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Abstract

This thesis presents a theoretical study of the interactionof intense, ultrashort laser pulses with over-
dense plasmas. Main objectives are to understand the basic phenomenon which leads to the formation
of non-linear electrostatic coherent wave structures in form of either solitary ion acoustic waves(SAW)

or collisionless shock waves(CSW). These different types of waves have been classified according to
Sagdeev’s theory and related formulas have been used for comparison with the numerical results. The
particular focus is on the effect on ion acceleration, by means of ion refection by the moving electro-
static field associated to the shocks/solitons. An extensive numerical study by 1D PIC simulations has
been performed and in particular the differences arising between linearly polarized pulses and circularly
polarized pulses have been discussed. In a cold plasma, ion bunches produced by “hole boring” (HB)
radiation pressure acceleration at the target surface may propagate in the bulk as solitary waves. The ac-
celeration mechanism of these ion bunches has been discussed pointing out a distinction between shock
acceleration(SA) andHB acceleration, also with respect to some recent experimental results. Stability
of (SAW) or (CSW) and ion reflection from them has been found to be strongly dependent on the initial
velocity distribution of ions. The effect of both the ion andthe electron temperature on the generation
and evolution of solitary acoustic waves have been discussed.



CHAPTER 1

Introduction

1.1 Background and motivation

Lasers are one of the most significant inventions of the twentieth century. Since the invention of laser
in 1960 [1], lasers are continuously gaining importance in the field ofplasma physics. Up-to now, this
technology has been vastly improved, from powerful lasers for industrial purposes to spectrally narrow
banded continuous wave lasers for microscopic measurements of fundamental constants. When laser
made its debut in 1960, at that time different groups across the world were working to understand the
behavior of matter in the presence of an external applied field. Lasers invention comes as an excellent
source to boost up these studies to a new level. The inventionof pulse amplification of lasers opened
many excited research opportunities in the field of laser-matter interactions. The first enhancements in
the laser intensity of the order of1015Wcm−2 were feasible at the end of the1970s by theQ−switching
and mode locking experiments which provide high peak power in nanosecond or picosecond duration
pulses. The last three decades have witnessed an outstanding progress in the development of ultrashort
laser pulses and many multi-disciplinary fields of ultra-fast science phenomenons.

A major dramatic breakthrough in1985, with the invention of chirped pulse amplification technique
(CPA) [2] have led to the advent of new solid-state laser sources thatcan deliver very short pulses of
few tens of femtosecond(fs) which opened up many innovative opportunities in the domainof ultrashort
ultra-intense laser physics. These ultrashort laser pulses allow to reach very intense fields and provide
a strong increase in obtainable peak power. For example: a laser pulse of100mJ and a pulse duration
of 100fs corresponds to a peak power of1TW (1012W), when focused to a10µm diameter, it gives
us an intensity≃ 5 × 1018Wcm−2 at the focus. Thus ultrashort laser pulses can deposit a certain
amount of energy in a very short interval of time and opens many innovative approaches in laser matter
interactions which are complex but very enrich in physics. Up-to now, over the past 10 years, laser
intensities have increased by more than four orders of magnitude and reached up-to1021W/cm2 while
pulse durations have shortened below10 femtosecond [3]. The field strength at these intensities is of the
order of teravolt/cm which is100 times the Coulomb field that binds the electrons to the nucleus.

Therefore, it is now possible to create solid - density plasmas within a fraction of laser cycle by
ultrafast ionization and to study the laser interactions with plasmas in a regime where electrons oscillate
at relativistic velocities in the laser field. Due to the extreme light pressureP = 2I/c of the order of giga-
to terabar at the relativistic laser intensities, leads to avariety of novel and highly nonlinear phenomenons
which are of great interest for basic physics as well as for a number of scientific applications such as
high-order harmonics, electron and ion acceleration, X-ray and particle sources, in thermonuclear inertial
confinement fusion and in ultrafast optical devices. So the development of new diagnostic techniques
has marked a turning point for the comprehension of a varietyof non-linear effects and provide direct
informations on distributions of density and fields during the interaction.
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1.2 Particle acceleration with laser

Depending upon the laser and plasma parameters, the sub-field of the particle acceleration can be
divided into two domains of laser matter interactions. It was realized in1979 by Tajima and Dawson
[4] that a laser pulse propagating in a plasma can excite electron plasma waves which being longitudinal
can be used to accelerate particles within the plasma. Thus plasma based particle acceleration opened
an exciting field of extreme gradient beyond1TV/m and with the present advances in laser technology
having available laser intensities of1021W/cm2, electrons can be accelerated up-toGeV energies. An
electromagnetic pulse interacting with a plasma is termed as relativistically intense when its intensity
is so high that the velocity of the electrons oscillating in the transverse field of the pulse approaches
the velocity of light. The required intensity for this regime is∼ 1018W/cm2 for a pulse wavelength
of λ = 1µm. When the relativistically electromagnetic pulse interacts with a plasma, strong nonlinear
effects come into play [5, 6]. As at such high intensities, the quiver velocity of electrons becomes
comparable to the velocity of light and the effect of relativistic mass increase becomes significant such

thatmeff = γme whereγ = 1/
√

1− v2
q/c

2, vq is the quiver velocity of electrons.

On the contrary, ions can be efficiently accelerated up-to several tens of mega electron-volt per nu-
cleon (∼ MeV) energies with the interaction of short(< ps) laser pulses of intensityIλ2 > 1018W/cm2

with overdense plasma and is one of the active areas of research in the past few years. Ions, because
of their higher inertia than electrons, are not directly driven by the laser pulse and mostly relies on the
generation of the hot electrons. There are several mechanisms feasible at current accessible laser inten-
sities which lead to forward acceleration of high quality ion beams due to the generation of large electric
fields set by the laser accelerated electrons at the target interface. Ions having energies up-to several
MeVs had been observed in several high intensity laser matter interaction experiments with different
targets [7, 8, 9]. The isotropic ion emission with low brilliance in these experiments are not so attrac-
tive as ion accelerators for applications. In the year2000, some experimentalists [10, 11, 12] observed
an intense emission of multi−MeV protons from solid targets irradiated by high intensity laser pulses.
The outstanding characteristics of laser accelerated proton beams with high degree of collimation and
beam laminarity were quite impressive and generated an enormous interest both in fundamental research
and in the potential possible applications. The findings of forward proton emission of multi−MeV en-
ergy triggered discussions for their applications as ion source for the injection into conventional particle
accelerators[4]. An important application proposed for laser driven protons is to employ them in radia-
tion therapy as the protons or light ions, differently from electrons orX−rays deliver most of their energy
at the end of their path at the so called Bragg peak[13]. Due to their large mass, protons have little lateral
side scatter in the tissue, the beam does not broaden much andstay focused on the tumor shape, deliv-
ering small dose side effects to the surrounding tissues. The second physical reason is that energy loss
is dominated by coulomb collisions for which the cross section strongly grows with decreasing energies
such that the stopping process becomes progressively more and more efficient. This property of protons
and ions makes them suitable for highly localized energy deposition and give an edge to their role in
several potential applications such as ion beam cancer therapy, laser triggering and control of nuclear
reactions, fast ignition of Inertial Confinement Fusion targets and production and probing of warm dense
matter.

While the potential role of protons in so many applications was apparent, the details of the physics
behind the proton acceleration up-to∼ MeV energies were not clear. A debate arose on the actual
location of the region where the protons were accelerated and consistently, on the mechanism driving the
acceleration. To support the experiments[10, 11, 12] performed in year2000, Wilks et al.[14] introduced
the theoretical interpretation of proton acceleration with so called Target Normal Sheath Acceleration
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(TNSA) model. According toTNSA model, the ions get accelerated due to the space-charge field
generated at the rear side of the target by highly energetic “fast” electrons accelerated at the target front
surface, crossing the target bulk and escape in vacuum from the rear side. A brief discussion about
TNSA mechanism is described insec.3.1 of Ch.3. Although theTNSA generated proton beams are
highly laminar and of very low emittance, their broad energyspectrum is not optimal for most potential
applications. Hence this issue motivates the search of other ion acceleration mechanisms.

The other important mechanisms for ions acceleration whichhave been explored previously in astro-
physics context includes the radiation pressure acceleration (RPA) and collisionless shock acceleration
(CSA). These two mechanismsRPA andCSA are attracting a substantial amount of experimental and
theoretical attention due to the predicted superior scaling in terms of laser-ion conversion efficiency
and monoenergetic ion acceleration. According toRPA, a highly intense electromagnetic wave carries
strong momentum which may be delivered to a non-transparent(absorbing or reflecting) target.RPA
is related to the generation of steady ponderomotive force(PF) which acts inversely to particle mass.
At the surface of an overdense plasma, the electrons due to their lighter mass than ions, get strongly
pushed inwards by thePF, creating an electrostatic, back-holding charge separation field which in turn
accelerates the ions by delivering the EM wave momentum. While on the other side, according toCSA
mechanism, the strong intense laser pressure, pushes and compresses the target inwards at nearly rela-
tivistic speeds and such a strong compression and acceleration may lead to generation of strong nonlinear
collisionless shock waves which further may accelerate ions during propagation within the plasma bulk.
A detailed discussion about theRPA andCSA mechanism have been reported inCh.3. Since the above
definedRPA andCSA may have similar ion energy spectrum and makes it difficult todistinguish the
related ion acceleration. Therefore simple analytically affordable models are extremely useful to under-
stand and distinguish these basic acceleration mechanisms. We will show by numericalPIC simulations
thatCSA does lead to acceleration of ions in the bulk whileRPA which actually occurs at the target
front surface does not accelerate ions within the bulk.

Now considering a linearly polarized laser and define the normalized amplitudea0 of the laser vector
potential as

a0 ≡
pq

mec
=

eEL

mecωL

= 0.85(I18λ
2
µ)

1/2. (1.1)

wherepq is the quiver momentum of electrons andEL is the laser electric field. The dimensionless
parametera0 is frequently used to characterize the importance of relativistic effects. WhenI18λ2

µ > 1.4

we havea0 > 1 and electrons oscillate at relativistic velocities. This leads to relativistic effects which
modify the propagation of theEM laser wave in a plasma[15, 16]. Consequently, the propagation of
such relativistic intense laser pulses is allowed even in the overdense plasmas. The motion of electron in
electromagnetic field is determined by the Lorentz force (−e[E + v ×B]). An electron irradiated by a
laser pulse witha0 ≪ 1 performs harmonic oscillation transverse to the laser propagation. Fora0 > 1,
due to the effect of the magnetic termv × B, the force becomes nonlinear and the electrons oscillate
along the laser direction. Due to the shape of the pulse, the effective electron mass and therefore the
effective electron plasma frequency (ωeff = ωp/

√
γ) gain a intensity dependence and as a result, the

interaction gets highly nonlinear. Nonlinearity is a fascinating element of nature whose importance has
been appreciated for many years when considering large amplitude wave motions observed in various
fields, e.g.,fluids and plasmas, astrophysics, particle physics, laser plasma interactionsetc. The non-
linearity which arises through the generation of higher order harmonics at different frequencies[17], the
nonlinear Lorentz force and the ponderomotive force etc., is the source of many physical phenomenons
such as relativistic plasma transparency, laser pulse selffocusing [18], excitation of nonlinear plasma
waves and the generation of coherent electrostatic structures such as solitary waves, shock waves and
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vortices etc[19, 20].

1.3 Solitary and Shock Waves in Plasma

Localized large amplitude waves called solitons or solitary waves[21] which propagate in a medium
without spreading and have particle like properties, represent one of the most striking aspects of nonlin-
ear phenomenons. Nonlinear effects play an important role to undergo steepening of the leading edge of
the wave. It is frequently found in plasma dynamics that the dispersion effects become significant as the
steepness of the wave front increases. With this nonlinear deformation, the portion of the wave profile
characterized by high velocities tend to overtake the portion characterized by low velocities such that a
discontinuity is ultimately formed which lead to wave steepening. In the system of wave equations, the
nonlinearity, i.e., the dependence of the behavior of the wave packet on its amplitude and the generation
of high order harmonics with large wave numbers, can enhancedissipation or trigger instabilities of the
wave packets. Solitary waves are formed due to the balance between the effect of nonlinearity and the
dispersion (when dissipation is negligible). The study of solitary waves is important to understand the
particle or energy transport mechanisms in plasmas and plays an important role in the wide spectrum of
research related to nonlinear plasma physics [22]. In general, it is possible for a high intensity laser to
excite nonlinear plasma waves and by this transfer energy into the plasma. The solitary waves in plas-
mas are interesting localized wave modes, occur in the form of modulated wave packets in the form of
electrostatic [23] or electromagnetic solitons [24] nonlinearly coupled to the space charge fields. These
nonlinear structures can be created in the laboratory or externally launched in laboratory plasma under
control conditions. However, if the dissipative effects are comparable to or dominant over the dispersion
effects, the shock wave may generate within the system.

Solitary waves are formed in laser-plasma interactions when the laser ponderomotive pressure de-
pletes the local electron density which get accumulated at the two edges and provide the trapping of
electromagnetic radiations in the form of a soliton. Insidethe soliton, due to the variation in the am-
plitude of the pulse, the ponderomotive force (nonlinearity) sustains the space charge field (dispersion).
Such envelope soliton structures provide the mechanism forthe penetration of intense laser pulses into
an overdense plasma[25] and can be considered as a solution for transporting laser energy deep into
the overdense regions. The solitons propagate with relativistic velocities, can be extremely useful for
the charge particle acceleration [4]. A detailed description about the solitary waves in relativistic laser
plasmas and the balance between the nonlinearity and dispersion by the complex set of nonlinear partial
differential equations has been reported inCh.4

The other nonlinear structure which we observe in our numerical simulation is a shock wave. A
shock wave in a broad sense is a transition layer which causesa change in the state of the plasma and
which is stationary (on the average) in time in its referenceframe. In laboratory plasma, the transition
layer generally propagates through the plasma, changing the plasma state as it flows. Historically, the
first study about the shock formation have been carried out byErnest Mach in a gas dynamics. Mach
observed in his experiment that when the relative velocityvrel between the fluid and the obstacle (e.g
bullet) reached the range of values for which the the ratio with the sound speed (cs) was greater than
one; i.e, when Mach numberM = vrel/cs > 1 (i.e. supersonic), a discontinuity appeared in density,
velocity and temperature in the spatial region close to the obstacle. In this case the flow is too fast for
the disturbances generated by the obstacle to propagate large distances upstream and we call it that the
flow is shocked. In collision dominated plasmas, the densityrise across a shock occurs in a distance of
the order of few collision mean free paths (λcoll) while in a collisionless shock, the thickness over which
the shock occurs can be much larger. The attention here will be focused on the collisionless shocks(CS)
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which results in particle acceleration, in order to developan useful theoretical framework for interpreting
the numerical simulation results illustrated inCh.6 andCh.7.

In laboratory experiments, first evidence ofCS waves had been reported in1965[26], since then the
research on this topic has developed into its own discipline. In the theoretical investigation of laminarCS
waves which have been first proposed by Sagdeev in his review paper[27], dispersion limits the nonlinear
steepening of the wave and a trailing or leading edge wave train is generated. Dissipation can enter by
few processes such as particle reflection and particle trapping, which leads to damping of the wave train.
For small Mach number shocks, the kinetic theory of laminar shock waves is fairly complete[27, 28] and
insights many microscopic physics processes taking place during collisionless shock formation. Later,
the insight into theCS waves formation and the introduction of the equivalent Sagdeev pseudo-potential
method clarified many open points and determined the direction of future shock research. Nowadays
electrostatic collisionless shocks can be generated by laser produced hydrogen plasma and is the area
of high interest at the moment because of monoenergetic ion acceleration from the collisionless shock
waves. A detailed discussion about generation of collisionless shock wave and the related ion accelera-
tion have been performed inCh.3 andCh.4.

1.4 Layout of the thesis

This PhD dissertation is a report of numerical study of nonlinear electrostatic wave generation (soli-
tary and shock waves) and ion acceleration with high intensity lasers. The work described in this thesis
has been carried out in Plasma Physics group, University of Pisa, led by Prof. Francesco Pegoraro. The
purpose of the numerical study performed in the field of laser-overdense target interaction is to study the
generation of nonlinear solitary and collisionless shock waves in plasma and to understand the physics
behind the monoenergetic ion acceleration. The thesis is structured as follows.

Chapter-2: Provides an introduction about the laser pulse propagationand interaction with over-
dense plasma. Electron dynamics and its acceleration with ponderomotive force in the non-relativistic
as well as in relativistic regime have been described. The various regimes of laser pulse absorption in
plasmas at low, moderate and at relativistic intensities are discussed.

Chapter-3: Three important ion acceleration mechanisms, i.e Target Normal Sheath Acceleration
(TNSA), Radiation pressure acceleration(RPA) and Collisionless Shock Acceleration(CSA) are dis-
cussed.

Chapter-4: A linear analysis of ion acoustic waves followed by the nonlinear analysis of ion acoustic
solitons and shock waves are discussed. A general description of solitons and shock waves in plasmas
is provided. Reductive perturbation and Sagdeev pseudo-potential method are explained to find out
solutions of occurrence of ion acoustic solitons and collisionless shocks. Particles reflection, particle
trapping and damping of the electrostatic solitary waves have been explained.

Chapter-5 A brief study about Particle in cell method is presented in this section. The simulation
code PHIC (based on thePIC method) is used throughout this work and is described in detail by putting
into the context of other simulation codes and methods.

Chapter-6 1D PIC Simulation results of solitary and shock wave generation bylinear polarized
laser interaction with overdense target are presented in this section. Role of initial ion distribution in
generation of these nonlinear electrostatic waves have been discussed. Circular polarized simulations
have been discussed to explain the role of pulse polarization and the role of electron temperature in gen-
eration of collisionless solitary and shock waves. Test particles simulations are performed to distinguish
the hole-boringHB− RPA and collisionless shock acceleration mechanism.



1.4 Layout of the thesis 11

Chapter-7 Role of initial ion distribution in collisionless shock stability and related monoener-
getic ion acceleration has been discussed for linear polarized pulses at moderate intensities of1018 −
1019W/cm2. 2D PIC simulations have been performed to understand the shock deceleration and related
instabilities. Role of initial electron temperature and generation of non-linear electrostatic perturbation
in form of solitons and shock waves for the circular polarized pulses have been prescribed.

Chapter-8: The main results of this work are summarized and our conclusions and prospects for the
future work are presented in this chapter.



CHAPTER 2

Laser Pulse Interaction with Overdense
Plasma

2.1 Outline

A large variety of nonlinear phenomenons occurs during the laser-matter interaction which modi-
fies the matter physical parameters and effects the further laser interaction with matter. Analyzing the
laser-matter interactions, one has to consider a number of physical processes that occur within the matter
under the influence of the electromagnetic(EM) fields generated by the laser pulse. Depending on the
laser pulse parameters (i.e. pulse profile, duration and intensity etc.), the laser induces many processes
on the front side of target such as surface melting, evaporation, ablation and ionization which funda-
mentally effects the laser pulse propagation and the physics of the laser energy transfer to the target.
The laser pulse may encounter either a very steep density gradient by interacting directly with an almost
undisturbed overdense target or an extended region of the underdense preplasma formation, where the
pulse interact firstly with the free electrons over a long distance and excite strong plasma waves and
instabilities [29].

In this chapter, we focused on the certain fundamental aspects and on the main physical parameters
which characterize the laser-matter interactions. Section 2.2 is devoted to the physics and technology
concerned with the amplification of ultrashort laser pulsestriggered by chirped pulse amplification. In
ultrashort laser pulse interactions, the electrons are themain energy carriers. So the dynamics of free
electron both in the non-relativistic as well as in relativistic laser field will be described in section2.3
and2.4. The phenomenon of ponderomotive acceleration for non-relativistic and relativistic regimes
will be discussed in section2.3 and2.5 respectively. In the section2.7 and2.8, we will review a few
major absorption mechanisms to the laser-overdense plasmainteraction.

2.2 Ultrashort Laser Pulse Amplification

The development of compact table-top tera-watt laser systems delivering intense, ultra-short pulses
relies on the major advancement in technology of chirped pulse amplification (CPA) developed in mid
eighties [2, 30]. The CPA technique was originally developed for the microwave devices (e.g. radars)
to overcome the power limitations of radars[31]. In 1985, it was realized by Mourou and his group[2],
that CPA technique can also be applied to optical domain for laser science technology and the first CPA
laser was successfully demonstrated in1988[30]. Since then this technique has been extensively used
by applying to many conventional master-oscillator-power-amplifier (MOPA) laser systems in which a
small prototype laser pulse is passed through a chain of optical power amplifiers. A simple schematic of
CPA laser system is shown in Fig.2.1

A modern CPA laser consists of the following main parts: femtosecond oscillator, stretcher, ampli-
fier, compressor and focusing system. In a CPA laser system, ashort laser pulse is first stretched to a
much longer duration by means of strongly dispersive “stretcher or expander” (i.e. a grating pair). In the
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Figure 2.1: Schematic
of CPA system, indicating
pulse width and intensity at
different stages of amplifica-
tion. In a first step, the short
pulse generated by oscilla-
tor get stretched by a pair
of gratings. The stretched
pulse then get amplified by
various acceleration stages,
before it enter the final
mixed glass amplifier. At
the end, the pulse get re-
compressed by another pair
of gratings. Reprinted from
[32].

stretcher, the gratings are arranged in such a way that the low frequency component of the laser pulse
travels a shorter distance than the high frequency component. The pulsed get stretched in time by several
order of magnitude without the loss of bandwidth. An expanded pulse has its frequency changing with
time so called as a “chirped” pulse. The term “chirped” came from the radar technology where it was
used earlier for pulse manipulation. After the passage fromstretcher, the laser pulse becomes positively
chirped1 and has longer duration than the original one by factor of103 − 105. The chirped pulse has an
increased pulse width and hence a low peak intensity. The intensity of the stretched pulse is sufficiently
low and is suitably safe to introduce this pulse into the gainmedium to amplify it by a factor of106 or
even more. After the gain medium, the amplified pulses passesthrough the dispersive “compressor”,
an element having opposite dispersion to stretcher. This compressor provides a negative chirp of the
same order to compensates for the positive chirp introducedby a stretcher and re-compresses the pulse
temporally to a duration similar to the input pulse. After passing through the compressor, consequently
a very high intensity pulse, having peak power of the order of∼ terawatt(TW) values is obtained.

Thus CPA technique makes it possible to achieve very high peak power lasers and to miniaturize
the laser systems to build them on a tabletop. In order to use this scheme, it is necessary to stretch and
then re-compress the pulse without the loss of bandwidth andwithout distortion. The most advanced
CPA lasers are built on the basis of Ti:sapphire and Nd:glass. The solid state Ti:sapphire laser has many
advantages over the dye-based laser of earlier generation such as large lasing bandwidth, very good
thermal conductivity and excellent mechanical properties. The development of ultrashort high intensity
lasers and the state of the art techniques used for generation and amplification of these lasers is beyond
the scope of the present work and detailed information can befound in these review papers [33, 34, 35].

1A laser pulse is called positively chirped if lower frequency light travels ahead of higher frequency light and is negatively
chirped if opposite holds.
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2.3 Electron Dynamics and Ponderomotive force
in Non-relativistic regime

Considering the motion of free electron in a plasma under theinfluence of plane, monochromatic
electromagnetic wave, the spatial and temporal electric(E) and magnetic(B) field components are
described as

E(r, t) = E0 · cos(ωt− k · r) (2.1)

B(r, t) = − 1

ω
· ∇ ×E(r, t) = B0 · sin(ωt− k · r) (2.2)

whereω is the angular laser frequency in the plasma andk is the propagation vector. The dynamics
of the free electron motion under the influence of electromagnetic fields is governed by the Lorentz
force,F = −e · (E + ve

c × B). From the Newton’s second law, the electron equation of motion for a
non-relativistic case reads as

dpe

dt
= me

dve

dt
= −e ·

[

E(r, t) +
ve

c
×B(r, t)

]

, where ve =
dr

dt
(2.3)

whereve andpe represents the velocity and momentum of the electron. Now, in the linear and non-
relativistic approximation, we neglect the magnetic field term, because for weak fields|ve| ≪ c. Thus
the linear equation of motion simplifies to

dpe

dt
= me

dve

dt
= −e · E(r, t) (2.4)

Considering now the case of an laser electric fieldE(r, t) for a linearly polarized pulse, propagating
along thez−axis (i.e. wave vectork = k ẑ ). Assuming the initial electron position and velocity are
|re(t = 0)| = 0 and|ve(t = 0)| = 0 respectively, then the solution of the above Eq.(2.4) reads as:

|re| = rqcos(ωt− k · z), |ve| = vqsin(ωt− k · z) (2.5)

whererq is the quiver amplitude of the electron excursion in the laser field andvq is the oscillatory quiver
velocity of the electron and is given by

rq =
eE0

meω2
and vq =

eE0

meω
(2.6)

The time averaged energy acquired by the electron as a resultof this oscillatory motion is expressed
in terms of the average kinetic energy over one laser cycle and is actually known as the ponderomo-
tive potential or ponderomotive energy(will discuss belowin detail): Φp = 〈Ekin〉T = 〈12mev

2
e〉T. The

ponderomotive potential can also be expressed in terms of the laser electric fieldE0 or laser intensityI
as:

Φp =
e2

4meω2
· E2

0 =
e2

2meε0ω2c
· I (2.7)

From above equation, the laser electric field strength and the laser frequency can be defined in practical
units as,

E0 =

(

2I

ε0c

)1/2

≃ 2.75 × 1011 ·
√

I16 [V/m] (2.8)

ω =
2πc

λL

≃ 1.88 × 1015

λL(µm)
[s−1] (2.9)
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whereI16 is the laser intensity in terms of1016Wcm−2. Taking into account the above dependencies,
one can define in practical terms the quiver amplitude, quiver velocity and the ponderomotive potential
as follows.,

rq = 13.7 ×
√

I16. (λL[µm])2 [nm] (2.10)

vq

c
= 0.086 ×

√

I16. (λL[µm]) (2.11)

Φp ≈ 933 × I16. (λL[µm])2 [eV] (2.12)

For a laser pulse of wavelength0.8µm at intensityI16, an electron has the ponderomotive energy around
Φp ≈ 0.6keV, the quiver velocity isvq ≈ 0.07c and the quiver amplitude of the oscillatory motion is
rq ≈ 9nm. When the ponderomotive potentialΦp becomes comparable to the electron rest energy,i.e.
E = mec

2 ≈ 511keV, the relativistic approach of the electron is considered. For a laser pulse in the
near-infrared and visible wavelength ranges, the relativistic regime for the electron starts at intensities
larger than≈ 1018W/cm2.

It is worth considering now the motion of electrons in the laser-matter interactions since they re-
sponse quickly to the “realistic” electromagnetic field, gain energy from the wave and carry it further
into the matter. However, to be more specific, laser pulses are not plane waves, but have finite width and
duration. In general, a laser pulse will be described by an envelope function having its transverse and
longitudinal profiles, multiply by an oscillating function. A general representation of the electric and
magnetic fields of the laser pulse can be given in the form

E(r, t) = Re
(

Ẽ(r, t)e−iωt
)

=
1

2
Ẽ(r, t)e−iωt + c.c., and

B(r, t) = Re
(

B̃(r, t)e−iωt
)

=
1

2
B̃(r, t)e−iωt + c.c., (2.13)

the envelope functions are supposed to vary with time on the slower time scale than the oscillating period
T = 2π/ω. We assume that the fields are averages to zero over a period, i.e. 〈E(r, t)〉 = 0 while for
the envelope function〈Ẽ(r, t)〉 6= 0. The assumption of two separate time scales describe the electron
motion as the superposition of a slow term(denoted by subscript s) and a fast “oscillating” term (with
subscripto) such as

r(t) = rs(t) + ro(t), 〈ro(t)〉 = 0, 〈rs(t)〉 = rs(t) (2.14)

It is possible under suitable conditions to describe the “slow motion” by a dynamic equation with slowly
varying force known as the ponderomotive force and will study the motion of an “oscillating center”
over which a fast oscillation is overlapped.2

We first derive the ponderomotive force in non-relativisticregime, keeping terms of the order∼
ve/c ≪ 1 and then later discuss it in the relativistic regime. A crucial assumption is that the spatial
variation of the field envelope across an oscillation is verysmall. Since the oscillation amplitude is less
thanλ = 2πc/ω, the scale of spatial variation of̃E will be sufficiently larger thanλ. This assumption
allows to expand the field as follows

E(r(t), t) = E(rs(t) + ro(t), t) ≃ E(rs(t), t) + (ro(t) · ∇)E(rs(t), t) (2.15)

2This is analogous to the guiding center approximation to study the electron motion in an inhomogeneous magnetic field
which means that while rotating along the field lines with cyclotron frequency, the charge particle also get drifted slowly along
these field lines.
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The equations for the oscillating component of the lowest order are

d2ro
dt2

=
dvo

dt
≃ − e

me
E(rs(t), t) ≃

−e

2me
Ẽ(rs(t))e

−iωt + c.c., (2.16)

such thatro = Re(r̃oe
−iωt) andvo = Re(ṽoe

−iωt) where

r̃o =
e

meω2
Ẽ(rs(t)) and ṽo = − ie

meω
Ẽ(rs(t)) (2.17)

Now by averaging the Newton’s equation of motion we have3

me
dvs

dt
= −e〈E(r(t), t)〉 − e

c
〈v ×B(r(t), t) (2.18)

For the electric field average term we have

〈E(r(t), t)〉 ≃ 〈E(rs(t), t) + (ro(t) · ∇)E(rs(t), t)〉

=
1

4
(r̃o(t) · ∇)Ẽ(rs(t), t) + c.c

=
e

4meω2
(Ẽ(rs(t), t) · ∇)Ẽ(rs(t), t) + c.c (2.19)

Similarly for the magnetic force term, we have

〈v ×B(r(t), t)〉 ≃ 1

4
ṽo × B̃o(rs(t), t) + c.c (2.20)

Now by usingc∇×E = −∂tB = iωB, the above equation becomes

〈v ×B(r(t), t)〉 ≃ − ie

4meω
Ẽ(rs(t), t) ×

(

− ic

ω
∇× Ẽ(rs(t), t)

)

+ c.c

= − ec

4meω2
Ẽ(rs(t), t)×

(

∇× Ẽ(rs(t), t)
)

+ c.c (2.21)

Putting the electric and magnetic field terms in Eq.(2.18), we thus get

me
dvs

dt
≃ − e2

4meω2

(

(Ẽ(rs(t), t) · ∇)Ẽ(rs(t), t)− Ẽ(rs(t), t)× (∇× Ẽ(rs(t), t))
)

= − e2

4meω2
∇ | Ẽ(rs(t), t) |2= − e2

2meω2
∇〈E2(rs(t), t)〉 ≡ Fp (2.22)

The last equality term defines the ponderomotive forceFp, which describes the dynamics of the oscilla-
tion center such that the cycle averaged position and velocity is

me
d2〈r〉
dt2

= me
d〈v〉
dt

= Fp = −∇Φp (2.23)

describing the ponderomotive potentialΦp by envelope function, the Eq.(2.7) can be rewritten as

Φp = Φp(〈r〉) = − e2

2meω2
〈E2〉 (2.24)

3We here use the general property that, ifA(t) andB(t) are real, “quasi-monochromatic” oscillating functions oftime and
their complex representation is defined asA(t) = Re(Ãe−iωt) andB(t) = Re(B̃e−iωt), whereÃ andB̃ are either constants
or slowly-varying functions of time. Then〈A(t)B(t)〉 = Re(ÃB̃)/2 = ÃB̃/4 + c.c. In particular,〈A2(t)〉 = |Ã2|/2.



2.4 Motion of electron in relativistic laser field 17

Thus any spatial variation of laser intensity will act to push the electrons from the high intensity region
to the low intensity region through the ponderomotive force, which is proportional to the laser intensity
gradient. A similar ponderomotive force is expected to occur on the ions but due to their inertia (mi ≫
me), the effect will be negligibly small than that on electrons.

From Eq.(2.23), the Ponderomotive force densityfp, can be defined as,

fp = neFp = −neme

4
∇v2q = −∇Prad (2.25)

wherePrad is the light pressure (or radiation pressure). The Ponderomotive force density may lead to
steepening of the electron density gradient around the critical density. The competition between radiation
pressure (Prad = nemev

2
q/4) and the thermal pressure (Pth = neKBTe) influence the energy transfer

process of laser to the target. The influence of the ponderomotive force in the absorption mechanisms
for short laser pulse (ps), has been investigated in various experiments and by different theoretical models
[36, 37] which we will discuss below in section2.8.

2.4 Motion of electron in relativistic laser field

The motion of electron in electromagnetic wave is describedby the Lorentz forceF, therefore writing
the Eq. (2.4) for relativistic regime, it becomes

F =
dpe

dt
=

d

dt
(γmeve) = −e(E+

ve

c
×B) (2.26)

whereγ is the relativistic factor

γ =
1

√

1− v2
e/c

2
=

√

1 +
p2
e

m2
ec

2
(2.27)

Electric and magnetic fields are defined by Maxwell equationsby using the vector potentialA(r, t) in
the coulomb gauge∇ ·A = 0 such that

E = −1

c

∂A

∂t
and B = ∇×A (2.28)

Putting Eq. (2.28) in Eq.(2.26) and solving for the vector identity4, we get the first basic equation for
electron momentumpe

dpe

dt
=

e

c

∂A

∂t
+

e

c
[(ve · ∇)A−∇(ve ·A)] (2.29)

the second basic equation for electron energy is obtained bymultiplying Eq. (2.29) with ve

d(γ − 1)mec
2

dt
= eve.

∂A

∂t
(2.30)

Assuming electrons are initially at rest and a plane electromagnetic wave of infinite laser pulse is propa-
gating alongz−axis (as shown in Fig.2.2a), thereforeA = A⊥(z, t). Now let the “⊥” subscript refer to
the vector components of the fields and momentum in the transverseyz plane, e.g.p⊥ = (px, py) and
p‖ = pz. Solving the Eqs.(2.29) and(2.30) to find the electron momentumpe = (p‖,p⊥). We obtain
the conservation laws:

p⊥ − eA⊥ = const

4by using the vector identityv ×∇×A = ∇(v ·A)− (v · ∇)A



18 Laser Pulse Interaction with Overdense Plasma

Figure 2.2:(a) A relativistic laser pulse propagating from left to right on thez−axis has passed an electron. Its
electric fieldE points along thêx−direction and the magnetic field (not shown here) alongŷ− direction. The
electron has moved along a zig-zag shaped trajectory in thex̂- ẑ plane and stopped at rest after the passage. (b)
“Figure of Eight” electron trajectory in a frame moving withthe mean forward velocity of the electron, i.e. average
rest frame of electron.

(γ − 1)mec
2 − p‖c = const (2.31)

the first constant is usually called the canonical momentum.Solving the above terms in Eq.(2.31) using
p2 +m2

ec
2 = (mecγ)

2 andp2 = p2‖ + p2
⊥ we get the following relations;

p‖ = mec(γ − 1) and p‖ = p2
⊥/2mec (2.32)

The relationp‖ = mec(γ−1) has an intuitive interpretation in terms of momentum and energy delivered
by the EM field along the propagation directionẑ. In non-relativistic case, free electron simply oscillates
in the laser electric field perpendicular to the propagationvectork, while in the relativistic regimeve×B

term of the Lorentz force becomes significant and forγ ≫ 1, the electron also moves in the direction of
laser pulse.

The nonlinear parameter of laser plasma interaction is the dimensionless amplitudeA0 of the vector
potentialA of the laser pulse. This dimensionless amplitude can be expressed as

a0 =
eA0

mec
=

eE0

mecω
(2.33)

whereE0/meω = vq is the the quiver velocity of the oscillating electrons and is transverse to the
k−vector of theE−field.

The fully relativistic equations of motion of an oscillating electron in an electromagnetic plane wave
was solved by many authors [38, 39]. For higher laser field amplitudes, the orbit reveals a morecom-
plicated trajectory. For example, consider an electron which is under the influence of super-intense laser
field propagating in thez−direction. The plane electromagnetic wave is described by

A⊥(z, t) = A0[x̂δcos(ωτ) + ŷ(1− δ2)1/2sin(ωτ)] (2.34)

whereτ = t − z/c is the retarded time andδ ≤ 1 parameter defines the polarization of the wave: for
δ = 1 or 0, the wave is linearly polarized alonĝx or ŷ while for δ = 1/

√
2, wave is circularly polarized.

From this we get the values ofp⊥ andp‖ such that[40]

p⊥ = (px, py) =
eA0

c
(δcos(ωτ), (1 − δ2)1/2sin(ωτ)),
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p‖ = pz =
1

4mec

(

eA0

c

)2

[1 + (2δ2 − 1)cos(ωτ)] (2.35)

We now obtain the electron trajectories in implicit form by integrating Eq.2.35 w.r.t (ωτ). The electron
trajectory reads as5

kxe(t) = x̂ = −a0δsin(ωτ), kye(t) = ŷ = a0(1− δ2)1/2cos(ωτ)

kze(t) = ẑ =
a20
4
(−ωτ +

(

δ2 − 1

2

)

sin(2ωτ)) (2.36)

Electron is pushed parallel to the direction of laser propagation alongz− direction. In Eqs.(2.36),
thez- term of the electron motion shows two distinct contributions: a net drift in the laser propagation
direction and a superimposed2ω−oscillation (twice per laser cycle). Since for circular polarized pulses,
2δ2 − 1 = 0, therefore the average drift with constant velocityvD alongz−axis is given by[41]

vD

c
=

a20
a20 + 4

(2.37)

So for circular polarization in such frame, the orbit is a circle. For linear polarization, the electron orbit is
closed in the frame where the average velocity vanishes, andsuch orbit gives rise to well known “Figure-
of-Eight” electron motion in a time averaged co-moving frame of reference (as shown in Fig.2.2b) and
a helical orbit in the laboratory frame. From the electron trajectory (Eq.2.36), the electron return to its
initial position in the perpendicular plane, but is moved inthe direction of the laser pulse propagation by
a distance∆z =

∫

vD(t)dt. Therefore the electron is accelerated in direction of laser intensity gradient
with increasing intensity and decelerated when it feels decreasing laser intensity. This acceleration and
deceleration in the direction of intensity gradient is due to the ponderomotive force.

2.5 Ponderomotive Force in Relativistic Regime

For a “realistic” laser pulse, difference in the dynamics arise from the fact of relativistic mass increase
at high quiver velocities and the non-vanishingB−component in the Lorentz force. For an relativistic
EM wave, which is described by the vector potentialA(r, t) such thatE = −(1/c)∂tA. From this,
it can be shown thatp⊥ ≃ eA/c holds even for the relativistic regime, provided the amplitude varies
significantly over large distances than the wavelength. Relativistic effects make the relativistic refractive
index nonlinear. The inhomogeneity of the laser field leads to a nonlinear force experienced by the
charged particle[42]. By solving the Eqs. (2.29) and (2.30), the nonlinear force can be obtained

dp‖
dt

= − e2

2meγ

∂A2
⊥

∂z
(2.38)

this nonlinear force is proportional to the square amplitude of the laser pulse and composed of an aver-
aged part and oscillating part with periodπ/ω which is a half of the laser period. Rewriting Eq.(2.38)

in more general form with time-averaged momentum through a laser period〈p〉

d〈p〉
dt

= Fp = − e2

2me〈γ〉
∇〈A2〉 (2.39)

5 we write the equations in dimensionless units, normalizingthe coordinates to1/k = λ/2π = c/ω and usinĝr = kr.
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Figure 2.3:The sketch shows the pon-
deromotive action by a laser pulse while
propagating into a plasma. The pon-
deromotive force(Fp ∝ −∇〈E2〉) ex-
pels electrons out of the beam axis,
modifying the electron density and cre-
ating a space charge field.

whereγ is the relativistic average factor

〈γ〉 =

√

1 +
〈p〉2

(mec)2
+

e2〈A2〉
(mec)2

(2.40)

taking into account the average momentum〈p〉 and the oscillation momentumposc = eA/mec. A
relativistic generalization of the ponderomotive force can be obtained by replacing the electron mass
with the effective massmeγ and requires a more sophisticated mathematical treatment [43, 42, 16].
Since the energy isme(γ − 1)c2, we eventually arrive at a very similar expression as of Eq.(2.22) and
is written as

Fp = −mec

2〈γ〉∇〈γ〉2 = −mec
2∇〈γ〉 (2.41)

Eq. (2.41) can be simplified only as the part related to the oscillationmomentum〈A2〉 and ignoring the
〈p〉2 component which is coordinate of time. We obtain the ponderomotive force6 as,

Fp = −mec
2∇
(

1 +
e2〈A〉2
m2

ec
2

)1/2

= −mec
2∇
(

1 +
e2〈E〉2
m2

eω
2

)1/2

(2.42)

In an oscillating, quasi-monochromatic electromagnetic field described by the vector potentiala(r, t),
whose envelope is sufficiently smooth in space and time, the relativistic ponderomotive force in a com-
pact form can be written as [16],

Fp = −mec
2∇(1 + 〈a2〉)1/2 = −∇meffc

2 (2.43)

wheremeff ≡ meγ = me(1 + 〈a2〉)1/2 is the electron effective mass7, describes that the oscillating
momentum leads to an increase of the effective inertia of theoscillating center. The relativistic pondero-
motive force is responsible for the average electron motionobserved in the laboratory frame and can be
written as the negative gradient of the ponderomotive potential, i.e.Fp = −∇Φp

Φp = mec
2(〈γ〉 − 1) = mec

2(
√

1 + 〈a2〉 − 1) (2.44)

According to the “Lawson-Woodward theorem”, in case of plane wave with slowly varying ampli-
tude, the ponderomotive force can’t accelerate electrons and thus any free charge cannot gain the kinetic

6in the present definition we explain the ponderomotive forceas the slow-varying effective force describing the cycle-
averaged motion of the oscillation center of the electron ina nonuniform field, over a time scale longer than the the oscillation
period. We ignored the fast oscillating components here to describe the ponderomotive force

7 In which γ is the relativistic factor and can be explained asγ =
√

1 + 〈a2〉 wherea(r, t) = eA/mec and angular
brackets denote an average over the oscillation period.
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energy from the laser pulse. However, in reality for the femtosecond laser pulses, which are usually
tightly focused and their amplitude changes on a very short time scale, this theorem is not valid. The
other most important consequence of Eq. (2.43) is that electrons are scattered out of focus, i.e. expelled
from regions where the electric field is large. The scatteredelectrons which get accelerated in the direc-
tion of laser propagation can gain a maximum kinetic energyEkin = (γ − 1)mec

2, of the order of the
laser ponderomotive potential.

The above discussion reveals that ponderomotive force is extremely useful in describing and under-
standing the intense laser interactions with matter. For a standard bell shaped laser pulse e.g. Gaussian
both in the propagation and transverse directions, the ponderomotive force is such to push the elec-
trons out of the high intensity region. The pulse attempts toremove electrons out of its path due to
self-focusing and self-compression. This ponderomotive displacement of electrons will create a space-
charge field which in turn accelerate ions. Fig.2.3 shows the radial electrostatic field generated by the
expulsion of the electrons in the transverse direction. In several regimes, due to the charge separation
between electron and ions, a mechanical equilibrium between ponderomotive and electrostatic forces on
electrons get established over such short times and distances that it is appropriate to assume that the ions,
and thus the whole medium, feel “directly” a pressure that isgiven by the ponderomotive force times the
number of electrons per unit volume (i.e. the electron density).

2.6 Laser Interaction with plasma

2.6.1 Basic laser pulse parameters

A laser pulse is described here by an envelope function, having transverse and longitudinal profiles.
The laser intensity is defined as the energy flux density averaged over the fast oscillations

I(r, t) =
〈 c

4π
|E×B|

〉

=
c

8π
|E0(r, t)|2 =

c

8π

(a0mecω

e

)2
(2.45)

The dimensionless parametera0 described in Eq.(2.33) defines the boundary between the non-
relativistic and relativistic regime of electrons in a monochromaticEM wave. In the relativistic regime,
the quiver momentum of electron starts exceeding the rest mass momentum of the electron. So at higher
laser intensities, the pulse is characterized by a dimensionless quantitya0, known as laser strength pa-
rameter or laser pulse amplitude and related with laser intensity I as,

Iλ2
L = a20 × 1.37 · 1018Wµm2/cm2 or

a0 =
eE0

meωc
≈
√

Iλ2
L

1.37 × 1018 W
cm2µm2

(2.46)

Thus,a0 = 1 corresponds to the equality of the rest and averaged kineticenergy of the electron
oscillating in the laser field. So one can read from the dimensionless amplitudea0 = vq/c to measure
the “relativisticness” of the interaction. Whena0 ≥ 1, the quiver velocity of the oscillating electronsvq

reaches close to the velocity of lightc and electron motion is considered as relativistic

vq =
eE0

γLmeω
(2.47)
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whereγL is the relativistic factor of the laser field8 If the average electron momentum is much lower
than the oscillation momentum (〈p〉 ≪ eA), thenγ ≈ γL whereγ is the relativistic average factor
of electron explained above in Eq.(2.40). Present day laser system allow to reach focused intensities
above1021W/cm2 for λ = 0.8µm, so that strong relativistic regimes witha0 ≈ 10 are at the forefront
of current research.

2.6.2 Propagation of laser beam in plasma

When a laser pulse interacts with a plasma, the free electrons and ions that constitute the plasma will
respond to small scale deviations of their distribution andwill be displaced slightly in an electromagnetic
wave of frequencyω. Subsequently to a distortion of the charge neutrality, theparticles within the plasma
tend to oscillate with a frequency known as electron plasma frequency The resonance frequency of the
resulting oscillations is known as the plasma frequencyωp. depending on their massm, chargeZe and
densityn

ωp,e =

√

4πnee2

me
, ωp,i =

√

4πniZ2e2

mi
= ωp,e

√

Zme

mi
(2.48)

whereωp,e andωp,i are electron and ion plasma frequency respectively. From the Drude model of
conductivity in which the plasma is considered as an electron cloud having uniform background of
immobile ions and collisions are neglected. So the plasma dielectric constant (relative permittivity) of
the electron ensemble can be expressed as [44]

ε(ω) = 1− 4πnee
2

γLmeω2
= 1−

ω2
p

γLω2
(2.49)

whereωp = ωp,e reads the plasma frequency. With the help of dispersion relation for electromagnetic
waves in relativistic plasmas, we can find the laser frequency ω as

ω2 =
ω2
p

γL

+ k2c2 (2.50)

The correlation between the plasma frequencyωp and laser frequency marks a fundamental bound-
ary between conducting and dielectric behavior for the laser pulse interaction with plasma and divides
the properties of the plasma into underdense (transparent)if ω > ωp and overdense (opaque) ifω < ωp

plasmas. The electron densityne at which the the plasma frequencyωp becomes equal the laser fre-
quencyω is called the critical densitync. This density denotes the boundary between underdense and
overdense plasma as shown in Fig.2.4.

nc =
meω

2

4πe2
= 1.1× 1021cm−3λ−2

µm (2.51)

whereλµm is the laser wavelength in micron. The relativistic effect is equivalent to an increase of the
critical density,neff = ne/γL in which the plasma can be theoretically transparent

nc < ne < γLnc (2.52)

8 here in our definitions, given the value for I, the peak value of the dimensionless vector potentiala(~r, t) of the plane wave
will be given by peak dimensionless amplitude of electric field and isa0 for linear polarization (LP) anda0/

√
2 for the circular

polarization (CP) such that for LP,γL =
√

1 + a2
0 and for CP,γL =

√

1 +
a2

0

2
.



2.6 Laser Interaction with plasma 23

Figure 2.4:Schematic of the typ-
ical electron density profile in the
Laser-produced plasma

Relativistic effects make the refractive index nonlinear.A typical laser pulse has a radial dependence
shape of I(r) withdI/dr < 0 and the corresponding radial nonlinear “refraction” indexnNL can be
written as

nNL(r) =

√

1−
ω2
p(r)

γL(r)ω2
=

√

1− ne

γL(r)nc
(2.53)

ωp is supposed to depend onr. The relativistic factorγL introduces a nonlinear dependence of the
refractive index upon the electric field. As a consequence, when laser pulse propagates in a plasma
with increasing density along the propagation axis, the refractive indexnNL becomes imaginary when
ne > γLnc, showing an increase of cut-off density for the laser pulse and the laser is thus reflected. With
respect to the non-relativistic case for a given wavelength, the plasma critical density (nc) increases by
a factorγL and the pulse propagate towards denser plasma layers and theeffect is known as relativistic
Self-Induced Transparency(SIT) or overdense penetration[45].

Numerical simulations explains thatEM wave propagating in the overdense plasmas leads to strong
instabilities and heating of electrons that absorbs the energy of propagating laser[46]. Since the plasma
frequency (ωp) andγL has dependence onr, one hasdNr/dr < 0 and the plasma acts as a lens to the
laser light. There exists a critical power [47]

Pc ≃ 1.7× 1010W
ω2

ω2
p

= 17GW
nc

ne
(2.54)

Above the critical powerPc, the laser light self focuses into a filament and can be self guided on long
distances much longer than the Rayleigh length.

Forω > ωp, the refractive index has real values as solving Eq.(2.50), the wave vectork describes
the electromagnetic wave propagation through the plasma. For ω < ωp, the nonlinear refractive index
nNL(r) has both the real and imaginary values which results in occurrence of the reflection as well as
absorption phenomenons. The electric and magnetic field decay exponentially. Thus the laser pulse can
not propagate in overdense plasma, an evanescent componentwill anyhow penetrate into the over-dense
region up-to some characteristic length, known as the collisionless skin depthls = c/ωp. The laser pulse
penetration depends not only on the target electron densitybut also on the target size (l) when the latter
becomes smaller or closer to one wavelength. In such examples, the nonlinear and reflection coefficents
can be calculated for a sub-wavelength foil modeled as a Dirac delta-like profile [48], obtaining a self-



24 Laser Pulse Interaction with Overdense Plasma

induced transparency threshold as

a0 > π
ne

nc

l

λ
≡ ζ (2.55)

Laser absorption and charged particle acceleration

In contrast to the previous sections, where the laser interaction with the plasma is discussed, here
we will discuss about the various laser absorption mechanisms in the overdense plasma. The energy
coupling to the overdense plasma becomes one of the main research topic due to important role played
by the absorption energy efficiency in a large number of effects and application such as high energy
particle generation,ICF ignition methods[49], ultrafast radiation emissionetc. During the past decades,
important experimental and theoretical progresses were registered on the route of understanding and
modeling the absorption mechanisms ofps andsub−ps laser pulses at intensities between1012W/cm2−
1016W/cm2 [50, 51]. For these longer pulses of moderate intensities, collective resonance absorption
and collisional inverse bremsstrahlung[52, 53] processes are the main absorption mechanisms. For the
ultrashort, high intensity (1017W/cm2 and above) laser pulse interactions with overdense targets, a
couple of new collisionless processes being found responsible for the coupling of laser energy to targets
such as Brunel effect [54] or vacuum heating[55], j×B heating[56], different skin effects [57] etc.

2.7 Collisional absorption

In vacuum, due to the momentum and energy conservation, the free electron does not gain energy
from the EM laser wave. Electrons oscillates in the electricfield of the wave or if the field is strong
enough, drifts along the laser propagation direction. However, after the laser pulse passes by, electrons
ends up again with its initial energy. In plasma, the presence of ions makes the condition different. Free
electron can collide with ions and thereby can gain some thermal energy from their oscillatory motion
and thus transfer EM energy of the laser into the kinetic energy of plasma. For laser intensities of the
order1012 − 1014Wcm−2, the plasma is gradually heated due to electron-ion collisions. The collisions
were justifiably the dominant absorption mechanism in this intensity regime. Related absorption mech-
anisms such as normal skin effect, anomalous skin effect, collisional absorption lead to the heating of
electrons. In order to get the absorption processes in the laser plasma interactions, one may introduce
the collisional damping term in the Lorentz equation of motion for the electrons and ions. The equation
of motion of the electron fluid, Eq.(2.3) in a high frequency laser electricE(r, t) and magneticB(r, t)

field in the presence of collisions reads as:

me
∂ve

∂t
= −e · (E+

ve

c
×B)−meνeive (2.56)

whereve represents the velocity of electron fluid andνei is the electron-ion collisional frequency.
The thermal behavior is ensured from particles collisions.The rate of momentum transfer between

the particles depends upon the collision frequencies. Electrons in the intense laser field get accelerated
up to very high velocities whereas the ions due to their much higher inertia, stay almost at rest and do
not respond much onto a high frequency laser field. The electron-ion collision frequency for an electron
having velocityve ≫ vi is given by [16, 52]

νei =
4
√
2π

3
· Znee

4

(4πε0)2
√
me(KBTe)3/2

· ln(Λ) ≃ 2.91 × 10−6 · Zne[cm
−3]

Te[eV ]3/2
· ln(Λ)[s−1] (2.57)
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In above, the factor coulomb logarithmln(Λ) is defined as,ln(Λ) = bmax/bmin
9, wherebmax andbmin are

the maximum and minimum value of the impact parameterb[52].
If the number of collisions per wave cycle are largeνei ≫ ω, it gives rise tocollisional skin effect

where theEM wave can enter only to the outer skin of the plasma up-to the depth ls ≈ 0.16λD and get
damped. An analytical solution of the collisional absorption coefficientηabs for the long exponential
density profile having scale length (ls ≫ λD) can be derived using theWKB−approximation [52, 29]

ηnseabs = 1− exp

(

−8νeils
3c

cos3θ

)

(2.58)

the above absorption coefficientηnseabs is for normal collisional skin effect. By solving the heat flow
including the collisional absorption coefficient , we can derive the formula for the surface temperature
scaling of the electron population [29, 57].

Te = 119
( ne

1023cm−3

)1/12
Z1/2

(

I

1015W/cm2

)1/3( tp
100fs

)1/6

eV (2.59)

whereTe is the electron temperature andtp is the laser pulse duration. Nevertheless, these collisions do
not mediate considerable energy transfer due to much higherion mass than that of electron and only the
part of2me/mi of electron energy can be transferred between the particlesin each collision. Thus for
the plasma interaction with less intense(1012 − 1014Wcm−2) and relatively long nanosecond (ns) laser
pulses, the collisional absorption can be very efficient andcan considerably transfer more than80% of
the total laser energy into plasma.

2.8 Collisionless Absorption

For ultra-short laser pulses of intensities& 1015W/cm2, the substantial energy transfer can not
be explained by the electron-ion collisions. This is mainlybecause of two reasons, First, at higher
intensities, the electron quiver velocityvq may exceed than the thermal velocityvth and Secondly, the
collision frequency scales as(KBTe)

−3/2 (from Eq.2.57), therefore the plasma electrons temperature
rises sufficiently fast that collisions become ineffectiveduring the interaction and hence the collective
motion over-weigh the collisions [29]. Several models forcollisionless absorptionshave been developed
in order to account for the higher absorption rates which make explicit use of the short pulse interactions
with overdense plasmas[29, 36]. Recalling the electron temperature scaling of Eq(2.59) from [29, 58],
we have

Te ∼ I4/9t2/9p (2.60)

The condition for collisionless absorption is fulfilled if ashort45fs laser pulse of intensityI > 1015Wcm−2

is interacting with overdense plasma (ne = 1023cm−1) and the electron gains temperature of∼ 400 eV.
Following the Eq.(2.57), in which the collision frequency scales asT

−3/2
e , implies a scaling fall off as

νei ∼ I−2/3t−1/3
p (2.61)

The second limiting effect occurs when the electron quiver velocity becomes comparable to the thermal
velocity, which reduces the effective collision frequencyfurther [59]

νeff ≃ νei
v3

th

(v2
q + v2

th)
3/2

(2.62)

9 The minimum distancebmin is given by the classical distance of closest approach such thatbmin = lca while the very distant
interactions are screened by the surrounding charged particles, so there is a finite value for the interaction rangebmax = λD.
ThereforeΛ =

λD
lca

=
9ND
Z

whereND = (4πλ3
Dne)/3 is the total number of particles in the Debye sphere.
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So an electron temperature of1 keV corresponds to the thermal velocityvth ≃ 0.05, therefore collisional
absorption starts to turn off for laser irradiancesI ≥ 1015W/cm2 and could not account for the high ab-
sorption mechanism which also observed experimentally as well as numerically [60]. There are number
of collisionless absorption mechanisms which dominate couple laser energy to the plasma.

2.8.1 Resonance Absorption

This concept was first given by Ginzburg [53], who explains that the collisionless light absorption
via collective processes occurs most efficiently for densities near the critical density(ne = nc). This
mechanism is complicated since the plasma oscillation is longitudinal and theEM wave of laser beam
is transverse. A plasma wave is excited only if theEM wave enters the plasma obliquely (forθ > 0) and
with p−polarization for electric field to have a component directedinto the plasma. The laser penetrates
through the plasma up-to the surface of electron densityne = nccos

2θ, where the reflection starts to
occurs whenθ > 0. The electric field vector has projection along the density gradientn and the laser
field skins from the reflection surface to the critical density surface where it may linearly excite electron
plasma waves which leads to plasma heating. The excitation works well when the laser frequency is in
resonance with the eigen-frequency of plasma, i.e. at critical densitync, whereω = ωp, hence coined
the name resonance absorption.

Under oblique incidence of electromagnetic pulse in an inhomogeneous plasma, the pulse get re-
flected before it reaches the resonance conditioni.eneff < nc (Eq. (2.52)) while for a steep density gradi-
ent, the electric field may tunnel into the critical density region and excite the plasma resonantly[52, 61].
The power converted into plasma oscillation can be determined by the “driver” electric fieldEd, which
depends upon free-space value of the laser electric field (EL), angle of incidence (θ) and on the density
gradient scale lengthL = (dlnN/dx)−1 in the following way

Ed =
ELφ(ξ)√
2πkL

(2.63)

wherek = 2π/λ is the laser wave vector andL−1 ≡ | d
dx logNe|x=xc. Efficiency of resonance absorption

ξ depends upon the plasma density scale lengthL and the laser angle of incidenceθ. For long density
linear scale length profile, usually defined by the inequality L ≫ 1/k, the dimensionless parameterξ is
defined asξ = (kL)1/3sinθ and commonly known as Ginzburg function. Based on theoretical [53] and
numerical work [62] and following the above scaling , the maximum efficiency of absorption achieved
is ξ = (kL)1/3sinθ ≈ 0.8. To a good approximation, the function for a cold plasma waveas shown in

Figure 2.5: self similar behavior of res-
onance absorption for long density scale
lengths which relates the effective plasma
wave driving field to the transverse field
strength. The Denisov function characteriz-
ing the efficiency of resonance absorption for
Lk ≫ 1. The parameterξ is defined as
(kL)1/3sinθ. Reprinted from [61]
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Fig. 2.5, is

φ(ξ) = 2.3ξexp

(−2ξ3

3

)

(2.64)

whereφ(ξ) is the defined as the Denisov function describing the angulardependence ofEd as a function
of parameterξ. From the graph shown in Fig.2.5, for resonance absorption there is an optimum angle at
which maximum energy is transferred to the plasma. The maximum absorption angle can be deduced as
θ = sin−1[0.8(c/ωL)1/3] and the fractional resonance absorption rate, can be found by determining the
size of the decaying electric field at the critical density[29].

ηra =
1

2
φ2(ξ) =

1

2

[

2.3ξexp

(−2ξ3

3

)]2

(2.65)

For the optimum value ofξ = 0.8, the fractional absorption is approximatelyηra = 0.5. This elec-
tron plasma wave propagates into the plasma which are formedat higher intensities and get damped by
particle trapping or wave breaking and give rise to a population of very fast and hot electrons. Up-to
∼ 50% optimum absorption may occur by resonance absorption [62, 63]. Resonance absorption mech-
anism efficiently works only for large scale plasma density profiles. The other collisionless absorption
mechanism which occurs for the steep density gradients is known as the “Brunel vacuum heating” and
j×B heating.

2.8.2 Brunel vacuum heating

This mechanism first described by Brunel [54], with the original title “not so resonant resonance
absorption. The resonance absorption cease to work for steep density gradients. This mechanism is
more efficient and the strong energy absorption is accountedby the oscillating electrons that are dragged
into vacuum and then sent back into the plasma with velocityv ≃ vq. If the quiver velocity of electrons
vq in the laser field exceeds the plasma density scale lengthL, i.e. whenvq/ω > L, the resonance break
down since the wave is destroyed and built fresh at each cycle. In such conditions the absorption occurs
by so called “Brunel vacuum heating” in which electrons are directly heated by the obliquely incident
laser field.

We will now derive a model based on capacitor approximation,in which the magnetic field is ignored
(neglsectingv×B term). Assuming that the laser electric fieldEL has some componentEd normal to the
target surface which pulls the electrons back and forth across the equilibrium. Consider ap−polarized
pulse obliquely incident at angleθ on a steep density gradient overdense plasma. A resonant plasma
wave is formed at the critical density having driving electric field such as

Ed = 2ELsinθ (2.66)

In the first half laser cycle(0 < ωt + φ < π), the electrons are pushed inside the plasma which start
oscillations along the density gradient and gain very low energy because the electric field is strongly
attenuated within the plasma. In the second half(π < ωt + φ < 2π), these thermal electrons are
dragged out of the target into vacuum well beyond the thermalDebye sheathλ = vth/ωp, wherevth

is the thermal velocity of plasma electrons. Here the electrons gain very high energy of the order of
ponderomotive potentialΦp = mec

2
√

1 + a20/2 − 1. Many electrons are ejected at the same time
which create a self consistent electric field. Due to both, the self consistent field and the oscillating
laser field, most of the electrons turn around, accelerated back into the plasma and acquires a velocity
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vd ≃ 2vqsinθ.10. We assume that all the electrons which return back into plasma, lose their energy to

the solid. The average energy density absorbed per laser cycle isPa = Σ
τp

mv2
d

2 whereΣ = Neδx is the
surface number density of plasma by which we can estimate thenumber of ejected electronsNe and
the thickness of the ejected layerδx, up-to which the field pulls a sheath of electrons andτp is the laser

pulse duration. Now comparingPa with the incoming laser powerPL =
cE2

L cosθ
8π , we get the fractional

absorption rate

ηa ≡ Pa

PL
=

4a0
π

sin3θ

cosθ
(2.67)

From Eq. (2.67), the mechanism tends to become more efficient with greater incident anglesθ and
with increasing laser irradiance,Iλ2 ∝ a0. In general, not all the electrons turn back into plasma, so
we rewrite the Eq.(2.66) by taking into account the reduced driver field amplitude dueto imperfect
reflectivity, it becomes,

Ed = (1 +
√

1− ηa)ELsinθ (2.68)

Second, taking into account that the return velocities of the electrons become relativistic at laser inten-
sities above1018W/cm2, thus we add relativistic kinetic energy of the electronsEkin = (γ − 1)mec

2 in
the absorption powerPa. Using these both corrections, we get an implicit expression for the fractional
absorption

ηB =
1

πa0
f
[

(1− f2a20sin
2θ)1/2 − 1

] sinθ

cosθ
(2.69)

wheref = 1 +
√
1− ηa is the field amplification vector.

The schematic of the Brunel absorption is illustrated on left side of Fig2.6 where the electric field
is perpendicular to the target and the electron acceleration is normal to the target surface. The geometry
of Brunel heating is quite similar to that of resonance absorption but the mechanism is different. Partic-
ularly the Brunel heating mechanism occurs in large and steep density gradient in which the resonance
mechanism breaks down. The energy deposited by the Brunel heating is transported by hot electrons in
the form of bunches ejected once per laser period. The average energy of electrons isEkin ∼ Φp and the
energy distribution is considered as Maxwellian as the electrons are accelerated in different phases of
the laser electric field. The mechanism of Brunel heating works well for intermediate intensities of order

10 Assuming the plasma is highly overdense, the electric field penetrates only to a skin depth∼ v/ωp, up-to where the
electrons can move unhindered into the plasma and eventually get absorbed in latter. In such a way, a population of “hot
electrons” is formed in about every laser cycle.

Figure 2.6:Schematic of Left: Brunel and Right:j×B, collisionless laser absorption mechanisms which lead to
acceleration of hot electrons.
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1016W/cm2, the absorption can be as high as70% [29]. But for relativistic laser intensity1018W/cm2

and above, i.e.a0 > 1, the absorption by Brunel heating rarely exceeds10% and the absorption mecha-
nism “j×B heating” is more efficient.

2.8.3 Relativisticj×B heating

j × B heating is an important collisionless absorption mechanism which plays significant role in
short-pulse high intensity laser-matter interactions. The characteristics of “j × B” mechanism over
the Brunel mechanism is that it works well with all the arbitrary laser polarization directions (except
circular). Secondly, due to the driving high frequencyj×B component, leads to heating in an analogous
fashion and the electrons get accelerated in the laser propagation direction twice every full laser cycle.
The energy gain of the electrons is of the order of the ponderomotive potentialΦp of the laser field

Φp = mec
2(γ − 1) = mec

2

(
√

1 +
a20
2

− 1

)

(2.70)

The j × B mechanism, is most efficiently effective for normal incidence where the laser electric field
vector is parallel to the plasma density profile [29] and becomes more significant at relativistic quiver
velocities, i.e.a0 > 1. The schematic of thej×B absorption is illustrated on the right side of Fig2.6.

Relativistic j × B heating was theoretically first predicted by Kruer and Estabrook [56] and then
later experimentally confirmed by Malka [64]. This mechanism is of more relevance at relativistic laser
intensity. When the laser pulse intensity is sufficiently high (of the order& 1018W/cm2), thev × B

component of the Lorentz force becomes important and the electrons are accelerated in addition by the
magnetic field component of the Lorentz force. As discussed in sec.2.5, for a steep density plasma
profile, the ponderomotive force pushes away the electrons from areas of high intensities along the field
gradient. Similar to Brunel heating, electrons gain energyat step-like density profile by propagating into
the overdense region. Electrons are accelerated perpendicular to the surface into the overdense plasma
region, as the field gradient is directly normal to the critical surface, which later ejected from the rear
side into the vacuum. Due to the action of self consistent field created by the ejected electrons, the
electrons return into the plasma where they feel no restoring force after passing the thin skin depth and
get absorbed in the plasma. The electrons continues their motion until the laser pulse is on and form a
hot electron tail in the energy spectrum.

Now we will illustrate the differences arising between linear and circular polarization of the laser
pulse. Assuming a step-like density profile and consideringthe normal incidence of an elliptically po-
larized pulse, neglecting the relativistic and thermal effects, the vector potential inside the plasma can be
written as

A(x, t) =
A(0)√
1 + ε2

e−x/ls(ŷcos ωt+ εẑsin ωt) (2.71)

wherels = c/
√

ωp − ω2 andε is the ellipticity (0 < ε < 1). UsingB = ∇×A andP⊥ = eA/c for
the electrons transverse momentum, the longitudinal−ev × B force on the electrons can be written as
[40]:

Fx = − e2

2mec2
∂xA

2 = F0e
−2x/ls

(

1 +
1− ε2

1 + ε2
cos2ωt

)

(2.72)

The termF0 in above equation is

F0 =
e2A2(0)

2lsmec2
= mec

2 a
2(0)

2ls
(2.73)
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Taking the cycle average of Eq.(2.72), we recover the secular ponderomotive force11 independent of
polarization, as explained in Eq.(2.22). This second oscillating term at2ω frequency vanishes for circu-
lar polarization (whereε = 1) which leads to a very different laser-plasma coupling between linear and
circular polarization at normal incidence.j×B heating becomes the more significant absorption process
than the Brunel heating, when the magnitude ofv×B driving term becomes larger than the electric field
component normal to the surface, i.e.vqB > Esinθ. The Brunel heating mechanism is superseded by
j×B mechanism at ultra-high intensities, i.e.≥ 1020Wcm−2 as the electrons motion across the density
gradient along the polarization axis is dominated by the motion in the forward direction.

Apart from the above mentioned mechanisms, there exist various mechanisms for laser energy ab-
sorption such as vacuum heating, normal and anomalous skin effects etc and each covers different
regimes of their existence with respect to density scale lengths, polarization properties and laser inci-
dence geometries. Due to the complex dynamics of the laser interaction processes, today it becomes a
challenge to investigate the relevant process contribution to a single experiment result. If at relativistic
regime, thej × B acceleration mechanism is the dominant one, Brunel absorption might occur at the
sides of the hole. Later Wilks etal[36] explained withPIC simulations, the potential importance of the
heating mechanisms in the relativistic regimes along with the occurrence of other processes such as hole
boring and the magnetic field generation which plays an important role in fast particle acceleration.

2.9 Hot electron generation

All of the collisionless absorption mechanisms discussed above, by one way or another, results in
strong heating of fraction of electrons to much higher energy than the initial bulk plasma having tem-
peratureTc. These supra-thermal electron component generally known as “hot (fast) electrons” has a
Maxwellian form with a characteristic temperatureTh ≫ Tc. With the interaction of shortfs laser pulses
with overdense plasma, these hot electrons bunches oscillate in the transverse laser field and driven into
the target at2ω via the j × B heating mechanism, further get accelerated by coherent electric field,
having monochromatic beam-like tail with some energy spread. Hot electron generation is mainly due
to specific acceleration mechanisms such as resonant absorption andj × B heating etc. The charac-
teristic feature of these absorption mechanisms and their dependence on the laser parameters (such as
intensity, wavelength, incidence angle etc.) will reflect the generation of hot electrons population. Thus
the presence/absence of hot electrons will features the presence/absence of related specific absorption
mechanism in the laser plasma coupling.

The temperature of the fast electronsTh is of the order of the cycle averaged oscillation energy in the
electric field of laser in vacuum and also estimated from the ponderomotive potential,Φp = KBTh ≈
mec

2(γ−1). Thej×B mechanism is considered to be the main source of hot electrons for intensities of
the order∼ 1019W/cm2 and above. The higher the intensity of the laser pulse, the higher is the fraction
of the laser energy which get converted into hot electrons. Upto 20 − 30% [64, 65] for intensities
around1019W/cm2 or even upto40% for 5 × 1020W/cm2[12] of the laser energy is transferred to the
supra-thermal electron population and the temperature of the hot electrons increases up-to severalMeV.
Considering bi-Maxwellian electron distribution, the ponderomotive hot electron scaling law proposes

11 Actually some authors identify the ponderomotive force with the whole nonlinear force including the oscillating compo-
nents. We here, keep the definition of the ponderomotive force related to the slow, non-oscillating motion as developed in sec
2.3.
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an approximately(Iλ2)0.5 dependence ofTh to laser intensity [36]

KBTh ≈ 0.511

[

(

1 +
I18λ

2

1.37

)1/2

− 1

]

MeV (2.74)

This scaling was supposed to be valid in general when laser plasma interaction density is close to the
critical density. Depending upon the laser conditions (such as spot size, pulse length, prepulse) this
constraint may be satisfied for a wide range of intensities. The scaling of the hot electron temperature
varies with laser intensity, laser pulse duration and laserincidence angle and is still under debate. The
uncertainty in plasma conditions around the laser plasma interaction region may be responsible for the
discrepancies inTh scaling with intensity [66, 65]. These fast electrons growth have been observed and
characterized in several experiments and for different interaction conditions [66, 65, 67, 68]. Beg etal
[8] found an empirical scaling of hot electronsTh to be effectively scales as(Iλ2)0.3 at laser intensity
of I ∼ 1019W/cm2. Th is found experimentally to increase as(Iλ2)0.34±0.04 for laser intensities from
1018− 1021W/cm2 which suggests that the ponderomotive scaling of(Iλ2)0.5 overestimates the growth
of fast electrons with laser intensity [69]. Although the hot electrons are much less in number than the
thermal electrons, but their population often carries moreenergy. Acceleration and transport of these hot
electrons is of particular interest in recent years and playa fundamental role in many vital applications
such as inICF ignition methods and more importantly in proton and heavierion acceleration from the
overdense targets and will be briefly discussed in the following Chapter.



CHAPTER 3

Laser-Driven Ion Acceleration

With the rapid development of laser technology and having wide potential applications of ion beams
in laser fusion [70] and proton therapy [71], ion acceleration has received great attention in the areaof
laser interaction with overdense plasma. Acceleration of ions by super-intense laser pulses was boosted
in the year2000 when three experiments (Clark etal [10], Snavely etal [12] and Maksimchuk etal [11]
) independently reported the observation of multi-MeV protons from few microns thick metallic target.
The emission of protons from the metallic targets whose chemical composition doesn’t include Hy-
drogen sound very surprising, but was explained soon after that protons get originated from impurities
which are ordinarily present on the metallic surface in the form of thin layers of water or hydrocarbons.
Although all authors in principle agreed upon the proton origination from the metallic target surface but
the opinions differ about the question, whether the source layer of the observed protons is located on the
front [10] or on the rear side of the target[12, 11, 72]. Later, the controversy of ion acceleration has also
been expanded with the origin of heavy ions[73].

A direct interaction of protons and heavier ions in a field of current available laser systems is by far
not strong enough to accelerate these particles to∼ MeV energies. Similar to Eq.(2.46), which explains
the relativistic threshold for electrons, i.e.Ieλ2 = 1.37 × 1018 W

cm2µm
2 , one can derive the intensity

where the kinetic energy of oscillating proton in the laser field equals to its rest energy [74]

Ipλ
2 =

(

mp

me

)2

Ieλ
2 ≈ 5× 1024 Wµm2/cm2 (3.1)

which corresponds to a laser pulse amplitudea0 = 1836 in which the ions finally reach relativistic
velocities within one laser cycle and the acceleration process enters into the so called Piston Regime
[75]. This laser intensity is far beyond the present laser technology yet and might be feasible in the future
with the new concept of optical parametric amplification(OPA−CPA)[76]. Energetic ions observed in
the laser-matter interaction have been accelerated not directly by the laser fields but by the plasma fields
which are formed by the laser heated electrons. However, these plasma electrons can mediate the forces
of laser fields on ions by generating strong quasi-static electric fields which arises from the local charge
separation. These fields which vary on a time scale comparable to the laser pulse duration, can be of
same magnitude as that of the fast oscillating laser fields, giving the ions a significantly longer time to
accelerate.

The laser energy can be efficiently transferred to the plasmaelectrons by various mechanisms leading
to different ion acceleration scenarios, depending on the laser parameters e.g. intensity and temporal
contrast of the pulses and on the target properties such as shape and size of the target. In this section, the
two main ion acceleration scenarios will be discussed, thatprovide sufficiently strong electric fields to
the particles over a sufficiently long time. According to thefirst scenario, ions can be accelerated in the
vicinity of the laser focus at the target front surface by the“ponderomotively” expelled electrons, leaving
behind a positive space charge of ions. This mechanism is commonly known as radiation pressure
acceleration (“RPA”). [11]. The second scenario includes the ion acceleration at the target rear side,
by which the fast electrons accelerated at the target front surface, crossing the target bulk and escape
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in vacuum from the rear side, as a result a space-charge field in the form of thin Debye sheath being
generated that provides strong and long lasting electric fields which accelerate the ions. This mechanism
is commonly known as target normal sheath acceleration (“TNSA”). [12, 14]. In recent years, there is one
more acceleration mechanism which is of high interest, is the “Shock acceleration” mechanism [77, 78]
which can accelerate high energy ions(∼ MeV) of monoenergetic nature[79]. According to this, when
the laser intensity is of the moderate range, i.e.1018 − 1021W/cm2, the light pressure ranges up-to
terabar values, sweeps out and compress the laser produced plasma, pushing its surface at relativistic
speeds. Such a strong compression and acceleration may generate strong shock waves propagating in
the bulk of plasma which accelerate ions. In moderately overdense and hot plasmas, where the shocks are
of collisionless nature, shock acceleration may lead to both higher ion energy and narrow ion spectrum
and can be the dominant acceleration mechanism than the widely studiedTNSA andRPA mechanism.
Below we will discuss these three ion acceleration mechanisms in brief.

3.1 Target Normal Sheath Acceleration (TNSA)

3.1.1 Introduction

TNSA scheme was first suggested by Wilks etal [14] in agreement with its original use [7], as an
explanation for the energetic ions (protons of order∼ 58MeV) which was observed normal to both
the rear surfaces of a wedge-shaped target in an experiment performed at theNOVA− Peta-watt laser
facility of LLNL, USA [12], According toTNSA model, a very intense current of high energy “hot
(fast)” electrons is generated at the front side. As the electrons travel with relativistic velocity (see
sec2.9 of Ch.2), these hot electrons cross the rear side boundary and attempt to escape in the vacuum
at the rear side while the ions due to their heavy mass almost remain at rest. Therefore the charge
imbalance generates a sheath fieldEs, normal to the rear surface. If the hot electrons have density ne

and temperatureTh, the typical spatial extension of the sheathLs will be related to electric fieldEs as

Es ∼
Th

eLs
(3.2)

The protons will thus be accelerated perpendicular to the target into the rear side hemisphere until they
compensate the electron charge. Assuming a steep interfaceandnh andTh as the only parameters,Ls

can be roughly estimated as the Debye length of fast electrons

Ls ∼ λDh =

√

Th

4πe2nh
(3.3)

Assuming a simple scaling of hot electronsTh, for a laser irradiance of intensityIλ2 = 1020W/cm2

and a fractional absorptionηf = 0.1, we find nh ∼ 8 × 1020cm−3, Th = 5.1mec
2 = 2.6MeV,

λDh = 4.2 × 10−5cm andEs ∼ 6× 1010V/cm. This huge electrostatic field is by far stronger than that
of the electric field of the laser wave, so will back-hold mostof the escaping electrons, ionize the atoms
at the rear side and start to accelerate ions. In a rough estimate, a test ion crossing the sheath would
acquire a energyEi ∼ eZEsLs = ZTh, with a scalingI1/2 if Th ≈ Φp(ponderomotive energy) given
by Eq. (2.74) holds. Due to the hydrocarbons or water containments on the surface of the non-treated
targets, the protons are in a favorable condition for acceleration and are more rapid in following the
electrons by screening the sheath field than other heavy ionsbecause of their initial position, located at
the maximum of the field and their higher charge-to-mass ratio. The heavy ions can also be efficiently
accelerated from the cleaned targets1.

1 Several cleaning techniques such as target heating and laser ablation have been adopted and tested to remove almost all
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Figure 3.1: TNSA mechanism:
Electrons heated at the front side
pass through the target, escape to
the rear side in vacuum. A strong
quasi-static electric field normal
to the target surface builds up be-
tween electron cloud and the ion-
ized target which accelerate the
ions.

The accelerated ions leave the target together with the co-moving electrons forming a quasi- neutral
plasma sheath. The plasma density in this sheath drops quickly after the detachment from the target
while the temperature remains high in this sheath, recombination effects are negligible for propagation
lengths in the range of several meters[82]. After the very early stage of acceleration, the process is
described as collisionless plasma expansion in vacuum, theelectrons move ahead of the ions front until
almost the whole of the electron energy has been transferredto ions. The energy transfer from electrons
to ions is almost due to the large mass difference. Most of thefast electron energy is delivered to ions
and particularly to protons if the latter dominate the acceleration in proper conditions. The accelerating
electrostatic field is parallel to the normal vector of the target rear surface, therefore the mechanism is
called as “Target normal sheath acceleration”. The schematic for this mechanism is sketched in Fig.3.1.

After its discovery, the essential features of theTNSA mechanism has been supported by several
experiments and it provided the experiments many ideas to test the ion acceleration schemes with dif-
ferent shape of targets. In particular, the schemes for beamoptimization and control have been designed
on the basis ofTNSA. As the sheath field is almost perpendicular to the target surface, it is possible
to focus the protons by shaping the target [83, 84]. The simple dependence of the electrostatic field on
the density scale length at the rear side has been confirmed byperforming a long scale length plasma at
the rear side of target surface [85], by showing the proton energy decrease and suppression of accelera-
tion with increasingLs. The suppression of proton beam by removing the surface impurities provide a
confirmation to accelerate efficiently the heavier ions suchas carbon [86].

3.1.2 Basic theoretical model

The essential features ofTNSA mechanism have been supported by several experiments and has
become the reference framework to interpret observations of multi−MeV protons from the target rear
side. First of all, we assume an electrostatic approximation which lead to the formulation of a simple set
of equations, so that the electric fieldEs = −∇Φ where the potentialΦ satisfies the Poisson’s equation

∇2Φ = 4πe(ne −
∑

j

Zjnj) (3.4)

the protons and other contamination layers from the target to accelerate heavy ions[80, 81]
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where the summation is over each species of ions, having chargeZj and densitynj. In a laser solid
interaction, the electron densityne can be described as of qualitatively two distinct populations of elec-
trons having densitiesnc andnh such thatne = nc + nh. In the simplest approach, only the “hot”
electrons will escape the target vicinity, shielded from the ion attraction by their slow successors where
the main part of the hot electrons population will be trappedin the coulomb potential (formed due to
charge separation) and constitute an exponential sheath onthe target rear side. So thermal effects can
be neglected for the cold population (nc), while nh can be described by a one temperature Boltzmann
distribution as

nh = n0h · exp
{

eΦ

KBTh

}

(3.5)

whereΦ is the Coulomb potential of the ionized target. The above equation is a reasonable approxima-
tion to account for the presence of the self-consistent sheath field which will be retained as long as the
laser pulse drives hot electrons through the target. The expression in Eq.3.5 has actually been used in
many works onTNSA[87, 88, 89] but can lead to serious problems2 when the main goal is the evaluation
of the maximum energy of the accelerated ions.

In most of the cases, it is appropriate to consider two different ion species, a light (L) and an heavy
(H) population and by this way it is possible to model the acceleration of light ion species which is
present on the surface of a solid target made of heavy ions. Depending upon the description of the ion
population and to describeTNSA theoretically, there are two main categories of models named “static”
and “dynamic” models which provide simplified analytical descriptions and are helpful to interpret the
experimental data. In static models, it is assumed that the light ions ( or the most energetic ones) are
accelerated in the early stage of the sheath formation, while the heavy ions may be assumed as stationary
or immobile. In such conditions, the effect of the light ionson the electrostatic potentialΦ is usually
neglected with the aim to provide more accurate descriptionof the sheath depending on the assumptions
of hot electron distribution. The second category is of dynamic models where the system is described
as a neutral plasma in which the ions acquire kinetic energy in the course of sheath evolution. In most
cases, a unique ion component is considered, i.e. a approachwhich is strongly connected to to the
classical problem of plasma expansion in vacuum [90]. In a cold fluid description, the ions are described
as follows:

∂uj

∂t
+ uj · ∇uj = −Zje

mj
∇Φ (3.6)

∂nj

∂t
+∇ · (njuj) = 0 where j = (L,H) (3.7)

and if the ions are described kinetically, then their phase space distribution can be described by Vlasov
equation,

∂fj
∂t

+ v · ∇fj −
Zje

mj
∇Φ · ∂fj

∂v
= 0 (3.8)

Most of the studies proposed in the literature both before and after theTNSA experiments and the related
specific models ofTNSA developed so far can be considered as suitable simplifications of the previous
equations, and can be obtained further with physically motivated assumptions by selecting one of the
two above mentioned categories or suitable combination of them. All of the models proposed so far to
describeTNSA, to a large extent are phenomenological, i.e. they need somephysical quantities as input
parameter which are not precisely known. The best model in this context may be considered the one
which provides the best fit of experimental data with the lowest set of target and laser parameters, and
the one which give directions towards improvement of the acceleration process for future applications.

2 These issues have been discussed at the end of this section after Eq.(3.10).
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Quasi-static model

Starting approximation of static model includes the time scale ofsub−ps laser pulses, an isothermal
hot electron population, immobile heavy ions and the light ions to be sufficiently few in number to
neglect their effect on the evolution of the potential and thus can be treated as test particles. In this
approximation, we used Eq.(3.5) to describe the hot electrons and neglecting thermal effects for cold
electrons, the potential in planer geometry is calculated as

∂2Φ

∂x2
= 4πe

[

n0he
eΦ/Th − (ZHn0H − n0c)

]

(3.9)

where SubscriptH is for proton. The corresponding electron density, electric field and the energies of test
protons can be calculated moving in such potential. The solution of Eq.(3.9) in the semi-infinite region
x > 0 is calculated as [91]

Φ(x) = −2Th

e

{

ln

(

1 +
x√
2eλDh

)}

(3.10)

whereλDh, the Debye length of hot electron have been defined in Eq.(3.3). However, the electrostatic
potentialΦ(x) leads to an infinite acceleration of test protons which are initially at zero energy at
x = 0. Therefore from Eq.(3.5), solving mathematically,Φ → −∞ as x → +∞, which means
the self-consistent electrostatic potential must divergeat large distances from the target. This is not
a pathological consequence of the one dimensional approximation but is related with the fact that the
Boltzmann relation implies the existence of particles withinfinite kinetic energy, which is not physically
meaningful[92]. So this unphysical behavior can by assuming an upper energy cut-off Ec in the electron
distribution, such thatΦ → −Ec asx → +∞ and electric field turns to zero at a finite distance[93].

More detailed discussion about this acceleration mechanism is out of the scope of this thesis, since
the main acceleration mechanism explained in our simulation results is acceleration of ions from the
front surface of the target. e.g. by radiation pressure acceleration mechanism and by collisionless shock
formation which we will discuss below.

3.2 Radiation Pressure Acceleration (RPA)

This mechanism of ion acceleration has gained a lot of interest in the past few years [94, 95, 48, 96],
where the particles are directly accelerated by the laser radiation pressure. Acceleration of solid objects
via the radiation pressure of intense light from the long times, has been considered as a route to achieve
extremely high velocities. The basic principle of this ideawas first proposed by Marx in1966 [97],
giving a proposal for any human propelled macroscopic object to reach velocities approaching the speed
of light. The efficiency approaches100% as the object reaches the speed of light. Later this idea was
implemented to a thin foil target being accelerated entirely as soon as short pulsed highly power laser
systems were available.

RPA mechanism accelerates ions from the front side of the targetin the vicinity of the laser focus
due to the electrostatic fields which arise inside the targetfrom the ponderomotive expulsion of plasma
hot electrons where they form a compressed electron cloud. When a plane monochromatic EM wave of
intensityI and frequencyω normally incident on the plane surface of a target (at rest),the electrons are
pushed inside the target by the ponderomotive force (Eq.2.70), while the ions are still immobile due to
their heavy mass. The electrons are pushed inwards by ponderomotive force, leaving behind a charge
separation layer and creating an electrostatic, back-holding fieldEs that in turn acts on the ions and leads
to acceleration. As soon as the electron density exceeds thecritical density (ne > nc), the condition of
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a sharp boundary is given and the pressure imposed on the electron layer might be described by the
radiation pressurePrad and is given by

Prad =
1

2
ε0E

2
s = (1 +R− T )

I

c
= (2R+A)

I

c
(3.11)

whereR, T andA are the reflection, transmission and absorption coefficients of the target and is well
known derived by Fresnel formulas [98] as a function of the refractive index and thus of wave frequency.
Energy conservation impliesR+T = 1−A, i.e. the fraction of the EM wave intensity that is converted
into internal energy of the target3.

Radiation pressure is basically the flow of delivered momentum per unit target surface and can be
computed when the EM fields at the surface are known.RPA measurements at low intensities in the
range from1012−1019W/cm2 tells that it plays no role and indeed is not a measurable effect over-most
at these intensities.RPA is dominated in this intensity regime by foil expansion driven by the thermal
pressure of the plasma or in the higher intensity regime> 1019W/cm2 by foil decompression due to
TNSA. If the laser pulse is linearly polarized, it has been found experimentally as well as numerically
that rear -surface acceleration(TNSA) produces high energy particles with small divergence and of
higher efficiency than that of front surface acceleration[99, 73]. Later, it was numerically predicted that
using linearly polarized lasers of intensity above1023W/cm2 which is not experimentally accessible
yet,RPA might be the main dominant mechanism than any other acceleration schemes [75].

Successfully exploringRPA requires a means of suppressing hot electron production at the target
front surface. This may seems impossible task given the highvalues of electric field but becomes possible
using circularly polarized pulses at normal incidence. Forcircular polarized, normal incidence laser
interactions,RPA can be revealed at much lower intensities1018W/cm2[95] in which the electrons are
effectively in a trapped orbit close to their origin and do not propagate through the target thus suppressing
TNSA. Due to the normal incidence of the laser, the Resonance and Brunel absorption are disbanded
and for circular polarized (CP) pulses, the ponderomotive pressure∼ ∇E2 is quasi-static and follow
the laser beam temporal envelope in magnitude. Thus forCP pulses, the generation of hot electrons
is suppressed since the longitudinal component of the Lorentz force vanishes[95]. Therefore forCP
pulses, the scaler value of the electric field vector is constant and the ponderomotive pressure∼ ∇E2

oscillates with a period of once per optical cycle and hence∇E2 = const for I = const. Constant
pressure on electrons in the target allows a charge sheath todevelop, i.e. ions are offset with respect to
ions and hence the formation of an accelerating field.

In general,RPA consist of two different stages: a) hole boring stageHB−RPA:- where the electrons
are piled up to an equilibrium and creates a restoring electrostatic field since the target ions are still
immobile in that early stage. Later the ions are set into motion layer by layer due to this electrostatic
field. The target rear surface almost remains stationary in this case. b) light sail stageLS − RPA:-
where the entire target ions begin to move ballistic due to the electrical field created by the displaced
and compressed electron layer which acts as an accelerated plasma mirror. We will concentrate more
on the “hole boring acceleration stage” for circular and linear polarized pulses and to compare the ion
acceleration mechanism occurred within the target due to the collisionless “electrostatic shocks”.

3.2.1 Hole-boring RPA: Thick targets

In the first measurements of ion acceleration in the forward direction, the possibility of relevant con-
tribution of accelerating ions at the front side of target was conceived [100]. Later, few more experiments

3Other limiting cases include a perfect mirror (R = 1, T = A = 0, soPrad = 2I/c), a perfectly absorbing medium (A = 1,
R = T = 0, soPrad = I/c) and a transmitting non-absorbing target (A = 0, T = 1−R, soPrad = 2RI/c)
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suggested that in particular laser and target conditions, the energy of the “front side ions” is comparable
to or even exceed than that of “rear side” ions [101, 102]. As a consequence, the mechanism of ion
acceleration in such regions is extensively investigated.

To derive the expression for the ion velocity in the non-relativistic case, (i.e. ion front velocity is
slow compared to c), we first solve the equations for the momentum balance. It is assumed that the
plasma is overdense so that the light beam is perfectly reflected from the plasma surface. Now a intense
laser beam of constant intensityI is driving into a target of uniform density. At the front surface of
plasma, the intense radiation pressure of the laser pulse pushes an overdense target inwards, steepen-
ing the density profile and bending its surface. To provide a dynamical picture of ion acceleration in
the charge separation layer, we consider only the action of steady ponderomotive force which would be
fully appropriate for circular polarized pulses at normal incidence. During the initial stage, the electrons
are pushed inside the target by the ponderomotive force (seeCh.2, sec2.5 for detail), piles up to den-
sitiesne = np0 (see Fig.3.2a) leaving behind a charge separation layer. This give rise to a restoring
electrostatic fieldEx. Assuming that the time scale of electrons and ions is well separated because of the
large mass difference, so that at any time the electrons can be considered in mechanical equilibrium, i.e.
Ex and the ponderomotive force balance each other. To describes the ion motion analytically, we use
simplified profiles of density and fields as shown in Fig.3.2. In Fig.3.2a, electrons have piled up under
the action of ponderomotive force while the ions are still immobile and are at equilibrium. The model
parametersnp0, xd andEx are related to each other by the Poisson equation, charge conservation and
the pressure balance condition such as

Pes =

∫

eneExdx = Prad =
2I

c
(3.12)

The lengthls = xs − xd is the penetration distance of the ponderomotive force intothe target (ls =

c/2ωp). Since the electric forceEx decreases linearly with distance in the regionxd < x < xs, ions
with initial position in this range all reach to thex = xs point at the same timeτb and a singularity
appears in the ion density as shown in Fig.3.2c. Then the ions cross this electron layer and travel inside
the target until they encounter the next layer of stationaryions. Due to much less inertia of electrons
than that of ions, the compressed electron layer (Fig.3.2c) adjusts itself immediately. Now again the next
stationary layer of ions experience the electrostatic fieldand get accelerated in the same manner. This
cyclic acceleration of ions which proceeds by layer to layerresulting in the characteristic loops in the
ion phase space (see resultssec6.3 for CP case inCh.6), continues until they don’t reach to target rear
side.

Figure 3.2:Schematic of the ion densityni, electron densityne and electrostatic fieldEx at three different stages
of ion acceleration. Figure reprinted from [103]

.
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When anEM wave impinges on the target front surface, the intense radiation pressure of the laser
pulse pushes the overdense target inwards with a velocityvhb commonly known as hole-boring veloc-
ity, which can be estimated by balancing the electromagnetic fields and mass momentum flows in the
instantaneous rest frame [77]

2I

c
∼ 2ni(mivhb)vhb =

2ne

Z
Ampv

2
hb (3.13)

wherePrad is the radiation pressure on the surface layer which is moving at velocityvhb. At this point,
we will define a dimensionless piston parameterΞ,

Ξ =
I

minic3
=

I

ρc3
=

Z

A

nc

ne

me

mp
a20 (3.14)

whereρ is the mass density of the plasma. So we can determinevhb as

vhb ∼
√

I

ρc
=

√

I

minic
=

√
c2Ξ = a0c

(

Z

A

me

mp

nc

ne

)1/2

(3.15)

The fastest ions form a narrow bunch of velocityvmax that penetrates into the overdense plasma
detaching from the surface layer, such that the maximum velocity of the detached ion bunch can be
vmax = 2vhb[95]. Neglecting numerical factors, this leads to the following estimates and scaling forvmax

and the corresponding energy per nucleon of the detached ionbunch for non-relativistic regime

Emax =
1

2
miv

2
max = 2mic

2Ξ (3.16)

The estimate forEmax shows a scaling with the laser intensityI and is more favorable than theI1/2 scaling
of TNSA. This suggests that theRPA effects become more important for higher intensities. From
Eq.(3.15), vmax can be described as

vmax ∼ 2vhb = 2
√
c2Ξ (3.17)

the ion velocity depends simply on the laser intensity and target density in this scenario.
As vhb does not become negligible with respect to c, one has to take into account that the effective

radiation pressurePrad on the surface moving with velocityvhb in the lab frame and can be demonstrated
by the Lorentz transformation4 such that:

Prad =

(

2I

c

)

1− vhb/c

1 + vhb/c
(3.18)

The EM momentum flow, i.e. the radiation pressurePrad, must balance the momentum flow difference
equal toni(2γhbmivhb)vhb. Thus the global momentum balance equation Eq.(3.13), with relativistic
correction can be written as

(

2I

c

)

1− vhb/c

1 + vhb/c
∼ ni(2γhbmivhb)vhb (3.19)

4The relativistic correction is equivalent to the energy depletion of the incident radiation in the adiabatic approximation and
can be shown easily by the heuristic model of radiation pressure in which the number of reflected photons per unit surfaceN

with energy momentum (~ω, x̂~ω/c) contained in a short bunch of durationτ , corresponds to an intensityI = N~ω/τ . If the
surface is moving with velocityv = βc, the frequency of the reflected photons isωr = ω(1− β)/(1 + β) and the reflected

time would beτr = τ/(1− β). Thus the resulting pressure will beP = |∆p|
∆t

= N~

c

(

ω+ωr

τr

)

= 2I
c

(

1−β

1+β

)
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whereγhb = (1− v2
hb/c

2)−1/2. Solving for thevhb expression relativistically which yields

vhb

c
=

Ξ1/2

1 + Ξ1/2
(3.20)

So the relativistic correct expression for the ion energy per nucleon becomes [104, 105]

Emax = 2mic
2 Ξ

1 + 2Ξ1/2
(3.21)

and the scaling withI is turned down toI1/2 at very high intensity. The simulations show that the
final energy spectrum observed in the results is determined by the highly transient stage of equilibrium
collapse and wave breaking which follow the formation of thesingularity. Even referring for a planer
geometry, the hole boring process is associated with the ionacceleration from the front side of the target5.

The above equations(3.16) and(3.21) applies to thick target, i.e. much thicker than the the skin
depth in which the ion acceleration by the space-charge fieldoccurs. Ion acceleration in form of bunching
and by wave breaking occurs as long as the laser pulse is on andpushing the adjacent surface layer deep
into the target by a repeated cycle of charge separation. If the target and laser parameters do not vary
much over an acceleration cycle, all the ions get accelerated to an energyEmax and theHB process which
in general of non-stationary nature, might also be described by the quasi-stationary model [104]. Now
if the target is thin enough that all the ions get acceleratedbefore the end of laser pulse, in such case the
laser pulse is able to further accelerate the ions since theyare not screened by the background plasma
surface. For example, if the target is of the order of∼ xs Fig.3.2c, the density profile ends up at the
null point of the ponderomotive force and the acceleration cycle is repeated again over the same ions.
Thus higher ion energies are expected for such thin targets.Now all the ions have the same velocity and
undergo the light sail acceleration which we will discuss now in the next section.

3.2.2 Light-sail Regime: Thin targets

The thin target regime ofRPA has been named “Light sail”(LS) as the term is appropriate to refer to
a thin object of finite inertia, having low mass and large surface so that it can be significantly accelerated
by the boosted action of the radiation pressure. Marx raisedthis idea by using calculations based on the
simple model of a flat, perfect mirror boosted by a plane wave.Marx’s concept faced some controversies
but later Simmons etal [106] discussed this topic finally by concluding “whatever his mistakes, at least
Marx was more right than his critics”. The analytic solution and scaling laws provided by the basic
model[106] illustrate some appealing features ofLS− RPA such as high efficiency in the relativistic
limit and the possibility to reach up-to very energy with present-day laser and target technology.

Let us consider the sail as a plane mirror of massM , moving with velocityV = dX/dt in the
laboratory frameS. We assume the mirror to have a reflectivityR = R(ω), which is defined in the
frame where sailS is at rest. A quasi-monochromatic plane wave if intensityI impinges at normal
incidence on the sail. The equation of motion for a moving target (sail) in the laboratory frameS can
be obtained similarly to Eq.(3.19) with the help of Lorentz transformation into the instantaneous rest
frameS

′
where the force on the target is given by radiation pressureF

′
= 2I

′
R(ω

′
A/c) whereA is the

sail surface,I
′

andω
′

is the intensity and frequency inS
′

frame. Neglecting absorption for simplicity
(i.e.A = 0), we obtain the equation of motion for the light sail as

d

dt
(βγ) =

2I(tr)

σc2
R(ω

′
)
1− β

1 + β
,

dX

dt
= βc (3.22)

5Notice that in the literature, different definitions such aslaser piston [104] or sweeping acceleration[99] are also used to
refer to the same process.
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whereX is the position of the sail,β = v/c is the sail velocity in units ofc, γ = (1 − β2)−1/2,
ω

′
= ω[(1 − β)/(1 + β)]1/2 is the laser frequency in the rest (sail) frame andσ = minil is the mass

density per unit surface. The laser intensityI is a function of the retarded timetr = t− X
c

The existing analytical solutions of Eq.(3.22) depends on the suitable expressions forR(ω). The
simplest case is that of a perfectly reflecting mirror (R = 1) and a laser pulse of constant intensityI (for
detailed derivation, see [106] ). The normalized kinetic energyK(t) is given by

K(t)

mc2
= γ(t)− 1 = sinh(u) +

1

4sinh(u)
− 1 (3.23)

u ≡ 1

3
a sinh(3Ωt+ 2), where Ω ≡ Z

A

me

mp

a20
ζ

(3.24)

in which ζ has been defined in Eq.2.55 (Ch.2). Asymptotically,K(t)/mc2 ≃ (3Ωt)1/3 − 1. Most
significant quantities can be obtained for an arbitrary pulse shapeI(t) as a function of the dimensionless
pulse fluenceF =

∫

Idt (the pulse energy per unit surface). ForR = 1, one obtains forβ = β(tr) [106]

β(tr) =
[1 + F(τ)]2 − 1

[1 + F(τ)]2 + 1
(3.25)

F(tr) =
2

σc2

∫ tr

0
I(t

′
)dt

′
(3.26)

From above equation, we can define the instantaneous efficiency η, as the variation of the sail’s energy
at the retarded timetr divided by the electromagnetic power delivered at the sail at the same (retarded
instant), i.e. byI(tr) the ratio between the mechanical energy delivered to the sail and the incident pulse
energy as

η =
2β(tr)

1 + β(tr)
= 1− 1

[F(tr) + 1]2
(3.27)

Thusη → 1 is obtained in the relativistic limitβ(tr) → 1, which is reached whenF → ∞6.
The scalings and estimates implied by Eqs.(3.25) and(3.27) are very useful for ion acceleration by

super-intense pulses as they imply that laser parameters needed for interstellar travel are still far away.
Let us use a thin solid foil for the sail having densityρ and thicknessl, such thatσ = ρl. Thus the final
energy per nucleonEmax as a function of the total fluenceF = F(∞) is given by

Emax = mpc
2[γ(∞) − 1] = mpc

2 F2

2(F + 1)
(3.28)

whereF in practical units is given by

F ≃ 2.2
F

108J/cm2

(

ρ

1g/cm3

)−1( l

10nm

)−1

(3.29)

whereF is the laser energy per unit surface and in terms of dimensionless parameters is given by

F ≃ 2mec
2nca

2
0τλ

minilc3
= 2π

Z

A

me

mp

a20τ

ζ
(3.30)

6 This result follows from the photon number conservation such asN photons carrying a total energyN~ω, being reflected
during short time intervals such thatβ does not vary significantly. Then the reflected photons have total energyN~ωr and the
energy transferred to the mirror isN~(ω − ωr) = N~ω[2β/(1 + β)], thus the efficiency isη = 2β/(1 + β)
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a constant intensity has been assumed in above equation andτ is the laser pulse duration in units of
the periodT = 2π/ω = λ/c. With the present day laser technology where target manufacturing can
produce films of few nm thickness, e.g. Diamond-Like carbon foils, the values ofa20τ ∼ 103 seems
affordable. Thus in principle it seems feasible to reach values ofF > 1 approaching a regime which
can accelerate relativistic ions with high efficiency and a more favorable scaling with the pulse energy at
F ≫ 1.

3.3 Shock Acceleration

Acceleration of particles by collisionless shocks in plasmas is a problem of central interest in astro-
physics [107] as well as in laser-plasma physics[78]. Such collisionless shocks are abundant in space
and in astrophysical plasmas, e.g. the Earth’s bow shock, supernova remnants, interplanetary traveling
shocks where in many circumstances the particle transport is caused by wave-particle interactions. The
existence of an ion component that is reflected by the shock front is actually a direct signature for the
formation of the collisionless, electrostatic shock wavesin the basic fluid theory [28, 108, 109], where
the electrons are assumed to be in Boltzmann equilibrium. Inthe frame moving at shock velocity, ions
are reflected by the shock if the height of the electrostatic potential barrierΦmax at the front is such that

ZeΦmax > miv
2
i /2 (3.31)

wherevi is the velocity of the ion component in the shock frame. Behind the shock front, the fields have
an oscillating behavior. In a simple picture of ion acceleration by collisionless shocks; ions which are
initially at rest, get reflected by the shock front (which acts as the moving wall), and acquire a velocity
in lab frame, i.e.vi ≃ 2vs, wherevs is the shock front velocity.

Nowadays, it is possible to replicate the astrophysical conditions in the laboratory and study of
collisionless shock phenomenon has received greater intention from last two decades. Collisionless
shock(CS) can be generated in laboratory by interacting a strong laserpulse with overdense plasma
[110] as well as by underdense plasma created by using gas jet targets [111] or by the effect of long
prepulses in solid targets[102]. The generation of shock waves driven by laser pulses is well known in
the moderate intensity(I = 1018−1021 W cm−2), nanosecond pulse regime. In a overdense plasma, rapid
heating and ablation pressure at the surface may drive a shock wave propagating towards bulk and the
study of such propagation may yield information on the equation of state of warm dense matter[112].
In the interaction of super-intense laser pulses with overdense plasma, the light pressure ranges from
gigabar to terabar values and, like a piston, may sweep out and compress the laser-produced plasma and
push its surface at nearly relativistic speeds. Such combination of strong compression and acceleration
is often described as the generation of strong collisionless shock waves propagating towards the bulk of
the target. Collisionless shocks with a relatively low Machnumber have been investigated in laboratory
plasmas since1970s [113]. Recently theoretical and numerical study also infer about the occurrence of
high Mach number collisionless shocks in laser plasma [114].

Ion acceleration by theCS waves is of high interest at the moment and receiving more attention
because the energy spectrum of the accelerated ions is ideally monoenergetic, which is quite useful
for many kinds of applications. Experimentally in laser-matter interactions, the ion acceleration byCS
shocks have been reported in an underdense plasma [111], overdense plasmas [115] and in a gas jet
target [79]. Ion acceleration by collisionless shocks in the target bulk is more prominent in case of
linearly polarized(LP) pulses as the oscillating component of thev × B drives a sweeping oscillation
at 2ω of the density profile which overlaps to the steady effect of the ponderomotive force and causes
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strong absorption and fast electron generation. Moreover with the rapid development of laser technology
and with the present availability of ultrashort and ultra-intense pulses with focused intensity exceeding
1021W/cm2, makes it possible to conduct laser-plasma interaction without pre-plasmas of large scale
lengths where ion acceleration byCS may be examined and tested in more detail.

Numerically, Denavit first observed shock acceleration in theirPIC simulations [77]. Later collision-
less electrostatic shocks with Mach numbersM = vs/cs = 2 − 3 have been reported by Silvaetal[78]
where the sound speed is estimated using the fast (hot) electrons temperatureTh ≃ mec

2(
√

1 + a20/2−
1). The shocks are generated at the target front surface with a velocity close tovhb given by Eq.(3.20)
consistently with the assumption that they are driven by piston action of the radiation pressure. By esti-
mating the shock velocity with respect to hole-boring velocity vs ≃ vhb

7 in the strongly relativistic limit
a0 ≫ 1, the condition to obtain radiation pressure driven supersonic shocks and can be written as

a0 >
1

2
√
2

ne

nc
(3.32)

As long as the shock velocityvs is constant, the reflected ions from the shock front should have ve-
locity 2vs and produce a monoenergetic peak in the spectrum. Such a peakwould evolve into a spectral
plateau due to the further acceleration in the sheath field atthe rear side of the target [78]. A similar
signature was interpreted experimentally as an evidence offront side contribution to ion acceleration
[101] with respect toTNSA acceleration at the rear side of the target. Later an interplay between col-
lisionless shock acceleration(CSA) andTNSA has been widely study through numerical simulations
by d’Humieresetal [116] and Chenetal [117]. Very recentlyCSA has been indicated as the mechanism
responsible for monoenergetic proton acceleration up-to∼ 20MeV energy in theCO2 laser pulse inter-
action with Hydrogen gas jets at an intensities up-to6.5 × 1016W/cm2 corresponding toa0 = 2.5[79].
The particular temporal profile of the laser pulse, i.e.100 ps train of3 ps pulses, require to be essential
for the acceleration mechanism, since no spectral peak is observed for a smooth, non-modulated pulse.
Comparison withPIC simulations suggests that the multi-peak modulated pulseslead to efficient gener-
ation of supra-thermal electrons. It was found that these shocks are formed due to strong electron heating
(rather than radiation pressure) in the density gradient which further accelerate monoenergetic beams of
protons. HoweverCSA generated by these supra-thermal electrons fall somehow out of the “collective
acceleration” paradigm and only a minor fraction of the ionsare accelerated by the shock.

In the context of ion acceleration by laser, we prefer to reserve the term “shock” for the regime
described above which implies the generation of a “true” electrostatic shock wave, able to propagate
into the plasma bulk and drive a ion acceleration there. The formation of true shocks may be inhibited
for circular polarization because of the reduced electron heating. According to the fluid theory, a shock
wave launched with some velocityvs requires the sound speed (cs =

√

Te/mi) and indirectly the
electron temperature to be hot enough to prevent the Mach number M = vs/cs from exceeding the
critical valueMcr ≃ 6.5 above which one does not have a shock but a pure piston [109]. The detailed
discussion for CP simulations have been prescribed inCh.6 andCh.7.

In addition to collisionless shocks, the standard fluid theory [27, 28] also predicts electrostatic soli-
tary waves (or solitons) propagating at the velocityvsol. A necessary and general condition for such
solitons to exist is that the electrostatic potential energy jumpΦmax has a peak value

ZeΦmax < miv
2
sol/2 (3.33)

7 The use of two terminology can be understood in such a way thatthe hole boring and shock acceleration may produce
similar type of ion spectrum, because wave breaking at the plasma surface in hole-boringRPA produces ion bunches having
maximum velocity≃ 2vhb (see section3.2.1) as if those ions were reflected from the surface, while at thesame timevs ≃ vhb

may occur [78].



44 Laser-Driven Ion Acceleration

so that the background ions are not reflected by these solitary waves. Assuming the electrons in isother-
mal Boltzmann equilibrium, the condition in Eq.(3.33) poses an upper limit on the Mach number
M = vsol/cs = 1.6, wherecs =

√

Te/mi is the speed of sound. The other condition is that the soliton
must be supersonic, i.e.M > 1. However, generation of electrostatic solitons may lead toion accelera-
tion in some circumstances, e.g. the soliton formed within the bulk when reach to rear side of the target,
the wave breaking occurs in the expanding rear sheath due to the effect of plasma flow [118]. A detailed
discussion about solitary versus shock wave formation and related ion acceleration has been prescribed
in Ch.6



CHAPTER 4

Electrostatic Solitons and Shock Waves in
Collisionless Plasmas

In a harmonic wave solution, we genrally assume a plane wave of the form expι(k.r − ωt) and
the linear wave propagation is studied by considering one ofthe Fourier component at a time in the
small amplitude limit. There are numerous processes via which an unstable mode can saturate and
obtain large amplitude. When the amplitude of the wave is sufficiently large, nonlinearity can not be
ignored. The nonlinearities occur due to: ion reflection from the wave front, trapping of the particles
in the wave potentials, nonlinear Lorentz force, ponderomotive force etc. The nonlinearities due to
particle reflection and particle trapping considerably increase the richness and variety of wave motion
which exist in a plasma and significantly influence the condition required for the formation of localized
electrostatic excitations. Below we will discuss such similar nonlinear phenomena and the occurrence
of coherent structures such as electrostatic solitary waves and the transition from these solitary waves to
collisionless shock waves.

4.1 Waves in Unmagnetized plasma

In this section, we will investigate some of the oscillatorymodes (or waves) which can be sup-
ported by a homogeneous, unmagnetized plasma. By plasma modes or waves, we refer to propagating
linear oscillations. These are obtained by considering theequilibrium state for speciesj = e, i, say
S0 = [nj0, u0 = 0,Φ = 0] and then assuming small amplitude harmonic oscillations around that state
in the formS1 = [nj1, u1,Φ1]. By small, we mean that say,n = n0 + n1, for any given species, where
|n1/n0| ≪ 0. The “linearized” version of the dynamical equations1 will be solved to provide the os-
cillating quantities. In search for a solution of a linear equation, one considers a quantity “A” which
is an oscillatory function of a space variablex and of timet. In our case, in a multi-variable problem,
we deal with a system of linear equations, so this oscillating function may model any relevant plasma
state variable, i.e. the number densityn, the electric potentialΦ etc. The linear equations may be
Fourier transformed in both space and time, thus reducing the differential equations to a set of algebraic
equations. Now, we may assume that each perturbed quantity has the mathematical form

A(r, t) = Ā exp i (k · r− ωt) (4.1)

where the real part is implicitly assumed. This form describes a wave in which the amplituden is in
general complex, allowing for a non-zero phase constantΦ = kx− ωt. Theω is the angular frequency
while the wave-vectork gives both the direction of propagation and the wavelengthλ = 2π/k. Ā is the

1To linearize the fluid equations is to consider a small real parameter, sayε ≪ 1 and substituten = n0+ εn1, u = 0+ εu1

and so on. Isolated terms inε1 then give the linearised system while higher order terms∼ ε2, ε3.. are neglected (within the
linear analysis).
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amplitude of the oscillation. A point of constant phase on the wave form moves such that

dΦ

dt
= k · vph − ω = 0

where the wave phase velocity is

vph =
ω

k
k̂ (4.2)

The phase velocity of a wave may exceed the speed of light, since no information is carried atvph.
Information is carried by a modulation of the wave in either amplitude or frequency e.g. a wave pulse
having a Gaussian envelope.

In general, a wave may contain many different frequencies and can then be described as a sum e.g.
A =

∑

j Aje
i(kjx−ωjt) or an integral over many such single frequency components each described by

Eq. (4.1). In such cases, the quantityA is a wave packet (or wave group) and is confined within an
“envelope” of varying amplitude. Each component within theenvelope may have its own phase velocity,
but the quantity which has a physical meaning is the velocityof the envelope, i.e. the velocity at which
energy is transported by the wave and is known as the “group velocity” and is given by:

vg =
dω

dk
(4.3)

There is a relation betweenω andk and is determined by the physical properties of the system. The
functionω(k) is called the dispersion relation for the wave. Both thevph andvg can be inferred from
this dispersion relation. We will now identify the different wave modes that occurs in an unmagnetized
plasma and will find the dispersion relationω(k) for each.

4.1.1 Plasma Oscillations

Here, we will use the fluid dynamics by treating the electronsand ions separately as fluids under
the influence of electromagnetic forces, generally called as two-fluid formalismfor plasma. Considering
a two species (electron-ion) plasma withZ = 1. In the simplest case of plasma with the following
assumptions:(1) plasma is infinite, neutral, uniform and at rest(2) no magnetic field, i.e.B = 0, (3)
for the cold plasma approximation, neglecting thermal motions(T ≃ 0), (4) the ions are fixed in space
and are in a uniform distribution,(5) collisionless plasma,(6) considering the electrons motion only
along thex−axis. Out of the full set of two fluid and Maxwell equations, the relevant equations for the
electron fluid are the continuity and momentum equations, coupled to Gauss’s law:

∂ne

∂t
+∇ · (neue) = 0 (4.4)

mene

[

∂ue

∂t
+ (ue · ∇)ue

]

= −eneE (4.5)

∇ ·E = 4πρ = 4πe(ni − ne) (4.6)

Simplifying the above set of equation by linearizing2 it and by assuming that the oscillation introduces
only a small perturbation to the equilibrium state of plasma. Using the above defined assumptions, the
above set of equations becomes:

− iωn1 = −ikn0u1 (4.7)

2 Linearizion is done by writing variables as the sum of the equilibrium, labeled with suffix “0” and a small perturbation
labeled with suffix “1” such thatne = n0 + n1 and similarly the other variables.
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− iωmeu1 = −eE1 (4.8)

4πen1 = −ikE1 (4.9)

This is a homogeneous system of three algebraic equations inthe three variablesn1, u1 andE1. Elimi-
natingn1 andE1 and equating foru1, we get the electron plasma frequencyωp

ω =

√

4πn0e2

me
≡ ωp (4.10)

Therefore in order for an electron density oscillation to besupported in a cold, uniform plasma, the
frequency of the oscillation must be equal to the plasma frequency. Sinceω is constant and independent
from wave vectork, so the phase velocityvph and group velocityvg of such oscillations is zero which
means that the charge oscillation do not propagate through plasma. This oscillation is a fundamental
mode of the plasma and has many ramifications. In the next step, we will investigate its importance.

4.1.2 Electron Oscillations in Warm Plasmas: Langmuir waves

Considering now a plasma satisfying all assumptions given in the previous section but having a
“warm” plasma with a temperatureTe 6= 0. Thus electrons make streaming into adjacent layers of the
plasma with their thermal velocities and will carry information about what is happening in the oscil-
lating region. So in such a warm plasma, the pressure gradient term−∇pe needs to be included in in
the momentum equation(4.5). The electron motion is effectively one dimensional and have only one
(translational) degree of freedom. The relevant specific heat then at constant volumecv = KB/2 and at
constant pressurecp = 3KB/2 per electron, giving the specific heat ratioγe = cp/cv = 3. Therefore
the corresponding perturbations of electron pressure and density are related as

−∇pe = −γeKBTe∇ne = −3KBTe∇ne = −3KBTe∇(n0 + n1) = −3KBTe
∂n1

∂x
x̂ (4.11)

Adding the above pressure term in the right hand side of the momentum equation(4.5) and after lin-
earizing and imposing oscillatory solutions, the momentumequation for electron fluid becomes

men0

∂u1

∂t
= −en0E1 − 3KBTe

∂n1

∂x

− iωmen0u1 = −en0E1 − 3KBTeikn1 (4.12)

Puttingn1 andE1 from Eq. (4.7 − 4.9), we have

imeωn0u1 =

[

en0

(−4πe

ik

)

+ 3KBTeik

]

ikn0

iω
u1

ω2 = ω2
p +

3KBTe

me
k2 = ω2

p(1 + 3k2λ2
D) (4.13)

whereλD = (KBTe/4πnee
2)1/2 is the Debye length. Eq.(4.13) is the Bohm-Gross dispersion relation

for the Langmuir waves. From this, we can deduce the phase speed of the the Langmuir wave as

vph =

(

KBTe

me

)1/2(

3 +
1

k2λ2
D

)1/2

(4.14)
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The above dispersion relation is only valid for wave-vectormuch longer than the Debye length (i.e.
kλD ≪ 1). When the wave-vectork is less than or of the order of Debye length (i.e. kλD ≥ 1), the
phase speed of electrons becomes comparable to the thermal speed and it becomes possible for individual
electrons to transfer energy between adjacent compressionand rarefactions in the wave which results in
energy transfer and damp the wave.

By using the expression for the thermal velocityvth =
√

2KBTe

me
, the Eq.(4.13) can be rewritten as

ω2 = ω2
p +

3

2
k2v2

th (4.15)

Eq.(4.15) is the dispersion relation for electron oscillations in warm plasmas, also known as Langmuir
waves. Since in this case,ω is a function ofk, the group velocity will be different from zero. Differenti-
ating the above equation, we get the group velocity

vg =
dω

dk
=

3kv2
th

2ω
=

3v2
th

2vph

(4.16)

The perturbation associated to the oscillation propagatesthrough the plasma at the group velocityvg.
It is clearly seen from Eq.(4.16) that the group velocityvg is always less than(3/2)1/2vth which in the
non-relativistic case is always much less thanc. Electron plasma waves are longitudinal waves, i.e. the
oscillation is along the direction of propagation. When thermal motion are “turned on”, the resulting
thermal pressure gradients at the finite wave numberk, convert the longitudinal plasma oscillations into
propagating energy transport modes, called as “Langmuir waves”. Thus the key of the Langmuir waves
propagation is thermal pressure of the warm electrons. The proton pressure is negligible because they
oscillate with an amplitude that is very small compared to electrons. In the following, we will study the
ion motion in warm plasma.

4.1.3 Ion Acoustic Waves in Electron-Ion Plasma

In above, for the Langmuir wave analysis, we have ignored theion motion by justifying that the
ion thermal speed is negligibly small compared to the electron thermal speed,i.e. Ti ≪ Te(mi/me).
However, the ion motion is not ignorable in a second type of plasma waves which exist at finite tem-
perature, known as ion acoustic waves. These waves propagate with frequencies far much below the
electron plasma frequency such that the electrons remain locked electro-statically to ions, keeping the
plasma charge neutral. IfZ = 1, for this type of oscillations, we therefore may assume the “plasma
approximation” i.e.ni ≃ ne = n and so here do not use Poisson’s equation. We will investigate this
type of oscillations by using continuity and ion momentum equation in an homogeneous, unmagnetized
(B = 0), infinite, collisionless, warm (ions having temperatureTi 6= 0) plasma. Under these conditions,
the momentum equation of ion fluid becomes:

mini

[

∂ui

∂t
+ (ui · ∇)ui

]

= ZeniE−∇pi (4.17)

In this case, it is useful to write the electric field as a function of potentialΦ, i.e. E = −∇Φ = −ikΦ.
The ion pressure term−∇pi can be written similarly as we done for the electron fluid, i.e. from Eq.
(4.11), for ion fluid it becomes:−∂pi

∂x = −γiKBTi
∂ni

∂x .
After linearization and imposting perturbation terms (as done before for electron momentum equa-

tion), the ion momentum equation becomes;

− iωn0miu1 = −en0ikΦ1 − γiKBTiikn1 (4.18)
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As the electrons having temperatureTe respond rapidly to the electric field and redistribute themselves
in equilibrium with potentialΦ1 and will follow the Boltzmann relation:

ne = neexp

(

eΦ

KBTe

)

≃ n0

(

1 +
eΦ1

KBTe
+ ...

)

(4.19)

From above equation, one can deduce the first order density perturbation of electrons ( and of ions, since
ne = ni) such as

n1 = n0

eΦ1

KBTe
. (4.20)

Similarly we can deduce the linearized ion fluid continuity equation from Eq.(4.7),

iωn1 = n0ikui (4.21)

Now we have obtained an homogeneous system of three equations, i.e Eqs.(4.18), (4.20) and(4.21) in
three variablesn1,u1,Φ1. Solving the above three equations for the ion acoustic dispersion relation, we
get

ω2 = k2
(

γeKBTe + γiKBTi

mi

)

(4.22)

Now in an ion acoustic wave with respect to Langmuir electronwaves, the individual thermal electrons,
due tome ≪ mi, can travel over many wavelengths during a single wave period, i.e. move very rapidly
and the electrons distribution may be assumed to be isothermal. Therefore the electrons effective one
dimensional specific heat ratio isγe = 1 while the ions suffers one-dimensional compressions in the
plane wave, soγi = 3. Eventhough the electrons provide the restoring force to the ion acoustic waves,
the inertia of the protons and electro-statically locked electrons is entirely that of the heavy protons.
Rewriting Eq. (4.22):

ω

k
=

(

KBTe + 3KBTi

mi

)1/2

≡ cs (4.23)

wherecs is the speed of sound in the plasma. From Eq. (4.23), for an ion acoustic wave, both the
phase and group velocity will be equal tocs ( for lower values ofω andk), as clear from a graphical
representation in the(k, ω) plane showing a straight line in Fig.4.1b.

Figure 4.1: Dispersion relation for electrostatic waves, Langmuir waves and Ion acoustic waves in an
unmagnetized plasmas. Reprinted from [119].
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Charge separation effects on Ion-acoustic waves

In order to obtain a more accurate expression for the dispersion relation for the ion-acoustic waves,
one must use the Poisson’s equation to link the potentialΦ and the local electron and ion density pertur-
bations, which now will have to indicate with different symbols , i.e. ni1 andne1 respectively. In such
case, the linearized set of equations, i.e. continuity, momentum and Poisson’s equations, used are

iωni1 = n0iku1 (4.24)

− iωn0miu1 = −en0ikΦ1 − γiKBTiikni1 (4.25)

∂2Φ1

∂x2
= 4πeni1 − ne1 (4.26)

from the above Poisson’s equation, the electron densityne1 is given by linearized Boltzmann relation,
i.e from Eq.(4.20) and the ion densityni1 can be calculated from the continuity equation such as

ne1 = n0

eΦ1

KBTe
and ni1 =

k

ω
n0u1 (4.27)

By using the set of equations above, we get a more accurate expression for the dispersion relation of ion
acoustic wave

ω

k
=

(

KBTe

mi

1

1 + k2λ2
D

+ 3
KBTi

mi

)1/2

(4.28)

WhenTi ≪ Te, we ignore the ion pressure termTi and the waves restoring force is provided by the elec-
tron pressure. The character of these ion acoustic waves getmodified when their wavelength becomes
of the order of the Debye lengthi.e. kλD ∼ 1, then the dispersion relation get modified to

ω

k
=

(

KBTe/mi

1 + k2λ2
D

)1/2

= viaw (4.29)

which means that for forkλD ≫ 1, the waves frequency approaches the ion plasma frequencyΩp ≡
√

4πne2/mi ≃ ωp

√

me/mi, whereωp is the electron plasma frequency as explained in Eq.(4.10). Eq.
(4.28−4.29) revealed that, for high frequencies (short wavelengthλD), the ion acoustic waves turn into
a constant-frequency wave (see Fig.4.1b). Thus there is a complementary behavior between Langmuir
waves and ion acoustic waves: the former are basically constant frequency but become constant velocity
at largek while the latter are basically constant velocity, but becomes constant frequency at largek.

In the following sections, we will explore the nonlinear effects in the ion acoustic waves and how
they give rise to solitons and shock waves by using the K-dV perturbation method and Sagdeev pseudo-
potential method and later will prescribe the conditions inwhich these solitary acoustic waves breaks
and convert into collisionless shock waves.

4.2 Nonlinear Effects on Ion Acoustic Waves

Nonlinearity is a fascinating element of nature whose importance has been appreciated for many
years when considering large amplitude wave motions observed in various fields,e.g.,fluids and plas-
mas, astrophysics, particle physics, quantum fields, chemical, biological and geological systems. The
nonlinearity evidently modifies the pattern of motion of a wave described by the linear theory, i.e. the pat-
tern which is harmonic in the linear approximation, becomesdistorted and display a number of changes
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in the course of time, for instance from a sine wave to a lopsided triangular waveform (nonlinear peri-
odic wave). The nonlinearities in the plasmas contribute tothe localization of waves, leading to different
type of interesting coherent nonlinear wave structures. Such structures have been reported in laser plas-
mas interactions in the form of electrostatic [23] or electromagnetic solitons [24], collisionless shocks
[78], ions and electrons phase space holes [20] etc. They arise out of interplay between some of the
mechanisms in physical systems such as diffraction, dispersion, dissipation and nonlinearly.

4.2.1 Nonlinear Plasma Oscillations

In general, in a plasma; the dissipative effects ultimatelyset a limit on the steepness of the wave
front and in a collisionless plasma, the chief mechanism responsible for the function is dispersion. The
increasing steepness of the leading edge of the wave as a result of nonlinearity, implies the generation of
higher harmonics in the wave[120]. These two effects (i.e. nonlinearity and dispersion) areresponsible
for the interesting features of the asymptotic wave motion which further develop the spontaneous pro-
duction of intense oscillations as a consequence of the competition between dispersion and nonlinearity.
We will now explain the possible nonlinear distortion to theharmonic wave profile in a collisionless
plasma by considering the evolution of so-called simple waves. Consider now a one-dimensional simple
wave equation for the velocity amplitude of a wave in a plasmafluid such as

du

dt
≡ ∂u

∂t
+ u

∂u

∂x
= 0 (4.30)

above equation is the convective derivative in a fluid and describes the disturbance evolution as long as
no friction or other force come into play. The term on the lefthand side when expanded into a Fourier
series, contains a large number of wave-wave interaction terms, as a result super-position and coupling
of different wavelengths imply the deformation of the wave profile. Now, let us assume that the initial
waveu(x, t) = Asin[k(x−u0t)], is injected into the plasma withu0 being the convection speed. During
the propagation through plasma, the main effect on the shapeof the disturbance arises from the second
nonlinear term(u∂u

∂x ) which can be written asukcos[k(x− u0t)] or 1
2ksin[2k(x− u0t)]. This nonlinear

term generates harmonic sidebands of half amplitude and half the wavelength of the original wave which
further with the same mechanism, generate sidebands at quarter original amplitude and wavelength and
so on generating with increasingly shorter wavelengths. Therefore, the total amplitude which is the
superposition of all these sideband harmonics is

uk(x, t) =
∑

n

A

2n
sin2n[k(x− u0t)] where(n = 0, 1, 2, ..) (4.31)

Figure 4.2: Steepening and breaking of a wave in a collisionless plasma. Fromleft to right the steep-
ening effect is presented at different times for a system without any dissipation. The wave breaking
phenomenon is achieved at timet3. Figure reprinted from [120]
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Now ever shorter wavelength contribute, when the faster (shorter) wavelength waves have higher
phase velocity, will overcome the slower (longer) wavelength waves and causes steepening of the wave
until the gradient becomes so short that other processes take over[120]. Steepening causes shortening of
the wavelength until the extension of the wave packet in realspace becomes comparable to the internal
dissipation scale, a ramp like structure (see Fig.4.2at t3) may form out of the wave front [27]. Suppose
this ramp like structure forms attr, and for the timet > tr, the wave will turn over and ultimately lead
to wave breaking or collapse. Fig.4.2 shows schematically how this wave breaking evolves in time in
a collisionless plasma. This wave breaking can be preventedonly by additional processes which sets
on when the wavelength of the ramp becomes so short that the terms of higher velocity gradients (in
Eq.4.31) must be taken into account. In general, Eq.(4.31) in the wave frame of reference, its right hand
is a functionF(u) and can be further expanded to higher harmonics with respectto u such that

∂u

∂t
+ u

∂u

∂x
=

∂

∂x
D
∂u

∂x
− β

∂3u

∂x3
+ ... (4.32)

The first term on the right is a diffusive term with diffusion coefficient D(x). As we are ignoring
diffusion term, soD(x) be considered as zero. The second term with arbitrary coefficientβ is the lowest
order contribution of wave dispersion to the evolution of wave amplitude and shape. By performing
Fourier analysis for a harmonic perturbationu = Aexpi(kx − ωt), the procedure yields the following
dispersion relation

ω − kc+ k3β = 0 (4.33)

Thus a wave if not breaking, can be balanced and remain steepen until the dispersion term start compet-
ing with the nonlinearity. In the following sections we willshow the interaction between nonlinearity
and dispersion by calculating the solitary wave solutions using KdV perturbation and Sagdeev pseudo-
potential method and further explain the conditions in which these kind of nonlinear waves intimately
related with collisionless shock waves.

4.2.2 Ion Acoustic Solitary wave

A soliton or solitary wave is a hump or dip shaped nonlinear wave of relatively stable profile as an
arbitrary pulse or disturbance and can be regarded as a linear superposition of sinusoidal wave trains
with different frequencies. If each of these linear waves propagates with the same velocity then the
medium is called as non-dispersive and the pulses travels without deforming its shape. If the velocity
of each wave train is different, then the pulse spread with time and the medium is called dispersive
medium. These stable stationary structures are special kind of “wave” which can be formed when the
“dispersion” and “nonlinear” effects compromise with eachother in the media [121]. The small but
finite amplitude solitary waves commonly known as KdV solitons are governed by the Korteweg-de-vries
(KdV) type equation. Solitary waves are not only of fundamental mathematical interest but over the years
have gained the interest in large number of applications. These waves are frequently observed while
studying in shallow water waves [122], in space plasmas[123], in laser plasma interactions [124, 125]
and other plasma phenomenon such as ion acoustic solitons [126], dust acoustic solitons [127]. These
nonlinear waves which represent the plasma states far from thermodynamic equilibrium, can be created
in laboratory plasmas under controlled conditions. In the present report, the focus is on the the ion-
acoustic solitons resulting from the interaction of intense laser pulses with plasmas.
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Solitary waves in relativistic plasma

The behavior of nonlinear one-dimensional relativistic ion-acoustic solitons and their existence have
been studied analytically by many researchers [128, 129] in different plasma models. When the speed of
electrons and ions in a plasma approaches the velocity of light, relativistic effects modify the behavior of
the solitons [130]. Such fast solitons which propagate in a collisionless plasma with group velocity close
to the speed of light and may acts as a tool for photon and particle acceleration[131, 132]. Relativistic
plasma solitons in laser plasma interactions, were first found numerically using computer simulations
[24] and later also detected in laboratory experiments [124].

Electrostatic ion-acoustic(EIA) solitons [133], which are of prime interest in this thesis, are the
solitons which are formed under the influence of electrostatic fields only. Several authors study the
behavior ofEIA solitons in relativistic plasmas [134, 135]. The first analytical observation of existence
of EIA solitons in electron-ion plasma have been given by Sagdeev [27]. These solitons exist for certain
range of Mach numberM, otherwise destroy their symmetry and convert into shock waves [27, 113].
The formation and propagation ofEIA solitons are observed experimentally first in 70’s by Ikezi [136,
137]. Experiments have been also performed by Ikezi group for large-amplitude ion acoustic waves to
explain nonlinear collisionless damping [138, 139]. Later, they also explained by his experiments, the
ion trapping instabilities [140] and the particle reflection [141] phenomenons which results in generation
of laminar collisionless shock waves. Numerically, such types of electrostatic solitary waves in laser
plasmas have been observed by [118] which loses its symmetry by accelerating ions by reflectionfrom
the tip of the solitary wave. In our numerical simulations discussed inCh.6, we also observed such types
of electrostatic ion-acoustic solitary waves and the related ion acceleration from the wave front.

4.2.3 Shock wave in Collisionless Plasma

A shock wave can occur in collisional as well as in collisionless plasmas3. Collisionless shocks (CS)
occur generally in dilute hot gases which are in the state of fully ionized plasmas and are hot enough
for binary collisions to become completely unimportant. The first conclusive evidence of existence of
CS came from astrophysics, i.e. the plasma flow from the Sun, the solar wind is highly supersonic
while encountering with the earth magnetic fields, a strong shock wave may formed. However, the vast
majority of astrophysical shocks evolve under condition ofhighly dilute matter are generally collision-
less in nature, e.g. the Earth bow shock. In laboratory experiments, first evidence of CS waves had
been reported in1965[26], since then the research on this topic has developed into its own discipline.
In addition to wave type, collisionless shocks are classified according to the level of turbulence which
causes the dissipation. The low Mach numbers shocks are classified as laminar with smooth profiles
of plasma parameter and fields and a low value of turbulent drag rate (〈δEδn〉). For high Mach num-
bers, the increasing level of〈δEδn〉 broadens theE andB profiles and the shocks formed are turbulent
shocks. There are various types of shocks that may develop ina collisionless plasma such as electrostatic
shocks, magnetized shocks, MHD shocks etc[142], but the prime interest of this thesis is on electrostatic
collisionless (EC) shocks. Considering them here in brief,for small Mach numberM = vs/cs where

3 In collision dominated plasmas; the matter is so dense that the shock formation proceeds on time scales longer than
the binary collisional time scale i.e;τcoll ≃ λcoll/vth. So all shocks whose width∆sh is comparable to or larger than the
collisional mean free pathλcoll = (σcollN)−1 (whereσcoll is the collisional cross-section andN is matter density), are known
as collisional shocks[142]. On the other side, in collisionless shocks (CS), the mean free path of individual particles is much
larger than the characteristic scales of the shock structure, i.e.λcoll ≫ ∆sh and effective collisions and pressure support are
not mediated by particle - particle interactions, but by collective forces [143].
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cs = Te + γiTi/mi havingTe/Ti ≫ 1, due to the dispersive spreading4 of the ion acoustic waves (see
Eq. 4.33), the electrostatic shocks are generated which further depends upon the electron density and
temperatures as a function of electrostatic potentialΦ[144].

Particle reflection by collisionless shocks had been first suggested and inferred as an important mech-
anism for shock dissipation by [27]. To infer about the reflection of particles from the shock onthe
smaller scale or to elucidate the internal physical structure of shocks, one has to direct to numerical sim-
ulations which in addition to analytical methods, are the most valuable tool for investigating collisionless
plasma processes. First one dimensional simulations for electrostatic shocks have been performed by
very small number of particles and in a small simulation boxes by [145] and observed strong plasma
heating. The first indication for reflection of particles from shock wave front is given by [146]. Later,
[108, 109] confirmed that in the large simulation boxes, at higher Machnumbers, the collisionless elec-
trostatic shocks indeed reflect ions back upstream when the Mach number exceeds a certain critical value
and the wave structure is strongly perturbed and damped.

Although the acceleration of particles by shocks is supposed to exist widely in space and astrophys-
ical plasmas [107], yet it is not easy to confirm experimentally. In the progress of laser technology,
the laser plasma interactions also provides a possible way to produce collisionless shocks in the labo-
ratory andCS can be generated by high intensity relativistic laser pulsewith solid or gas jet targets.
Electrostatic collisionless shocks by laser plasma interactions have been first observed by optical probe,
which could not resolve the shock wave front and be able to distinguish only different typologies of
shocks[147]. Later the proton projection imaging(PPI) technique able to resolve the shock front with
simultaneous measurement of shock propagation velocity, associated electrostatic field with high spatial
and temporal resolution[110]. Ions located deep in the plasma can be accelerated to high energy by
collisionless shocks and is of high interest at the moment because of the narrow energy spectrum of the
accelerated ions. A detailed discussion about the generation of collisionless shocks by laser plasmas
interactions and related ion acceleration is performed in Ch.3., Sec.3.3.

4.3 Nonlinear Wave Methodology

We will now explain the nonlinear plasma dynamics by going beyond the standard linear hypothesis
(discussed in sec.4.1). There exist various nonlinear methods for the analyticaltreatment of nonlinear
plasma equations such as reductive perturbation method (RPM), Lax pair scheme, inverse scattering
method and pseudo-potential methods. Lax scheme and scattering method give exact solutions while
the perturbation method is an approximation and studies small deviations from linear wave theory. The
pseudo-potential method are valid for arbitrary amplitudes, but assume a truly stationary structure. Here
we will discuss in detail the Korteweg-de-Vries (KdV) perturbation method for the small amplitude
solitary waves and the Sagdeev pseudo-potential method forlarge amplitude waves. Usually solitary
waves or solitons are solutions to a system of coupled ordinary differential equations for the potential
A andΦ. All other quantities like plasma density (n) and generalized momentum (P ) can be calculated
from A andΦ. The stability properties of the soliton, the life time of existence of such structures and
the nonlinear evolution of solitons with perturbations, can be calculated using above defined analytic
methods.

4 In a non-dissipative medium, due to the nonlinear evolutionof a dispersive wave disturbance many small wavelength
waves are formed. In such modes where the faster wavelength waves having higher phase velocity, will overcome the slower
wavelength waves which results in steepening of the densityor potential pulse and formation of a trailing ion-acousticshock
wave.
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4.3.1 Reductive perturbation method

Concept of reductive perturbation method was given by Gardner and Morikawa(1960) and later
explained in a more general formulation by Tanuiti and his coworkers. Reductive perturbation method
keeps a balance between the nonlinearity and dispersion. This method establishes a systematic way for
the reduction of fairly general nonlinear system to a singlenonlinear equation describing the behavior
of higher order harmonics. With the help of this method, one can derive the Nonlinear Schrodinger,
Korteweg-de Vries (KdV), modified Korteweg-de Vries (m-KdV) and the Kadomtsev Petviashvili (KP)
equations. For this, the following scales transformation is used

ξ = εα(x− ut) and τ = ε3αt (4.34)

whereα is the scaling parameter. Instead of using the independent variablesx andt, solving equation
using scale transformations involves going into a frame of reference which is moving with constant
velocity u with respect to the fixed frame. Many of these transformations follow a standard pattern in
which one is interested in relatively small deviations fromsome equilibrium state of a physical system.
The method of scale transformations is simply used to suppress the secular terms, in order to extend the
range of validity of the asymptotic expansion [148].

So by combining this transformation with a perturbation expansion of the dependent variables, here
we will use K-dV perturbation method to track the asymptoticbehavior of the wave. In this contest,
the decisive influence on the development of the theory of nonlinear waves was exerted by the idea of
Korteweg-de Vries which possibly simplify the initial equations by keeping the nonlinear and dispersive
terms of the same order of accuracy.

Derivation of KdV Equation- Ion acoustic Solitons

K-dV model is universal in the sense that it applies to any wave motion with weak nonlinearity and
weak long wave dispersion. The KdV equation is a hyperbolic partial differential equation (PDE) and
describes a reversible dynamic process. The KdV equation isthe fundamental equation describing the
propagation of nonlinear waves in a medium with weak dispersion effects, having solutions as stable
solitary wave structures i.e., solitons. The KdV equation is the nonlinear PDE foru(x, t) which we get
from Eq.(4.32) by neglecting diffusion termD and is described as follows:

∂u

∂t
+ αu

∂u

∂x
+ β

∂3u

∂x3
= 0 (4.35)

This is a generic asymptotic equation that describes weaklynonlinear waves with weak long wave dis-
persion.u is the velocity of the wave andα andβ are nonlinear and dispersion coefficient respectively.
In above, term∂u

∂t is the rate of change of the wave profileu in a reference frame moving with the

linearized phase velocity of the wave. The termu∂u
∂x is an advective nonlinearity and∂

3u
∂x3 is a linear

dispersion term.
Here we will illustrate this technique on the specific problem of one-dimensional motion of ion-

acoustic waves by K-dV perturbation method in an unmagnetized, electron-ion collisionless plasmas by
considering cold ions and Boltzmann distributed electrons, in a plane geometry. Rewriting the linearized
continuity Eq.(4.4) for the ion fluid as

∂n

∂t
+

∂(nu)

∂x
= 0 (4.36)
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wheren is the ion number density. Similarly the linearized ion momentum equation from Eq.(4.5) is

∂u

∂t
+ u

∂u

∂x
= − e

mi

∂Φ

∂x
(4.37)

whereu is the ion fluid velocity andΦ is the electrostatic potential,mi ande are the mass and charge
of the ions. The electrons (having charge−e) are Boltzmann distributed and their density is given by
ne = n0exp(eΦ/KBTe), wheren0 is the initial common density at equilibrium,KB is the Boltzmann
constant andTe is the electron temperature. Therefore the Poisson’s Eq.(4.6) becomes:

∂E

∂x
= −∂2Φ

∂x2
= 4πe

(

n− n0e

(

eΦ
KBT

))

(4.38)

We now normalize the above three equations, the ion densityn ton0, the ion velocityu to the ion acoustic
speedcs defined byc2s = KBTe/mi, potentialΦ to KBTe/e, the timet to the inverse ofΩ−1

p where
Ω2
p = 4πn0e

2/mi is the ion plasma frequency and spacex to the electron Debye lengthλD defined by
λ2
D = KBTe/4πn0e

2. So the resulting reduced set of equation becomes

∂n

∂t
+

∂(nu)

∂x
= 0

∂u

∂t
+ u

∂u

∂x
= −∂Φ

∂x

∂2Φ

∂x2
= eΦ − n (4.39)

Now using the perturbation theory, we will make use of the following expansion

eΦ = 1 + Φ+
Φ2

2
+

Φ3

6
+ .... (4.40)

Thus writing the dependent variablesn,u andΦ in terms ofε by applying some initial conditions such
thatu0 = 0 since plasma is initially at rest,Φ0 = 0 as plasma is initially neutral;n0 6= 0, yet ∂n0

∂x = 0,
the plasma is initially uniform and all temporal derivatives of equilibrium quantities are constant. The
physical parametersn, u andΦ are expressed as a power series in terms ofε about the equilibrium as

n = 1 + εn1 + ε2n2 + ...

u = εu1 + ε2u2 + ...

Φ = εφ1 + ε2φ2 + ... (4.41)

To recover the K-dV equation, we must expand in the wave amplitude and keep one order higher than
the linear theory. We will consider a perturbative approachwhich is appropriate in the long wavelength
limit; i.e for k ≪ 1 , where dispersion relation isω ≃ k and the group velocity approaches the phase
velocity, vg ≃ vph ≃ 1. It often turned out that for the kdV equation, the termα in Eq. (4.34) usually
takes the value of1/2 because this prescription is closely related to the validity of hyperbolic approxi-
mation and similarity transformation [149]. Identifying the wave numberk as the small parameter of the
order ofε1/2 (using long wavelength approximation), we introduce the following transformation for this
particular case

ξ = ε1/2(x− t)

τ = ε3/2t (4.42)
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so that the temporal and spatial derivatives takes the form

∂

∂t
= ε3/2

∂

∂τ
− ε1/2

∂

∂ξ

∂

∂x
= ε1/2

∂

∂ξ
(4.43)

Now solving the Poisson’s equation from Eq.(4.39), by putting the values from Eq. (4.41) and Eq. (4.43),
we find that the lowest order terms are proportional toε and giveΦ1 = n1. Doing the same for continuity
and momentum equation from Eqs. (4.39), we find that the lowest-order terms are proportional toε1/2

and these give
∂u1

∂ξ
=

∂Φ1

∂ξ
=

∂n1

∂ξ
(4.44)

Since all vanish asξ → ∞, integration of the above equation gives

n1 = Φ1 = u1 = ϕ (4.45)

Thus our normalization is such that all the linear perturbations are equal and we denote all with a com-
mon term “ϕ”. We now again collect the terms proportional toε2 from Poisson’s equation (4.39) and to
ε5/2 from continuity and momentum equation (4.39). This yields the following set of equations:

∂2Φ1

∂ξ2
= Φ2 − n2 +

Φ2
1

2
(4.46)

∂n2

∂ξ
=

∂n1

∂τ
+

∂(n1u1)

∂ξ
+

∂u2

∂ξ
(4.47)

∂Φ2

∂ξ
=

∂u2

∂τ
− ∂u1

∂τ
− u1

∂u1

∂ξ
(4.48)

After some algebraic manipulations and second and higher order quantities are eliminated, replacing all
the first order quantities byϕ, we get the following KdV equation

∂ϕ

∂τ
+ ϕ

∂ϕ

∂ξ
+

1

2

∂3ϕ

∂ξ3
= 0 (4.49)

Thus ion waves of amplitude one order higher than linear waveare described by the Korteweg-de Vries
equation whereϕ is the amplitude andξ andτ are space-like and time-like variables respectively. The
second term in Eq. (4.49) is easily recognized as the convective termu.∇u leading to wave steepening.
The third term arises from wave dispersion, thek dependence of phase velocity. ForTi = 0, ion acoustic
waves obey the linearized dispersion relation having a Taylor expansion ask → 0 of the form

ω = kc0

(

1− βk2

c0

)

(4.50)

wherec0 is the phase velocity of the wave and factorβ is determined by the particular type of
medium considered and can be described as

β = c0λ
2
D/2 and c0 = cs = (T/mi)

1/2 (4.51)

Here,λD is the electron Debye length,cs is the ion acoustic speed,T is the effective temperature (equal
to Te whenTi ≪ Te) in energy units such that Boltzmann constant is unity andmi is the ion mass.
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Figure 4.3: A single soliton travelling at three different speedsU1 < U2 < U3. It shows that, with the
increase of speed, the soliton amplitude increases and the width decreases.

In a collisionless and non-isothermal plasmas where the electron temperature is much larger than ion
temperature(Ti ≪ Te), ion-acoustic solitary waves are driven by the electron pressure and ion inertia
and the coupling between these species is being achieved by the electrostatic forces. The physics of the
ion acoustic solitary waves in a collisional plasma is more complicated, since both the electrostatic forces
and collisional effects enter into play [150]. Collisions derives both dissipative and resistive instabilities
in the plasma if external free energy sources, such as density and velocities inhomogeneities are present
and the waves become more nonlinear and turbulent [119].

Eq. (4.50) showing that the dispersive term is proportional tok3. This is the reason for the third
derivative term in Eq. (4.49). Dispersion must be kept in the theory to prevent wave steepening from
spuriously nonlinear behavior. K-dV equation admits of thesolution in the form of a soliton; i.e, a
single pulse which retain its shape as it propagate with somevelocity sayU . Defining the new variable
η = ξ − Uτ , so that∂/∂τ = −Ud/dη and∂/∂ξ = d/dη, so the Eq. (4.49) becomes:

− U
dϕ

dη
+ ϕ

dϕ

∂η
+

1

2

d3ϕ

dη3
= 0 (4.52)

This can be integrated

− U

∫

dϕ

dη
dη +

1

2

∫

dϕ2

dη
dη +

1

2

∫

d

dη

(

d2ϕ

dη2

)

dη = 0 (4.53)

If ϕ(η) and its derivatives vanish at large distances from the soliton such as(| η |→ ∞), the result is

Uϕ− 1

2
ϕ2 − 1

2

d2ϕ

dη2
= 0 (4.54)

Multiply each term bydϕ/dη and then integrate once more, we get

1

2
Uϕ2 − 1

6
ϕ3 − 1

4

(

dϕ

dη

)2

= 0 (4.55)

Therefore
(

dϕ

dη

)2

=
2

3
ϕ2(3U − ϕ) (4.56)

This equation is satisfied by the soliton solution

ϕ(η) = 3U sech2[(U/2)1/2η] (4.57)
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the above soliton solution tells us that the soliton have an amplitude3U and the half width(2/U)1/2,
whereU specified as the energy (speed) of the soliton. The larger theenergy, the larger will be the
speed and amplitude and the narrower will be the width of the soliton and is shown in Fig.4.3. So,
we conclude that the solitary waves are basically a special kind of longitudinal wave in plasmas whose
nature depends upon the nonlinear and dispersive effects present in the plasma. The above expression is
derived by considering initially no ion streaming., i.eu0 = 0 (initial ion speed). The relativistic effect
on ion-acoustic waves completely depends upon the streaming of ions otherwise in the absence of ion
streaming., i.e foru0 equals to zero, the termu0/c arising because of relativistic effect vanishes and
relativistic effect has no influence on the solitary wave. A more general discussion about the relativistic
effect on the ion acoustic solitary waves has been prescribed in [128, 135, 151].

4.3.2 Sagdeev pseudo-potential method

In section4.2.3 we introduced ion-acoustic waves that have a phase velocityvph ∼
(

KBTe/mi

1+k2λ2
D

)1/2

i.e.Eq. (4.29). In Sec. 4.3.1, we considered the profile of a nonlinear ion-acoustic wave and found
a solution for a single ion-acoustic soliton valid when the waves are weakly nonlinear, i.e. by using
reductive KdV perturbation method for the small amplitude limit. To account for the full nonlinearity of
plasma equations, we now employ another nonlinear method called Sagdeev pseudo-potential method
which is exact, i.e non-perturbative and applicable for large amplitude ion waves.

Let the ion-acoustic wave is traveling with a velocityu0 with respect to unperturbed plasma. If we go
to the frame moving with the wave, the functionΦ(x) will be constant in time, we see a stream of plasma
impinging on the wave from the left with a velocityu0. For simplicity, considerTi = 0. so that all the
ions are incident with the same velocityu0. Now setting the∂/∂t = 0 in continuity equation(4.36),
using the energy conservation, it gives1/2miu

2 + eΦ = 1/2miu
2
0 andnu = n0u0, whereu(−∞) = u0

andn(−∞) = n0. Thus the velocity of the ions in the shock wave comes out to be

u =

(

u20 −
2eΦ

mi

)1/2

(4.58)

If n0 is the density of the unperturbed plasma, the ion continuityequation then gives the ion densityni

in terms of densityn0 in the main plasma

ni =
n0u0

u
= n0

(

1− 2eΦ

miu20

)−1/2

(4.59)

The electrons assume a Maxwellian distribution and the electron density is given by the Boltzmann
relation (see Eq.(4.27)). Thus the Poisson’s equation(4.38) takes the form

d2Φ

dx2
= 4πe(ne − ni) = 4πen0

[

exp

(

eΦ

KBTe

)

−
(

1− 2eΦ

miu20

)−1/2
]

(4.60)

The structure of this equation can be observed more clearly if we simplify it with the following dimen-
sionless variables:

X ≡ x

λD
= x

(

4πn0e
2

KBTe

)1/2

and M ≡ u0

(KBTe/mi)1/2
(4.61)

Where the termM is called theMach numberof the shock. Putting the values of Eq.(4.61) in Eq.
(4.60) and normalizing the electrostatic potentialΦ to KBTe/e, the Poisson’s equation(4.60) takes the
form
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Figure 4.4:Left frame:- The upper arrow describing the trajectory of the pseudo-particle which is re-
flected at the right and returns. The lower arrows show the motion of a pseudo-particle that has lost its
energy and is trapped in the potential well.Right frame:- Describes the trajectory of a soliton.

d2Φ

dX2
= eΦ − 1

√

1− 2Φ
M2

(4.62)

The behavior of the solution of Eq. (4.62) was first explained by Sagdeev who used an analogy to an
oscillator in a potential well. If the right-hand side of Eq.(4.62) is defined as−dΨ/dX, the equation
is the same as that of an equation of motion of a particle having positionΦ and timeX in classical me-

chanics: a “kinetic energy“ term12
(

dΦ
dX

)2
balances the potential energyΨ(Φ). Integrating this equation

in the form of an energy integral, we get

1

2

(

dΦ

dX

)2

+ Ψ(Φ,M) = 0 (4.63)

The functionΨ(Φ,M) is called the pseudo-potential energy and is given by

Ψ(Φ,M) = 1− eΦ +M2

(

1−
√

1− 2Φ

M2

)

(4.64)

ForM lying in a certain range, this function has the shape as shownin the Fig.4.4. The total energy of
the particle is zero, so a particle starting at the originΦ = 0 move up to a certain positionΦm (where
Ψ(Φm) = 0), get reflected and return toΦ = 0 making a single transit. So such a pulse is called
as “soliton” as shown in right frame of Fig.4.4; a potential and density disturbance propagating with
velocityu.

Recalling thatΦ = 0 determines essentially the plasma equilibriumΨ(Φ) = 0. In general, we have
the following conditions forΦ = 0, for existence of soliton solutions:

Ψ(0,M) =
dΨ(0,M)

dΦ
= 0 and

d2Ψ(0,M)

dΦ2
< 0 (4.65)

In order for the anticipated type of motion to be possible, the potential must possess a maximumΦm 6= 0

at the origin and a root, so atΦm > 0,

Ψ(Φm,M) = 0 and
dΨ(Φm,M)

dΦ
> 0 (4.66)

From Eq. (4.64), the constraintΨ ′′(Φ = 0) < 0 lead toM > 1, since

dΨ(Φ,M)

dφ
=

(

1− 2Φ

M2

)−1/2

− exp(Φ) (4.67)
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Figure 4.5:Left frame:(a)Variation of Sagdeev potentialΨ(Φ,M)with electrostatic potentialφ. Positive potential
solitary structure at five different Mach numbers(M) : 1.0, 1.3, 1.5, 1.58 and2.0 respectively.Right frame:(b)
Symmetric reflection and transmission of particles from soliton.

d2Ψ(Φ,M)

dΦ2
=

1

M2

(

1− 2Φ

M2

)−3/2

− exp(Φ) (4.68)

so atΦ = 0 gives
d2Ψ(0,M)

dΦ2
=

1

M2
− 1 < 0 (4.69)

which givesM > 1, means that the soliton speed should be supersonic. More investigation proves
that neither negative potential solitons nor double layersexist in this case, while positive solitons arise
from the physical requirement of real ion density as expressed by Eq. (4.59). WhenΦ → M2/2, we
haven → ∞. Accessible values ofM are those for which the potential well yields a rootΦm before
the infinite compression limit is reached. So we find the largest possible value ofM by imposing the
requirementΦ = M2/2,

n =

(

1− 2Φ

M2

)−1/2

imposing R → Φ <
M2

2
(4.70)

Eq. (4.64) becomes

Ψ(Φ = M2/2) = M2 + 1− exp

(

M2

2

)

> 0 (4.71)

The last term is in exponential form and by using a numerical estimation, theM5 come out to be

M < 1.5852 , (4.72)

Left frame of Fig.4.5explains about the existence conditions of large amplitudeion-acoustic waves.
The allowable range of the normalized potential amplitude where ion acoustic solitary exists depends
upon the Mach number. The potential well becomes deeper as Mach number (M ) increases andφ
increases as clearly seen in Fig.4.5b. The critical amplitude of the solitary wave is given byΦm ≈

5 We can also deduce this relation from the Newton’s method: aswe nowM =
√
2Φ, its function will bef(Φ) =

2Φ+ 1− exp(Φ) andf
′

(Φ) = 2− exp(Φ). Now if Φ0 = 1, Φ1 = Φ0 − f(Φ0)
f(Φ0)

= 1.3922 andΦ2 = Φ1 − f(Φ1)
f(Φ1)

= 1.2740.

SimilarlyΦ3 = 1.2568, solving forM →
√
2Φ = 1.5852.
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M2/2 ≈ 1.3. So ion acoustic solitary waves in a cold ion plasma can existfor 1 < M < 1.58

and0 < Φ < 1.3 approximately. The solitary solutions turn into shock solutions for the conditions
M > 1.6. Solving analytically, we found that the potential well is not formed for the Mach number
M > 1.6, means solitary wave no longer exist anymore.

Right frame of Fig.4.5 shows the reflection mechanism of particles on the right sideof wave front
by the symmetric potential hump inside the soliton. Only particles with energies1/2mv2

s < eΦm

are reflected, while higher energy particles (> 1/2mv2
s ) are transmitted through the potential hump.

Clearly this happens only if the soliton moves because it is the motion which introduces the asymmetry.
The low energy component may become asymmetrically reflected from the soliton potential with the
asymmetries arising in the bulk velocities or in the particle fluids. The conditions of ion reflection
changes when kinetic effects are included. Then the low energy particles in the distribution function may
become reflected in continuous form from the soliton potential and asymmetry arise in a more natural
way. In the next section, we will discuss an analytic oscillating model by taking into consideration the
ion reflections from the leading edge of the potential barrier which leads towards the breaking of soliton
symmetry.

4.4 Particle reflection

The process of ion reflection from the moving wave front is oneof the important process in the
entire physics of collisionless shocks. The plasma state isin the perturbed state after the passage of the
solitary wave, The one reason of damping of the soliton can bedue to the acquisition of energy by the
ions reflected from the potential barrier. Particle reflection is required in supercritical shocks (M > 1),
as to our knowledge. It is the only process that can compensate for the incapability of dissipative process
inside the shock ramp to digest the fast inflow of momentum andenergy into the shock. In order to
establish the profile of the shock front in the ion-acoustic case, we proceed with the following analysis.

Now writing the Eq.(4.60), in terms of pseudo-potential energyΨ(Φ), it becomes

d2Φ

dx2
= 4πen0



exp

(

eΦ

KBTe

)

− u0
√

u20 − 2eΦ
mi



 = −dΨ(Φ)

dx
(4.73)

which describes the potential profileΦ of ion acoustic wave when ion reflection is neglected. Integrating
Eq. (4.73) once, we have our effective pseudo-potential energyΨ(Φ) i.e; Eq. (4.64) in terms of ion
densityn0 and propagation speedu0:

Ψ(Φ) = −4πn0

(

KBTeexp

(

eΦ

KBTe

)

+miu0

√

u20 −
2eΦ

mi

)

+ C (4.74)

Various periodic wave solutions can now be found depending on the choice of the integration constant
C. A special case representing the value ofC is given byΦ = 0, which causes,dΦdx , Ψ(Φ) and dΨ(Φ)

dΦ

all to be zero, which results in a positive value ofC., i.e from Eq. (4.74), it comes out to beC =

4πn0(KBTe +miu
2
0 ). This case is treated in the phase plane and gives a soliton solution and no shock

solution as shown in Fig.4.4.
Now we will take account of the reflection of ions from the leading edge of the front, i.e in the region

to the left of the locationxM of the first maximumΦM. The regionx < xM andx > xM are labeled as
I andII respectively as shown in Fig.4.6a. The shock profile can be determined by considering the ion
reflection from the potential barrier. The net results is a peculiar kind of shock wave which connects
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Figure 4.6:Left frame(a): An oscillatory electrostatic shock transition with some ions reflected from the leading
edge. Right frame(b): Potential functionΨI(Φ) andΨII(Φ) for the regionsI andII of the electrostatic shock.
Figure reprinted from [28].

two different plasma states; the unperturbed state in frontof the shock and a state with intense ordered
oscillations behind the shock front. However, the distribution of energy between the oscillations and the
thermal motion depends on the actual collisionless dissipation mechanism. The shock profile as shown
in Fig.4.6a, can be determined if the reflected ions are small in number and in the absence of dissipation
Φ1 = Φ2 andλ = ∞ (whose results is a symmetric solitary wave). If ion reflections are taken into
account, the potential in the regionI of Fig.4.6a is described by an equation which differs from the Eq.
(4.73) by presence of additional two terms on the right side:

− 4πen0f(Φ1)





u0
√

u20 − 2eΦ
mi



 + 8πen0f(Φ) (4.75)

The first term correspond to the subtraction of the reflected ions from the total number of ions and
the second term represents the contribution of the reflectedions. The quantityn0f(Φ) is the total density
of the reflected ions at a point characterized by the potential Φ. The actual form of the functionf can
be easily calculated by giving the ion velocity distribution function for the reflected ions atx = −∞.
The potential jumpΦ1 is associated with ions that are reflected backwards from thepotential barrier
and escape to infinity, in this case here, we have considered such reflected particles are very small in
number(f ≪ 1) and the potential jumpΦ1 is proportional tof [27]. However, the potential jumpΦ2

is associated with ions that are reflected forward by crossing the potential barrier and is proportional to
the the square root of the number of reflected particles such thatΦ1 << Φ2. The plasma state behind
the front, i.e. in regionII (Fig. 4.6a) is characterized by the quantitiesΦM andΦ2, which determines the
amplitude of the oscillations and their wavelengthλ, i.e. Eq.(4.73) also hold in this region . Neglecting
reflection effects on regionII for the electrons and assuming(KBTe/mi)

1/2 ≫ u0 and assuming the
electron density equal to the ion density atx = −∞, the appropriate equations for the regionI andII
becomes[144]:

I :
∂2Φ

∂x2
= −∂ΨI(Φ)

∂Φ
≡ 4πen0











[1 + f(Φ1)]exp

(

eΦ

KBTe

)

− 2f(Φ)− u0[1− f(Φ1)]
(

u20 − 2eΦ
mi

)1/2











(4.76)

II :
∂2Φ

∂x2
= −∂ΨII(Φ)

∂Φ
≡ 4πen0











[1 + f(Φ1)]exp

(

eΦ

Te

)

− u0[1− f(Φ1)]
(

u20 − 2eΦ
mi

)1/2











(4.77)
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By solving the potential equation atxM in regions I and II with the boundary conditions of continuity of Φ
anddΦ/dx atxM, we can find the potential profile (Fig.4.6b). Sincef(φM) = 0, the integration constants
in Eqs.(4.76)and(4.77) can be chosen such thatΨI(ΦM) = ΨII(ΦM). Therefore,12(

∂Φ
∂x )

2+ΨI, II = 0 which
implies that∂Φ/∂x is continuous atΦ = ΦM. Then potentialΦ of ΨI potential makes its first swing along
the solitonic pathΦ1 → ΦM and on entering in regionII oscillates indefinitely betweenΦM andΦ2 with
the potentialΨII .

Now, if we again consider the analogy with the particle motion in a potential wellΨ(Φ) , it can be
shown that the effect of the reflected ions make the total energy C negative which leads to a periodic
structure behind the shock front (Fig.4.6b). The decrease in the energyC is proportional to the number
of reflected ions

− C ∼
∫ ΦM

0
f(Φ)dΦ (4.78)

Since the potential energyΨ(Φ) varies quadratically at smallΦ. the turning pointΦ2 is proportional the
the square root of the energy−C

Φ2 ∼
√
−C (4.79)

and the oscillation period increases logarithmically as the energy is reduced i.e;(λ ∼ ln(1/−C)). Thus
the minimum value of the potential behind the frontΦ2 is

Φ2 =
2M√
M2 − 1

(

T

e

∫ ΦM

0
f(Φ)dΦ

)1/2

(4.80)

The value ofΦM is very close to the corresponding value in a solitary wave with the same Mach number.
Now the ion reflection has another important effect on the solitary/shock wave, as the momentum transfer
from shock wave front to the reflected ions retards the shock in the region of reflection. The wavelength
at the front of these oscillations is given by[144]

λ ≃ 1√
M2 − 1

(

Te

πe2n0

)1/2

ln
ΦM

Φ2
(4.81)

Shock ion reflection has incomparable importance in collisionless shock formation and can be effi-
ciently treated by numerical simulations. Before in the next chapters, coming to discuss these problems
in greater depth, I will present below a few other attempts which lead to the dissipation of electrostatic
solitary waves other than particle reflection such as Landaudamping and particle trapping.

4.5 Landau Damping of Electrostatic Waves

Here we will use kinetic approach to elucidate some of the properties of electrostatic ion-acoustic
waves in terms of particle surfing and Landau damping which could not be derived by fluid techniques.
Consider an electrostatic wave propagating in thez− direction. In such a wave in one dimension, the
electric field points in the Z direction,E = Eez and varies asei(kz−ωt). The distribution function
similarly varies asei(kz−ωt) and depends only onz− and is independent ofx or y direction. So the
Vlasov, Maxwell and Lorentz force equations produce no coupling of particle velocitiesux, uy in the
z− direction. This suggest to introduce the one dimensional distribution function which can be obtained
by integrating overux anduy as

fs(u, z, t) ≡
∫

fs(ux,uy,uz, z, t)duxduy (4.82)
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From here, we emit the subscriptz from uz and read it asu. Restricting to weak waves and neglecting
nonlinearities, we linearize the one-dimensional distribution function as

fs(u, z, t) ≃ fs0(u) + fs1(u, z, t) (4.83)

wherefs0(u) is the distribution function of the unperturbed particles(s = e, i for electron and ion
respectively) in the absence of wave andfs1 is the perturbation produced by the electric fieldE. The
evolution of thefs1 is governed by the linear approximation of the Vlasov equation

∂fs1

∂t
+ u

∂fs1

∂z
+

qsE

ms

dfs0

du
= 0 (4.84)

As we are looking for a monochromatic, plane wave solution tothis Vlasov equation, therefore putting
∂/∂t → −iω and∂/∂z → ik and solving the resulting equation forfs1, we get an equation forfs1 in
terms ofE as

fs1 =
−iqs

(ω − ku)ms

dfs0

du
E (4.85)

The above equations implies that the charge density associated with the wave is related to the electric
field by

ρe =
∑

s

qs

∫ +∞

−∞
fs1du =

(

∑

s

−iq2s
ms

∫ +∞

−∞

f ′
s0du

ω − ku

)

E (4.86)

The prime denotes the derivative with respect tou, i.e. f ′
s0 = dfs0/du. By putting this charge density

into the Poisson’s equation∇.E = ikE = 4πρe, and by keeping the both sides proportional toE, we
can find the dispersion relation with the general analysis ofwaves in the dielectric medium. Considering
a wave is propagating along the z-direction in an unmagnetized plasma, dispersion relation is given by

ε(ω,k) = 1 +
∑

s

4πq2s
msk

∫ +∞

−∞

f ′
s0du

ω − ku
= 0 (4.87)

The form of the dispersion relation can be written in more generalized form by combining the unper-
turbed electron and ion distribution functionfe0(u) andfi0(u), to produce a single, unified distribution
function:

f(u) = fe0(u) +
me

mi
fi0(u) (4.88)

So the equation(4.87) takes the form

ε(ω,k) = 1 +
4πe2

mek

∫ +∞

−∞

f ′(u)du
ω − ku

= 0 (4.89)

In the above unified distribution function Eq.(4.88), for ion-acoustic waves, the proton play an important
role because the large numbers of protons can move with the thermal speeds that are close to the the wave
phase velocity and therefore can interact resonantly with the waves.

Landau Contour: The general dispersion relation Eq.(4.89) has a troubling feature, i.e. for realω

andk, its integrand of the wave phase velocity becomes singular at u = ω/k unlessdf(u)/du vanishes
there. As the vanish ofdf(u)/du is very unlikely, which means that if we assumek as real, then the
value ofω can not be real except for a non-generic mode in which phase velocity happens to coincide
with a velocity for whichdf(u)/du = 0. With ω/k complex, the point arises is how we can perform the
integral-overu in the dispersion relation Eq.(4.89). Landau [152] developed a sophisticated derivation
of the dispersion relation based on posing general initial data for electrostatic waves, evolving it forward
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with time and identify the electrostatic modes by their latetime sinusoidal behavior and finally read the
dispersion relation for the modes from the late time evolution equations. So the dielectric function with
the “Landau contour”£ prescription can be written as

ε(ω,k) = 1 +
4πe2

mek

∫

£

f ′(u)du
ω − ku

= 0 (4.90)

In most of the practical situations, electrostatic waves are weakly unstable or weakly damped,i.e.
| ωi ≪ ωr | (subscriptr andi denotes the real and imaginary part) and the amplitude changes a little
over one wave period. The dielectric function Eq. (4.90) can be evaluated forω = ωr + iωi by using the
Taylor series expansion away from the real axis. The on-axisreal(ωr) and imaginary(ωi) values of the
dielectric function can be computed by breaking the landau contour and using the Cauchy integral

∫

C , it
comes out to be [153]

ε(k, ωr + iωi) ≃ 1− 4πe2

mek2

[∫

C

f ′du

u− ωr/k
+ iπf ′(ωr/k) + iωi

∂

∂ωr

∫

C

f ′du

u− ωr/k

]

= 0 (4.91)

This is the dispersion relation for the limit| ωi |≪ ωr. A more detailed discussion is beyond the scope
of the present work and can be found in Refs.[154, 153, 92].

4.5.1 Electrostatic Ion Acoustic Waves and conditions for Landau Damping

In section4.1.3 using two-fluid theory, we studied that the ion acoustic waves are the analog of
ordinary sound waves, occurs at low frequencies where the mean electron velocity is nearly close to the
mean ion velocity., so the polarization is small while the the restoring force is due to the thermal pressure
and not because of electrostatic field and the inertia is provided by the ions.

Suppose that the ions and electrons have Maxwellian velocity distribution but with different tem-
peratures. Because of the much higher inertia, the protons have much smaller mean thermal speed than
that of electrons and the one dimensional distribution function f(u) of Eq. (4.91) which appears in the
kinetic-theory dispersion relation has the form as shown inFig.4.7. If Ti ∼ Te, then the contribution of
the ion pressure and the electron pressure to the restoring force of the wave will be comparable. Thus
the wave phase velocity will beωr/k ∼

√

KB(Te + Ti)/mi ∼
√

KBTi/mi, which is the speed at
which the ion contribution tof(u) has its steepest slope (see Fig.4.7, the tick mark on the horizontal
axis on left sidefi(u)). Therefore| f ′(u = ωr/k) | will be large in this case, which means that there
will be large number of ions that can surf on the wave which results in a large disparity occurs between
the number of ions moving slightly slower than the wave (i.e.extracting energy from the latter) and the
number moving slightly faster than the wave (i.e. give energy). The result is that, there will be strong
Landau damping by the ions.

The strong Landau damping can be avoided if the electron temperature is much higher than that of
ion temperatureTe ≫ Ti. Then the wave phase velocityωr/k ∼

√

KBTe/mi will be large compared
to the ion thermal velocityωr/k ∼

√

KBTi/mi, so in the tail of the ion velocity distribution, there will
be very few ions which can surf and damp the wave. Now, if we think about the Landau damping due to
electrons in which the phase velocityωr/k ∼

√

KBTe/mi is small compared to the thermal velocity of
electrons

√

KBTe/me, thus the wave resides near the peak of the electron velocitydistribution in which
fe(u) is large enough that many electrons can surf butf ′

e(u) is small and there are nearly equal number
of fast and slower electrons. The net surfing produces a very little Landau damping. ThusTe ≫ Ti leads
to successful propagation of ion acoustic waves.

The dispersion relation in the limit| ωi |≪ ωr in Eq.(4.91) makes this physical argument quantita-
tive. Now by using the assumptionsTe ≫ Ti and

√

KBTi/mi << ωr/k ≪
√

KBTe/me, we find the
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Figure 4.7:IonsFi and ElectronsFe contribution to
the net distribution functionF (u) in a thermal plasma.
WhenTe ≈ Ti, the ion-acoustic phase velocity lies
well within the ion distribution, having speed at which
the surfing protons have maximum ability to Landau
damp the wave, so the waves are heavily damped.
WhenTe ≫ Ti, phase velocity is far out on the tail
of proton distribution and there are very few ions at the
phase velocity which can surf and damp the wave, so
the wave can propagate and the little net damping is
mostly by the electrons. Reprinted from [153].

realωr and imaginaryωi part of the dispersion relation as:

ωr

k
=

√

KBTe/mi

1 + k2λ2
D

and
ωi

ωr
= −

√

π/8

(1− k2λ2
D)

3/2

[

√

me

mi
+

(

Te

Ti

)3/2

exp

( −Te/Ti

2(1 + k2λ2
D)

)

]

(4.92)
The real part of the dispersion relationωr has been explained in the section4.1.3, in Eq. 4.29 and is
shown in the Fig.4.1, that forkλD ≪ 1, the wave phase speed is

√

KBTe/mi and the waves are weakly
damped as they can propagate for roughly

√

mp/me ∼ 43 periods before the strong damping takes
place (heremp is the proton mass). When the wavelengthλD decreases (k increases) into the regime
kλD ≥ 1, the frequency of the wave asymptotes towardsωr ≈ Ωp, i.e. the ion plasma frequency, in
such a case the phase velocity decreases, so more ions can surf the waves and landau damping increases.
Eq. (4.92) shows that damping becomes strong whenkλD ∼

√

Te/Ti at which theωr/k decreases to
the ion thermal velocity

√

KBTi/mi, so more ions can surf and causes strong damping. WhenTe/Ti

decreases from≫ 1 towards unity, the ion damping starts becoming strong regardless how small can be
the wave-vectork (exponential term ofωi/ωr in Eq. 4.92). Thus the Landau damping by ions can be
reduced by raising the electron temperature.

4.6 Particle Trapping

When a plasma wave reaches large amplitude, either it has been injected into the plasma by external
means or has grown to large amplitude due to instability, several non-linear effects sets in and particle
trapping is one of them. Particle become trapped in a wave potential if the kinetic energy of the particle
(W) in the wave frame is less than the potential energy of the wave. Trapping will be large for the
resonant particles moving approximately at the same velocity as that of the wave and experiencing a
nearly stationary electric wave potential

Φ(x, t) = Φ0cos(kx− ωt) = Φ0cos(kx
′) (4.93)

in above the wave coordinates, i.e wave position and wave speed have been transferred into the wave
frame by

x′ = x−
(ω

k

)

t and v′ = v − ω

k
(4.94)

Now considering the motion of ions in the phase space(x′,v′), the total energy of the ion in the wave
frame of reference is

Et =
1

2
miv

′2 − ZeΦ0cos(kx
′)
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Figure 4.8: Phase space distri-
butions of the particle orbits for
the trapped (dashed lines) and
untrapped (solid lines) parti-
cles moving in an electrostatic
potential of a wave. Figure
reprinted from [119].

= W − ZeΦ0cos(kx
′) (4.95)

wheremi is mass of ions. The ions moves along the lines of this total constant energy(Et) and is shown
in the Fig.4.8. There are two types of curves in this phase space. The first ones are for low ions velocities
exhibits closed lines. These closed trajectories describes the ions trapped in the wave potential. Second
type of curves are of the ions having higher speed consists ofopen lines which corresponds to untrapped
ions. The trapped ions trajectories have a negative total energy, i.e.Et < 0 and hence the trapped ions
on such orbits bounce back and forth between the walls of the wave potential and exhibit an oscillatory
motion which is periodic in the phase space. One can easily estimate the frequency of such bounce
motion considering small amplitude oscillations of the ions near the bottom of the potential well, i.e. for
ions having trajectories close to the center of theO− type trapped orbits. The cosine function for such
ions can be expanded to the lowest order, yielding equation of motion:

mi
d2x′

dt2
= −ZeΦ0k

2x′ (4.96)

which is the equation of a harmonic oscillator of frequency

ωt =| ZeΦ0k
2/mi |1/2 (4.97)

and is known as the trapped ion frequency. Since∇E = −ikΦ, which means the larger the wave field
amplitude, the faster the trapped resonant ions will oscillate in the field. For the larger field amplitude,
more ions will become trapped by the deepening of the potential trough and the widening of the wave
resonance. We observed similar type of ion trapping phenomenons between the solitary waves in our1D

PIC simulations (e.g see Fig.6.6) and is described in theCh.6



CHAPTER 5

Particle-In-Cell (PIC) Code

5.1 Introduction

Particle simulations are fundamental in many areas of applied research, including plasma physics,
astrophysics and semiconductor device physics. These simulations often involves tracking of charged
particles in electric and magnetic fields. The growth in the power of the computers over the past half
century in order to study the basic science in general and plasma physics problems in particular, led
to the development of a novel approach known as computational plasma physics. The plasma behavior
which is generally studied by the well known basic laws of physics such as laws of Newton and Maxwell,
but the consequences of these laws for a complex system consisting perhaps1010 or more particles are
frequently impossible to determine. In the present state-of-the art technology, highly parallel computers
are becoming a more and more integral part of the scientific particle computation and makes it possible
to study the plasma behavior and dynamics for complex systems.

This chapter serves as a brief introduction to the field of particle-in-cell (PIC) simulation of plas-
mas. To understand the complex dynamics of laser plasma interactions, involving collective and self-
organization effects, requires the used of self-consistent electromagnetic, kinetic simulations. To, this
aim, the particle-in-cell (PIC) method is by far the mostly used approach which gives primacy to the
kinetic interactions among the constituent particles of plasma and the electromagnetic field. This ap-
proach provides a more accurate treatment of many local and quasi-local processes. We used thePIC

approach to simulate our laser plasma interactions in whichthe electrons and ions are treated as compu-
tational particles (CPs), making no approximation to the basic laws of mechanics and the full range of
collisionless plasma physics is included in our model.

5.2 Basic Model Equations

The scenario of intense laser-plasma interactions is characterized by strong kinetic effects such as the
generation of very fast particles. Thus a fully kinetic approach is needed in which the theoretical basics
for a kinetic description of a classical plasma is well established and will be studied by the Particle-in-
cell (PIC) code. The goal is to study the Boltzmann equation for the distribution function coupled with
the Maxwell equations for the electromagnetic (EM) fields. The collective dynamics of the particles of
the plasma can be simulated by solving numerically the Boltzmann equation in the phase space for each
particle species, where the distribution functionf = f(x,p, t) evolves as

∂f

∂t
+ ẋ

∂f

∂x
+ ṗ

∂f

∂p
=

∂fcoll

∂t
(5.1)

in above, the coordinatex and the momentump represents the generic vectors in the phase space while
ẋ = v is the particle velocity anḋp = F(x,p, t) is the Lorentz force on the computational particles and
can be written as;

v =
pc

√

m2c2 + p2
and F = q ·

(

E+
v

c
×B

)

(5.2)
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The electric (E) and magnetic (B) fields are determined self-consistently with the dynamicsof the parti-
cles which we described by the Vlasov’s equation. The coupling of Vlasov equation with the Maxwell’s
equations is obtained by calculating the charge densityρ(x, t) and the current densityJ(x, t) such as

ρ =
∑

α=e,i

qα

∫

f(x,p, t)dp, (5.3)

J =
∑

α=e,i

qα

∫

vf(x,p, t)dp (5.4)

Now in a full particle model, one follows both the motion of electrons and ions in the self-consistent
electric and magnetic fields obtained from the Maxwell equations. Therefore using Maxwell equations,
one has the choice to work directly with theE andB fields. Introducing total current and charge densities
J = Je + Ji andρ = ρe + ρi, the Maxwell equations are:

∇ ·E = 4πρ, (5.5)

∇×E = −1

c
∂tB, (5.6)

∇ ·B = 0, (5.7)

∇×B =
4π

c
J+

1

c
∂tE. (5.8)

Equations(5.1 and5.5 − 5.8) form a self-consistent set of equations which in principle can be numeri-
cally solved like an initial value problem, using the appropriate boundaries conditions. For a simulation
of laser plasma interactions, this corresponds an initial distribution function att = 0 and defining the
EM fields at one or more boundaries in order to describe the entrance of the laser pulse in the simulated
plasma slab.

5.3 Lagrangian and Eulerian approach

In general, two different approaches have been employed to solve numerically the above mentioned
Model equations ( i.e. Boltzmann and Maxwell Equations) insec. 5.2 . They corresponds to the choice
of Lagrangian or Eulerian variables to integrate these Model equations. The Lagrangian approach corre-
sponds to particle-in-cell(PIC) simulations in which there is a “discrete” description of the plasma as an
ensemble of computational particles obeying individual equations of motion. In practice,PIC approach
means going back to the most fundamental description of the plasma, having collection of single parti-
cles with mutual interactions. The current and electromagnetic (EM) fields are defined on the sites of a
spatial grid and are calculated according to the distribution of the particles.PIC codes are the essential
tools for computational plasma physics since the memory needed for multi-dimensional simulations is
relatively small. The memory needed is proportional toNg ×Np whereNg andNp are the number of
grid points and the number of particles per cell, respectively. Typically Np ≈ 101 − 103 depending upon
the the accuracy and resolution required while the number ofgrid points corresponds toNg ≈ (102)n,
wheren be the dimensionality of the simulation1 ≤ n ≤ 3. Nowadays, in the present available com-
puter facilities it is possible to perform numericalPIC simulations also in fully3D geometry, with small
values ofNp.

The Boltzmann or Vlasov approach corresponds to the Eulerian or continuum description of the
plasma. The Eulerian approach, directly finds the solution of Model equations (ofsec. 5.2), such that
the numerical techniques are less developed and the numerical integration is less straightforward than
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x

Laser Plasma

Figure 5.1: The essential one Dimen-
sional geometry ofPIC code.

the integration of individual equation of motions inPIC. Keeping all other things being equal, there
would be no sense in the development of continuum codes. The major disadvantage is its very large
memory requirements, since the memory scales asNg × Nv whereNv is the number of grid-points
in the momentum space. Therefore, the memory required by a1D2P Vlasov code is comparable to
that required by a3D3P PIC code. Apart from the above description, continuum codes arefree from
problems of poor particle statics and can be used as a test forthe dependence ofPIC results upon number
of particles. Continuum codes are noise free and make it possible to study the nonlinear dynamics
for very long times and on very short spatial scales. These features helps to deeply understand some
nonlinear phenomenons such as plasma wave-breaking[155], large amplitude wake-field generation[156]
and Weibel instabilities[157]. Vlasov codes with respect toPIC codes having same spatial grid provide
a better resolution for high plasma densities and sharp gradients and thus, is of particular importance
to study the case of ultrashort laser-solid interactions. Due to these advantages, a complementary use
of Vlasov andPIC codes may significantly improve the understanding of the nonlinear dynamics of
collisionless plasma.

5.4 Numerical PIC Approach

We have used the particle-in-cell(PIC) code to simulate the interaction of the laser pulse with
plasma slab. Fig.5.1shows the essential concept of the code geometry; a laser pulse (a plane electromag-
netic wave with some given temporal envelope) impinges on the plasma target, composed of electrons
and ions (having such charge and number density that the plasma is globally neutral). All physical quan-
tities depends on the single spatial coordinatex and on timet. We calculate the electric fieldE(x, t),
magnetic fieldB(x, t) and distribution functions in the phase space of ionsfi(x,pα, t) and of electrons
fe(x,pα, t). The momentum space is generally fully three dimensional,i.e.,pα = (px,py,pz) for both
ions and electrons.

5.4.1 How the code works

In thePIC code, the physics comes from the two parts; the fields produced by the particles and the
motion of charge particles produced by the forces (fields). The fields are calculated through Maxwell
equations by knowing the position of all the particles and their respective velocities while the forces on
the particles are found using electric and magnetic fields byNewton-Lorentz equation of motion (Eq.
5.2). We use a sufficiently fine grained temporal grid to follow the plasma with acceptable accuracy and
stability. Fields are calculated by use of the spatial grid.We calculate the fields from initial charge and
current densities, then move the particles (small distance) and then recalculates the fields of particles
at their new positions and velocities: this procedure is repeated for several steps. The grid provides a
smoothing effect by not resolving the spatial fluctuations that are smaller than the grid size. At each
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Figure 5.2: A typical cycle, one
time step, in a particle simula-
tion program. The particles are
numberedi = 1, 2, ..., NP, the
grid indices are defined asj.
Figure reprinted from [158].
.

step in time, the program is solved for the fields from the particles and then moves the particles. There
may be many number of steps in a characteristic period of the plasma and the same number of periods
in a typical run, which adds up to hundreds or thousands of time steps in a given run. The particles are
processed through the boxes shown in Fig.5.2, similarly as the forces and fields are calculated in the
actual plasma.

The particle quantities, i.e. position and velocity are calculated by taking all of its values inx andp
phase space. From the particles position and velocity, we can calculate the charge and current densities
on the grid. The process of assigning charge and current densities implies some “weighting” to the grid
points that is dependent on the particle position. Once the densities are established on the grid, then we
use the numericalPIC method to calculate the electric and magnetic fields [158]. ThePIC approach,
reduces the plasma simulation to the simplest by considering the most fundamental description of plasma
in terms of the collection of single charged particles whichare moving under the action of self consistent
electromagnetic fields. The accuracy of the approach increases with the number of particles employed at
fixed number of grid cells. The higher particle number yield better statistics and reduce the fluctuations
of local values of the distribution functions which are calculated by statistical averages.

5.4.2 The Particle approach

The PIC code approaches the plasma by an ensemble of computational particles (CPs), each of
which represents a phase space volume element. The phase space is subdivided into small domains that
are moving in time along the trajectories of single particles. Each computational particle follows a phase
space trajectory that is determined through Lorentz force equation by electricE(x, t) and magnetic
B(x, t) fields. These fields are evolved self- consistently in time using Maxwell’s equations and the
total currentJ(x, t) (i.e. the sum of the micro-currents of all the computationalparticles). The standard
PIC approach considers only the collective interactions between the particles, although some collisional
effects are introduced through the interactions ofCPs with the field fluctuations [159].

In the above Eq.(5.1), the collisions are expressed in the term∂tfcoll(x,p, t) including every kind
of collisional process like Coulomb collisions or ionization. As we are studying the laser interactions
with overdense plasma at an intensity ofI = 1018 − 1020W/cm2, i.e in the relativistic regime, so the
interaction can be treated as collisionless, because the collisions becomes increasingly ineffective at
such high intensity. Thus the collisions are not relevant inour case (seesec2.8 Ch. 2 for detail) and
the laser interaction with plasma is fully collisionless. So setting the R.H.S term of Eq.(5.1) at 0, the
Collisionless Boltzmann equation (called as Vlasov equation) in the phase space will be

∂f

∂t
+ ẋ

∂f

∂x
+ ṗ

∂f

∂p
= 0 or



5.4 Numerical PIC Approach 73

(∂t + ẋ∂x + ṗ∂p) f(x,p, t) = 0 (5.9)

Now assuming the “particle” approach consists a discrete representation of the distribution function
f(x,p, t) as follows,

f(x,p, t) = f0

Np
∑

n=1

g[x− xn(t)]δ[p − pn(t)], (5.10)

whereNp is the number of quasi-particles or computational particles that provides a representation of
the distribution functionf . The constantf0 is the proper normalization factor.g[x− xn(t)] is some
analytical function defines the spatial shape of the quasi-particle whileδ[p− pn(t)] represents the Dirac
delta function. Eventually,g[x− xn(t)] may also be considered as a delta function but is not convenient
in practice because it would lead to an increased numerical noise in the current and fields.

The discrete representation in Eq.5.10 is a simple way to switch from an Eulerian description to a
Lagrangian description where we can follow the trajectories of the computational particles in the phase
space. Thus, in above equation the unknown quantities are the Lagrangian coordinatesxn(t) andpn(t)

and the temporal evolution which can be deduced by introducing the Eq.5.10into the Eq.5.9. By taking
the partial derivative off , we get

∂tf = −f0
∑

n=1

{ẋn(t)∂xg[x− xn(t)]δ[p − pn(t)]

+g[x− xn(t)]ṗn(t)∂pδ[p− pn(t)]} , (5.11)

ẋ∂xf = f0
∑

n=1

{

pn(t)

m
∂xg[x− xn(t)]δ[p − pn(t)]

}

, (5.12)

ṗ∂pf = f0
∑

n=1

{F[x,pn(t), t]g[x − xn(t)]∂pδ[p− pn(t)]} . (5.13)

In above, we have used the propertyf(x)δ(x− x′) = f(x′)δ(x − x′) and similarly for theδ′. Now
summing all the above three terms and omitting arguments, weget

Np
∑

n=1

(

−ẋng
′
nδn − ṗngnδ

′
n +

pn

m
g′nδn + Fngnδ

′
n

)

= 0 (5.14)

Now integrating above equation over momentum spacedp by using the divergence theorem and recalling
that the flux of(F(x,p, t)− ṗn(t)) g[x − xn(t)]δ[p − pn(t)] is zero for| p |→ ∞, then

Np
∑

n=1

(

−ẋn(t) +
pn(t)

m

)

g′n = 0 (5.15)

which has the obvious solution , independently on the form ofg′n,

ẋn(t) =
pn(t)

m
(5.16)

because coordinates corresponding to different indexn are independent. Now assuming the functiong

has similar properties toδ, i.e.
∫

g(x− x̄)dx = 1 and
∫

g′(x− x̄)dx = 0. Integrating above Eq.5.14in

spacedx, using the divergence theorem and recalling that the flux of
[(

pn(t)
m − ẋn(t)

)

g[x− xn(t)]δ[p − pn(t)]
]

is zero for| x |→ ∞, then we get

Np
∑

n=1

(

−ṗn + F̄n

)

δ′(p− pn) = 0 (5.17)
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We obtain the solution for momentum variablep̄n as

ṗn(t) = F̄n(xn,pn(t), t) (5.18)

where

F̄n(xn,pn(t), t) =

∫

F(x,pn, t)g(x − xn)dx (5.19)

Thus in equations of motion(5.16) and(5.18), the problem of solving the kinetic equation for the distri-
bution functionf is reduced to the problem of solving a system of2Np ordinary differential equations.
In a1D geometry each computational particle represents an infinite sheet. These particles are point like
in momentum space, havingpn as a single definite value of the momentum and are extended in the
coordinate space. The spatial shape is described by the function g(x− xn), centered over the average
positionxn. QuantityF̄n is the spatial average of the forceF(x,pn, t) on then−th particle.

Solving our charge densityρ(x, t) and current densityJ(x, t) from Eqs.(5.3) and(5.4), in terms of
discrete particles representation off(x,p, t) (i.e Eq.5.10), we get

ρ(x, t) = f0
∑

α,n

xαg[x− xn]

J(x, t) = f0
∑

α,n

xαvng[x− xn] (5.20)

Once the sources, i.e charge and current densities in Eq.(5.20) are known, it remains now to find the
numerical solution of Maxwell’s equations to find the electromagnetic fields. We need to built a suitable
algorithm to solve numerically Maxwell equations, so the charge and the fields are defined at the points
on a numerical grid and are calculated on the basis of the particle distribution. Numerical grid is a finite
set of spatial points of coordinatesx = i∆x, with i = 0, 1, 2, ..., Ng − 1 the total number of grid points.
The choice of the spatial resolution∆x is dictated by physical and numerical requirements. The spatial
size of the grid isL = Ng∆x; the system extends in space fromx = 0 to x = L.

5.5 Numerical Algorithm

5.5.1 The Discrete Model Equations

The goal is to show the implementation of the typical numerical algorithms associated withPIC
simulations. Letx be the only relevant spatial coordinate and all quantities are functions of(x, t) only.
So the normalized Maxwell equations in the 1D geometry reduces to:

∂xEx = ρ, (5.21)

∂tEx = −Jx, (5.22)

∂tEy = −Jy − ∂xBz, (5.23)

∂tEz = −Jz + ∂xBy, (5.24)

∂xBx = 0, (5.25)

∂tBx = 0, (5.26)

∂tBy = ∂xEz, (5.27)

∂tBz = −∂xEy. (5.28)
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Bx is constant and uniform and thus taken equal to zero. Let us introduce now the auxiliary fields

F± ≡ Ey ±Bz (5.29)

G± ≡ Ez ±By (5.30)

Now looking at normalized set of Maxwell equations(5.21 − 5.28), these fields in Eq.(5.29 − 5.30)

satisfy the equations

(∂t ± ∂x)F± = −Jy, (5.31)

(∂t ± ∂x)G∓ = −Jz (5.32)

Now integrating along the characteristicx = ±ct (havingc = 1) to yield an advance scheme for the
advance scheme up-to orderO(∆t2)

F±(x±∆x, t+∆t) = F±(x, t)−∆tJy(x±∆x/2, t+∆t/2), (5.33)

G±(x∓∆x, t+∆t) = G±(x, t)−∆tJz(x∓∆x/2, t+∆t/2), (5.34)

where∆x = c∆t. Thus the discrete transverse fields will be interlaced withthe phase space and
transverse currents with time. The phase space will be defined at the cell boundariesx = i∆x where
i = 0, 1, 2, .., N − 1 and with the time-stepst = n∆t, havingn = 0, 1, 2.... Therefore the transverse
current will be defined at the cell centersx = (i+ 1/2)∆x and at the time-stepst = (n+ 1/2)∆t

The value of∆x is bounded to the temporal resolution or time step∆t, which corresponds to the
temporal discretization of all physical variables. The spacing of the grid points depends on the physics of
the process to be simulated. The fields and densities are calculated on a grid composed of finite number
of grid points spaced by∆x while the particle position is represented by the continuous variablexn.
Since we imagine that the particle is extended in space and its center positionxn will lie in the cell
numberi; i.e each particle at a given instant is located inside the cell, such thati∆x < xn < (i+1)∆x.
Each particle will contribute to the source terms (i.e current and density) in the grid composing the parent
and neighboring cells and the force on the particle will be evaluated from the value of fields in the parent
and neighboring cells. The time step length then has to be chosen on the basis of the space resolution.
It can be proven that the numerical scheme is stable whenc∆t 6 ∆x, and this implies that the particles
move at most from one cell to neighboring one within one timestep.

The accuracy of the simulation results depends also on the numberNp of macro particles per cell that
have been used: in fact in the denser plasma regions, if the maximum density isn0 then the minimum
density difference that is possible to resolve isn0/Np. The statistics can be improved by using large
number of particles per cell. In a1D3P geometry (one spatial and three momentum coordinate) each
particle is represented by 4 numbers in double precision, hence by4 × 8 = 32 bytes. One million of
particles corresponds to32Mbytes. To reduce statistical fluctuations, the number of particles per cell,
Np/Ng should be much larger than one. As a consequence, the memory needed to allocate currents and
fields will be much less. Due to the low scaling of fluctuationswith the number of variables (∼ 1/

√
N),

significant statistical fluctuations occur most of the time.The main disadvantages of thePIC code is
probably the high noise level. The physical reason for noiseis that the largest number of particles one
can follow in simulation is orders of magnitude smaller thanthe true number of particles of plasma. The
success of thePIC relies on the fact that collective plasma effects depends onthe long-range coulomb
interactions. Thus one may think of the “closest” interaction without significantly affecting the properties
of collective plasma and this can be achieved by assigning a finite spatial width to the computational
particles such as to soften the singularity of the Coulomb interactions.



CHAPTER 6

Solitary versus Shock wave Acceleration
in Laser Plasma Interactions

The excitation of nonlinear electrostatic waves, such as shock and solitons, by ultra-intense laser
interaction with overdense plasmas and related ion acceleration is investigated by numerical simulations.
Stability of solitons and formation of shock waves is strongly dependent on the velocity distribution of
ions. Monoenergetic components in ion spectra are producedby “pulsed” reflection from solitary waves.
Possible relevance to recent experiments on “ion acceleration by collisionless shocks” is discussed.

6.1 Introduction

The generation of energetic ions of high flux with intense short laser pulses has been a subject of
fundamental interest attracting wide attention in recent years. Energetic ions from laser plasma interac-
tions are usually accelerated by induced quasistatic electric fields formed at the front side of target due
to space charge separation when laser ponderomotive force pushes electron forward and backward in the
interacting region [160]. Interacting with an overdense plasma (i.e. having electron densityne > nc,
with nc = 1.1 × 1021/λ(µm)2 cm−3 the cut-off density for the laser light), the light pressureof rel-
ativistically intense laser pulses sweeps out and compressthe plasma, pushing its surface forward at
high speeds. Such a combination of strong compression and plasma acceleration generate strong shock
waves that propagate towards the bulk of the plasma. In moderately overdense and hot plasmas, where
the shock waves are of collisionless nature, shock acceleration (SA) may lead to higher ion energies than
the widely studiedTNSA mechanism (Ch.3, sec.3.1) [14] and to monoenergetic spectra, as suggested
on the basis of numerical simulations [78].

On the contrary, in “cold” overdense plasmas, ion acceleration also had been shown to occur via
the so-called “hole boring” (HB) mechanism (seeCh.3, sec.3.2 for detail) [95, 105] by which the local
radiation pressure creates a charge-separation field that sweeps up the ion density profile and accelerates
ions with an average velocity, generally known as hole-boring velocityvhb. The steepening of ion density
eventually leads to wave-breaking producing a “fast” ion bunch with velocityvi ≃ 2vhb that penetrates
into the plasma. Depending on the laser pulse duration, theHB acceleration process may generate a
sequence of ion bunches. Now, since according to Silvaetal [78], collisionless shocks are excited by
the piston action of the laser pulse and their velocityvs ≃ vhb, so that reflection from the shocks would
generate ions with velocityvi ≃ 2vs ≃ 2vhb, one would expect shock acceleration (SA) to yield a cut-off
velocity of ions which is equal to that predicted by theHB model. An important difference between the
SA simulations by Silva etal[78] and the HB ones by Macchi etal.[95] is that a laser pulse with linear
polarization (LP) was used in the first case, leading to efficient production of energetic (“fast”) electrons
which was absent in the simulations of Macchi etal[95] due to the use of circular polarization (CP). As a
consequence, analysis of ion spectra alone may not discriminate betweenSA andHB mechanisms, and
the latter may be confused when interpreting results of simulations or experiments on ion acceleration.

To point out howSA andHB should be discriminated from each other was one of the motivations
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of the work reported here. We identified and aimed to analyze via 1D PIC simulations two issues
which we consider to be characterizing forSA versusHB. The first issue is to establish when and
whether ion acceleration occurs only at the front surface, as expected forHB, or also in the bulk of the
target by reflection from a propagating shock, as expected for SA (we do not consider here rear surface
acceleration as inTNSA, that may be easily distinguished in simulations). The second issue is the role
of “electron temperature” which, in turn, should lead to differences between the cases of laser pulses
with LP orCP, respectively.

6.2 Simulation with Linear Polarization

6.2.1 Solitary wave dynamics and ion acceleration

Numerical set-up

Since we focus on the basic aspects, we restrict to1D PIC simulations for the sake of simplicity
and high numerical resolution. As found in previous work[78], with respect to the1D modeling the
main differences found in two-dimensional (2D) simulations are that the shock front is obviously non-
planar and that the intensity distribution in the focal spotleads to a radial dependence of the initial shock
velocity, since the latter is determined by the local amplitude of the laser pulse (see below), in a way
analogous to the hole boring acceleration in2D[95]. The simulations in Ref.[78] showed only a few
percent difference in the energy cut-off of ions between1D and2D, with the most energetic ions located
along the axis (a feature which is common to other acceleration schemes). For what concerns the later
evolution of the shock, with respect to a “realistic”3D geometry we expect the1D approximation to
be reliable as far as the distance traveled by the shock remains smaller than the laser spot width, that
is typically of several laser wavelengths; since the below described phenomena occur already when the
shock has traveled only over a few wavelengths. We expect ourfindings not to be limited to the1D
planar geometry.

On the other hand, the issue of high numerical resolution (which is accessible in1D) is very im-
portant because we found that the numerical results converged only for sufficiently high values of the
number of particles per cellNp, although qualitatively similar features were observed also for lowerNp.
This suggests that kinetic effects play an essential role and thus low-density tails in the distribution func-
tions must be resolved accurately. In addition, recent experiments on monoenergetic shock acceleration
have shown narrow monoenergetic peaks that apparently contain a very low number of ions[79]; thus,
whatever the mechanism of ion acceleration, a multidimensional simulation with insufficient particle
statistics would not be able to resolve such features. In thesimulations reported below,Np = 800 while
the spatial and temporal resolution∆x = c∆t = λ/400, whereλ is the laser wavelength. Two dimen-
sional simulations with such values ofNp and∆x would be extremely demanding on the computational
side and are left for future work.

Short pulse excitation: solitary structures

We now analyze a representative simulation with the following set-up. The laser pulse is linear po-
larized with a peak amplitudea0 = 16 and durationτ = 4T [full width at half maximum (FWHM)],
with T the laser period; the temporal profile is composed by1T long, sin2-like rising and falling ramps
and a3T plateau. The plasma had a slab, square-like profile with initial ion and electron densities
ni = ne = 20nc and15λ thickness. A laser pulse with central wavelengthλ0 = 2πc/ω0 = 1.0µm,
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Figure 6.1:Snapshots of the evolution of a Solitary Acoustic Wave (SAW)at eight different times. The upper,
middle and bottom rows show the ion densityni, the electrostatic fieldEx and the contours of thefi(x, px) ion
phase space distribution in alog10-scale. The laser pulse impinges from the left reaching the plasma boundary
(x = 0λ) at t = 0T. Simulation parameters area0 = 16, τ = 4T andne = 20nc. ni is normalized tonc, Ex to
E0 = meωc/e andpx to mpc.

propagating along thex−direction and interacting with plasma having initial ion and electron tempera-
ture,Ti = Te = 0keV. For reference, the laser pulse front reaches the front surface placed atx = 0 at
the timet = 0.

In the early stage of the interaction, the laser pulse accelerates a fraction of high-energy, strongly
relativistic electrons with energy of severalmec

2 which penetrate into the target and later recirculate
across it, driving heating of bulk electrons. A solitary-like structure is generated at the front surface under
the action of the laser pulse and then propagates into the plasma bulk at a constant velocityvs ≃ 0.05c.
This value is close to the hole boring velocityvhb, which in our case is calculated from Eq.6.17(will
discuss below) where the reflection coefficient is measured to beR ≃ 0.751 in the simulation of Fig.6.1,
yielding vhb = 0.06c. At t = 65T, the solitary structure is located atx ≃ 3.7λ (first frame of Fig.6.1).
The ion density has a very strong spike, reaching values up to≃ 9 times the background density. The
electric field around the density spike has a sawtooth shape.For reference we call the structure we
observe aSAW (for Solitary Acoustic Wave).

The snapshots ofSAW density and field profiles are qualitatively resemblant to those of solitonic
solutions as described in Ref.[28]. As explained insec.4.3.2 of Ch.4, a necessary and general condition
for such solitons to exist with a velocityvs is that the electrostatic potential energy jumpZeΦ has a peak
value

ZeΦmax < miv
2
s/2 , (6.1)

so that background ions are not reflected by theSAW. Within a fluid model with the electrons in an
isothermal Boltzmann equilibrium [28] at the temperatureTe, the condition on the potential poses an
upper limit on the Mach numberM = vs/cs < 1.6, wherecs =

√

Te/mi is the speed of sound. The
other condition is that the soliton must be supersonic, i.e.M > 1

Numerical integration2 of Ex over x for the SAW at t = 65T (first snapshot in Fig.6.1) yields
eΦmax ≃ 0.78E0λ ≃ 4.9mec

2, more than twice the kinetic energymiv
2
s/2 ≃ 2.3mec

2. One thus

1 Reflection coefficient can be estimated by using the energy conservation from Eq.3.11 in sec. 3.2 of Ch.3 which implies
R+T = 1−A, assuming negligible transmission (T = 0) and by calculating the amount of laser energy absorbed in overdense
target, i.e. the absorption coefficientA, we can evaluate the amount of light reflected, i.e. reflection coefficientR.

2 Since we have only discrete values ofEx, therefore what we actually do is
∑

Ex(i)dx and then we perform the integral,
to calculate the electrostatic potentialΦ =

∑

Ex(i)dx, starting from the point whereEx has a maximum value (top ofSAW
front).
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Figure 6.2:a): ion spectra from the simulation of Fig.6.1 at the timest = 75T, 90T and100T. Only ions in
the same spatial range as Fig.6.1, i.e. 3.5 < x < 7.5, are included in the spectra. b): temporal evolution of the
maximum (red line) and the minimum value (blue line) of the electric field for theSAW structure observed in
Fig.6.1. The vertical dashed lines mark the instantst = 65T, 75T and90T at which ion reflection events start as
seen in Fig.6.1.

would expect ion reflection to occur promptly from theSAW field. This occurs indeed in the simulation,
producing a bunch of high-energy ions with very small momentum spread as can be observed att = 70T

andt = 75T. However, violation of the condition Eq.(6.1) and consequent ion reflection do not destroy
theSAW; at t = 75T, theSAW is still present with almost unperturbed velocity, and ion reflection has
stopped. Betweent = 75T andt = 85T a second bunch is formed in a very similar way, as observed
between the third and fifth snapshot in Fig.6.1. Both bunches correspond to a monoenergetic high-energy
peak in the spectrum, as shown in Fig.6.2-a; theFWHM of the peak att = 75T is less than1%.

TheSAW eventually “breaks” aftert ≃ 90T producing a third bunch with a higher number of ions
as seen in seventh snapshot of Fig.6.1. As a consequence, the high-energy part of the spectrum broadens
and monoenergetic features are lost, as seen in Fig.6.2-a att = 100T. The SAW quickly loses its energy
and slows down, so that ions are now reflected with lower energy, although a minor fraction exceeds the
energy of the monoenergetic peaks generated at earlier times. Notice that the SAW collapse might not
interpreted on the basis of the fluid existence condition alone, because the slowing of the SAW velocity
would enforce such condition (unless the velocity falls below cs). Apparently, the SAW breaking occurs
after a “collision” with a slower, counter-propagating structure that can be noticed in the frames of
Fig.6.1.

The observed behavior of theSAW is related to the observation that the electric field amplitude
is not constant in time, but oscillates as shown in Fig.6.2-b. The temporal behavior of the maximum
and minimum values suggests that the electron cloud around the ion density spikes oscillates back and
forth. The amplitude of the oscillation tends to decrease with time. The quenching of the oscillation
is particularly evident after the generation of the second fast bunch att ≃ 75T . At this instant, the
potential jump at theSAW front is eΦmax ≃ 0.5E0λ ≃ 3.1mec

2, slightly above the stability threshold
Eq. (6.1). Eventually, the overall amplitude greatly decreases after the generation of the third bunch, as
also observed in the last frames in Fig.6.1.

The onset of ion acceleration from the SAW as a sequence of generation of ion bunches with narrow
energy spread, with the SAW conserving its velocity betweensubsequent acceleration events, has been
observed in several of the simulations we performed, and further confirmed by simulations where test
particles were put at various positions inside the plasma slab. Only those test particles located near to the
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points where the incoming SAW reaches the threshold amplitude for ion reflection were accelerated. This
observation is empirical and reproducible in simulations,although the frequency at which monoenergetic
ion bunches are produced can not be estimated a priori as a function of the laser and plasma parameters.
A few results of the test particle simulations have been discussed below in sec.6.4

6.2.2 Effects of the ion energy distribution

The above reported observations led us to infer that the local phase space distributions of ions has
a crucial role in determining both the stability of solitarywaves and the possibility to generate true
shocks whose signature would be, in the framework of fluid theory, the formation of a continuous flow
of reflected ions. If the ions are “cold”, i.e. have no energy spread, reflections from a moving potential
barrier may occur either for none or for all the ions, since their initial conditions are the same. In the
latter case, as soon as ion reflection begins, the wave would quickly lose its energy in the acceleration of
the whole bulk of ions. This effect may prevent the formationof shocks and be crucial for the stability
of solitary waves.

In order for a shock wave to form, it should be possible for thewave to “pick up” from the ion
distribution only a fraction of the ions in an energy range for which a reflection condition analogous to
Eq.(6.1) is fulfilled. If the ion distribution has a velocity spread,for a given value ofΦmax all ions with
velocity vr > vs −

√

2eΦmax/mi will be reflected from the wave front. Thus a true shock may form in
the presence of a sufficiently warm ion distribution. Fig.6.3shows results of a simulation with identical
parameters as Fig.6.1, but with the initial ion temperatureTi = 1 keV. Ion starts to reflect fromSAW
front at early time30T and formation of a shock-like structure with “continuous” reflection of ions is
observed at later stages at85T. The shock velocity is found to decrease slightly in time (asmay be
deduced also from the slope of the reflected ions feature in the phase space plot of Fig.6.3) which could
be interpreted as due to the wave energy transfer into reflected ions. Initially, as the fraction of reflected
ions are small, a monoenergetic peak around4.5MeV appears at40T and60T which further broadens

Figure 6.3: Snapshots at three different times of theni, Ex andfi(x, px) for a simulation identical to that of
Fig.6.1but for an initial ion temperatureTi ≃ 2×10−3mec

2 = 1 keV, showing the onset of ion reflection in large
fraction than that of cold ions case. The scales are the same as in Fig.6.1 to show that the perturbation inni and
Ex has a lower value in the present case. The insets show the corresponding ion spectra, limited to the ions in the
region around the shock and excluding ions accelerated at the target boundaries.
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with time as the shock slows down attempting to reflect more ions. The strength of electrostatic field
and ion density also decrease with time (see upper and middleframes of Fig.6.3) which also gives the
indication of shock deceleration along the propagation path.

Simulations have also been performed for an initial ion temperatureTi = 5− 10 keV, it is observed
that increasing the initial ion distribution to higher value, the formed shock wave reflects ions in higher
fraction and gets damped out faster giving all its energy to reflected ions. From the previously explained
results for cold ions, i.e. of Fig.6.1 which says that a shock may not form because we can’t have a
steady and stable ion reflection. This indeed we observed forinitial Ti = 1keV, having continuous ion
reflection from the shock front which slows down with time (presumably due to energy loss to ions)
and thus broadening the energy spectrum. The effect was morestronger for initialTi = 5keV because
more ions in the distribution are reflected (for the same shock velocity). Now, lowering the initial
Ti = 0.1KeV, we found that the acceleration is still “pulsed” as that of cold ion case but the bunches
have longer duration and smaller spectral width which suggests that we are close to a good compromise
for monoenergetic acceleration, and confirms that even a small ion temperature plays an important role.
The initial warm ions study suggests that the role of initialion temperature is quite important in formation
of solitary or shock waves, their stability and related ion acceleration. The detailed study about the
“optimal” initial ion temperature range in which the shock survives for a longer times and reflect ions of
narrow spectral width is performed in the next chapter.

6.2.3 SAW breaking in the expanding sheath

The effect of the background ion distribution can be also noticed in the case in which theSAW
generated at the front side of the plasma eventually reachesthe rear side and propagates in the expanding
sheath. TheSAW overturns the slower ions and propagates in the sheath untilit reaches the region in
which the ion velocity is such that the ions are now reflected by theSAW potential (since the ions in the
sheath move in the same direction of theSAW, their velocity in the rest frame of theSAW is lower than
in the “laboratory” frame, hence they are reflected more easily). This mechanism was also described by
[161]. Fig. 6.4 shows results from a simulation having the same parameters of Fig.6.1, but the plasma
slab was only3λ thick in order for theSAW to reach the sheath before losing much of its energy to
reflected ions. Looking at the results shown in Fig.6.4, until 54T, there does not occur any ion reflection
from the SAW front. As soon as theSAW reaches to the rear side, the threshold condition for ion
reflection is reached, a few background slower ions turn backat the top of theSAW potential hill which
results in a very high ion density peak at54T and ions acquire the velocity∼ 2vs. If the SAW reaches
to the rear side after the laser pulse is over, the electric field in an expanding sheath (which decreases
with time∼ t−1) becomes too small (see Fig.6.4at72T) such thatSAW can not be further accelerated.
Thus from this point onward, theSAW loses its energy in accelerating ions and breaks. Breaking occurs
in the sheath in the region where the local velocity of ions isclose to theSAW velocity, and leads to ion
acceleration.

From the above results, our study suggests that generating highly monoenergetic ions by “shock ac-
celeration” is not straightforward, as in our simulation weobserve narrow spectra only as resulting from
SAW “pulsations”3 as a transient effect, since as shown in Figs.6.1and6.2theSAW collapse ultimately
produces a broad spectrum masking the monoenergetic peak. Especially in a plasma with “cold” ions
producing a monoenergetic spectrum might be at odd with efficiency, because the reflection of a large
fraction of ions by the moving structure (either a shock or a soliton) would ultimately cause a strong

3 Ion acceleration is of “pulsed” nature, i.e. it occurs only at certain instants or points along the propagation path, anddoes
not lead to theSAW disruption.
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Figure 6.4: Snapshots at three
different times of theni, Ex and
fi(x, px) for a simulation identi-
cal to that of Fig.6.1 but for a
shorter plasma slabℓ = 3λ, show-
ing the breaking of the SAW in the
expanding sheath at the rear side
of the plasma.

loading effect decreasing its field and velocity. This is in qualitative agreement with the experimental
results of [79] where the number of ions (∼ 2.5× 105) in the narrow spectral peak at∼ 22 MeV implies
a conversion efficiency< 10−8 of the60 J pulse energy. The acceleration of a larger fraction of ionsis
also observed when theSAW undergoes disruption either by interacting with another structure or when
entering the expanding sheath region at the rear surface of the plasma. Shock waves with “steady” ac-
celeration of ions are generated in a plasma with initially “warm” ions, where a population of reflected
ions can be formed.

6.2.4 Collective Oscillations of the Warm Plasma Foil

This is an analytical attempt of a simple theory for the observed oscillations in the field of the solitary
wave structures observed in the simulations. Here we focus on a single solitary acoustic waveSAW as
observed in our simulation results shown in Fig.6.1. The idea is that the cloud of electrons oscillates
back and forth across the ion density spike.

Let us consider at a starting point, a thin foil with ion density ni(x) = Niδ(x). The foil(target)
is immobile (it has zero velocity in the lab frame). The electrons have temperatureTe and spread out
forming two symmetric sheaths on each side of the foil. A rough and essential schematic of the profile
of electric field and ion density in aSAW is shown in the cartoon of Fig.6.5. The profile is quite similar
to those of a very thin foil of warm plasma and can be calculated analytically for the electrons assuming
a Boltzmann distribution and for a “truncated” energy distribution. The obvious physical difference
between a thin foil and aSAW is that the latter moves at a velocityv, which for the moment we assume
to be constant as in a steady state and non-relativistic(v ≪ c). A simple analytical solution for the
equilibrium state exists (see the appendix in Ref.[162]), with the electric field given by

E0(x) =
2Te/e

|x|+ Te/(πe2Ni)
sign(x). (6.2)

Now we introduce an oscillating perturbation and indicate the oscillating parts of each quantity as
E = Ẽ(x)e−iωt (electric field),n = ñ(x)e−iωt (electron density),v = ṽ(x)e−iωt (electron velocity).
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Figure 6.5: Collective oscillation of
the electron cloud around the ion den-
sity spike consistent with∆Ex =

max(Ex)−min(Ex) remaining∼ con-
stant.

The system of1D linearized fluid electrostatic equations are

∂tñ+ ∂x(n0(x)ṽ) = 0, (6.3)

men0(x)∂tṽ = −γ∗Te∂xñ− eñE0(x)− en0(x)Ẽ, (6.4)

∂xẼ = −4πñe. (6.5)

From these we obtain

me∂x(n0(x)∂tṽ) = −me∂
2
t ñ (6.6)

and also

me∂x(n0(x)∂tṽ) =
me

4πe
∂2
t (∂xẼ)

=
γ∗Te

4πe
∂3
xẼ

−e∂x(nE0(x) + n0(x)Ẽ) (6.7)

so that eventually we obtain an equation forẼ

ω2Ẽ = −γ∗Te

4πe
∂2
xẼ − e

me
∂x(E0(x)Ẽ). (6.8)

Because of symmetry we can study this equation forx > 0 only. However we must notice thatE0(x)

also has a contribution arising from the discontinuous ion density. Thus

ω2Ẽ = −γ∗Te

4πe
∂2
xẼ − e

me
∂x(E0(x)Ẽ)

+
4πe2Ni

me
δ(x)Ẽ. (6.9)

Notice thatE0(x) is an odd function and that the above equation forẼ may have either odd or even so-
lutions. We are interested in even modes,Ẽ(x) = Ẽ(−x) and, moreover, we only take long-wavelength
modes and thus neglect the term arising from pressure forces(the one proportional toγ∗Te. Thus, for
x > 0, we have

ω2Ẽ = − e

me
∂x(E0(x)Ẽ) (6.10)
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and substituting forE0

ω2Ẽ = −2Te

me
∂x

[

Ẽ

x+ Te/(πe2Ni)

]

(6.11)

To solve this equation one may define the auxiliary variables

f =
Ẽ

x+ Te/(πe2Ni)
, u =

x2

2
+

Tex

πe2Ni
(6.12)

so that, being∂x = [x+ Te/(πe
2Ni)]∂u], we obtain

ω2f = −2Te

me
∂uf (6.13)

with solution

f = A exp

(

−meω
2

2Te
u

)

(6.14)

with A an arbitrary constant giving the amplitude of the perturbation. Switching back tox, Ẽ and
extending the solution tox < 0 we finally obtain

Et = A

(

x+
Te

πe2Ni

)

exp

[

−meω
2

2Te

(

x2

2
+

Tex

πe2Ni

)]

. (6.15)

The frequencyω is however not determined; the frequency spectrum is continuous, and the particular
frequency will be determined by how the oscillation is excited.

6.2.5 Long pulse excitation: Multi-peak structures

When the laser pulse duration is increased with respect to the above reported simulations, we observe
multiple peaks of the ion density and sawtooth oscillationsof the electric field. Although a structure
showing multiple oscillations behind a front is reminiscent of a collisionless shock wave as seen in
textbooks, again for an initially cold ion plasma, we do not observe in general a steady ion reflection at
the front. The density peaks move at different velocities and thus disperse in time. Hence the structure
may be interpreted as a multi-peakSAW, generated due to pulsed hole boring acceleration at the front
side [95] at a rate which is approximately the same for simulations having same pulse intensity and
plasma density, so that a longer pulse duration allows acceleration of a sequence of ion bunches.

A representative “long pulse” simulation is shown in Fig.6.6. The laser pulse has peak amplitude
a0 = 16 (like the above reported “short pulse” simulations) with5T rise and fall ramps and a55T
plateau. The plasma density and thickness are20nc and20λ, respectively. These parameters are close to
those of previously reported1D simulations (see Fig.1 in Ref.[78]) and indeed some features observed
in the ion phase space and density profiles look very similar.However, in our simulations the higher
number of computational particles allows us to highlight additional details in the phase space distribution
of Fig.6.6 (bottom row) such as vortex structures behind the front, corresponding to “trapped” ions
bouncing between adjacent peaks where a potential well is formed. The observation of ions trapped
in the multi-peak, nonlinear structure of the electric fieldand the quite broad distribution along the
momentum axis of the most energetic ions suggest that those latter may be actually accelerated by
“surfing” the longitudinal wave structure, rather than being merely reflected by the field at the front.
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Figure 6.6: Snapshots of
multi-peak structures at
three different times from
a “long pulse” simulation.
The insets show the cor-
responding ion spectra,
limited to the ions in the
region around theSAW and
excluding ions accelerated
at the target boundaries.
Simulation parameters are
a0 = 16, τ = 65T, 20µm
target andne = 20nc. Units
are the same as in Fig.6.1.

In addition, we observe significant oscillations of the electric field aheadof the wave front (i.e. of the
rightmost density peak in Fig.6.6at56T), which may have been excited by fast electrons and are related
to modulations in the momenta of the highest energy ions. Theinset shows the spectrum of the reflected
ions. During the first reflection event (first frame at56T), the ion spectrum has a peak at∼ 22MeV and
have narrow energy spread. Due to the further reflection events at88T and120T which occurs when
the SAW potential exceeds the kinetic energy, i.e(eΦmax > miv

2
s/2), the spectrum doesn’t remain of

monoenergetic nature and get broader towards higher energy(compare the spectrum in inset of Fig.6.6at
different times, even neglecting the contribution ofTNSA at the rear side). By the time88T, theSAWs

have been fully evolved and the leadingSAW reflect ions of more than22MeV energy and the cut-off
energy reaches up-to∼ 30MeV at120T. Thus, the ion reflection which occur due to “pulsary action of
SAW” is not easy to control and large number of ion reflection events masks the monoenergeticity.

In order to check the steady reflection of ions to sustain the quasi-monoenergetic nature in the spectra,
we performed the simulation keeping all the other parameters same as of Fig.6.6but for warm ions having
initial ion temperatureTi = 1keV and the results are shown in Fig.6.7. We observed that the SAW wave
which turns into shock wave starts to reflect ions from early times and the ion reflection occurs is of

Figure 6.7:Warm ion sim-
ulation: Snapshots of the
evolution of solitary acous-
tic wave (SAW) at three dif-
ferent times of a simulation
having identical parameters
as Fig.6.6, but with the ini-
tial ion temperatureTi =

1 keV The insets show the
corresponding ion spectra,
limited to the ions in the re-
gion around the shock and
excluding ions accelerated
at the target boundaries.
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“continuous and steady”4 in nature. In attempt to reflect more number of ions, theSAW or shock wave
front lags behind and is at11λ irrespective of12.5λ for cold ions simulation (Fig.6.6) at 120T time
duration. In addition, all the multi-peak structures movesalmost at constant velocity with time and the
corresponding ion density peaks remain there for much longer times. The vortex type structures between
the peaks, corresponding to trapped ions is less formed withrespect to cold ions simulation in which the
particle trapping between the peaks is much more (compare phase space distribution of Fig.6.6 and
Fig.6.7). Looking at the ion spectrum at120T, as the wave front is reflecting steady ions, the energy
spectra is much more quasi-monoenergetic and remains stable for more time irrespective of the cold ions
case in which the spectrum becomes broad because of “non-steady”5 nature of ion reflection. Although
the cut-off ion energy is less in warm ions (∼ 20MeV) than that of cold ion simulation (∼ 30MeV)
at 120T time duration, as the shock slows down a bit, losing its energy in reflecting more ions but the
spectrum is more stable and sustain quasi monoenergeticityfor longer times.

The detailed description of the effect of the initial ion temperature on electrostatic shock generation
and monoenergetic ion acceleration by reflection will be prescribed in the next chapter. We will show
with 1D PIC simulations that there is “an initial ion temperature window” in which we can increase the
number of reflected ions without any significant wave loadingfor which the shock moves almost with a
constant velocity and reflect monoenergetic ions.

6.2.6 Effect of target density on ion dynamics and SAW generation

We also performed1D PIC simulations for the interaction of a strong laser pulse in the range of
100fs with an overdense target of15µm thickness at the same laser pulse amplitude ofa0 = 16. The
laser pulse is of durationτ = 30T, such that; the temporal profile is composed by2T long, sin2- like
rising and falling ramps and a28T plateau. A parametric scan have been performed at differenttarget
densities vary fromne0(= ni0) = 5nc− 50nc. We envision that theSAWs are excited within the plasma
for some certain plasma densities, neither appear at low norat very high plasma density. SAW are more

4 steady means that the SAW or shock is reflecting ions almost ata constant rate and of less energy spread and can be
observed from the slope of the phase space distribution in Fig.6.7which is almost a straight line.

5 Non-steady means, the ion reflection occurs at certain time intervals and may differ in energy.

Figure 6.8: Snapshots
of ion density ni, elec-
trostatic field Ex and
contour of ion fi(x, px)

and electron fe(x, px)
phase space distribution
in a log10 scale at three
different times, at laser
pulse amplitudea = 16,
15µm target thickness
and n0 = 5nc plasma
density. Note down the
scales of x−axis and
y−axis while comparing
with Fig.6.9, Fig.6.10.
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prominent and clearly visible around the plasma density ofn0 = 10nc−20nc and neither occur in higher
plasma density ofn0 = 50nc nor at lower plasma density ofn0 = 5nc.

Fig.6.8shows the snapshots of the simulation performed at plasma density ofn0 = 5nc. In this case
we didn’t find anySAW generation within or towards the rear side of the plasma. When aLP laser
pulse impinges on the target surface, due to charge separation effects, a strong unipolar electrostatic
field is generated (as shown in Fig.6.8 at 20T). A few ions gains an acceleration (as in Fig.6.8 b-c)
and reaches towards the rear side of the target without much perturbation to the plasma. Therefore no
SAW generation have been observed within the bulk of the plasma which can accelerate ions and the
most effective ion acceleration occurs towards the rear side of the target. As the plasma density is not so
much high, (as compare to our other simulations shown below at or aboven0 = 10nc), the skin depth
and the magnitude of the electric fields penetrating in the plasma increases which results in that electron
bunches produced by the laser and transported through the target creates a strong electrostatic field that
drives the surface ion acceleration. Due to very high electron heating, having momentum up-to40mec

as shown in electron phase space of Fig.6.8, the electron temperature across the target will be very high.
As a consequence, the relative speed of soundcs ≃

√

Te/mi might increases much enough such that
the Mach numberM = vs/cs falls below one, which results in that it doesn’t fulfill the fluid theory [28]
according to which the lower limit for the existence of solitary waves isM > 1.

Fig.6.9shows the snapshots for the simulation performed at plasma density ofn0 = 10nc, keeping all
the parameters same as of Fig.6.8. In this case, more than oneSAW are excited by the radiation pressure
of laser from the target front surface which propagate within the plasma and drive the ions to twice its
velocity by the wave breaking events; i.e. by reflection fromthe tip of theSAW. TheseSAWs which
start reflecting ions from the early time duration, regains its position again after some time, exceeds the
threshold potential and undergoes further wave breaking and ion reflection. Its interesting to see from
Fig. 6.9(a-c), how the first and secondSAW interact with each other and they “exchange” ions, the ions
accelerated by the middleSAW gets slowed and trapped by the leadingSAW. Until the laser pulse is
on, the first and secondSAW starts to propagate initially with a velocityvs ≃ 0.11c (at40T) and further
propagate deep in the bulk by gradual reduction in velocity and density with time. The third solitary
like structure which is quite visible at40T lags behind (Fig.6.9b) with respect to time and get damped
out (Fig.6.9c). As a consequence, by the time120T, there exists only firstSAW (can be observed form
the ion density and electrostatic field) which propagate andreflect ions. Lower frames of phase space of

Figure 6.9:Snapshots of
the evolution of solitary
acoustic wave (SAW)

at three different times.
The upper row shows ion
density(ni), electrostatic
field (Ex), while the mid-
dle and bottom rows show
the ions and electrons
phase space distribution
in a log10 scale, having
all the parameters same as
of Fig.6.8 but at plasma
density ofn0 = 10nc.
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Figure 6.10: Snapshots
of ion densityni, electro-
static field Ex and con-
tour of ion fi(x, px) and
electron fe(x, px) phase
space distribution in a
log10 scale at three dif-
ferent times, keeping all
the parameters same as
of Fig.6.9, but at plasma
density of n0 = 50nc.
Notice down thex− and
y−axis scales while com-
paring with Fig.6.8 and
Fig.6.9.

ions and electrons in Fig.6.9shows that hot electron bunches have been formed within the target across
theseSAWs and as theseSAWs structures move forward, similarly these hot electron bunches (or bulk
electrons) moves along it. At40T, these bulk electrons around theSAWs have momentum≈ 20mec

(electron phase space Fig.6.9) and these bulk electrons get cool down along the propagation time and
electron heating across the firstSAW decreases to≈ 10mec at120T.

Similar to above case, we also performed the simulation at plasma densityn0 = 20nc in which we
observed that threeSAW′s are formed which start propagating within the plasma, but the ion reflection
from theSAW front starts later. The first ion reflection occurs after time40T while by this time in
n0 = 10nc case (Fig.6.9), there occurs much more ion reflections and trapping between the multi-
peak structures. These multi-peakSAWs propagate up-to later stages by reflecting ions at certain time
intervals until there exists electrostatic field across it.Due to less reflection and less trapping of ions
at n0 = 20nc case than that ofn0 = 10nc, theSAWs formed in this case remains stable for longer
times. The reflection and particle trapping adds more nonlinearity to the plasma which leads towards
the damping of theSAW. If the laser pulse is fairly long such that the oscillationsexcited within the
plasma attain a sufficiently large amplitude at the end of thelaser pulse for nonlinear effects to become
important. For theLP pulses, due to strong electron heating, the plasma non-uniformity leads to a
change in the wave vector of the plasma oscillations. As a result, some of the electrons are thrown out of
the plasma region to the rear side which bounce back and further starts recirculating and get accelerated
on the process of their interaction with plasma waves while the ions gain energy from their interaction
with the localized electric field[163].

We have observed that the solitary acoustic waves (SAW′s) are formed at plasma densities up-to
n0 = 25nc for the laser amplitudea0 = 16 and didn’t occur at higher plasma densities. Fig.6.10shows
the simulation performed at higher plasma density ofn0 = 50nc, having all the other parameters same
as Fig.6.9. In this case, we didn’t seen any clear generation and propagation of SAW like structures
within the plasma which undergoes reflection and trapping phenomenons. It may be explained in such a
way that as we increase the plasma density, the formed nonlinear electrostatic perturbations might be so
slow that they get damped out at earlier times attempting to reflect large fraction of ions. A shock like
reflection has been observed in the phase space plots of Fig.6.10, whose signature in the fluid theory is
the continuous flow of reflected ions. We envision that a shock-like structure is generated on the front
surface which is moving initially at20T with velocityvs ≈ 0.05c and gradually decreases tovs = 0.02c
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at 80T. The ion density is much higher across this shock-like frontand is continuously reflecting ions
in large fractions. Electron phase space plots also show that, the electrons are more heated across this
shock-like structure than the rest of the plasma. From the slope of electrons spectrum, we calculated
the bulk electron temperature (ignoring the fast oscillating electrons) which comes to beTe = 2.6MeV.
Now if the shock-like structure is propagating initially with a velocityvs = 0.05c at 20T, we evaluated
the Mach numberM =vs/cs, (wherecs = KBTe/mi), it comes out to beM = 0.9 (the estimate is with
classic formulas assuming a non-relativistic electron spectrum), which does not satisfy the existence
condition ofSAW/shock generation, i.e.1 < M < 1.6. As theM < 1, the structure we observed can
not be called a shock wave. Thus, the above results performedat different plasma densities infer that the
SAW/shock waves can be generated only up to certain range of laser and plasma parameters.

Simulations have also been performed for the same laser intensity a0 = 16, by changing the target
thickness and laser pulse duration to test the evolution ofSAW. It is observed that by changing one
of the parameters, results in the change of evolution of theSAW and the related phenomenons. For a
fixed laser intensity, the role of target thickness, target density and laser pulse duration is important for
the formation of solitary waves, evolution of solitary waves and the other dissipation phenomenons such
as particle reflection and particle trapping. Below we will discuss a possible criterion for SAW/Shock
generation.

6.2.7 Criterion for SAW or Shock generation versus Target density

Here we have tried to give a simple criterion to guess why in our 1D PIC simulations either shock or
solitary acoustic waves (SAW’s) are hardly observed for large density values. Since these structures are
driven by the effect of the light pressure (or radiation pressure) exerted by the laser pulse at the surface,
their initial velocity should be of the order of the “hole boring” velocity. This has been given e.g in
Ref.[95] as

vhb = a0c

(

Z

A

me

mp

nc
ne

)1/2

(6.16)

and compared with the velocity observed in simulations withcircular polarization.
In comparing with the case oflinear polarization (LP), wherea0 is given as the peak amplitude of

the laser pulse, so that forLP the average over a period〈a2〉 = a20/2. In addition, forLP, absorption
is usually higher and thus the corresponding reduction in radiation pressure,2I/c → (1 + R)I/c with
R < 1 the reflection coefficient should be considered. Thus we would write the “hole boring” velocity
for LP pulses

vhb = a0c

(

1 + R

2

Z

A

me

mp

nc
ne

)1/2

(6.17)

which can be derived by the equation for the balance between the EM momentum flow and those of ions

(1 + R)I/c = (mivini)vi, and I = mec
3nc〈a2〉 (6.18)

Here we considervi ≪ c as this is the relevant case to simulations but generalization tovi . c is possible
(see Ref.[105]). To estimatevs, we assume thatSAWs are first generated as ion bunches by the radiation
pressure acceleration and wave breaking at the front surface [95] and thus their energy is
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Thus for protonsZ = A = 1, and considering the case of (Fig.6.9) havingne/nc = 10 anda0 = 16, this
estimate gives usvs = 0.12c, is in very good agreement with the initialSAW velocity of vs = 0.11c

observed in simulations. Now let us consider the shock or soliton to be driven at velocityvs ≃ vhb. We
need in any casevs to be supersonic, i.e.M = vs/cs > 1 wherecs = (ZTe/mi)

1/2 = (ZTe/Amp)
1/2.

To estimate the electron temperature, we used the so called “ponderomotive scaling”forTe as explained
in detail Eq.(2.70) in Ch.2, sec.2.8.3)

Te ≃ mec
2(γ − 1) = mec

2(
√

1 + a20/2− 1) ≃ mec
2a0/

√
2 (6.20)

where the last equality holds fora0 >> 1. Fora0 = 16, we obtainTe ≃ 11.3mec
2, that seems fairly

consistent with simulations. Hence posingEi > eΦmax, we obtain the criterion for theSAW or shock
generation (assumingR = 1 for simplicity) as

M > 1 →a0 >
1

2
√
2

ne
nc

(6.21)

corresponding toa0 > 3.55 for ne/nc = 10. This estimate, however is quite sensitive to the assumption
of Eq. (6.20) for Te because the classic formula assume a non-relativistic electron spectrum.

Thus from the above simple criterion in Eq.(6.21), we can guess whether a shock or soliton will
be generated. This estimate might be generalized easily toR 6= 1 and possibly tovs . c; it should
be taken with some care because the estimate forTe is probably rough and less grounded than forvhb,
so at least numerical factors may be different in Eq.(6.21), but it might give us useful indication.
Another important point to mention would be that in principle Eq. (6.21) is similar to the condition
ne < ncγ that is often mentioned as the condition for the plasma to be relativistically transparent for
the laser light. However, in a step boundary plasma usually the condition is more restrictive (because of
the ponderomotive compression itself) so that a window of parameters for shock acceleration probably
exists. Nevertheless, relativistic transparency might explain why shock or solitons are not observed (at
least in a clear way) also for too low densities,ne/nc ≪a0.

6.3 Simulation with Circular Polarization

Simulations has been performed also for circular polarization (CP) to compare the results for linear
polarization(LP). To ensure that laser intensity is same as ofLP case, we use a laser pulse which is
lower by a factor of

√
2 than inLP case, we performed theCP simulations for the same parameters

having laser pulse with a peak amplitudea0 = 16√
2
= 11.3. The plasma had a slab, square-like profile

with initial ion and electron densitiesni = ne = 10nc and15λ thickness. Fig.6.11shows the snapshots
of twoCP simulations performed for the above described parameters but at different lase pulse duration
of τ = 30T(100fs) andτ = 60T(200fs) respectively. Fig.6.11shows the effect of laser pulse duration on
ion acceleration at front side of the plasma. InCP, we have observed the most effective ion accelerated
from the front surface of plasma which starts in the form of small bunches which propagate into the
plasma with a constant momentum of approx1.3mic. When theCP laser pulse impinges on the plasma
surface, the electrons are quickly pushed inward by the ponderomotive force, i.e by steady part of the
v ×B force. ForCP, the oscillating component of thev ×B force is zero, thats why there is very less
electron heating and the interaction regime is completely different than that ofLP pulses. In case of
CP, all the ions get accelerated in the form of small bunches dueto the hydrodynamics wave breaking,
as the ion density is very high at the breaking and the faster ions move ahead than the slower ones.
During the first breaking of the ion profile, with the formation of a bunch; the equilibrium between the
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Figure 6.11:CP Simulation parameters:a = 11.3, target thickness= 15µm, plasma densityn0 = 10nc.
Snapshots(a− c) shows the electric fieldEx, ion densityni and ion phase space distributionfi for the simulation
done at laser pulse duration ofτ = 30T(100fs), The lower snapshots(d− f) shows the simulation results for laser
pulse duration ofτ = 60T(200fs). Increase of laser pulse duration results in increase in number of ion bunches.

electrostatic and ponderomotive force on electrons is lostand if the laser pulse is not over yet at this
stage, the electrons rearrange themselves to provide a new equilibrium and then the process of another
bunch formation restarts.

As long as the laser impinges on the target, the number of bunch formation increases and when the
laser is over, then there is no more bunch formation. Fig6.11shows a series of ion bunches formed until
the laser pulse impinges on the target and then these bunchespropagate with decreasing density with
respect to time. Fig.6.11a, shows a large electrostatic field is there, when the laser isstill impinges on
the target, Fig.6.11b shows that when the laser pulse is stopped, there remains no electrostatic fieldEx

and then these formed bunches propagate ahead collectivelywith a uniform momentum. InCP, we did
not observe fast electrons recirculation across the targetas observed frequently in theLP case. Fig6.11
(d− f) shows the snapshots at three different times of electrostatic fieldEx, ion densityni and ion phase
space distribution, for theτ = 65T(210fs) laser pulse duration. It is shown clearly (at timet = 114T)
that the number of bunch formation increases with increase in laser pulse duration as in the latter case
(Fig.6.11(d − f)), the number of ion bunches are more which can be observed clearly from the phase
space distribution plots.

Fig.6.12compares the absorption efficiency and ion energy spectrum for theCP versusLP simula-
tions. For theCP case, the absorption into the ion bunches is approx10% and is constant after the laser
pulse is over which confirms that all the ions are getting accelerated by hole boring−RPA. For CP
pulses, the absorption of electrons is very less as long as the laser is there and when laser pulse is over,
the absorption is negligibly small. ForLP, the absorption of electrons is very much in this case and is
dominant during the interaction with the laser pulse. Laterenergy transfer towards ions occurs and with
increase of time, the absorption efficiency of ions is increasing and of the electrons is decreasing, which
confirms that the ions are getting some energy from the electrons. The ion energy spectrum forCP is
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Figure 6.12:Left frame:Comparison of absorption efficiency of ions and electrons versus time.Right frame:ion
energy spectrum fromID − PIC simulations performed withCP andLP pulses for the same laser and plasma
parameters.

relatively narrow and a very prominent peak occurs around8MeV, while the spectrum forLP is more
thermal like, a peak occurs around5MeV and broad spectrum maximum up-to30MeV. The reason for
a more prominent peak forCP case is because of the fact that the ponderomotive force tends to focus the
ion spatially at the end of the skin layer, creating a sharp peak [95] while for LP case, the strong electron
heating leads to the explosion of the ion bunches and pile up few of these ions to higher energies lead to
a broad energy spectrum. InCP, its relatively less electron temperature which also allows for a narrow
energy spectrum [164].

With the aim to clarify many differences, similarities and possible overlaps between the SAW/shock
acceleration(SA) and hole-boring(HB) by addressing issues such as role of radiation pressure versus
fast electron generation, we have shown on the basic of numerical simulations that “soliton/shocks”
driven byLP pulses (in an overdense (ne > nc), long-scalelength plasmas with a thickness typically
L ≫ λ), produce energetic ion bunches as they propagate into the plasma bulk by a sequence of wave-
breaking events. In contrast, forCP laser pulses the ion bunches generated byHB due to the action of
radiation pressure, do no lead to further acceleration in the bulk.

6.4 Test Particle Simulations

We performed numerical ID PIC simulations by keeping all theparameters same as of Fig.6.1 but
for a laser pulse duration ofτ = 5T, such that the temporal profile is2T long, sin2− like rising and
fall ramps and3T plateau. In order to check the exact acceleration mechanism, simulations has been
performed by placing a slab of “test particles (protons)” inside the plasma, at some distance from the
surface in order that the test particles should not interactwith the laser pulse, but will be reached by the
shock wave at some instant. The goal is to see if and how much these test particles are accelerated by
the shock. Test particles will move into theEM fields as the ”real” particles, but they will not contribute
to the charge and current densities; they are only there as a diagnostic.

Fig.6.13shows the results performed for LP pulses, by placing the test particle at different positions
inside the plasma slab. We placed the test particle slab at2 − 3λ (second row from bottom in Fig.6.13)
and at3 − 4λ (the bottom frame in Fig6.13). We found that only those test particles located near to the
points, where the incomingSAW reaches the threshold amplitude for ion reflection, get accelerated. As
studied insec.6.1, for LP pulses and cold background ions, during the laser pulse, the strong density
perturbations are created in the form ofSAWs, at the laser plasma interaction surface which propagate
deep into the plasma bulk with velocityvs and can extends up-to velocity≈ 2vhb. During propagation,
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Figure 6.13: LP Simulations:
Snapshots of ion densityni,
electrostatic fieldEx and con-
tour of ion fi(x, px) and test
particlesft(x, px) phase space
distribution in alog10 scale at
four different times. Test par-
ticle perturbation and accelera-
tion confirms the formation of
solitary or shock wave forma-
tion deep in the plasma Simu-
lation parameters area0 = 16,
τ = 5T, 10µm target having
densityn0 = 20nc.

theseSAWs further lead to secondary ion reflection from its front having velocity vr = 2vs. This is
exactly what we observe in our simulations, we found that oneSAW is formed from the front surface
which start to propagate with velocityvs = 0.04c. Up-to 2λ distance, theSAW does not reflect ions.
The first ion reflection fromSAW front occur at48T when theSAW is at2.5λ. As we have placed a
test particles slab at2− 3λ region. Thus those test particles within this slab which arenear to2.5λ, get
accelerated and gains the same velocity as that of “real” background reflected ions (clearly be observed
from phase space plots Fig.6.13 at 52T). As theSAW pass away2 − 3λ region, the rest of the test
particles remain in this region without any further acceleration. During the time, when the propagating
SAW enters in the region3 − 4λ, there does not occur any ion reflection from theSAW front. Thus
theSAW pass the test particles slab3 − 4λ without accelerating the test particles of this region. Few
perturbations can be observed to the rest of the test particles which is due to fast oscillating electrons
and strong electron heating.

We performed theCP simulations at a laser amplitudea0 = 11.3, by placing the test particle slab
within the plasma at2 − 3λ, keeping all the other parameters same as of Fig.6.13. The result is shown
in Fig.6.14. We found that the ions from the front surface get accelerated in the form of bunches by the
hole boring mechanism which do not effect at all to the test particles placed within the plasma. Thus this
results confirms that forCP pulses, no acceleration occurs in the bulk. Ion bunches propagated through
the plasma in such a way, causing almost no perturbation within the bulk. Such bunches may not be
considered as electrostatic solitons as for instance the value of electron temperature (Te) for CP case
would be so low for the “Mach number”M to largely exceed the critical value∼ 6.5 above which one

Figure 6.14: CP simulation: Snapshots
of ion densityni, electrostatic fieldEx and
contour of ionfi(x, px) and test particles
ft(x, px) phase space distribution in alog10
scale at three different times, keeping all the
parameters same as of Fig.6.13, but using
circular polarized pulses. The test particles
within the plasma remain unperturbed shows
the clear different between the hole-boring
and shock acceleration processes.
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does not have a shock but a “pure piston”. These findings confirm the crucial role played by the laser
polarization or indirectly the effect of the electron temperature, inSAW/shock generation and the related
ion acceleration.

In our opinion it may be clearer and more appropriate to talk about shock acceleration which implies
the generation of a “true” electrostatic shock wave, able topropagate into the plasma bulk and to drive ion
acceleration there or at the rear surface. With this fact, although Palmer etal[165] reported on “protons
accelerated by a radiation pressure driven shock” in their experiment using a circularly polarized pulse,
their data may be rather interpreted as evidence of hole boring acceleration. The analysis of data in the
experiments by [166] and [167], where linear polarization was used, seems also compatible with the
“hole boring” picture involving ion acceleration at the front surface, sustained by light pressure.



CHAPTER 7

Ion Temperature and Two-Dimensional
Effects on the Formation of Shock and
Solitary waves

In this Chapter we first investigated, using 1D PIC simulations, the role of the ion initial energy dis-
tribution plays in the formation of ion acoustic perturbations in form of solitons/shocks and in the related
ion acceleration. Simulations performed at moderate intensity I = 1018 − 1019W/cm2 using linearly
polarized pulses suggest the existence of an “optimal” initial ion temperature at which a shock wave
reflects monoenergetic ions, as a result from a trade-off between beam monoenergeticity and efficiency.
Circularly polarized pulses in initially warm plasmas exhibit a distinct transition from the laser driven
piston scenario with all ions being reflected to the collisionless shock/soliton scenario having partial ion
reflection. Preliminary 2D simulations suggest that the onset of surface rippling affects the width of the
ion spectrum.

7.1 1D PIC Simulations

As shown in the sec.6.3 of previous chapter, for the circularpolarized (CP) pulses, ions are accel-
erated only at the laser-plasma interaction surface and during the laser pulse, the ion spectrum extends
up-to2vhb [95]. For the LP pulses (as explained in sec.6.1), due to the large electron heating, the strong
density perturbation are created in the form of solitary or shock waves at the surface which propagate
deep into the plasma bulk having velocityvs ≃ vhb. While propagating in the plasma, these solitary
or shock waves may further lead to secondary ion acceleration by reflecting ions from its front having
velocityvr = 2vs (wherevr is the velocity of reflected ions). The above considerationstells that the hole
boring process fixes the initial velocity for the solitary orshock waves while whether reflection would
occur or not depends on the ratio between the shock velocityvs and the relative speed of soundcs [28].
As long as the shock velocityvs is constant, the reflected ions should have velocity2vs and produce a
monoenergetic peak in the spectrum.

The monoenergetic nature of the steady reflected ions (for warm ion simulations) or the shock stabil-
ity is strongly dependent upon the laser pulse intensities and decreases with increasing laser intensities,
as more kinetic effects come in along the ultra-relativistic regimes. Discussed below are the warm ion
simulations performed at laser peak amplitudea0 = 4 anda0 = 1 corresponding to laser pulse inten-
sity of 2.2 × 1019W/cm2 and1.4 × 1018W/cm2 respectively. We observed that there exists a finite
“ion temperature window” for which the shock wave reflect monoenergetic ions without any significant
wave loading. With a further increase of initialTi, the shock wave attempts to reflect more number of
ions, loses it velocityvs along the propagation path and the reflected ion spectrum no longer remains
monoenergetic.
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7.2 Simulation results fora0 = 4 amplitude

7.2.1 Proton Ion Simulations (Z/A = 1)

At initially cold ion background

In the early stage of the interaction, theLP pulse accelerates a fraction of strongly relativistic elec-
trons with energy of severalmec

2 which penetrate into the target, recirculate across it and drive heating
of the bulk electrons. Multi-peak structures in the form of two or threeSAWs (depending upon laser
pulse duration) are generated at the front surface under theaction of the laser pulse which propagates
into the plasma bulk initially with a constant velocityvs ≃ 0.06c but disperse with time, the later ones
lagging behind than that of the the first SAW.

Left frames of Fig.7.1show that the peaks of the ion (blue line) and electron densities (red line) over-
lap with each other. However, as the electron temperature ismuch higher than that of ion temperature,
i.e. Te ≫ Ti, a bipolar charge separation electrostatic field of “sawtooth” shape is formed in the com-
pressed plasma. This electrostatic field around the densityspikes plays a key role in the acceleration of
ions deeply located in plasma on the path of these SAWs. Moreover the reflection of ions from a moving
electrostatic field front, is dependent on the stability threshold, i.e., the ratioΦmax/v

2
s whereΦmax is the

potential jump at the front. This is what we observed for coldion background (Ti = 0keV) simulation
that when the electrostatic potential(eΦmax) around the SAW exceeds the kinetic energy (1/2miv

2
s ), the

ion reflection occurs from the SAW front1. As the electrostatic field amplitude is not constant along
time but oscillates, due to this electric field oscillationsthe potential varies quickly around SAW and ion

1 From Fig7.1, at156T, we estimate the firstSAW electric field to have a peak valueEmax ∼ 0.8E0, whereE0 = meωc/e

and a total firstSAW extensionL ∼ 0.85λ = 1.7πc/ω, from which we estimateeΦmax = eEmaxL ≃ 4.27mec
2, which is

ahead of the threshold energympv
2
s/2 ≃ 3.58mec

2, thusSAW electrostatic potential(eΦmax > miv
2
s/2), crosses the stability

threshold and the ion reflection promptly occurs. Further propagating ahead, the second and third ion reflection fromSAW

front occurs around180T and224T time instants. At these instants, the electrostatic potential is eΦmax = 4.0mec
2 and

eΦmax = 3.8mec
2 respectively which is slightly above the stability threshold.

Figure 7.1:Left frame (a): Snapshots of the evolution ofSAW at three different times for an initial cold plasmas
(i.e. Ti = Te = 0keV). The upper row shows the ion densityni (blue line) and the electron densityne (red line),
middle row show the saw-tooth shape electrostatic fieldEx and the bottom row shows the contours of thefi(x, px)

ion phase space distribution in alog10-scale. The laser pulse impinges from the left reaching the plasma boundary
(x = 0λ) at t = 0T. Right frame (b):The ions and electrons spectrum, including only the particles in the region
around the SAW and excluding ions and electrons located nearthe target boundaries. Simulation parameters are
a0 = 4, ne = 4nc andτ = 60T.
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reflection is of pulsed nature, i.e. occur at some certain time intervals and is not uniform.
Looking at the slope of hot electrons (right frame of Fig.7.1), which are close to theSAWs we found

that the slope becomes steeper from140T to 224T time durations and the electrons get cooled down,
i.e. the temperature of the hot electrons (which are close to SAWs) falls fromTe ≈ 1.57MeV (at140T)
to Te ≈ 1.29MeV (at 224T). Now if we assume the SAW moving with a velocityvs ≈ 0.0625c to be
close to the stability threshold, therefore posing the MachnumberM = 1.6, we get an estimate of the hot
electrons temperatureTe = (0.0625/1.6)2mpc

2 ≃ 2.8mec
2 ≈ 1.4MeV that is fairly consistent with the

value obtained from the electron spectra. Thus during the ions reflection events (i.e. from 140T to224T),
the hot electrons temperature falls below the calculated threshold temperature,i.e.Te ≈ 1.4MeV, which
results in that the relative speed of soundcs ≃

√

ZTe/Ami decreases and hence the Mach number
M = vs/cs increases slightly above the stability thresholdM ≥ 1.6, for the ion reflection to occur which
would not quench the SAW and the latter remains almost unperturbed for such small reflections with a
slight change in velocityvs ≃ 0.06 ± 0.005c. The above calculations infer that the energy loss to the
reflected ions may be at the expense of hot electrons energy.

SAW velocity and amplitude decrease significantly only over long times after a couple of pulsed ion
reflections. The acceleration of a larger fraction of ions isobserved when theSAW undergoes disruption
either by interacting with another structure coming from opposite side or when it enters into the expand-
ing sheath region at the rear surface of the plasma, where it breaks down resulting in continuous ion
reflection. The appearance of the above mentioned pulsed ionreflection in the wake of the SAW might
thus be interpreted as the result of a partial transition of the SAW towards a collisionless shock when ion
reflection sets in. However, a stable shock may not form because the ions are cold in the present condi-
tions as it is evident from the phase space plots in Fig.7.1. Monoenergetic peaks appear only as a result
of such pulse acceleration in which the corresponding number of ions is relatively low. Acceleration of
large fraction of ions leads to quenching and slowing down ofthe wave, resulting in broadening of the
energy spectrum.

Warm ion simulations

In order to see the effect of initial ion distribution on soliton or shock evolution and to optimize its
effect on ion reflection, we performed the simulations by increasing the initial ion temperature. Fig.7.2
shows results of a simulation with identical parameters as that of Fig.7.1, but with initial ion temperature
Ti = 0.05 keV. We observed that the ion reflection starts at earlier time, i.e. at 80T, a small fraction
of ions (∼ 0.1 × 10−5) get reflected from the movingSAW front (vs ≈ 0.057c), as a consequence a
small monoenergetic peak of∼ 6.5MeV appear in the ion spectrum (inset, first frame of Fig.7.2). The
second and third frame of Fig.7.2 substantially shows the clear picture of later stages, i.e., at156T and
180T, the SAW/shock is fully evolved by this time, having velocity vs ≈ 0.0625c and reflect ions of
fraction (∼ 0.6 × 10−5) resulting in a sharp monoenergetic peak of∼ 7MeV smears out in the energy
spectrum which doesn’t affect the spectrum of the previous reflected ions and monoenergeticity remains
stable for much longer time (inset of Fig7.2). The electrostatic field is also less oscillating with respect
to time than in the cold ions case and theSAW propagates in such warm plasma (Ti = 0.05keV)
without much significant loss in its velocity. As a consequence, with respect to the “cold” ions case
narrow monoenergetic peaks almost appear at all the times inthe spectrum. Although the cutoff energy
is less in this case i.e.,∼ 7.5MeV instead of∼ 9.5MeV (for cold ions case), the ions spectrum remain
monoenergetic for longer times. Therefore, a slight changeof initial Ti = 0.05keV, the ion reflection
from theSAW front becomes linear, monoenergetic and occurs in small fractions untilSAW loses its
energy and damps out in the rear sheath field.
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Figure 7.2:Snapshots at four different times of theni,Ex andfi(x, px) for a simulation identical to that of Fig.7.1
but for an initial ion temperatureTi ≃ 10−4mec

2 = 0.05 KeV, showing that the ion reflection is linear and of
steady nature than that of the “cold ions” case. The insets show the corresponding ion spectra, including only the
ions in the region around the SAW or shock wave and excluding ions located near the target boundaries.

The SAW velocity is found to decrease slightly in time forTi = 0.05keV such that by the time
224T, the leadingSAW reaches up-to∼ 13.3λ (see ion phase space Fig.7.2), while in the cold ions case
(see Fig.7.1), the SAW is at∼ 13.6λ. For the initialTi = 0.05keV, due to some initial ion distribution,
there are always some ions having small energy spread in front of the leadingSAW which are easy
to reflect and in doing so, theSAW attempting to reflect more ions, loses some of its energy and lags
behind. While in the cold ions case in which the front ions areat rest and ions get reflected only in
the time intervals during which the electrostatic potential exceeds the kinetic energy ofSAW. Now
having an initialTi means the ion distribution has some initial velocity spread, and for a given value of
Φmax, all ions with velocityvi > (vs −

√

2eΦmax/mi) will be reflected from the wave front. Since from
156T time, the reflection is of more steady nature, so assuming that the background ions have velocity
vi ≈ vs −

√

2eΦmax/mi, the kinetic energy of front background ions can be estimated as

Ei =
1

2
mi

(

vs −
√

2eΦmax

mi

)2

(7.1)

It comes out to beEi ≈ 0.47mec
2. Now estimating for the electrostatic potential at156T, it is ZeΦmax =

1.3mec
2 which is above than the threshold kinetic energy and satisfies the conditionZeΦmax > Ei. As a

result the front background ions are easily reflected from the the leading SAW front.
With a further increase of initial ion temperature toTi = 0.1keV (Fig.7.3), i.e. the background ions

have slightly more initial energy spread than that ofTi = 0.05keV case (Fig.7.2), the leadingSAW
front picks up a very few ions at an early stage,i.e. at40T and reflect them. During the early stages, the
SAW/shock is not fully evolved yet (havingvs ∼ 0.051c), so initially it reflect a few ions of slightly less
energy∼ 5MeV. By the time80T, theSAW/shock gains the velocity up tovs ∼ 0.059c and reflects ions
of slightly higher energy∼ 7MeV. The two different energy types of reflected ions are clearlyvisible
in the spectrum (see inset, Fig.7.3a) and can also be deduced from the slope of the reflected ion feature
in the phase space plots (Fig.7.3a). Now from80T onwards, theSAW/shock propagates within the bulk
almost with a constant velocityvs ∼ 0.062 ± 0.002c reflecting ions to double its velocity. The ion
reflection at later stages is continuous in nature (Fig.7.3(c − d)) and doesn’t affect much to the existing
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Figure 7.3:Snapshots at four different times of theni,Ex andfi(x, px) for a simulation identical to that of Fig.7.1
but for an initial ion temperatureTi ≃ 2 ∗ 10−4mec

2 = 0.1 keV, showing the onset of “steady” ion reflection
and in large fraction than that of theTi = 0.05keV. The scales are the same as in Fig.7.1. The insets show the
corresponding ion spectra, including only the ions in the region around the SAW or shock wave and excluding
ions located near the target boundaries.

monoenergetic peak. Even neglecting the first ion bunch (formed at40T) which comes to the rear side
at time224T, the later shock like ion reflection is quasi-monoenergeticand of energy∼ 6.5− 7.5MeV.

Evaluating for the fraction of reflected ions up-to224T time duration, it comes out to be approxi-
mately1.5 × 10−5 for Ti = 0.1keV case which is higher than that of0.6 × 10−5 for theTi = 0.05keV

case. The fraction of reflected ions forTi = 0.1keV in the spectral peak at7MeV implies a conversion
efficiency of∼ 5×10−6 of the total pulse energy which is slightly high than that of conversion efficiency
∼ 10−7 for Ti = 0.05keV case. Thus from the above two results shown in Fig.7.2 and Fig.7.3, there
seems to be an “optimal” value ofTi, small but non-vanishing, for which we can increase the fraction
of reflected ions without any significant loss in SAW/shock velocity. We noticed that at this particu-
lar initial “ion temperature window” which occurs betweenTi = 0.05keV − 0.1keV, the SAW/shock
remains stable for longer time without any significant wave loading and reflects monoenergetic ions. In-
creasing the initialTi above0.1keV, the ion reflection increases in large numbers and the shock doesn’t
sustain a constant velocity and decelerates with time whichresults in broadening of the ion spectrum
and monoenergeticity is lost over longer times.

Fig.7.4 describes the simulation results performed at initialTi = 1keV and5keV respectively. We
envision that the ion reflection occurs from the beginning iscontinuous and of shock-like, where the
steady solutions of solitary waves change into shock waves.As according to the standard fluid theory
[28], the possibility to generate “true” shocks would be the formation of continuous flow of reflected
ions, which indeed we noticed in our simulations fromTi = 0.1keV onwards. The fraction of reflected
ions by the time200T, for Ti = 1keV are≃ 6 × 10−5 which further increases to≃ 15 × 10−5 for
theTi = 5keV case. This reflected ions fraction is much higher than the previously studied warm ions
simulations. Due to the higher number of reflected ions, the shock wave will lose its energy in reflecting
more ions and lags behind (see the ion phase space at200T of Fig.7.4), i.e. the leading shock front is
at 10.4λ for Ti = 5keV case, while it is at11.2λ for Ti = 1keV. The number of reflected ions, which
increases with increasing initialTi indirectly affects the stability of shock wave. If the latter reflects
large number of ions, which means that the shock is losing or transferring more energy in reflecting
more ions, so the shock front velocity decreases in time morequickly and the energy spectrum of the
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Figure 7.4:Snapshots at three different times of the ion phase spacefi(x, px) for the simulations performed at
initial ion temperature ofTi ≃ 2 ∗ 10−3mec

2 = 1 keV andTi ≃ 1 ∗ 10−2mec
2 = 5 keV respectively, showing

the onset of “continuous” shock like ion reflection. All the other parameters are identical to Fig.7.1. The number
of reflected ions increases with increasing the initialTi, and the shock decelerates more quickly with time. The
right frame show the ion spectra at200T time duration, considering only the ions in the region around the shock
wave and excluding ions located near the target boundaries.

reflected ions broadens towards lower energies which we indeed observed in the simulations performed
at higher initial ion temperature,i.e. Ti = 5keV and10keV, where the spectral plateau occurs around
4 − 5MeV energy which further shifts towards lower energies for highinitial Ti. The occurrence of
spectral “plateau” (right frame of Fig.7.4 for Ti = 5keV) is because of shock deceleration, rather than
due to further acceleration of the reflected ions in the rear side sheath.

Thus we infer that, increasing the initialTi, reflection of ions from the SAW/ shock wave front
becomes ”linear” in the sense that, given the wave some speed, we always have some ions in the tail of
the distribution function which can be reflected. But for toohigh ion temperature there are too much
reflected ions, so we fall back again in the case of excessive wave loading. With reference to the case
of “true” shock formation in a plasma with warm ions, which starts fromTi = 0.1keV, where the ion
reflection from the beginning is “continuous” in nature, theshock doesn’t decelerate quickly and remain
stable for longer time to reflect ions of same energy(Fig7.3). Although there occurs a continuous ion
reflections aboveTi = 0.1keV but the shock loses its energy more quickly in order to reflectmore ions
and decelerates. So due to excessive wave loading and shock deceleration, the latter doesn’t remain in a
position to reflect ions of same energy and the lower energy tail of the reflected ions broaden the energy
spectrum. Now, loweringTi from 0.1keV to 0.05keV implies that less ions are reflected, reflection is
still linear and monoenergetic but is not of continuous nature. A further decrease in initialTi below
0.05keV, we again fall back to cold ions case and the ion reflection neither remain linear nor sustain
monoenergetic nature for longer times.

7.2.2 Carbon Ion Simulations

Heavy ions (e.g. carbon) can not be accelerated as efficiently as protons since, due to the lower
charge to mass ratio (Z/A) the electric force per unit mass is smaller on heavier ions.We performed the
simulations for the carbon ions havingZ/A = 1/2 by replacing protons, keeping all the parameters same
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Figure 7.5:Carbon ion simulation: Snapshots at three different times of ion densityni, electrostatic fieldEx and
the ion phase spacefi(x, px) for the simulations performed atLeft frame: (a)cold ion backgroundTi = 0 keV
showing the propagating of SAW without any ion reflection andRight frame: (b)Ti ≃ 2 ∗ 10−3mec

2 = 1 keV
respectively, showing the onset of “continuous” shock likeion reflection. A transition from SAW to shock wave
is clearly observable. All the other parameters are identical to Fig.7.1. Although the number of reflected ions
increases with increasing initialTi, but shock looses its energy to the reflected ions and lags behind. The insets
show the corresponding ion spectra, including only the ionsin the region around the SAW or shock wave and
excluding ions located near the target boundaries. Simulation parameters area0 = 4, τ = 60T andne = 4nc.

as of Fig.7.1. Fig.7.5 (left frame) shows the simulation performed for initially cold ions(Ti = 0keV).
Two SAWs are formed from the target front surface which propagates initially at a velocityvs ≈ 0.042c

(at 80T) and later disperse with time. We did not observe any ion reflection from the leadingSAW
while the secondSAW undergoes some ion reflection. The ion reflected from the second SAW get
trapped by the huge electrostatic field of the first SAW. Due tothe ion reflection, the secondSAW
loses its velocity tovs = 0.039c by the time200T, giving some of its energy to reflected ions while
the firstSAW propagates with almost constant velocityvs ≈ 0.041c without much loss in its energy.
Calculating for theSAW electrostatic potential2 which does not exceed the stability threshold condition
(ZeΦmax < miv

2
s/2) andSAW propagates without any ion reflection as shown in phase spaceplots of

Fig.7.5(left frame). Therefore in a cold carbon ion background, ionreflection is hardly to occur from the
SAW front and the latter remains symmetric for much longer times. These simulation results confirms
that the stability condition (Eq.6.1) is strongly dependent upon theZ/A factor as for the carbon ions
case, the potential energy term is lowered by a factor of2 than that of kinetic energy term.

Fig.7.5(right frame) shows the same simulation as above but with an initial ion temperatureTi =

1keV, We envisioned the SAW turns into shock wave and the shock front is moving with a velocity
vs ≈ 0.04c at80T, reflecting ions to double its velocityvi = 2vs ≈ 0.08c. As a consequence a peak of
∼ 30−35MeV smears out in energy spectrum (inset Fig.7.5right frame at80T). Because of continuous
ion reflection from the shock front, its velocity decreases to vs ≈ 0.034c at200T as a result the spectrum
of reflected carbon ions get broader.

Estimating the electrostatic field at80T, the leading shock wave have an electric field peak value
Emax ≈ 0.41E0 and a total shock extensionL ≈ 0.6λ = 1.2πc/ω, as a result the electrostatic potential
energy comes out to beZeΦmax ≃ 9.3mec

2. Due to the initial velocity distribution, the front background
ions have some initial velocity spread. Calculating the kinetic energy of front background ions at80T

2 Estimated at80T, the first SAW have have an electric field peak valueEmax ≈ 0.24E0 , whereE0 = meωc/e and a
total SAW extensionL ∼ 0.7λ ≈ 1.4πc/ω. From this we can estimateZeΦmax = ZeEmaxL ≃ 6.3mec

2 (usingZ = 6 for
carbon), which is quite below of the threshold kinetic energy miv

2
s/2 ≃ 19.4mec

2, wheremi(carbon mass)= 12mp(proton
mass). Computing again the electrostatic potential at200T which have a peak valueEmax ≈ 0.5E0 and SAW extension
L ∼ 0.7λ ≈ 1.4πc/ω it comes out to beZeΦmax ≃ 13.2mec

2 which is still below the threshold kinetic energy≃ 17.6mec
2
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from the Eq.7.1, it comes out to beEi = 8.6mec
2, which is below than that of electrostatic potential

energy of shockZeΦmax ≃ 9.3mec
2. Thus the shock front reflect the front background ions and isclearly

observable in phase space plot of Fig.7.5(right frame). This simulation study confirms that carbon ions
can be accelerated with some optimal initial ion temperature.

7.3 Simulation Results fora0 = 1 amplitude

In order to find an “optimal ion temperatureTi” resulting from a trade-off between beam monoener-
geticity and efficient ion acceleration, we also performed the simulations at a bit lower relativistic laser
intensityI = 1.4 × 1018W/cm2 corresponding to laser pulse amplitudea0 = 1 to check the effect on
the “initial ion temperature window” for which we can efficiently reflect small number of ions without
any significant wave loading, i.e. the SAW or shock velocity remains stable for much longer times and
reflect ions of monoenergetic nature.

7.3.1 Warm ion simulations

Fig.7.6 shows the snapshot at a fixed time duration200T of the simulations performed by varying
the initial ion temperatures in theTi = 0− 5keV range. In a cold ion background as shown in Fig.7.6a,
an ion nonlinear wave is launched into the target, in the formof SAW or multi-peak structures which
undergo ion reflection by solitary pulsations. Due to the strong electric field oscillations, the ion re-
flection from the SAW front occurs at some certain instants along the propagation path and is quite a
nonlinear phenomenon. Due to the multiple ion reflections ofdifferent energies, the spectrum of the
latter is no longer monoenergetic (see Fig.7.7a). With a slight change in the initial ion temperature
Ti = 10eV(Fig.7.6b), the time of event of ion reflection fromSAW changes, such that theSAW starts

Figure 7.6:LP simulations: Snapshots ofni,Ex and the contours of thefi(x, px) ion phase space in alog10-scale
showing evolution of electrostatic shock wave and the ion dynamics at a fixed time interval oft = 200TL, for six
different cases:(a:) for an initial cold ionsTi = 0 keV, (b:) for an initial ion temperatureTi = 0.01 keV, (c:)
for initial Ti = 0.05 keV, (d:) for initial Ti = 0.1 keV, (e:) for initial Ti = 1 keV, (f:) for initial Ti = 5 keV
respectively. Simulation parameters area0 = 1, ne = 2nc, 8µm target and pulse durationτ = 60T .
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to reflect ions at early times,i.e. at 100T than that of cold ions case in which the first ion reflection
occurs around150T. The leadingSAW propagating with a velocityvs ≈ 0.024c, reflect small fraction
of ions (1.5 × 10−5) in the narrow spectral peak of1.1MeV(Fig.7.7b) implies a conversion efficiency
2 × 10−6 of the 28J pulse energy. We noticed that the electric field amplitude isquite stationary and
theSAW is more stable in this case and thus reflects ions of constant velocity. As a consequence, with
respect to “cold ions” case, the reflected ions are of monoenergetic nature. So even changing a slight
initial ion temperature (i.e.10eV), the ion reflection become “linear” in the sense that, at thegiven wave
speedvs, we always have some ions in the tail of the distribution function which can be reflected. Thus
in order for just a minority of the ions to be reflected, the iondistribution must have an initial velocity
spread.

We also performed other simulations in range of initial ion temperature fromTi = 20eV to 100eV,
two of which are shown in Fig.7.6(c−d) having initial ion temperature50eV and100eV respectively. We
see that the number of reflected ions increases by increasingthe initial ion temperature as there are now
more ions in the range which theSAW front can easily pick and reflect to twice the shock velocity such
that the fraction of reflected ions forTi = 50eV are∼ 4×10−5 which further increases to∼ 6×10−5 for
Ti = 100eV. The increase of the ions number can be observed from the variation of the monoenergetic
peak shown in Fig.7.7(b − d). So in this initial ion temperature range fromTi = 10eV − 100eV,
we observed that the fraction of reflected ions increases without much significant wave loading and the
shock propagates almost at a constant velocity (vs ≈ 0.025 ± 0.001c), reflect ions of monoenergetic
nature which is also observed in the phase space plots of Fig.7.6(b − d) showing a straight line.

Fig.7.6(e-f) shows the result at initialTi = 1keV andTi = 5keV respectively having shock-like ion
reflection. The ion reflection from the beginning is continuous and steady. The fraction of reflected ions
is 14×10−5 for Ti = 1keV which further increases to30×10−5 for Ti = 5keV and is much higher than
that of previous warm ion results (Fig.7.6(b-d)). As a result, in order to reflect more ions, shock loses
its energy, lags behind and is at≈ 3.8λ(Fig.7.6e) and3.2λ(Fig.7.6f) for Ti = 1keV andTi = 5keV

respectively and the reflected ions have a broad energy spectrum (Fig.7.7(e-f)). The density peaks and
the electrostatic field are clearly observable in case ofTi = 1keV(Fig.7.6e) which means that shock
wave still exists and is propagating forward by reflecting ions while in case ofTi = 5keV (Fig.7.6f), the
density peaks and electrostatic field are completely lost bythe time200T which means that the shock

Figure 7.7:Snapshots at fixedt = 200TL time duration of the corresponding ion spectrum for six different cases
as shown in Fig.7.6 including only the ions in the region around theSAW or shock wave and excluding ions
located near the target boundaries.
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wave doesn’t exist anymore and has damped out by losing all its energy to reflected ions.
Thus from the above simulation results described in sec.7.3 and7.4, at laser pulse amplitude of

a0 = 4 anda0 = 1 respectively, we envision that at a lower amplitudea0 = 1, the SAW is able to reflect
monoenergetic ions even with a slight initial ion distribution, i.e.Ti = 10eV. For thea0 = 1 case, the
range of initial ion temperature window in which theSAW/shock reflect monoenergetic ions is large and
is betweenTi = 10eV − 100eV. Now with the increase in laser intensity toa0 = 4, more nonlinear
and kinetic effects come into play and we observe a narrow range of initial ion temperature window, i.e.
betweenTi = 50eV − 100eV at which the SAW/shock remains stable for longer times and reflect ions
of narrow energy spread. Further increasing the laser pulseamplitude toa0 = 16, there is hardly any
optimal initial ion temperature at which the reflected ions are monoenergetic. Although the number of
reflected ions increase with increase in initialTi, but because of other nonlinear effects and instabilities,
the shock velocity does not remain constant for much time andloses its energy along the propagation
path. Formation of monoenergetic ion spectra seems to be more favored for moderate values of laser
amplitudea0 ∼ 1− 4.

7.4 2D Simulation Results

We will now discuss our preliminary results of the 2D PIC simulations3 performed at a laser ampli-
tude ofa0 = 1 and for the “warm ions” having initialTi = 0.1keV, keeping all the parameters same as
that of Fig.7.6d, at lower resolution∆x = λ/100 andNp = 100 particle per cell. The simulation box is
set as140µm × 15µm and the laser beam has Gaussian intensity distribution withthe diameter of5µm
in the transversey− direction.

Fig.7.8shows the proton density in the configuration space in which adouble layer front in the form

3 the simulations were made with the help of Andrea Sgattoni bythe 2D PIC code “ALaDyn”.

Figure 7.8:2D PIC simulation: Snapshots at three different time durations of a shock wave, showing the proton
density in the configuration space. The simulation is identical to the 1D simulation shown in Fig.7.6d at an initial
Ti = 0.1keV. Laser pulse is P-polarized having waistwo = 5λ havingNp = 100 and∆x = ∆y = λ/100,
Simulation parameters area0 = 1, τ = 50T andne = 2nc.
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of a damped or short shock wave is formed at the target front surface. We observed that the double layer
front shows a transverse modulation with time. The development of transverse ripples on the shock front
causes a different evolution of the shock with time and the shock slows down more quickly than that of
1D simulations (Fig.7.6d), resulting in broadening of the energy spectrum. When theripple amplitude
increases and becomes comparable to the shock wavelength, the instability may enter the nonlinear
phase and the shock velocity starts to decrease. Lower frames of Fig.7.9 shows that modulations in
the longitudinal momentum (px) as a function of the transverse coordinate (y) are present on the shock
surface. As a consequence, the reflected ions from the shock front are of different energy and don’t
display a monoenergetic spectrum. The decrease in the shockspeed can be observed from the slope of
the reflected ions shown in Fig.7.9(upper frames), which broadens towards lower energy side.

The quick deceleration of shock speed might be explained in such a way that a small initial ion
temperature produces the perturbation growth of ripples onthe surface of a uniform target and interaction
of a shock wave with periodic or localized perturbations ahead of the shock front distorts the shape of
the shock front and can cause a Richtmyer-Meshkov (RM) type instability growth[168]. Now due to
strong electron heating, the plasma is strongly perturbed.The shock wave which is formed within the
bulk when hits the perturbed interface, ripples on the reflected and transmitted shock surface are induced
which lead to the generation RM instability which is furtherdriven by the shear velocity left by the
rippled shocks at the plasma interface. Such interactions which lead to complicated flows may be caused
by the variation in the density and pressure gradients. 2D simulations results have highlighted more
clearly the growth of instabilities and perturbations which we didn’t predict in our 1D simulation results,
and2D simulations at high numerical resolution are much demanding in order to study such interactions
in more detail.

The evolution of RM instability has a close relationship with the compressibility of the system.
Therefore, the combination of compressibility phenomenons such as the shock interaction with interface

Figure 7.9:2D PIC simulation: Snapshots at three different60T, 100T and140T time durations of a shock wave.
In this we cut the selection with a transverse coordinatey = [−2 : 2]λ from the Fig.7.8. A strong modulation
instability is present which slows down the shock and the reflected ions don’t display a monoenergetic spectrum
and becomes less energetic with time.
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which includes the linear and nonlinear growth and subsequent transition to turbulence flow across a
wide range of Mach numbers and is quite a challenging task fortheorists and experimentalists[169].
2D simulations results show the onset of rippling at the shock front. This rippling apparently leads to
a broad ion spectrum, in contrast to the monoenergetic spectrum observed in 1D simulations for the
same parameters. Work is needed to understand the instability mechanism which leads to deceleration
of shock speed and to identify the possible stabilization strategies for monoenergetic ion acceleration.

7.5 Simulations with Circular Polarized Pulses

In this part, we will explain the effect of initial electron temperature (Te) on electrostatic SAW/shock
generation and related ion acceleration, in an overdense plasma irradiated with intense femtosecond
circular polarized (CP) pulses. The laser pulse is circularly polarized with a peakamplitudea0 =

1/
√
2 = 0.71, and have durationτ = 200T, the temporal profile is composed by20T long, sin2-like

rising and falling ramps and a180T plateau. All the other parameters are same as of Fig.7.6a. Fig.7.10
shows the snapshots at a fixed time200T for different initial electron temperatureTe. As we increase
the initial Te, a distinct transition from the laser driven piston scenario with all ions being reflected to
the collisionless electrostatic shock/soliton scenario having partial ion reflection has been found. The
results in Fig.7.11(b − e) show that at low and finite value of initialTe, we can enhance the accelerated
ion energy with respect to initially cold electrons (Fig.7.11a)

When the target is initially cold(Te = 0), in contrast toLP pulses in which the hot electrons are
easily generated and we observe the generation of solitary acoustic waves(SAW) which propagate and
reflect ions as studied in Fig.7.6a), forCP pulses, there is no effective heating mechanism and a “quasi-
stationary double layer” structure is maintained for a longer time as shown in Fig.7.10a. Calculating
the hole boring velocity, it comes out to bevhb = 0.01c and is in good agreement with theHB formula
(Eq.6.17 of Ch.6). Until the laser pulse is on, the ions are getting reflected continuously by the laser-

Figure 7.10:CP case: Snapshots at fixedt = 200TL time duration of the simulations performed at different
initial Te using CP pulses. Simulation parameters area0 = 0.71, τ = 200T andne = 2nc. The result shows that
at some finite initialTe, electrostatic perturbations in form of solitary or shock waves can be generated also for
circular polarized pulses.
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Figure 7.11:Snapshot of the corresponding ion spectrum for six different cases as shown in Fig.7.10including
only the ions in the region around the SAW or shock wave and excluding ions located near the target boundaries.
The spectrum shows the increase of cutoff energy from0.2MeV to 0.6MeV

driven piston, to twice the piston velocity (equal to the hole boring (HB) velocity vhb). As a result, we
get two sharp peaks in the ion phase space having velocity0.01c and0.02c, corresponding to about
0.1MeV and0.02MeV energy in the ion spectrum. From previous studies ofHB[95], we also know
that the formation of the highest energy peak is related to wave breaking of the ion density spike at
the laser-plasma interface. ThisHB acceleration mechanism is quite promising and successful for CP
pulses since the final reflected ions are very monoenergetic as shown in Fig.7.11a.

Now, in a warm electron plasma(Te > 0), wave breaking is affected by the electron temperature
because the electron pressure prevents the formation of sharp density spikes. It is difficult to predict
the consequences on the ion spectrum but qualitatively is not surprising that everything becomes more
turbulent and the spectrum broadens up (Fig.7.11(b − d)). As we know for soliton or shock generation,
the Mach numberM =vs/cs plays a crucial role which indirectly is strongly dependentonTe. ForCP
pulses, when the initialTe = 0, the ions which are kept cold and immobile, will be influencedand
reflected by the laser piston action and there is hardly any ion transmission occur within the plasma
as the background ions remain unperturbed. Now with the riseof initial Te, we can see clearly in
Fig.7.10(b − e) that some ions (clear from the ion density peaks) are getting“detached” from the hole
boring front and then the non-linear phase space structuresoccurs between the density peaks. The ion
reflection and trapping phenomenons can be clearly observedin the phase space in Fig.7.10(c − e). So
as compared to the cold electron case, when the initialTe > 0, we observed some sort of ion-acoustic
perturbations which can transmit and propagate in the plasma. We also observed that forTe = 0, the
electric field is unipolar and positive (Fig.7.10a), while as we increase the initialTe, the electric fields
turns to be bipolar and at initialTe = 15 − 20keV (Fig.7.10(e − f)), the bipolar electric field is quite
large and of sawtooth shape in which some ion acoustic waves start to propagate along the path. Fig.7.11
shows the reflected ion energy at different initialTe. We observed that with increase of initialTe, the
final cut off energy of the reflected ions increases up-to∼ 0.5MeV(Fig.7.11e) which is three times
higher than that of cold electrons case(Fig.7.11a).

Now looking at the initial warm electrons case(Te 6= 0), whether these perturbations in the ion
phase space are merely some nonlinear ion-acoustic wave, orsoliton/ shock wave, we will find out the
Mach number (M). As for theTe = 0 case, in which the electron temperature is negligibly small,
so the ion acoustic velocitycs = ZTe/mi will be very small or hardly zero. Thus the Mach number
M =vs/cs will be quite large and will exceed the critical valueMcr ≃ 6.5 above which one does not
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have a shock but a pure piston. This is what we observed here inTe = 0 case (Fig.7.10a), that the ions
are accelerated by the laser driven piston. Thus formation of true shocks is inhibited forCP pulses at
initial Te = 0 because of the reduced electron heating. Now for initial electron temperature,Te = 1keV,
the ion acoustic velocity has a finite valuecs = 0.001c. Calculating for the hole boring front velocity,
which comesvhb = 0.011c. So the Mach number,M =11 has some finite value as compared toTe = 0

case. Increasing further the initial electron temperatureTe = 5keV (Fig.7.10c), the ion acoustic speed
increases tocs = 0.0023c and the Mach number decreases toM ≈ 5.7 and we may call the perturbation
as a strong turbulent shock. Further increasing the initialTe = 10keV case, due to variation in thevs and
cs, the Mach number decreases toM ≈ 4. Looking carefully at the ion phase space in Fig.7.10(c − d),
we observed that as we increase the initialTe, the ion reflection from the shock front has decreased. For
the higher Mach number, the shock is quite turbulent and reflects a continuous flow of ions of different
energies. As the Mach number decreases, the shock no longer remains so strong to reflect ions in large
fractions. Thus ion reflection decreases with decrease in Mach number. For initialTe = 15keV, the
Mach number further decreases toM ≈ 1.7, as a result the shock may transit to solitary waves and
reflection occurs at some finite time intervals (Fig.7.10e). Further increase theTe = 20keV, the ion
reflection is completely stopped (Fig.7.10f). These simulation results infer that SAW or shock waves
can be generated also with the CP pulses, having some initialelectron distribution.



CHAPTER 8

Conclusion and Future work

8.1 Conclusion

In this section we will summarize the results of our thesis. In chapter 6 which is based on our in-
vestigation reported in Ref.[170], we have highlighted that a super-intense laser pulse interacting with
an overdense plasma may drive the generation of both solitary and multiple- peak structures depending
upon the laser pulse duration. The structures are generateddue to the combined action of radiation pres-
sure acting as a piston at the front surface (“hole boring” acceleration) and of the heating of electrons
by the laser pulse, which occurs only for linear polarization. Possibly novel features observed in the dy-
namics of solitary structures include a strong collective oscillation of the electric field, and the “pulsed”
nature of ion acceleration by reflection from the wave front.Monoenergetic peaks appear only as a result
of such pulse acceleration in which the corresponding number of ions is relatively low. Acceleration of
larger fractions of ions leads to quenching and slowing downof the wave, resulting in broadening of the
energy spectrum. In particular, in a cold-ion background, wave loading effects prevent true shock wave
formation and efficient monoenergetic acceleration.

The background ion distribution plays an important part in the ion acceleration dynamics. For in-
stance, appearance of a “classic” shock wave-like structure with continuous reflection of ions from the
wave front is observed only for some finite initial ion temperature. Comparing with previous work, we
argue that the simple picture of “shock acceleration” as specular reflection from a moving front might
not fully explain the features observed in simulations. There we envision a possibly novel mechanism of
ion “surfing” acceleration in a nonlinear ion “wave” driven by pulsed radiation pressure acceleration at
the laser-plasma interface. Conditions on laser and plasmaparameters for the generation and stability of
both shock- and soliton-like waves have been presented. Circularly polarized pulses drive “hole boring”
or “pure piston” acceleration at the plasma surface, accelerated ions propagate through the plasma in a
purely ballistic way causing almost no perturbation in the plasma and do not generate nonlinear solitary
or shock waves in an initially cold plasma. In general, the dynamics of shock acceleration in the plasma
bulk appears to be more complex than the simple picture of reflection from a moving wall.

Further investigations by1D PIC simulations performed in chapter7 prove that in a cold ion back-
ground plasma using LP pulses, ion reflection occur by solitary “pulsations”. This is a “nonlinear“
phenomenon and is not easy to control, whenever it occurs because it involves too many ions and sooner
or later results in broadening of ion spectrum. Our study suggests that obtaining monoenergetic spectra
is not straightforward, even when neglecting the side effect of the sheath field. We observe monoener-
getic peaks in the simulations only when short-duration ionbunches are accelerated by solitary waves
generated by the laser-plasma interaction or with the shockwaves generated at some “optimal” initial ion
temperature. Even with a slight increase of the initial ion temperature, ion reflection becomes “linear” in
the sense that there always are some ions in the tail of the energy distribution function which can be re-
flected and there occurs “steady” ion reflection. For too highinitial ion temperature, due to “continuous”
ions reflection there are too much reflected ions and the shockloses its velocity more quickly, as a conse-
quence we fall back in energy due to excessive wave loading. Our “warm ions” simulations suggests that
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it can be possible for given laser and plasma parameters, to find an “optimal” ion temperatureTi result-
ing from a trade-off between beam monoenergeticity and efficiency, since a small number of reflected
ions decrease wave loading. For the CP pulses, we envision that the role of initial electron temperature
is quite important in generation of ion acoustic perturbation in form of soliton/shock waves. Both the
electron and and ion energy distribution (determined by laser-plasma interaction) plays important role
in shaping these coherent fields and accelerating ions. The electron energy determines their propagation
velocity while the ion distribution affects how ions are reflected by these waves and can turn them from
ion acoustic solitary waves to ion acoustic shocks.

8.2 Future work

The results presented in this thesis illustrate several interesting physical phenomena and provide a
basis for further investigations as direct extensions of our work. In this regard, we suggest below some
open problems which can be addressed in the future.

A key issue to be further clarified for potential applicationis whether having a monoenergetic spec-
trum is not compatible with efficiency, as suggested by our simulations and also by the recent experiment
of Haberberger et al. [79]. In this latter experiment, it was suggested that the shockwaves are not driven
directly by radiation pressure but rather by electron heating, and that the particular structure of the CO2

laser pulse plays an important role. The mechanism for both shock generation and acceleration need
to be further studied by simulations, although simulating the actual experimental parameters is very
demanding, mostly because of the long duration of the laser pulse. Although we showed by 1D PIC
simulations that shock acceleration may be very monoenergetic in a proper range of the ion temperature,
so far preliminary tests in 2D simulations have failed to obtain a similar spectrum. The reason seems
to be related to the fast transverse rippling of the shock surface. An extended investigation in 2D will
be needed to characterize such phenomenon and to give directions for its theoretical interpretation. The
pulsations of the electric field we observed in solitary waves is a new phenomenon that is interesting
on its own. A refinement of the very simple “thin foil” model presented inSec.6.2.4 Ch.6, taking into
account the drift and the detailed structure of the solitarywave, may also warrant further investigation.



Acknowledgement

Thanks to the committee of the “Galileo Galilei Graduate School” in the University of Pisa for
selecting and giving me the opportunity to do my research here and providing me the fellowship to go
on with the thesis work. My sincere thanks and heartfelt gratitude toDr. Andrea Macchi andProf.
Francesco Pegoraro, for not only guiding me with his experience and knowledge but also for providing
a very informal and relaxed environment. I am deeply indebted to them for their sagacious suggestions,
constructive and healthy criticism, and perpetual encouragement that I have been perceiving throughout
the PhD studies. It was indeed a great experience to work under their scholarly guidance and supervision.
My warm thanks toDr Andrea Macchifor his kind help and guidance from the first day of the PhD work.
I am really grateful to him for timely help and sparing so muchtime to read critically my entire thesis to
bring this into the present form.

I owe my deepest gratitude to Prof. Marco Borghesi from QueenUniversity of Belfast and Dr. Mat-
teo Passoni from Politecnico di Milano who give their precious time in reading this thesis and suggesting
important points. I convey special acknowledgement to Ilaria Fierro for her indispensable help dealing
with administration and bureaucratic matters during my stay.

My parents deserve special mention for their inseparable support and prayers. My Father, in the first
place is the person who showed great confidence in me and encouraged me to come away from the home
and pursue my PhD work. My Mother, is the one who raised me withher caring and gentle love. Thanks
to my siblings and fiancee for being continuously supportiveand caring. Last but not the least I would
like to convey my deepest love and sincere thanks to the “GOD”for everything.



Bibliography

[1] T. H. Maiman,“Stimulated Optical Radiation in Ruby,”Nature187(Aug., 1960) 493–494.

[2] D. Strickland and G. Mourou,“Compression of amplified chirped optical pulses,”Optics Communications
55 (Oct., 1985) 447–449.

[3] M. Nisoli, S. Stagira, S. de Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and
F. Krausz,“A novel-high energy pulse compression system: generationof multigigawatt sub-5-fs
pulses,”Applied Physics B: Lasers and Optics65 (Aug., 1997) 189–196.

[4] T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett.43 (1979) 267–270.

[5] P. Kaw,“Nonlinear Effects of Laser Propagation in Dense Plasmas,”Applied Physics Letters15 (July,
1969) 16–18.

[6] M. S. Sodha, L. A. Patel, and R. P. Sharma,“Effect of nonlinear absorption on self-focusing of a laser
beam in a plasma,”Journal of Applied Physics49 (July, 1978) 3707–3713.

[7] S. J. Gitomer, R. D. Jones, F. Begay, A. W. Ehler, J. F. Kephart, and R. Kristal, “Fast ions and hot electrons
in the laser–plasma interaction,”Physics of Fluids29 (1986) 2679–2688.

[8] F. N. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews,M. E. Glinsky, B. A. Hammel, P. Lee, P. A.
Norreys, and M. Tatarakis, “A study of picosecond laser–solid interactions up to1019 W cm2,” Physics of
Plasmas4 (1997) 447–457.

[9] K. Krushelnicket al., “Multi–MeV Ion Production from High-Intensity Laser Interactions with
Underdense Plasmas,”Phys. Rev. Lett.83 (1999) 737.

[10] E. L. Clark, K. Krushelnick, M. Zepf, F. N. Beg, M. Tatarakis, A. Machacek, M. I. K. Santala, I. Watts,
P. A. Norreys, and A. E. Dangor, “Energetic Heavy-Ion and Proton Generation from Ultraintense
Laser-Plasma Interactions with Solids,”Phys. Rev. Lett.85 (2000) 1654.

[11] A. Maksimchuk, S. Gu, K. Flippo, D. Umstadter, and V. Y. Bychenkov, “Forward ion acceleration in thin
films driven by a high-intensity laser,”Phys. Rev. Lett.84 (2000) 4108–4111.

[12] R. A. Snavelyet al., “Intense high-energy proton beams from petawatt-laser irradiation of solids,”Phys.
Rev. Lett.85 (2000) 2945–2948.

[13] G. F. Knoll,Radiation detection and measurement. Wiley, New York, 2nd ed. ed., 1989.

[14] S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh,S. Hatchett, M. H. Key, D. Pennington,
A. MacKinnon, and R. A. Snavely, “Energetic proton generation in ultra-intense laser-solid interactions,”
Phys. Plasmas8 (2001) 542.

[15] G. A. Mourou, T. Tajima, and S. V. Bulanov,“Optics in the relativistic regime,”Rev. Mod. Phys.78 (Apr,
2006) 309–371.

[16] P. Mulser and D. Bauer,High Power Laser-Matter Interaction, vol. 238 ofSpringer Tracts in Modern
Physics. Springer, 2010.

http://dx.doi.org/10.1038/187493a0
http://dx.doi.org/10.1016/0030-4018(85)90151-8
http://dx.doi.org/10.1007/s003400050263
http://dx.doi.org/10.1103/PhysRevLett.43.267
http://dx.doi.org/10.1063/1.1652825
http://dx.doi.org/10.1063/1.325412
http://dx.doi.org/10.1063/1.865510
http://dx.doi.org/10.1063/1.872103
http://dx.doi.org/10.1103/PhysRevLett.85.1654
http://dx.doi.org/10.1103/PhysRevLett.84.4108
http://dx.doi.org/10.1103/PhysRevLett.85.2945
http://dx.doi.org/10.1063/1.1333697
http://dx.doi.org/10.1103/RevModPhys.78.309


BIBLIOGRAPHY 113

[17] T. Baeva, S. Gordienko, and A. Pukhov,“Theory of high-order harmonic generation in relativisticlaser
interaction with overdense plasma,”Physical Review E74 (Oct., 2006) 046404.

[18] H. Hora, “Theory of relativistic self-focusing of laser radiation in plasmas,”Journal of the Optical Society
of America (1917-1983)65 (Aug., 1975) 882–886.

[19] G. C. Das, J. Sarma, Y.-T. Gao, and C. Uberoi,“Dynamical behavior of the soliton formation and
propagation in magnetized plasma,”Physics of Plasmas7 (June, 2000) 2374–2380.

[20] F. Mottez,“Instabilities and Formation of Coherent Structures,”Astrophysics and Space Science277(June,
2001) 59–70.

[21] T. Umeda,“Generation of low-frequency electrostatic and electromagnetic waves as nonlinear
consequences of beam-plasma interactions,”Physics of Plasmas15 (June, 2008) 064502.

[22] R. A. Cairnset al., “Electrostatic solitary structures in non-thermal plasmas,”Geophysical Research
Letters22 (1995) 2709–2712.

[23] M. Buchanan and J. Dorning,“Nonlinear electrostatic waves in collisionless plasmas,”Phys. Rev. E52
(Sept., 1995) 3015–3033.

[24] S. V. Bulanov, T. Z. Esirkepov, N. M. Naumova, F. Pegoraro, and V. A. Vshivkov,“Solitonlike
Electromagnetic Waves behind a Superintense Laser Pulse ina Plasma,”Phys. Rev. Lett.82 (Apr, 1999)
3440–3443.

[25] O. B. Shiryaev,“Regimes of the interactions of high-intensity plane electromagnetic waves with
electron-ion plasmas,”Physics of Plasmas15 (Jan., 2008) 012308.

[26] J. W. M. Paul, L. S. Holmes, M. J. Parkinson, and J. Sheffield, “Experimental Observations on the
Structure of Collisionless Shock Waves in a Magnetized Plasma,”Nature208(Oct., 1965) 133–135.

[27] R. Z. Sagdeev, “Cooperative Phenomena and Shock Waves in Collisionless Plasmas,”Reviews of Plasma
Physics4 (1966) 23.

[28] D. A. Tidman and N. A. Krall,Shock Waves in Collisionless Plasmas, ch. 6. Wiley/Interscience, New
York, 1971.

[29] P. Gibbon,Short Pulse Laser Interaction with Matter. Imperial College Press, 2005.

[30] P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses
by chirped pulse amplification,”IEEE Journal of Quantum Electronics24 (Feb., 1988) 398–403.

[31] G. Cook, “Pulse compression-key to more efficient radartransmission,”IEEE Proc. IRE48 (1960)
no. 310, .

[32] Wikipedia.http://en.wikipedia.org/wiki/Chirped_pulse_amplification.

[33] P. Maine, D. Strickland, M. Pessot, J. Squier, P. Bado, G. Mourou, and D. Harter, “Chirped pulse
amplification: Present and future,”NASA STI/Recon Technical Report N89 (1988) 14434.

[34] S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn,“High power ultrafast lasers,”Review of
Scientific Instruments69 (Mar., 1998) 1207–1223.

[35] G. Chériaux and J.-P. Chambaret,“Ultra-short high-intensity laser pulse generation and
amplification,”Measurement Science and Technology12 (Nov., 2001) 1769–1776.

[36] S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, “Absorption of ultra-intense laser pulses,”Phys.
Rev. Lett.69 (1992) 1383–1386.

[37] T.-Y. B. Yang, W. L. Kruer, A. B. Langdon, and T. W. Johnston,“Mechanisms for collisionless absorption
of light waves obliquely incident on overdense plasmas withsteep density gradients,”Physics of Plasmas3
(July, 1996) 2702–2709.

http://dx.doi.org/10.1103/PhysRevE.74.046404
http://dx.doi.org/10.1063/1.874075
http://dx.doi.org/10.1023/A:1012224820136
http://dx.doi.org/10.1063/1.2937818
http://dx.doi.org/10.1029/95GL02781
http://dx.doi.org/10.1103/PhysRevE.52.3015
http://dx.doi.org/10.1103/PhysRevLett.82.3440
http://dx.doi.org/10.1063/1.2832699
http://dx.doi.org/10.1038/208133a0
http://dx.doi.org/10.1109/3.137
http://en.wikipedia.org/wiki/Chirped_pulse_amplification
http://dx.doi.org/10.1063/1.1148795
http://dx.doi.org/10.1088/0957-0233/12/11/303
http://dx.doi.org/10.1103/PhysRevLett.69.1383
http://dx.doi.org/10.1063/1.871527


114 BIBLIOGRAPHY

[38] J. H. Eberly and A. Sleeper,“Trajectory and mass shift of a classical electron in a radiation pulse,”Phys.
Rev.176(Dec, 1968) 1570–1573.

[39] L. D. Landau and E. M. Lifshitz,The Classical Theory of Fields. Elsevier, Oxford, 2nd ed., 1975.

[40] A. Macchi, “An introduction to ultraintense laser-plasma interactions,”Laser Plasma Lecture Notes(2011)
.

[41] T. W. B. Kibble,“Frequency shift in high-intensity compton scattering,”Phys. Rev.138(May, 1965)
B740–B753.

[42] B. Quesnel and P. Mora,“Theory and simulation of the interaction of ultraintense laser pulses with
electrons in vacuum,”Phys. Rev. E58 (Sep, 1998) 3719–3732.

[43] D. Bauer, P. Mulser, and W. H. Steeb, “Relativistic Ponderomotive Force, Uphill Acceleration, and
Transition to Chaos,”Phys. Rev. Lett.75 (1995) no. 25, 4622–4625.

[44] P. W. Milonni and J. H. Eberly,Lasers. Wiley-VCH, Oct., 1988.

[45] G. Schmidt and T. Wilcox,“Relativistic particle motion in nonuniform electromagnetic waves,”Phys. Rev.
Lett.31 (Dec, 1973) 1380–1383.
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