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Abstract

This thesis presents a theoretical study of the interaciamtense, ultrashort laser pulses with over-
dense plasmas. Main objectives are to understand the Hasiomenon which leads to the formation
of non-linear electrostatic coherent wave structuresimfof either solitary ion acoustic wavéSAW)
or collisionless shock waves’SW). These different types of waves have been classified acmptdi
SagdeeV’s theory and related formulas have been used fquasson with the numerical results. The
particular focus is on the effect on ion acceleration, by mseaf ion refection by the moving electro-
static field associated to the shocks/solitons. An extensivmerical study by 1D PIC simulations has
been performed and in particular the differences arisirigyéen linearly polarized pulses and circularly
polarized pulses have been discussed. In a cold plasmapmhes produced by “hole boringHB)
radiation pressure acceleration at the target surface mogagate in the bulk as solitary waves. The ac-
celeration mechanism of these ion bunches has been didgosseing out a distinction between shock
acceleration(SA) andHB acceleration, also with respect to some recent experimergialts. Stability
of (SAW) or (CSW) and ion reflection from them has been found to be strongly rugret on the initial
velocity distribution of ions. The effect of both the ion atie electron temperature on the generation
and evolution of solitary acoustic waves have been disdusse



CHAPTER 1

Introduction

1.1 Background and motivation

Lasers are one of the most significant inventions of the tigdntentury. Since the invention of laser
in 1960 [], lasers are continuously gaining importance in the fielplama physics. Up-to now, this
technology has been vastly improved, from powerful lasersridustrial purposes to spectrally narrow
banded continuous wave lasers for microscopic measursnoéiitindamental constants. When laser
made its debut in 1960, at that time different groups acrossmorld were working to understand the
behavior of matter in the presence of an external applied.fiehsers invention comes as an excellent
source to boost up these studies to a new level. The inveofipuilse amplification of lasers opened
many excited research opportunities in the field of lasettenanteractions. The first enhancements in
the laser intensity of the order ©6'°Wcm~2 were feasible at the end of the70s by theQ—switching
and mode locking experiments which provide high peak poweranosecond or picosecond duration
pulses. The last three decades have witnessed an outgtgrrdgress in the development of ultrashort
laser pulses and many multi-disciplinary fields of ultratfscience phenomenons.

A major dramatic breakthrough 985, with the invention of chirped pulse amplification techréqu
(CPA) [2] have led to the advent of new solid-state laser sourcesctrateliver very short pulses of
few tens of femtoseconds) which opened up many innovative opportunities in the doroéiritrashort
ultra-intense laser physics. These ultrashort laser palew to reach very intense fields and provide
a strong increase in obtainable peak power. For examplesea faulse ofl00mJ and a pulse duration
of 100fs corresponds to a peak power BTW (10'2W), when focused to a0um diameter, it gives
us an intensity~ 5 x 10®Wem™2 at the focus. Thus ultrashort laser pulses can deposit aiert
amount of energy in a very short interval of time and opensyniramovative approaches in laser matter
interactions which are complex but very enrich in physicg-tt now, over the past 10 years, laser
intensities have increased by more than four orders of madmiand reached up-t®?' W /cm? while
pulse durations have shortened beltwWiemtosecondd]. The field strength at these intensities is of the
order of teravolt/cm which i$00 times the Coulomb field that binds the electrons to the ngcleu

Therefore, it is now possible to create solid - density p&swithin a fraction of laser cycle by
ultrafast ionization and to study the laser interactionth\plasmas in a regime where electrons oscillate
at relativistic velocities in the laser field. Due to the exte light pressur = 21/c of the order of giga-
to terabar at the relativistic laser intensities, leadsvareety of novel and highly nonlinear phenomenons
which are of great interest for basic physics as well as fouralver of scientific applications such as
high-order harmonics, electron and ion acceleration, y<arad particle sources, in thermonuclear inertial
confinement fusion and in ultrafast optical devices. So #helbpment of new diagnostic techniques
has marked a turning point for the comprehension of a vagétyon-linear effects and provide direct
informations on distributions of density and fields durihg tnteraction.
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1.2 Particle acceleration with laser

Depending upon the laser and plasma parameters, the stlofithe particle acceleration can be
divided into two domains of laser matter interactions. Iswaalized in1979 by Tajima and Dawson
[4] that a laser pulse propagating in a plasma can excite efeptasma waves which being longitudinal
can be used to accelerate particles within the plasma. Tlgsmp based particle acceleration opened
an exciting field of extreme gradient beyoh@V /m and with the present advances in laser technology
having available laser intensities t#?' W /cm?, electrons can be accelerated upateV energies. An
electromagnetic pulse interacting with a plasma is ternsecetivistically intense when its intensity
is so high that the velocity of the electrons oscillating lile transverse field of the pulse approaches
the velocity of light. The required intensity for this reginis ~ 10'®*W /cm? for a pulse wavelength
of A = 1um. When the relativistically electromagnetic pulse intésagith a plasma, strong nonlinear
effects come into playq, 6]. As at such high intensities, the quiver velocity of eleag becomes
comparable to the velocity of light and the effect of relstic mass increase becomes significant such
thatmes = ym. wherey = 1/, /1 —v2/c?, v, is the quiver velocity of electrons.

On the contrary, ions can be efficiently accelerated up«ersétens of mega electron-volt per nu-
cleon ¢~ MeV) energies with the interaction of sh@kt ps) laser pulses of intensifA? > 101¥W /cm?
with overdense plasma and is one of the active areas of okseathe past few years. lons, because
of their higher inertia than electrons, are not directlyeni by the laser pulse and mostly relies on the
generation of the hot electrons. There are several mecharieasible at current accessible laser inten-
sities which lead to forward acceleration of high quality lleams due to the generation of large electric
fields set by the laser accelerated electrons at the targefdace. lons having energies up-to several
MeVs had been observed in several high intensity laser matteraiction experiments with different
targets ¥, 8, 9]. The isotropic ion emission with low brilliance in thesepeximents are not so attrac-
tive as ion accelerators for applications. In the y2@#0, some experimentalistd(, 11, 12] observed
an intense emission of muktiMeV protons from solid targets irradiated by high intensityetagulses.
The outstanding characteristics of laser acceleratedpiotams with high degree of collimation and
beam laminarity were quite impressive and generated ameng interest both in fundamental research
and in the potential possible applications. The findingsooivard proton emission of muiiMeV en-
ergy triggered discussions for their applications as iam@®for the injection into conventional particle
acceleratorgf]. An important application proposed for laser driven pratds to employ them in radia-
tion therapy as the protons or light ions, differently frolmatrons otX —rays deliver most of their energy
at the end of their path at the so called Bragg p&3k[Due to their large mass, protons have little lateral
side scatter in the tissue, the beam does not broaden mudtagntbcused on the tumor shape, deliv-
ering small dose side effects to the surrounding tissuee.s€&bond physical reason is that energy loss
is dominated by coulomb collisions for which the cross secstrongly grows with decreasing energies
such that the stopping process becomes progressively mdnmare efficient. This property of protons
and ions makes them suitable for highly localized energyosigipn and give an edge to their role in
several potential applications such as ion beam canceaghelaser triggering and control of nuclear
reactions, fast ignition of Inertial Confinement Fusiomy&s and production and probing of warm dense
matter.

While the potential role of protons in so many applicatioreswapparent, the details of the physics
behind the proton acceleration up-to MeV energies were not clear. A debate arose on the actual
location of the region where the protons were acceleratdaansistently, on the mechanism driving the
acceleration. To support the experimeh@[L1, 12] performed in yea000, Wilks et al[14] introduced
the theoretical interpretation of proton acceleratiorhvgib called Target Normal Sheath Acceleration
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(TNSA) model. According toI'NSA model, the ions get accelerated due to the space-charge field
generated at the rear side of the target by highly energfetit™electrons accelerated at the target front
surface, crossing the target bulk and escape in vacuum fnenneiar side. A brief discussion about
TNSA mechanism is described #ec.3.1 of Ch.3. Although theTNSA generated proton beams are
highly laminar and of very low emittance, their broad enesggctrum is not optimal for most potential
applications. Hence this issue maotivates the search of @hecceleration mechanisms.

The other important mechanisms for ions acceleration wihéske been explored previously in astro-
physics context includes the radiation pressure accelaréi®PA) and collisionless shock acceleration
(CSA). These two mechanisnisPA andCSA are attracting a substantial amount of experimental and
theoretical attention due to the predicted superior sgalinterms of laser-ion conversion efficiency
and monoenergetic ion acceleration. AccordindRi®d, a highly intense electromagnetic wave carries
strong momentum which may be delivered to a non-transpdedsorbing or reflecting) targeRPA
is related to the generation of steady ponderomotive foR#e) which acts inversely to particle mass.
At the surface of an overdense plasma, the electrons duesitolighter mass than ions, get strongly
pushed inwards by thBF, creating an electrostatic, back-holding charge semardigld which in turn
accelerates the ions by delivering the EM wave momentum lé/ini the other side, according @5 A
mechanism, the strong intense laser pressure, pushes @mpdesses the target inwards at nearly rela-
tivistic speeds and such a strong compression and acéefenady lead to generation of strong nonlinear
collisionless shock waves which further may accelerats during propagation within the plasma bulk.
A detailed discussion about tlRPA andCSA mechanism have been reported’ih.3. Since the above
definedRPA and CSA may have similar ion energy spectrum and makes it difficutfisbinguish the
related ion acceleration. Therefore simple analyticaffigrdable models are extremely useful to under-
stand and distinguish these basic acceleration mechanimwill show by numericaPI1C simulations
that CSA does lead to acceleration of ions in the bulk wiR®A which actually occurs at the target
front surface does not accelerate ions within the bulk.

Now considering a linearly polarized laser and define thenatized amplitude, of the laser vector
potential as

g = P E 0.85(T1gA2)1/2, (1.1)

MeC  MeCWyL

wherep, is the quiver momentum of electrons aBy is the laser electric field. The dimensionless
parameter is frequently used to characterize the importance of ket effects. Wherilg)\ﬁ > 1.4

we haveqy > 1 and electrons oscillate at relativistic velocities. Thaads to relativistic effects which
modify the propagation of th&M laser wave in a plasm#b, 16]. Consequently, the propagation of
such relativistic intense laser pulses is allowed evenerotferdense plasmas. The motion of electron in
electromagnetic field is determined by the Lorentz foree[E + v x B]). An electron irradiated by a
laser pulse witluy < 1 performs harmonic oscillation transverse to the laserggapon. Fowrg > 1,

due to the effect of the magnetic tewnx B, the force becomes nonlinear and the electrons oscillate
along the laser direction. Due to the shape of the pulse, fietige electron mass and therefore the
effective electron plasma frequenay.{ = w,/,/7) gain a intensity dependence and as a result, the
interaction gets highly nonlinear. Nonlinearity is a fasting element of nature whose importance has
been appreciated for many years when considering largeitaniglwave motions observed in various
fields, e.g.,fluids and plasmas, astrophysics, particle physics, ldssma interactiongtc The non-
linearity which arises through the generation of highereoiftarmonics at different frequenci&g], the
nonlinear Lorentz force and the ponderomotive force eidhe source of many physical phenomenons
such as relativistic plasma transparency, laser pulsefamlibing [L8], excitation of nonlinear plasma
waves and the generation of coherent electrostatic stegguch as solitary waves, shock waves and
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vortices etcl9, 20].

1.3 Solitary and Shock Waves in Plasma

Localized large amplitude waves called solitons or soliteavesp1] which propagate in a medium
without spreading and have particle like properties, regmeone of the most striking aspects of nonlin-
ear phenomenons. Nonlinear effects play an important caletlergo steepening of the leading edge of
the wave. It is frequently found in plasma dynamics that lspetsion effects become significant as the
steepness of the wave front increases. With this nonlineforichation, the portion of the wave profile
characterized by high velocities tend to overtake the portiharacterized by low velocities such that a
discontinuity is ultimately formed which lead to wave stering. In the system of wave equations, the
nonlinearity, i.e., the dependence of the behavior of theavpacket on its amplitude and the generation
of high order harmonics with large wave numbers, can enhdissgation or trigger instabilities of the
wave packets. Solitary waves are formed due to the balarteebr the effect of nonlinearity and the
dispersion (when dissipation is negligible). The studyalitary waves is important to understand the
particle or energy transport mechanisms in plasmas and playmportant role in the wide spectrum of
research related to nonlinear plasma physi&. [In general, it is possible for a high intensity laser to
excite nonlinear plasma waves and by this transfer enettgyttie plasma. The solitary waves in plas-
mas are interesting localized wave modes, occur in the fdmmoalulated wave packets in the form of
electrostatic 23] or electromagnetic soliton24] nonlinearly coupled to the space charge fields. These
nonlinear structures can be created in the laboratory ermaily launched in laboratory plasma under
control conditions. However, if the dissipative effecte aomparable to or dominant over the dispersion
effects, the shock wave may generate within the system.

Solitary waves are formed in laser-plasma interactionsnathe laser ponderomotive pressure de-
pletes the local electron density which get accumulatethetwo edges and provide the trapping of
electromagnetic radiations in the form of a soliton. Indide soliton, due to the variation in the am-
plitude of the pulse, the ponderomotive force (nonlingasustains the space charge field (dispersion).
Such envelope soliton structures provide the mechanisrthéopenetration of intense laser pulses into
an overdense plasn#d] and can be considered as a solution for transporting laseigg deep into
the overdense regions. The solitons propagate with redagiwelocities, can be extremely useful for
the charge patrticle acceleratiof].[ A detailed description about the solitary waves in relatic laser
plasmas and the balance between the nonlinearity and sispday the complex set of nonlinear partial
differential equations has been reportedin 4

The other nonlinear structure which we observe in our nuraksimulation is a shock wave. A
shock wave in a broad sense is a transition layer which causbange in the state of the plasma and
which is stationary (on the average) in time in its referefname. In laboratory plasma, the transition
layer generally propagates through the plasma, changmgldsma state as it flows. Historically, the
first study about the shock formation have been carried olrpgst Mach in a gas dynamics. Mach
observed in his experiment that when the relative velogifybetween the fluid and the obstacle (e.g
bullet) reached the range of values for which the the ratith Wie sound speedy) was greater than
one;i.e, when Mach numbeM = v,/cs > 1 (i.e. supersonic), a discontinuity appeared in density,
velocity and temperature in the spatial region close to thetazle. In this case the flow is too fast for
the disturbances generated by the obstacle to propaggtedatances upstream and we call it that the
flow is shocked. In collision dominated plasmas, the dengsty across a shock occurs in a distance of
the order of few collision mean free paths{) while in a collisionless shock, the thickness over which
the shock occurs can be much larger. The attention hereeviiduised on the collisionless shogk$s)
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which results in particle acceleration, in order to develouseful theoretical framework for interpreting
the numerical simulation results illustratedGh.6 andCh.7.

In laboratory experiments, first evidence@$ waves had been reportedifi65[26], since then the
research on this topic has developed into its own discipliméhe theoretical investigation of lamin@s
waves which have been first proposed by Sagdeev in his redper@7], dispersion limits the nonlinear
steepening of the wave and a trailing or leading edge waue is@enerated. Dissipation can enter by
few processes such as particle reflection and particleitrgpwhich leads to damping of the wave train.
For small Mach number shocks, the kinetic theory of lamiack waves is fairly complet2[, 28] and
insights many microscopic physics processes taking pladeglcollisionless shock formation. Later,
the insight into theCS waves formation and the introduction of the equivalent ®aggseudo-potential
method clarified many open points and determined the dineaf future shock research. Nowadays
electrostatic collisionless shocks can be generated ey [as®duced hydrogen plasma and is the area
of high interest at the moment because of monoenergeticdoeleration from the collisionless shock
waves. A detailed discussion about generation of colllsesishock wave and the related ion accelera-
tion have been performed {th.3 andCh.4.

1.4 Layout of the thesis

This PhD dissertation is a report of numerical study of noadr electrostatic wave generation (soli-
tary and shock waves) and ion acceleration with high intettasers. The work described in this thesis
has been carried out in Plasma Physics group, Universitysaf Red by Prof. Francesco Pegoraro. The
purpose of the numerical study performed in the field of laserdense target interaction is to study the
generation of nonlinear solitary and collisionless shoelk&g in plasma and to understand the physics
behind the monoenergetic ion acceleration. The thesisustated as follows.

Chapter-2: Provides an introduction about the laser pulse propagatiwhinteraction with over-
dense plasma. Electron dynamics and its acceleration witklgromotive force in the non-relativistic
as well as in relativistic regime have been described. Thiewsregimes of laser pulse absorption in
plasmas at low, moderate and at relativistic intensitiesd&cussed.

Chapter-3: Three important ion acceleration mechanisms, i.e TargetidbSheath Acceleration
(TNSA), Radiation pressure acceleratidRPA) and Collisionless Shock Accelerati¢©'SA) are dis-
cussed.

Chapter-4: Alinear analysis of ion acoustic waves followed by the noadir analysis of ion acoustic
solitons and shock waves are discussed. A general desariptisolitons and shock waves in plasmas
is provided. Reductive perturbation and Sagdeev pseuttoial method are explained to find out
solutions of occurrence of ion acoustic solitons and dolikess shocks. Particles reflection, particle
trapping and damping of the electrostatic solitary wave® leen explained.

Chapter-5 A brief study about Particle in cell method is presented ia fection. The simulation
code PHIC (based on tHaC method) is used throughout this work and is described irldstgutting
into the context of other simulation codes and methods.

Chapter-6 1D PIC Simulation results of solitary and shock wave generatiorifsar polarized
laser interaction with overdense target are presentedisrs#ttion. Role of initial ion distribution in
generation of these nonlinear electrostatic waves have tseussed. Circular polarized simulations
have been discussed to explain the role of pulse polarizatial the role of electron temperature in gen-
eration of collisionless solitary and shock waves. Tedtiglas simulations are performed to distinguish
the hole-boringdB — RPA and collisionless shock acceleration mechanism.
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Chapter-7 Role of initial ion distribution in collisionless shock biity and related monoener-
getic ion acceleration has been discussed for linear peldpulses at moderate intensities16f® —
10'W /em?. 2D PIC simulations have been performed to understand the shoekedaton and related
instabilities. Role of initial electron temperature anahgetion of non-linear electrostatic perturbation
in form of solitons and shock waves for the circular poladipellses have been prescribed.

Chapter-8: The main results of this work are summarized and our coranhgsand prospects for the
future work are presented in this chapter.



CHAPTER 2

Laser Pulse Interaction with Overdense
Plasma

2.1 Outline

A large variety of nonlinear phenomenons occurs during éiserkmatter interaction which modi-
fies the matter physical parameters and effects the furétser linteraction with matter. Analyzing the
laser-matter interactions, one has to consider a numbdrysigal processes that occur within the matter
under the influence of the electromagnéfitM) fields generated by the laser pulse. Depending on the
laser pulse parameterise( pulse profile, duration and intensity etc.), the laser irdumany processes
on the front side of target such as surface melting, evaiporaablation and ionization which funda-
mentally effects the laser pulse propagation and the péyithe laser energy transfer to the target.
The laser pulse may encounter either a very steep densitiegtaby interacting directly with an almost
undisturbed overdense target or an extended region of ttherdense preplasma formation, where the
pulse interact firstly with the free electrons over a longatise and excite strong plasma waves and
instabilities R9].

In this chapter, we focused on the certain fundamental &sp@ec on the main physical parameters
which characterize the laser-matter interactions. Sei® is devoted to the physics and technology
concerned with the amplification of ultrashort laser pulsegered by chirped pulse amplification. In
ultrashort laser pulse interactions, the electrons arenti@ energy carriers. So the dynamics of free
electron both in the non-relativistic as well as in relatiid laser field will be described in secti@m
and2.4. The phenomenon of ponderomotive acceleration for naativedtic and relativistic regimes
will be discussed in section.3 and2.5 respectively. In the sectioh.7 and2.8, we will review a few
major absorption mechanisms to the laser-overdense pliaenaction.

2.2 Ultrashort Laser Pulse Amplification

The development of compact table-top tera-watt laser systielivering intense, ultra-short pulses
relies on the major advancement in technology of chirpedepamplification (CPA) developed in mid
eighties R, 30]. The CPA technique was originally developed for the micwoe devicesd.g. radars)
to overcome the power limitations of rad&@$[. In 1985, it was realized by Mourou and his gro@|
that CPA technique can also be applied to optical domairefeer science technology and the first CPA
laser was successfully demonstrated 988[30]. Since then this technique has been extensively used
by applying to many conventional master-oscillator-peamplifier (MOPA) laser systems in which a
small prototype laser pulse is passed through a chain afadgiower amplifiers. A simple schematic of
CPA laser system is shown in Fig.1

A modern CPA laser consists of the following main parts: fesetond oscillator, stretcher, ampli-
fier, compressor and focusing system. In a CPA laser systesiora laser pulse is first stretched to a
much longer duration by means of strongly dispersive “stret or expander” (i.e. a grating pair). In the
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Figure 2.1: Schematic
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pulse then get amplified by
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mixed glass amplifier. At

the end, the pulse get re-
compressed by another pair

recompresses
the pulse

of gratings. Reprinted from

[32].

stretcher, the gratings are arranged in such a way that théréguency component of the laser pulse
travels a shorter distance than the high frequency compomae pulsed get stretched in time by several
order of magnitude without the loss of bandwidth. An expahgelse has its frequency changing with
time so called as a “chirped” pulse. The term “chirped” canoenfthe radar technology where it was
used earlier for pulse manipulation. After the passage stetcher, the laser pulse becomes positively
chirped and has longer duration than the original one by factar0df— 10°. The chirped pulse has an
increased pulse width and hence a low peak intensity. Tkesitly of the stretched pulse is sufficiently
low and is suitably safe to introduce this pulse into the gaédium to amplify it by a factor of0°® or
even more. After the gain medium, the amplified pulses passesgh the dispersive “compressor”,
an element having opposite dispersion to stretcher. Thigpcessor provides a negative chirp of the
same order to compensates for the positive chirp introdbgeal stretcher and re-compresses the pulse
temporally to a duration similar to the input pulse. Aftespiag through the compressor, consequently
a very high intensity pulse, having peak power of the order ofrawatt(TW) values is obtained.

Thus CPA technique makes it possible to achieve very higk pewer lasers and to miniaturize
the laser systems to build them on a tabletop. In order tohisestheme, it is necessary to stretch and
then re-compress the pulse without the loss of bandwidthvétitut distortion. The most advanced
CPA lasers are built on the basis of Ti:sapphire and Nd:glElss solid state Ti:sapphire laser has many
advantages over the dye-based laser of earlier generatwnas large lasing bandwidth, very good
thermal conductivity and excellent mechanical propertigse development of ultrashort high intensity
lasers and the state of the art techniques used for geneetbamplification of these lasers is beyond
the scope of the present work and detailed information cdoul in these review paper33, 34, 35].

A laser pulse is called positively chirped if lower frequetight travels ahead of higher frequency light and is negdyi
chirped if opposite holds.
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2.3 Electron Dynamics and Ponderomotive force
in Non-relativistic regime

Considering the motion of free electron in a plasma undeiirtieence of plane, monochromatic
electromagnetic wave, the spatial and temporal ele¢Eir and magnetiqB) field components are
described as

E(r,t) = Eg - cos(wt —k - 1) (2.2)

B(r,¢) — —é V x B(r,t) = By - sin(wt — k- 1) 2.2)

wherew is the angular laser frequency in the plasma knd the propagation vector. The dynamics
of the free electron motion under the influence of electrameéig fields is governed by the Lorentz
force,F = —¢ - (E + % x B). From the Newton’s second law, the electron equation of endir a
non-relativistic case reads as

_dr
Cdt

d e d e e
cIl)t = med—‘; =—e- [E(r,t) + % X B(r,t)] ,  where v,

(2.3)

wherev, andp, represents the velocity and momentum of the electron. Nouhe linear and non-
relativistic approximation, we neglect the magnetic fiedt, because for weak field¢.| < c. Thus
the linear equation of motion simplifies to

dpe dve

pr = Me i = —€¢- E(I‘,t) (24)

Considering now the case of an laser electric fiBla,¢) for a linearly polarized pulse, propagating
along thez—axis (.e. wave vectork = k 2 ). Assuming the initial electron position and velocity are
lre(t = 0)] = 0 and|v.(t = 0)| = 0 respectively, then the solution of the above Ej4) reads as:

Ire| = rycos(wt — k- 2), |Ve| = vgsin(wt — k - 2) (2.5)

wherer, is the quiver amplitude of the electron excursion in therlfiséd andv,, is the oscillatory quiver
velocity of the electron and is given by

€E0

Mew

6E0

MeWw

Iq = 5 and Vg = (2.6)

The time averaged energy acquired by the electron as a i@ sthiis oscillatory motion is expressed
in terms of the average kinetic energy over one laser cydkisactually known as the ponderomo-
tive potential or ponderomotive energy(will discuss belovdetail): ®, = (&)1 = (%mevgﬁ. The

ponderomotive potential can also be expressed in termseda#er electric field, or laser intensity

as. ) )
__ % g ¢
Amew?

o I 2.7)

P O 9mesqwe

From above equation, the laser electric field strength amdatter frequency can be defined in practical
units as,

o1 \ /2
Eo = <—> ~ 275 x 10" - /I;g  [V/m] (2.8)

gpc

_ 2mc  1.88x 10"

w=— g1 .
AL AL(pm) =] (9)
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wherel ;s is the laser intensity in terms ab'Wem 2. Taking into account the above dependencies,
one can define in practical terms the quiver amplitude, quigtocity and the ponderomotive potential
as follows.,

r, =13.7x VIis. (A Jum))?  [nm] (2.10)
% = 0.086 x /Tig. (A Jum]) (2.11)
®, =933 x I1g. (A [um])* [eV] (2.12)

For a laser pulse of wavelengilB8um at intensityl;4, an electron has the ponderomotive energy around
¢, ~ 0.6keV, the quiver velocity isv, ~ 0.07c and the quiver amplitude of the oscillatory motion is
r, ~ 9nm. When the ponderomotive potentid}, becomes comparable to the electron rest enésgy,

£ = m.c? ~ 511keV, the relativistic approach of the electron is consideredr &laser pulse in the
near-infrared and visible wavelength ranges, the refdiivregime for the electron starts at intensities
larger tharr 1018W /cm?.

It is worth considering now the motion of electrons in theelamatter interactions since they re-
sponse quickly to the “realistic” electromagnetic fieldinganergy from the wave and carry it further
into the matter. However, to be more specific, laser pulsesairplane waves, but have finite width and
duration. In general, a laser pulse will be described by aelepe function having its transverse and
longitudinal profiles, multiply by an oscillating functiorA general representation of the electric and
magnetic fields of the laser pulse can be given in the form

- . 1~ ,
E(r,t) = Re (E(r, t)e_““t> = §E(r7 te ™ +c.c., and
5 —iwt 1= —iwt
B(r,t) = Re (B(r,t)e ) = §B(r,t)e + c.c., (2.13)

the envelope functions are supposed to vary with time onltivees time scale than the oscillating period
T = 27 /w. We assume that the fields are averages to zero over a peeodE(r,¢)) = 0 while for
the envelope functiofE(r,t)) # 0. The assumption of two separate time scales describe tbeale
motion as the superposition of a slow term(denoted by sigisgrand a fast “oscillating” term (with
subscripto) such as

r(t) = rs(t) + ro(t), (ro(t)) =0, (rs(t)) =rs(t) (2.14)

It is possible under suitable conditions to describe thew/shotion” by a dynamic equation with slowly
varying force known as the ponderomotive force and will gttlte motion of an “oscillating center”
over which a fast oscillation is overlappéd.

We first derive the ponderomotive force in non-relativigiégime, keeping terms of the order
ve/c < 1 and then later discuss it in the relativistic regime. A cali@issumption is that the spatial
variation of the field envelope across an oscillation is \@nall. Since the oscillation amplitude is less
than A = 27c/w, the scale of spatial variation & will be sufficiently larger thar\. This assumption
allows to expand the field as follows

E(r(t), 1) = E(rs(t) + ro(t), t) =~ E(rs(t),t) + (ro(t) - V)E(rs(t),1) (2.15)

%This is analogous to the guiding center approximation tdysthe electron motion in an inhomogeneous magnetic field
which means that while rotating along the field lines withloyron frequency, the charge particle also get drifted §lalong
these field lines.
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The equations for the oscillating component of the lowedepare

d?r, dv, e —e ~ it
= g~ e BE(0).1) ~ g Be(n)e ™+ (2.16)
such thatr, = Re(f,e~ ') andv, = Re(v,e~*“!) where
o= —C Bra(t) and o= ——C B(r.(t) (2.17)
o — mewz s o — Mew s .

Now by averaging the Newton’s equation of motion we Rave

7%%%:—dE&@J»—SWxB@@j) (2.18)

For the electric field average term we have

(E(r(t),1)) = (E(rs(t),t) + (ro(t) - V)E(rs(t), 1))

= (E(ry(t),t) - V)E(rs(t),t) + c.c (2.19)

Similarly for the magnetic force term, we have

wa@m¢»:i%xBAQm¢Hmc (2.20)

Now by usingeV x E = —9;B = iwB, the above equation becomes

e~

(v x B(r(t),1)) ~ — Emﬁ%ﬂx<—%VXE@Aﬁﬂ>+oc

dmew

S mm@ﬁx(mem@ﬁ)+m (2.21)

Amew?

Putting the electric and magnetic field terms in Eg18), we thus get

Vg 62 ~ - B ~
medd—t ~ ma? ((E(rs(t)vt) -V)E(rs(t),t) — E(rs(t),t) x (V x E(rs(t)7t))>
e? _ o2
= gV | BE®.) P= -5 V(E (1), 1) = F, (2.22)

The last equality term defines the ponderomotive fd@gewhich describes the dynamics of the oscilla-
tion center such that the cycle averaged position and \tgli

d*(r) d{v)
Tz et
describing the ponderomotive potentia} by envelope function, the E@2.7) can be rewritten as

—F,=-Vo, (2.23)

62

P, = P,((r)) = T2 <E2> (2.24)

3We here use the general property that{t) and B(t) are real, “quasi-monochromatic” oscillating functiongiofe and
their complex representation is definedAg) = Re(Ae_i‘”t)?.de(t) ?~Re(Be_i‘”t), whereA and B are either constants
or slowly-varying functions of time. TheA(t)B(t)) = Re(AB)/2 = AB/4 + c.c. In particular,(A%(t)) = |A?|/2.



2.4 Motion of electron in relativistic laser field 17

Thus any spatial variation of laser intensity will act to puke electrons from the high intensity region
to the low intensity region through the ponderomotive fomhich is proportional to the laser intensity
gradient. A similar ponderomotive force is expected to o@uthe ions but due to their inertiaf >
m.), the effect will be negligibly small than that on electrons

From Eq(2.23), the Ponderomotive force density, can be defined as,

NeMe

4

whereP, is the light pressure (or radiation pressure). The Pondetivenforce density may lead to
steepening of the electron density gradient around thiearidensity. The competition between radiation
pressure R, = nemevg /4) and the thermal pressur®( = n.KgpT,) influence the energy transfer
process of laser to the target. The influence of the ponddieenforce in the absorption mechanisms
for short laser pulsex), has been investigated in various experiments and by eiffeheoretical models
[36, 37] which we will discuss below in sections.

fo=nF,=— VvZ = =VPq (2.25)

2.4 Motion of electron in relativistic laser field

The motion of electron in electromagnetic wave is descrifyetthe Lorentz forc&", therefore writing
the Eq. @.4) for relativistic regime, it becomes
_ dpe d

Ve
e a('ymeve) =—e(E+ — % B) (2.26)

where~ is the relativistic factor

1 p2

R ———— | € 2.27
7 V1 —v2/c? +m302 2.21)
Electric and magnetic fields are defined by Maxwell equatlmnsising the vector potential (r, ¢) in
the coulomb gaug¥® - A = 0 such that

E:—lg—A and B=VxA (2.28)
c Ot

Putting Eqg. £.28) in Eq.©.26) and solving for the vector identity;, we get the first basic equation for
electron momentunp,

dpe e@_A + Z [(Ve . v)A _ V(Ve . A)] (229)

dt ¢ ot
the second basic equation for electron energy is obtainedutiyplying Eq. €.29) with v,

d(y — Dmec® 0A
a o

Assuming electrons are initially at rest and a plane eletaignetic wave of infinite laser pulse is propa-
gating along:—axis (as shown in Fig-2a), thereforeA = A (z,t). Now let the “L” subscript refer to
the vector components of the fields and momentum in the teassyz plane, e.gp, = (p.,p,) and

p|| = p=- Solving the Eqs(2.29) and(2.30) to find the electron momentup. = (pj, pL). We obtain
the conservation laws:

(2.30)

p. —eA | = const

“by using the vector identity x V x A = V(v-A) — (v-V)A
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a)

Figure 2.2:(a) A relativistic laser pulse propagating from left to rigin thez—axis has passed an electron. Its
electric fieldE points along thex—direction and the magnetic field (not shown here) al¢ngdirection. The
electron has moved along a zig-zag shaped trajectory igktlteplane and stopped at rest after the passage. (b)
“Figure of Eight” electron trajectory in a frame moving witlhe mean forward velocity of the electron, i.e. average
rest frame of electron.

(y — Dmec® — pj|c = const (2.31)

the first constant is usually called the canonical momentsoiving the above terms in E¢R.31) using
p? +m2c? = (mecy)? andp? = pﬁ + p? we get the following relations;

p| = mec(y — 1) and P = p2 /2m.c (2.32)

The relationp = m.c(y—1) has an intuitive interpretation in terms of momentum andgnéelivered
by the EM field along the propagation directi@nin non-relativistic case, free electron simply oscilate
in the laser electric field perpendicular to the propagateeiork, while in the relativistic regime . x B
term of the Lorentz force becomes significant andhfop 1, the electron also moves in the direction of
laser pulse.

The nonlinear parameter of laser plasma interaction isithemsionless amplitudd, of the vector
potential A of the laser pulse. This dimensionless amplitude can beesgpd as

6140 o GEO

MeC  MeCW

ag = (2.33)
where Ey/m.w = v, is the the quiver velocity of the oscillating electrons asdransverse to the
k—vector of theE—field.

The fully relativistic equations of motion of an oscillagielectron in an electromagnetic plane wave
was solved by many author8§, 39]. For higher laser field amplitudes, the orbit reveals a noom-
plicated trajectory. For example, consider an electrorcivig under the influence of super-intense laser
field propagating in the—direction. The plane electromagnetic wave is described by

A | (z,t) = Ag[xdcos(wr) + ¥ (1 — 6%)2sin(wr)] (2.34)

wherer = t — z/c is the retarded time andl < 1 parameter defines the polarization of the wave: for
§ = 1 0r0, the wave is linearly polarized alosgor y while for § = 1//2, wave is circularly polarized.
From this we get the values of; andp; such tha$0]

PL = (0erpy) = “20 (5cos(wr), (1 — 8) sin(wr)),
C
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2
p| = p- 1 <ﬂ> [1+ (20% — 1)cos(wT)] (2.35)

dmec c

We now obtain the electron trajectories in implicit form loyeagrating Eq2.35 w.r.t (w7). The electron
trajectory reads &s

kx.(t) = & = —aposin(wT), kye(t) = § = ag(1 — 6%)/2cos(wT)
a? 1
kze(t) = 2 = ZO(—wT + <52 - §> sin(2wT)) (2.36)

Electron is pushed parallel to the direction of laser prepiag alongz— direction. In Eqs.(2.36),
the z- term of the electron motion shows two distinct contribngo a net drift in the laser propagation
direction and a superimpos@d—oscillation (twice per laser cycle). Since for circulargrited pulses,
262 — 1 = 0, therefore the average drift with constant velogityalongz—axis is given byf1]

Up a%

— = 2.37
c a% +4 ( )

So for circular polarization in such frame, the orbit is aker For linear polarization, the electron orbit is
closed in the frame where the average velocity vanishessaatdorbit gives rise to well known “Figure-
of-Eight” electron motion in a time averaged co-moving feaof reference (as shown in Fig.2b) and

a helical orbit in the laboratory frame. From the electrajeictory (Eqg.2.36), the electron return to its
initial position in the perpendicular plane, but is movedhia direction of the laser pulse propagation by
a distanceAz = [ vp(t)dt. Therefore the electron is accelerated in direction ofrlagensity gradient
with increasing intensity and decelerated when it feelsabesing laser intensity. This acceleration and
deceleration in the direction of intensity gradient is du¢hie ponderomotive force.

2.5 Ponderomotive Force in Relativistic Regime

For a “realistic” laser pulse, difference in the dynamidsefrom the fact of relativistic mass increase
at high quiver velocities and the non-vanishiBg-component in the Lorentz force. For an relativistic
EM wave, which is described by the vector potent¥(r, ¢) such thatE = —(1/c)0;A. From this,
it can be shown thap ;| ~ eA /c holds even for the relativistic regime, provided the anoplé varies
significantly over large distances than the wavelengthatiRedtic effects make the relativistic refractive
index nonlinear. The inhomogeneity of the laser field leada nhonlinear force experienced by the
charged particlef2]. By solving the Eqgs.Z.29) and £.30), the nonlinear force can be obtained

oy _ e 0A% (2.38)

dt 2mey 0z
this nonlinear force is proportional to the square ampétofithe laser pulse and composed of an aver-
aged part and oscillating part with periadw which is a half of the laser period. Rewriting E@.38)
in more general form with time-averaged momentum througiserlperiodp)

d(p) e

— =Fy = "ot V(A?) (2.39)

® we write the equations in dimensionless units, normaliirgcoordinates tb/k = \/27 = ¢/w and using: = kr.
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Figure 2.3:The sketch shows the pon-
deromotive action by a laser pulse while
propagating into a plasma. The pon-
deromotive forcgF,, x —V(E?)) ex-
pels electrons out of the beam axis,
modifying the electron density and cre-
ating a space charge field.

where~ is the relativistic average factor

(7) = \/1 + (<p>2 L o) (2.40)

mec)?  (mec)?

taking into account the average momentgp) and the oscillation momentum,,, = eA/mec. A
relativistic generalization of the ponderomotive force ¢e obtained by replacing the electron mass
with the effective massn.y and requires a more sophisticated mathematical treatrd&n#p, 16.
Since the energy isi.(y — 1)c?, we eventually arrive at a very similar expression as of @2) and

is written as
_ MmeC

F, =

P2(y)
Eqg. 2.41) can be simplified only as the part related to the oscillatmmentum({A?2) and ignoring the
(p)? component which is coordinate of time. We obtain the pondetive forcé as,

2 2\ 1/2 2 o 1/2
F, = —mec?V (1 L, A > — MV <1 L (E) ) (2.42)

202 2,,2
mzc msw

V{1)? = —mec?V(y) (2.41)

In an oscillating, quasi-monochromatic electromagnegicfilescribed by the vector potentidk, ¢),
whose envelope is sufficiently smooth in space and time dlagivistic ponderomotive force in a com-
pact form can be written ad§)],

Fp, = —me®V(1 + (a2))}/? = —Vmgc? (2.43)

wheremy; = m.y = m.(1 + (a?))!/? is the electron effective massdescribes that the oscillating
momentum leads to an increase of the effective inertia obsiedlating center. The relativistic pondero-
motive force is responsible for the average electron matlmserved in the laboratory frame and can be
written as the negative gradient of the ponderomotive pistene. F, = -V,

o, = mecz(<’y> -1)= mECQ(\/l +(a%) —1) (2.44)

According to the “Lawson-Woodward theorem”, in case of plavave with slowly varying ampli-
tude, the ponderomotive force can't accelerate electrodgtaus any free charge cannot gain the kinetic

Sin the present definition we explain the ponderomotive fasethe slow-varying effective force describing the cycle-
averaged motion of the oscillation center of the electroa imonuniform field, over a time scale longer than the the lasich
period. We ignored the fast oscillating components heretzidbe the ponderomotive force

" In which ~ is the relativistic factor and can be explainedyas= /1 + (a2) wherea(r,t) = eA/m.c and angular
brackets denote an average over the oscillation period.
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energy from the laser pulse. However, in reality for the fesetond laser pulses, which are usually
tightly focused and their amplitude changes on a very sl scale, this theorem is not valid. The
other most important consequence of Ej4g) is that electrons are scattered out of focus, i.e. expelled
from regions where the electric field is large. The scattetedtrons which get accelerated in the direc-
tion of laser propagation can gain a maximum kinetic engigy= (v — 1)m.c?, of the order of the
laser ponderomotive potential.

The above discussion reveals that ponderomotive forcetisrarly useful in describing and under-
standing the intense laser interactions with matter. Féardard bell shaped laser pulse e.g. Gaussian
both in the propagation and transverse directions, the gronabtive force is such to push the elec-
trons out of the high intensity region. The pulse attemptsetoove electrons out of its path due to
self-focusing and self-compression. This ponderomotigpldcement of electrons will create a space-
charge field which in turn accelerate ions. Ri§.shows the radial electrostatic field generated by the
expulsion of the electrons in the transverse direction.elregl regimes, due to the charge separation
between electron and ions, a mechanical equilibrium betyweaderomotive and electrostatic forces on
electrons get established over such short times and déestdhat it is appropriate to assume that the ions,
and thus the whole medium, feel “directly” a pressure thghien by the ponderomotive force times the
number of electrons per unit volume (i.e. the electron dghsi

2.6 Laser Interaction with plasma

2.6.1 Basic laser pulse parameters

A laser pulse is described here by an envelope functionngavansverse and longitudinal profiles.
The laser intensity is defined as the energy flux density geeraver the fast oscillations

2
I(r,t) = (= [E x Bl) = —|Eo(r 1) = — (25=) (2.45)
The dimensionless parametes described in Eq2.33) defines the boundary between the non-
relativistic and relativistic regime of electrons in a mohmmaticEM wave. In the relativistic regime,
the quiver momentum of electron starts exceeding the ress mamentum of the electron. So at higher
laser intensities, the pulse is characterized by a dimalesis quantity.y, known as laser strength pa-
rameter or laser pulse amplitude and related with lasengittel as,

IN2 = af x 1.37 - 10" Wum? /em? or
€E0 I)\E
ap = ~ 2.46
* 7 mewe \/1.37 x 1018 W2 (2:40)

Thus,ag = 1 corresponds to the equality of the rest and averaged kiretegy of the electron
oscillating in the laser field. So one can read from the dineemsss amplitude, = v,/c to measure
the “relativisticness” of the interaction. Whep > 1, the quiver velocity of the oscillating electromg
reaches close to the velocity of lightand electron motion is considered as relativistic

E
v, = —2 (2.47)

TLmew
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where~, is the relativistic factor of the laser fiéldf the average electron momentum is much lower
than the oscillation momentum{f) < eA), theny ~ ~_where~ is the relativistic average factor
of electron explained above in E§2.40). Present day laser system allow to reach focused intemisitie
abovel0%'W /cm? for A = 0.8um, so that strong relativistic regimes witly ~ 10 are at the forefront

of current research.

2.6.2 Propagation of laser beam in plasma

When a laser pulse interacts with a plasma, the free elecaod ions that constitute the plasma will
respond to small scale deviations of their distribution aiibbe displaced slightly in an electromagnetic
wave of frequencw. Subsequently to a distortion of the charge neutralityptirticles within the plasma
tend to oscillate with a frequency known as electron plasmaguiency The resonance frequency of the
resulting oscillations is known as the plasma frequengydepending on their mass, chargeZe and

densityn
4 2 dn; Z2e? VA
oy TNee = [ FTiLTen Wpe [ £Me (2.48)
Me my; mg

wherew, . andw, ; are electron and ion plasma frequency respectively. FramDitude model of

conductivity in which the plasma is considered as an elactioud having uniform background of
immobile ions and collisions are neglected. So the plasmieciric constant (relative permittivity) of
the electron ensemble can be expressed4s [

4 2 w?
cw)=1— 11 g (2.49)
'YLmeWQ 'YLWQ

wherew, = w, . reads the plasma frequency. With the help of dispersionioaldor electromagnetic
waves in relativistic plasmas, we can find the laser frequenas

w2
w? =Lk (2.50)
T
The correlation between the plasma frequesagyand laser frequency marks a fundamental bound-

ary between conducting and dielectric behavior for therlpsése interaction with plasma and divides
the properties of the plasma into underdense (transpafent)> w, and overdense (opaqueyif< w,,
plasmas. The electron density at which the the plasma frequeney, becomes equal the laser fre-
quencyw is called the critical density... This density denotes the boundary between underdense and
overdense plasma as shown in Figd.

Mew?

_ _ 21 —3y-2
Ne= "5 = L1 x 107 em™ A, (2.51)

where),,;,, is the laser wavelength in micron. The relativistic effecequivalent to an increase of the
critical density,n.s = n./~. in which the plasma can be theoretically transparent

Ne < Ne < W Ne (2.52)

8 here in our definitions, given the value for |, the peak valtiae dimensionless vector potentigl, ¢) of the plane wave
will be given by peak dimensionless amplitude of electritdfand isa, for linear polarization (LP) ando /+/2 for the circular

(L2
polarization (CP) such that for LR, = /1 + a3 and for CPy. = /1 + =2.
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Relativistic effects make the refractive index nonlineArtypical laser pulse has a radial dependence
shape of I(r) withdI /dr < 0 and the corresponding radial nonlinear “refraction” indgx can be
written as

2 n
NN (T) =4/1— yt)fr()22 =, /1— . (Te)nc (2.53)

wp is supposed to depend on The relativistic factory, introduces a nonlinear dependence of the
refractive index upon the electric field. As a consequendegnnlaser pulse propagates in a plasma
with increasing density along the propagation axis, theaotiize indexn,, becomes imaginary when
ne > Y.Ne, Showing an increase of cut-off density for the laser putakbthe laser is thus reflected. With
respect to the non-relativistic case for a given wavelentjh plasma critical density:() increases by

a factory, and the pulse propagate towards denser plasma layers aatfdbiis known as relativistic
Self-Induced Transparen¢$IT) or overdense penetratict].

Numerical simulations explains thBM wave propagating in the overdense plasmas leads to strong
instabilities and heating of electrons that absorbs theggraf propagating lasetp]. Since the plasma
frequency ¢,) and~, has dependence onone hasiN, /dr < 0 and the plasma acts as a lens to the
laser light. There exists a critical powet7]

2
P~ 1.7 x 100W = 17GW-< (2.54)
w
p

Above the critical powel?,, the laser light self focuses into a filament and can be setfeguion long
distances much longer than the Rayleigh length.

Forw > w,, the refractive index has real values as solving(£§0), the wave vectok: describes
the electromagnetic wave propagation through the plasraw K w,, the nonlinear refractive index
ny.(r) has both the real and imaginary values which results in oenoe of the reflection as well as
absorption phenomenons. The electric and magnetic fielaydegonentially. Thus the laser pulse can
not propagate in overdense plasma, an evanescent compuahemyhow penetrate into the over-dense
region up-to some characteristic length, known as thesiofiless skin depth, = ¢/w,. The laser pulse
penetration depends not only on the target electron debsgitglso on the target sizé (vhen the latter
becomes smaller or closer to one wavelength. In such exairthke nonlinear and reflection coefficents
can be calculated for a sub-wavelength foil modeled as achiedta-like profile £48], obtaining a self-
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induced transparency threshold as

ag >m—~=¢ (2.55)

Ne A
Laser absorption and charged particle acceleration

In contrast to the previous sections, where the laser ictierawith the plasma is discussed, here
we will discuss about the various laser absorption mechanis the overdense plasma. The energy
coupling to the overdense plasma becomes one of the mamrces®pic due to important role played
by the absorption energy efficiency in a large number of &ffend application such as high energy
particle generatiori,CF ignition methods}9], ultrafast radiation emissioetc During the past decades,
important experimental and theoretical progresses weyistezed on the route of understanding and
modeling the absorption mechanismgefindsub—ps laser pulses at intensities betwe@h?W /cm? —
10'W/cm? [50, 51]. For these longer pulses of moderate intensities, coliecesonance absorption
and collisional inverse bremsstrahluBg| 53] processes are the main absorption mechanisms. For the
ultrashort, high intensity10'"W /cm? and above) laser pulse interactions with overdense targets
couple of new collisionless processes being found resplenfir the coupling of laser energy to targets
such as Brunel effecbf] or vacuum heatindib], j x B heatingp6], different skin effects$7] etc

2.7 Collisional absorption

In vacuum, due to the momentum and energy conservationrekecfectron does not gain energy
from the EM laser wave. Electrons oscillates in the eledidtd of the wave or if the field is strong
enough, drifts along the laser propagation direction. H@areafter the laser pulse passes by, electrons
ends up again with its initial energy. In plasma, the presaiéons makes the condition different. Free
electron can collide with ions and thereby can gain somertheenergy from their oscillatory motion
and thus transfer EM energy of the laser into the kineticgnef plasma. For laser intensities of the
order10'? — 10"¥Wem™2, the plasma is gradually heated due to electron-ion cofisi The collisions
were justifiably the dominant absorption mechanism in thierisity regime. Related absorption mech-
anisms such as normal skin effect, anomalous skin effetiisional absorption lead to the heating of
electrons. In order to get the absorption processes in e [flasma interactions, one may introduce
the collisional damping term in the Lorentz equation of rootior the electrons and ions. The equation
of motion of the electron fluid, Eq2.3) in a high frequency laser electd(r, t) and magnetid(r, ¢)
field in the presence of collisions reads as:

me% =—c-(E+ Ve o B) — meveive (2.56)
ot c
wherev, represents the velocity of electron fluid amd is the electron-ion collisional frequency.

The thermal behavior is ensured from particles collisiofise rate of momentum transfer between
the particles depends upon the collision frequencies.tiBies in the intense laser field get accelerated
up to very high velocities whereas the ions due to their mugher inertia, stay almost at rest and do
not respond much onto a high frequency laser field. The eleétm collision frequency for an electron
having velocityv, > v; is given by [L6, 52]

4:/2 Zneet Z -3
Ve = —2 . fle€ n(A) ~ 291 x 10-8 . Znelem ]
3 (4meg)?/me(KpT,)3/? T.[eV]3/2

‘In(A)[s7']  (2.57)
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In above, the factor coulomb logarithm(A) is defined asln(A) = bya/bmin’, Whereb,., andb,,, are
the maximum and minimum value of the impact param&itg2].

If the number of collisions per wave cycle are laige > w, it gives rise tocollisional skin effect
where theEM wave can enter only to the outer skin of the plasma up-to tp¢ghdg ~ 0.16)\, and get
damped. An analytical solution of the collisional absaypticoefficientn,;s for the long exponential
density profile having scale length (> \,) can be derived using tH& KB—approximation $2, 29|

Nups = 1 — exp <—8V3;lecos39> (2.58)

the above absorption coefficienf; is for normal collisional skin effect. By solving the heatwio
including the collisional absorption coefficient , we camivkethe formula for the surface temperature
scaling of the electron populatio9, 57].

" 1/12 7 s sy 1/6
T, =119 ( ——— Z4? P 2.59
) (1023cm—3> (1015W/cm2> (100fs> ev (2.59)

whereT, is the electron temperature at)dis the laser pulse duration. Nevertheless, these colsion
not mediate considerable energy transfer due to much highenass than that of electron and only the
part of 2m, /m; of electron energy can be transferred between the pariitleach collision. Thus for
the plasma interaction with less interd®'? — 10'#Wem~2) and relatively long nanosecondsj laser
pulses, the collisional absorption can be very efficient eam considerably transfer more th&wts of
the total laser energy into plasma.

2.8 Collisionless Absorption

For ultra-short laser pulses of intensitigs 10'°W /cm?, the substantial energy transfer can not
be explained by the electron-ion collisions. This is maibcause of two reasons, First, at higher
intensities, the electron quiver velocity, may exceed than the thermal velocity, and Secondly, the
collision frequency scales a&pT.) /2 (from Eq2.57), therefore the plasma electrons temperature
rises sufficiently fast that collisions become ineffectiliging the interaction and hence the collective
motion over-weigh the collision2p]. Several models forollisionless absorptionsave been developed
in order to account for the higher absorption rates whicharedplicit use of the short pulse interactions
with overdense plasm&§, 36]. Recalling the electron temperature scaling of(BEg9) from [29, 58],
we have

T, ~ 1920 (2.60)

The condition for collisionless absorption is fulfilled ishort45fs laser pulse of intensity > 10'°Wem ™2
is interacting with overdense plasma. (= 10?3cm—!) and the electron gains temperature~of00 eV.
Following the Eq.(2.57), in which the collision frequency scales s/, implies a scaling fall off as

Vei ~ T34/ (2.61)

The second limiting effect occurs when the electron quiedosity becomes comparable to the thermal
velocity, which reduces the effective collision frequerfigsther [59]

3
Vin

(V2 +v3)3/2 (262)

Vet = Ve

® The minimum distancémi is given by the classical distance of closest approach $athdin = .. while the very distant
interactions are screened by the surrounding chargectiesitiso there is a finite value for the interaction rabge = Ap.
Therefored = %‘2 = % whereNp = (4 Adn.)/3 is the total number of particles in the Debye sphere.
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So an electron temperature IokeV corresponds to the thermal velocity ~ 0.05, therefore collisional
absorption starts to turn off for laser irradiandes 10'®W /cm? and could not account for the high ab-
sorption mechanism which also observed experimentallyedisas numerically §0]. There are number
of collisionless absorption mechanisms which dominat@kplaser energy to the plasma.

2.8.1 Resonance Absorption

This concept was first given by Ginzburg3, who explains that the collisionless light absorption
via collective processes occurs most efficiently for désinear the critical densityq. = n.). This
mechanism is complicated since the plasma oscillationngitadinal and thé<M wave of laser beam
is transverse. A plasma wave is excited only if Bl wave enters the plasma obliquely (fbr> 0) and
with p—polarization for electric field to have a component direéted the plasma. The laser penetrates
through the plasma up-to the surface of electron density= n.cos?6, where the reflection starts to
occurs wheré > 0. The electric field vector has projection along the densigdigntn and the laser
field skins from the reflection surface to the critical dgnsiirface where it may linearly excite electron
plasma waves which leads to plasma heating. The excitatoskswvell when the laser frequency is in
resonance with the eigen-frequency of plasma, i.e. atatitdensityn., wherew = w,, hence coined
the name resonance absorption.

Under obligue incidence of electromagnetic pulse in anrimbgeneous plasma, the pulse get re-
flected before it reaches the resonance condit®n; < n. (Eq. (2.52)) while for a steep density gradi-
ent, the electric field may tunnel into the critical densigipon and excite the plasma resonargi[61].
The power converted into plasma oscillation can be detexthby the “driver” electric field£,, which
depends upon free-space value of the laser electric figljj &ngle of incidenced) and on the density
gradient scale length = (dInN/dz)~! in the following way

B
T nkL

(2.63)

wherek = 27/ )\ is the laser wave vector ard ™! = |%logNe|x:mc. Efficiency of resonance absorption
¢ depends upon the plasma density scale lerigimd the laser angle of incidenée For long density
linear scale length profile, usually defined by the inequdlits> 1/k, the dimensionless parameteis
defined ag = (kL)'/3sinf and commonly known as Ginzburg function. Based on theaieS] and
numerical work 2] and following the above scaling , the maximum efficiency b$arption achieved
is ¢ = (kL)'/3sinf ~ 0.8. To a good approximation, the function for a cold plasma was/ehown in

1.4
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Fig. 2.5 is

_9¢3
P(§) = 2-3§exp( ?f ) (2.64)

whereg(¢) is the defined as the Denisov function describing the angi@ipendence di; as a function

of parametet. From the graph shown in Fig 5, for resonance absorption there is an optimum angle at
which maximum energy is transferred to the plasma. The maxirabsorption angle can be deduced as
6 = sin—'[0.8(c/wL)'/3] and the fractional resonance absorption rate, can be foudetermining the
size of the decaying electric field at the critical den&ig][

1
2

o = 262(6) = 1 [2.3§exp (‘?fg)r (2.65)

2

For the optimum value of = 0.8, the fractional absorption is approximately, = 0.5. This elec-
tron plasma wave propagates into the plasma which are foatleigher intensities and get damped by
particle trapping or wave breaking and give rise to a popmnapf very fast and hot electrons. Up-to
~ 50% optimum absorption may occur by resonance absorp6@ng3]. Resonance absorption mech-
anism efficiently works only for large scale plasma densityfifes. The other collisionless absorption
mechanism which occurs for the steep density gradientsawikras the “Brunel vacuum heating” and
j x B heating.

2.8.2 Brunel vacuum heating

This mechanism first described by BrunBH], with the original title ‘hot so resonant resonance
absorption The resonance absorption cease to work for steep densitijegts. This mechanism is
more efficient and the strong energy absorption is accountele oscillating electrons that are dragged
into vacuum and then sent back into the plasma with velocity v,. If the quiver velocity of electrons
v, in the laser field exceeds the plasma density scale ldngth. whenv,/w > L, the resonance break
down since the wave is destroyed and built fresh at each.ciyckuch conditions the absorption occurs
by so called “Brunel vacuum heating” in which electrons areally heated by the obliquely incident
laser field.

We will now derive a model based on capacitor approximaiiomhich the magnetic field is ignored
(neglsectingy x B term). Assuming that the laser electric fi#d has some componeRt; normal to the
target surface which pulls the electrons back and forthsactioe equilibrium. Consider@a—polarized
pulse obliquely incident at anglkeon a steep density gradient overdense plasma. A resonampla
wave is formed at the critical density having driving elecfield such as

E; = 2E sinf (2.66)

In the first half laser cycl€¢0 < wt + ¢ < ), the electrons are pushed inside the plasma which start
oscillations along the density gradient and gain very lowrgy because the electric field is strongly
attenuated within the plasma. In the second lalf< wt + ¢ < 2m), these thermal electrons are
dragged out of the target into vacuum well beyond the thelDedlye sheati\ = vy, /w,, wherevy,
is the thermal velocity of plasma electrons. Here the ebestrgain very high energy of the order of
ponderomotive potentiab, = m.c*\/1+a3/2 — 1. Many electrons are ejected at the same time
which create a self consistent electric field. Due to botk, g6lf consistent field and the oscillating
laser field, most of the electrons turn around, accelerade#f mto the plasma and acquires a velocity
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Vg 2Vqsin9.lo. We assume that all the electrons which return back intaydasgose their energy to

the solid. The average energy density absorbed per laskrisye, = %mval whereY = N.dz is the
surface number density of plasma by which we can estimatauhber of ejected electrons, and
the thickness of the ejected laykr, up-to which the field pulls a sheath of electrons apnd the laser

. . . . . cE2cosh
pulse dgratlon. Now comparing, with the incoming laser poweP;, = —+—,
absorption rate

we get the fractional

P,  4agsin’f

naEP_L_7COSH

(2.67)

From Eg. (2.67), the mechanism tends to become more efficient with greatéddant angle) and
with increasing laser irradiancé)\?> o« ag. In general, not all the electrons turn back into plasma, so
we rewrite the Eq.(2.66) by taking into account the reduced driver field amplitude thuemperfect
reflectivity, it becomes,

E;=(1++/1—1n4)E sinf (2.68)

Second, taking into account that the return velocities efakectrons become relativistic at laser inten-
sities abovel 0'*W /cm?, thus we add relativistic kinetic energy of the electréps= (7 — 1)m.c? in
the absorption poweP,. Using these both corrections, we get an implicit expresfio the fractional
absorption
Mg = Lf (1 — f2a2sin0)'/? — 1] sind
xen

wheref = 1 + /1 — 1, is the field amplification vector.

The schematic of the Brunel absorption is illustrated ohdigfe of Fig2.6 where the electric field
is perpendicular to the target and the electron acceler@ioormal to the target surface. The geometry
of Brunel heating is quite similar to that of resonance gison but the mechanism is different. Partic-
ularly the Brunel heating mechanism occurs in large andpsteasity gradient in which the resonance
mechanism breaks down. The energy deposited by the Bruaghes transported by hot electrons in
the form of bunches ejected once per laser period. The avenagrgy of electrons &, ~ ¢, and the
energy distribution is considered as Maxwellian as thetelas are accelerated in different phases of
the laser electric field. The mechanism of Brunel heatinga/arell for intermediate intensities of order

2.69
cost ( )

10 Assuming the plasma is highly overdense, the electric fieltefrates only to a skin depth v/w,, up-to where the
electrons can move unhindered into the plasma and eventyetlabsorbed in latter. In such a way, a population of “hot
electrons” is formed in about every laser cycle.

“Hot”
“Hot” electrons

electrons

Brunel type absorption jxB acceleration

Figure 2.6:Schematic of Left: Brunel and Righi:x B, collisionless laser absorption mechanisms which lead to
acceleration of hot electrons.
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10'6W /cm?, the absorption can be as high7¥s [29]. But for relativistic laser intensity0'*W /cm?
and above, i.eay > 1, the absorption by Brunel heating rarely exce#d® and the absorption mecha-
nism “j x B heating” is more efficient.

2.8.3 Relativisticj x B heating

j x B heating is an important collisionless absorption mecmanigich plays significant role in
short-pulse high intensity laser-matter interactions.e Tharacteristics ofj“x B” mechanism over
the Brunel mechanism is that it works well with all the ardiyr laser polarization directions (except
circular). Secondly, due to the driving high frequerjcyB component, leads to heating in an analogous
fashion and the electrons get accelerated in the laser gatipa direction twice every full laser cycle.
The energy gain of the electrons is of the order of the pomdetive potentiakp,, of the laser field

2
D, = mec?(y — 1) = mec? <\/1 + % - 1) (2.70)

Thej x B mechanism, is most efficiently effective for normal inciderwhere the laser electric field
vector is parallel to the plasma density profiB9 and becomes more significant at relativistic quiver
velocities, i.e.ag > 1. The schematic of thg x B absorption is illustrated on the right side of FAg.

Relativisticj x B heating was theoretically first predicted by Kruer and Estek [56] and then
later experimentally confirmed by Malk&4]. This mechanism is of more relevance at relativistic laser
intensity. When the laser pulse intensity is sufficientlgth{of the order> 10'¥W /cm?), thev x B
component of the Lorentz force becomes important and tletretes are accelerated in addition by the
magnetic field component of the Lorentz force. As discussegtd.2.5, for a steep density plasma
profile, the ponderomotive force pushes away the electmams &reas of high intensities along the field
gradient. Similar to Brunel heating, electrons gain enatgstep-like density profile by propagating into
the overdense region. Electrons are accelerated perp#gndio the surface into the overdense plasma
region, as the field gradient is directly normal to the caitisurface, which later ejected from the rear
side into the vacuum. Due to the action of self consistentl foebated by the ejected electrons, the
electrons return into the plasma where they feel no regiddrce after passing the thin skin depth and
get absorbed in the plasma. The electrons continues theiomantil the laser pulse is on and form a
hot electron tail in the energy spectrum.

Now we will illustrate the differences arising between Anend circular polarization of the laser
pulse. Assuming a step-like density profile and considettiregnormal incidence of an elliptically po-
larized pulse, neglecting the relativistic and thermateiff, the vector potential inside the plasma can be
written as

A(0)  _

Az, t) = ——L_¢ */!(ycos wt + ezsin wt 2.71
wherel, = ¢/\/w, — w? ande is the ellipticity (0 < ¢ < 1). UsingB = V x A andP | = eA/c for
the electrons transverse momentum, the longitudinat x B force on the electrons can be written as
[40):

e

2 1—¢&?
_ 2 _ —2z/ls
F, = —WaxA = Ipe z/ (1 + T cos?wt) (2.72)

The termFj in above equation is

e? A%(0) 20%(0)

= MeC 5.

Fy (2.73)

- 2l smec?
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Taking the cycle average of E2.72), we recover the secular ponderomotive fétcedependent of
polarization, as explained in E(R.22). This second oscillating term &b frequency vanishes for circu-

lar polarization (where = 1) which leads to a very different laser-plasma coupling leemvlinear and
circular polarization at normal incidencigx B heating becomes the more significant absorption process
than the Brunel heating, when the magnitude of B driving term becomes larger than the electric field
component normal to the surface, ixg,B > Esinf. The Brunel heating mechanism is superseded by
j x B mechanism at ultra-high intensities, i22.102°Wem ™2 as the electrons motion across the density
gradient along the polarization axis is dominated by thei@ndh the forward direction.

Apart from the above mentioned mechanisms, there exisbwamnechanisms for laser energy ab-
sorption such as vacuum heating, normal and anomalous #fkiciseetc and each covers different
regimes of their existence with respect to density scalgthen; polarization properties and laser inci-
dence geometries. Due to the complex dynamics of the lassagtion processes, today it becomes a
challenge to investigate the relevant process contributica single experiment result. If at relativistic
regime, thej x B acceleration mechanism is the dominant one, Brunel alisorptight occur at the
sides of the hole. Later Wilks et8@] explained withPIC simulations, the potential importance of the
heating mechanisms in the relativistic regimes along vhighdccurrence of other processes such as hole
boring and the magnetic field generation which plays an itambrrole in fast particle acceleration.

2.9 Hot electron generation

All of the collisionless absorption mechanisms discusdsa/@, by one way or another, results in
strong heating of fraction of electrons to much higher epdingin the initial bulk plasma having tem-
peratureT.. These supra-thermal electron component generally kn@vhat (fast) electrons” has a
Maxwellian form with a characteristic temperatdrg > T.. With the interaction of sholft laser pulses
with overdense plasma, these hot electrons bunches tsdillghe transverse laser field and driven into
the target akw via thej x B heating mechanism, further get accelerated by cohereatrieldield,
having monochromatic beam-like tail with some energy ghreéot electron generation is mainly due
to specific acceleration mechanisms such as resonant &bsogndj x B heating etc. The charac-
teristic feature of these absorption mechanisms and tlegientience on the laser parameters (such as
intensity, wavelength, incidence angle etc.) will refldwt generation of hot electrons population. Thus
the presence/absence of hot electrons will features treepce/absence of related specific absorption
mechanism in the laser plasma coupling.

The temperature of the fast electréhgis of the order of the cycle averaged oscillation energy én th
electric field of laser in vacuum and also estimated from thedgromotive potentiakp,, = KgT}, ~
mcc?(y —1). Thej x B mechanism is considered to be the main source of hot electoointensities of
the order~ 10'W /cm? and above. The higher the intensity of the laser pulse, tjteehiis the fraction
of the laser energy which get converted into hot electrongptoQ0 — 30% [64, 65] for intensities
around10'W /em? or even uptot0% for 5 x 102°W /cm?[12] of the laser energy is transferred to the
supra-thermal electron population and the temperatureedftt electrons increases up-to sevéifaV.
Considering bi-Maxwellian electron distribution, the penomotive hot electron scaling law proposes

11 Actually some authors identify the ponderomotive forcewtite whole nonlinear force including the oscillating compo
nents. We here, keep the definition of the ponderomotivesfoetated to the slow, non-oscillating motion as developeskic
2.3.
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an approximatelyI)?)%-> dependence df, to laser intensity 36]

I )\2 1/2
(o) -

KT, ~ 0.511 MeV (2.74)

1.37

This scaling was supposed to be valid in general when lassm@ interaction density is close to the
critical density. Depending upon the laser conditions lfsas spot size, pulse length, prepulse) this
constraint may be satisfied for a wide range of intensitidse Jcaling of the hot electron temperature
varies with laser intensity, laser pulse duration and lasgdence angle and is still under debate. The
uncertainty in plasma conditions around the laser plasitesdotion region may be responsible for the
discrepancies ifl', scaling with intensity §6, 65]. These fast electrons growth have been observed and
characterized in several experiments and for differemraution conditionsd6, 65, 67, 68]. Beg etal

[8] found an empirical scaling of hot electrofig, to be effectively scales g§\?)3 at laser intensity
of I ~ 10 W/em?. Ty, is found experimentally to increase @s\?)°-34+0-9 for laser intensities from
10'® — 102'W /em? which suggests that the ponderomotive scaling af)%-5 overestimates the growth

of fast electrons with laser intensitgg]. Although the hot electrons are much less in number than the
thermal electrons, but their population often carries nemrergy. Acceleration and transport of these hot
electrons is of particular interest in recent years and playndamental role in many vital applications
such as i CF ignition methods and more importantly in proton and heaigaracceleration from the
overdense targets and will be briefly discussed in the fatiguChapter.



CHAPTER 3

| aser-Driven lon Acceleration

With the rapid development of laser technology and havirdewgiotential applications of ion beams
in laser fusion 70| and proton therapyl], ion acceleration has received great attention in the afea
laser interaction with overdense plasma. Acceleratiomwia$ by super-intense laser pulses was boosted
in the year2000 when three experiments (Clark etal], Snavely etal 12] and Maksimchuk etal[1]

) independently reported the observation of mMiV protons from few microns thick metallic target.
The emission of protons from the metallic targets whose atencomposition doesn't include Hy-
drogen sound very surprising, but was explained soon dftgrprotons get originated from impurities
which are ordinarily present on the metallic surface in tivenf of thin layers of water or hydrocarbons.
Although all authors in principle agreed upon the protogioation from the metallic target surface but
the opinions differ about the question, whether the sowagerlof the observed protons is located on the
front [10] or on the rear side of the targe&f], 11, 72]. Later, the controversy of ion acceleration has also
been expanded with the origin of heavy ior@j|

A direct interaction of protons and heavier ions in a field wfrent available laser systems is by far
not strong enough to accelerate these particles eV energies. Similar to ER.46), which explains
the relativistic threshold for electrons, i.€.A> = 1.37 x 10'® 2%, ,m? , one can derive the intensity
where the kinetic energy of oscillating proton in the laseldfiequals to its rest energy4]

2
Ip)\2 = <%> IN? ~ 5 x 10% VV,LLmZ/Cm2 3.1
&
which corresponds to a laser pulse amplituge= 1836 in which the ions finally reach relativistic
velocities within one laser cycle and the acceleration @sscenters into the so called Piston Regime
[75]. This laser intensity is far beyond the present laser teldyy yet and might be feasible in the future
with the new concept of optical parametric amplificat{@PA — CPA)[76]. Energetic ions observed in
the laser-matter interaction have been accelerated resitlyiby the laser fields but by the plasma fields
which are formed by the laser heated electrons. Howevesethiasma electrons can mediate the forces
of laser fields on ions by generating strong quasi-statictiétefields which arises from the local charge
separation. These fields which vary on a time scale compatalthe laser pulse duration, can be of
same magnitude as that of the fast oscillating laser fiel@&)gythe ions a significantly longer time to
accelerate.

The laser energy can be efficiently transferred to the pladetdrons by various mechanisms leading
to different ion acceleration scenarios, depending ondblerlparameters e.g. intensity and temporal
contrast of the pulses and on the target properties suctaps simd size of the target. In this section, the
two main ion acceleration scenarios will be discussed, ghatide sufficiently strong electric fields to
the particles over a sufficiently long time. According to flist scenario, ions can be accelerated in the
vicinity of the laser focus at the target front surface by‘thenderomotively” expelled electrons, leaving
behind a positive space charge of ions. This mechanism isnamly known as radiation pressure
acceleration (“RPA"). 11]. The second scenario includes the ion acceleration atattgett rear side,
by which the fast electrons accelerated at the target frarfidee, crossing the target bulk and escape
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in vacuum from the rear side, as a result a space-charge fliglteiform of thin Debye sheath being
generated that provides strong and long lasting electtisfighich accelerate the ions. This mechanism
is commonly known as target normal sheath acceleration $&N [12, 14]. In recent years, there is one
more acceleration mechanism which is of high interest,@s'8hock acceleration” mechanism7} 78]
which can accelerate high energy igqas MeV) of monoenergetic naturéd]. According to this, when
the laser intensity is of the moderate range, i16!® — 102'W /cm?, the light pressure ranges up-to
terabar values, sweeps out and compress the laser prodiassdap pushing its surface at relativistic
speeds. Such a strong compression and acceleration magatgestgong shock waves propagating in
the bulk of plasma which accelerate ions. In moderatelydsmse and hot plasmas, where the shocks are
of collisionless nature, shock acceleration may lead tb bagher ion energy and narrow ion spectrum
and can be the dominant acceleration mechanism than thé\sideliedTNSA andRPA mechanism.
Below we will discuss these three ion acceleration mechasis brief.

3.1 Target Normal Sheath Acceleration (TNSA)

3.1.1 Introduction

TNSA scheme was first suggested by Wilks etd][in agreement with its original use], as an
explanation for the energetic ions (protons of orders8MeV) which was observed normal to both
the rear surfaces of a wedge-shaped target in an experiragotiped at theNOVA — Peta-watt laser
facility of LLNL, USA [12], According toTNSA model, a very intense current of high energy “hot
(fast)” electrons is generated at the front side. As thetedas travel with relativistic velocity (see
sec2.9 of Ch.2), these hot electrons cross the rear side boundary andpdtterascape in the vacuum
at the rear side while the ions due to their heavy mass alneosain at rest. Therefore the charge
imbalance generates a sheath fiElg normal to the rear surface. If the hot electrons have densit
and temperaturé},, the typical spatial extension of the sheathwill be related to electric field&; as

Ty
el
The protons will thus be accelerated perpendicular to tlgetanto the rear side hemisphere until they

compensate the electron charge. Assuming a steep interfabe, and7}, as the only parameters,
can be roughly estimated as the Debye length of fast electron

T,
4dme?ny,

E, ~

(3.2)

Ls ~ )\Dh = (33)
Assuming a simple scaling of hot electrdhis for a laser irradiance of intensify\? = 102°W /cm?
and a fractional absorption; = 0.1, we findn;, ~ 8 x 10%cm™3, T, = 5.1m.c* = 2.6MeV,
Aon = 4.2 x 107 %cm andE; ~ 6 x 101V /em. This huge electrostatic field is by far stronger than that
of the electric field of the laser wave, so will back-hold mafsthe escaping electrons, ionize the atoms
at the rear side and start to accelerate ions. In a rough astira test ion crossing the sheath would
acquire a energy; ~ eZE,L, = ZT},, with a scalingl'/? if T}, ~ ®,(ponderomotive energy) given
by Eq. (2.74) holds. Due to the hydrocarbons or water containments onutiace of the non-treated
targets, the protons are in a favorable condition for acatten and are more rapid in following the
electrons by screening the sheath field than other heavybiecsuse of their initial position, located at
the maximum of the field and their higher charge-to-mase.rdthe heavy ions can also be efficiently
accelerated from the cleaned targets

! Several cleaning techniques such as target heating antalalsgion have been adopted and tested to remove almost all
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The accelerated ions leave the target together with themorny electrons forming a quasi- neutral
plasma sheath. The plasma density in this sheath dropslyuaiftker the detachment from the target
while the temperature remains high in this sheath, recoatioim effects are negligible for propagation
lengths in the range of several met8&[ After the very early stage of acceleration, the process is
described as collisionless plasma expansion in vacuungléatrons move ahead of the ions front until
almost the whole of the electron energy has been transfarieds. The energy transfer from electrons
to ions is almost due to the large mass difference. Most ofabieelectron energy is delivered to ions
and particularly to protons if the latter dominate the aeion in proper conditions. The accelerating
electrostatic field is parallel to the normal vector of theyéd rear surface, therefore the mechanism is
called as “Target normal sheath acceleration”. The schierfwatthis mechanism is sketched in FigL

After its discovery, the essential features of t(RESA mechanism has been supported by several
experiments and it provided the experiments many ideasstdte ion acceleration schemes with dif-
ferent shape of targets. In particular, the schemes for lmgdimization and control have been designed
on the basis offTNSA. As the sheath field is almost perpendicular to the targéacey it is possible
to focus the protons by shaping the targ®®,[84]. The simple dependence of the electrostatic field on
the density scale length at the rear side has been confirmpdrfiyrming a long scale length plasma at
the rear side of target surfacgq, by showing the proton energy decrease and suppressiateleaa-
tion with increasingL,. The suppression of proton beam by removing the surfaceritigsuprovide a
confirmation to accelerate efficiently the heavier ions sagharbon§6).

3.1.2 Basic theoretical model

The essential features GINSA mechanism have been supported by several experiments and ha
become the reference framework to interpret observatibmsutti—MeV protons from the target rear
side. First of all, we assume an electrostatic approximatibich lead to the formulation of a simple set
of equations, so that the electric fidlid = —V ® where the potentiab satisfies the Poisson’s equation

VPP = dme(ne — > Zjny) (3.4)
i

the protons and other contamination layers from the tamattelerate heavy ior&f), 81]
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where the summation is over each species of ions, havingetigrand densityn;. In a laser solid
interaction, the electron density, can be described as of qualitatively two distinct poputatiof elec-
trons having densitiea,. andn; such thatn, = n. + ny. In the simplest approach, only the “hot”
electrons will escape the target vicinity, shielded from iitn attraction by their slow successors where
the main part of the hot electrons population will be trappethe coulomb potential (formed due to
charge separation) and constitute an exponential shedthedarget rear side. So thermal effects can
be neglected for the cold population.§, while n;, can be described by a one temperature Boltzmann

distribution as
ed ( )
np = Nop, - €XP 3 3.5

where® is the Coulomb potential of the ionized target. The aboveatqn is a reasonable approxima-
tion to account for the presence of the self-consistenttiifegd which will be retained as long as the
laser pulse drives hot electrons through the target. Theeegjon in Eq.3.5 has actually been used in
many works orfi’NSA[87, 88, 89] but can lead to serious problefnshen the main goal is the evaluation
of the maximum energy of the accelerated ions.

In most of the cases, it is appropriate to consider two difieion species, a light (L) and an heavy
(H) population and by this way it is possible to model the &edion of light ion species which is
present on the surface of a solid target made of heavy ionpeizing upon the description of the ion
population and to describENSA theoretically, there are two main categories of models nEfsi@tic”
and “dynamic” models which provide simplified analyticakdaptions and are helpful to interpret the
experimental data. In static models, it is assumed thatigin lons ( or the most energetic ones) are
accelerated in the early stage of the sheath formationgwiind heavy ions may be assumed as stationary
or immobile. In such conditions, the effect of the light ioms the electrostatic potentidl is usually
neglected with the aim to provide more accurate descriffdhe sheath depending on the assumptions
of hot electron distribution. The second category is of dyitamodels where the system is described
as a neutral plasma in which the ions acquire kinetic enerdlieé course of sheath evolution. In most
cases, a unique ion component is considered, i.e. a appwhich is strongly connected to to the
classical problem of plasma expansion in vacuj.[In a cold fluid description, the ions are described
as follows:

auj . Zj@

E + u] . Vll] = —qu) (36)
anj .
5 + V- (nju;) =0 where j=(L,H) (3.7)

and if the ions are described kinetically, then their phames distribution can be described by Vlasov

equation,

afj Zj@ 8fj

-7 . Dty -
ot V-V m; v ov
Most of the studies proposed in the literature both befodeedier the'NS A experiments and the related
specific models oT'NSA developed so far can be considered as suitable simplificatibthe previous
equations, and can be obtained further with physically vatdid assumptions by selecting one of the
two above mentioned categories or suitable combinatiohefhit All of the models proposed so far to
describéI'NSA, to a large extent are phenomenological, i.e. they need pbysical quantities as input
parameter which are not precisely known. The best modeligncbntext may be considered the one
which provides the best fit of experimental data with the lswget of target and laser parameters, and

the one which give directions towards improvement of thekration process for future applications.

=0 (3.8)

2 These issues have been discussed at the end of this se¢tioE@f(3.10).
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Quasi-static model

Starting approximation of static model includes the tim@eofsub — ps laser pulses, an isothermal
hot electron population, immobile heavy ions and the ligitsi to be sufficiently few in number to
neglect their effect on the evolution of the potential andstican be treated as test particles. In this
approximation, we used E@.5) to describe the hot electrons and neglecting thermal sffiectcold
electrons, the potential in planer geometry is calculated a

o
Or?

where Subscriptis for proton. The corresponding electron density, eledield and the energies of test
protons can be calculated moving in such potential. Thetisolof Eq(3.9) in the semi-infinite region

x > 0is calculated asq1]
2Ty, T
P =——<In(1+ 3.10
=22 (1+ 55 (410

where A, the Debye length of hot electron have been defined ii383). However, the electrostatic
potential ®(z) leads to an infinite acceleration of test protons which aitally at zero energy at
x = 0. Therefore from Eq3.5), solving mathematicallydp — —oc asz — +oo, which means
the self-consistent electrostatic potential must diveagéarge distances from the target. This is not
a pathological consequence of the one dimensional appatiximbut is related with the fact that the
Boltzmann relation implies the existence of particles writimite kinetic energy, which is not physically
meaningfulp2]. So this unphysical behavior can by assuming an upper greitgoff £. in the electron
distribution, such thab — —&. asz — +oc and electric field turns to zero at a finite distar®S}|

More detailed discussion about this acceleration mechaisut of the scope of this thesis, since
the main acceleration mechanism explained in our simulat@sults is acceleration of ions from the
front surface of the target. e.g. by radiation pressurelaa@®mn mechanism and by collisionless shock
formation which we will discuss below.

= 4re [nOheeq)/Th — (Zuynow — ngc)] (3.9)

3.2 Radiation Pressure Acceleration (RPA)

This mechanism of ion acceleration has gained a lot of isténethe past few year®4, 95, 48, 96),
where the patrticles are directly accelerated by the laskatian pressure. Acceleration of solid objects
via the radiation pressure of intense light from the longetiirhas been considered as a route to achieve
extremely high velocities. The basic principle of this ideas first proposed by Marx ih966 [97],
giving a proposal for any human propelled macroscopic elbgeeach velocities approaching the speed
of light. The efficiency approachd$0% as the object reaches the speed of light. Later this idea was
implemented to a thin foil target being accelerated entiesd soon as short pulsed highly power laser
systems were available.

RPA mechanism accelerates ions from the front side of the témgée vicinity of the laser focus
due to the electrostatic fields which arise inside the tdrget the ponderomotive expulsion of plasma
hot electrons where they form a compressed electron clodtkrvd plane monochromatic EM wave of
intensityI and frequency normally incident on the plane surface of a target (at rés¢) electrons are
pushed inside the target by the ponderomotive force PEt)), while the ions are still immobile due to
their heavy mass. The electrons are pushed inwards by pumdéve force, leaving behind a charge
separation layer and creating an electrostatic, backifield F; that in turn acts on the ions and leads
to acceleration. As soon as the electron density exceedsitloal density .. > n.), the condition of
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a sharp boundary is given and the pressure imposed on theoeléayer might be described by the
radiation pressuré®,, and is given by

P = leOES2 =(1+R- T)£
2 c
whereR, T and A are the reflection, transmission and absorption coeffisiehthe target and is well
known derived by Fresnel formula8g] as a function of the refractive index and thus of wave freqye
Energy conservation implieR +7" = 1 — A, i.e. the fraction of the EM wave intensity that is converted
into internal energy of the target

Radiation pressure is basically the flow of delivered momenper unit target surface and can be
computed when the EM fields at the surface are knoRi?A measurements at low intensities in the
range from10'2 — 101W /cm? tells that it plays no role and indeed is not a measurabletasteer-most
at these intensitiesR PA is dominated in this intensity regime by foil expansion drivby the thermal
pressure of the plasma or in the higher intensity regim&0'W /cm? by foil decompression due to
TNSA. If the laser pulse is linearly polarized, it has been fouxplegimentally as well as numerically
that rear -surface acceleratig®NSA) produces high energy particles with small divergence and of
higher efficiency than that of front surface accelera®@[/3]. Later, it was numerically predicted that
using linearly polarized lasers of intensity aboM&*W /cm? which is not experimentally accessible
yet, RPA might be the main dominant mechanism than any other actieleischemes75.

Successfully explorin@R PA requires a means of suppressing hot electron productidmeatatget
front surface. This may seems impossible task given thevdtyles of electric field but becomes possible
using circularly polarized pulses at normal incidence. €iccular polarized, normal incidence laser
interactionsRPA can be revealed at much lower intensitl@®W /cm?[95] in which the electrons are
effectively in a trapped orbit close to their origin and ddé ppagate through the target thus suppressing
TNSA. Due to the normal incidence of the laser, the Resonance amtkBabsorption are disbanded
and for circular polarized (CP) pulses, the ponderomotiessure~ VE? is quasi-static and follow
the laser beam temporal envelope in magnitude. Thu€ipulses, the generation of hot electrons
is suppressed since the longitudinal component of the linremce vanishe§pb]. Therefore forCP
pulses, the scaler value of the electric field vector is @nisiand the ponderomotive pressureVE?
oscillates with a period of once per optical cycle and heWid@&® = const for I = const. Constant
pressure on electrons in the target allows a charge shedtvé&dop, i.e. ions are offset with respect to
ions and hence the formation of an accelerating field.

In general RPA consist of two different stages: a) hole boring stiide— RPA:- where the electrons
are piled up to an equilibrium and creates a restoring @sftic field since the target ions are still
immobile in that early stage. Later the ions are set into omolkayer by layer due to this electrostatic
field. The target rear surface almost remains stationarhpigrdase. b) light sail stageS — RPA:-
where the entire target ions begin to move ballistic due ¢odlectrical field created by the displaced
and compressed electron layer which acts as an acceledatadgmirror. We will concentrate more
on the “hole boring acceleration stage” for circular aneéinpolarized pulses and to compare the ion
acceleration mechanism occurred within the target duegt@dhtisionless “electrostatic shocks”.

— 2R + A)é (3.11)

3.2.1 Hole-boring RPA: Thick targets

In the first measurements of ion acceleration in the forwéaetton, the possibility of relevant con-
tribution of accelerating ions at the front side of targeswanceived100. Later, few more experiments

30ther limiting cases include a perfect mirrdt & 1, T = A = 0, S0Praq = 21/c), a perfectly absorbing mediun (= 1,
R =T = 0, soPrag = I/c) and a transmitting non-absorbing targat£ 0, T = 1 — R, s0Prag = 2RI/c)
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suggested that in particular laser and target conditidvesehergy of the “front side ions” is comparable
to or even exceed than that of “rear side” iod9], 10Z. As a consequence, the mechanism of ion
acceleration in such regions is extensively investigated.

To derive the expression for the ion velocity in the non4reistic case, (i.e. ion front velocity is
slow compared to c), we first solve the equations for the maonmerbalance. It is assumed that the
plasma is overdense so that the light beam is perfectly tefldoom the plasma surface. Now a intense
laser beam of constant intensityis driving into a target of uniform density. At the front sack of
plasma, the intense radiation pressure of the laser pulsieepuan overdense target inwards, steepen-
ing the density profile and bending its surface. To provide/achical picture of ion acceleration in
the charge separation layer, we consider only the actioteafly ponderomotive force which would be
fully appropriate for circular polarized pulses at nornmaidence. During the initial stage, the electrons
are pushed inside the target by the ponderomotive force({ke® sec2.5 for detail), piles up to den-
sitiesn. = nyo (see Fig3.2a) leaving behind a charge separation layer. This give dse restoring
electrostatic field,. Assuming that the time scale of electrons and ions is wpliisged because of the
large mass difference, so that at any time the electronseaoisidered in mechanical equilibrium, i.e.
E, and the ponderomotive force balance each other. To desdtileeion motion analytically, we use
simplified profiles of density and fields as shown in Big. In Fig.3.2a, electrons have piled up under
the action of ponderomotive force while the ions are stiliriobile and are at equilibrium. The model
parametersy,, xq andE, are related to each other by the Poisson equation, chargemation and
the pressure balance condition such as

21
P, = /eneEmdac =Pau=— (3.12)
c

The lengthl, = x5 — x4 is the penetration distance of the ponderomotive force timotarget {; =
¢/2wy). Since the electric forc&, decreases linearly with distance in the region< z < z, ions
with initial position in this range all reach to the = x, point at the same time, and a singularity
appears in the ion density as shown in Bigc. Then the ions cross this electron layer and travel inside
the target until they encounter the next layer of stationang. Due to much less inertia of electrons
than that of ions, the compressed electron layer 8F2g) adjusts itself immediately. Now again the next
stationary layer of ions experience the electrostatic feld get accelerated in the same manner. This
cyclic acceleration of ions which proceeds by layer to lagsulting in the characteristic loops in the
ion phase space (see resultg6.3 for CP case inCh.6), continues until they don’t reach to target rear
side.

a) b) c)
ne
ne
J) N %0 E, E,
n, % n, “
: y
VA
0 =z, = x 0 x, x 0 T x

Figure 3.2:Schematic of the ion density;, electron density.. and electrostatic fieltL,. at three different stages
of ion acceleration. Figure reprinted from(3
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When anEM wave impinges on the target front surface, the intense tiadi@ressure of the laser
pulse pushes the overdense target inwards with a velegitgommonly known as hole-boring veloc-
ity, which can be estimated by balancing the electromagiids and mass momentum flows in the
instantaneous rest frameé7]

21 2n
— ~ 20 (M Vi) Vi = —eAmvab (3.13)
c Z
where P, is the radiation pressure on the surface layer which is ngoatrvelocityv,,. At this point,
we will define a dimensionless piston paraméier
I I ZneMe o

= _ 1 _Zneme 3.14
minicd  pcd Anemy @0 ( )

wherep is the mass density of the plasma. So we can determinas

| T [T 7 me ne\ V2
Vip~ 4 — = = V2E = age (_m_n_) (3.15)
pc m;n;c Ampne

The fastest ions form a narrow bunch of velocity,, that penetrates into the overdense plasma
detaching from the surface layer, such that the maximumcitglof the detached ion bunch can be
Vimax = 2Vi[95]. Neglecting numerical factors, this leads to the follogvgstimates and scaling fof,.,
and the corresponding energy per nucleon of the detachdaliimeh for non-relativistic regime

The estimate fo€,.., shows a scaling with the laser intensitgnd is more favorable than th&? scaling
of TNSA. This suggests that thePA effects become more important for higher intensities. From
Eqg.(3.15), v Can be described as

Vinax ~ 2V, = 2V 2= (3.17)

the ion velocity depends simply on the laser intensity angktadensity in this scenario.

As v, does not become negligible with respect to ¢, one has to takeaccount that the effective
radiation pressuré’,, on the surface moving with velocity,, in the lab frame and can be demonstrated
by the Lorentz transformatichsuch that:

21\ 1 — vy/c
Puy=|—| —— 3.18
¢ < & > 1+ Vhb/C ( )

The EM momentum flow, i.e. the radiation pressiitg, must balance the momentum flow difference
equal ton;(2vwmivim) Ve Thus the global momentum balance equation E}j13), with relativistic
correction can be written as

21\ 1 —vy/c
<?> TVZ?C ~ ni(2'yhbmivhb)vhb (319)

“The relativistic correction is equivalent to the energyldtipn of the incident radiation in the adiabatic approxiimaand
can be shown easily by the heuristic model of radiation pires& which the number of reflected photons per unit surfsice
with energy momentunvifv, Zhw/c) contained in a short bunch of duratiencorresponds to an intensify= Nhw/7. If the
surface is moving with velocity = Sc, the frequency of the reflected photonsvis= w(1 — 3)/(1 + ) and the reflected

time would ber, = 7/(1 — ). Thus the resulting pressure will tie= 132! = N (%) =2 (%)
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wherey,, = (1 — v2/c?)~1/2. Solving for thev,, expression relativistically which yields

=1/2
Vhp . =
¢ 14E12 (3.20)
So the relativistic correct expression for the ion energymeleon becomed P4, 105
e = 2MyE——— (3.21)

1+ 281/2

and the scaling witH is turned down td!/2 at very high intensity. The simulations show that the
final energy spectrum observed in the results is determigetebhighly transient stage of equilibrium
collapse and wave breaking which follow the formation of ¢iregularity. Even referring for a planer
geometry, the hole boring process is associated with thadoeleration from the front side of the taryet
The above equations3.16) and(3.21) applies to thick target, i.e. much thicker than the the skin
depth in which the ion acceleration by the space-chargedidrs. lon acceleration in form of bunching
and by wave breaking occurs as long as the laser pulse is goushéhg the adjacent surface layer deep
into the target by a repeated cycle of charge separatiorelfdrget and laser parameters do not vary
much over an acceleration cycle, all the ions get accelktatan energy,.., and theHB process which
in general of non-stationary nature, might also be desdrilyethe quasi-stationary model(4]. Now
if the target is thin enough that all the ions get accelerbgddre the end of laser pulse, in such case the
laser pulse is able to further accelerate the ions sincealeyot screened by the background plasma
surface. For example, if the target is of the orderofr, Fig.3.2c, the density profile ends up at the
null point of the ponderomative force and the acceleratigriecis repeated again over the same ions.
Thus higher ion energies are expected for such thin tarbkts. all the ions have the same velocity and
undergo the light sail acceleration which we will discusg/miio the next section.

3.2.2 Light-sail Regime: Thin targets

The thin target regime AR PA has been named “Light safl’.S) as the term is appropriate to refer to
a thin object of finite inertia, having low mass and large @&tefso that it can be significantly accelerated
by the boosted action of the radiation pressure. Marx raisieddea by using calculations based on the
simple model of a flat, perfect mirror boosted by a plane wddarx's concept faced some controversies
but later Simmons etallPg| discussed this topic finally by concludingvhatever his mistakes, at least
Marx was more right than his critics” The analytic solution and scaling laws provided by the dasi
model[L0g] illustrate some appealing featuresladf — RPA such as high efficiency in the relativistic
limit and the possibility to reach up-to very energy withgeet-day laser and target technology.

Let us consider the sail as a plane mirror of mags moving with velocityV = dX/dt in the
laboratory frameS. We assume the mirror to have a reflectivily= R(w), which is defined in the
frame where sailS is at rest. A quasi-monochromatic plane wave if intengitynpinges at normal
incidence on the sail. The equation of motion for a movingea(sail) in the laboratory framg can
be obtained similarly to EB(19) with the help of Lorentz transformation into the instamans rest
frameS’ where the force on the target is given by radiation presslre 21 R(w' A/c) whereA is the
sail surface]” andw' is the intensity and frequency il frame. Neglecting absorption for simplicity
(i.e.A = 0), we obtain the equation of motion for the light sail as

d S 20(ty) ,, 18 dX

7 B7) R(w)y 1 - = Pe (3.22)

SNotice that in the literature, different definitions suchl@ser piston 104 or sweeping acceleratiod§] are also used to
refer to the same process.

oc?
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where X is the position of the sailg = v/c is the sail velocity in units of, v = (1 — 52)~1/2,
w' = w[(1 = B)/(1+ B)]'/? is the laser frequency in the rest (sail) frame ane- m;n;l is the mass
density per unit surface. The laser intenditis a function of the retarded timg = ¢ — %

The existing analytical solutions of Eg§.22) depends on the suitable expressions Rgw). The
simplest case is that of a perfectly reflecting mirrBr€ 1) and a laser pulse of constant intenditgfor
detailed derivation, sed 06 ). The normalized kinetic energ( (¢) is given by

K(t) ) 1
= — 1 =sinh — -1 2
3 y(t) sinh(u) + Jsinh(u) (3.23)
1 Z me ag
u=ga sinh(3Q¢t + 2), where = Z%% (3.24)

in which ¢ has been defined in Ef55 (Ch.2). Asymptotically, K (t)/mc? ~ (3Qt)'/3 — 1. Most
significant quantities can be obtained for an arbitrary@slsapd (¢) as a function of the dimensionless
pulse fluencé = [ Idt (the pulse energy per unit surface). Hdr= 1, one obtains fog = 3(¢,) [106]

4+ F)P -1
B(t,) = T FOETT (3.25)
2 [t
FM:EAHMt (3.26)

From above equation, we can define the instantaneous efficigras the variation of the sail’'s energy
at the retarded time. divided by the electromagnetic power delivered at the saih@ same (retarded
instant), i.e. byl (¢,.) the ratio between the mechanical energy delivered to tharsaithe incident pulse

energy as

26(t,) 1
— -1 3.27
(T R (SRS ©20
Thusn — 1 is obtained in the relativistic limiB(t,) — 1, which is reached wheR — oc®.

The scalings and estimates implied by E@s25) and(3.27) are very useful for ion acceleration by
super-intense pulses as they imply that laser parametededdor interstellar travel are still far away.
Let us use a thin solid foil for the sail having densitand thickness, such thatr = pl. Thus the final
energy per nucleoé,., as a function of the total fluende= F(c0) is given by

2 F2

Emax = mPCQ[fy(oo) — 1] = myc m (3.28)

whereF in practical units is given by

Froo PN (Y (3.29)
108 /em? \ 1g/cm3 10nm '

whereF is the laser energy per unit surface and in terms of dimeleserparameters is given by

2mec?

F nca%T)\ Z Me a%T

ZMeC NeoTA _ o 2 MM 307 .
min;lc A my ¢ (3.30)

® This result follows from the photon number conservatiorhsagN photons carrying a total enerdy’iw, being reflected
during short time intervals such thatdoes not vary significantly. Then the reflected photons hates énergyN fiw, and the
energy transferred to the mirror 6/ (w — w,) = Nhw[28/(1 + B)], thus the efficiency i = 25/(1 + 3)
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a constant intensity has been assumed in above equation @ntthe laser pulse duration in units of
the periodTl’ = 27 /w = A/c. With the present day laser technology where target matwrfag can
produce films of few nm thickness, e.g. Diamond-Like carboifsf the values ofidr ~ 103 seems
affordable. Thus in principle it seems feasible to reaclieslofF > 1 approaching a regime which
can accelerate relativistic ions with high efficiency andaearfavorable scaling with the pulse energy at
F>1.

3.3 Shock Acceleration

Acceleration of particles by collisionless shocks in plasrs a problem of central interest in astro-
physics L07] as well as in laser-plasma physi¢8]. Such collisionless shocks are abundant in space
and in astrophysical plasmas, e.g. the Earth’s bow shogersava remnants, interplanetary traveling
shocks where in many circumstances the particle transpgdtsed by wave-patrticle interactions. The
existence of an ion component that is reflected by the shack fs actually a direct signature for the
formation of the collisionless, electrostatic shock wawvethe basic fluid theoryZ8, 108, 109, where
the electrons are assumed to be in Boltzmann equilibriunthérframe moving at shock velocity, ions
are reflected by the shock if the height of the electrostaitential barrier®,,, at the front is such that

ZeD > mivg/Q (3.31)

wherev; is the velocity of the ion component in the shock frame. Beltire shock front, the fields have
an oscillating behavior. In a simple picture of ion accdieraby collisionless shocks; ions which are
initially at rest, get reflected by the shock front (whichsaas the moving wall), and acquire a velocity
in lab frame, i.ev; ~ 2v,, wherev, is the shock front velocity.

Nowadays, it is possible to replicate the astrophysicalditioms in the laboratory and study of
collisionless shock phenomenon has received greatertimefrom last two decades. Collisionless
shock (CS) can be generated in laboratory by interacting a strong fpskse with overdense plasma
[110] as well as by underdense plasma created by using gas jetddtd 1] or by the effect of long
prepulses in solid targetd)2]. The generation of shock waves driven by laser pulses iskmelvn in
the moderate intensity& 10" —10%! W cm~2), nanosecond pulse regime. In a overdense plasma, rapid
heating and ablation pressure at the surface may drive & stege propagating towards bulk and the
study of such propagation may yield information on the eignadf state of warm dense mattei[2].

In the interaction of super-intense laser pulses with amesd plasma, the light pressure ranges from
gigabar to terabar values and, like a piston, may sweep aut@mpress the laser-produced plasma and
push its surface at nearly relativistic speeds. Such caatibim of strong compression and acceleration
is often described as the generation of strong collisienéd®ck waves propagating towards the bulk of
the target. Collisionless shocks with a relatively low Machmber have been investigated in laboratory
plasmas sinc&970s [113. Recently theoretical and numerical study also infer aloe occurrence of
high Mach number collisionless shocks in laser plasti&][

lon acceleration by th€S waves is of high interest at the moment and receiving moentidin
because the energy spectrum of the accelerated ions idyiseahoenergetic, which is quite useful
for many kinds of applications. Experimentally in lasertteainteractions, the ion acceleration 6%
shocks have been reported in an underdense plasihih pverdense plasmad15 and in a gas jet
target [79). lon acceleration by collisionless shocks in the targdk lisl more prominent in case of
linearly polarizedLLP) pulses as the oscillating component of thex B drives a sweeping oscillation
at 2w of the density profile which overlaps to the steady effecthef ponderomotive force and causes
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strong absorption and fast electron generation. Moreoitérthe rapid development of laser technology
and with the present availability of ultrashort and ultnéense pulses with focused intensity exceeding
102'W/em?, makes it possible to conduct laser-plasma interactiohowit pre-plasmas of large scale

lengths where ion acceleration b5 may be examined and tested in more detail.

Numerically, Denavit first observed shock acceleratiom@irtPIC simulations ¥7]. Later collision-
less electrostatic shocks with Mach numbkts= v, /cs; = 2 — 3 have been reported by Siledal78]
where the sound speed is estimated using the fast (hoty@iedemperaturé}, ~ m.c?(y/1 + a3 /2 —

1). The shocks are generated at the target front surface wighoaity close tov,, given by Eq.8.20)
consistently with the assumption that they are driven biopigction of the radiation pressure. By esti-
mating the shock velocity with respect to hole-boring véloe, ~ v, in the strongly relativistic limit
ap > 1, the condition to obtain radiation pressure driven supgcsshocks and can be written as

ag > ———C (3.32)

As long as the shock velocity, is constant, the reflected ions from the shock front showe a-
locity 2v, and produce a monoenergetic peak in the spectrum. Such avoeidd evolve into a spectral
plateau due to the further acceleration in the sheath fieldeatear side of the targef§]. A similar
signature was interpreted experimentally as an evidendeonf side contribution to ion acceleration
[107] with respect toaT'NSA acceleration at the rear side of the target. Later an irggrpétween col-
lisionless shock acceleratiqi©SA) and TNSA has been widely study through numerical simulations
by d’'Humieresetal [116] and Cheretal [117]. Very recentlyCSA has been indicated as the mechanism
responsible for monoenergetic proton acceleration up-280MeV energy in theCO- laser pulse inter-
action with Hydrogen gas jets at an intensities ug-tox 10'°W /cm? corresponding tay = 2.5[79].
The particular temporal profile of the laser pulse, 1.@0 ps train of 3 ps pulses, require to be essential
for the acceleration mechanism, since no spectral peaksisrodd for a smooth, non-modulated pulse.
Comparison witlPIC simulations suggests that the multi-peak modulated plgsesto efficient gener-
ation of supra-thermal electrons. It was found that theselshare formed due to strong electron heating
(rather than radiation pressure) in the density gradiemtiwurther accelerate monoenergetic beams of
protons. HowevefCSA generated by these supra-thermal electrons fall somehbwaf dioe “collective
acceleration” paradigm and only a minor fraction of the iaresaccelerated by the shock.

In the context of ion acceleration by laser, we prefer tomas¢éhe term “shock” for the regime
described above which implies the generation of a “truettetstatic shock wave, able to propagate
into the plasma bulk and drive a ion acceleration there. ©hmdtion of true shocks may be inhibited
for circular polarization because of the reduced electrmatihg. According to the fluid theory, a shock
wave launched with some velocity, requires the sound speed, (= /7./m;) and indirectly the
electron temperature to be hot enough to prevent the MactheumM = v,/c, from exceeding the
critical valueM,, ~ 6.5 above which one does not have a shock but a pure pid@$.[ The detailed
discussion for CP simulations have been prescrib&chit andCh.7.

In addition to collisionless shocks, the standard fluid tii¢@7, 28] also predicts electrostatic soli-
tary waves (or solitons) propagating at the veloaity. A necessary and general condition for such
solitons to exist is that the electrostatic potential epgugnp ..., has a peak value

Ze® 0 < M2, /2 (3.33)

" The use of two terminology can be understood in such a waytfieahole boring and shock acceleration may produce
similar type of ion spectrum, because wave breaking at thenph surface in hole-borilQPA produces ion bunches having
maximum velocity~ 2vpy, (See section.2.1) as if those ions were reflected from the surface, while asémee timevs ~ vy
may occur 78§].
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so that the background ions are not reflected by these solitaves. Assuming the electrons in isother-
mal Boltzmann equilibrium, the condition in Eq.3.33) poses an upper limit on the Mach number
M = vg,/cs = 1.6, wherecs = /T, /m; is the speed of sound. The other condition is that the soliton
must be supersonic, i.81 > 1. However, generation of electrostatic solitons may leadricaccelera-
tion in some circumstances, e.g. the soliton formed withenkulk when reach to rear side of the target,
the wave breaking occurs in the expanding rear sheath dbe &ffect of plasma flowl[1§]. A detailed
discussion about solitary versus shock wave formation afaded ion acceleration has been prescribed
in Ch.6



CHAPTER 4

Electrostatic Solitons and Shock Waves In
Collisionless Plasmas

In a harmonic wave solution, we genrally assume a plane wateecform exp.(k.r — wt) and
the linear wave propagation is studied by considering ont®fFourier component at a time in the
small amplitude limit. There are numerous processes viahvhn unstable mode can saturate and
obtain large amplitude. When the amplitude of the wave ificgeitly large, nonlinearity can not be
ignored. The nonlinearities occur due to: ion reflectionrfriine wave front, trapping of the particles
in the wave potentials, nonlinear Lorentz force, ponderiradforce etc The nonlinearities due to
particle reflection and particle trapping considerablyréase the richness and variety of wave motion
which exist in a plasma and significantly influence the caaditequired for the formation of localized
electrostatic excitations. Below we will discuss such &mnonlinear phenomena and the occurrence
of coherent structures such as electrostatic solitary svame the transition from these solitary waves to
collisionless shock waves.

4.1 Waves in Unmagnetized plasma

In this section, we will investigate some of the oscillatonpdes (or waves) which can be sup-
ported by a homogeneous, unmagnetized plasma. By plasmesnoodvaves, we refer to propagating
linear oscillations. These are obtained by consideringetnglibrium state for specieg = e, i, say
So = [nj0,uo = 0,® = 0] and then assuming small amplitude harmonic oscillationsirat that state
in the formS; = [n;,, w;, ®,]. By small, we mean that say, = n, + n,, for any given species, where
Ini/ne| < 0. The “linearized” version of the dynamical equatibnegill be solved to provide the os-
cillating quantities. In search for a solution of a lineauatijon, one considers a quantityd™ which
is an oscillatory function of a space variabhleand of timet. In our case, in a multi-variable problem,
we deal with a system of linear equations, so this oscillpfimction may model any relevant plasma
state variable, i.e. the number densitythe electric potentialb etc. The linear equations may be
Fourier transformed in both space and time, thus reduciaglifferential equations to a set of algebraic
equations. Now, we may assume that each perturbed quaasitthe mathematical form

A(r,t) = Aexpi(k-r — wt) (4.1)
where the real part is implicitly assumed. This form dessila wave in which the amplitudeis in

general complex, allowing for a non-zero phase consbaat kx — wt. Thew is the angular frequency
while the wave-vectok gives both the direction of propagation and the wavelength2r /k. A is the

To linearize the fluid equations is to consider a small reedipeter, say < 1 and substitute, = ng +eny, u = 0+ cuy
and so on. Isolated terms it then give the linearised system while higher order terwns?, <3.. are neglected (within the
linear analysis).



46 Electrostatic Solitons and Shock Waves in Collisionled3lasmas

amplitude of the oscillation. A point of constant phase awave form moves such that

dd
E =k- Voh — W = 0
where the wave phase velocity is
Vo = %f{ (4.2)

The phase velocity of a wave may exceed the speed of lighde sio information is carried at,..
Information is carried by a modulation of the wave in eitherpditude or frequency e.g. a wave pulse
having a Gaussian envelope.

In general, a wave may contain many different frequenciescam then be described as a sum e.g.
A= Zj Ajei(’“fx—wft) or an integral over many such single frequency componers éascribed by
Eqg. (4.1). In such cases, the quantity is a wave packet (or wave group) and is confined within an
“envelope” of varying amplitude. Each component within #meelope may have its own phase velocity,
but the quantity which has a physical meaning is the veladfithe envelope, i.e. the velocity at which
energy is transported by the wave and is known as the “grolagit®@’ and is given by:

_do
-~ dk

There is a relation between andk and is determined by the physical properties of the systehe T
function w(k) is called the dispersion relation for the wave. Both theandv, can be inferred from
this dispersion relation. We will now identify the diffeieivave modes that occurs in an unmagnetized
plasma and will find the dispersion relatiatik) for each.

Vg (4.3)

4.1.1 Plasma Oscillations

Here, we will use the fluid dynamics by treating the electrand ions separately as fluids under
the influence of electromagnetic forces, generally caltesva-fluid formalisnfor plasma. Considering
a two species (electron-ion) plasma with= 1. In the simplest case of plasma with the following
assumptions{1) plasma is infinite, neutral, uniform and at r¢8} no magnetic field, i.eB = 0, (3)
for the cold plasma approximation, neglecting thermal or&{7" ~ 0), (4) the ions are fixed in space
and are in a uniform distribution(5) collisionless plasma(6) considering the electrons motion only
along ther—axis. Out of the full set of two fluid and Maxwell equationse tielevant equations for the
electron fluid are the continuity and momentum equationgpleal to Gauss’s law:

88716 + V- (neue) =0 (4.4)

ou,
MeNe Y + (ue - Vue| = —en.E (4.5)
V-E =47mp = 4dwe(n; — n.) (4.6)

Simplifying the above set of equation by linearizirigand by assuming that the oscillation introduces
only a small perturbation to the equilibrium state of plastdaing the above defined assumptions, the
above set of equations becomes:

—iwn, = —iknou, 4.7

2 Linearizion is done by writing variables as the sum of theilégiium, labeled with suffix “0” and a small perturbation
labeled with suffix “1” such that. = no + n1 and similarly the other variables.
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— wmewy = —ceE; (4.8)
4dmen, = —ikE, (4.9)

This is a homogeneous system of three algebraic equatidhe iree variables,, u, andE,. Elimi-
natingn, andE,; and equating fon,, we get the electron plasma frequengy

4 2
w= | =, (4.10)
me

Therefore in order for an electron density oscillation tos@ported in a cold, uniform plasma, the
frequency of the oscillation must be equal to the plasmaufsaqy. Sincev is constant and independent
from wave vectoik, so the phase velocity,, and group velocity, of such oscillations is zero which
means that the charge oscillation do not propagate throlagm@. This oscillation is a fundamental
mode of the plasma and has many ramifications. In the nextwtewill investigate its importance.

4.1.2 Electron Oscillations in Warm Plasmas: Langmuir wave

Considering now a plasma satisfying all assumptions givethé previous section but having a
“warm” plasma with a temperaturE, # 0. Thus electrons make streaming into adjacent layers of the
plasma with their thermal velocities and will carry infortia about what is happening in the oscil-
lating region. So in such a warm plasma, the pressure gratdien —Vp,. needs to be included in in
the momentum equatiofi.5). The electron motion is effectively one dimensional andeharly one
(translational) degree of freedom. The relevant specifit tieen at constant volumg = K /2 and at
constant pressurg, = 3K /2 per electron, giving the specific heat ratip = ¢,/c, = 3. Therefore
the corresponding perturbations of electron pressure ansity are related as

0
— Vpe = —1.KpT.Vne = -3KpT.Vn. = =3KgT,V(n,+ n,) = —3KBTe—an1§c (4.11)
x

Adding the above pressure term in the right hand side of thememtum equatiorj4.5) and after lin-
earizing and imposing oscillatory solutions, the momenaguation for electron fluid becomes

ou on
menoa—t1 = —enok; — 3KBT€8—361
—iwmenou; = —engE;, — 3K T ikn, (4.12)

Puttingn, andE, from Eq. @.7 — 4.9), we have

—4 'k
IMewWNoUy = [eno ( .7T6> + 3KBTez'k} ! .no u
ik iw
3K BT,
2 2 €12 _ 2 2,2
W= ek o= wi(l+3kA%) (4.13)

where\p = (KpT,./4mn.c?)'/? is the Debye length. E@t.13) is the Bohm-Gross dispersion relation
for the Langmuir waves. From this, we can deduce the phasslsifehe the Langmuir wave as

KpT,\ /2 1\ /2
v,,h:< 2 ) (3+_k% ) (4.14)
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The above dispersion relation is only valid for wave-veatarch longer than the Debye lengthe(
kEAp < 1). When the wave-vectdk is less than or of the order of Debye lengtle (kAp > 1), the
phase speed of electrons becomes comparable to the thgeedland it becomes possible for individual
electrons to transfer energy between adjacent compreasbnarefactions in the wave which results in
energy transfer and damp the wave.

By using the expression for the thermal velooity = |/ 2£21= | the Eq(4.13) can be rewritten as

3
w? = wl + §k2v3’h (4.15)

Eq.(4.15) is the dispersion relation for electron oscillations in mgslasmas, also known as Langmuir
waves. Since in this case,is a function ofk, the group velocity will be different from zero. Differenti
ating the above equation, we get the group velocity

dw 3kvZ  3v2
Vy = — = =
v dk 2w 2vpn

(4.16)

The perturbation associated to the oscillation propagatesigh the plasma at the group velocity.

It is clearly seen from Eqi(16) that the group velocity, is always less thafs/2)'/?v,, which in the
non-relativistic case is always much less thaitlectron plasma waves are longitudinal waves, i.e. the
oscillation is along the direction of propagation. Whenrth@ motion are “turned on”, the resulting
thermal pressure gradients at the finite wave nunktbeonvert the longitudinal plasma oscillations into
propagating energy transport modes, called as “Langmuiew/a Thus the key of the Langmuir waves
propagation is thermal pressure of the warm electrons. To®mp pressure is negligible because they
oscillate with an amplitude that is very small compared &xbns. In the following, we will study the
ion motion in warm plasma.

4.1.3 lon Acoustic Waves in Electron-lon Plasma

In above, for the Langmuir wave analysis, we have ignoreddhemotion by justifying that the
ion thermal speed is negligibly small compared to the edecthermal speed,e. T; < T.(m;/me).
However, the ion motion is not ignorable in a second type abmpla waves which exist at finite tem-
perature, known as ion acoustic waves. These waves prepagfat frequencies far much below the
electron plasma frequency such that the electrons remekedoelectro-statically to ions, keeping the
plasma charge neutral. # = 1, for this type of oscillations, we therefore may assume hlasma
approximation” i.e.n; ~ n. = n and so here do not use Poisson’s equation. We will investitias
type of oscillations by using continuity and ion momenturoiagpn in an homogeneous, unmagnetized
(B = 0), infinite, collisionless, warm (ions having temperatiite# 0) plasma. Under these conditions,
the momentum equation of ion fluid becomes:

aui

W + (ul- . V)uz = Zen;E — Vp; (4.17)

m;n;
In this case, it is useful to write the electric field as a fimctof potential®, i.e. E = —V® = —ik®.
The ion pressure termVp; can be written similarly as we done for the electron fluid, fimm Eg.
(4.11), forion fluid it becomes:—% = —fyiKBTi%’;".
After linearization and imposting perturbation terms (ag&l before for electron momentum equa-

tion), the ion momentum equation becomes;

— iwnem;uy, = —engtk®, — v, KgT;ikn, (4.18)
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As the electrons having temperatuferespond rapidly to the electric field and redistribute thelwes
in equilibrium with potentiakb; and will follow the Boltzmann relation:

e® ed,
Ne = MeCXP <KBTe> no < + KgT. + ) ( )

From above equation, one can deduce the first order densityripation of electrons (. and of ions, since
ne = n;) such as

ed
n, = noﬁ}e. (420)
Similarly we can deduce the linearized ion fluid continuituation from Eq(4.7),
iwn, = nyiku; (4.21)

Now we have obtained an homogeneous system of three eguiat®qg4.18), (4.20) and(4.21) in
three variables,, u,, ®;,. Solving the above three equations for the ion acousticedé$pn relation, we
get

W2 — 12 YeKBT. + i KBT;
m;

(4.22)

Now in an ion acoustic wave with respect to Langmuir electkawes, the individual thermal electrons,
due tom. < m;, can travel over many wavelengths during a single wave gerie. move very rapidly
and the electrons distribution may be assumed to be isotierfinerefore the electrons effective one
dimensional specific heat ratio 4 = 1 while the ions suffers one-dimensional compressions in the
plane wave, se; = 3. Eventhough the electrons provide the restoring forceeddh acoustic waves,
the inertia of the protons and electro-statically lockeecebns is entirely that of the heavy protons.
Rewriting Eq. ¢.22):

= ¢ (4.23)

w (KBT6+3KBTZ~>1/2
-

m;
wherec, is the speed of sound in the plasma. From E¢23), for an ion acoustic wave, both the

phase and group velocity will be equal ¢p ( for lower values ofv and k), as clear from a graphical
representation in thg:, w) plane showing a straight line in Fig1b.
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Figure 4.1: Dispersion relation for electrostatic waveahgmuir waves and lon acoustic waves in an
unmagnetized plasmas. Reprinted frdi].
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Charge separation effects on lon-acoustic waves

In order to obtain a more accurate expression for the diggerslation for the ion-acoustic waves,
one must use the Poisson’s equation to link the potestahd the local electron and ion density pertur-
bations, which now will have to indicate with different syoib , i.e. n;; andn., respectively. In such
case, the linearized set of equations, i.e. continuity, srom and Poisson’s equations, used are

wn;, = notku, (4.24)

— iwnem;uy; = —engtk®, — v, KpTiikn;, (4.25)
0?®

D2 21 =4dmen; — Ney (4.26)
T

from the above Poisson’s equation, the electron densitys given by linearized Boltzmann relation,
i.e from Eq.(4.20) and the ion density,;, can be calculated from the continuity equation such as

ed,
KgT,

k
Ner = Ny and N1 = —Noly (4.27)
w
By using the set of equations above, we get a more accuratesskpn for the dispersion relation of ion
acoustic wave

k

WhenT; <« T,, we ignore the ion pressure teffhand the waves restoring force is provided by the elec-
tron pressure. The character of these ion acoustic wavesggdified when their wavelength becomes
of the order of the Debye lengtte. kAp ~ 1, then the dispersion relation get modified to

3
m; 1+ k2)\2D + m;

KgT 1 KgT\ /2
w:< Ble B z> (4.28)

w KBTe/mi 1/2
£ (S .

which means that for fokAp > 1, the waves frequency approaches the ion plasma frequepncy
VAmne? /m; ~ wy/me/mi, wherew, is the electron plasma frequency as explained if£€tp). Eq.
(4.28 — 4.29) revealed that, for high frequencies (short wavelength, the ion acoustic waves turn into
a constant-frequency wave (see Bidb). Thus there is a complementary behavior between Langmuir
waves and ion acoustic waves: the former are basically aohBequency but become constant velocity
at largek while the latter are basically constant velocity, but beesrmmonstant frequency at large

In the following sections, we will explore the nonlinearegffs in the ion acoustic waves and how
they give rise to solitons and shock waves by using the K-dtpeation method and Sagdeev pseudo-
potential method and later will prescribe the conditionsvimich these solitary acoustic waves breaks
and convert into collisionless shock waves.

4.2 Nonlinear Effects on lon Acoustic Waves

Nonlinearity is a fascinating element of nature whose irtgoare has been appreciated for many
years when considering large amplitude wave motions obdervvarious fieldse.g.,fluids and plas-
mas, astrophysics, particle physics, quantum fields, atediological and geological systems. The
nonlinearity evidently modifies the pattern of motion of asedescribed by the linear theory, i.e. the pat-
tern which is harmonic in the linear approximation, becowulistorted and display a number of changes
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in the course of time, for instance from a sine wave to a l@bigiangular waveform (nonlinear peri-
odic wave). The nonlinearities in the plasmas contributdédocalization of waves, leading to different
type of interesting coherent nonlinear wave structureshStructures have been reported in laser plas-
mas interactions in the form of electrostat3] or electromagnetic soliton24], collisionless shocks
[78], ions and electrons phase space hol ptc They arise out of interplay between some of the
mechanisms in physical systems such as diffraction, digpgrdissipation and nonlinearly.

4.2.1 Nonlinear Plasma Oscillations

In general, in a plasma; the dissipative effects ultimagalya limit on the steepness of the wave
front and in a collisionless plasma, the chief mechanismpaesible for the function is dispersion. The
increasing steepness of the leading edge of the wave aslieafesonlinearity, implies the generation of
higher harmonics in the wavE2(]. These two effects (i.e. nonlinearity and dispersion)rasponsible
for the interesting features of the asymptotic wave motidwictv further develop the spontaneous pro-
duction of intense oscillations as a consequence of the ettiop between dispersion and nonlinearity.
We will now explain the possible nonlinear distortion to tm@rmonic wave profile in a collisionless
plasma by considering the evolution of so-called simpleegaZonsider now a one-dimensional simple
wave equation for the velocity amplitude of a wave in a plafioid such as

Z—?E%—?—i—ug—zzo (4.30)
above equation is the convective derivative in a fluid anaidess the disturbance evolution as long as
no friction or other force come into play. The term on the keihd side when expanded into a Fourier
series, contains a large number of wave-wave interactionsteas a result super-position and coupling
of different wavelengths imply the deformation of the wavefile. Now, let us assume that the initial
waveu(z,t) = Asin[k(x — ut)], is injected into the plasma witl, being the convection speed. During
the propagation through plasma, the main effect on the sbigjhe disturbance arises from the second
nonlinear tem(ug—‘;) which can be written aakcos[k(z — uot)] Or $ksin[2k(z — uot)]. This nonlinear
term generates harmonic sidebands of half amplitude afthiealvavelength of the original wave which
further with the same mechanism, generate sidebands daegoaginal amplitude and wavelength and
S0 on generating with increasingly shorter wavelengthserdfore, the total amplitude which is the
superposition of all these sideband harmonics is

A
ug(z,t) = Z 2—nsin2”[k:(:6 — ugt)] where(n =0,1,2,..) (4.31)
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Figure 4.2: Steepening and breaking of a wave in a collisgsplasma. Froneft to right the steep-
ening effect is presented at different times for a systenhauit any dissipation. The wave breaking
phenomenon is achieved at tirhe Figure reprinted from120Q]
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Now ever shorter wavelength contribute, when the fasteor{st) wavelength waves have higher
phase velocity, will overcome the slower (longer) wavetengaves and causes steepening of the wave
until the gradient becomes so short that other processeotadkfl2(]. Steepening causes shortening of
the wavelength until the extension of the wave packet ingpate becomes comparable to the internal
dissipation scale, a ramp like structure (see4Ryatt3) may form out of the wave fron2[7]. Suppose
this ramp like structure forms at, and for the time > t,., the wave will turn over and ultimately lead
to wave breaking or collapse. Fig2 shows schematically how this wave breaking evolves in time i
a collisionless plasma. This wave breaking can be prevemgdby additional processes which sets
on when the wavelength of the ramp becomes so short that tims t&f higher velocity gradients (in
Eq4.31) must be taken into account. In general, Bg1) in the wave frame of reference, its right hand
is a functionF(u) and can be further expanded to higher harmonics with respecsuch that

ou ou 0 _Ou 3

—=_D— -3

The first term on the right is a diffusive term with diffusiooefficient D(z). As we are ignoring
diffusion term, saD(z) be considered as zero. The second term with arbitrary cieeffi6 is the lowest
order contribution of wave dispersion to the evolution ofvez@mplitude and shape. By performing
Fourier analysis for a harmonic perturbatian= Aexpi(kz — wt), the procedure yields the following
dispersion relation

w—ke+ kB =0 (4.33)

Thus a wave if not breaking, can be balanced and remain stegyitthe dispersion term start compet-

ing with the nonlinearity. In the following sections we wdhow the interaction between nonlinearity

and dispersion by calculating the solitary wave solutiosisg KdV perturbation and Sagdeev pseudo-
potential method and further explain the conditions in Wwhitese kind of nonlinear waves intimately

related with collisionless shock waves.

4.2.2 lon Acoustic Solitary wave

A soliton or solitary wave is a hump or dip shaped nonlineavenaf relatively stable profile as an
arbitrary pulse or disturbance and can be regarded as a Bogarposition of sinusoidal wave trains
with different frequencies. If each of these linear wavesppgates with the same velocity then the
medium is called as non-dispersive and the pulses travéitouti deforming its shape. If the velocity
of each wave train is different, then the pulse spread witietand the medium is called dispersive
medium. These stable stationary structures are specidldfitiwave” which can be formed when the
“dispersion” and “nonlinear” effects compromise with eaather in the medial21]. The small but
finite amplitude solitary waves commonly known as KdV saig@re governed by the Korteweg-de-vries
(KdV) type equation. Solitary waves are not only of fundataemathematical interest but over the years
have gained the interest in large number of applicationses&twaves are frequently observed while
studying in shallow water waved22], in space plasma$R3, in laser plasma interactiond24, 125
and other plasma phenomenon such as ion acoustic solit@6k flust acoustic solitonslp7]. These
nonlinear waves which represent the plasma states far fiermbdynamic equilibrium, can be created
in laboratory plasmas under controlled conditions. In tresent report, the focus is on the the ion-
acoustic solitons resulting from the interaction of inteteser pulses with plasmas.
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Solitary waves in relativistic plasma

The behavior of nonlinear one-dimensional relativistic-aoustic solitons and their existence have
been studied analytically by many research&8[129] in different plasma models. When the speed of
electrons and ions in a plasma approaches the velocityhdf liglativistic effects modify the behavior of
the solitons 130. Such fast solitons which propagate in a collisionlesspla with group velocity close
to the speed of light and may acts as a tool for photon andcfmsetceleratiord[31, 132]. Relativistic
plasma solitons in laser plasma interactions, were firshidasumerically using computer simulations
[24] and later also detected in laboratory experimehgs].

Electrostatic ion-acoustiCEIA) solitons [L33], which are of prime interest in this thesis, are the
solitons which are formed under the influence of electrasfatlds only. Several authors study the
behavior ofEIA solitons in relativistic plasmad 84, 135. The first analytical observation of existence
of EIA solitons in electron-ion plasma have been given by SagdgvThese solitons exist for certain
range of Mach numbeki, otherwise destroy their symmetry and convert into shockesd27, 113.
The formation and propagation 8 A solitons are observed experimentally first in 70's by |kd44,
137). Experiments have been also performed by Ikezi group fgelamplitude ion acoustic waves to
explain nonlinear collisionless dampin$38 139. Later, they also explained by his experiments, the
ion trapping instabilities]40 and the particle reflectiorlt1] phenomenons which results in generation
of laminar collisionless shock waves. Numerically, sugbety of electrostatic solitary waves in laser
plasmas have been observed g which loses its symmetry by accelerating ions by reflecfrom
the tip of the solitary wave. In our numerical simulationsatissed ifCh.6, we also observed such types
of electrostatic ion-acoustic solitary waves and the eeladn acceleration from the wave front.

4.2.3 Shock wave in Collisionless Plasma

A shock wave can occur in collisional as well as in collisesd plasmas Collisionless shocks (CS)
occur generally in dilute hot gases which are in the stataulbf fonized plasmas and are hot enough
for binary collisions to become completely unimportant.eThist conclusive evidence of existence of
CS came from astrophysics, i.e. the plasma flow from the Swensolar wind is highly supersonic
while encountering with the earth magnetic fields, a strdragk wave may formed. However, the vast
majority of astrophysical shocks evolve under conditiomighly dilute matter are generally collision-
less in nature, e.g. the Earth bow shock. In laboratory éxpats, first evidence of CS waves had
been reported in965[26], since then the research on this topic has developed imtown discipline.

In addition to wave type, collisionless shocks are classifiecording to the level of turbulence which
causes the dissipation. The low Mach numbers shocks arsifiddsas laminar with smooth profiles
of plasma parameter and fields and a low value of turbulerg dite (¢Eon)). For high Mach num-
bers, the increasing level ¢§Edn) broadens th& andB profiles and the shocks formed are turbulent
shocks. There are various types of shocks that may devebpatiisionless plasma such as electrostatic
shocks, magnetized shocks, MHD shocks®tg], but the prime interest of this thesis is on electrostatic
collisionless (EC) shocks. Considering them here in bf@fsmall Mach numbeM = v,/c; where

% In collision dominated plasmas; the matter is so dense Heshock formation proceeds on time scales longer than
the binary collisional time scale i.6011 ~ Acou/ven. SO all shocks whose width s, is comparable to or larger than the
collisional mean free path.o; = (g.oulN) ™" (Whereo..; is the collisional cross-section aidis matter density), are known
as collisional shock4i2]. On the other side, in collisionless shocks (CS), the meaa path of individual particles is much
larger than the characteristic scales of the shock streict\..;; > Ay, and effective collisions and pressure support are
not mediated by particle - particle interactions, but byemdive forces 143.
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cs = Tp + ~;T;/m; havingT, /T; > 1, due to the dispersive spreadingf the ion acoustic waves (see
Eq. 4.33), the electrostatic shocks are generated which furtheertifpupon the electron density and
temperatures as a function of electrostatic potedi[d44].

Particle reflection by collisionless shocks had been firggysated and inferred as an important mech-
anism for shock dissipation by27]. To infer about the reflection of particles from the shocktba
smaller scale or to elucidate the internal physical stmectfi shocks, one has to direct to numerical sim-
ulations which in addition to analytical methods, are thestwaluable tool for investigating collisionless
plasma processes. First one dimensional simulations éatrektatic shocks have been performed by
very small number of particles and in a small simulation Isolag [L45 and observed strong plasma
heating. The first indication for reflection of particlesrfreshock wave front is given byl{i6]. Later,
[108, 109 confirmed that in the large simulation boxes, at higher Magimbers, the collisionless elec-
trostatic shocks indeed reflect ions back upstream when #uhMumber exceeds a certain critical value
and the wave structure is strongly perturbed and damped.

Although the acceleration of particles by shocks is suppdsexist widely in space and astrophys-
ical plasmas 107], yet it is not easy to confirm experimentally. In the progres laser technology,
the laser plasma interactions also provides a possible vayoduce collisionless shocks in the labo-
ratory andCS can be generated by high intensity relativistic laser pulgh solid or gas jet targets.
Electrostatic collisionless shocks by laser plasma iotérmas have been first observed by optical probe,
which could not resolve the shock wave front and be able tiindisish only different typologies of
shocksll47]. Later the proton projection imagind@PI) technique able to resolve the shock front with
simultaneous measurement of shock propagation velosspcated electrostatic field with high spatial
and temporal resolutiofL0]. lons located deep in the plasma can be accelerated to higiy\e by
collisionless shocks and is of high interest at the momecalige of the narrow energy spectrum of the
accelerated ions. A detailed discussion about the geaaraficollisionless shocks by laser plasmas
interactions and related ion acceleration is performedhni.CSec.3.3.

4.3 Nonlinear Wave Methodology

We will now explain the nonlinear plasma dynamics by goingdmel the standard linear hypothesis
(discussed in set.1). There exist various nonlinear methods for the analytiecgitment of nonlinear
plasma equations such as reductive perturbation methoREax pair scheme, inverse scattering
method and pseudo-potential methods. Lax scheme andrgwgtteethod give exact solutions while
the perturbation method is an approximation and studiedl siegations from linear wave theory. The
pseudo-potential method are valid for arbitrary ampligydmit assume a truly stationary structure. Here
we will discuss in detail the Korteweg-de-Vries (KdV) peliation method for the small amplitude
solitary waves and the Sagdeev pseudo-potential metholdrfpe amplitude waves. Usually solitary
waves or solitons are solutions to a system of coupled ornglidifferential equations for the potential
A and®. All other quantities like plasma density)and generalized momentur®) can be calculated
from A and®. The stability properties of the soliton, the life time ofigence of such structures and
the nonlinear evolution of solitons with perturbationsn dg calculated using above defined analytic
methods.

% In a non-dissipative medium, due to the nonlinear evolutiba dispersive wave disturbance many small wavelength
waves are formed. In such modes where the faster waveleragtbsmaving higher phase velocity, will overcome the slower
wavelength waves which results in steepening of the deosipotential pulse and formation of a trailing ion-acoustock
wave.
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4.3.1 Reductive perturbation method

Concept of reductive perturbation method was given by Gardmd Morikawa(1960) and later
explained in a more general formulation by Tanuiti and hiwaders. Reductive perturbation method
keeps a balance between the nonlinearity and dispersida.mdthod establishes a systematic way for
the reduction of fairly general nonlinear system to a singlalinear equation describing the behavior
of higher order harmonics. With the help of this method, oae derive the Nonlinear Schrodinger,
Korteweg-de Vries (KdV), modified Korteweg-de Vries (m-Kdahd the Kadomtsev Petviashvili (KP)
equations. For this, the following scales transformatuosed

§=¢e%(x —ut) and T =e&%% (4.34)

wherec« is the scaling parameter. Instead of using the independeigblesr and¢, solving equation
using scale transformations involves going into a frameedérence which is moving with constant
velocity v with respect to the fixed frame. Many of these transformatifmllow a standard pattern in
which one is interested in relatively small deviations freame equilibrium state of a physical system.
The method of scale transformations is simply used to sepptee secular terms, in order to extend the
range of validity of the asymptotic expansid¥p].

So by combining this transformation with a perturbationamgion of the dependent variables, here
we will use K-dV perturbation method to track the asymptdi@havior of the wave. In this contest,
the decisive influence on the development of the theory ofimesr waves was exerted by the idea of
Korteweg-de Vries which possibly simplify the initial edicas by keeping the nonlinear and dispersive
terms of the same order of accuracy.

Derivation of KdV Equation- lon acoustic Solitons

K-dV model is universal in the sense that it applies to anyevaotion with weak nonlinearity and
weak long wave dispersion. The KdV equation is a hyperbditial differential equation (PDE) and
describes a reversible dynamic process. The KdV equatitreifundamental equation describing the
propagation of nonlinear waves in a medium with weak digpersffects, having solutions as stable
solitary wave structures i.e., solitons. The KdV equat®the nonlinear PDE fou(x, ) which we get
from Eq(4.32) by neglecting diffusion ternD and is described as follows:

This is a generic asymptotic equation that describes waaktjinear waves with weak long wave dis-
persion.u is the velocity of the wave and and S are nonlinear and dispersion coefficient respectively.
In above, term%—‘; is the rate of change of the wave profikein a reference frame moving with the
linearized phase velocity of the wave. The tenr%};‘ is an advective nonlinearity an@},‘ is a linear
dispersion term.

Here we will illustrate this technique on the specific praoblef one-dimensional motion of ion-
acoustic waves by K-dV perturbation method in an unmageetiglectron-ion collisionless plasmas by
considering cold ions and Boltzmann distributed electrona plane geometry. Rewriting the linearized
continuity Eq(4.4) for the ion fluid as

@ n d(nu)
ot ox

~0 (4.36)
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wheren is the ion number density. Similarly the linearized ion mooen equation from E@4.5) is

u, u_ co2 (4.37)

ot + u% - om; Oz
whereu is the ion fluid velocity andb is the electrostatic potentiaby; ande are the mass and charge
of the ions. The electrons (having charge) are Boltzmann distributed and their density is given by
ne = neexple®/KpT.), wherenyg is the initial common density at equilibriuniz is the Boltzmann
constant and is the electron temperature. Therefore the Poisson'§iiqg.becomes:

2 e
aE — _a_Q) = 4re <n — nO@(K;I)T)) (438)

dr 022
We now normalize the above three equations, the ion densiy:,, the ion velocityu to the ion acoustic
speedc, defined byc? = KgT,/m;, potential® to KgT, /e, the timet to the inverse oﬂ;1 where

Qf, = 4mnge?/m; is the ion plasma frequency and spacto the electron Debye lengthy, defined by
M, = KgT,/4mnge?. So the resulting reduced set of equation becomes

8_71 n d(nu)
ot ox
ou ou oo

o " Yor T on

=0

0?°®
W = €q> —nNn (439)
Now using the perturbation theory, we will make use of théofeing expansion
2 <I)3
e¢:1+<1>+7+7+.... (4.40)

Thus writing the dependent variablesu and® in terms ofe by applying some initial conditions such
thatu, = 0 since plasma is initially at res®, = 0 as plasma is initially neutrah, # 0, yet% =0,
the plasma is initially uniform and all temporal derivasvef equilibrium quantities are constant. The

physical parameters, © and® are expressed as a power series in termssatfout the equilibrium as
n=1 +€n1+52n2+

u=cu; + 52u2 + ...
D =ch,+2p,+ ... (4.41)

To recover the K-dV equation, we must expand in the wave dugadiand keep one order higher than
the linear theory. We will consider a perturbative approatiich is appropriate in the long wavelength
limit; i.e for £ <« 1, where dispersion relation is ~ & and the group velocity approaches the phase
velocity, v, ~ v, ~ 1. It often turned out that for the kdV equation, the tesnn Eq. (4.34) usually
takes the value of /2 because this prescription is closely related to the validithyperbolic approxi-
mation and similarity transformatiori49. Identifying the wave numbek as the small parameter of the
order ofe!/2 (using long wavelength approximation), we introduce tH¥ang transformation for this
particular case

¢=c(w—1)
7=t (4.42)
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so that the temporal and spatial derivatives takes the form

9 _pd  apd

o or ¢
9 _ 1p0
5 =5 (4.43)

Now solving the Poisson’s equation from Ef30), by putting the values from Eq4.@41) and Eq. §.43),
we find that the lowest order terms are proportional émd give®, = n,. Doing the same for continuity
and momentum equation from Eqg.39), we find that the lowest-order terms are proportionad'td

and these give
ou, 0®, In,

— = = — 4.44

o€ 3 3 (4.44)
Since all vanish ag — oo, integration of the above equation gives

n, = (I)l = u; = SO (445)

Thus our normalization is such that all the linear perttidvet are equal and we denote all with a com-
mon term %". We now again collect the terms proportionalstofrom Poisson’s equationt(39) and to
£5/2 from continuity and momentum equatioh9). This yields the following set of equations:

0%d P2

S =t mt (4.46)
on, On, O(nuy)  Ou,
T _ Y o 4.47
o0& or o0& o0& ( )
0P, Ou, Ou ou, (4.48)

9~ or  or o
After some algebraic manipulations and second and higlier guantities are eliminated, replacing all
the first order quantities by, we get the following KdV equation

oo 9o 108
A S A (4.49)

Thus ion waves of amplitude one order higher than linear veagalescribed by the Korteweg-de Vries
equation wherev is the amplitude and andr are space-like and time-like variables respectively. The
second term in Eq4(49) is easily recognized as the convective tarrivu leading to wave steepening.
The third term arises from wave dispersion, kh@ependence of phase velocity. Hgr= 0, ion acoustic
waves obey the linearized dispersion relation having acfapansion as — 0 of the form
k‘2
w = ke <1 — B—) (4.50)
Co
where g is the phase velocity of the wave and factdiis determined by the particular type of
medium considered and can be described as

B =corh /2 and co = cs = (T/m;)"/? (4.51)

Here,\p is the electron Debye length, is the ion acoustic speed, is the effective temperature (equal
to T, whenT; <« T,.) in energy units such that Boltzmann constant is unity ands the ion mass.
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Figure 4.3: A single soliton travelling at three differepesdsU; < Us < Us. It shows that, with the
increase of speed, the soliton amplitude increases andittle gecreases.

In a collisionless and non-isothermal plasmas where therele temperature is much larger than ion
temperaturéT; < T.), ion-acoustic solitary waves are driven by the electrorsguee and ion inertia
and the coupling between these species is being achievde mdctrostatic forces. The physics of the
ion acoustic solitary waves in a collisional plasma is mamplicated, since both the electrostatic forces
and collisional effects enter into plagg(Q. Collisions derives both dissipative and resistive ihiit#es

in the plasma if external free energy sources, such as gensitvelocities inhomogeneities are present
and the waves become more nonlinear and turbulit§] [

Eq. @.50) showing that the dispersive term is proportionalifo This is the reason for the third
derivative term in Eq. 4.49). Dispersion must be kept in the theory to prevent wave sigiag from
spuriously nonlinear behavior. K-dV equation admits of soéution in the form of a soliton; i.e, a
single pulse which retain its shape as it propagate with sgtoeity saylU. Defining the new variable
n=¢&—Ur,sothato/or = —Ud/dn andd/0§ = d/dn, so the Eq. 4.49) becomes:

dy de 1d3g0_

_ bl 4.52
dn “Pan 2 dn? (4.52)
This can be integrated
dy 1 [ dy? 1 d (d*p
— —dn+=- | —dn+= | — (=5 |dn=0 4.53
dn 77+2 dn n+2/dn<dn2 1 (4.53)

If ¢(n) and its derivatives vanish at large distances from thessoltich ag| n |- oo), the result is

=2 =0 (4.54)

1, 1 5 1/[dp\?
- —_Zl o ZE) = 4,
sV —5¥ 4<dn 0 (4.55)
Therefore
de)*_2 23U — ) (4.56)

This equation is satisfied by the soliton solution

©(n) = 3U sech?[(U/2)"/?n)] (4.57)
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the above soliton solution tells us that the soliton haveraplitaude 3U and the half width(2/U)/2,
whereU specified as the energy (speed) of the soliton. The largeertieegy, the larger will be the
speed and amplitude and the narrower will be the width of tlitos and is shown in Fig.3 So,

we conclude that the solitary waves are basically a spemidl &f longitudinal wave in plasmas whose
nature depends upon the nonlinear and dispersive effezsgmtrin the plasma. The above expression is
derived by considering initially no ion streaming., i.¢ = 0 (initial ion speed). The relativistic effect
on ion-acoustic waves completely depends upon the strgaafiions otherwise in the absence of ion
streaming., i.e fom, equals to zero, the term,/c arising because of relativistic effect vanishes and
relativistic effect has no influence on the solitary wave. #rengeneral discussion about the relativistic
effect on the ion acoustic solitary waves has been prestitbfl28 135 151].

4.3.2 Sagdeev pseudo-potential method

. . . . . N\ 1/2
In section4.2.3 we introduced ion-acoustic waves that have a phase velogity (fﬁ%@)
D

i.e.Eq. (4.29). In Sec. 4.3.1, we considered the profile of a nonlinear ion-acoustic waw faund

a solution for a single ion-acoustic soliton valid when thaves are weakly nonlinear, i.e. by using
reductive KdV perturbation method for the small amplituideil. To account for the full nonlinearity of
plasma equations, we now employ another nonlinear methibeticdagdeev pseudo-potential method
which is exact, i.e non-perturbative and applicable fagéaamplitude ion waves.

Let the ion-acoustic wave is traveling with a velocitywith respect to unperturbed plasma. If we go
to the frame moving with the wave, the functidz) will be constant in time, we see a stream of plasma
impinging on the wave from the left with a velocity. For simplicity, considefl; = 0. so that all the
ions are incident with the same velocity. Now setting the)/dt = 0 in continuity equation4.36),
using the energy conservation, it give&m,;u? + e® = 1/2m;u2 andnu = nou,, Whereu(—oo) = u,
andn(—oo) = n,. Thus the velocity of the ions in the shock wave comes out to be

2ed 1/2
u:<u§— : ) (4.58)

m;

If n, is the density of the unperturbed plasma, the ion continetfyation then gives the ion density
in terms of density, in the main plasma

2P \ ~1/2
n; = ftotho _ g <1 L > (4.59)

u miug

The electrons assume a Maxwellian distribution and thetreleadensity is given by the Boltzmann
relation (see Eq(4.27)). Thus the Poisson’s equatid®.38) takes the form

2P ed 2ed \ ~1/2
i dme(ne — n;) = 4dmwen, [exp <KBTe> — (1 — mzu?)) (4.60)

The structure of this equation can be observed more cldang simplify it with the following dimen-
sionless variables:

x Arnge?\ V/? U
0 0
=— = d M=——-——-+ 4.61
oo ( K51, ) o (KpT./mi) (@61
Where the term\/ is called theMach numberof the shock. Putting the values of E¢4.61) in Eq.
(4.60) and normalizing the electrostatic potentiato KT /e, the Poisson’s equatiof.60) takes the
form
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Figure 4.4:Left frame- The upper arrow describing the trajectory of the pseuaitigle which is re-
flected at the right and returns. The lower arrows show théamatf a pseudo-particle that has lost its
energy and is trapped in the potential w&ight frame- Describes the trajectory of a soliton.

2
% —e® — ﬁ (4.62)
M?
The behavior of the solution of Eq4.62) was first explained by Sagdeev who used an analogy to an
oscillator in a potential well. If the right-hand side of E@.62) is defined as-d¥/dX, the equation
is the same as that of an equation of motion of a particle lggvasition® and timeX in classical me-
chanics: a “kinetic energy* tern}\ (j—j};)Q balances the potential energy®). Integrating this equation

in the form of an energy integral, we get

1/ dd\?
3 <ﬁ> +U(P®,M)=0 (4.63)
The function? (®, M) is called the pseudo-potential energy and is given by
V(P@,M)=1—€e"+M(1- 1_W (4.64)

For M lying in a certain range, this function has the shape as sliowhe Fig4.4. The total energy of
the particle is zero, so a particle starting at the oriin= 0 move up to a certain positiof,,, (where
U(®,,) = 0), get reflected and return ® = 0 making a single transit. So such a pulse is called
as “soliton” as shown in right frame of Fig4, a potential and density disturbance propagating with
velocity u.

Recalling thatb = 0 determines essentially the plasma equilibriénf®) = 0. In general, we have
the following conditions fob = 0, for existence of soliton solutions:

dw (0, M) d*w (0, M)

U(O,M) = ——=0  and o

In order for the anticipated type of motion to be possible,fhtential must possess a maximémy # 0
at the origin and a root, so ét,, > 0,

<0 (4.65)

dw (®,,, M)
dd
From Eq. ¢.64), the constrain®”(® = 0) < 0 lead toM > 1, since

~1/2
%@;‘M) — (1 - B) — exp(P) (4.67)

U (P,,, M) =0 and >0 (4.66)
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Transmitted Particles
W= edmax

Reflected Reflected

Paosition

Figure 4.5:Left frame:(a)Variation of Sagdeev potenti&l(®, M) with electrostatic potential. Positive potential
solitary structure at five different Mach numbédd) : 1.0, 1.3, 1.5, 1.58 and 2.0 respectively.Right frame:(b)
Symmetric reflection and transmission of particles fronitsol

2U(d, M 1 28 \ ~3/2
so atd = 0 gives
d*w(0, M 1
7;@ ) _ — —1<0 (4.69)

which givesM > 1, means that the soliton speed should be supersonic. Moestigation proves
that neither negative potential solitons nor double lagist in this case, while positive solitons arise
from the physical requirement of real ion density as exgeds/ Eq. 4.59). When® — M?/2, we
haven — oc. Accessible values dfl are those for which the potential well yields a rdt, before
the infinite compression limit is reached. So we find the Ilstrggssible value ok by imposing the
requirementb = M?/2,

20 \ /2 M?
n= (1 — W) imposing R — ® < - (4.70)
Eq. (4.64) becomes
M?
W(d =M?/2) = M? +1 —exp (T) >0 (4.71)

The last term is in exponential form and by using a numeristiration, the)M/°® come out to be

M < 1.5852, (4.72)

Left frame of Fig4.5explains about the existence conditions of large amplitadeacoustic waves.
The allowable range of the normalized potential amplituderg ion acoustic solitary exists depends
upon the Mach number. The potential well becomes deeper @k Mamber (/) increases and
increases as clearly seen in Bigh. The critical amplitude of the solitary wave is given by, =~

® We can also deduce this relation from the Newton’s methodwesiow M = /2, its function will be f(®) =
20 + 1 — exp(®) andf (@) = 2 — exp(®). Now if &g = 1, By = o — £20) — 13922 and P, = &, — L1 — 1 9740,

f(@0) f(@1)
Similarly &3 = 1.2568, solving forM — +/2® = 1.5852.
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M?/2 ~ 1.3. So ion acoustic solitary waves in a cold ion plasma can dgistt < M < 1.58
and0 < ¢ < 1.3 approximately. The solitary solutions turn into shock $iols for the conditions
M > 1.6. Solving analytically, we found that the potential well istriormed for the Mach number
M > 1.6, means solitary wave no longer exist anymore.

Right frame of Fig4.5 shows the reflection mechanism of particles on the right sfdeave front
by the symmetric potential hump inside the soliton. Onlytiples with energied /2mv? < e®,,
are reflected, while higher energy particles {/2mv?) are transmitted through the potential hump.
Clearly this happens only if the soliton moves because itesmotion which introduces the asymmetry.
The low energy component may become asymmetrically refiefcten the soliton potential with the
asymmetries arising in the bulk velocities or in the pagtifilids. The conditions of ion reflection
changes when kinetic effects are included. Then the lowggrparticles in the distribution function may
become reflected in continuous form from the soliton poéérind asymmetry arise in a more natural
way. In the next section, we will discuss an analytic ostiilta model by taking into consideration the
ion reflections from the leading edge of the potential baxieich leads towards the breaking of soliton
symmetry.

4.4 Particle reflection

The process of ion reflection from the moving wave front is ofi¢he important process in the
entire physics of collisionless shocks. The plasma statetlse perturbed state after the passage of the
solitary wave, The one reason of damping of the soliton cadugeto the acquisition of energy by the
ions reflected from the potential barrier. Particle reflactis required in supercritical shocksI(> 1),
as to our knowledge. Itis the only process that can compeifisathe incapability of dissipative process
inside the shock ramp to digest the fast inflow of momentum emetgy into the shock. In order to
establish the profile of the shock front in the ion-acoustise; we proceed with the following analysis.

Now writing the Eq.(4.60), in terms of pseudo-potential energy®), it becomes

20 ) v (P
o = 4meng eXp< ‘ ) - 0 = —d (@) (4.73)

dx? KgT, /ug 20 dx
m;

which describes the potential profileof ion acoustic wave when ion reflection is neglected. Iraggg
Eqg. @.73) once, we have our effective pseudo-potential endrg®) i.e; Eq. ¢.64) in terms of ion
densityn, and propagation speed:

d
U (P) = —4mn, (KBTeexp < c

2ed
KBT6> + mjugy [ ug — ) +C (4.74)

my;

Various periodic wave solutions can now be found dependmghe choice of the integration constant
C. A special case representing the valugCofs given by® = 0, which causes%, ¥ (®) and Mdf)
all to be zero, which results in a positive value @f, i.e from Eq. @.74), it comes out to b&' =
4rno(K BT, + m;u2). This case is treated in the phase plane and gives a solitatiosoand no shock
solution as shown in Fig.4.

Now we will take account of the reflection of ions from the leggdedge of the front, i.e in the region
to the left of the locationx, of the first maximum®,,. The regionx < x,, andz > =z, are labeled as
I andII respectively as shown in Figgba. The shock profile can be determined by considering the ion

reflection from the potential barrier. The net results is eufiar kind of shock wave which connects
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Figure 4.6:Left framéa): An oscillatory electrostatic shock transition wittns®ions reflected from the leading
edge. Right framé¢b): Potential functionZ;(®) and¥;;(®) for the regiond andII of the electrostatic shock.
Figure reprinted fromZ8].

two different plasma states; the unperturbed state in wbiite shock and a state with intense ordered
oscillations behind the shock front. However, the distiitiu of energy between the oscillations and the
thermal motion depends on the actual collisionless dissipanechanism. The shock profile as shown
in Fig.4.6a, can be determined if the reflected ions are small in numizkirethe absence of dissipation
®; = ¢, and )\ = oo (whose results is a symmetric solitary wave). If ion reflensi are taken into
account, the potential in the regidrof Fig.4.6a is described by an equation which differs from the Eq.
(4.73) by presence of additional two terms on the right side:

— drenof(®) | ——2 + 8menof(®) (4.75)
ug — %

The first term correspond to the subtraction of the refleated from the total number of ions and
the second term represents the contribution of the refléatesd The quantity:, f () is the total density
of the reflected ions at a point characterized by the potedtial he actual form of the functiorf can
be easily calculated by giving the ion velocity distributitunction for the reflected ions at = —oc.
The potential jumpd, is associated with ions that are reflected backwards fronpdiential barrier
and escape to infinity, in this case here, we have considerdd reflected particles are very small in
number(f < 1) and the potential jum®; is proportional tof [27]. However, the potential jumg,
is associated with ions that are reflected forward by crgsia potential barrier and is proportional to
the the square root of the number of reflected particles swathid; << ®,. The plasma state behind
the front, i.e. in regiodl (Fig. 4.6a) is characterized by the quantitiég and®-, which determines the
amplitude of the oscillations and their wavelength.e. Eq.(4.73) also hold in this region . Neglecting
reflection effects on regiofl for the electrons and assumir@g’BTe/mZ-)l/2 > wu, and assuming the
electron density equal to the ion densityzat —oo, the appropriate equations for the regioandII
becomes[44]:

H52d o, (P P T @
I: 022 = — 851) ) = dmeng { [1 + f(P1)]exp <[;BT6> —2f(®) — ﬁ
" @)
0*d v, (P o (@
i 55 = -2 = drengd (14 @ p]ep <%> B Z[I F(®y) -

u2 — 2ed 1/2
0 m;
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By solving the potential equation @&, in regions | and 1l with the boundary conditions of contimuitf ¢
andd®/dzx atx,,, we can find the potential profile (Fig6b). Sincef (¢y) = 0, the integration constants
in Egs.(4.76)and (4.77) can be chosen such tha(®,,) = ¥, (Dy). Therefore,%(g—f)2+w.,” = 0 which
implies thato® /Jz is continuous a® = ®,,. Then potentiab of ¥ potential makes its first swing along
the solitonic pathb; — ®,, and on entering in regioH oscillates indefinitely betweed,, and®, with
the potentialy,,.

Now, if we again consider the analogy with the particle moiio a potential wellZ(®) , it can be
shown that the effect of the reflected ions make the totalggn€rnegative which leads to a periodic
structure behind the shock front (Fi¢.6b). The decrease in the energyis proportional to the number

of reflected ions
Dm

—C ~ f(®)dd (4.78)
0
Since the potential energy(®) varies quadratically at smali. the turning pointp, is proportional the
the square root of the energyC

Py ~/—C (4.79)

and the oscillation period increases logarithmically @&sehergy is reduced i.€\ ~ in(1/—C)). Thus
the minimum value of the potential behind the frdnt is

by =

oM (T Du
M2 -1

1/2
— f(@)d@) (4.80)
e Jo
The value of®,, is very close to the corresponding value in a solitary wawué thie same Mach number.
Now the ion reflection has another important effect on thigesglshock wave, as the momentum transfer
from shock wave front to the reflected ions retards the shothkd region of reflection. The wavelength
at the front of these oscillations is given by

1/2
P <T> In (4.81)

M2 —1 \me?ng D,y

Shock ion reflection has incomparable importance in colilgiss shock formation and can be effi-
ciently treated by numerical simulations. Before in thetradrapters, coming to discuss these problems
in greater depth, | will present below a few other attempt&chvitead to the dissipation of electrostatic
solitary waves other than particle reflection such as Lamdamiping and particle trapping.

4.5 Landau Damping of Electrostatic Waves

Here we will use kinetic approach to elucidate some of thegnties of electrostatic ion-acoustic
waves in terms of particle surfing and Landau damping whieldcoot be derived by fluid techniques.
Consider an electrostatic wave propagating inthedirection. In such a wave in one dimension, the
electric field points in the Z directiol = FEe. and varies ag'**~«*). The distribution function
similarly varies as“(*~“%) and depends only on— and is independent af or y direction. So the
Vlasov, Maxwell and Lorentz force equations produce no tingpof particle velocitiesu,, u, in the
z— direction. This suggest to introduce the one dimensiorsfidution function which can be obtained
by integrating oven, andu, as

fs(u, z,t) E/fs(uw,uy,uz,z,t)duxduy (4.82)
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From here, we emit the subscripfrom u, and read it am. Restricting to weak waves and neglecting
nonlinearities, we linearize the one-dimensional distidn function as

fs(u, z,t) ~ foo(u) + fsi(u, z,t) (4.83)

where f5(u) is the distribution function of the unperturbed particles= e, for electron and ion
respectively) in the absence of wave afidis the perturbation produced by the electric figld The
evolution of thef, is governed by the linear approximation of the Vlasov equmti

Ofa Ofa + qsE df o

ot tu 0z ms du

=0 (4.84)

As we are looking for a monochromatic, plane wave solutiothi® Vlasov equation, therefore putting
0/0t — —iw andd/dz — ik and solving the resulting equation f¢y,, we get an equation fofs, in
terms ofE as ,

—qs dfso

(w—ku)mg du

fslz

The above equations implies that the charge density asedaidth the wave is related to the electric

field by
_ +o00 ’du
qu/ fsldll = (Z TTZqu / o k:u) (486)

The prime denotes the derivative with respectita.e. f!, = dfs/du. By putting this charge density
into the Poisson’s equatiovi.E = ‘kE = 4mp., and by keeping the both sides proportionaEtowe
can find the dispersion relation with the general analysisasfes in the dielectric medium. Considering
a wave is propagating along the z-direction in an unmagegtatasma, dispersion relation is given by

drq? [T fldu
wk_1+zms/ w_ku—o (4.87)

(4.85)

The form of the dispersion relation can be written in moreegalized form by combining the unper-
turbed electron and ion distribution functigig,(u) and f;,(u), to produce a single, unified distribution
function:

Mme
F(1) = feo) + 7 fio() (4.89)
So the equation4.87) takes the form
2 +oo g1
c(w, k) = 1 4 27 / Flwdu _ (4.89)
mek J_ o w—ku

In the above unified distribution function E@t.88), for ion-acoustic waves, the proton play an important
role because the large numbers of protons can move withénen el speeds that are close to the the wave
phase velocity and therefore can interact resonantly \nwihntaves.

Landau Contour: The general dispersion relation E@.89) has a troubling feature, i.e. for real
andk, its integrand of the wave phase velocity becomes singtilar-aw/k unlessdf (u)/du vanishes
there. As the vanish aoff (u)/du is very unlikely, which means that if we assurheas real, then the
value ofw can not be real except for a non-generic mode in which phdseityehappens to coincide
with a velocity for whichdf (u)/du = 0. With w/k complex, the point arises is how we can perform the
integral-overu in the dispersion relation E¢4.89). Landau 152 developed a sophisticated derivation
of the dispersion relation based on posing general iniagh €or electrostatic waves, evolving it forward
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with time and identify the electrostatic modes by their katge sinusoidal behavior and finally read the
dispersion relation for the modes from the late time evotugquations. So the dielectric function with
the “Landau contour’® prescription can be written as

dme? [ f'(u)du

g(w’k):1+mk s w—ka

0 (4.90)

In most of the practical situations, electrostatic wavesvaeakly unstable or weakly dampeak.
| w; < w, | (subscriptr andi denotes the real and imaginary part) and the amplitude esaadjttle
over one wave period. The dielectric function E49(0) can be evaluated fay = w, + iw; by using the
Taylor series expansion away from the real axis. The ont@&aKw, ) and imaginary(w;) values of the
dielectric function can be computed by breaking the lanaauiaur and using the Cauchy integral, it
comes out to belp3

e(k,wp +iw;) ~1—

4re? [ fldu (4.91)
c

u—w7_/k+i7rfl(wr/k)+mii f'du } o

mek? Owy Jou—w,/k

This is the dispersion relation for the limity; |< w,. A more detailed discussion is beyond the scope
of the present work and can be found in RefS4, 153, 92).

4.5.1 Electrostatic lon Acoustic Waves and conditions for andau Damping

In section4.1.3 using two-fluid theory, we studied that the ion acoustic vgaaee the analog of
ordinary sound waves, occurs at low frequencies where tlerakectron velocity is nearly close to the
mean ion velocity., so the polarization is small while the tbstoring force is due to the thermal pressure
and not because of electrostatic field and the inertia isigeovby the ions.

Suppose that the ions and electrons have Maxwellian vgldgtribution but with different tem-
peratures. Because of the much higher inertia, the protavns imuch smaller mean thermal speed than
that of electrons and the one dimensional distribution tioncf (u) of Eq. (4.91) which appears in the
kinetic-theory dispersion relation has the form as showlRig¥.7. If T; ~ T, then the contribution of
the ion pressure and the electron pressure to the restaring 6f the wave will be comparable. Thus
the wave phase velocity will be, /k ~ /Kg(T. + T;)/m; ~ /KgT;/m;, which is the speed at
which the ion contribution tgf(u) has its steepest slope (see Eig,. the tick mark on the horizontal
axis on left sidef;(u)). Therefore| f'(u = w,/k) | will be large in this case, which means that there
will be large number of ions that can surf on the wave whichiliesn a large disparity occurs between
the number of ions moving slightly slower than the wave @eracting energy from the latter) and the
number moving slightly faster than the wave (i.e. give eyerdhe result is that, there will be strong
Landau damping by the ions.

The strong Landau damping can be avoided if the electrondeatyre is much higher than that of
ion temperaturd, > T;. Then the wave phase velocity./k ~ /KpgT./m; will be large compared
to the ion thermal velocitw, /k ~ \/KgT;/m;, so in the tail of the ion velocity distribution, there will
be very few ions which can surf and damp the wave. Now, if wektlibout the Landau damping due to
electrons in which the phase velocity /k ~ /KgT./m; is small compared to the thermal velocity of
electrons,/ KT, /m., thus the wave resides near the peak of the electron veltisitiybution in which
fe(u) is large enough that many electrons can surffigt) is small and there are nearly equal number
of fast and slower electrons. The net surfing produces a it#eyllandau damping. Thus, > T; leads
to successful propagation of ion acoustic waves.

The dispersion relation in the limjtw; |< w, in EQ.(.91) makes this physical argument quantita-
tive. Now by using the assumptiofi$ > T; and/ KgT;/m; << w,/k < /KpT./m., we find the
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Figure 4.7:lons F; and Electrong", contribution to
the net distribution functio’(u) in a thermal plasma.
WhenT, =~ T;, the ion-acoustic phase velocity lies
well within the ion distribution, having speed at which
the surfing protons have maximum ability to Landau
damp the wave, so the waves are heavily damped.

F WhenT, > T;, phase velocity is far out on the tail
/ F, of proton distribution and there are very few ions at the
k phase velocity which can surf and damp the wave, so

the wave can propagate and the little net damping is

mostly by the electrons. Reprinted frod53.
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realw, and imaginaryw; part of the dispersion relation as:

w, KgpT./m; w; /8 me  (T.\*? ~T,/T;
T\ TRy M J:—m[ E*(f) p(m)
D r D i i D
(4.92)
The real part of the dispersion relatian has been explained in the sectién.3, in Eq. 4.29 and is
shown in the Figt.1, that forkAp < 1, the wave phase speed\iK 5T, /m; and the waves are weakly
damped as they can propagate for roughlyn,,/m. ~ 43 periods before the strong damping takes
place (heremn, is the proton mass). When the wavelength decreasesk(increases) into the regime
kAp > 1, the frequency of the wave asymptotes towards~ (2, i.e. the ion plasma frequency, in
such a case the phase velocity decreases, so more ions tHresuaves and landau damping increases.
Eq. (4.92) shows that damping becomes strong wken, ~ /1. /T; at which thew, /k decreases to
the ion thermal velocity/ K 5T;/m;, SO more ions can surf and causes strong damping. WhER
decreases frony- 1 towards unity, the ion damping starts becoming strong tigss how small can be
the wave-vectok: (exponential term ofv; /w, in Eq. 4.92). Thus the Landau damping by ions can be
reduced by raising the electron temperature.

4.6 Particle Trapping

When a plasma wave reaches large amplitude, either it hasifhjeeted into the plasma by external
means or has grown to large amplitude due to instabilityesdwnon-linear effects sets in and particle
trapping is one of them. Particle become trapped in a wavengiat if the kinetic energy of the particle
(W) in the wave frame is less than the potential energy of thgew Trapping will be large for the
resonant particles moving approximately at the same wgled that of the wave and experiencing a
nearly stationary electric wave potential

®(z,t) = Pocos(kx — wt) = Pgcos(ka') (4.93)

in above the wave coordinates, i.e wave position and wavedspave been transferred into the wave
frame by

e (¥ v
T =x </<:>t and vV=v-oo (4.94)

Now considering the motion of ions in the phase spacev’), the total energy of the ion in the wave

frame of reference is )
& = §mz~v/2 — Ze®qcos (k')
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Untrapped Orbits
W>ed ¥
\_/,_/\/ Figure 4.8: Phase space distri-
N& butions of the particle orbits for
the trapped (dashed lines) and
@ @;}L\) @ B untrap:))gd (éolid Iinels) p)arti-

cles moving in an electrostatic
m potential of a wave. Figure

reprinted from 119.

Trapped Orbits
W<ed

=W — Ze®gcos(kx') (4.95)

wherem, is mass of ions. The ions moves along the lines of this totastzmt energy&;) and is shown

in the Fig4.8. There are two types of curves in this phase space. The fiestane for low ions velocities
exhibits closed lines. These closed trajectories desthmions trapped in the wave potential. Second
type of curves are of the ions having higher speed consisiperi lines which corresponds to untrapped
ions. The trapped ions trajectories have a negative togggni.e.&; < 0 and hence the trapped ions
on such orbits bounce back and forth between the walls of the\wotential and exhibit an oscillatory
motion which is periodic in the phase space. One can eadipat®e the frequency of such bounce
motion considering small amplitude oscillations of thesomar the bottom of the potential well, i.e. for
ions having trajectories close to the center of the type trapped orbits. The cosine function for such
ions can be expanded to the lowest order, yielding equafiomoton:

d2z’

mi—y = —Zedoks' (4.96)

which is the equation of a harmonic oscillator of frequency
wi =| Ze®ok?/m; |/? (4.97)

and is known as the trapped ion frequency. Sikd@ = —ik®, which means the larger the wave field
amplitude, the faster the trapped resonant ions will ageilin the field. For the larger field amplitude,
more ions will become trapped by the deepening of the patiemtugh and the widening of the wave
resonance. We observed similar type of ion trapping phenomebetween the solitary waves in aly
PIC simulations (e.g see Fi§)6) and is described in th&h.6



CHAPTER

Particle-In-Cell (PIC) Code

5.1 Introduction

Particle simulations are fundamental in many areas of egpksearch, including plasma physics,
astrophysics and semiconductor device physics. Thesdations often involves tracking of charged
particles in electric and magnetic fields. The growth in tbevgr of the computers over the past half
century in order to study the basic science in general anshyagohysics problems in particular, led
to the development of a novel approach known as computafpdasma physics. The plasma behavior
which is generally studied by the well known basic laws ofgiby such as laws of Newton and Maxwell,
but the consequences of these laws for a complex systenmstinggperhapg0'® or more particles are
frequently impossible to determine. In the present stétieart technology, highly parallel computers
are becoming a more and more integral part of the scientifiticicomputation and makes it possible
to study the plasma behavior and dynamics for complex system

This chapter serves as a brief introduction to the field ofigarin-cell (PIC) simulation of plas-
mas. To understand the complex dynamics of laser plasmiadatiens, involving collective and self-
organization effects, requires the used of self-condistgcttromagnetic, kinetic simulations. To, this
aim, the particle-in-cell (PIC) method is by far the mosted approach which gives primacy to the
kinetic interactions among the constituent particles espia and the electromagnetic field. This ap-
proach provides a more accurate treatment of many local aasitpcal processes. We used g
approach to simulate our laser plasma interactions in wihietelectrons and ions are treated as compu-
tational particles (CPs), making no approximation to theidkaws of mechanics and the full range of
collisionless plasma physics is included in our model.

5.2 Basic Model Equations

The scenario of intense laser-plasma interactions is ctearzed by strong kinetic effects such as the
generation of very fast particles. Thus a fully kinetic aygwh is needed in which the theoretical basics
for a kinetic description of a classical plasma is well elishled and will be studied by the Particle-in-
cell (PIC) code. The goal is to study the Boltzmann equation for theidigton function coupled with
the Maxwell equations for the electromagnetic (EM) fieldeeTollective dynamics of the particles of
the plasma can be simulated by solving numerically the Badtan equation in the phase space for each
particle species, where the distribution functipe= f(z, p,t) evolves as

of  .of . Of _ Of

ot Fox TPop T o
in above, the coordinate and the momenturp represents the generic vectors in the phase space while
% = v is the particle velocity ang = F(x, p, t) is the Lorentz force on the computational particles and
can be written as;

(5.1)

v=— P ad F:q-(E—k%xB) (5.2)

/mQCQ + pZ
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The electric E) and magneticB) fields are determined self-consistently with the dynarofdse parti-
cles which we described by the Vlasov’'s equation. The cagpdf Vlasov equation with the Maxwell's
equations is obtained by calculating the charge dengityt) and the current density(x, ¢) such as

p = Z‘qa/f(x,p,t)dp, (5.3)
J = Z QQ/Vf(vavt)dp (54)

Now in a full particle model, one follows both the motion ogefrons and ions in the self-consistent
electric and magnetic fields obtained from the Maxwell eiguat Therefore using Maxwell equations,
one has the choice to work directly with thieandB fields. Introducing total current and charge densities
J=1J.+J;andp = p. + p;, the Maxwell equations are:

V-E = dnp, (5.5)
VxE — —29B, (5.6)
V-B = O,C (5.7)
VxB = %J + %@E. (5.8)

Equationg5.1 and5.5 — 5.8) form a self-consistent set of equations which in princige be numeri-
cally solved like an initial value problem, using the appiage boundaries conditions. For a simulation
of laser plasma interactions, this corresponds an init&tidution function att = 0 and defining the
EM fields at one or more boundaries in order to describe thamce of the laser pulse in the simulated
plasma slab.

5.3 Lagrangian and Eulerian approach

In general, two different approaches have been employeadlte sumerically the above mentioned
Model equations (i.e. Boltzmann and Maxwell Equationsjein 5.2 . They corresponds to the choice
of Lagrangian or Eulerian variables to integrate these Medeations. The Lagrangian approach corre-
sponds to particle-in-ce(lPIC) simulations in which there is a “discrete” description a filasma as an
ensemble of computational particles obeying individualaggpns of motion. In practic&1C approach
means going back to the most fundamental description of I @, having collection of single parti-
cles with mutual interactions. The current and electroreigfEM) fields are defined on the sites of a
spatial grid and are calculated according to the distriloutif the particlesPIC codes are the essential
tools for computational plasma physics since the memorgegtéor multi-dimensional simulations is
relatively small. The memory needed is proportionaNtpx N, whereN, andN,, are the number of
grid points and the number of particles per cell, respelgtivi/pically N, ~ 10! — 10 depending upon
the the accuracy and resolution required while the numberidfpoints corresponds 5, ~ (10?)",
wheren be the dimensionality of the simulatidn< n < 3. Nowadays, in the present available com-
puter facilities it is possible to perform numeridalC simulations also in full3D geometry, with small
values ofN,,.

The Boltzmann or Vlasov approach corresponds to the Euleniacontinuum description of the
plasma. The Eulerian approach, directly finds the solutioll@del equations (okec. 5.2), such that
the numerical techniques are less developed and the nahentegration is less straightforward than
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Laser

Figure 5.1: The essential one Dimen-
sional geometry oPIC code.

the integration of individual equation of motions RIC. Keeping all other things being equal, there
would be no sense in the development of continuum codes. THjerdisadvantage is its very large
memory requirements, since the memory scaledasc N, whereN, is the number of grid-points

in the momentum space. Therefore, the memory required by2® Vlasov code is comparable to
that required by @ D3P PIC code. Apart from the above description, continuum codegraeefrom
problems of poor particle statics and can be used as a tebefdependence &fIC results upon number
of particles. Continuum codes are noise free and make itilges® study the nonlinear dynamics
for very long times and on very short spatial scales. Theatifes helps to deeply understand some
nonlinear phenomenons such as plasma wave-bredkggJarge amplitude wake-field generatid5f]

and Weibel instabilitied[57]. Vlasov codes with respect #IC codes having same spatial grid provide
a better resolution for high plasma densities and sharpieedand thus, is of particular importance
to study the case of ultrashort laser-solid interactionse B these advantages, a complementary use
of Vlasov andPIC codes may significantly improve the understanding of thdinear dynamics of
collisionless plasma.

5.4 Numerical PIC Approach

We have used the particle-in-c€lPIC) code to simulate the interaction of the laser pulse with
plasma slab. Fi§.1shows the essential concept of the code geometry; a lasar @uplane electromag-
netic wave with some given temporal envelope) impinges empthsma target, composed of electrons
and ions (having such charge and number density that thealesglobally neutral). All physical quan-
tities depends on the single spatial coordinat@nd on timet. We calculate the electric fiel(x,t),
magnetic fieldB(x, ¢) and distribution functions in the phase space of ififig, p.,¢) and of electrons
fe(x,Pa,t). The momentum space is generally fully three dimensidre)p, = (p., py, p-) for both
ions and electrons.

5.4.1 How the code works

In the PIC code, the physics comes from the two parts; the fields pratlbgdhe particles and the
motion of charge particles produced by the forces (field$)e fields are calculated through Maxwell
equations by knowing the position of all the particles arairthrespective velocities while the forces on
the particles are found using electric and magnetic fielddléyton-Lorentz equation of motion (Eg.
5.2). We use a sufficiently fine grained temporal grid to follow filasma with acceptable accuracy and
stability. Fields are calculated by use of the spatial gvik calculate the fields from initial charge and
current densities, then move the particles (small disfaand then recalculates the fields of particles
at their new positions and velocities: this procedure i®atpd for several steps. The grid provides a
smoothing effect by not resolving the spatial fluctuatidmat tare smaller than the grid size. At each
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Integration of equations
— of motion, moving particles —

Figure 5.2: Atypical cycle, one
time step, in a particle simula-
Weighting @ Weighting tion program. The particles are
(E,B)j —=F; (x,v )i =(p, J)j numbered; = 1, 2, ..., NP, the
grid indices are defined ag
Figure reprinted from15§].
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Integration of field
— equations on grid -

(E.B)iq—(p, J)j

step in time, the program is solved for the fields from theiglat and then moves the particles. There
may be many number of steps in a characteristic period of lts@ and the same number of periods
in a typical run, which adds up to hundreds or thousands & staps in a given run. The particles are
processed through the boxes shown in %ig.similarly as the forces and fields are calculated in the
actual plasma.

The patrticle quantities, i.e. position and velocity areakldted by taking all of its values ik andp
phase space. From the particles position and velocity, weaktulate the charge and current densities
on the grid. The process of assigning charge and currenttigsnsplies some “weighting” to the grid
points that is dependent on the particle position. Once émsitles are established on the grid, then we
use the numericaPIC method to calculate the electric and magnetic fields8]. The PIC approach,
reduces the plasma simulation to the simplest by consigiénemost fundamental description of plasma
in terms of the collection of single charged particles whaok moving under the action of self consistent
electromagnetic fields. The accuracy of the approach isere@ith the number of particles employed at
fixed number of grid cells. The higher particle number yiedditér statistics and reduce the fluctuations
of local values of the distribution functions which are caddded by statistical averages.

5.4.2 The Particle approach

The PIC code approaches the plasma by an ensemble of compaltgtarticles (CPs), each of
which represents a phase space volume element. The phaseispabdivided into small domains that
are moving in time along the trajectories of single particlEach computational particle follows a phase
space trajectory that is determined through Lorentz fopgaton by electricE(x,¢) and magnetic
B(x,t) fields. These fields are evolved self- consistently in timagidaxwell’s equations and the
total currentJ(x, ¢) (i.e. the sum of the micro-currents of all the computatiqueaticles). The standard
PIC approach considers only the collective interactions beiwvithe particles, although some collisional
effects are introduced through the interaction€&% with the field fluctuations159.

In the above Eq(5.1), the collisions are expressed in the tevnf..i(x, p, t) including every kind
of collisional process like Coulomb collisions or ionizati As we are studying the laser interactions
with overdense plasma at an intensitylof: 10'® — 102°W/cm?, i.e in the relativistic regime, so the
interaction can be treated as collisionless, because tlisimts becomes increasingly ineffective at
such high intensity. Thus the collisions are not relevamun case (seeec2.8 Ch. 2 for detail) and
the laser interaction with plasma is fully collisionles &etting the R.H.S term of Eq5.1) at0, the
Collisionless Boltzmann equation (called as Vlasov equatin the phase space will be
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(0 + %0y + POp) f(x,p, 1) =0 (5.9)
Now assuming the “particle” approach consists a discrgieesentation of the distribution function
f(x,p,t) as follows,

Np
F6p.t) = fo Y glx — xa()]3[p — P (1)), (5.10)
n=1

whereN,, is the number of quasi-particles or computational pasitkeat provides a representation of
the distribution functionf. The constantf, is the proper normalization factog[x — x,,(¢)] is some
analytical function defines the spatial shape of the quastigte whiled[p — p,, ()] represents the Dirac
delta function. Eventuallyy[x — x,,(¢)] may also be considered as a delta function but is not convenie
in practice because it would lead to an increased numer@sérin the current and fields.

The discrete representation in Ed.0is a simple way to switch from an Eulerian description to a
Lagrangian description where we can follow the trajecdéthe computational particles in the phase
space. Thus, in above equation the unknown quantities areafyrangian coordinates, (¢) andp,,(t)
and the temporal evolution which can be deduced by introduttie Egb.10into the Eg5.9. By taking
the partial derivative of, we get

8tf = _fO Z {Xn(t)axg[x - Xn(t)]é[p - pn(t)]
n=1
+9[x = %0 (8)]Pn (1) 3pd[p — P, (1)]} (5.11)
o = 1o Y { P ot x, 01 - p 0]} 512
n=1
popf = fo Y {F[x Pul(t),tlglx — x,(1)]0pd[p — Py (t)]} - (5.13)
n=1

In above, we have used the propefftix)d(x — x') = f(x')d(x — x’) and similarly for thes’. Now
summing all the above three terms and omitting argumentgjeve

NP
>~ (=509 = Pagadh + 2240, + Fagad), ) = 0 (5.14)

n=1
Now integrating above equation over momentum spigcky using the divergence theorem and recalling
that the flux of(F(x, p, t) — pn(t)) g[x — x,(t)]0[p — p,,(t)] is zero for| p |— oo, then

Np

> (—)‘(n(t) + p”%”) g, =0 (5.15)

n=1
which has the obvious solution , independently on the fornj,of

o (1) = Pn)
X, (t) = - (5.16)

because coordinates corresponding to different indexe independent. Now assuming the function
has similar properties ), i.e. [ g(x — x)dx = 1 and [ ¢’(x — x)dx = 0. Integrating above Ef.14in
spaceix, using the divergence theorem and recalling that the fILKBf% - xn(t)> glx —x,(t)]d[p — pn(t)]]
is zero for| x |— oo, then we get

Np

> (-pn+Fn)d(p—p,) =0 (5.17)

n=1
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We obtain the solution for momentum varialpg as

pn(t) = Fn(xnv pn(t)7 t) (518)

where

F,.(xp,pn(t),t) = /F(x, Pn,t)g(x — xp)dx (5.19)

Thus in equations of motiofb.16) and(5.18), the problem of solving the kinetic equation for the distri-
bution functionf is reduced to the problem of solving a systen2df, ordinary differential equations.
In a1D geometry each computational particle represents an imfshieet. These particles are point like
in momentum space, having,, as a single definite value of the momentum and are extenddukin t
coordinate space. The spatial shape is described by thédnngx — x,,), centered over the average
positionx,,. QuantityF,, is the spatial average of the forE¥x, p,,,*) on then—th particle.

Solving our charge densify(x, t) and current densityf(x, t) from Eqgs.(5.3) and(5.4), in terms of
discrete particles representationfdk, p,¢) (i.e Eqg.5.10), we get

,O(X,t) = fo Zxa.g[x - Xn]

a,n

J(X7 t) = fO Z Xavng[x - Xn] (520)
a,n

Once the sources, i.e charge and current densities i{5.E2@) are known, it remains now to find the
numerical solution of Maxwell’s equations to find the eleatagnetic fields. We need to built a suitable
algorithm to solve numerically Maxwell equations, so tharge and the fields are defined at the points
on a numerical grid and are calculated on the basis of theefgadistribution. Numerical grid is a finite
set of spatial points of coordinates= iAx, withi = 0, 1,2, ..., N, — 1 the total number of grid points.
The choice of the spatial resolutiakx is dictated by physical and numerical requirements. Théapa
size of the grid isL = N,Ax; the system extends in space fram= 0tox = L.

5.5 Numerical Algorithm

5.5.1 The Discrete Model Equations

The goal is to show the implementation of the typical nunaraigorithms associated witRIC
simulations. Let: be the only relevant spatial coordinate and all quantitiesfanctions of(z, ¢) only.
So the normalized Maxwell equations in the 1D geometry redto:

0. Ey = p, (5.21)

OEy, = —Jy, (5.22)

OE, = —J, — 0,B., (5.23)
OE. = —J, + 0,B,, (5.24)
9xBy = 0, (5.25)

9B, = 0, (5.26)

0B, = 0,E., (5.27)

0B, = —0,E,. (5.28)
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B, is constant and uniform and thus taken equal to zero. Lettradince now the auxiliary fields

F.=E,+B. (5.29)
G.=E.+B, (5.30)

Now looking at normalized set of Maxwell equatiofis21 — 5.28), these fields in E¢5.29 — 5.30)
satisfy the equations

(0 £ 0,)Fy = —J,, (5.31)
(0 £ 0,)Gr = —J. (5.32)

Now integrating along the characteristic= +ct (havingc = 1) to yield an advance scheme for the
advance scheme up-to ord8(At?)

Fi(x £ Az, t 4+ At) = Fy(x,t) — AtJy(x £ Azx/2,t + At/2), (5.33)
Gi(x F Az, t + At) = Go(z,t) — Atd(x F Azx/2,t + At/2), (5.34)

where Az = cAt. Thus the discrete transverse fields will be interlaced lith phase space and
transverse currents with time. The phase space will be defihéhe cell boundaries = iAx where
1 =0,1,2,.., N — 1 and with the time-steps = nAt, havingn = 0,1, 2.... Therefore the transverse
current will be defined at the cell centers= (i + 1/2) Az and at the time-steps= (n + 1/2)At

The value ofAz is bounded to the temporal resolution or time stef which corresponds to the
temporal discretization of all physical variables. Thecspa of the grid points depends on the physics of
the process to be simulated. The fields and densities anglat&d on a grid composed of finite number
of grid points spaced byAz while the particle position is represented by the contirsueariablez,,.
Since we imagine that the particle is extended in space anckeitter position,, will lie in the cell
numberi; i.e each particle at a given instant is located inside thiesiech thatt Ax < z,, < (i + 1)Ax.
Each particle will contribute to the source terms (i.e cotreend density) in the grid composing the parent
and neighboring cells and the force on the particle will bel@ated from the value of fields in the parent
and neighboring cells. The time step length then has to bserhon the basis of the space resolution.
It can be proven that the numerical scheme is stable when< Ax, and this implies that the particles
move at most from one cell to neighboring one within one ti@gs

The accuracy of the simulation results depends also on tmderN,, of macro particles per cell that
have been used: in fact in the denser plasma regions, if thkamae density isng then the minimum
density difference that is possible to resolvenigN,,. The statistics can be improved by using large
number of particles per cell. In HD3P geometry (one spatial and three momentum coordinate) each
particle is represented by 4 numbers in double precisiongcdby4 x 8 = 32 bytes. One million of
particles corresponds &2Mbytes. To reduce statistical fluctuations, the number dfigdas per cell,
N, /N should be much larger than one. As a consequence, the meeaga to allocate currents and
fields will be much less. Due to the low scaling of fluctuatievith the number of variables-(1/v/N),
significant statistical fluctuations occur most of the tinTde main disadvantages of tiedC code is
probably the high noise level. The physical reason for nisighat the largest number of particles one
can follow in simulation is orders of magnitude smaller tiizetrue number of particles of plasma. The
success of th&IC relies on the fact that collective plasma effects dependbi@hong-range coulomb
interactions. Thus one may think of the “closest” interattivithout significantly affecting the properties
of collective plasma and this can be achieved by assigningite ipatial width to the computational
particles such as to soften the singularity of the Coulontérattions.



CHAPTER 6

Solitary versus Shock wave Acceleration
In Laser Plasma Interactions

The excitation of nonlinear electrostatic waves, such aslsland solitons, by ultra-intense laser
interaction with overdense plasmas and related ion aatilaris investigated by numerical simulations.
Stability of solitons and formation of shock waves is stigradgpendent on the velocity distribution of
ions. Monoenergetic components in ion spectra are prodoggoulsed” reflection from solitary waves.
Possible relevance to recent experiments on “ion accalarhy collisionless shocks” is discussed.

6.1 Introduction

The generation of energetic ions of high flux with intenserstaser pulses has been a subject of
fundamental interest attracting wide attention in recexarg. Energetic ions from laser plasma interac-
tions are usually accelerated by induced quasistaticradilds formed at the front side of target due
to space charge separation when laser ponderomotive fostep electron forward and backward in the
interacting region160Q. Interacting with an overdense plasma (i.e. having edectiensityn, > nc,
with n. = 1.1 x 102! /A(zm)? cm~2 the cut-off density for the laser light), the light pressoferel-
ativistically intense laser pulses sweeps out and comghesplasma, pushing its surface forward at
high speeds. Such a combination of strong compression asthpl acceleration generate strong shock
waves that propagate towards the bulk of the plasma. In ratelgroverdense and hot plasmas, where
the shock waves are of collisionless nature, shock actieler@A) may lead to higher ion energies than
the widely studied’NSA mechanism (Ch3, sec.3.1) [14] and to monoenergetic spectra, as suggested
on the basis of numerical simulatiorn&g].

On the contrary, in “cold” overdense plasmas, ion accetaradlso had been shown to occur via
the so-called “hole boring’HB) mechanism (se€h.3, sec.3.2 for detail) [95, 105 by which the local
radiation pressure creates a charge-separation fieldwteaips up the ion density profile and accelerates
ions with an average velocity, generally known as hole#wpvielocityw,,. The steepening of ion density
eventually leads to wave-breaking producing a “fast” iondduwith velocityv; ~ 2uv,, that penetrates
into the plasma. Depending on the laser pulse durationHfBeacceleration process may generate a
sequence of ion bunches. Now, since according to S%itah[78], collisionless shocks are excited by
the piston action of the laser pulse and their velogcity~ v,,, so that reflection from the shocks would
generate ions with velocity; ~ 2v, ~ 2uvy,, one would expect shock accelerati®\(] to yield a cut-off
velocity of ions which is equal to that predicted by th8 model. An important difference between the
SA simulations by Silva etafg] and the HB ones by Macchi eté#j] is that a laser pulse with linear
polarization (LP) was used in the first case, leading to efficproduction of energetic (“fast”) electrons
which was absent in the simulations of Macchi €2§][due to the use of circular polarization (CP). As a
consequence, analysis of ion spectra alone may not disaimbetweeS A andHB mechanisms, and
the latter may be confused when interpreting results of kitiwns or experiments on ion acceleration.

To point out howSA andHB should be discriminated from each other was one of the ntaiva
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of the work reported here. We identified and aimed to analyael® PIC simulations two issues
which we consider to be characterizing foA versusHB. The first issue is to establish when and
whether ion acceleration occurs only at the front surfasexg@ected foHB, or also in the bulk of the
target by reflection from a propagating shock, as expectefiAolwe do not consider here rear surface
acceleration as ifNSA, that may be easily distinguished in simulations). The sddssue is the role

of “electron temperature” which, in turn, should lead tdfatiénces between the cases of laser pulses
with LP or CP, respectively.

6.2 Simulation with Linear Polarization

6.2.1 Solitary wave dynamics and ion acceleration
Numerical set-up

Since we focus on the basic aspects, we restridftd®IC simulations for the sake of simplicity
and high numerical resolution. As found in previous wa@g}[ with respect to the D modeling the
main differences found in two-dimension&llY) simulations are that the shock front is obviously non-
planar and that the intensity distribution in the focal dpatls to a radial dependence of the initial shock
velocity, since the latter is determined by the local aragkt of the laser pulse (see below), in a way
analogous to the hole boring acceleratior2In[95]. The simulations in Ref48] showed only a few
percent difference in the energy cut-off of ions betwéBrand2D, with the most energetic ions located
along the axis (a feature which is common to other acceteratthemes). For what concerns the later
evolution of the shock, with respect to a “realisti@D geometry we expect theD approximation to
be reliable as far as the distance traveled by the shock nsnsanaller than the laser spot width, that
is typically of several laser wavelengths; since the belescdbed phenomena occur already when the
shock has traveled only over a few wavelengths. We expecfindings not to be limited to théD
planar geometry.

On the other hand, the issue of high numerical resolutiondwls accessible inD) is very im-
portant because we found that the numerical results comgtengly for sufficiently high values of the
number of particles per cel,,, although qualitatively similar features were observest &br lowerN,,.
This suggests that kinetic effects play an essential raddfauns low-density tails in the distribution func-
tions must be resolved accurately. In addition, recent ixgats on monoenergetic shock acceleration
have shown narrow monoenergetic peaks that apparentlgioamtvery low number of iongp]; thus,
whatever the mechanism of ion acceleration, a multidinmgradi simulation with insufficient particle
statistics would not be able to resolve such features. Isithalations reported below,, = 800 while
the spatial and temporal resolutidxx = cAt = A/400, where\ is the laser wavelength. Two dimen-
sional simulations with such values §f, and Ax would be extremely demanding on the computational
side and are left for future work.

Short pulse excitation: solitary structures

We now analyze a representative simulation with the follmpget-up. The laser pulse is linear po-
larized with a peak amplitude, = 16 and durationr = 4T [full width at half maximum FWHM)],
with T the laser period; the temporal profile is composed Byong, sin?-like rising and falling ramps
and a3T plateau. The plasma had a slab, square-like profile withalrnitn and electron densities
n; = n, = 20n. and 15\ thickness. A laser pulse with central wavelength= 27c/wy = 1.0um,
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Figure 6.1:Snapshots of the evolution of a Solitary Acoustic Wave (SAMight different times. The upper,
middle and bottom rows show the ion density the electrostatic field, and the contours of thé (x, px) ion
phase space distribution inlag,,-scale. The laser pulse impinges from the left reaching thsnpa boundary
(x = 0)) att = 0T. Simulation parameters atg = 16, 7 = 4T andn, = 20n.. n; is normalized ta., E, to
Eo = mcwe/e andpy to myc.

propagating along the—direction and interacting with plasma having initial iondeglectron tempera-
ture, T; = T, = OkeV. For reference, the laser pulse front reaches the fronaseiflaced at = 0 at
the timet = 0.

In the early stage of the interaction, the laser pulse aatele a fraction of high-energy, strongly
relativistic electrons with energy of several.c?> which penetrate into the target and later recirculate
across it, driving heating of bulk electrons. A solitarkelistructure is generated at the front surface under
the action of the laser pulse and then propagates into tisenpldulk at a constant velocity ~ 0.05c.
This value is close to the hole boring velocity,, which in our case is calculated from EG.17(will
discuss below) where the reflection coefficient is measwr&@R ~ 0.75' in the simulation of Fig5.1,
yielding v, = 0.06¢c. At t = 65T, the solitary structure is located at~ 3.7\ (first frame of Fig6.1).
The ion density has a very strong spike, reaching values ug ttimes the background density. The
electric field around the density spike has a sawtooth sh&oe.reference we call the structure we
observe &AW (for Solitary Acoustic Wave).

The snapshots AW density and field profiles are qualitatively resemblant wsthof solitonic
solutions as described in R&fd]. As explained irsec.4.3.2 of Ch.4, a necessary and general condition
for such solitons to exist with a velocity, is that the electrostatic potential energy judyb has a peak
value

Ze® . < mivg/Z , (6.1)

so that background ions are not reflected by $A8V. Within a fluid model with the electrons in an
isothermal Boltzmann equilibriun2B] at the temperaturé,, the condition on the potential poses an
upper limit on the Mach numbeévl = vs/c; < 1.6, wherecs = /To/m; is the speed of sound. The
other condition is that the soliton must be supersonic)le> 1

Numerical integratiof of E, over x for the SAW att = 65T (first snapshot in Fig.1) yields
e®p ~ 0.78Ep\ ~ 4.9m.c?, more than twice the kinetic energy;v?/2 ~ 2.3m.c?. One thus

! Reflection coefficient can be estimated by using the energyereation from Eq3.11 in sec. 3.2 of Ch.3 which implies
R+T = 1—A, assuming negligible transmissidh & 0) and by calculating the amount of laser energy absorbedardense
target, i.e. the absorption coefficieit we can evaluate the amount of light reflected, i.e. reflaatmefficientR.

2 Since we have only discrete valuesiof, therefore what we actually do}§ E..(i)dz and then we perform the integral,
to calculate the electrostatic potential= > F.(i)dz, starting from the point wherg, has a maximum value (top 6AW
front).
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Figure 6.2:a): ion spectra from the simulation of Figl at the timest = 75T, 90T and100T. Only ions in
the same spatial range as Fd, i.e. 3.5 < x < 7.5, are included in the spectra. b): temporal evolution of the
maximum (red line) and the minimum value (blue line) of thecglic field for theSAW structure observed in
Fig.6.1 The vertical dashed lines mark the instaints 65T, 75T and90T at which ion reflection events start as
seenin Fighs.1

would expect ion reflection to occur promptly from th&W field. This occurs indeed in the simulation,
producing a bunch of high-energy ions with very small moraemspread as can be observed at 70T

andt = 75T. However, violation of the condition E@.(1) and consequent ion reflection do not destroy
the SAW; att = 75T, the SAW is still present with almost unperturbed velocity, and iefiection has
stopped. Betweet = 75T andt = 85T a second bunch is formed in a very similar way, as observed
between the third and fifth snapshot in leig. Both bunches correspond to a monoenergetic high-energy
peak in the spectrum, as shown in Eig-a; theFWHM of the peak at = 75T is less than %.

The SAW eventually “breaks” aftet ~ 90T producing a third bunch with a higher number of ions
as seen in seventh snapshot of Eid. As a consequence, the high-energy part of the spectrundémsa
and monoenergetic features are lost, as seen if.Big.att = 100T. The SAW quickly loses its energy
and slows down, so that ions are now reflected with lower gneafthough a minor fraction exceeds the
energy of the monoenergetic peaks generated at earlies.tiatice that the SAW collapse might not
interpreted on the basis of the fluid existence conditionaldecause the slowing of the SAW velocity
would enforce such condition (unless the velocity fallohket,). Apparently, the SAW breaking occurs
after a “collision” with a slower, counter-propagatingustiure that can be noticed in the frames of
Fig.6.1

The observed behavior of tHAW is related to the observation that the electric field amgétu
is not constant in time, but oscillates as shown in &i&b. The temporal behavior of the maximum
and minimum values suggests that the electron cloud ardwnobh density spikes oscillates back and
forth. The amplitude of the oscillation tends to decreasih wine. The quenching of the oscillation
is particularly evident after the generation of the secast bunch at ~ 75T . At this instant, the
potential jump at thé& AW front is e®,.., ~ 0.5Eg\ ~ 3.1m.c?, slightly above the stability threshold
Eqg. 6.1). Eventually, the overall amplitude greatly decreasesr difte generation of the third bunch, as
also observed in the last frames in FigL

The onset of ion acceleration from the SAW as a sequence efgton of ion bunches with narrow
energy spread, with the SAW conserving its velocity betwa@rsequent acceleration events, has been
observed in several of the simulations we performed, antidurconfirmed by simulations where test
particles were put at various positions inside the plasaia €Dnly those test particles located near to the
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points where the incoming SAW reaches the threshold andglitor ion reflection were accelerated. This
observation is empirical and reproducible in simulati@though the frequency at which monoenergetic
ion bunches are produced can not be estimated a priori astidnif the laser and plasma parameters.
A few results of the test particle simulations have beenudised below in se@.4

6.2.2 Effects of the ion energy distribution

The above reported observations led us to infer that the fdwse space distributions of ions has
a crucial role in determining both the stability of solitamaves and the possibility to generate true
shocks whose signature would be, in the framework of fluidthethe formation of a continuous flow
of reflected ions. If the ions are “cold”, i.e. have no energsead, reflections from a moving potential
barrier may occur either for none or for all the ions, sinagrtimitial conditions are the same. In the
latter case, as soon as ion reflection begins, the wave woid#ly lose its energy in the acceleration of
the whole bulk of ions. This effect may prevent the formatidrshocks and be crucial for the stability
of solitary waves.

In order for a shock wave to form, it should be possible for weave to “pick up” from the ion
distribution only a fraction of the ions in an energy rangeviich a reflection condition analogous to
Eq.(6.1) is fulfilled. If the ion distribution has a velocity spreddy a given value of,,, all ions with
velocity v, > v, — 1/2e®,.,/m; Will be reflected from the wave front. Thus a true shock maynfam
the presence of a sufficiently warm ion distribution. Bi§.shows results of a simulation with identical
parameters as Fig.1, but with the initial ion temperatur@; = 1 keV. lon starts to reflect frorSAW
front at early time30T and formation of a shock-like structure with “continuougflection of ions is
observed at later stages &tT. The shock velocity is found to decrease slightly in time rfasy be
deduced also from the slope of the reflected ions featuresipltiase space plot of Fi§.3) which could
be interpreted as due to the wave energy transfer into refléans. Initially, as the fraction of reflected
ions are small, a monoenergetic peak arodridleV appears at0T and60T which further broadens
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Figure 6.3: Snapshots at three different times of the E, and f;(x, px) for a simulation identical to that of
Fig.6.1but for an initial ion temperaturg; ~ 2 x 10~>m,c? = 1 keV, showing the onset of ion reflection in large
fraction than that of cold ions case. The scales are the sarimeRig6.1to show that the perturbation in and

Ex has a lower value in the present case. The insets show thespomnding ion spectra, limited to the ions in the
region around the shock and excluding ions acceleratee datbet boundaries.
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with time as the shock slows down attempting to reflect mons.iorhe strength of electrostatic field
and ion density also decrease with time (see upper and miiddtees of Fig6.3) which also gives the
indication of shock deceleration along the propagatioh.pat

Simulations have also been performed for an initial ion terapureT; = 5 — 10 keV, it is observed
that increasing the initial ion distribution to higher vajJuhe formed shock wave reflects ions in higher
fraction and gets damped out faster giving all its energefi@cted ions. From the previously explained
results for cold ions, i.e. of Fi§.1 which says that a shock may not form because we can't have a
steady and stable ion reflection. This indeed we observeitif@ T; = 1keV, having continuous ion
reflection from the shock front which slows down with timedgumably due to energy loss to ions)
and thus broadening the energy spectrum. The effect was strorgger for initialT; = 5keV because
more ions in the distribution are reflected (for the same Ish@docity). Now, lowering the initial
T; = 0.1KeV, we found that the acceleration is still “pulsed” as that @fdldon case but the bunches
have longer duration and smaller spectral width which ssiggat we are close to a good compromise
for monoenergetic acceleration, and confirms that even d smaemperature plays an important role.
The initial warm ions study suggests that the role of initaltemperature is quite important in formation
of solitary or shock waves, their stability and related iateleration. The detailed study about the
“optimal” initial ion temperature range in which the shoak\dgves for a longer times and reflect ions of
narrow spectral width is performed in the next chapter.

6.2.3 SAW breaking in the expanding sheath

The effect of the background ion distribution can be alsacedtin the case in which theAW
generated at the front side of the plasma eventually redbkesar side and propagates in the expanding
sheath. Th&§ AW overturns the slower ions and propagates in the sheathiurgdches the region in
which the ion velocity is such that the ions are now reflectgthke SAW potential (since the ions in the
sheath move in the same direction of 8%&W, their velocity in the rest frame of tHeAW is lower than
in the “laboratory” frame, hence they are reflected moreyadihis mechanism was also described by
[16]]. Fig. 6.4 shows results from a simulation having the same parametéfig) 6.1, but the plasma
slab was only3\ thick in order for theSAW to reach the sheath before losing much of its energy to
reflected ions. Looking at the results shown in Eid. until 54T, there does not occur any ion reflection
from the SAW front. As soon as theAW reaches to the rear side, the threshold condition for ion
reflection is reached, a few background slower ions turn bathe top of th&sAW potential hill which
results in a very high ion density peak I’ and ions acquire the velocity 2v,. If the SAW reaches
to the rear side after the laser pulse is over, the electiit iiilean expanding sheath (which decreases
with time ~ t~1) becomes too small (see Figd at 72T) such thaSAW can not be further accelerated.
Thus from this point onward, thHeéAW loses its energy in accelerating ions and breaks. Breakiogre
in the sheath in the region where the local velocity of ionddse to theSAW velocity, and leads to ion
acceleration.

From the above results, our study suggests that generatjhty lmonoenergetic ions by “shock ac-
celeration” is not straightforward, as in our simulation elEserve narrow spectra only as resulting from
SAW “pulsations® as a transient effect, since as shown in Figsand6.2the SAW collapse ultimately
produces a broad spectrum masking the monoenergetic pagleciglly in a plasma with “cold” ions
producing a monoenergetic spectrum might be at odd withiefiay, because the reflection of a large
fraction of ions by the moving structure (either a shock opkta@n) would ultimately cause a strong

% Jon acceleration is of “pulsed” nature, i.e. it occurs orfigertain instants or points along the propagation path daes
not lead to theS AW disruption.
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loading effect decreasing its field and velocity. This is uralifative agreement with the experimental
results of f9] where the number of ions{( 2.5 x 10°) in the narrow spectral peak at22 MeV implies

a conversion efficiency: 10~% of the 60 J pulse energy. The acceleration of a larger fraction of isns
also observed when tHAW undergoes disruption either by interacting with anothercstire or when
entering the expanding sheath region at the rear surfadeeqflasma. Shock waves with “steady” ac-
celeration of ions are generated in a plasma with initiallsafm” ions, where a population of reflected
ions can be formed.

6.2.4 Collective Oscillations of the Warm Plasma Foil

This is an analytical attempt of a simple theory for the obséioscillations in the field of the solitary
wave structures observed in the simulations. Here we fonus single solitary acoustic wayAW as
observed in our simulation results shown in Bid. The idea is that the cloud of electrons oscillates
back and forth across the ion density spike.

Let us consider at a starting point, a thin foil with ion déysi;(z) = N;é(x). The foil(target)

is immobile (it has zero velocity in the lab frame). The elens have temperaturE, and spread out
forming two symmetric sheaths on each side of the foil. A froagd essential schematic of the profile
of electric field and ion density in @AW is shown in the cartoon of Fi§.5. The profile is quite similar
to those of a very thin foil of warm plasma and can be calcdlatealytically for the electrons assuming
a Boltzmann distribution and for a “truncated” energy dlsttion. The obvious physical difference
between a thin foil and 8AW is that the latter moves at a velocitywhich for the moment we assume
to be constant as in a steady state and non-relativisti& ¢). A simple analytical solution for the
equilibrium state exists (see the appendix in R&]), with the electric field given by

2Te/e

Bo@) = o g ey

sign(z). (6.2)

Now we introduce an oscillating perturbation and indicdte oscillating parts of each quantity as
E = E(x)e” ™! (electric field),n = n(z)e~™! (electron density)y = o(z)e~™! (electron velocity).
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The system ol D linearized fluid electrostatic equations are

Oyt + Oy (no(2)7) = 0, (6.3)
meng ()04 = —y*Tod,n — enEy(z) — eng(z)E, (6.4)
0, E = —Arne. (6.5)
From these we obtain
M0y (no(x)0,0) = —med} it (6.6)
and also
Da(no(@)00) = 02 (0,E)
MeOx(No(X )0tV - Are t \Uzx
_ YT 52
 4re 0o )
—edy(nEy(x) + no(z)E) (6.7)

so that eventually we obtain an equation For

T Tepo o (Bo(2)E). (6.8)

WE = —
4me Me

Because of symmetry we can study this equationxfor 0 only. However we must notice thal(x)
also has a contribution arising from the discontinuous iensity. Thus

~ *T ~ e ~
2 = DX Zep2p . C 9 (By(x)E
’ LSO — 0, (Eo(a)E)
4me® N; -
+ ”;; 5(x)E. (6.9)

Notice thatEy () is an odd function and that the above equationfanay have either odd or even so-
lutions. We are interested in even modg%g) = E(—z) and, moreover, we only take long-wavelength
modes and thus neglect the term arising from pressure féttoeone proportional to*T.. Thus, for

x > 0, we have

WE = ——9,(By(2)E) (6.10)

e
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and substituting foE

- 2T,
Ww’E = -""%9,
Me

x + T./(we?N;)

B ] (6.11)

To solve this equation one may define the auxiliary variables

E 22 Tex

_ _ e 6.12
/ r+T./(me?N;)’ YT * me2N; ( )

so that, bein@), = [z + T./(we%N;)]0,], we obtain

2T,
Wif = ——20,f (6.13)

with solution
Mew?

f=Aexp (— oT, u) (6.14)

with A an arbitrary constant giving the amplitude of the pertudmat Switching back tar, E and
extending the solution to < 0 we finally obtain

T, mew? [ 22 T.x
B = A c i —_— ° ) 6.15
! <x * 7762]\7@-) P [ 27, < 2 " e N; (6.15)

The frequencyw is however not determined; the frequency spectrum is cootis, and the particular
frequency will be determined by how the oscillation is exdit

6.2.5 Long pulse excitation: Multi-peak structures

When the laser pulse duration is increased with respecetatibve reported simulations, we observe
multiple peaks of the ion density and sawtooth oscillatiohshe electric field. Although a structure
showing multiple oscillations behind a front is reminiscef a collisionless shock wave as seen in
textbooks, again for an initially cold ion plasma, we do nbserve in general a steady ion reflection at
the front. The density peaks move at different velocitied #us disperse in time. Hence the structure
may be interpreted as a multi-pedlW, generated due to pulsed hole boring acceleration at tiné fro
side P5] at a rate which is approximately the same for simulationgritasame pulse intensity and
plasma density, so that a longer pulse duration allows a@n of a sequence of ion bunches.

A representative “long pulse” simulation is shown in Bi§¢. The laser pulse has peak amplitude
ap = 16 (like the above reported “short pulse” simulations) witR rise and fall ramps and 8T
plateau. The plasma density and thicknesérg and20), respectively. These parameters are close to
those of previously reportetD simulations (see Fig.1 in ReT§]) and indeed some features observed
in the ion phase space and density profiles look very simitowever, in our simulations the higher
number of computational particles allows us to highlighditidnal details in the phase space distribution
of Fig.6.6 (bottom row) such as vortex structures behind the frontresmonding to “trapped” ions
bouncing between adjacent peaks where a potential wellrisefd. The observation of ions trapped
in the multi-peak, nonlinear structure of the electric fialid the quite broad distribution along the
momentum axis of the most energetic ions suggest that tlatks Imay be actually accelerated by
“surfing” the longitudinal wave structure, rather than lgemerely reflected by the field at the front.
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In addition, we observe significant oscillations of the #iedield aheadof the wave front (i.e. of the
rightmost density peak in Fi§.6at56T), which may have been excited by fast electrons and areecelat
to modulations in the momenta of the highest energy ions.ifi$et shows the spectrum of the reflected
ions. During the first reflection event (first frame5ail’), the ion spectrum has a peak-a2MeV and
have narrow energy spread. Due to the further reflectionte\a®®8T and 120T which occurs when
the SAW potential exceeds the kinetic energy,(e@,.., > m;v?/2), the spectrum doesn't remain of
monoenergetic nature and get broader towards higher e(@mpare the spectrum in inset of Fgh at
different times, even neglecting the contributionlIofSA at the rear side). By the tint8T, the SAWs
have been fully evolved and the leadiSgW reflect ions of more thaB2MeV energy and the cut-off
energy reaches up-to 30MeV at120T. Thus, the ion reflection which occur due to “pulsary actibn o
SAW” is not easy to control and large number of ion reflection évemasks the monoenergeticity.

In order to check the steady reflection of ions to sustain tlasigmonoenergetic nature in the spectra,
we performed the simulation keeping all the other pararaai@me as of Fi§.6but for warm ions having
initial ion temperaturd’; = 1keV and the results are shown in Figi. We observed that the SAW wave
which turns into shock wave starts to reflect ions from edrhes and the ion reflection occurs is of

t=56T t=88T t=120T
150k - ¥ iy T = ] Figure 6.7:Warm ion sim-
= o107 & o107 & 107 L

£ 100l RETEIN Vr\l i = lo,sm i = lo,swf\ 1 ulatlor_L Snap;hots of the
} ol oy 1 O oo’ ] evolution of solitary acous-

0 tic wave GAW) at three dif-
+20 ferent times of a simulation
& 100 A Lol B ] having identical parameters

N0 = U R P et [t as Fig6.6, but with the ini-

S o-100 v J ' tial ion temperaturel; =
7028 1 keV The insets show the
%02t corresponding ion spectra,
i 0.1¢ limited to the ions in the re-
& 00 gion around the shock and

excluding ions accelerated
12345676 78 910111210111213141516 at the target boundaries.

x/A x/\ x/\
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“continuous and stead§’in nature. In attempt to reflect more number of ions,$A&V or shock wave
front lags behind and is atl\ irrespective ofl2.5\ for cold ions simulation (Fid.6) at 120T time
duration. In addition, all the multi-peak structures moaémost at constant velocity with time and the
corresponding ion density peaks remain there for much loimges. The vortex type structures between
the peaks, corresponding to trapped ions is less formedresibect to cold ions simulation in which the
particle trapping between the peaks is much more (compaasephpace distribution of Fi&6 and
Fig.6.7). Looking at the ion spectrum aR0T, as the wave front is reflecting steady ions, the energy
spectra is much more quasi-monoenergetic and remaing stalshore time irrespective of the cold ions
case in which the spectrum becomes broad because of “nadyStenature of ion reflection. Although
the cut-off ion energy is less in warm ions (20MeV) than that of cold ion simulation~ 30MeV)
at120T time duration, as the shock slows down a bit, losing its gn@rgeflecting more ions but the
spectrum is more stable and sustain quasi monoenergdtcitynger times.

The detailed description of the effect of the initial ion f@enature on electrostatic shock generation
and monoenergetic ion acceleration by reflection will bespiibed in the next chapter. We will show
with 1D PIC simulations that there is “an initial ion temper@ window” in which we can increase the
number of reflected ions without any significant wave loadorgvhich the shock moves almost with a
constant velocity and reflect monoenergetic ions.

6.2.6 Effect of target density on ion dynamics and SAW genet&sn

We also performed D PIC simulations for the interaction of a strong laser pulse m ridinge of
100fs with an overdense target @fum thickness at the same laser pulse amplitudegof= 16. The
laser pulse is of duration = 30T, such that; the temporal profile is composed2dylong, sin?- like
rising and falling ramps and 28T plateau. A parametric scan have been performed at difféaeget
densities vary fromney (= njo) = 5n. — 50n.. We envision that th8 AWs are excited within the plasma
for some certain plasma densities, neither appear at lowtnary high plasma density. SAW are more

4 steady means that the SAW or shock is reflecting ions almastcainstant rate and of less energy spread and can be
observed from the slope of the phase space distributiorgis Fiwhich is almost a straight line.
5 Non-steady means, the ion reflection occurs at certain titevials and may differ in energy.

t=20T, t=40T, t=50T,

Figure 6.8: Snapshots
of ion density n;, elec-
trostatic field E;, and
contour of ion f;(x, px)
and electron f.(x,px)
phase space distribution
in a logyo scale at three
different times, at laser
pulse amplitude: = 16,
15um target thickness
and np = b5n. plasma
density. Note down the
scales of x—axis and
4 ' y—axis while comparing
5 10 15 5 10 15 5 10 15 with Fig.6.9, Fig.6.10
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prominent and clearly visible around the plasma densiiyycf 10n. — 20n. and neither occur in higher
plasma density ofiy = 50n. nor at lower plasma density af) = 5n..

Fig.6.8 shows the snapshots of the simulation performed at plasmgitg®fng = 5n.. In this case
we didn’t find anySAW generation within or towards the rear side of the plasma. M&EP laser
pulse impinges on the target surface, due to charge separeffiects, a strong unipolar electrostatic
field is generated (as shown in FigB at 20T). A few ions gains an acceleration (as in Bi@ b-c)
and reaches towards the rear side of the target without mextbrpation to the plasma. Therefore no
SAW generation have been observed within the bulk of the plashielmcan accelerate ions and the
most effective ion acceleration occurs towards the re&r sidhe target. As the plasma density is not so
much high, (as compare to our other simulations shown betaw aboven, = 10n.), the skin depth
and the magnitude of the electric fields penetrating in tasmh increases which results in that electron
bunches produced by the laser and transported throughrtiet taeates a strong electrostatic field that
drives the surface ion acceleration. Due to very high edeckreating, having momentum up40m,c
as shown in electron phase space of &:ig.the electron temperature across the target will be very. hig
As a consequence, the relative speed of saynd /T./m; might increases much enough such that
the Mach numbeM = vg/c, falls below one, which results in that it doesn’t fulfill theifl theory P8
according to which the lower limit for the existence of saijt waves isM > 1.

Fig.6.9shows the snapshots for the simulation performed at plasmsitgt ofny = 10n., keeping all
the parameters same as of Fig8. In this case, more than o8& W are excited by the radiation pressure
of laser from the target front surface which propagate withe plasma and drive the ions to twice its
velocity by the wave breaking events; i.e. by reflection fribva tip of theSAW. TheseSAWs which
start reflecting ions from the early time duration, regategosition again after some time, exceeds the
threshold potential and undergoes further wave breakingi@nreflection. Its interesting to see from
Fig. 6.9(a-c), how the first and secosd\W interact with each other and they “exchange” ions, the ions
accelerated by the middeAW gets slowed and trapped by the leadiyW. Until the laser pulse is
on, the first and secorffAW starts to propagate initially with a velocity ~ 0.11c (at40T) and further
propagate deep in the bulk by gradual reduction in veloaity density with time. The third solitary
like structure which is quite visible a@0T lags behind (Figh.%) with respect to time and get damped
out (Fig6.9c). As a consequence, by the tin@)T, there exists only firss AW (can be observed form
the ion density and electrostatic field) which propagaterafidct ions. Lower frames of phase space of

t=40T, t=80T, t=120T,

Figure 6.9:Snapshots of
the evolution of solitary
acoustic wave (SAW)
at three different times.
The upper row shows ion
densityf;), electrostatic
field (Ex), while the mid-
dle and bottom rows show
the ions and electrons
phase space distribution
in a logyp scale, having
all the parameters same as

of Fig.6.8 but at plasma
5 6 7 7 8 9 10 11 11 12 13 14 15 density ofng = 10n,.
x/\, /N, /N,
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t=60T,

Figure 6.10: Snapshots
of ion densityn;, electro-
static field Ex and con-
tour of ion f;(x,px) and
electron f.(x,px) phase
space distribution in a
logip scale at three dif-
ferent times, keeping all
the parameters same as
of Fig.6.9, but at plasma
density of ng = 50n..
Notice down thex— and
y—axis scales while com-
paring with Fig6.8 and

/N, /N, /N, FIgGg

ions and electrons in Fi§.9 shows that hot electron bunches have been formed withiratgettacross
theseSAWs and as thes8 AWs structures move forward, similarly these hot electron beso(or bulk
electrons) moves along it. At0T, these bulk electrons around tRAWs have momentumz 20m,c
(electron phase space Figd) and these bulk electrons get cool down along the propagétice and
electron heating across the fitlsAW decreases te 10m.c at 120T.

Similar to above case, we also performed the simulationaanpé densityyy = 20n, in which we
observed that thre@AW’s are formed which start propagating within the plasma, beitioh reflection
from the SAW front starts later. The first ion reflection occurs after tid@d" while by this time in
ng = 10nc case (Figs.9), there occurs much more ion reflections and trapping betvilee multi-
peak structures. These multi-peakWs propagate up-to later stages by reflecting ions at certaia ti
intervals until there exists electrostatic field acrosshtie to less reflection and less trapping of ions
atny = 20n. case than that ofy = 10n., the SAWs formed in this case remains stable for longer
times. The reflection and particle trapping adds more neatity to the plasma which leads towards
the damping of th&&AW. If the laser pulse is fairly long such that the oscillatienited within the
plasma attain a sufficiently large amplitude at the end ofdker pulse for nonlinear effects to become
important. For thel.LP pulses, due to strong electron heating, the plasma noorumitfy leads to a
change in the wave vector of the plasma oscillations. Aswtre®me of the electrons are thrown out of
the plasma region to the rear side which bounce back andefusthrts recirculating and get accelerated
on the process of their interaction with plasma waves whigeions gain energy from their interaction
with the localized electric field[63].

We have observed that the solitary acoustic wa¥es\\’s) are formed at plasma densities up-to
ng = 25n,. for the laser amplitudey = 16 and didn’t occur at higher plasma densities. Eitj0shows
the simulation performed at higher plasma densityipE= 50n., having all the other parameters same
as Fig6.9. In this case, we didn't seen any clear generation and pedjsagof SAW like structures
within the plasma which undergoes reflection and trappirgnpmenons. It may be explained in such a
way that as we increase the plasma density, the formed mamlglectrostatic perturbations might be so
slow that they get damped out at earlier times attemptin@flect large fraction of ions. A shock like
reflection has been observed in the phase space plots 6f Kigwhose signature in the fluid theory is
the continuous flow of reflected ions. We envision that a sHidkekstructure is generated on the front
surface which is moving initially &20T with velocity v, &~ 0.05¢ and gradually decreasesdp= 0.02c
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at80T. The ion density is much higher across this shock-like fad is continuously reflecting ions
in large fractions. Electron phase space plots also shotytti@electrons are more heated across this
shock-like structure than the rest of the plasma. From tbeesbf electrons spectrum, we calculated
the bulk electron temperature (ignoring the fast osciltattlectrons) which comes to g = 2.6MeV.
Now if the shock-like structure is propagating initiallytvia velocityv, = 0.05¢ at 20T, we evaluated
the Mach numbeM =v;/c,, (Wherecs = KpT./m;), it comes out to b&1 = 0.9 (the estimate is with
classic formulas assuming a non-relativistic electrorcspe), which does not satisfy the existence
condition of SAW/shock generation, i.el < M < 1.6. As theM < 1, the structure we observed can
not be called a shock wave. Thus, the above results perfoatrditferent plasma densities infer that the
SAW/shock waves can be generated only up to certain rangeserf &nd plasma parameters.

Simulations have also been performed for the same lasersitye;, = 16, by changing the target
thickness and laser pulse duration to test the evolutioRA3V. It is observed that by changing one
of the parameters, results in the change of evolution ofthé’ and the related phenomenons. For a
fixed laser intensity, the role of target thickness, targetsity and laser pulse duration is important for
the formation of solitary waves, evolution of solitary wawand the other dissipation phenomenons such
as particle reflection and particle trapping. Below we wiladiss a possible criterion for SAW/Shock
generation.

6.2.7 Criterion for SAW or Shock generation versus Target dasity

Here we have tried to give a simple criterion to guess why inlduPIC simulations either shock or
solitary acoustic waves (SAW's) are hardly observed fagdadensity values. Since these structures are
driven by the effect of the light pressure (or radiation pugs) exerted by the laser pulse at the surface,
their initial velocity should be of the order of the “hole bag” velocity. This has been given e.g in

Ref.[95] as
1/2
Vpp = agC <E%E> (6.16)

Ampn,

and compared with the velocity observed in simulations witbular polarization.

In comparing with the case dihear polarization LP), whereay is given as the peak amplitude of
the laser pulse, so that féP the average over a periqd?) = a3/2. In addition, forLP, absorption
is usually higher and thus the corresponding reduction diten pressure?l/c — (1 + R)I/c with
R < 1 the reflection coefficient should be considered. Thus we avawite the “hole boring” velocity
for LP pulses

1 7 1/2
o = awe (5 o) (6.17)

which can be derived by the equation for the balance betweeBM momentum flow and those of ions
(1+R)I/c = (mjving)v;, and 1= mec3nc<a2> (6.18)

Here we consider; < c as this is the relevant case to simulations but generaizétiv; < cis possible

(see Refl05]). To estimatev,, we assume th&AWs are first generated as ion bunches by the radiation
pressure acceleration and wave breaking at the front suj9&tand thus their energy is

1 Y/ Y/
£ = gmp? = (F et ) = Gt 2o} 619)
p e e
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Thus for protong, = A = 1, and considering the case of (Fid) havingn,/n. = 10 anday = 16, this
estimate gives us, = 0.12¢, is in very good agreement with the initidAW velocity of vs = 0.11¢
observed in simulations. Now let us consider the shock dtosolo be driven at velocity, ~ vp,,. We
need in any case; to be supersonic, i.&\[ = vs/cs > 1 wherec, = (ZT./m;)"/? = (ZT./Am,)"/2.
To estimate the electron temperature, we used the so caltewtieromotive scaling’fol’, as explained
in detail Eq.(2.70) in Ch.2, sec.2.8.3)

Te =~ mec®(y — 1) = mec?(1/1 + a2/2 — 1) ~ mec®ag/ V2 (6.20)

where the last equality holds fap >> 1. Foray = 16, we obtainT, ~ 11.3m.c?, that seems fairly
consistent with simulations. Hence posifig> e®,..,, we obtain the criterion for thE AW or shock
generation (assuming = 1 for simplicity) as
1 ne
M>1 —ag > Nor® (6.21)

corresponding tag > 3.55 for n,/n. = 10. This estimate, however is quite sensitive to the assumptio
of Eq. (6.20) for T, because the classic formula assume a non-relativistitrefespectrum.

Thus from the above simple criterion in E@.21), we can guess whether a shock or soliton will
be generated. This estimate might be generalized easiy #6 1 and possibly taw, < ¢; it should
be taken with some care because the estimat@ fas probably rough and less grounded thangy,
so at least numerical factors may be different in E§.21), but it might give us useful indication.
Another important point to mention would be that in prineiftq. (6.21) is similar to the condition
n. < ney that is often mentioned as the condition for the plasma toeksdivistically transparent for
the laser light. However, in a step boundary plasma usuadiycondition is more restrictive (because of
the ponderomotive compression itself) so that a window ofupeters for shock acceleration probably
exists. Nevertheless, relativistic transparency migplar why shock or solitons are not observed (at
least in a clear way) also for too low densitieg/n. <ay.

6.3 Simulation with Circular Polarization

Simulations has been performed also for circular polaongiCP) to compare the results for linear
polarization(LP). To ensure that laser intensity is same ad.Bfcase, we use a laser pulse which is
lower by a factor ofy/2 than inLP case, we performed th&P simulations for the same parameters
having laser pulse with a peak amplitudge = 1—62 = 11.3. The plasma had a slab, square-like profile
with initial ion and electron densitias = n, = 10n. and 15\ thickness. Figh.11shows the snapshots
of two CP simulations performed for the above described parameteratldifferent lase pulse duration
of 7 = 30T (100fs) andr = 60T (2001fs) respectively. Fids.11shows the effect of laser pulse duration on
ion acceleration at front side of the plasma. (R, we have observed the most effective ion accelerated
from the front surface of plasma which starts in the form oBlrbunches which propagate into the
plasma with a constant momentum of appto¥m;c. When theCP laser pulse impinges on the plasma
surface, the electrons are quickly pushed inward by the gramdotive force, i.e by steady part of the
v x B force. ForCP, the oscillating component of the x B force is zero, thats why there is very less
electron heating and the interaction regime is completdfgrdnt than that ofLP pulses. In case of
CP, all the ions get accelerated in the form of small bunchestdlee hydrodynamics wave breaking,
as the ion density is very high at the breaking and the fastes move ahead than the slower ones.
During the first breaking of the ion profile, with the formatiof a bunch; the equilibrium between the
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t=31T, t=55T, t=74T,
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Figure 6.11: CP Simulation parametersu = 11.3, target thickness= 15um, plasma densityyg = 10n..
Snapshotsga — ¢) shows the electric fieltl,, ion densityn; and ion phase space distributignfor the simulation
done at laser pulse durationof= 30T (1001s), The lower snapshotsl — f) shows the simulation results for laser
pulse duration of = 60T (200fs). Increase of laser pulse duration results in increase inbeuof ion bunches.

electrostatic and ponderomotive force on electrons isdast if the laser pulse is not over yet at this
stage, the electrons rearrange themselves to provide aaqélbbeum and then the process of another
bunch formation restarts.

As long as the laser impinges on the target, the number oftbformation increases and when the
laser is over, then there is no more bunch formation.6-ld shows a series of ion bunches formed until
the laser pulse impinges on the target and then these bupobeagate with decreasing density with
respect to time. Fi§.11a, shows a large electrostatic field is there, when the lasstlismpinges on
the target, Figh.11b shows that when the laser pulse is stopped, there remaingctoostatic fieldF,
and then these formed bunches propagate ahead colleatiitaly uniform momentum. Il€P, we did
not observe fast electrons recirculation across the tagebserved frequently in theP case. Fig.11
(d — f) shows the snapshots at three different times of electiosieid E,, ion densityn; and ion phase
space distribution, for the = 65T (210fs) laser pulse duration. It is shown clearly (at time- 114T)
that the number of bunch formation increases with increadasier pulse duration as in the latter case
(Fig.6.11(d — f)), the number of ion bunches are more which can be observadycfeom the phase
space distribution plots.

Fig.6.12compares the absorption efficiency and ion energy spectoutiné CP versusL.P simula-
tions. For theCP case, the absorption into the ion bunches is appfd% and is constant after the laser
pulse is over which confirms that all the ions are getting lecated by hole boring-RPA. For CP
pulses, the absorption of electrons is very less as longealager is there and when laser pulse is over,
the absorption is negligibly small. FaiP, the absorption of electrons is very much in this case and is
dominant during the interaction with the laser pulse. Lategrgy transfer towards ions occurs and with
increase of time, the absorption efficiency of ions is insiteg and of the electrons is decreasing, which
confirms that the ions are getting some energy from the elestrThe ion energy spectrum foP is
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Figure 6.12:Left frame:Comparison of absorption efficiency of ions and electromsugtime Right frame:ion
energy spectrum fromD — PIC simulations performed witll’P andLP pulses for the same laser and plasma
parameters.

relatively narrow and a very prominent peak occurs aratividV, while the spectrum foL.P is more
thermal like, a peak occurs arouddileV and broad spectrum maximum upaoMeV. The reason for

a more prominent peak f@’'P case is because of the fact that the ponderomotive forcs teridcus the
ion spatially at the end of the skin layer, creating a shagkj@5] while for LP case, the strong electron
heating leads to the explosion of the ion bunches and pilewmf these ions to higher energies lead to
a broad energy spectrum. P, its relatively less electron temperature which also alléar a narrow
energy spectrumlp4].

With the aim to clarify many differences, similarities anaspible overlaps between the SAW/shock
acceleration(SA) and hole-boring HB) by addressing issues such as role of radiation pressurasvers
fast electron generation, we have shown on the basic of noahesimulations that “soliton/shocks”
driven by LP pulses (in an overdensed > n.), long-scalelength plasmas with a thickness typically
L > )), produce energetic ion bunches as they propagate intddemp bulk by a sequence of wave-
breaking events. In contrast, foiP laser pulses the ion bunches generatedBydue to the action of
radiation pressure, do no lead to further accelerationerbtiik.

6.4 Test Particle Simulations

We performed numerical ID PIC simulations by keeping all pagameters same as of FdL but
for a laser pulse duration of = 5T, such that the temporal profile %' long, sin?— like rising and
fall ramps and3T plateau. In order to check the exact acceleration mechamsignulations has been
performed by placing a slab of “test particles (protons¥idie the plasma, at some distance from the
surface in order that the test particles should not intesgttt the laser pulse, but will be reached by the
shock wave at some instant. The goal is to see if and how mede ttest particles are accelerated by
the shock. Test particles will move into th&V fields as the "real” particles, but they will not contribute
to the charge and current densities; they are only there egaasbtic.

Fig.6.13shows the results performed for LP pulses, by placing theptasicle at different positions
inside the plasma slab. We placed the test particle slab-a3\ (second row from bottom in Fi§.13
and at3 — 4\ (the bottom frame in Fig.13. We found that only those test particles located near to the
points, where the incomingAW reaches the threshold amplitude for ion reflection, getlacated. As
studied insec.6.1, for LP pulses and cold background ions, during the lasesgyuhe strong density
perturbations are created in the formSofWs, at the laser plasma interaction surface which propagate
deep into the plasma bulk with velocity and can extends up-to velocity 2v,,. During propagation,
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theseSAWs further lead to secondary ion reflection from its front havirelocity v, = 2v,. This is
exactly what we observe in our simulations, we found that ®48/ is formed from the front surface
which start to propagate with velocity, = 0.04¢. Up-to 2) distance, th&8AW does not reflect ions.
The first ion reflection fronS AW front occur at48T when theSAW is at2.5X. As we have placed a
test particles slab & — 3\ region. Thus those test particles within this slab whichregar t02.5), get
accelerated and gains the same velocity as that of “reakdvaand reflected ions (clearly be observed
from phase space plots Figl3at 52T). As theSAW pass away — 3\ region, the rest of the test
particles remain in this region without any further accafien. During the time, when the propagating
SAW enters in the regioB — 4\, there does not occur any ion reflection from 8%W front. Thus
the SAW pass the test particles sl@b- 4\ without accelerating the test particles of this region. Few
perturbations can be observed to the rest of the test martichich is due to fast oscillating electrons
and strong electron heating.

We performed th&P simulations at a laser amplitudg = 11.3, by placing the test particle slab
within the plasma a2 — 3, keeping all the other parameters same as oBFi§ The result is shown
in Fig.6.14 We found that the ions from the front surface get acceldrate¢he form of bunches by the
hole boring mechanism which do not effect at all to the tediglas placed within the plasma. Thus this
results confirms that fof’P pulses, no acceleration occurs in the bulk. lon bunchesageted through
the plasma in such a way, causing almost no perturbatiorinniie bulk. Such bunches may not be
considered as electrostatic solitons as for instance thue vd electron temperaturd’() for CP case
would be so low for the “Mach numbe®I to largely exceed the critical value 6.5 above which one

t=10T, t=25T, t=40T,
150} () I, (b)‘ (c) 10

& 100 S Figure 6.14: CP simulation: Snapshots
e ﬁ s 2 of ion densityn;, electrostatic fields, and
0 -10 contour of ion f;(x,px) and test particles

g 010 r”? U 2 h fi(x, px) phase space distribution inlag
Ny 005 oo scale at three different times, keeping all the
& 0.00 —_— — -

7000 parameters same as of Fgl3 but using
o 010} tEST 2-3g o circular polarized pulses. The test particles
i 0.05 -5.000 within the plasma remain unperturbed shows
< 0.00 — — - 000 the clear different between the hole-boring
1 2 3 4 5 1 2 38 4 5 1 2 3 4 5 and shock acceleration processes.
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does not have a shock but a “pure piston”. These findings cortfie crucial role played by the laser
polarization or indirectly the effect of the electron temgiare, inSAW/shock generation and the related
ion acceleration.

In our opinion it may be clearer and more appropriate to tatkuashock acceleration which implies
the generation of a “true” electrostatic shock wave, abfgtpagate into the plasma bulk and to drive ion
acceleration there or at the rear surface. With this fattpagh Palmer etal65 reported on “protons
accelerated by a radiation pressure driven shock” in thggement using a circularly polarized pulse,
their data may be rather interpreted as evidence of holedp@adceleration. The analysis of data in the
experiments by 166 and [L67], where linear polarization was used, seems also compatiith the
“hole boring” picture involving ion acceleration at the fitcsurface, sustained by light pressure.



CHAPTER /

lon Temperature and Two-Dimensional
Effects on the Formation of Shock and
Solitary waves

In this Chapter we first investigated, using 1D PIC simulaiche role of the ion initial energy dis-
tribution plays in the formation of ion acoustic perturbat in form of solitons/shocks and in the related
ion acceleration. Simulations performed at moderate siteh = 10'® — 10 W /cm? using linearly
polarized pulses suggest the existence of an “optimalfainibn temperature at which a shock wave
reflects monoenergetic ions, as a result from a trade-offdert beam monoenergeticity and efficiency.
Circularly polarized pulses in initially warm plasmas exihia distinct transition from the laser driven
piston scenario with all ions being reflected to the colligéss shock/soliton scenario having partial ion
reflection. Preliminary 2D simulations suggest that theebo$ surface rippling affects the width of the
ion spectrum.

7.1 1D PIC Simulations

As shown in the sec.6.3 of previous chapter, for the circptdarized (CP) pulses, ions are accel-
erated only at the laser-plasma interaction surface andglthie laser pulse, the ion spectrum extends
up-to 2wy, [95]. For the LP pulses (as explained in sec.6.1), due to the lelectron heating, the strong
density perturbation are created in the form of solitarytwck waves at the surface which propagate
deep into the plasma bulk having velocity ~ v,,. While propagating in the plasma, these solitary
or shock waves may further lead to secondary ion acceleratjareflecting ions from its front having
velocity v, = 2v, (Whereuw, is the velocity of reflected ions). The above considerattelis that the hole
boring process fixes the initial velocity for the solitaryghrock waves while whether reflection would
occur or not depends on the ratio between the shock velociynd the relative speed of sound[28].

As long as the shock velocity, is constant, the reflected ions should have velogityand produce a
monoenergetic peak in the spectrum.

The monoenergetic nature of the steady reflected ions (fonwean simulations) or the shock stabil-
ity is strongly dependent upon the laser pulse intensitiesdecreases with increasing laser intensities,
as more kinetic effects come in along the ultra-relatigiséigimes. Discussed below are the warm ion
simulations performed at laser peak amplituge= 4 andag = 1 corresponding to laser pulse inten-
sity of 2.2 x 10'W/cm? and1.4 x 10'®W /cm? respectively. We observed that there exists a finite
“ion temperature window” for which the shock wave reflect menergetic ions without any significant
wave loading. With a further increase of initil|, the shock wave attempts to reflect more number of
ions, loses it velocity, along the propagation path and the reflected ion spectrunormget remains
monoenergetic.
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7.2 Simulation results foray = 4 amplitude

7.2.1 Proton lon Simulations (Z/A =1)
At initially cold ion background

In the early stage of the interaction, th& pulse accelerates a fraction of strongly relativistic €lec
trons with energy of severah.c? which penetrate into the target, recirculate across it aive theating
of the bulk electrons. Multi-peak structures in the formwbtor threeSAWs (depending upon laser
pulse duration) are generated at the front surface undeadtien of the laser pulse which propagates
into the plasma bulk initially with a constant velocity ~ 0.06¢ but disperse with time, the later ones
lagging behind than that of the the first SAW.

Left frames of Fig7.1show that the peaks of the ion (blue line) and electron desdited line) over-
lap with each other. However, as the electron temperaturauch higher than that of ion temperature,
i.e. T. > Tj, a bipolar charge separation electrostatic field of “sawitbshape is formed in the com-
pressed plasma. This electrostatic field around the desisikgs plays a key role in the acceleration of
ions deeply located in plasma on the path of these SAWSs. Merdbe reflection of ions from a moving
electrostatic field front, is dependent on the stabilityesold, i.e., the rati®,,,/v2 where®,, is the
potential jump at the front. This is what we observed for doldbackgroundT; = 0keV) simulation
that when the electrostatic potentiaf?,.,) around the SAW exceeds the kinetic energjy2(n;v2), the
ion reflection occurs from the SAW froht As the electrostatic field amplitude is not constant along
time but oscillates, due to this electric field oscillatidhs potential varies quickly around SAW and ion

! From Fig7.1, at156T, we estimate the firs§AW electric field to have a peak vall&ax ~ 0.8Eq, whereEqg = mewc/e
and a total firsSAW extensionl, ~ 0.85\ = 1.77c/w, from which we estimate®max = eEmaxl. ~ 4.27m.c?, which is
ahead of the threshold energy,v? /2 ~ 3.58m.c?, thusSAW electrostatic potentide®max > m;v?/2), crosses the stability
threshold and the ion reflection promptly occurs. Furtheppgating ahead, the second and third ion reflection S
front occurs around 80T and 224T time instants. At these instants, the electrostatic pateist e®max = 4.0mec? and
e®max = 3.8m.c? respectively which is slightly above the stability threlsho
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Figure 7.1:Left frame (a) Snapshots of the evolution 8AW at three different times for an initial cold plasmas
(i.e. T; = T, = 0keV). The upper row shows the ion density(blue line) and the electron density (red line),
middle row show the saw-tooth shape electrostatic fieléind the bottom row shows the contours of fhex, px)

ion phase space distribution in@g;,,-scale. The laser pulse impinges from the left reaching kenpa boundary

(x = 0)) att = 0T. Right frame (b)The ions and electrons spectrum, including only the pagim the region
around the SAW and excluding ions and electrons locatedtheaarget boundaries. Simulation parameters are
ap = 4,n. = 4n. andrT = 60T.
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reflection is of pulsed nature, i.e. occur at some certaie timtervals and is not uniform.

Looking at the slope of hot electrons (right frame of Fid), which are close to theAWs we found
that the slope becomes steeper fros0T to 224 T time durations and the electrons get cooled down,
i.e. the temperature of the hot electrons (which are close to §Aalls from T, ~ 1.57MeV (at140T)
to T =~ 1.29MeV (at224T). Now if we assume the SAW moving with a velocity ~ 0.0625¢ to be
close to the stability threshold, therefore posing the MaamberM = 1.6, we get an estimate of the hot
electrons temperatufg, = (0.0625/1.6)2m,c? ~ 2.8mqc? ~ 1.4MeV that is fairly consistent with the
value obtained from the electron spectra. Thus during thereflection events.é. from 140T to 224T),
the hot electrons temperature falls below the calculatesstiold temperaturée. T, ~ 1.4MeV, which
results in that the relative speed of sound~ /ZT./Am; decreases and hence the Mach number
M = v,/ increases slightly above the stability threshbld> 1.6, for the ion reflection to occur which
would not quench the SAW and the latter remains almost uagErtl for such small reflections with a
slight change in velocity); ~ 0.06 + 0.005¢. The above calculations infer that the energy loss to the
reflected ions may be at the expense of hot electrons energy.

SAW velocity and amplitude decrease significantly only ovegltmes after a couple of pulsed ion
reflections. The acceleration of a larger fraction of ionsdserved when theAW undergoes disruption
either by interacting with another structure coming fronpagite side or when it enters into the expand-
ing sheath region at the rear surface of the plasma, whemreakb down resulting in continuous ion
reflection. The appearance of the above mentioned pulseeiil@ction in the wake of the SAW might
thus be interpreted as the result of a partial transitiom@®RAW towards a collisionless shock when ion
reflection sets in. However, a stable shock may not form lsxthe ions are cold in the present condi-
tions as it is evident from the phase space plots in7-ig Monoenergetic peaks appear only as a result
of such pulse acceleration in which the corresponding nurbiens is relatively low. Acceleration of
large fraction of ions leads to quenching and slowing dowthefwave, resulting in broadening of the
energy spectrum.

Warm ion simulations

In order to see the effect of initial ion distribution on $ofi or shock evolution and to optimize its
effect on ion reflection, we performed the simulations byéasing the initial ion temperature. Fig2
shows results of a simulation with identical parameterfiasdf Fig7.1, but with initial ion temperature
T; = 0.05 keV. We observed that the ion reflection starts at earliee tim. at 80T, a small fraction
of ions (~ 0.1 x 107°) get reflected from the movingAW front (v, ~ 0.057c), as a consequence a
small monoenergetic peak ef 6.5MeV appear in the ion spectrum (inset, first frame of Fig). The
second and third frame of Fig2 substantially shows the clear picture of later stages,dté56T and
180T, the SAW/shock is fully evolved by this time, having velgcit; ~ 0.0625¢ and reflect ions of
fraction (~ 0.6 x 107°) resulting in a sharp monoenergetic peak-ofMeV smears out in the energy
spectrum which doesn't affect the spectrum of the previeflected ions and monoenergeticity remains
stable for much longer time (inset of Fig2). The electrostatic field is also less oscillating with exp
to time than in the cold ions case and th&W propagates in such warm plasnig; (= 0.05keV)
without much significant loss in its velocity. As a consequeenwith respect to the “cold” ions case
narrow monoenergetic peaks almost appear at all the timie ispectrum. Although the cutoff energy
is less in this case i.exy 7.5MeV instead of~ 9.5MeV (for cold ions case), the ions spectrum remain
monoenergetic for longer times. Therefore, a slight chafgeitial T; = 0.05keV, the ion reflection
from the SAW front becomes linear, monoenergetic and occurs in smaitifras untilSAW loses its
energy and damps out in the rear sheath field.
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Figure 7.2:Snapshots at four different times of the E, andf; (x, px) for a simulation identical to that of Fig.1
but for an initial ion temperatur@; ~ 10~*m.c? = 0.05 KeV, showing that the ion reflection is linear and of
steady nature than that of the “cold ions” case. The inset® she corresponding ion spectra, including only the
ions in the region around the SAW or shock wave and excluding focated near the target boundaries.

The SAW velocity is found to decrease slightly in time fak = 0.05keV such that by the time
224T, the leadingsAW reaches up-te- 13.3)\ (see ion phase space Fd?), while in the cold ions case
(see Figr.1), the SAW is at~ 13.6\. For the initial T; = 0.05keV, due to some initial ion distribution,
there are always some ions having small energy spread ih éfoile leadingSAW which are easy
to reflect and in doing so, theAW attempting to reflect more ions, loses some of its energy agsl |
behind. While in the cold ions case in which the front ions @reest and ions get reflected only in
the time intervals during which the electrostatic potdrtieceeds the kinetic energy SAW. Now
having an initialT; means the ion distribution has some initial velocity spream for a given value of
D, all ions with velocityv; > (vs — \/2e®P.,../m;) Will be reflected from the wave front. Since from
156T time, the reflection is of more steady nature, so assumirghbabackground ions have velocity
v; & vs — £/ 2eP./m;, the Kinetic energy of front background ions can be estithate

2
& = %mi (vs - 26(1)"‘“) (7.1)

myj

It comes out to b&; ~ 0.47m.c?. Now estimating for the electrostatic potentiall&6T, it is Ze® ., =
1.3m.c® which is above than the threshold kinetic energy and satisfiie conditionZe®, .., > &;. As a
result the front background ions are easily reflected froerthie leading SAW front.

With a further increase of initial ion temperaturefp= 0.1keV (Fig.7.3), i.e. the background ions
have slightly more initial energy spread than thatlgf= 0.05keV case (FigZ.2), the leadingSAW
front picks up a very few ions at an early stage, at40T and reflect them. During the early stages, the
SAW/shock is not fully evolved yet (having, ~ 0.051c), so initially it reflect a few ions of slightly less
energy~ 5MeV. By the time80T, theSAW/shock gains the velocity up t@ ~ 0.059c and reflects ions
of slightly higher energy~ 7MeV. The two different energy types of reflected ions are clegidible
in the spectrum (see inset, Fig.3a) and can also be deduced from the slope of the reflected aturée
in the phase space plots (Fig3a). Now from80T onwards, th&s AW/shock propagates within the bulk
almost with a constant velocity;, ~ 0.062 + 0.002¢ reflecting ions to double its velocity. The ion
reflection at later stages is continuous in nature {F8jc — d)) and doesn't affect much to the existing
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Figure 7.3:Snapshots at four different times of the E, and f; (x, px) for a simulation identical to that of Fig.1
but for an initial ion temperatur@; ~ 2 * 10~*m.c? = 0.1 keV, showing the onset of “steady” ion reflection
and in large fraction than that of thig = 0.05keV. The scales are the same as in Fif. The insets show the
corresponding ion spectra, including only the ions in thgiae around the SAW or shock wave and excluding
ions located near the target boundaries.

monoenergetic peak. Even neglecting the first ion buncmi@adrat40T) which comes to the rear side
at time224T, the later shock like ion reflection is quasi-monoenergatid of energy~ 6.5 — 7.5MeV.

Evaluating for the fraction of reflected ions upa®4T time duration, it comes out to be approxi-
mately1.5 x 1075 for T; = 0.1keV case which is higher than that @6 x 10~° for the T; = 0.05keV
case. The fraction of reflected ions for = 0.1keV in the spectral peak &MeV implies a conversion
efficiency of~ 5x 10~ of the total pulse energy which is slightly high than that@feersion efficiency
~ 1077 for T} = 0.05keV case. Thus from the above two results shown in7Fand Fig7.3, there
seems to be an “optimal” value @f;, small but non-vanishing, for which we can increase thetifsac
of reflected ions without any significant loss in SAW/shockoegy. We noticed that at this particu-
lar initial “ion temperature window” which occurs betwe@&h = 0.05keV — 0.1keV, the SAW/shock
remains stable for longer time without any significant wanading and reflects monoenergetic ions. In-
creasing the initiall'; above0.1keV, the ion reflection increases in large numbers and the shoesndt
sustain a constant velocity and decelerates with time wigshlts in broadening of the ion spectrum
and monoenergeticity is lost over longer times.

Fig.7.4 describes the simulation results performed at inifial= 1keV and5keV respectively. We
envision that the ion reflection occurs from the beginningastinuous and of shock-like, where the
steady solutions of solitary waves change into shock waRssaccording to the standard fluid theory
[28], the possibility to generate “true” shocks would be tharfation of continuous flow of reflected
ions, which indeed we noticed in our simulations frdm= 0.1keV onwards. The fraction of reflected
ions by the time200T, for T; = 1keV are~ 6 x 10~° which further increases te: 15 x 107> for
the T; = 5keV case. This reflected ions fraction is much higher than theiquisly studied warm ions
simulations. Due to the higher number of reflected ions, tizels wave will lose its energy in reflecting
more ions and lags behind (see the ion phase spa@atof Fig.7.4), i.e. the leading shock front is
at10.4)\ for T; = 5keV case, while itis ai1.2) for T; = 1keV. The number of reflected ions, which
increases with increasing initidl; indirectly affects the stability of shock wave. If the latteflects
large number of ions, which means that the shock is losingamsferring more energy in reflecting
more ions, so the shock front velocity decreases in time rgorekly and the energy spectrum of the
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Figure 7.4:Snapshots at three different times of the ion phase spdeep, ) for the simulations performed at
initial ion temperature ofl; ~ 2 * 10~?m.c? = 1 keV andT; ~ 1 * 10~ ?m,.c? = 5 keV respectively, showing
the onset of “continuous” shock like ion reflection. All thiner parameters are identical to Fig. The number

of reflected ions increases with increasing the inifigland the shock decelerates more quickly with time. The
right frame show the ion spectra 20T time duration, considering only the ions in the region abtire shock
wave and excluding ions located near the target boundaries.

reflected ions broadens towards lower energies which weethdbserved in the simulations performed
at higher initial ion temperatureé.e. T; = 5keV and10keV, where the spectral plateau occurs around
4 — 5MeV energy which further shifts towards lower energies for higitial T;. The occurrence of
spectral “plateau” (right frame of Fig.4 for T; = 5keV) is because of shock deceleration, rather than
due to further acceleration of the reflected ions in the rielgr sheath.

Thus we infer that, increasing the initidl;, reflection of ions from the SAW/ shock wave front
becomes "linear” in the sense that, given the wave some spexdlways have some ions in the tail of
the distribution function which can be reflected. But for tigh ion temperature there are too much
reflected ions, so we fall back again in the case of excessawe Wading. With reference to the case
of “true” shock formation in a plasma with warm ions, whiclarss fromT; = 0.1keV, where the ion
reflection from the beginning is “continuous” in nature, #ck doesn’t decelerate quickly and remain
stable for longer time to reflect ions of same energy(F§. Although there occurs a continuous ion
reflections abov&; = 0.1keV but the shock loses its energy more quickly in order to refieate ions
and decelerates. So due to excessive wave loading and seoeledtion, the latter doesn’t remain in a
position to reflect ions of same energy and the lower eneiggftthe reflected ions broaden the energy
spectrum. Now, lowering@’; from 0.1keV to 0.05keV implies that less ions are reflected, reflection is
still linear and monoenergetic but is not of continuous re&tuA further decrease in initidl’; below
0.05keV, we again fall back to cold ions case and the ion reflectiothaeiremain linear nor sustain
monoenergetic nature for longer times.

7.2.2 Carbon lon Simulations

Heavy ions €.g. carbon) can not be accelerated as efficiently as protong,sithe to the lower
charge to mass rati( A) the electric force per unit mass is smaller on heavier igvis performed the
simulations for the carbon ions havidg A = 1/2 by replacing protons, keeping all the parameters same
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Figure 7.5:Carbon ion simulationSnapshots at three different times of ion densityelectrostatic field:, and
the ion phase spack(x, px) for the simulations performed &eft frame: (a)cold ion background’; = 0 keV
showing the propagating of SAW without any ion reflection &ight frame: (b)T; ~ 2 % 10 %m.c? = 1 keV
respectively, showing the onset of “continuous” shock Iiwe reflection. A transition from SAW to shock wave
is clearly observable. All the other parameters are idaht Fig7.1. Although the number of reflected ions
increases with increasing initidl;, but shock looses its energy to the reflected ions and lagadbelihe insets
show the corresponding ion spectra, including only the ionthe region around the SAW or shock wave and
excluding ions located near the target boundaries. Siioulgarameters ar@, = 4, 7 = 607 andn,. = 4n..

as of Fig7.1 Fig.7.5 (left frame) shows the simulation performed for initiallgld ions (T; = OkeV).
Two SAWs are formed from the target front surface which propagatiéislig at a velocityv, ~ 0.042c

(at 80T) and later disperse with time. We did not observe any ion ¢éfle from the leadingsAW
while the secondAW undergoes some ion reflection. The ion reflected from thenseSAW get
trapped by the huge electrostatic field of the first SAW. Dug¢ht ion reflection, the secorg§AW
loses its velocity tav, = 0.039c by the time200T, giving some of its energy to reflected ions while
the first SAW propagates with almost constant velocity ~ 0.041¢ without much loss in its energy.
Calculating for theSAW electrostatic potentialwhich does not exceed the stability threshold condition
(Ze® . < mjv?/2) and SAW propagates without any ion reflection as shown in phase gpate of
Fig.7.5(left frame). Therefore in a cold carbon ion background,rigftection is hardly to occur from the
SAW front and the latter remains symmetric for much longere. These simulation results confirms
that the stability condition (EQ.1) is strongly dependent upon ttfe/ A factor as for the carbon ions
case, the potential energy term is lowered by a fact@tbfan that of kinetic energy term.

Fig.7.5right frame) shows the same simulation as above but witmgialiion temperaturél’; =
1keV, We envisioned the SAW turns into shock wave and the shoak iEomoving with a velocity
vs =~ 0.04c at80T, reflecting ions to double its velocity, = 2v, ~ 0.08¢c. As a consequence a peak of
~ 30— 35MeV smears out in energy spectrum (inset Figright frame a80T). Because of continuous
ion reflection from the shock front, its velocity decreasest~ 0.034c at200T as a result the spectrum
of reflected carbon ions get broader.

Estimating the electrostatic field &T, the leading shock wave have an electric field peak value
Enax &~ 0.41E( and a total shock extensidn= 0.6\ = 1.27c/w, as a result the electrostatic potential
energy comes out to #&e®,,,, ~ 9.3m.c?. Due to the initial velocity distribution, the front backgymd
ions have some initial velocity spread. Calculating theekimenergy of front background ions &iT

2 Estimated aB0T, the first SAW have have an electric field peak valg ~ 0.24E¢, whereEy = mewc/e and a
total SAW extensiorl, ~ 0.7\ = 1.47c/w. From this we can estima@e®max = ZeEmaxL ~ 6.3mec? (UsingZ = 6 for
carbon), which is quite below of the threshold kinetic egetguv?/2 ~ 19.4m.c?, wherem;(carbon massy 12m,(proton
mass). Computing again the electrostatic potentiad0afl’ which have a peak valuEmax = 0.5Eo and SAW extension
L ~ 0.7)\ = 1.4mc/w it comes out to b&ePmax ~ 13.2m.c? which is still below the threshold kinetic energy 17.6m..c>
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from the Eq7.1, it comes out to bef; = 8.6m.c?, which is below than that of electrostatic potential
energy of shocke®,,., ~ 9.3m.c?. Thus the shock front reflect the front background ions ateirly
observable in phase space plot of Fi§.(right frame). This simulation study confirms that carbonsio
can be accelerated with some optimal initial ion tempeeatur

7.3 Simulation Results fora, = 1 amplitude

In order to find an “optimal ion temperatuiig” resulting from a trade-off between beam monoener-
geticity and efficient ion acceleration, we also performesl gsimulations at a bit lower relativistic laser
intensityl = 1.4 x 10'¥W /cm? corresponding to laser pulse amplituge= 1 to check the effect on
the “initial ion temperature window” for which we can effioity reflect small number of ions without
any significant wave loading, i.e. the SAW or shock velocégnains stable for much longer times and
reflect ions of monoenergetic nature.

7.3.1 Warm ion simulations

Fig.7.6 shows the snapshot at a fixed time durat2@dT of the simulations performed by varying
the initial ion temperatures in tHE, = 0 — 5keV range. In a cold ion background as shown in Figa,
an ion nonlinear wave is launched into the target, in the fofSBAW or multi-peak structures which
undergo ion reflection by solitary pulsations. Due to thersirelectric field oscillations, the ion re-
flection from the SAW front occurs at some certain instantm@lthe propagation path and is quite a
nonlinear phenomenon. Due to the multiple ion reflectionglifiérent energies, the spectrum of the
latter is no longer monoenergetic (see Figa). With a slight change in the initial ion temperature
T; = 10eV(Fig.7.6b), the time of event of ion reflection fro®AW changes, such that tlAW starts
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Figure 7.6:LP simulations: Snapshotsof, £, and the contours of thg (x, p..) ion phase space inlag,,-scale
showing evolution of electrostatic shock wave and the iomagiyics at a fixed time interval of= 200Ty,, for six
different cases(a:) for an initial cold ionsT; = 0 keV, (b:) for an initial ion temperaturd; = 0.01 keV, (c:)
for initial 7; = 0.05 keV, (d:) for initial 7; = 0.1 keV, (e:) for initial 7; = 1 keV, () for initial 7; = 5 keV
respectively. Simulation parameters age= 1, n. = 2n., 8um target and pulse duratian= 607"
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to reflect ions at early times,e. at 100T than that of cold ions case in which the first ion reflection
occurs around50T. The leadingSAW propagating with a velocity, ~ 0.024c, reflect small fraction
of ions (1.5 x 107?) in the narrow spectral peak af1MeV (Fig.7.7b) implies a conversion efficiency
2 x 1079 of the 28] pulse energy. We noticed that the electric field amplitudguige stationary and
the SAW is more stable in this case and thus reflects ions of cons&otity. As a consequence, with
respect to “cold ions” case, the reflected ions are of mongetie nature. So even changing a slight
initial ion temperature (i.el0eV), the ion reflection become “linear” in the sense that, agikien wave
speedv,, we always have some ions in the tail of the distribution fiomcwhich can be reflected. Thus
in order for just a minority of the ions to be reflected, the distribution must have an initial velocity
spread.

We also performed other simulations in range of initial iemperature fronTi = 20eV to 100eV,
two of which are shown in Fig.6(c—d) having initial ion temperaturgdeV and100eV respectively. We
see that the number of reflected ions increases by incredsérigitial ion temperature as there are now
more ions in the range which ttAW front can easily pick and reflect to twice the shock velocitgts
that the fraction of reflected ions far, = 50eV are ~ 4x 10~ which further increases te 6x 10~ for
T; = 100eV. The increase of the ions number can be observed from thatieariof the monoenergetic
peak shown in Fig.7(b — d). So in this initial ion temperature range froif} = 10eV — 100eV,
we observed that the fraction of reflected ions increasdsowitmuch significant wave loading and the
shock propagates almost at a constant veloaity= 0.025 + 0.001c), reflect ions of monoenergetic
nature which is also observed in the phase space plots of. &lg.— d) showing a straight line.

Fig.7.6(e-f) shows the result at initidl'; = 1keV andT; = 5keV respectively having shock-like ion
reflection. The ion reflection from the beginning is contins@nd steady. The fraction of reflected ions
is 14 x 10~° for T; = 1keV which further increases &0 x 10~° for T; = 5keV and is much higher than
that of previous warm ion results (Fig6(b-d)). As a result, in order to reflect more ions, shock loses
its energy, lags behind and is =t 3.8 \(Fig.7.6e) and3.2\(Fig.7.6f) for T; = 1keV andT; = 5keV
respectively and the reflected ions have a broad energyrape¢Eig.7.7(e-f)). The density peaks and
the electrostatic field are clearly observable in cas@;of= 1keV(Fig.7.6e) which means that shock
wave still exists and is propagating forward by reflectingsivhile in case ofl; = 5keV (Fig.7.6f), the
density peaks and electrostatic field are completely loghbytime200T which means that the shock
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Figure 7.7:Snapshots at fixed= 200T}, time duration of the corresponding ion spectrum for sixedéht cases
as shown in Fig.7.6 including only the ions in the region around tRAW or shock wave and excluding ions
located near the target boundaries.
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wave doesn’t exist anymore and has damped out by losing ahiérgy to reflected ions.

Thus from the above simulation results described in §e8.and 7.4, at laser pulse amplitude of
ap = 4 andag = 1 respectively, we envision that at a lower amplituge= 1, the SAW is able to reflect
monoenergetic ions even with a slight initial ion distribat i.e. T; = 10eV. For theag = 1 case, the
range of initial ion temperature window in which tRAW/shock reflect monoenergetic ions is large and
is betweenT; = 10eV — 100eV. Now with the increase in laser intensity 49 = 4, more nonlinear
and kinetic effects come into play and we observe a narrogerafinitial ion temperature window, i.e.
betweenT; = 50eV — 100eV at which the SAW/shock remains stable for longer times afidations
of narrow energy spread. Further increasing the laser @utggitude toay = 16, there is hardly any
optimal initial ion temperature at which the reflected ions monoenergetic. Although the number of
reflected ions increase with increase in inifia) but because of other nonlinear effects and instabilities,
the shock velocity does not remain constant for much timelaeses its energy along the propagation
path. Formation of monoenergetic ion spectra seems to be favored for moderate values of laser
amplitudeag ~ 1 — 4.

7.4 2D Simulation Results

We will now discuss our preliminary results of the 2D PIC siations’ performed at a laser ampli-
tude ofag = 1 and for the “warm ions” having initial'; = 0.1keV, keeping all the parameters same as
that of Fig7.6d, at lower resolutiodz = A/100 andN,, = 100 particle per cell. The simulation box is
set asl40pm x 15um and the laser beam has Gaussian intensity distributionthétidiameter ofum
in the transversg— direction.

Fig.7.8shows the proton density in the configuration space in whigbuble layer front in the form

3 the simulations were made with the help of Andrea Sgattorthey2D PIC code “ALaDyn”.
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Figure 7.8:2D PIC simulation: Snapshots at three different time daretiof a shock wave, showing the proton
density in the configuration space. The simulation is id@thtio the 1D simulation shown in Fig&d at an initial

T; = 0.1keV. Laser pulse is P-polarized having waisf = 5\ having N, = 100 andA, = A, = A\/100,
Simulation parameters atg = 1, 7 = 50T andn, = 2n..
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of a damped or short shock wave is formed at the target frafas We observed that the double layer
front shows a transverse modulation with time. The devekaprof transverse ripples on the shock front
causes a different evolution of the shock with time and tleekislows down more quickly than that of
1D simulations (Figi.6d), resulting in broadening of the energy spectrum. Wherrithge amplitude
increases and becomes comparable to the shock wavelehgtinstability may enter the nonlinear
phase and the shock velocity starts to decrease. Lower $rafnBig.7.9 shows that modulations in
the longitudinal momentunp() as a function of the transverse coordinajgdre present on the shock
surface. As a consequence, the reflected ions from the shockdre of different energy and don't
display a monoenergetic spectrum. The decrease in the speekl can be observed from the slope of
the reflected ions shown in FigYupper frames), which broadens towards lower energy side.

The quick deceleration of shock speed might be explainediéh & way that a small initial ion
temperature produces the perturbation growth of ripplakesurface of a uniform target and interaction
of a shock wave with periodic or localized perturbationsaahef the shock front distorts the shape of
the shock front and can cause a Richtmyer-Meshkov (RM) tgptability growth[L68]. Now due to
strong electron heating, the plasma is strongly perturfidéak shock wave which is formed within the
bulk when hits the perturbed interface, ripples on the regtband transmitted shock surface are induced
which lead to the generation RM instability which is furttdrniven by the shear velocity left by the
rippled shocks at the plasma interface. Such interactidrishwead to complicated flows may be caused
by the variation in the density and pressure gradients. Bfulsitions results have highlighted more
clearly the growth of instabilities and perturbations wihwee didn’t predict in our 1D simulation results,
and2D simulations at high numerical resolution are much demanutirorder to study such interactions
in more detail.

The evolution of RM instability has a close relationship lwihe compressibility of the system.
Therefore, the combination of compressibility phenomerguch as the shock interaction with interface
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Figure 7.9:2D PIC simulation: Snapshots at three differésit’, 100T and140T time durations of a shock wave.
In this we cut the selection with a transverse coordinate [—2 : 2]\ from the Fig7.8. A strong modulation
instability is present which slows down the shock and theectdld ions don’t display a monoenergetic spectrum
and becomes less energetic with time.
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which includes the linear and nonlinear growth and subsgquansition to turbulence flow across a
wide range of Mach numbers and is quite a challenging taskhieorists and experimentalist€[9].
2D simulations results show the onset of rippling at the kHoant. This rippling apparently leads to
a broad ion spectrum, in contrast to the monoenergetic spaadbserved in 1D simulations for the
same parameters. Work is needed to understand the instabdichanism which leads to deceleration
of shock speed and to identify the possible stabilizatioatetjies for monoenergetic ion acceleration.

7.5 Simulations with Circular Polarized Pulses

In this part, we will explain the effect of initial electroarnperatureT,.) on electrostatic SAW/shock
generation and related ion acceleration, in an overderasmal irradiated with intense femtosecond
circular polarized CP) pulses. The laser pulse is circularly polarized with a paaiplitudea, =
1/4/2 = 0.71, and have duratiom = 200T, the temporal profile is composed B9T long, sin?-like
rising and falling ramps and B80T plateau. All the other parameters are same as of Fg. Fig7.10
shows the snapshots at a fixed tigt®T for different initial electron temperaturé,. As we increase
the initial T, a distinct transition from the laser driven piston scemavith all ions being reflected to
the collisionless electrostatic shock/soliton scenagwitig partial ion reflection has been found. The
results in Figr.11(b — ¢) show that at low and finite value of initidl,, we can enhance the accelerated
ion energy with respect to initially cold electrons (Fid.1a)

When the target is initially coldT, = 0), in contrast toL.P pulses in which the hot electrons are
easily generated and we observe the generation of solitaystic wavegSAW) which propagate and
reflect ions as studied in Fig6a), for CP pulses, there is no effective heating mechanism and a “quasi
stationary double layer” structure is maintained for a Emgime as shown in Fig.1Gx. Calculating
the hole boring velocity, it comes out to bg = 0.01¢ and is in good agreement with thE3 formula
(Eq6.17 of Ch.6). Until the laser pulse is on, the ions are getting reflectattinuously by the laser-
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Figure 7.10:CP case: Snapshots at fixed= 200T, time duration of the simulations performed at different
initial T, using CP pulses. Simulation parametersare- 0.71, 7 = 200T andn, = 2n.. The result shows that
at some finite initialT,,, electrostatic perturbations in form of solitary or shockwas can be generated also for
circular polarized pulses.
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Figure 7.11:Snapshot of the corresponding ion spectrum for six diffecases as shown in Figg10including
only the ions in the region around the SAW or shock wave antlidktg ions located near the target boundaries.
The spectrum shows the increase of cutoff energy fodiveV to 0.6MeV

driven piston, to twice the piston velocity (equal to theenbbring HB) velocity v,,). As a result, we
get two sharp peaks in the ion phase space having vel0dity: and0.02¢, corresponding to about
0.1MeV and0.02MeV energy in the ion spectrum. From previous studie$IB{95], we also know
that the formation of the highest energy peak is related teewmeaking of the ion density spike at
the laser-plasma interface. THE3 acceleration mechanism is quite promising and successfll'?
pulses since the final reflected ions are very monoenergesb@wn in Figr.11a.

Now, in a warm electron plasm&, > 0), wave breaking is affected by the electron temperature
because the electron pressure prevents the formation gf sleasity spikes. It is difficult to predict
the consequences on the ion spectrum but qualitativelytisumprising that everything becomes more
turbulent and the spectrum broadens up (Figl(b — d)). As we know for soliton or shock generation,
the Mach numbeM =uv,/c plays a crucial role which indirectly is strongly dependentT.. For CP
pulses, when the initial', = 0, the ions which are kept cold and immobile, will be influeneeul
reflected by the laser piston action and there is hardly anytransmission occur within the plasma
as the background ions remain unperturbed. Now with theaisaitial T., we can see clearly in
Fig.7.10b — e) that some ions (clear from the ion density peaks) are gettiatached” from the hole
boring front and then the non-linear phase space strucao@as's between the density peaks. The ion
reflection and trapping phenomenons can be clearly obsémtbe phase space in FiglQc —e). So
as compared to the cold electron case, when the ifiitial> 0, we observed some sort of ion-acoustic
perturbations which can transmit and propagate in the @adiVe also observed that far, = 0, the
electric field is unipolar and positive (Fig1l(Qxy), while as we increase the initidl,, the electric fields
turns to be bipolar and at initidll, = 15 — 20keV (Fig.7.10(e — f)), the bipolar electric field is quite
large and of sawtooth shape in which some ion acoustic waadd@ propagate along the path. Fig.1
shows the reflected ion energy at different inifial. We observed that with increase of initiél, the
final cut off energy of the reflected ions increases up-t@).5MeV(Fig.7.11e) which is three times
higher than that of cold electrons case(Fidla).

Now looking at the initial warm electrons cag€. # 0), whether these perturbations in the ion
phase space are merely some nonlinear ion-acoustic wase|itan/ shock wave, we will find out the
Mach number ¥I). As for the T, = 0 case, in which the electron temperature is negligibly small
so the ion acoustic velocity, = ZT./m; will be very small or hardly zero. Thus the Mach number
M =wv,/cs will be quite large and will exceed the critical valdé, ~ 6.5 above which one does not
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have a shock but a pure piston. This is what we observed héfrg ia 0 case (Figl.1(), that the ions
are accelerated by the laser driven piston. Thus formatidgrue shocks is inhibited fo€P pulses at
initial T, = 0 because of the reduced electron heating. Now for initialtede temperaturél’, = 1keV,

the ion acoustic velocity has a finite value= 0.001c. Calculating for the hole boring front velocity,
which comesy,,, = 0.011c. So the Mach numbeN =11 has some finite value as comparedlto= 0
case. Increasing further the initial electron temperaitye= 5keV (Fig.7.1Q), the ion acoustic speed
increases to; = 0.0023c and the Mach number decreased®ftox 5.7 and we may call the perturbation
as a strong turbulent shock. Further increasing the initia: 10keV case, due to variation in the and

cs, the Mach number decreasesMo= 4. Looking carefully at the ion phase space in Fig0c — d),

we observed that as we increase the inifigl the ion reflection from the shock front has decreased. For
the higher Mach number, the shock is quite turbulent andatsfie continuous flow of ions of different
energies. As the Mach number decreases, the shock no la@mgains so strong to reflect ions in large
fractions. Thus ion reflection decreases with decrease ichMiamber. For initiall, = 15keV, the
Mach number further decreasesNb ~ 1.7, as a result the shock may transit to solitary waves and
reflection occurs at some finite time intervals (FidCe). Further increase thé, = 20keV, the ion
reflection is completely stopped (Figl(f). These simulation results infer that SAW or shock waves
can be generated also with the CP pulses, having some #litietron distribution.



CHAPTER 8

Conclusion and Future work

8.1 Conclusion

In this section we will summarize the results of our thesischapter 6 which is based on our in-
vestigation reported in RelJ(, we have highlighted that a super-intense laser pulseactieg with
an overdense plasma may drive the generation of both soéitedt multiple- peak structures depending
upon the laser pulse duration. The structures are genatateth the combined action of radiation pres-
sure acting as a piston at the front surface (“hole boringeberation) and of the heating of electrons
by the laser pulse, which occurs only for linear polarizatiBossibly novel features observed in the dy-
namics of solitary structures include a strong collectigeiltation of the electric field, and the “pulsed”
nature of ion acceleration by reflection from the wave frdthbnoenergetic peaks appear only as a result
of such pulse acceleration in which the corresponding numbiens is relatively low. Acceleration of
larger fractions of ions leads to quenching and slowing dofithe wave, resulting in broadening of the
energy spectrum. In particular, in a cold-ion backgroundyeMoading effects prevent true shock wave
formation and efficient monoenergetic acceleration.

The background ion distribution plays an important parthi@ ion acceleration dynamics. For in-
stance, appearance of a “classic” shock wave-like streatith continuous reflection of ions from the
wave front is observed only for some finite initial ion termgtere. Comparing with previous work, we
argue that the simple picture of “shock acceleration” asslae reflection from a moving front might
not fully explain the features observed in simulations. réhee envision a possibly novel mechanism of
ion “surfing” acceleration in a nonlinear ion “wave” drivegy pulsed radiation pressure acceleration at
the laser-plasma interface. Conditions on laser and plgsweaneters for the generation and stability of
both shock- and soliton-like waves have been presentedul@ity polarized pulses drive “hole boring”
or “pure piston” acceleration at the plasma surface, acatld ions propagate through the plasma in a
purely ballistic way causing almost no perturbation in tlesma and do not generate nonlinear solitary
or shock waves in an initially cold plasma. In general, theaiyics of shock acceleration in the plasma
bulk appears to be more complex than the simple picture @atédh from a moving wall.

Further investigations byD PIC simulations performed in chapt&mprove that in a cold ion back-
ground plasma using LP pulses, ion reflection occur by sglitaulsations”. This is a “nonlinear*
phenomenon and is not easy to control, whenever it occueasedt involves too many ions and sooner
or later results in broadening of ion spectrum. Our studygests that obtaining monoenergetic spectra
is not straightforward, even when neglecting the side efiéthe sheath field. We observe monoener-
getic peaks in the simulations only when short-durationbanches are accelerated by solitary waves
generated by the laser-plasma interaction or with the shagsles generated at some “optimal” initial ion
temperature. Even with a slight increase of the initial immperature, ion reflection becomes “linear” in
the sense that there always are some ions in the tail of thrgyedestribution function which can be re-
flected and there occurs “steady” ion reflection. For too Imdfal ion temperature, due to “continuous”
ions reflection there are too much reflected ions and the dbeek its velocity more quickly, as a conse-
guence we fall back in energy due to excessive wave loading.\&arm ions” simulations suggests that
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it can be possible for given laser and plasma parametersid@fi “optimal” ion temperaturd; result-

ing from a trade-off between beam monoenergeticity andieffay, since a small number of reflected
ions decrease wave loading. For the CP pulses, we envisidithi role of initial electron temperature
is quite important in generation of ion acoustic pertudratin form of soliton/shock waves. Both the
electron and and ion energy distribution (determined bgriagasma interaction) plays important role
in shaping these coherent fields and accelerating ions. [Ebhran energy determines their propagation
velocity while the ion distribution affects how ions are eefied by these waves and can turn them from
ion acoustic solitary waves to ion acoustic shocks.

8.2 Future work

The results presented in this thesis illustrate severatasting physical phenomena and provide a
basis for further investigations as direct extensions ofvoark. In this regard, we suggest below some
open problems which can be addressed in the future.

A key issue to be further clarified for potential applicatiswhether having a monoenergetic spec-
trum is not compatible with efficiency, as suggested by auugtions and also by the recent experiment
of Haberberger et al.7B]. In this latter experiment, it was suggested that the shamkes are not driven
directly by radiation pressure but rather by electron Imggtand that the particular structure of the £LO
laser pulse plays an important role. The mechanism for boticksgeneration and acceleration need
to be further studied by simulations, although simulatihg &ctual experimental parameters is very
demanding, mostly because of the long duration of the lagksep Although we showed by 1D PIC
simulations that shock acceleration may be very monoetieligea proper range of the ion temperature,
so far preliminary tests in 2D simulations have failed toaiibta similar spectrum. The reason seems
to be related to the fast transverse rippling of the shoctasar An extended investigation in 2D will
be needed to characterize such phenomenon and to giveiatiiefdr its theoretical interpretation. The
pulsations of the electric field we observed in solitary vgaigea new phenomenon that is interesting
on its own. A refinement of the very simple “thin foil” modelgsented irSec.6.2.4 Ch.6, taking into
account the drift and the detailed structure of the soliteaye, may also warrant further investigation.
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