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1. Introduction 

The present paper can be regarded as self-contained inasmuch as it does not 
rely on outside repositories of references to an extent we would think underisable, 
yet, we think it should, in a proper setting, be considered as a continuation of, or 
an addendum to, L. Klukovits's paper [6] in the first issue of these Acta.1 Other-
wise it might be questionable whether the present paper, investigating pure measure-
theoretic properties of certain types of functions, should appear in a periodical of 
cybernetics. Though these researches might have some potential applications to 
cybernetics and to the theory of automata, this aspect of the problem will not be 
elaborated here in detail. Perhaps some additional research in this area may be 
useful. 

Yet, from a cybernetical angle, our study can be viewed as an investigation, 
on a theoretical level, of the relation between the behaviours of an automaton, 
firstly, if an arbitrarily large, but only a finite, number of input signs is successively 
fed into it and, secondly, if the feeding of input signs is repeated infinitely many 
times. 

The approach to the characterization of the behaviours of automata is achieved 
through studying measure-theoretic properties of retrospective sequential functions, 
the precise definition of which, along with other definitions, may be found below. 
We shall point out that under certain natural conditions such functions are measur-
able, or, in more specific circumstances, they are even continuous. They map Borel 
sets onto sets which, in a natural sense, can be called Lebesgue-measurable; we 
shall give an example which illustrates that the image of a Borel set may be a non-
Borel set, even in a very simple case. 

2. Preliminary notions 

Since the sections that follow depend to a considerable extent on different sets 
of notions we think it undesirable to accumulate here all the necessary definitions, 

1 The cited paper contains some inaccuracies and a considerable number of proofs in it are 
presented in an unnecessarily complicated way. Our observations concerning this matter are presented 
on p. 89. 
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and we collect here only the concepts that play a role throughout the whole of these 
notes. 

The very concept around which all that follows centres is that of the retrospective 
sequential function, shortly RS function. The domain of such a function is the Car-
tesian product 

( 2 . 1 ) X = X X n , 
n = l 

where Xn is intuitively interpreted as the set of input signs that can be fed into a given 
automaton at the «th stage. The range is a subset of the Cartesian product 

( 2 . 2 ) Y = X Y N , 
n = l 

where Y„ is, intuitively, the set of output signs that can be emitted immediately after 
the digestion of the input sign absorbed at the nth stage. The automaton in question 
is to be imagined as having a fixed initial state that completely determines its reac-
tions to sequences of input signs. The RS function assotiated with this automaton 
makes correspond to an infinite sequence of input signs the sequence of output 
signs the automaton emits while receiving the former. 

This intuitive description of RS functions may easily be put in the form of a 
precise definition: a function / mapping the set X into Y is called an RS function 
if, under f the first n signs of the .image sequence are uniquely determined by the 
first n signs of the argument sequence for every positive integer n. This specific pro-
perty of an arbitrary RS function / enables us to consider its restrictions to finite 
sequences. In notations, for every positive integer n put 

(2.3) X\n=XXk, Y\n = XYk] 
k = 1 *=1 

the funct ion/ |« ' sends , by definition, all sequences in X\n to sequences in Y\n in 
the same way as / handles these sequences as finite segments of infinite sequences. 
The notations 

( 2 . 4 ) n\X = X X*, n\Y= X Yk ( « S O ) 
*=n+ l k=n+l 

will sometimes prove useful, too. 
In all our considerations, each of the sets X„ and Yn will be vested with a measura-

bility structure, by which we mean an ordered pair consisting of a set, the underlying 
space, and a u-ring defined on this set, this latter being usually suppressed in the 
notational framework. The spaces X\n, Y\n, X and Y will be endowed with the 
measurability structures that are the products of their respective factors. The <r-rings 
determining these structures are the minimal ones generated by the sets of all rectan-
gular sets or, in case of an infinite number of factors, by the sets of all cylindrical 
sets; here a subset of e.g. A'is said to be cylindrical if, for some n, it is the Cartesian 
product of a set measurable in X\n with the whole set n\X. (As seen, the notion of 
cylindrical sets already depends on the concept of measurability in products of 
finite numbers of spaces.) 
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A part of our study depends only on this measurability structure, without 
the need of actually considering measures. In other parts we have also to assume 
that certain measures are given on the described a-rings. Sometimes we shall also 
consider the completions of these measures; these are, in general, defined on larger 
cr-rings, and this fact should carefully be kept in mind since, unless specifically 
mentioned our results may not hold for these extensions of the measures involved. 

Another point to be stressed is that, up to Section 5, when measures are con-
sidered the measures on the product measurability structure of X and Y are never 
assumed to be the products of the measures on the respective factors; on the other 
hand, all our counter-examples are so constructed that, when measures on X and 
Y are at all considered, these are the products of the measures defined on the res-
pective factors. 

3. Measurability of RS functions 

A very simple necessary and sufficient condition in order that an RS function 
be measurable in the sense that the whole inverse image of any measurable set is 
measurable is provided by 

Theorem 3.1. An RS function f is measurable if and only if the functions f\n 
are measurable for all positive integers n. 

Proof. The "only if" part of the assertion is quite obvious and needs no com-
ment whatsoever. Not much more complicated is the reverse implication, either. 
Indeed, observing that the inverse of a function does not spoil set-theoretical opera-
tions such as union and difference, the desired result immediately follows from 
the minimality restrictions, as imposed in Section 2, on product spaces. 

Here, of course, the question might be raised how far these minimality restrictions 
are indispensable. The situation is, perhaps, illuminated by 

Counter-example 3.1. The tacit assumption that in Theorem 3.1 measurability 
cn Y means belonging to the minimal a-ring generated by cylindrical sets cannot be 
omitted even in the simplest case. 

This assertion is intended to be a vague intuitive description of the situation 
rather than a precise mathematical statement. 

To consider a <7-ring, larger than the minimal one, of measurable sets in Y is 
senseless unless motivated in some suggestive way. Thus, what we are going to do 
will be to introduce measures on X„ and Y„ and consider the <r-rings that are the 
domains of the completions of the product measures on X and Y. 

Now we actually set to describe the counter-example in question. Choose Xn 
and Y„ as coinciding with the two-element discrete space, containing the integers 
1 and 2, such that the measure of each of its one-element subsets is 1/2. Let j< be 
the product measure on X= Y, and ¡1 its completion. 

Define the RS function / mapping X into itself by the stipulation that for an 
arbitrary sequence x={a„}~= 1 the image f(x) = y = {>'„}r=i be such that v2,.-i = ' 
and y2„ = xn. In compliance with the clause in Theorem 3.1, f\n is clearly measur-
able with respect to the (minimal) measurability structure on X\n=Y\n, this being 
the discrete structure. 
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Now the funct ion/being one-to-one, for any set Z g X we have Z = / _ 1 ( / ( Z ) ) . 
Here obviously //*(/(Z)) = 0,2 so / ( Z ) is always measurable with respect to /7; thus, 
providing Z is chosen nonmeasurable with respect to /¡, this set is an example for 
a measurable set whose full inverse image under / is not measurable. To make our 
considerations complete, we only have to point out that X has a subset which is not 
measurable with respect to ft; this, however, follows from the fact that ^ e n d o w e d 
with the measure fi is essentially identical as a measure space to the interval (0,1) 
with the usual Lebesgue measure on it. 

Finally, we remark that if the measurability structures of the spaces occurring 
here are coupled with certain topological ones then some simple conditions ensure 
the completion measurability of an RS function. These conditions and the proofs 
are analogous as in the cases of Lemma 4.2 and Theorem 4.3; the proofs in this 
case are even slightly simpler. We do not formulate these results here since they do 
not seem as natural as well as have no such a consequence as their counterparts in 
the next section (see Theorem 5.1 below). 

4. Questions concerning the transportation of measurability 

The question studied here, a much more difficult one than that envisaged in 
the previous section, concerns the transportation of measurability. More exactly, 
the problem to which we try to find an answer here is under what circumstances 
it is guaranteed that the image of a measurable set under an RS function is measur-
able again. This problem seems to depend much more on the topological structures 
of the spaces involved and on measures rather than on measurabilities than we 
experienced it in connection with the question studied in the previous section. Thereby 
we are forced to impose further restrictions on the spaces X„ and Y„, and it will 
be convenient to do this along with a short description of the related concepts. 

Throughout the rest of the paper we assume that, for each positive integer n, 
the spaces Xn and Yn are endowed with topologies induced by metrics under which 
these spaces are complete and separable metric spaces. The topologies on X\n, 
Y\n, X, and Fare defined as the products of the topologies on their respective factors. 
As is well known, it is possible also on these spaces to introduce metrics with respect 
to which they are complete and separable metric spaces. For example, if we denote 
the distance function on X„ by Q„ then the function 

( 4 . 1 ) g ( * , * 0 = i 2 - \ Q / o n ( x X i ' ) 
n = l 1 + i?n(*n> xn) 

serves as such a metric on X. Since our main concern is the possibility of the introduc-
tion of such metrics rather than the particular distance functions chosen, we shall 
suppress these latter in the notational framework; nevertheless, we might refer to 
the spaces involved as metric when it were enough to say metrizable in a certain 
way. 

Measures on these spaces will also be considered, ¡i and v will denote two 
Borel measures on A1 and Y, respectively; here a Borel measure, by definition, is a 

2 The asterisk * in superscript indicates outer measure. 
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er-finite measure explained on the <7-ring of all Borel sets, this being the smallest 
c-ring generated by e.g. all closed sets, p and v, called Lebesgue measures, will 
denote the completions of /1 and v. In an obvious way we can also define the restric-
tions fin, v„, fi\n and vj/7, of the measures n and v, to the spaces Xn, Y„, X\n and 
Y\n, respectively; e.g. for a Borel set H^X\n put ¡i\n(H) = it(HXn\X). It is usually 
not assumed that /1 and v are the products of the measures /t„ and v„. 

A simple condition in order that an RS function under the circumstances 
specified above be in a sense measurability transporting is 

Theorem 4.1. If the RS function f is such that f\n is Borel-measurable for any 
positive integer n then f maps all Borel sets onto Lebesgue-measurable ones. 

Here the Borel measurability of a function means that the whole inverse image 
under it of a Borel set is again a Borel set. 

Proof. It follows from Theorem 3. 1 that, under the given assumption, / is 
itself Borel-measurable; so it maps Borel sets onto analytic or, by another name, 
Suslin sets (see e.g. [2, 2.2.14 on p. 70]). As is weir known, every analytic set. is 
Lebesgue-measurable (see [2, 2.2.1.2. Theorem on p. 68]), which completes the 
proof. 

To illustrate how far the assumption in this theorem is necessary and whether 
the conclusion goes far enough we give several counter-examples. The assumption 
that f\n is Borel-measurable when we want to prove that / is measurability transport-
ing may seem artificial; Counter-example 4. 1, however, shows that it is not enough 
to suppose that f\n is measurability transporting. Counter-example 4. 2 shows that 
the given assumption does not ensure that / maps every Lebesgue-measurable set 
onto a Lebesgue-measurable set. It is not certain, either, that, under this assumption, 
the image of every Borel set is a Borel set; this will be shown later, in Counter-
example 5.1. 

Counter-example 4.1. The assumption that, for any positive integer n, the func-
tion f\n maps every subset of X\n onto a Borel set of Y\n does not imply the conclusion 
of Theorem 4. 1. 

In the example we are going to give, the validity of the assumption that f\n 
maps every set onto a Borel set will be ensured by choosing as Y \n a finite discrete 
space, every subset of which is, of course, a Borel set. To elaborate, choose the spaces 
X2, X3, ... and Yj, Y2, ... as identical to a two-element discrete space, with points 1 
and 2, such that either of its one-element subsets is of measure 1/2. Explain the 
Borel measure on Y as the product of those defined on the spaces Yn; define X1 as 
identical to Y, with the same topology and measure defined on it. Finally, choose 
the Borel measure on X as identical to the product of the measures explained on the 
spaces X„. 

Now choose as / j an arbitrary function from X1 into Y whose range is not 
Lebesgue-measurable. Then the funct ion/ that makes correspond to every x — {x„}™=1 
the sequence / i (xj) , independently of x„ for 2, is an RS function that satisfies 
our requirements, yet it does not map the whole set X onto a Lebesgue-measurable set. 

Counter-example 4. 2. The assumption of Theorem 4.1 does not assure that the 
image under f of a Lebesgue-measurable set is Lebesgue-measurable. 
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Using the same spaces X and Y as in the counter-example just before, define 
the RS func t ion / f rom X into Y so that it send a sequence A- = {xn}™=1 to a sequence 
y that is identical to .x16A'1 = Y, independently of the values of xn for n i 2 . It is 
obvious that the function f\n is Borel-measurable for each positive integer n. If we 
select an arbitrary set X'1(^Xl = Y that is not Lebesgue-measurable, then the image 
under / of the set X' = X[ X {1} X {1} X - - Q X is X[\ now the set X' is Lebesgue-
measurable, since its outer Borel measure is zero; yet its image is not so. 

It seems to be a rather difficult problem to give conditions that subtly differentiate 
between cases when Lebesgue-measurable sets are mapped onto this same' kind 
of sets and when they are, possibly, not. Nevertheless, the following two results, 
however rough they are, point in this direction. 

Lemma 4. 2. Assume that the space X is locally compact and that the measure of 
every compact set in X is finite.3 Suppose, furthermore, that the RS function f is such 
that, n running over all positive integers, the function f\n is Borel-measurable, and 
moreover, with some positive constant C, 

(4.2) - ( v j w r ( / i « ( C „ ) ) S Cfi j n (GJ 

holds for any open set Gn in X\n.2'* Then f maps all Lebesgue-measurable sets onto 
Lebesgue-measurable ones. 

We remind that the local compactness of X is an additional assumption and, 
as said at the beginning of this section, all the spaces considered here are assumed 
to be complete and separable metric spaces. We also recall that in order for the 
product of topological spaces to be locally compact it is necessary and sufficient 
that all factors, "with the possible exception of a finite number of them, be compact 
and the non-compact factors be locally compact (see [1, Proposition 11 on p. 65]). 
Taking this into account, we can reformulate the lemma accordingly. 

The point in adopting (4. 2) as an assumption of the lemma is that it ensures 
that the mapping/does not increase the outer measure of any set more than C times; 
thus, in particular, it maps sets of zero outer measure onto sets also of zero outer 
measure, and this implies the assertion of the lemma. 

Proof. Since every Lebesgue-measurable set can be represented as the union 
of two sets of which one is Borel-measurable and the other is of zero outer Borel 
measure, the assertion will follow from the previous Theorem if we show that / 
maps every set of zero outer Borel measure onto a set also of zero outer Borel mea-
sure. To accomplish this, let Z be an arbitrary subset of zero outer Borel measure 
of X. Since in a locally compact and separable metric space every Borel set is a 
Baire set, and a Baire measure on a locally compact space is always regular, pro-

3 Usually, Borel measures are considered on locally compact spaces and it is traditionally' 
included in .their definition that they are finite on compact sets. Here we cannot conform to this 
tradition since it would involve some unnecessary restrictions on the measures considered. 

' It is enough to require the conditions depending on n in this lemma and in the next theorem 
only for large enough integers, though the statements so obtained are not real generalizations since 
they easily follow from the assertions, analogous to the given ones, arrived at by grouping the factors 
of A1 as (̂ V, X • • • X Xk)X + , X . . . , and those of Y similarly. Moreover, it does not represent any 
real change to require only for large if s that f \ n is Borel-measurable since then the same follows 
for every positive integer n. 
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vided it is finite on compact sets (see [3, Theorem E on p. 218 and Theorem G on 
p. 228]), for an arbitrarily small positive e there exists an open subset G of X 
with / t(G)<£ such that Z Q G . 

n being an arbitrary positive integer, let U run over all the open subsets of 
X\n, and write 

(4.3) Gn = {}{U.: UXn\X <^G). 

Then G„ is an open subset of X\n, and, obviously, we have 

(4.4) GnXn\XQ Gn + 1X(n+l)\X, 

and 

(4.5) ' G= {]G„Xn\X-, 
n = l , 

moreover, on account of (4. 2), we obtain 

(4-6) v* ( / (G B X»|* ) ) =S v * ( / K < 7 „ ) X « | r ) S 5 

S (v|nf(f\n(G„)) Cn\n(C„) = Cfi(GnXn\X). 

Here all the sets are actually Lebesgue-measurable; for the first one this is 
stated by the previous theorem. For the second and the third one this fact will not 
be used, so we do not go into details and only note that in the proofs similar arguments 
involving analytic sets may be used. So, writing v instead of v*, the last four centred 
lines imply 

(4. 7) v ( / ( 0 ) = v ( 0 f ( G n X H * ) ] =£ Cp(G). 

Since G, by its choice, includes Z, we obtain \ 

(4.8) v * ( / ( Z ) ) ^ v(f(G))^ C[x(G)^Cs. 

Since e can be selected arbitrarily small we have v*(/(Z)) = 0, which completes the 
proof of the lemma. 

Though in the proof of this lemma we made a relevant use of the local compactness 
of X, this assumption can actually be dispensed with if we stipulate that ^ is totally 
finite, and we can derive 

Theorem 4. 3. Assume that the measure fi is totally finite and the RS function f 
mapping X into Y is such that, n running over all positive integers, f\n is Borel-measur-
able, and, moreover, with some positive constant C, 

(4.9) (v\nr(f\n(B„))^C(ii\n)(Bn) 

holds for any Borel set Bn in X\n.6 Then f maps all Lebesgue-measurable sets onto 
Lebesgue-measurable ones. 

5 An easy argument invoking analytic sets shows that here actually equality holds, and would 
continue to hold even if the set f\n{C„), which could easily be shown to be Lebesgue-measurable, 
were replaced by any subset of Y\n. This is, however, irrelevant for our purposes. 

0 See footnote 4. 
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Proof. Any complete and separable metric space is either countable or of con-
tinuum cardinality (see [4, IV on p. 320]), therefore to each X„ there is a compact 
and separable metric space X'n of the same cardinality. Since a compact metric 
space is necessarily complete, on account of a well-known result (see [7, 2° on p. 
358]), there exists a one-to-one function g„ mapping X'n onto X„ that is Borel-measur-
able in both ways.7 

Now define the function g from X', this being the product space A'iXA'oX--, 
onto X componentwise, i.e. put 

(4.10) g{x[xi...) = gy(x[)g2(x2)... 

Then g is obviously one-to-one and Borel-measurable in both ways. Determine 
the Borel measure /i' on X' so that g be also measure-preserving. Instead of the 
RS function /(.v) we may consider the RS function / (g(x)) mapping X' into Y and 
the assertion of the theorem directly follows from the previous lemma on account of 
the compactness of X'. 

5. The problem of transportation of measurability in a special case8 

In this concluding section we shall be concerned only with the following special 
case: Xlt X2, ... and Yl3 Y2, ... are all identical discrete spaces, with a finite number 
N^2 of points, and the Borel measures nn and v„ on Xn and Y„, respectively, are 
such that the measure of a one-point set is 1 /N; finally we determine n and v as 
the products of the measures and v„, respectively. It is easy to see that in this 
case all RS functions are continuous. Moreover, the assumptions of Theorem 4. 3 
are satisfied for any RS function / . Indeed, f\n is Borel-measurable for many reasons, 
e.g. since it is defined on a discrete space. The assumption (4. 9) is also satisfied 
with C= 1. The argument showing this is simply that the measure of a set in X\n 
is a constant multiple of the number of the (finite) sequences contained in it; this 
measure may only decrease by performing the mapping f\n, as a consequence of 
the phenomenon that two different sequences may have a common image. So in 
this case we have 

Theorem 5.1. Every RS function maps all Lebesgue-measurable sets onto Lebesgue-
measurable sets. 

The proof of this theorem does not, in fact, need such sophisticated tools as 
have been used to accomplish it. Namely, cylindrical sets being compact, their 
image is also compact, and the considerations based on (4. 9) that establish the full 
strength of the theorem are largely simplified by the fact that the measure n is the 
product of the measures . 

' Actually, the phrase "in both ways" need not be added; namely, it is easy to show that if 
a one-to-one function which maps a complete and separable metric space onto another is Borel-
measurable then its inverse is so, too. 

8 The more ambitious reader is advised also to consult L. Kalmar's paper [5], where a case 
with generality lying between that of the cases dealt with in this and the previous sections is studied 
from a somewhat different angle. 
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The paper of Klukovits [6], which spurred us to investigate measure-theoretic 
problems involving RS functions, considered only the particular case studied in 
this section. We take now a closer look at the relationship between some of his 
results and some of our considerations here. It will turn out, in particular, that 
many of the proofs in his paper can be radically shortened by using some simple 
devices of topology. 

Theorem 1 in "the paper in question says that two RS functions differing only, 
on a set of Lebesgue measure zero coincide. The functions in question being con-
tinuous, this is naturally true, since in this case the.measure of any non-empty open 
set is positive, and thus the set of coalescence is dense. , 

Lemma 1 claims that if the range of an RS function is Lebesgue-measurable 
then the image under it of any Lebesgue-measurable set is so, too. This is a con-
sequence of Theorem 5.1 of ours, though the assumption on the range is super-
fluous. Independently of our result just referred to, the fact that the range of / is 
measurable is obvious since, being a continuous image of a compact set, it is in. 
fact compact. In the proof of the cited lemma, the author leaves to the reader 
the verification of the assertion that, under the assumption of the measurability 
of the range, the image of every cylindrical set is Lebesgue-measurable. Cylindrical 
sets being compact, the task of the reader in proving this is indeed not difficult. 
He may, however, be annoyed by not finding a way to weave the measurability of 
the range into his considerations. 

Theorem 2 states that an RS function / is measure-preserving if and only if 
it is an onto mapping. Here the proof of the necessity can be contraced into a few 
lines as follows: the range of an RS func t ion / being compact, its complement is 
Open. The stipulation that / is measure-preserving implies that the measure of this 
open set is zero; so it is empty, which means that / is indeed onto. 

Lemma 2 asserts that the range of a "finite-state RS function without one-to-
one state" is Lebesgue-measurable. (The phrase is not an exact quotation; the author 
writes fsrsf for what we called a finite-state RS function.) In whatever way the above 
attributes may specify the notion of RS function, the range is a continuous image 
of a compact set, therefore it is compact, and so measurable. 

Theorem 4 announces that the range of any "fsrsf" is Lebesgue-measurable. 
Actually, the range is again compact. 

The concluding result of these notes is 

Counter-example 5. 1. There exists an RS function under which the image of 
a certain Borel set is not a Borel set. 

In order to give such an example, for every positive integer n, identify the. spaces 
XH and Yn with the discrete space consisting.of the points 1 and 2 and choose Nn 
as the discrete space containing exactly the positive integers; let N be the topological 
product of the spaces N„. 

Decompose the space X=Yas 

(5.1) A' = Z 1 X Z 2 X Z 3 , 

4 Acta Cybernetica 
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where 

(5.2) Z j = X X 3 k + j 0 = 1 , 2 , 3 ) . 
Jt = 0 

Let Z j be the subspace of Z j which consists precisely of the sequences that contain 
an infinite number of ones. It is easy to see that Z'j is homeomorphic to N. Indeed, 
a homeomorphism between these spaces can be described as follows: for an arbitrary 
element z of Zj form groups of consecutive elements constituting z so that 
each group consist purely of 2's except that it end with a 1. The numbers of 
elements in each group, in turn, form a sequence of positive integers which, if con-
sidered as the image of z, determines a homeomorphism between Z) and N. Denote 
this homeomorphism from Z3 onto N by h; for a sequence z £ Z 3 denote by hn(z) 
the nth integer forming the sequence h(z). 

Now, following closely the lines of the example for an analytic set that is not 
a Borel set given in [2, 2.2.11 on p. 68], our example can be described as follows: 

Choose a countable onen base U(n) of Z[ X Z« and define a closed subset of 
Z i X Z ^ X Z s by 

<5.3) C = | ( z 1 ; z 2 , z3): (zx, z2) i ^ ^ „ f e ) ) } • 

It is obvious that all the closed subsets Qf Z[XZ'2 occur among the slices 

(5. 4) C,3 = {(zt, z2): (zx, z2, z3) £ C}. 

Now, on the one hand, 

(5.5) ' 5 = {(z1; z3): (z1, z2,z3)eC for some . z2} 

is an analytic subset of Z\XZ'3\ and, on. the other hand, the slices 

(5. 6) S.a = {zi: (zj, z3) 6 S} = {z 1: {zx, z2) £ CZ3 for some z2} 

run over all the analytic subsets of Z'x, since Z3 is homeomorphic to N (see [2, 2. 2. 10 
on p. 65]). 

Finally, the intersection of S with the diagonal o f Z [ X Z 3 , the latter being a set 
closed in the relative topology, is an analytic subset of Z^XZ 3 . The projection of 
this set into Z'x, 
(5.7) T={z1: {z^z^iS and zt = z3}, 

is therefore analytic; now the complement of T, Z[ — T, is not analytic since it 
does not occur among the sets S23. Indeed, the assumption Z{ — T= SZ3 is equi-
valent to saying that for any zx^Z{ = Z3 

(5. 8) ( z ^ Z i K S holds if and only if (z1 ;z3)6 5. 

This is, however, certainly not true for zj = z3, implying that Z' — T is not analytic, 
as asserted. Thus, since the complement of a Borel set is again a Borel set, and so 
a fortiori an analytic set, we may conclude that T is not a Borel set. 

To complete our example, we shall determine an RS function that maps a 
Borel subset of Z ^ X Z 2 X Z 3 Q A'essentially onto T. To this end, define a diagonal 
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plane of the set C: 

(5. 9) D = {0 , , z 2 , Z3) : (zl, z2, z3)ÇC and z1 = z3}, 
and consider the func t ion / f rom Z j X Z2 X Z3 (without accents'!) into itself such that 

where c is an arbitrary but fixed"sequence in Z2 = Z3 , e.g. c = 111.... In view of.(5. 1), 
/ c a n . b e rewritten as an RS function mapping X~Y into itself. 

Now the set D, being a set closed in the relative topology on the Borel set 
Z r X Z 2 X Z 3 , is itself a Borel set, and its.image under / , the set Tx{c}x{c} , was 
proved to be a non-Borel set just before. 
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