was defined in §2). 

Proof Let Corollary 2 be taken into account. Since 

we obtain the formula stated in the theorem in such a manner that Proposition II. 
is applied for z! and k\, furthermore, the obvious possibilities for simplifying are 
performed. The proof is completed. 

It remains an open problem to get a simpler formula being asymptotically equal 
to the quantity 

occurring in Theorem 2. We did not succeed in doing this. 

§ 4. Some enumeration questions of networks with a rooted tree structure 

By a network, we understand a finite directed graph G together with a function 
p defined on the vertex set of G, the range of [i is the (real) open interval (0, l).2 The 
number /¡(P) is called the state of the vertex P.3 

In what follows, we shall consider networks formed from rooted trees, any 
edge being oriented toward its terminal having smaller height. We suppose that 
the states are assigned randomly to the vertices. Hence, we can assume that P ( P ) ^ 
^P(Q) i t P ^ Q because the complementary event is (possible but) of probability 0. 

The state of the root of a network is called the state of the network, too. 
Assume that the root of the network G is of (in-)degree 1. Let the truncated 

tree G' be formed and, to the vertices of G', let the same states be attributed as 
their states in G. In this case the network G' is called the truncated network of G. — 
The term "branch of a network" is used in an analogous sense. 

Let e be an edge going from P to Q. For the sake of the brevity, we say that 
e is a red edge or green edge according as /?(P)</?(£>) or fi{P)>fi(Q), respectively. 

We are going to introduce a partition of the set of networks into the types 
A, B, C, D, E. These types will be defined inductively by the twelve rules (i)—(xii) 

2 This definition (and the subsequent ones still more) has a certain formal character. The rea-
sonable meaning of the notions introduced now will be explained in § 5 where we shall attribute 
a temporal behavior to the networks, starting with the states fi(P) assigned to the vertices. 

3 Now we have required that any state fi(P) must' differ from 0 and 1. This was done for the 
simplicity's sake, because, on the one hand, the possibility when some values [HP) are equal to 0 or 1 
will be an event of probability 0, on the other hand, our treatment would be more lengthy and intri-
cate if the states 0, 1 were allowed. 

We emphasize that the numbers 0, 1 as states will not be excluded in § 5. 
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to be exposed. The root is denoted by R. In the rules (ii), (iii), (iv), (v), (vi), the 
degree of R is supposed to be 1; in the rules (vii), (viii), (ix), (x), (xi), (xii) the degree 
of R is supposed to be at least 2. If R is of degree 1, then let eR be the single edge 
incident to R. 

(i) If G has only one vertex (and no edge), then G belongs to the type A. 
(ii) If the truncated network G' of G is either of type C or of type E, then G 

belongs to the type A. 
(iii) If the edge eR is red and G' is of type B or D, then G belongs to the type B. 
(iv) If the edge eR is green and G' is of type B or D, then G belongs to the type C. 
(v) If the edge eR is red and G' is of type A, then G belongs to the type D. 
(vi) If the edge eR is green and G' is of type A, then G belongs to the type E. 
(vii) If G has a branch being of type E, then G belongs to the type E. 
(viii) If G has two branches being of type C and D (respectively), then G belongs 

to the type E. 
(ix) If G has no branch of type D or E but it has a branch being of type C, 

then G belongs to the type C. 
(x) If G has no branch of type C or E but it has a branch being of type D, then 

G belongs to the type D. 
(xi) If G has no branch of type C, D or E but it has a branch being of type B, 

then G belongs to the type B. 
(xii) If every branch of G is of type A, then G belongs to the type A. 

eR A B c D E 

green E C A c A 

red D B A B A 

Table 1. 

The rules (ii), (iii), (iv), (v), (vi) are illustrated in Table 1. The rules (vii), (viii), 
(ix), (x), (xi), (xii) can be summarized by saying that the strength of the five types 
is the partial ordering seen in Table 2. 

E 

A 

Table 2. 

Let N be a network. We agree in some notations. The number of edges of N 
is k. The state of (the root of) N is ß (0</?< 1). The partition of (the graph of) N is 

•K=(x1, x2, ...,xk). 
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The partition 
1 2 3 fc-i k 

<0,0 ,0 , . . . , X T ) 

is denoted by K0. K1 denotes an arbitrary partition of k different from K0. 
In what follows, we use a small letter p or a Capital one P according as the 

probability, to be denoted, does or does not depend on p (resp.). (In the latter case,. 
p can vary in the interval (0, 1).) After p, the variable /? will or will not be writ-
ten out. 

For a partition K of k, we denote by the probability of the event that a 
randomly chosen network of partition K (with k edges), being of state /?, belongs 
to the type X where X can be any of A, B, C, D, E (and, accordingly, the subscript, 
of p is a small letter a, b, c, d or e). We write p^ for the analogous probability when 
k is fixed but not K. We denote by P(

x
k) the probability of the fact that a network,, 

chosen randomly out of all networks having k edges, belongs to the type X. 
We adopt three hypotheses (HI), (H2), (H3): 
(HI) All the graph-theoretical structures of forming a rooted tree from k edges 

(distinghished from each other by the isomorphy of standardly labelled trees) are 
equiprobable. 

(H2) The state of a vertex P is chosen from the real interval (0, 1) in sense of 
the uniform distribution. 

(H3) The states of two different vertices P, Q are chosen independently of each 
other. 

If these hypotheses are accepted, then the rules (i)—(xii) imply the following, 
recursive system for the probabilities introduced above: 

(4.1) p™ = ZpK
xFk{K) 

(the quantities Fk(K) were determined in Corollary 3) 

(4.2) /><*> = f p ^ d f i 
o 

(where x can be any of a, b, c, d, e) 

(4.3) = P f - V + P ? - » 

(4.4) P
K

b° = j { p ^ m + p ^ K n w 
o 

(4.5) pk
c" = ¡ { p ^ m + p r ^ W 

(4.6) pK° = j p ^ W W 
o 

l 
(4. 7) p*> = f p<*-*W)dß' 

ß 
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k 
<4. 8) & = n w 

k 
<4. 9) />?' = n i p ^ + p ^ - p ^ j=i 

î i 

A: 

-(4. 10) 
j=1 

t 
(4.11) P^ = ïïiP^+P^+P^-iP^+P^) j=i 

<4. 12) = ^-(.P^+P^+P^+Pa1) 

(in (4. 8)—(4. 12), = . . . , xfc>). Indeed, equality (4. 1) follows from (HI); 
(4. 2) is implied by (H2), (H3). The equalities (4. 3)—(4. 7) are consequences of 
the rules (ii)—(vi), respectively. (4. 8)—(4. 12) follow by analyzing (vii)—(xii) if 
one takes into account that these rules do not contradict to each other and the 
premissa of them form a full system of events (if events having probability 0 are 
disregarded). 

We are going to point out that the solution of the equation system (4. 3)—(4. 12) 
•can be reduced to solving a recursive equation system such that the recursive system 
•depends on the expressions 

{where x may be any of a, b, c, d, e) and, of course, on the number k (but is inde-
pendent of the partition K of k). 

Proposition 4. Let us introduce the simpler notation 

The system (4. 3)—(4. 12) implies the subsequent system of equations (4. 13)—(4. 17): 

2J7, 
for the expression 
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(ak + bk + ck) = 
(4.15) 

= inatKc+ l ^ - y l f i b ^ + c^ + d ^ + e^Jdß' 
k 

(4.16) 

o 
t - i l 

(ak + bk + dk) 

— b d 

fck-1 
(4.17) = flk + frfc + Ci + i/fc + e*. . 

Proof. We shall use the following terminology: if two equations of form X= Y, 
Z=W are given, then the equation XZ= YW is called the product of them. 

. Let us form the product of any of (4. 3), (4. 4), (4. 5), (4. 6) with (3. 7), applied 
for K0; similarly, let the product of any of (4. 8)—(4. 12) with (3. 7), applied for 
Kx, be formed. Furthermore, let the sums corresponding to (4. 1) be formed for 
each of the subscripts a, b, c, d, e (for x), concerning all the partitions of k. This 
equation system can be deduced by use of (3. 7) to the system (4. 13)—(4. 17). 

We did not succeed in solving the system (4. 13)—(4. 17) completely. However, 
we can prove some partial results: 

Theorem 3. The following assertions hold: 
(A) Any of ak, bk + ck, dk + ek is a rational expression of k, independent of /?. 
(B) bk and dk are polynomials of fi with degree exactly k, with non-negative 

(rational) coefficients, without a term of degree zero. 
(C) 

ak + bk + ck + dk + ek = 

0, I. 

(E) Each of ak, bk, ck, dk, ek is a polynomial of fi with coefficients being ra-
tional in k. 

Proof. First we verify the independence statements of the assertion (A). The 
last term of (4. 13) does not depend on jS, because the limits of the integration con-

[k+1 l*-1 

—-—j ak on the 
left-hand side, and a sum on the right-hand one each term of which is a product 
of expressions a j (with j</c) (the summation is taken over all partitions of the number 
k except the one-member partition j=k that was subtracted). Hence the independence 
of ak can be obtained by induction with respect to k. . 

(4. 13) implies by an analogous deduction that ak + bk + ck is independent on 
p. Since ak proved to be independent, the same holds for bk + ck, too. 
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The independence of dk+ek follows from (4. 17) and the previous parts of 
the proof. 

The rationality statements of (A) can be obtained as consequences of (E) (to be 
proved later). Now we are going to prove (B). 

Let (4. 13) be subtracted from (4. 14). We get by the independence of ak: 

1 + k + 1 fc-i 
bk = inab— ZFJa + 

(4.18) 

IJ(aj + b p - ]Ja?\ + \ 
i=i j=i 

( k V-2 ft 
( j r b J , f (Pt-i + 4-JdP. 

The binomial theorem enables the subsequent transformation: 

niaj+bj)*'- h°? = nU'+'Z (?)«>r'}- n*? 
j = 1 j = 1 7 = 1 I 1 = 0 V / ) ) j = 1 

-1 0 
(where the empty sum of type or is regarded to be 0). If we multiply out 

1 = 0 1 = 0 
in the first product, then an expression is yielded every term of which contains a 

k power of bj (with a positive exponent) as a factor, because precisely that term ]J a*/ 
7 = 1 

is subtracted which does not contain such a power. It is clear that subtraction cannot 
occur in the remaining terms, furthermore, if bk has been subtracted from both 
sides of (4. 13), every subscript j of a bj on the right-hand side of the resulting equality 
satisfies j<k. This implies the statement, to be proved, by induction, with regard to 
the following remarks. The right-hand side is a sum each term of which is a polynomial 
of degree Ixj -j = k with non-negative coefficients without a term of degree zero 
(by the induction hypothesis). The latter term containing the integral is the integral 
of a polynomial with non-negative coefficients on the interval [0, p], the degree 
of this polynomial is exactly A:—1;-hence the integration yields a polynomial ex-
actly of degree k with non-negative coefficients, without a term of degree zero. 

Thus the assertion of (B) concerning bk is proved. By the analogy, we give 
the proof for dk only in outlines. We subtract (4. 14) from (4. 16); afterwards, we cal-

p 
culate with ctj+bj, dy, /? instead of bj, J (bk-1+dk_1)dpr (resp.) occur-

o 
ring in the above proof concerning bk. 

(C) coincides with (4. 17). 

In order to prove (D), first we note that the definition of xk implies that each 

of ak, bk, ck, dk, ek is contained in the interval |o, Since the values plk)+pik> 

0, I. 



Enumeration questions concerning trees and networks 141; 

Finally also the assertions of (E) will be proved by induction (with respect to 
k). Suppose that (E) is true with k — 1 (instead of k). (4. 13) implies that the asser-
tion (with k) holds for ak, (4. 14) implies that it is valid for ak+bk; hence it is true 
for bk> too. Similarly, the assertion follows f rom (4. 15) and (4. 14) for ck, f rom 
(4.16) and (4. 14) for dk , thus (by (4. 17)) for ek as well. 

The inductive proof is completed by Tables 3, 4. Table 4 contains the values 
of pi® and xk if k is 0, 1, 2, 3, 4; similarly, Table 3 gives the values of p1^ when 
0;iA:=s4. 

k 0 1 2 3 

K <0>. 0 ) (0,1) (2,0) (0 ,0 ,1) (1 ,1 ,0) (3 ,0 ,0) 

1 1 2/3 1/3 9/16 3/8 1/16 

pi 1 0 1/2 0 4/9 0 . 0 

PÎ 0. 0 ßV2 0 2ßz/9 0 o 

pi 0 0 d-ß2)/2 0 (2 — 2ß3)/9 0 0 

0 ß 0 ß2 
№ (ß + 2ß*)ll ß3 

P^ 0 \ - ß 0 l-ß' ( l - Ä / 3 - (3 —/?—2jS2)/3 

k 4 

K <0, 0, 0, 1) (1 ,0 ,1 ,0 ) (0, 2,0, 0) (2, 1 ,0,0) 

64/125 36/125 ' 12/125 12/125 

Pi 89/192 0 1/9 0 

PÏ (30j5 -rl6/?3 + 9/ï4)/]92 0 (2ß2 + ßi)/9 0 

Pi (55 - 30/T-- 16/!3 —9jS4)/192 0 (3 — 2ß* — ß*)l9 0 

Pi m (2ß2.+ 3/?4)/9 0?2 + 2/?4)/3 

Pi ( l - Ä / 4 (16 —4/?—5y?2 — 4/?3 — 3/î4)/16 (5 — 2jS2 — 3>S4)/9 (3 — ß2 — 2ßi)/3 

Table 3. 

Proposition 5. Let us introduce the notations mk, uk, vk, wk, zk by 

_2_ _ 3 

mk = (2tt) 2 k Te\ 

uk = ak+bk, vk = at+bk + ck, 

wk = ak + bk + dk, zk = dk + ek. 
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* 0 1 2 3 4 
/><*> 1 0 1/3 1/4 31/125 
a* 0 0 1/3 3/8 248/375 

p(k) 1 0 1/3 1/4 31/125 

Pi"' 0 0 /¡73 /¡78 (38/^+ 16/?3+13/?4)/375 
bk 0 0 /¡73 iß3116 (304/?2+128/?3+104/?4)/1125 

Pi" 0 0 1/9 1/32 289/5625 

pik) 0 0 (l-/f2)/3 (l-/?3)/8 (67 - 38jS2 - 16j83 -13/?J)/375 
c* 0 0 (l-/?2)/3 (3 — 3j83)/16 (536 — 304/i2 — 128j93 — 104/?4)/1125 

i><*> 0 0 2/9 3/32 716/5625 

PP 0 ß /¡73 (5£+4£2 + J?3)/16 (300/?+215/?2 +108/?3 + 237/?4)/1500 
dk 0 p ^ /3 (15j?+1202+3)?3)/32 (600j8- 430/?2 - 216/?3 - 474y?4)/l 125 

P'dk> 0 1/2 1/9 49/192 4441/22500 

pik> 0 l - f i (i-y?2)/3 (10 —5/?—4/?2 —;83)/16 (860 — 300/? — 215/?2 — 108/!3 —237/?4)/1500 
ek 0 l - f i (l-/?2)/3 (30— 15/?—12/?2 — 3/?3)/32 (1720- 600yS- 430j82 - 216/i3 — 474/?4)/l 125 

p(k) 
1 e 0 1/2 2/9 71/192- 8459/22500 

Table 4. 

If then the following equation system (4. 19)—(4.23) is asymptotically vaild 
for the polynomials uk, wk and the constants ak, vk, zk: 

(4.19) 

(4. 20) 

(4.21) 

(4. 22) 

(4.23) 

(l+e)ak = Zna + mk-ef wk_xdß' 
0 

(1 +e)uk = znu + mk-e{ak_1ß+ f w^dß') 

ß 

(l+e)vk = ZIlD + mk — e-aK_1 

l (1 +e)wk = ZIJw + mk — e f w^dß' 
ß 

zk + vk = mk 

Proof Let us apply the substitution 

( k ~ ] ) k - 2 

+ ek-l ~ jy Wfc-l 

and term-wise integration in (4. 13), using (4. 17). Let analogous transformations 
be performed for (4. 14), (4. 15), (4. 16) (e.g., in case of (4. 14), the substitution 

j ( k - l f ~ 2 

bk-1 + ck_1 + dk_1 + ek_1 - ^ tffc-i 
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is to be applied). Taking the asymptotic equalities 

1 4 k-1 

k"-1 

k-2 

(2tt) 2k 2 ek 

kl 

into account, we get the system (4. 19)—(4. 23). 

Remark. For the particular choice )S=0, 

. wk(0) = uk(0) = ak 

holds (this follows from Theorem 3 as well from (4.19)—(4.23)). 

§ 5. The connection between the type and the behavior of a tree-structure 
network 

The types A, B, C, D, E were distinguished in § 4 in a formal way so that the reader 
should.feel the lack of a convincing motivation. Now (as this was promised in Foot-
note 2) we are going to point out that the fact that a network N is contained in 
one or other of the types A, B, C, D, E implies entirely unlike consequences if the 
behaviour of the network is studied, as it was introduced in Section 3 of the former-
article [1], starting with the values P(P). 

We suppose that the reader is familiar with Sections 1—3 of [1]. Let N be a. 
tree-type network, let us denote the vertices of N by P1} P2, • ••, Pk+1 (where k is. 
the number of edges of N) such that the subscripts constitute a standard labelling.. 
To any P{, let us assign a function a¡(t) by the method explained in Sect. 3 of [1] 
such that the initial values are determined by a,(0)=j8(P i) (where l s ^ f c + l ) . 
Especially, to the root Px the function ax(i) is attributed. We have 

Proposition 6. If the assumptions, exposed previously, are accepted, then the follow-
ing six statements are valid for the network N: 

(I) If N belongs to one of the types A, B, C, D, E, then the functions a ;(/) are-
defined at least in the interval [0, t] (where 1 = 1 ).'1 

(II) If N belongs to the type A, then c/.1(r)= I. 
(I ll) If N belongs to the type B, then 0 < a 1 ( z ) < l and there exists a t such that 

0 < i < T and a1(f) = l : 
(IV) If N belongs to the type C, then 0 < a 1 ( i ) < 1 and a ^ ^ d for every t lying 

in the interval [0, T], 
(V) If N belongs to the type D, then ^(^ = 0 and there exists a t such that 0 < i < i 

and oc^O^l-
(VI) If N belongs to the type E, then ax(t) = 0 and a^t)^ 1 for every t lying in 

the interval [0, x\. ! 

1 The words "at least" mean that the a f ' s may also be defined for some (possibly all) values. 
t fulfilling T, 
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Remark. Since the conclusions of (II)—(VI) exclude each other, each of (II)—(VI) 
holds with the formulation "if and only i f " provided that N is contained in some 

-of the five types. 

Proof. (I) does not require a separate treatment (it follows from the other five 
-assertions). To prove (II)—(VI), we use induction with respect to the number of 
vertices of N. The type of a network was defined in § 4 by the rules (i)—(xii) re-
cursively; now twelve cases can be distinguished corresponding to these rules. 

If N has a single vertex, then, on the one hand, it is of type A by (i); on the other 
hand, evidently a 1 ( i ) = l if ^ r ( l — /?(Pa)), especially, ^ ( 1 ) = 1. 

Assume that the number of vertices of N is k+ \ and the assertions (II)—(VI) 
hold for the networks having at most k vertices. We distinguish eleven cases cor-
responding to (ii)—(xii). 

Suppose that N is of type A by virtue of (ii). Denote (by Px the root of N and) 
by P2 the root of the truncated network N'. There exists the edge P2PX and no other 

•edge is incident with P1 (in N). By the induction hypothesis, the conclusion of (IV) 
or (VI) holds for N, thus A 2 ( f )< l IS valid in the whole interval [0, T]. Hence a 1 ( i ) = l 
in the interval [T(1-/?(?!)), T]. 

Assume that N belongs to the type B in consequence of (iii). Either the conclusion 
of (III) or that of (V) holds for TV'; in both cases, a 2 ( / ) = l is satisfiable with some 
t in (0, T). Let t0 be the minimal t such that I S / ' S I implies A 2 ( I ' ) < 1 (it exists 
since a 2 ( t ) < 1 and the functions a are continuous from right); it is clear that the 
value of AX grows from 0 to (T — /0)/R in the interval [t0> t\. Because P2P\ is a red 

•edge, P(P2)^P(P1), hence « ^ ( l - j 3 ( P j ) ) = 1. 
If TV is of type C in sense of (iv), then P(P2)^ 'P(P1) , thus ax grows in the interval 

:;[0, r(l-P(P2))) from j3(A) towards l~P(P2)+P(Pi)(< 1) (without reaching it), 
furthermore a 2 ( r ( l ~ P ( P 2 ) ) ) = 1 and «I(t(1 ~P(P2))) = 0. a 1 ( O s j 8 ( P 2 ) < l when-
ever T(1 -[¡(P2)) 3= ? = T. ' _ 

Still we have to prove 0<a 1 ( r ) . If N ' is of type B, then this is obviously valid. 
If N' is of type D and there exists a t' such that 0 < / ' < T and the implication 

-is true, then evidently ct^x) ^ (t — t')/i > 0. If N' is of type D and no t' (with the 
^mentioned property) exists, then it is clear that some a ; grows in the interval [0, r] 
from 0 to 1; however, a i(0)(=)S(P i))=0 was excluded (cf. the hypothesis (H2)). 

If the type of N is determined by (v) or (vi), then the proof can be carried out 
by similar ideas. 

If one of (vii)—(xii) decides the type of TV, then the conclusion of the correspond-
ing statement of Proposition 6 can be proved by use of the subsequent principle 
(following from the behaviour defined in [1]): if the out-degree of Px is at least 
two, then the value ax( i) (at any instant t) equals to the minimum of the values 
that result if the values assigned to P1 (at t) are calculated for the several branches 

i ' ^ i S i =5- a 2 ( 0 < 1 

•of N. 
a 
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