
On some generalizations of cyclic networks 
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Zusammenfassung. Die ersten Abschnitte der Arbeit geben eine vollständige 
Beschreibung der endlichen zusammenhängenden gerichteten Graphen, die mindes-
tens zwei Zyklen enthalten und in denen jeder Punkt und jede Kante entweder 
in einem Zyklus oder in (genau) zwei Zyklen liegt. Bezeichnen wir durch Cx die 
Klasse dieser Graphen. Sei G ein Element von Cx und k eine Zahl, die kleiner als 
die Längen der Zyklen von G ist; bezeichnen wir durch 9i t(G) den Graphen, dessen 
Punktmenge mit der Punktmenge von G übereinstimmt, so daß die Kante AB 
in 2tfc((j) genau dann existiert, wenn A?±B und B aus A in G durch höchstens k — 1 
Kanten erreichbar ist. Sei C2 die Klasse aller Graphen 9t* (G) wobei G die Elemente 
von Cj durchläuft. . 

In den letzten Abschnitten wird es danach bestrebt, die in der früheren Arbeit 
[2] ausgearbeiteten Untersuchungen (über das Verhalten der Netzwerke mit einer, 
speziellen graphentheoretischer Struktur) auf die in C2 enthaltenen Graphen zu 
verallgemeinern. Es gelang nicht, alle erzielten Aussagen zu beweisen, folglich ent-
hält die Arbeit auch unentschiedene Vermutungen (sowohl über die Struktur wie 
über das Verhalten). 

§ 1. introduction 

In [2] certain cyclically symmetric networks were studied. These networks can 
be obtained in such a manner that we.start with a single cycle and draw some additional 
edges in it. 

Let us alter the mentioned procedure so that.we start with a graph G satisfying 
the following four requirements (instead of being a cycle): 

G is a finite connected directed graph, 
to any edge e of G there exists at least one cycle containing e, 
G contains at least two cycles, 
whenever zi,'z2, z3 are three different cycles of G, then there exists no vertex 

lying in all of zlt z2, z3. • 
The collection of these graphs G will be called the class Cl. We shall define a 

class of graphs (the class C2) by adding edges to any graph in Cx in an appriopriate 
manner. In §§ 3—4 we study the graph-theoretical structure of the members of the 
classes Clt C2; in §§ 6—8 the behaviour of the networks of type C2 is analyzed. 
Since I did not succeed in solving all the arising problems, the paper also contains 
conjectures besides the propositions verified. 
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§ 2. Some graph-theoretical definitions 

We shall always consider finite graphs having at least one edge. "Graph" will 
mean a directed one unless (rarely) we speak of a non-directed tree explicitly. Self-

. loops are (in general) permitted. Among the graphs con-
taining parallel edges with the same orientation (espe-
cially, at least two self-loops on the same vertex), only 
the two graphs seen on Fig. 1 are allowed (cf. Remark 
2 at the end of § 3). 

Let G be a directed graph. A sequence 
Fig. / 

(1) A0, ex, Ax, e2, A2, ..., e„, A„ 

GO \ 

consisting of the vertices A0, Ax, ..., A„ and the edges e1, e2, . . . , en of G (alternatively) 
is called a directed edge sequence (of length ri) if each (1 = / ̂  n) goes from 
to A,. If, in addition, A0, Alt ••••An are different vertices, then (I) is a path. If 
A0, At, ..., A„-j are different but A0 = A„, then (1) is a cycle. Let Z(A) be the number 
of cycles of G which contain the vertex A ; let Z(e) be the number defined for the 
edge e analogously. We denote by MG the minimal cycle length that occurs in the 
graph G. 

In case of undirected graphs (or if the orientation of the edges is disregarded), 
the concepts analogous to path and cycle are called chain and circuit, respectively. 

Let A be a vertex of the directed graph G, assume that A is incident to exactly 
k edges oriented towards A and to exactly / edges oriented outwards from A. Then 
we say that the indegree of A is k, the outdegree of A is /, and the degree of A the 
ordered pair (k, i). — If G is undirected, then the degree d(P) of the vertex P is 
the number of edges incident to P. 

Let H be a subgraph of G. If H contains all the vertices (but, possibly, not all 
the edges) of H, then we say that H is an e-subgraph of G. The subgraph H of G 
is called a p-subgraph of G if the following condition is satisfied: whenever A and 
B are contained in H and the edge e of G is incident to A and B, then e is contained 
in H too.1 For each subgraph H of G, there exists exactly one graph <ZG(H) such 
that <ZG(H) is a /^-subgraph of G and H is an e-subgraph of <5a(H). 

Let G be a directed graph fulfilling2 MG S 3 and k be a number such that 2 s /c < 
<MC. Let us form a graph H conforming to the following two rules: 

the vertex set of H equals to the vertex set of G. 
the (directed) edge AB (A ^ B) exists in H if and only if in G there is a path 

of the length from A to B. 
The obtained graph H is denoted by 9Ik(C). Obviously, G is an e-subgraph of 

91* ((7) and 9I2(G) = G is always true. 
Let C be a class consisting of directed graphs. Then we denote by 91(C) the 

class of all the graphs 91k(G) where G runs through the members of C and, for any 
G, k runs through the numbers satisfying 2 ^ A : < A f c . 

1 If e is a self-loop, then the same vertex is considered as A as well as B. 
2 The condition M G s 3 means that G contains neither self-loops nor (oppositely oriented) 

parallel edge pairs. 
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Now we introduce two classes of connected directed graphs. Let C t consist 
of all the graphs having at .least two cycles and satisfying the inequalities 

ls=Z(/l) = 2 and l s Z ( e ) s 2 

identically,3-4 Let C2 be® « ( Q . 

§ 3. • Thé structure of the graphs in Cx 

. Construction I. The construction consists of four steps. 

Step I. Let T be a non-directed tree with at least one edge. For each vertex 
P of T, we denote by e[p\ e(

2
P), the edges incident to P (in an arbitrary 

manner). (Evidently, every edge gets two notations.) 

Step 2. Let us form a directed graph G, by what follows: the vertices of G\ 
correspond one-to-oné with the edges of T; if the vertex A of G± corresponds to the 
edge e{p = e(® of T, then edges go from A to the vertices corresponding to e f h and 
e^+i and only to these vertices (in case p = d(P), e[P) plays the role of e(Ph). 

Step 3. Choose a subset V of the set of vertices of Gj arbitrarily. For any 
element A of V',' perform the following procedure: 

Replace A by two vertices A' and A"; 
if an edge had gone to A, then let it go to A', 
if an edge had gone from A, then let it go from A"\ 
finally, supplement the graph with a new edge leading from A' to A". 
Evidently, this process can be carried out for all the vertices in V simultaneously. 

We denote the resulting graph by G2. (See Fig. 2.) 

Step 4. Instead of any edge of G2, we draw a path 
ofarbitrary length ( S i ) . (Of course, the inner vertices 
of these paths have the degree (1, 1).) We denote the 
resulting graph by G. 

Theorem 1. Any graph G arising by Construction / 
belongs to the class Q. 

Proof. First we show that G is connected. It is 
sufficient to verify that G t is connected because Steps Figm 2 

3, 4 cannot spoil the connectedness. Let A, B be two ver-
tices of G1. If the edges eA, eB of T, corresponding to. A and B (resp.), are adjacent, 
then A and B can clearly be joined by a chain. — Let now A, B be arbitrary vertices 

3 The word "identically" means that the conditions are required for each vertex A and for 
each edge e, respectively. 

4 These four inequalities do not form an independent system: if Z ( A ) ^ 2 a n d Z ( e ) ^ 1 are 
true, then also Z(A)s 1 and Z ( e ) s 2 hold. 

5 Our present notation differs from that of [2]: the graph, denoted by G(n; 1 ,2 , k) in 
[2], is now denoted by + ) (z„), where z„ is the cycle of length n. 

5* 
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of (¡v There exists a chain in T with edges 

eA = e1,e2, ...,ek = eB. 

Let the vertices of corresponding to these edges (respectively) be 

— -^l? ? ••*> ^k — 

We have shown that A,, Ai+1 can be joined by a chain (for each /, 1 ^ /<Ar) ; this 
implies that the same holds for A and B. 

Let A be an arbitrary vertex of G± and eA be the corresponding edge of T. There 
exist two vertices P, Q of Tsuch that eA = e{p = e(

q
Q) (wherep, q are suitable numbers). 

A is of degree (2, 2) by Step 2, and, moreover, A is a cut vertex since any chain 
going from e(ph to e(

q
Q+x passes through A. These considerations imply that a sequence 

of vertices of Ci determines a cycle if and only if it corresponds to the edge sequence 

for some vertex P of T. Hence Z(A) = 2, Z(e)=l are identically satisfied in G1. 
Step 3 of the construction does not alter the number of cycles and the identical 

validity of Z(A) = 2. For an edge e of C2, either Z(e) = 2 or Z(e) = 1 holds accord-
ing as e is a new edge (i.e. going from an A' to an A") or not. 

Step 4 does not modify the number of cycles, either. Denote by e' an edge 
of G2, let A be an arbitrary inner vertex and e be an arbitrary edge of the path (in G) 
replacing e' by virtue of Step 4. We have obviously Z(A) = Z(e) = Z(e'). If A is a 
vertex of G2, then Z(A) = 2 holds in G as well as in G2. Thus 1 SZ(A)^2 and 
1 ^Z(e)^2 are identically satisfied in G. 

Lemma 1. Assume that the graph G satisfies Z(A) = 2 and Z(e) = 1 identically. 
Then any two cycles of G have at most one vertex in common. 

Proof. Let z1; z2 be two cycles containing (at least) two common vertices. Let 
A be a common vertex such that the edges of zx and z2, starting from A, are dif-
ferent. Let us pass from A on zx to the first other common vertex B(^A), then let 
us pass from B to A on z,. Thus we have got a third cycle containing A; this, however, 
contradicts Z(A) = 2. • 

Theorem 2. Every graph G belonging to the class C1 may be produced by Con-
struction I. 

Proof Let G be contained in Cx. The condition Z(A)S 1 implies that any 
vertex of G has a positive, outdegree and a positive indegree. Neither the outdegree 
nor the indegree of a vertex A can exceed 2, because if e.g. the indegree were A:(=-2), 
then each of the k edges starting from A could be extended to a cycle, hence Z(A) ^ 

> 2 would follow; this is a contradiction. 
Thus the degree of any vertex of G is either (1, 1) or (2, 1) or (1, 2) or (2, 2). 

There is at least one vertex whose degree diifers from (1, 1) (otherwise G would be a 
single cycle). 

In what follows, we shall define a decomposition procedure for G that consists 
of four steps corresponding to Steps 4., 3., 2., 1. of Construction I, respectively. 

Step 1. If A is of degree (1, 1), then we delete A and contract the two edges 
incident to A into one edge. This can be performed for all the vertices with degree 
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(1.1) simultaneously (without essential difficulties). Let us denote the resulting 
graph6 by CJ. It is clear that (7^6 C l 5 and, furthermore, that only the degrees (2, 1), 
(1.2), (2,2) may occur in G\. 

Now we establish three lemmas on Gi (the proof of Theorem 2 will be con-
tinued later). 

Lemma 2. Let e be an edge of G[, going from A to B. Then Z(e) = 2 if and only 
if d(A) = (2, I) and d(B) = (\,2). 

Proof. The sufficiency is trivial. Conversely, suppose Z(e) — 2; if the outdegree 
of A is 2, then Z(A)^3; if the indegree of B is 2, then Z(5 ) 'S3 . 

Lemma 3. Let e, A, B be as in Lemma 2. Then Z(e) — I if and only if d(A) is 
either (1, 2) or (2, 2) and d(B) is either (2,1) or (2, 2). 

Proof. First we show that each of the following four statements leads to a 
contradiction: 

(a) d(A) = (2, 1) and d(B) = ( 2,1) 
(b) d(A) — (l, 2) and d(B) = ( 1,2) 
(c) d(A) = ( 2,1) and d(B) = ( 2,2) 
(d) d(A) = ( 2,2) and d{B) = {\,2). 

Indeed, (a) implies Z ( e ' ) ^ 3 for the single edge e' going out from B, (c) implies 
Z ( 5 ) — 3; (b) and (d) can be disproved analogously (by interchanging A and B). 

Since the possibilities (a)—(d) and the ones of Lemma 2 are excluded, only 
those allowed in Lemma 3 remain. 

Lemma 2 implies immediately. 
Lemma 4. If Z(e) = Z(e') = 2 for two different edges e, e' of G[, then e and e' 

are not adjacent. 
Proof of Theorem 2 (continued). 
Step 2. Consider the graph G[ (resulting by Step 1), and choose an edge e 

of G[ satisfying Z{e) = 2. Contract the two vertices A, B incident to e into one ver-
tex (i.e. delete e, A and B, and introduce a new vertex C so that any edge ( ^ e ) 
which has been incident to A or B will now be incident to C).7 This process can be 
performed for all the edges fulfilling Z(e) = 2 simultaneously (by Lemma 4). Let 
the resulting graph be denoted by G2. Obviously; G2 € Cx, and, moreover, d(A) = (2, 2), 
Z(A) = 2, and Z(e) = l are identically valid in G2. 

Step 3. Consider G2, and define an undirected graph 7" in the following manner: 
the vertices of T' correspond in a one-to-one way to the cycles of G2; two vertices 
P, Q of T' are joined by an edge if and only if the corresponding cycles of G',, have 
a vertex in common. 

Next we state two lemmas on T'. The first of them follows from Z(A) = 2 
(holding in G2) and Lemma 1 at once: 

6 If parallel edges with the same orientation do not occur in G, then either the same holds 
for G[ or G{ is one of the graphs of Fig. 1. 

7 If there has been an edge e' going from B to A (of course, satisfying Z(e') = 1), then e' will 
become a self-loop of the new vertex C. 
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Lemma 5. Let us assign to any edge e of T' the (unique) common vertex of the 
two cycles in G'2 corresponding to the vertices incident to e. This assignment is a 
one-to-one correspondence between all the edges of T' and all the vertices of G2. 

Lemma 6. T' is a tree. 
Proof. First we show that T' has no circuit. Assume that t is a circuit of minimal 

length in T', let t consist of 
Pi, P2, e2, ..., Pk, ek, Px (k^3i) 

(i.e. Plt P2, ..., Pk are the vertices and eu e2, ..., ek are the edges of t, passed through 
as they follow). Let 

A», ..., Ak 

be the vertices of G2 corresponding to 
ex, e2, ... , ek 

(resp.) and 
zx, z2, ..., zk 

be the cycles of G2 corresponding to 
P\ > P2 , • • • > Pk 

(resp.). Let us form a directed edge sequence in G2 so that we pass 
on Zj from Ak to Ax, afterwards 
on z2 from Ax to A2, 
on z3 from A2 to A3, 

finally, on zk from Ak_1 to Ak. 

This sequence z is a cycle (otherwise / cannot be minimal). Thus Z(Ai)^3 (1 S/^/c), 
which is a contradiction. 

We are going to show that T' is connected. Suppose the contrary. The discon-
nectedness of T' implies (by Step 3) that G2 is either disconnected or has an edge e 
fulfilling Z(e) = 0. Both alternatives are contradictory (the first one is because the 
connectedness of G2 is equivalent to the connectedness of G, by Steps 1, 2). 

Proof of Theorem 2 (final part). The proof is completed by noting that the 
decomposition procedure, described in this proof (together with Lemmas 2—6), 
is an exact counterpart of Construction I. 

Remark J. To a vertex A of the graph G± (produced by Step 2 of Construction I) 
a self-loop is incident exactly if the edge in T, corresponding to A, is a final edge 
in T (i.e. it is incident to a vertex of degree 1). A graph G produced by Construc-
tion I contains no self-loop (i.e. cycle of length 1) exactly if each self-loop of Gx is 
eliminated either in Step 3 or in Step 4. 

Remark 2. It is easy to see that if a connected directed graph G satisfying Z(e) s 1 
identically has two parallel edges with the same orientation, then either G is one 
of the graphs of Fig. 1 or G has a vertex A such that Z(A)^3. This fact justifies 
the agreement posed in the fourth sentence of § 2. 
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Remark 3. A graph Gj (produced by Step 2 of Construction I) contains a 
pair of oppositely oriented parallel edges (i.e. a cycle of length 2) exactly if T 
has a vertex of degree 2. A graph G produced by Construction I does not contain 
a pair of oppositely oriented parallel edges exactly ife ach pair of this property of 
edges of Gx is eliminated either in Step 3 or in Step 4 (of course, the possibility 

• that GL contains no such pair is included). 

Problem. How to describe all connected directed graphs fulfilling 1 ^ Z ( e ) ^ 2 
identically?8 

§ 4. Some conjectures on the class C, 

By definition, each graph G contained in the class C2 has at least one e-sub-
graph G' such that G = 9Ifc(G') where k is a suitable number.fulfilling k<Mc . 
It is an open problem whether or not the statement of unicity of this presentation 
holds. This problem would be solved in the affirmative sense if a method were 
given for constructing G' from G such that the resulting graph G' is the unique 
e-subgraph such that G = 9l t(G'). In this § some conjectures related to this question 
will be exposed. The unicity statement is formulated in Conjecture 3. 

In what follows, we shall make use of two further classes of connected directed 
graphs. Let C3 contain a graph G if and only if G has an automorphism a such 
that a permutes the vertices of G cyclically and there exists an edge from A to a (A) 
for any vertex A.9 Let G belong to the class C4 exactly if the following assertion is 
fulfilled: whenever 

G = 9l t(G'), k<MG. and G ' e C j 

are satisfied for G', k, and z is a cycle of G', then10 '11<3c(z) = 9(*(z). 

. 8 This condition implies the identical fulfilment of Z(A)sl. Fig. 3 shows a graph in which 
Z{e)— 1 for each edge and Z(A) = 3 for some vertex. 

9 The relation G 6 C3 holds exactly if the vertices of G can be labelled by the numbers 1,2, . . . , n 
such that 

• G = G(n; 1, in.,, mz, ..., mk), 

where n is the number of vertices of G, k is a suitable number and, on the right-hand side, the no-
tation means that an edge A,Aj exists exactly if /— j is congruent to one of 1, m.,, . . . , mk modulo n. 

• . 0 

Fig. 3 Fig. 4. 

10 The inclusion <5k(z)39lk(z) is trivially satisfied; we require now the converse inclusion. 
It is obvious that 9tk(z) 6 C3. 

11 Let G' be the graph of Fig. 4 and z be the longer cycle of G'. Evidently C,. If 
all the cycles of G' are of the same length, then Wk(G')'e C,. 
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Let C be a graph in C2. If a /»-subgraph Gx of G belongs to the class C3 , then 
we say that Gx is a C3-subgraph of G. If G1 is a C3-subgraph of G and there exists 
no C3-subgraph G2 of G such that G1<zG2c:G, then we say that Gx is a maximal 
C3-subgraph of G. 

Conjecture 1. Let G be a graph contained in C2. Let G' be an e-subgraph of 
G and k be a natural number such that 

C G Q , k<MG. and G = 2t*(G'). 

If Gx is a C3-subgraph of G, then there exists a cycle z of G' such that z contains all 
the vertices of Gx. 

Conjecture 2. Let G, G' be two graphs as in Conjecture 1. Assume that .G is 
contained in C4. A./»-subgraph Gx of G is a maximal C3-subgraph of G if and only 
if there exists a cycle z of G' such that G x = S c ( z ) . 

Proposition 1. If Conjecture I holds, then so does Conjecture 2 as well. 

Proof. Let z be a cycle of G'. ©c(z) is a C3-subgraph of G in consequence of 
G£C 4 . Let G2 be a proper C3-subgraph of G such that <3 c (z)cG 2 . Conjecture 1 
implies the existence of a cycle z' of G' containing all the vertices of G2. The vertex 
set of z is a proper subset of the vertex set of z'\ this contradiction shows that <3G(z) 
is a maximal C3-subgraph, thus the sufficiency statement of Conjecture 2 is proved. 

Conversely, let Gj be an arbitrary maximal C3-subgraph of G. Consider S c ( z ) , 
where z is the cycle whose existence is stated in Conjecture 1. <3c(z) is a C3-subgraph 
of G by GÇC4 . The-maximality of Gt implies G1 = <àc(z). 

' Conjecture 3. Suppose G£C 2 . Then there exists exactly one pair (G' ,k ) (con-
sisting of an e-subgraph G' of G and of a natural number k) such that G = 9f)t(G/). 

Proposition 2. If Conjecture 2 holds and G £ C2 f l C4, then the conclusion of Con-
jecture 3 is valid for G. 

Proof. Let G', G" be two e-subgraphs of G and kx, k2 be natural numbers 
such that 

k2^Mc„, G'cCl, G-eQ, G = ^i(G') = ^2(G"). 

Conjecture 2 implies the equivalence of the following three assertions (i), (ii), (iii) 
for a /»-subgraph Gx of G: 

(i) the vertices of coincide with the vertices of a cycle of G', 
(ii) Gj is a maximal C3-subgraph of G, 

(iii) the vertices of Gt coincide with the vertices of a cycle of G". 
Hence the vertex sets of the cycles of G' coincide with the vertex sets of the 

cycles of G". Let z' be a cycle of G' and z" be a cycle of G" such that z', z" contain 
precisely the same vertices; let A be à vertex of z ' (and of z"). We shall label the 
vertices (in question) as they follow A on z' or on z". From A, edges (of G) go to 
the first, second, .. . , Ar1-th vertices (and only to these) of z ' ; analogously, from A 
edges go to the first, second, !.., £2-th vertices (and only to these) of z". This implies 
z' = z" and /r1 = /r2, thus also G' = G" (because Z(e) ë 1 is identically satisfied in G' 
and in G"). • 
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§ 5. Some lemmas 

Let A, B be two vertices of a graph G and a be a directed edge sequence from 
A to B. It is well-known that we can select a path aY from a such that ax leads from 
A to B, too; more precisely, ax may be constructed by iterating the method that we 
omit a cycle out of a directed edge sequence (unless it is a path). This fact will be 
used sometimes in this §. 

Lemma 7. Let A,B be two vertices of a connected graph G. IfZ(e) S1 is identically 
satisfied in G, then there exists a path a of G such that the beginning vertex of a is A 
and the end vertex of a is B.12 

Proof First we show that the .conclusion is satisfied by some directed edge 
sequence. Since G is connected, there exists a chain whose. vertices are 

A = A0, Ai, A.,, ..., Am_1; Am = B 

where m is the length of the chain. For every subscript / (0 there exists either 
the edge AiAi+1 or the edge Ai+1AI. 

Suppose that there exists a directed edge sequence b from A to A; ( 0 ^ / < / n ) , 
we shall prove the analogous statement for A, Ai+1. If A-tAi+1 does exist, then the 
existence of the required sequence is obvious. If e = Ai+1Ai exists, then let c be the 
path which originates from a cycle containing e by deleting e. b and c form together 
a directed edge sequence from A to Ai+1. We can select a path from the directed 
edge sequence constructed above between A and B. This completes the proof. 

In the subsequent lemmas, we consider a graph G belonging to Cx and we denote 
by d the greatest common divisor of the lengths of all cycles of G. For any pair 
A, B of vertices of G, the number of cycles containing both A and S is either 0 or 
1 or 2. 

Lemma 8: Let G be a grap'.i belonging to and A, B be two vertices of G. Denote 
by n(A, B) the number of pa,lis going from A to B. The following three assertions 
are true: 

(a) If there is at most one cycle containing both A and B, then 

n(A,B) = 1. 

(b) If there exist two cycles containing both A and B, then 

either n(A, B) = 2 and n(B, A)=i, 

or n(A,B) = \ and n(B, A) = 2. 

(c) Suppose that the first alternative of (b) holds. Let /,, /2 be the lengths of thé 
paths leading from A to B arid l3 be the length of the path going from B to A. Then 

4 = 4 = —/3 (modi/). 

12 If A and B coincide, then a path of length 0 fulfils the conclusion. 
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Remark. The assertions (a), (c) hold also in symmetrized form (by interchanging 
A and B). 

Proof. We use induction with respect to the number of cycles of G. If G has 
two cycles, then the lemma is evidently valid. 

Assume that the number of cycles is m and the lemma is true for the graphs 
having at most m — 1 cycles. We shall rely upon Construction I without any explicit 

reference (this is justified by Theorem 2). Let z be a 
D1 cycle of G such that z corresponds to a vertex of 

degree 1 of T. G has exactly one cycle zx such that 
z, zx have at least one vertex in common. The ver-

2 tices of z can be denoted (uniquely) by 

Fx, F2, ..., F„ £>j, Do, ...,DW 

• F, t-1 
such that z passes through the vertices in this 

3 ordering and exactly Fx, F2, ..., Ft are the com-
mon vertices with zx. Also zt passes over the F's 

¿hi according to increasing subscripts.( See Fig. 5.) t = l 
- is possible. t = 1 implies that the degree of F1 is 

(2, 2), i > 1 implies that the degree of Ft is (2, 1) 
and the degree of F, is (1,2); in both cases, all 
the remaining vertices of z are of degree (1, 1). 

Denote by Gx the graph resulting if Dx, D2,..., 
^ j i Dw (and the edges incident to them) are deleted. 
i . <v-'. Clearly Gx £ C1. 
" We distinguish six cases with respect to the 

situation of A and B. (The cases aiising when A, 
Dw-1 B are interchanged are not treated separately.) 

Case 1: neither A nor B occurs in z. Then the 
connectibility of A and B is the same in G as in Gx. 

Fig. 5 Case 2: A = Di and B = Dj (where 1 ^ / <_/' S it-'). 
Then (a) is trivially fulfilled. 

Case 3: A = Ft and. B = Fj (1 isj< t). We have 

n1{A,B) = n1{B,A)=\ 

for the function 7zx defined in Gx, hence 
n(A, B) = 2 and n(B, A)=l, 

i.e. the first alternative of (b) holds. Let llt l2 be the lengths of the paths from A to 
B along z1 ; z, respectively; let /*, l2 be the lengths of z1 ; z (resp.); let l3 be the length 
of the path from B to A. Then 

+ '3 ~ l*>. 4 + = J 

hence, on the one hand. d\lx = ¡x + l3, thus 
^ = — /3 (mod d); 



Generalizations of cyclic networks 115 

on the other hand, li — l2 — l* — l2• Since both of I*, I* are multiples of d, the same 
holds for their difference, thus 

= l2 (mod d). 
Also (c) is verified. 

Case 4: A = Di and B = Fj ( l s / s i v , (a) is trivially fulfilled. 

Case 5: A does not occur in z and B — Ft (1 ^ i S /). (a) follows from the induc-
tion hypothesis. 

Case 6: A does not occur in z and B = Dt ( l s / s « ' ) . Because n(A, F,)=l 
by Case 5, it is clear that n(A, B)= 1. — Analogously, 7t(FJ, A)= 1, hence n(B, A) = l. 
The proof is completed. 

Lemma 8 implies immediately 

Lemma 9. Let G be a graph belonging to C, and A, B be two vertices of G. If 
a, b, c are three directed edge sequences such that both of a, b lead from A to B and c 
goes from B to A, then 

lx = /2 = — /3 (mod d), 

where /1; /2, /3 are the lengths of a, b, c respectively. 

§ 6. Some notions concerning the behaviour of networks 

We recall the continuous model of the behaviour of a network,13 exposed in 
Section 3 of [1]. The subsequent treatment is — essentially — an extension of that 
of [2]. The mentioned behaviour may be shortly summarized as follows: 

(1) To any vertex A{ a function a , (0 is assigned. The domain of a,- is either 
the (real) interval [0, or an interval [0, T'max) where T'm,1X is some positive number 
(common for the vertices). The range of a ; is the interval [0, 1]. 

(2) For any number t lying in the domain of the functions a, (where 1 ^ i ^ n , 
n is the number of vertices), if the edge AjAk exists and <Xj(t)=\, then ak(t)=0. 

(3) The initial values a,(0) of the functions are assumed to fulfil the requirement 
posed in (2) (with 0 as /). 

(4) If the value of the function a, is less than 1, then it increases linearly unless 
it must be 0 in consequence of (2). 

(5) If the value of the function a ; is 1, then it remains constantly 1 unless it 
must be 0 in consequence of (2). . 

(6) If AjAk exists and the function a}, ak reach the value 1 at some instant t0 
simultaneously, then (/„ is denoted by T'max and) the functions are not defined for 
numbers / = /0-

If the functioning of a network is defined at an instant t, then the vector 

» = < a i ( 0 , a 2 W , . . . , « „ ( / ) > 

is called the state of the network at t. Let us form the state D of the network at 

13 By a network we mean a graph (without self-loops) together with numerical functions,. 
depending on the time, assigned to the vertices in a one-to-one manner. 
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the instant t + t' (where t' is a non-negative number and this new state X) is formed 
from 23 in agreement with the above rules (1)—(6)); X> is denoted by ©[ + / '] too. 

The state 93 is called cyclic if there exists a positive t such that 33 = ©[ + /]; 
each suitable t is called a period of the network with the initial state 23. © is called 
steady if S —23[ + r] is true for every positive t. Any steady state is obviously cyclic: 
By a proper cyclic state a non-steady cyclic state is meant. If 23 is a proper cyclic 
state, then clearly there exists a positive number t0 such that 23 = 23[+ /] holds exactly 
if t = gt0 where g can be 0, 1, 2, 3, ... . 

In the remaining part of this §, the concept of regular state will be introduced. 
Let us consider a graph G' belonging to the class Cx . Denote by d the greatest com-
mon divisor of the lengths of the cycles of G'. We define a partition 77 of the vertex 
set of G' in the following manner: let A =B (mod /7) be true exactly if there exists a 
path a (of length SO) such that the beginning vertex of a is A, the end vertex of 
a is B and the length of a is a multiple of d. We have to show that 77 is an equivalence. 

Lemma 10. The relation II is reflexive, symmetric and transitive. 

Proof. The reflexivity is evident since paths of length 0 are allowed. 
Next we prove the symmetry. Suppose A s B (mod 77). There exists a path a 

from A to B and a path b from B to A by Lemma 7. The length of a is a multiple 
of d by the supposition; either the fact that a, b form together a cycle or Lemma 8 (c) 
implies that also the length of b is a multiple of d\ consequently, B = A (mod 77). 

Finally, we show the transitivity. Assume A =B (mod 77) and B = C (mod 77). 
There exists a path a from A to B and a path b from B to C such that the lengths 
of a and b are multiples of d. Hence C can be reached from A on a directed edge 
sequence whose length is = 0 modulo d. By Lemmas 7, 8, 9, the same holds for the 
path(s) leading from A to C (and there exists such a path). 

Lemma 11. Let A, B, C, D be four vertices of G'. If A = B (mod n),and there 
exists an edge from A to C, and there exists an edge from B to D, then C = D (mod 77). 

Proof. Lemmas 7, 9 and the definition of 77 imply the existence of two paths 
a, b such that a goes from C to A, the length of a is = — 1 (mod d), b goes from 
A to B, the length of b is s 0 ( m o d d). Hence the directed edge sequences, going 
from C to D, are of length congruent with — 1 + 0 + 1 = 0 (mod d), thus 
C = D (mod 77). The proof is completed. 

Since Lemma 11 is valid and Z(A)^l is identically satisfied, it is easy to see 
that there are d equivalence classes modulo 77 and we can label these classes by 
(6.1) E1,Et,...,Ed 

so that if an edge comes from a vertex in £j (1 ^ i S d), then it terminates at an element 
of £ ,_! (where, of course, Ed plays the role of ^ - i ) . This enumeration of the classes 
is unique apart from cyclic translation. 

Let us consider a network G(£C2), having'the vertices Av, A2,...., A„, and 
an e-subgraph G'(eCi) of G such that 'G.= ^ ( G ' ) and 2^k<d.u A state 

23 = < a i ( / ) , a 2 ( / ) , . . - , « n ( 0 > ; 

14 Throughout the following parts of the paper, this terminology will be used extensively. 
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of G will be called regular1'0 (at the instant /) if it satisfies the following three con-
ditions: 

(a) If Ai = Aj (mod II), then ai(t) = oiJ(t). 
(b) If a,(/) = 1 for the vertices lying in a class E j (occurring in (6. 1)), then 

a,, (t) = 0 for every 
Al.(€Ej_1UEj_2[J ••• {JEj_k+1) 

where the expressions j—\,j — 2, ... are meant modulo d. 
(c) If 0 ' S a i ( 0 < l , A i ^ E j and am(t)< 1 for every 

then cc;(t) <ar(t) for each Ar(ÇEj-i), where the expressions j+\,j + 2, ... and 
j — 1 are again viewed modulo n.16 

By comparing the notions of cyclic and regular states with how these concepts 
had been introduced in [2], one can ascertain that the cyclic states were defined in 
precisely the same manner and the regularity was introduced in an almost full analogy 
(the difference is motivated by the modification of the graph-theoretic structure). 

§ 7. The cyclicity of regular states 

Consider a network G(£ C2) (as in the definition of the regular state). Suppose 
that we start with a regular state of G at the instant 0. The behaviour of G may be 
studied in detail in analogy to the discussion in § 2 of [2]. In studying a function a ( 
assigned to a vertex At, the only modification here is that now the sequence of sets 

• f f i ' Y T t f ) , 

must be considered, where consists of the vertices from which A{ is reachable 
by a path of length h (instead of the vertex sequence 

P> + 1 5 P i + 2 5 P i + 3 ! • • • 

in [2]); clearly, any set Hjp is a subset of Ej+k (where h can be 1, 2, 3, . . . , and j is 
determined by A ^ E j ) , thus any two vertices lying in a common H(

h
i] have the same 

initial value (by the requirement (a) in the definition of the regular state). The dis-
cussion and inferences, being in analogy with the respective parts of [2], lead to the 
following statements : 

Proposition 3. If we start with a regular state at the instant 0 and Ah£Ej, 
AiSEi+k, then 

a ; i ( T ) — a ; 2 ( P ) 

(the expression j + k is meant mod d). 
Denote by g the least common multiple of d and k. 

Proposition 4. Any regular state is cyclic, gzjk is a suitable period. 

15 The regularity of a state depends on which p-subgraph of G is distinguished as C . If Con-
jecture 3 is valid, then this dependence is apperent only. 

16 If A,£EJ, a,(i) = l and At,eEjjfc, then both a - ( 0 = 0 and «,.(/) =-0 are permitted. 
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Proposition 5. If S is a regular state, then the state ©[ + /] is regular for each 
non-negative t. 

Proposition 6. Let S be a regular state. S is steady if and only if k is a divisor 
of d and there exists a number j such that 1 ë j = d/k and the equivalence 

Our Proposition 4 is an exact analogon of Proposition 2 of the article [2]. For 
the networks of the.type investigated in [2],'the converse statement is true as well: 
only the regular states are cyclic ([2], Proposition 8). Now we are going to make 
some considerations (without any claim for completeness) on the question whether 
or not a similar assertion concerning the networks lying in C2 holds. 

First we characterize the steady states (without presupposing the regularity). 
Let A, B be two vertices of a graph G; we say that A is A>reachable from B if there 
exists a path of length ^ k from B to A (A = B is permitted). 

Proposition 7. Let G, k, G' have the same meaning as in the definition of the 
regular state. Let 93 be a state of the network G (at the instant 0). Denote by 
H the set of the vertices A{ satisfying «¡(0) = 1. The state 23 is steady if and only if the 
following three conditions are fulfilled: 

(i) A&H implies a ;(0) = 0 for all the vertices At of G. 
(ii) If A B£H and A is (k- \)-reachable from B in G', then A=B. 

(iii) To any vertex A of G there exists a vertex B( £ H) such that A is (k — I )-
reachable from B in G'.17 

Proof. If (i), (ii), (iii) are fulfilled, then at each vertex of G outside H at least one 
edge of G coming from an element of H terminates (by the operation hence 
all the initial values a,(0) remain unchanged. 

Assume that one of (i), (ii), (iii) is not satisfied. If (ii) were not true, then state 
in question would not be permitted. If either (i) or (iii) were not valid, then a vertex 
A j would exist such that «,(/) would increase in an interval [0, t') with an appro-
priate positive t'. Thus the state could not be steady. The proof is complete. 

ott(0)= 1 « AtÇ.Ej\JEj+k\JEJ+9k\JEj+u\J- U E j + d _ k 
holds. 

§ 8. On the regularity of cyclic states 

A A, 

Fig. 6 

" In case Ai H the statement is satisfied with B=A trivially. 



Generalizations of cyclic networks 81 

Consider the graph G = S3I3(G'), where G' is the graph on Fig. 6. If we put 

Pi = Pt=P* = Ps = P, = Pa = 0, P3=P<¡= 1 (where ft = «,(0)) 
then we get a steady state (since (i), (ii), (iii) are fulfilled) that is not regular. Thus 
the statement "any cyclic state is regular" does not hold. However, it can be expected 
that all non-regular cyclic states are steady, or (equivalently): 

Conjecture 4. Any proper cyclic state of a network of type C2 is regular. 
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