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Abstract. Mechanical systems are referred to as underactuated if the number of independent
actuators are fewer than the number of degrees of freedom, a general encountered problem
in engineering applications. The considered mechanical systems belong to the class of Euler-
Lagrange systems where both kinetic energy and potential energy are modeled in their most
general form and energy dissipation is modeled according to the dissipation function of Rayleigh,
i.e. viscous damping forces are assumed. The control objectives are stabilization and set-
point regulation. The structure of the controller is a parallel combination of static output
feedback with dynamic output feedback where nonlinear amplifiers are included. An energy
based approach with Liapunov functions and the Kalman-Yacubovich-Popov main lemma yields
alternative stability theorems. A number of conditions are introduced with respect to the
controller’s structure in order to guarantee stability. However, sufficient design freedom is left
to choose a proper tuning principle and obtain the specified control objectives such as fast
convergence to a set-point combined with disturbance rejection. A restriction on the control
input energy can be incorporated as well. The applicability of the method will be illustrated
with planar manipulators. The main contribution is that a methodology is developed which
incorporates many controllers and tuning facilities.

1. Introduction

The control of underactuated mechanical systems is and has been the focus of many researchers
because of the broad range engineering applications. Among others, R. Ortega has an impressive
list of contributions in the field of controlling underactuated mechanical systems. Passivity
based control is a common approach of his in earlier work [1], [2], [3] as well of the more recent
approach of interconnection and damping assignment passivity-based control (IDA-PCB)[4], [5],
[6] which inspired many researchers, [7], [8]. The IDA-PCB approach regulates the position
of an underactuated system by total energy reshaping to include set point stability and other
desired control features. The implementation requires the solution of a set of partial differential
equations, a cumbersome task for mechanical systems where the number of actuators is quite
smaller than number of degrees of freedom. It is not the author’s intention to provide a literature
overview. A nice overview can be found in [9], where many methods and benchmark systems
are classified and supported with appropriate references. Considering this classification it can
be stated that we present a nonlinear control design frame work based on Liapunov functions
to stabilize the closed loop systems. The control objective is set point regulation, the method
used belongs to the class of energy methods. Most recent contributions of Liapunov based
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controllers focus on dedicated applications [10], [11]. The Liapunov function used here has a
quite general form and therefore comprises several types of controllers and control objectives
such as control effort constraints. It is shown that, among others, the Euler-Lagrange controller
can be implemented. Although many Euler-Lagrange controllers exist, a different property is
introduced here by adding a strong nonlinearity to the controller. An idea inspired by the field
of passive vibration control. The paper is organized as follows. First, the class of mechanical
systems to be controlled is introduced in section 2. Second, the structure of the control loop is
explained in Section 3. Section 4 explains and derives the general Liapunov frame work to obtain
set point regulation. Different controllers are addressed to illustrate the design freedom offered
by the Liapunov-based control strategy. Some control features are illustrated with a two-link
manipulator in Section 5. Especially, it is shown that a strong nonlinearity can be included, a
challenge mentioned in [9]. Finally some conclusion is formulated in Section 6.

2. Class of systems

We consider mechanical Euler-Lagrange systems configured with a set of m generalized
coordinates q ∈ Rm. The equations of motion can be written as [1] :

∂L

∂q
(q, q̇) −

d

dt
[
∂L

∂q̇
(q, q̇)]−

∂F

∂q̇
(q̇) +Mu = 0 (1)

w =M ′q (2)

The function L is termed Lagrangian function and defined as

L(q, q̇)
△
= T (q, q̇)− V(q) (3)

T (q, q̇) ∈ C1 and V(q) ∈ C1 are scalar quantities which represent the kinetic energy and the
potential energy. The kinetic energy can be written in the form [12] :

T (q, q̇) =
1

2
q̇′D(q)q̇ + b′(q)q̇ + c(q) (4)

We have kinetic energy due to inertia type forces, coriolis type forces and centrifugal type
forces.This nonnatural system is most frequently encountered in rotating mechanical systems.
Two kinds of non-conservative forces are introduced : dissipative forces and control forces. The
mechanical system is assumed to be lightly damped. The dissipative forces stem from Rayleigh’s
dissipation function F(q̇) ∈ C1 :

q̇′
∂F

∂q̇
(q̇) ≥ 0 , ∀q̇ ∈ Rm (5)

The control forces u enter linearly with a constant matrix M ∈ Rm×r. The rank of M = r < m,
the system is underactuated. We will focus on collocated control. As a consequence the
measurement vector w is written as w =M ′q with w ∈ Rr.

3. Control loop

Let
[

q

q̇

]

△
= x ∈ R2m (6)

be the state vector of the Euler-Lagrange system and

[

w

ẇ

]

∈ R2r the output available for

feedback. The control scheme is presented on Fig. 1. The control loop shows a parallel loop of
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Figure 1. Control loop: static and dynamic control.

a static and a dynamic feedback control. The control forces read :

u = − [ξ0(w) + ψ0(ẇ)] + u0 (7)

The static feedback loop corresponds to the well known technique of potential energy shaping
and damping injection. The dynamic component is introduced to enlarge the control design
freedom as only part of the system’s state x is available for feedback. The dynamic component
has the following structure :

ż = Az −Bf(σ) + η(w, ẇ) (8)

u0 = ϕ(z, ż) (9)

The controller state is z ∈ Rn, σ
△
= C ′z ∈ Rs, f(σ)

△
= col[fi(σi); i = 1 . . . s] and σ

△
= col[σi; i =

1 . . . s]. The state of the closed loop system reads xc
△
=

[

x

z

]

∈ R2m+n. A number of assumptions

are introduced to be used in the stability analysis of Section 3. The matrix A is a Hurwitz matrix,
the pair (A,B) is controllable and the pair (A,C) is observable. The matrices B and C are chosen
an equal rank s ≤ n. To avoid undesired equilibria, it holds that Az − Bf(C ′z) = 0 ⇔ z = 0
The operating point is xc = 0.

4. Stability

The stability of the closed loop is analyzed based on Liapunov theory and the invariance principle
of LaSalle [13]. A Liapunov function is defined as a real scalar function V (x) ∈ C1 such that
along the solutions of the dynamical system

ẋ = f(x) (10)

V̇ (x) =

[

∂V (x)

∂x

]′

f(x) ≤ 0 ; ∀x ∈ Ḡ (11)

Ḡ is the closure of a set G in Rn. We define E
△
= {x ∈ Ḡ; V̇ (x) = 0} and M ∈ E as the largest

invariant subset of E . The invariance principle of LaSalle reads :



Theorem 4.1 If V (x) is a Liapunov function of (10) in G then every solution x(t, x0) of (10),

resting in G for all t > 0, will converge to M∗ △
=M∪ {∞} if t → +∞. If M is bounded, then

x(t, x0) → M, or |x(t, x0)| → +∞ if t→ +∞.

Stability conditions based on the existence of Liapunov functions are sufficient conditions. The
work of [14] offers several options to choose Liapunov functions and obtain the corresponding
stability conditions. The stability conditions are rather weak such that sufficient design freedom
is available to imply closed loop specifications on transient behavior and disturbance rejection.
We will focus on two different techniques: a modified circle criterion and a criterion to
incorporate control effort constraints.

4.1. The modified Circle criterion
The candidate Liapunov function has the following structure :

Vc(xc)
△
=H0(q, q̇) + V1(z) (12)

where

H0(q, q̇)
△
=H(q, q̇) +

∫ w

0
ξ′0(τ)dτ and H(q, q̇)

△
=

1

2
q̇′D(q)q̇ + V(q)− c(q) (13)

and
H is the Hamiltonian of the mechanical system. The scalar function V1(z) reads :

V1(z) = z′Pz + f ′(C ′z)Sf(C ′z) + z′Lf(C ′z) +

∫ C′z

0
f ′(θ)αdθ (14)

with P = P ′ > 0, S = S′ ∈ Rs×s, L ∈ Rn×s and α = diag[αi; i = 1 . . . s]. We simplify
the derivations for stability by choosing F(q̇) ≡ 0 (no damping in the mechanical system) and
ψ0(ẇ) ≡ 0 (no damping injection) such that u = −ξ0(w) + u0. As a consequence, a number
of non-negative terms in V̇c(xc) will be omitted. We introduce restrictions on the slope of the
nonlinear amplifier :

λ
△
= ż′C

[

I −K−1fd(C
′z)

]

γfd(C
′z)C ′ż ≥ 0 ; ∀z, ż ∈ Rn (15)

K = diag(ki) > 0 and γ = diag(γi) ≥ 0 are diagonal (s × s)-matrices and fd(σ)
△
= diag

[

dfi(σi)
dσi

;

i = 1 . . . s]. The derivative of V̇c(xc) is calculated along the solutions of the closed loop system.

V̇c(xc) = ẇ′u0 +
∂V

∂z
ż (16)

First, we calculate ∂V1

∂z
ż.

V̇1(z, η) = ż′
{

PA−1 +A−1′P −A−1′
(

Cα+ 2PA−1B
)

fd(C
′z)C ′

}

ż + η′ζ (17)

L and S are substituted as

L = −Cα− 2PA−1B

S = B′A−1′PA−1B +
1

2
B′A−1′Cα (18)

while

ζ
△
=

[

A−1′Cα+ 2WB
]

fd(C
′z)C ′ż − 2WAż (19)



where W
△
=A−1′PA−1 ∈ Rn×n. S = S′ requires that

αC ′A−1B = (αC ′A−1B)′ (20)

with ε ∈ R and Q ∈ Rn×s we rewrite (17) as :

V̇1(z, η) = −λ−
[

Q′ż +K−
1

2 γ
1

2 fd(C
′z)C ′ż

]′ [

Q′ż +K−
1

2 γ
1

2 fd(C
′z)C ′ż

]

−εż′ż + η′ζ (21)

Therefore

A′W +WA = −QQ′ − εI

2WB +A−1′Cα− Cγ = 2QK−
1

2 γ
1

2

}

(22)

has to be solved. According to the Kalman-Yakubovich-Popov main lemma [16], the matrix
equation will have a real solution W = W ′ > 0, Q, ε > 0 sufficiently small if the following
criterion is satisfied :

He

[

γ −
1

jω
α

]

[

K−1 +G(jω)
]

> 0 ; ∀ω ∈ R (23)

and

lim
ω→∞

ω2He

[

γ −
1

jω
α

]

[

K−1 +G(jω)
]

> 0 (24)

He is the Hermitian part of a matrix and

G(s)
△
= C ′ (sI −A)−1B (25)

We choose η = Nẇ with rank N = r and ϕ = −N ′ζ in (8)-(9). It can be shown that

V̇c(xc) ≤ −εż′ż ≤ 0 ; ∀xc ∈ R2m+n (26)

The function V̇c(xc) is a global Liapunov function for (1)-(2)-(8)-(9). The set of states where
V̇c(xc) ≡ 0 correspond to ż ≡ 0. [14] shows that consequently u and w remain constant as
well. If the mechanical system does not possess solutions for constant u and constant w except
constant q then the set of equilibria of the closed loop system is globally convergent. If H0(q, q̇)
of (13) possesses a local minimum at q = q̇ = 0 then the operating point is locally asymptotically
stable. If H0(q, q̇) is radially unbounded in q and q̇ all closed loop solutions are bounded for
t ≥ 0.
It should be noted that ε can be chosen equal to zero. As a consequence, (24) is no longer
needed and V̇c(xc) reduces to V̇c(xc) = −ż′QQ′ż.
We include two different controller choices to illustrate the variety of controllers the modified
circle criterion comprises.

4.1.1. PD-control with nonlinearity in parallel A PD-controller is extended with a dynamic
component where the nonlinearity is expressed as

f(y) = f1y + f2 arctan
(f0 − f1)

f2
y ; f0 > 0, f1 > 0, f2 > 0

→ f0y for y → 0

→ f1y + constant for |y| → ∞
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Figure 2. Characteristic of f(.).

and plotted on Fig. 2. This type of characteristic has different slopes in different regions of the
state space. In case of large values of |C ′z|, the nonlinear characteristic behaves as

f(y) = f1y

The choice of f1 could be used to maximize the linearized system’s damping by shifting the most
critical poles to more negative real parts and as such reduce the settling time. A maximum
damping policy however could reduce the closed loop system’s capability to deal with high
frequent noise in the neighborhood of the operating point. The tuning of f0 in the nonlinear
gain can be used for this purpose. The tuning of this type of nonlinearity is based on the
linearization of the closed loop dynamics in several regions of state space.

4.1.2. Euler-Lagrange controller The controller equation reads :

D0p̈+ C0ṗ+K0p+ C1f(C
′
1p) +N0ẇ = 0 (27)

with D0 = D′
0 > 0; C0 = C ′

0 > 0; K0 = K ′
0 > 0. The Euler-Lagrange controller has generalized

coordinates p, kinetic energy T̃ (ṗ) = 1
2 ṗ

′D0ṗ, potential energy Ṽ(p) = 1
2p

′K0p +
∫ C′

1
p

0 f ′(θ)dθ

and dissipation function F̃(ṗ) = 1
2 ṗ

′C0ṗ. We write (27) as (8) with z
△
=

[

p

ṗ

]

; A
△
=

[

0 I

−D−1
0 K0 −D−1

0 C0

]

; B
△
=

[

0
D−1

0 C1

]

; C
△
=

[

C1

0

]

; η(ẇ) = Nẇ
△
=

[

0
−D−1

0 N0

]

ẇ, we

choose rank N = rank N0 = r. We choose α = I, γ = 0 and ε = 0. The matrices P and Q can
easily be calculated :

P =
1

2

[

K0

D0

]

; Q =

[

C
1

2

0
0

]

;



It holds that

V̇c(xc) = −ż′QQ′ż = −

[

ṗ

p̈

]′ [

C0 0
0 0

]′ [

ṗ

p̈

]

= −ṗ′C0ṗ ≤ 0

For V̇c(xc) ≡ 0 it holds that ṗ ≡ 0 and p̈ ≡ 0 such that ż ≡ 0 of z ≡ constant.With ϕ = −N ′ζ

and ζ defined according to (19), Vc(xc) remains a global Liapunov function although ε = 0.
If an Euler-Lagrange system is controlled with another Euler-Lagrange system the typical
structure holds for the closed loop as well.

4.2. Control effort constraint
The candidate Liapunov function is altered to :

Vc(xc)
△
=H(q, q̇) + z′Pz + V2(z, w) −

(

∂V2

∂z

)′

z ; P = P ′ > 0 (28)

The derivative V̇c(xc) along the closed loop system’s solution can be written as :

d

dt
[H(q, q̇) + V1(z) + V2(z, w)] = ẇ′u− λ− z′QQ′z − εz′z + 2η′Pz +

(

∂V2

∂z

)′

ż +

(

∂V2

∂w

)′

ẇ −

(

∂V2

∂z

)′

ż −

[

d

dt

(

∂V2

∂z

)]′

z(29)

where
A′P + PA = −QQ′ − εI

2PB = C

}

(30)

(30) can be solved according to the Kalman-Yacubovich-Popov- main lemma [16] with solution
P = P ′ > 0, Q, ε > 0 and sufficiently small if :

HeG(jω) > 0 ;∀ω ∈ R (31)

We choose

u = ϕ(z, w) = −
∂V2

∂w
(z, w) (32)

and

η =
1

2
P−1 d

dt

[

∂V2

∂z
(z, w)

]

(33)

As a result, the derivative V̇c(xc) can be written as

V̇c(xc) = −λ− z′QQ′z − εz′z ≤ 0 ; ∀xc ∈ R
2m+n (34)

The function Vc(xc) is a global Liapunov function. The controller structure changes to

ż = Az −Bf(C ′z) +
1

2
P−1 d

dt

[

∂V2

∂z
(z, w)

]

(35)

u = −
∂V2

∂w
(z, w) (36)

The choice of V2(z, w) should guarantee the control effort to be within predefined limits. V2(z, w)
is chosen as

V2(z, w) =

∫ C′z+D′w

0
ψ′(θ)dθ (37)



where θ
△
=







θ1
...
θs






; ψ(θ)

△
=







ψ1(θ1)
...

ψs(θs)






; C ∈ Rn×s; D ∈ Rr×s, rank D = r It follows that

∂V2

∂z
= Cψ(C ′z +D′w) (38)

∂V2

∂w
= Dψ(C ′z +D′w) (39)

The control loop reads :

ż = Az −Bf(C ′z) +B
d

dt
ψ(C ′z +D′w) (40)

u = −Dψ(C ′z +D′w) (41)

A saturating function as arctan can be chosen for ψ(.). From a conceptual point of view,
the stability problem with control effort constraints is solved. However, the equations of the
controller request the derivation of the control effort which is from a practical point of view
not advisable. Therefore, this type of controller will not be implemented in the example. [17]
contains an alternative formulation, based on a more complex Liapunov function to avoid this
derivation and applies it to a rotating pendulum.
Again it can be derived that V̇c(xc) ≡ 0 implies that u and w remain constant. If the mechanical
system does not possess solutions for constant u and constant w except constant q then the set
of equilibria of the closed loop system is globally convergent. If Vc(xc) is radially unbounded,
then all solutions remain bounded. If Vc(xc) possesses a local minimum at the operating point
xc = 0 then the operating point is locally asymptotically stable.

5. Application

We choose the flexible manipulator of two links, moving in a horizontal plane such that gravity
has no part in the model. Fig. 3 shows the mechanical system. The equations of motion read

u
q1

κ2

q2

X

Y

Figure 3. Two-link manipulator

D(q)q̈ + C(q, q̇)q̇ +K(q) =Mu

where

q =

[

q1
q2

]

; D(q) =

[

χ1 + χ2 + 2χ3 cos q2 χ2 + χ3 cos q2
χ2 + χ3 cos q2 χ2

]

;



C(q, q̇) =

[

−χ3(sin q2)q̇2 −χ3(sin q2) (q̇2 + q̇1)
χ3(sin q2)q̇1 0

]

; K =

[

0 0
0 κ2

]

;

M =

[

1
0

]

and

χ1
△
=m1

l21
4
+m2l

2
1 + I1 χ2

△
=m2

l22
4
+ I2 χ3

△
=m2l1

l2

2

In Section 4 it was shown that the largest invariant set M of E
△
= {xc ∈ Rn+m; V̇c(x) = 0}

follows from all solutions of the mechanical system where

w(t) = q1(t) ≡ c0 = constant ; u(t) ≡ d0 = constant (42)

In [17] it has been shown that xc = 0 is a globally asymptotically stable equilibrium point.
We will focus on systems with no control effort constraint and use the following numerical
values :χ1 = 0.0799; χ2 = 0.0244; χ3 = 0.0205; κ2 = 1
First we compare a PD-controller, with a PD-controller with parallel nonlinear controller of first
order. The control input of the PD-controller reads :

u = −kpq1 − kdq̇1 (43)

The control input of the PD-controller with parallel nonlinear controller reads :

ż = −a1z − bf2 arctan
f0−f1
f2

z + bq̇1

u = −kpq1 − kdq̇1 −

[

a1 + b f0−f1

1+(
f0−f1

f2
z)2

]

ż











(44)

Based on 4.1.1 we tune the controllers as follows :

◦ de PD-controller

kp = 2.568

kd = 0.921

closed loop poles in the neighbourhood of the operating point: −3.675 ± j 5.290,
−3.675 ± j 5.193.

◦ modified circle criterion

kp = 2.575

kd = 0.922

a1 = 9.136

b = 1.542 × 10−4

closed loop poles in the neighbourhood of the operating point: two pairs of complex
conjugate poles: −3.665 ± j 5.366, −3.663 ± j 5.114 and one real pole −9.207.

For an initial condition q1(0) = q̇1 = q̇2 = 0 and q2 = π
2 we report the overshoot, settling

time and maximum control input for both controllers, where the settling time is defined as the
time it takes for the Liapunov function to settle to 1 % of its initial value. We notice a better
performance for the PD controller in combination with the nonlinear controller for the set point
regulation.



controller overshoot settling time umax

PD q1:no; q2 : 55.91% 1.18 2.08
PD+nonlinear q1:no; q2 : 50.20% 1.03 1.99

Table 1. Comparison performance PD-control; PD+nonlinear-control
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Figure 4. PD-control of the manipulator, q1(0) 6= 0

Again the manipulator is controlled with a PD controller. The parameters of [18] are used this
time. The control low reads u = −kpq1 − kdq̇1 with kp = kd = 1. This set of parameters shows
a well damped response of q1 and some oscillations of q2 for an initial state q1(0) 6= 0 and all
other initial states equal to zero. Fig.4 shows the responses.
Now an SDOF-Euler-Lagrange controller with generalized coordinate p is introduced. A single
nonlinearity is considered, namely a cubic nonlinearity f(p) = knap

3. The Euler-Lagrange

controller is chosen to be sensitive to the natural frequency
√

κ2

χ2
, i.e. K0

D0
= κ2

χ2
. Fig. 5 compares

the response of the PD-controller and the PD-controller extended the Euler-Lagrange controller
in parallel for initial states q̇2(0) 6= 0. A hopeful result is noticed in the first cycle of vibration
where the PD-controller in combination with the cubic nonlinearity performs better for q1. If we
consider the behavior of the generalized coordinate p of the Euler-Lagrange controller on Fig.
6 , we notice indeed a heavy reaction during this first cycle. However, after this first cycle, the
energy is returned to manipulator introducing undesired oscillations. Proper, nonlinear energy
dissipation should be added to stop the return of energy and dissipate the energy at the level of
the controller. Including nonlinear damping into the Liapunov-based theory of Section 4 at the
level of the Euler-lagrange controller is not a straightforward task which falls out of the scope
of this contribution. Only the possibility of challenging the cubic nonlinear controller is shown
and the fact that the system is asymptotically stable.

6. Conclusion

The underactuated control of mechanical systems was considered within a Liapunov-based frame
work. Candidate Liapunov functions were presented to derive sufficient conditions for local
or global asymptotic stability of the operating point. It was shown that the conditions and
assumptions to guarantee stability are rather weak and offer quite some design freedom in
the choice of the controller and its corresponding tuning procedure. The control action is a
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Figure 5. PD-EL-control of the manipulator, q̇2(0) 6= 0
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combination of static and dynamic feedback with a nonlinear gain. A general frame work to
apply many types of controllers is developed.

Two different choices of the nonlinear controller function were used. The first approach
focusses on different linearization models of the closed loop dynamics in different zones of the
state space. The second choice of the nonlinear gain is a cubic nonlinearity. This type of
Euler-Lagrange controller with the hardening ’stiffness’ is able to capture the oscillations of the
mechanical system. However, a proper nonlinear damping strategy should be added to force a
settling of the mechanical system instead of the beating phenomenon which was observed.
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[4] R. Ortega, M. W. Spong, F. Gómez-Estern and G. Blankenstein 2002 I.E.E.E. Transactions on Automatic

Control 47 p1218-1233



[5] J.A Acosta, R. Ortega, A. Astolfi and A.D. Mahindrakar 2005 I.E.E.E. Transactions on Automatic Control

50 p1936-1995
[6] A.D. Mahindrakar, J.A. Acosta and R. Ortega 2014 Constrained Stabilization of a Cart on an Asymmetric-

Beam System through IDA-PBC IEEE Conference on Control Applications, France p1244-1248
[7] F. Valentinis, A.Donaire, and T. Perez, T 2015 Energy-based guidance of an underactuated unmanned

underwater vehicle on a helical trajectory Control Engineering Practice 44 p138-156
[8] X.Z. Lai, C.Z.Pan, M. Wu, S.X. Yang, and W.H. Cao 2015 Control of an Underactuated Three-Link Passive-

Active-Active Manipulator Based on Three Stages and Stability Analysis Journal of Dynamic Systems

Measurement and Control-Transactions of the ASME 137 021007
[9] Y. Liu and H. Yu A survey of underactuated mechanical systems 2013 IET Control Theory and Applications

7, p921-935
[10] X. Xiu and Y.Liu A Set-Point Control for a Two-link Underactuated Robot With a Flexible Elbow Joint

2013 Journal of Dynamic Systems, Measurement, and Control 135 051016-1
[11] S. Tahmasian and C. A. Woolsey 2015 A Control Design Method for Underactuated Mechanical Systems

Using High-Frequency Inputs Journal of Dynamic Systems, Measurement, and Control 137 071004-1
[12] L. Meirovitch 1980 Computational Methods in Structural Dynamics S”ythoff and Noordhof, Alphen aan den

R”yn

[13] D. D. Siljak 1969 Nonlinear Systems John Wiley, New York

[14] L. Luyckx, M. Loccufier and E. Noldus 2001 On the design of nonlinear controllers for Euler-Lagrange systems
Nonlinear Dynamics and Systems Theory 1 p99-110

[15] Y. S. Lee and G. Kerschen and A. F. Vakakis and P. N. Panagopoulos and L. A. Bergman and D. M.
McFarland,Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment, Physica
D, 204, 41-69, (2005).

[16] R. Lozano, B. Brogliato, O. Egeland and B. Maschke 2000 Dissipative Systems Analysis and Control Springer,
Berlin

[17] L. Luyckx, M. Loccufier and E. Noldus 2003 Bounded output feedback systems for mechanical vibration
control Proc. 6th Nat. Congress on Theoretical and Applied Mechanics, Ghent

[18] I. Fantoni and R. Lozano 2002 Nonlinear Control for Underactuated Mechanical Systems Springer, Berlin


