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1 . INTRODUCTION 
Albrecht Dürer published around 1525 his conjecture: "All the polyhedrons 

can be unfolded by their suitable cutting edges to a plane so that we can receive a 
joined polygon-mesh with non-overlapping faces" [Dürer, 1|. The author of this 
article is dealing basically with the suitable positioning of cutting edges for unfolding 
the polyhedrons (to a plane), coding the polygon received and its modelling surface. His 
aim is to give tools for proving the Dürer's conjecture and/or to prepare a creative 
prove. The notion of the finite convex polyhedrons has a very large set of solids from 
tetrahedrons to the arbitrarily complicated polyhedrons —covered by p>3 sided convex 
polygons— which have less and less or nil symmetries. In the case of the analysed 
finite convex polyhedrons 2 polygons meet in cach edge, in their peak q>3 pieces of 
polygons meet where the angle is alfa pi<360° in consequence of convexity, otherwise it 
can be degraded to a plane and can become infinitely big, which was formerly excluded. 
The spherical mosaic ordered to the polyhedron can help us many times, which can be 
gained by the projected polyhedron-peaks from an internal point to of an external 
sphere surface which has only mutual points (min2) with the polyhedron. 

They have many similar topological and geometrical properties, so the spherical 
mosaic can help unfolding the facets of the polyhedron and defining the structure of 
the unfolded polygon-mesh in a plane. The spherical mosaic/globe notation system is 
very useful: 
- in the exposition of the pcrformable operation on the polyhedron-surface in surface 
modelling, 
- in marking out cutting edges of their polygons marching via the "0 longitudinal 
circle" and 
- in the joined polygon-chains: e.g. (first of all) via the "Equatorial (parallel) 
Circle". We can mention besides the North (N) and South (S) Poles, the Ew starting 
point on the Equatorial (E) Circle and on the "0 Longitudinal Circle" walking round 
on the E circle from West to East to the arrival point Ef;, which is identical with 
Ew (Ee : Ew). 
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We would like to use also the notion of the "Condensation-Points" (CP|) on the 
Northern and Southern Hemispheres, the North (N) and South (S) Pole, in which 
peaks 

q \ » 3 and qs » 3 pieces of polygons run together, but in both of Hemispheres 
can be further "Condensation-points". 

Naturally every globe point- (N, S, EW. Ee, ...) notation can be used to the effect 
that every named globe point means the nearest polyhedron-peak (nodepoint). In the 
same way we mean by the "Equatorial (E) Circle" and "Longitudinal Circles" the 
continuous zigzag edge-chains of the polyhedron, which are nearest to a circle 
being discussed. 

2. MODELLING CONVEX POLYHEDRONS BY BREP- AND W I N G E D 
EDGES-STRUCTURES 
The Boundary REPresentation faces (BREP) modelling system was developed 

originally for surface modelling aim. But soon it was proved that BREP could be an 
efficient tool for solid modelling too, if a 3D region of the space is closed by boundary 
faces without holes, consequently a piece of the body is circumscribed by them. The 
BREP as a solid modeller is an "object 's present state" describing system in 3D by 
surface elements in particular by polygons covering a polyhedron or by free-form 
patches covering a solid body or anyway a piece of the body (Figure 1). 

Figure I The main structure of the BREP surface mode! 
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In the BREP model all information is available in the traffic on the surface of a 
solid body connected with the neigbouring faces, their boundary contours, edges and 
peaks. 

On the other hand, the original solid modelling system CSG —Constructive 
Solid Geometry— is a "generative system", in this case using a "historical method" 
to describe a solid body from an initial state, via many stadia, up to the final state of the 
body [Braid, 3]. The tools for the solid-model modifying are the Euler operators: OP 
{p, e, f, r, s, h}, where p=peaks/vertricies, e=edges, f=faces, r=rings, s=shells, h=holes 
have the number of components. Every disjunct manifold solid, being in the real world, 
has the following topological condition: p -e+ f-r=2*(s-h) (1"), which is the Euler-
Poincare term. In the case of the convex polyhedrons Euler-Poincare formula is 
simplified as follows: 

P - E - F = 2 . . . (2nd). 
After using the solid model modifying operations the consistency of the body 

remains valid [Mantyla, 7]. In practice we usually do not like to use the Euler operators, 
we should rather prefer to use the BREP system operators for manipulating the pieces 
of the surface-elements: extruding, rotating, wresting moving, unfolding and gluing the 
surface/solid elements, or the generative CSG system operators for the solid-Boole-
algebraic operations: union, product and substract, etc. 

In the early seventies the 3D geometrical modelling systems had only 
polyhedron-modelling operations such as describing, modifying polyhedral surfaces 
or solids, still in the cases of conic, cylindric and other curvilinear bodies, too. It was 
easier to start with modelling the surfaces or the bodies by the system which can only 
allow to describe and manipulate the boundaring by planes or the facetting bodies [see: 
M., Sabin. 2; I..Braid, 3; M., Brun, 4]. This method could ensure many advantages 
when modelling rather complicated surfaces or bodies, too, like the hull of a ship-body, 
surface elements of a car-body or of an airplane-wing and designing these, and e.g. 
describing/modelling the surfaces and the movement of a very complicated airplane-
landing ship. It offered many advantages when formerly using the polyhedral bodies 
and surfaces with quite a modest computer-throughput. Most of the mechanical tasks 
can also be fulfilled by modelling the surfaces of the polyhedral bodies: like 
designing parts-, tools-, envelop-surfaces, statical-, dynamical- and stress-analysing. 
These facts drew the author ' s attention to the polyhedral modelling and unfolding 
the polyhedrons' surface. 

The BREP model became a really effective tool, when Baumgart published the 
Winged edge modelling structure [Baumgart , 5| : Node substructures. Each type of 
Node had a pointer-chain, and each edge, i.e. each ENOD has two wings: one "-
FNOD" and one "+ FNOD", because each edge has two half-edges, both of which have 
one face, as a"wing". 
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Figure 4 shows the original Winged edge modelling structure, but for each node 
only the first few lines belong to it. We can use BREP model more effectively also as a 
solid modelling system because of its present state and locally object describing 
characteristic: surely in designing-, modifying- and describing tasks, one can be 
engaged more effectively with all of the little details, and it is not necessary to deal with 
or to modelize permanently the whole of the very big object in every case (see contrast 
with the CSG solid model, because of its global and generative characters). The surface-
modelling properties of BREP became really better in the "BREP extended by Winged 
edge modelling structure", where we can determine the important properties of each 
point, e.g. on what face(s) is it, 

- what kind of contour(s) are around every point also in the multiple contiguous 
surfaces, 
- which are the characteristic-, boundary-, and mutual interfusing lines nearest to the 
actual point and 
- which kind of peaks are crossed by the contour of each surface. 
- we can determine in the case of a closed surface/body in what direction is the interior 
of the object, 

in what direction is the normal vector pointed and where is the attendant trihedron 
(vectors). 

The author augmented the original Winged edge modelling structure with many 
details to make it suitable for his special aims: for unfolding the surface of polyhedrons 
(see Figure 4). In BREP by the enlarged Winged edge model we can use each 
polyhedron edge as a "winged edge". 

3 . SOME P R O P E R T I E S OF THE CONVEX POLYHEDRONS AND 
SEARCHING A SUITABLE EDGE-CUTTING STRATEGY 
3.1 The homology of the convex polyhedrons and the spherical mosaics 

There are some spherical mosaics simplier than the tetrahedron that can be produced via 
Euler operators beginning with the case of "Sphere and a point on it" where the 2nd 

formula is fulfilled (P=l , E=0, F=l) . Via these Euler operators we can produce the 
simplest polyhedron, i.e. the tetrahedron (by its peaks) — to which a spherical mosaic 
can be ordered and vice-versa, thus they have a kind of homology. The BREP surface 
and solid modelling systems are using these properties, which are based on Euler 
operators [M. Mantila. 7]. 

This publication is dealing with a narrower set: with the convex polyhedrons. 
Naurally we can also declare that, it isn't possible to order any spherical mosaics to a 
convex polyhedron in a mutually unambiguous way. because each spherical mosaic can 
be projected to concave polyhedrons, too. 

3.2. The form-features of convex polyhedrons 
We can classify the convex polyhedrons according to their form-features they can have 
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bar, sheet and body characteristics: 
- a convex polyhedron has a bar character/nature at which the extent in Z 
direction is 

considerably bigger than in the direction X and Y: AZ » AX, AY; 
- one has a sheet character/nature at which the extent in Z direction is 

considerably less than 
in the direction X and Y: A Z « A X , AY; 

- one has a body character/nature at which the extent in X,Y and Z direction is 
essentially 
the same: AZ ~ AX ~ AY; 

Naturally we can define other form-features for convex polyhedrons on the base of 
extent in X,Y and Z directions. 

3.3. Condensation-points and the successful edge cutting strategy 
The convex polyhedrons and spherical mosaics can be classified also by their 
Condensation-points: 

- the convex polyhedron can have Cpi=l piece of Condensation-point, e.g. in the 
case of pyramidical or drop-shaped cut precious stone, when the N (North) Pole suits to 
that, where q > \ » 3 is and on the other end a p sided polygon closes the convex 
polyhedron. In this case unfolding the convex polyhedron we can get a joined polygon, 
which can have a single running down star character form (Figure 2 and 3/a) but it 
is possible unfolding this polyhedron to several other non-overlapping character forms, 
too. However, one may suitably indicate every time the first cutting zigzag edge-chain 
on the "0 Longitudinal Circle"; 

- but the convex polyhedron can have Cpi > 2 pieces of Condensation-points and 
also of the spherical mosaics ordered to it (Figure 2 and 3/b). Using the spherical 
mosaics/globe notation the two Condensation-Points (CPN,CPS) on the Northern 
and Southern Hemispheres are the North (N) and South (S) Pole, where q , \ » 3 and 
q s » 3 . Further Condensation-Points (CPi, CPj) can be on the Northern and Southern 
Hemispheres, these can be stringed to the first cutting zigzag (CPj-N-Ew-S-CPj) edge-
chain. In this classification 2 pieces of CPi-s are the most characteristic . 

The author developed an algorithm of indicating and performing cutting edges for 
unfolding the convex polyhedron-surface to have one joined non-overlapping 
polygon in a plan. 
a) Before performing each cutting-edge chain, one must indicate all of the edges: 

- first we indicate one circle on the spherical mosaics/globe by its two endpoints, 
- than we seek for each nearest peak-point of polyhedron to these two endpoints, 
- one indicate all of the nearest peaks of polyhedron to this indicated circle on 
the spherical mosaics/globe, as a zigzag (cutting) edge-chain (Figure 5). 
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b) We have to indicate and to perform "1 rowed joined polvgon-chains",too. Before 
performing it each operation begins also with the indication, so indicating the joined 
polygon-chain as follows: 

- first we can indicate one circle on the spherical mosaics/globe by its two 
endpoints, by the beginning point (e.g. first by Ew being on the "Equatorial Circle" 
and on the "0 Longitudinal Circle") and walking round on the actual circle- by the 
endpoint (with first example on E Circle West to East by the endpoint Ee hEw) , then 

- follows indicating the 1 rowed polygon-chain nearest to the actual circle 
(first nearest to the E Circle), which will also surround the actual circle in a zigzag line 
Note: Only when we have indicated all of the 1 rowed polygon-chains, and we have 
indicated all the polygons of the polyhedron completely, that time we could 
perform the cutting edge-chains and the joined polygon-chains. 

Figure 2 Unfolding the convex polyhedrons having some symmetries tve can choose 
the algorithms which are suitable to the I and 2 CPi-s too (Figure 3/a and 3/b),for 

gainingthe joined 
non-overlapping polygon-meshes 
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The majo r steps are the following: 
I)- we will indicate and perform the first cutting zigzag edge-chain on the "0 
Longitudinal Circle": this will be the S - Ew - N zigzag cutting line, with which we 
will open the closed surface covered by the polyhedron-body. Thus its surface 
becomes a closed two-dimensional (2D) surface in the space bordering by the 
cutted half-edges S - E„ - N — N - E w - S, it becomes a closed, 2D surface in 3D 
completely filled by polygons; 

II)- indicating and performing the first, most important 1 rowed, joined polygon-
chain on the "Equatorial Circle", which consists of m pieces of polygons; 
III)- then we can indicate and perform the essential star-branches from the polygon-
edges of the joined polygon-chain from the Equatorial (E) Circle to the North and 
South CPi. These essential s tar-branches can have max. n pieces of polygons in the 
directions to the N or the S CPi (Figure 5). 
From the edges of the Equatorial (E) joining p » 3 sided polygons max. p essential 
s tar-branches can branch off, but generally max.(p-2) pieces can be started to the N 
and S CPi-s because 1-1 piece of engaged edges joins together polygon-pairs ( -FNOD 
and +FNOD); 
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Figure 4 Augmented structure of the "Winged edge mode!" for unfolding the convex 
polyhedrons 
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- these max. m of essential s tar-branches start from the E polygon-chain to the N and 
S CPi-s, but they can die off on the way, and new essential star-branches can be bom 
because of the recursive branching out of themselves. Thus not definitely the same 
number of essential s tar-branches march into the CPi-s as many of them could start 
from the E polygon-chain; 
- vica versa, from the N and S CPi-s q,\ pieces (qN » 3) hence not m pieces of cutting 
edges start to the polygons of the E polygon-chain, but the same number of qN » 3 
and q s » 3 pieces of polygons running into the N and S CPi-s, that is q> pieces of 
essential star-branches/1 rowed, joined polygon-chain start to the "Equatorial (E) 
Circle". 
IV)- after indicating the essential star-branches we must indicate all the recursive 
branching out of themselves to less star-branches, up to where they could reach -
marching from West to East- the border of the next essential star-branch or of any other 
star-branch. 
Surely all of the star-branches are 1 rowed and they couldn't cut -only can touch-
another polygon of another neighbouring star-branch. 
Notes: The essential s tar-branches are indicated by the "Longitudinal Circles" 
running from the North and South CPi-s to the forthcoming polygon-peaks of the 
Equatorial (E) Circle joined polygon-chain. These "Longitudinal Circles", in fact the 
continuous zigzag edge-chains of the polyhedron, which are nearest to these 
circles,— make regions for the essential star-branches and the recursive branching 
out star-branches. 

We can observe that all the peaks of the polyhedron have min. 1 cutting edge — in 
this cutting edges strategies proposed (see the double lines, namely half-edges in Figure 

5). 
Affirmation (1): By this strategy for cutting out the edges "one can always be able 
unfolding the convex polyhedron-surfaces to a star-shaped, one-rowed joined 
polygon-chain", which has a general tree structure with n levels and m branches 
(Figure 5). 

4 . AUGMENTED STRUCTURE OF THE " W I N G E D EDGE MODEL" FOR 
UNFOLDING THE CONVEX POLYHEDRONS 

We can unfold the surface of each convex polyhedron to a star-shaped tree 
structure formed f rom joined polygon-chains suitably for Affirmation (1), but it is 
a much more modest aff irmation, than the Diirer 's conjecture was made about 
1525. 

He stated: "all the convex polvhedron-surfaee can be unfolded without 
exception —to a joined non-overlapping polygons— by cutting their suitable 
edges" [Dürer, 1]. 

This conjecture was proved by O'Rourke at al. about 1992 [O'Rourke, 8] -and in 
the information/knowledge of the present author- via a creative mood. O'Rourke was 
the first who asserted that it is possible, namely to a joined non-overlapping polygon, 
suitably for the condensation points following manifold running down,- to a complex 
star-shaped polygon. 
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The "Winged edge model" with some augmented s tructure is effectively 
suitable —according to the author— not only for modelling the convex polyhedron 
body and surface as well as marching on its surface, but for also the following 
operations (Figure 4): 
- for unfolding the polyhedron-surfaces, namely indicating-, after performing the cutting 
edges, 
- tracing and debugging the performing process, moreover 
- describing and coding the unfolded polyhedron-surface to a mesh of convex polygons 
which can be the above mentioned 1 rowed joined, star-shaped, non-overlapping or 
overlapping a concave polygon. 

Thus the winged edge can be an excellent tool for the proof of the non-
overlapping character. The enlarged winged edge structure contains Point NODe 
(PNOD)-, FaceNODe (FNOD) EdgeNODe (ENOD) substructures, and among those 
Body NODe Body-NOD gives relation. 
Some data in the augmented winged edge for FNOD about the Faces of the convex 
polyhedron: 
2nd data: Y{0,1,...PJ gives the characteristic of i l h actual polygon/Face-state, where its 
meaning is: 
Y{0,1,...P}=0 if not one single (0) side of the ilh actual polygon are prepared that is we 
don't know anything about edges of the ilh actual polygon then its edges are cutting or 
joining/winged edges; 
Y{0,1,... P}=j, (max. P) if j pieces of edges are already prepared partially or wholly 
(see the state of edge describing X{0,1,2,3} state-characteristic, the 5" data of the actual 
(i ,h) Node; 
5 ,b data: to all the P pieces of edges of the ilh actual polygon belonging to 4-4 data, 
there are: 

a) the starting point/PNOD pointer of the actual k[ I ,P| l h edge ; 
b) the ENOD pointer of the actual k'h edge; 
c) neighbouring polygon's FNOD pointer being on the other side of the actual 

k"1 edge 
d) the state characteristic X{0,l,23}of the actual k'h edge, which means: 

X{0,1,2,3}=0, if actual k ,h edge hasn't been yet analysed in view of cutting and not in 
having a role as a winged edge joining the polygons, thus we haven't analysed in the 
process of unfolding to a plane; 
X{0,1,2,3}=1 or 2, if the actual k ,h edge is a cutting edge and X{0,1,23}=1, if this 
actual edge could have a role only ones in the process of marching around the 
unfolded, joined polygon-mesh, and X{0,l,2r3}=2. if on the actual k ,h edge we 
marched already forwards and backwards, too. 
X{0,1,2,3}=3, if the actual k , h edge is winged edge, thus the to neighbouring, joining 
faces on the 
( -FNOD and +FNOD at Figure 5) will be already indicated for joining. This state 
generally can rise only after the whole unfolding process to the plane,- for all of the 
edges. 
7 l hdata: Branch|0 ,P | gives it how many sides of the actual k"1 edge give branches for 
starting element of the 1 rowed joining polygon-chains: (for the Equatorial joining 
polygon-chains, for the essential star branches or for the recursive branching s tar-
branches) 
8 l hdata: it is the next FNOD pointer of the Equatorial joining polygon-chain in the 
d i r e c t i o n E W ->EE 
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Notes: All the other 1 rowed joined polygon-chains are coded by the FNOD beads on 
the base of the state characteristics and of the pointers of the P sided polygons. In 
this way the unfolded joined polygon-mesh can be projected very effectively from the 
polyhedron-surface, which will form a generally n level in (m or p) branching tree 
s t ructure 
Some data in the augmented winged edge structure for ENOD (Edges) of the convex 
polyhedron: 
4 ,h data: the actual i"' winged edge boundered by PI and P2 has qi and q? pairs of 
ENOD/FNOD pointers, which are codcd in the CCW direction on the structure (Figure 
4). 
6 ,h da ta : via the tools of the suitably cutting edges —unfolding the convex 
polyhedron-surfaces— got a joined star-shaped polygon-mesh consisting of one 
rowed-polygon-chains. We could describe by pointer-chains the marching process 
around this concave polygon. The sections of this pointer chain can be found at the 
end of the ENOI) substructure. 

5 . THE W I N G E D EDGE I S THE TOOL FOR PROVING THE N O N -
OVERLAPPING BY COMPLETE INDUCTION 

This chapter gives a proof for the non-overlapping polygon-mesh. The convex 
polyhedron's surface cut near to "0 Longitudinal Circles" can be decomposed to one 
rowed polygon-chains. 
AFFIRMATION: The surface of the convex polygon can be unfolded to a joined non-
overlapped polygon-mesh, if marching through all the polygon-chains by a "piece of 
surface" in the i=l,2,. . . ,m/n cases with suitable cutting edges (Figure 5). It is provable, 
that the polygons of each "piece of surface" of all the polygon-chains— will move off 
from each other and move off from the earlier unfolded polygons, too. The "piece of 
surface" is " the winged edges" joined polygons. 
All the peaks have one or more cutting edges at the proposed cutting edge-algorithm. 
The bigger steps of proving the NON-OVERLAPPING is the following: 

I) it was already indicated by the beginning cutting edge-chain, a closed 2D 
zigzag line in the spacc from half-edges (S - E„ - N — N - E w - S), which opened the 
polyhedron's space-portion and transformed its surface into a closed 3D surface 
completely filled by polygons; 

II) then was indicated the Equatorial (E) joined one-rowed polygon-chain, so 
with that the steps will be introduced in details i=l,2, . . . ,(m-l),m of the proof with 
complete induction; 

III) later had to be indicated all of the "essential s tar-branches" branching off 
the E polygon-chain, which were marching from West to East: E% -> Ef. =E W 

(i=l,2,. . . ,m). At all of the "essential s tar-branches" we must apply the proof with 
complete induction from the North and South Pole/CPi backwards in the steps 
j ,k=n,(n-l) , . . . ,2, l up to the E Circle or up to the borders of the next "essential s tar 
branch'Vrecursive s tar-branch. This proof with complete induction can be 
introduced in II) case may apply also to this III) case but with opposite direction. 

IV) finally at each polygon-chain of all the star-branches recursively 
branching off the "essential star-branches", ought to be applied the "proof with 
complete induction", always from the dying off peak-point to the arrival point of the 
higher level "s tar -branches" or upto the E Circle. Otherwise it is sufficient thinking 
over recursively this proving process. 
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II) T he proof with complete induction of affirmation concerning the K joined 
polygon-chain 
l " step: The "Pl '* ' -P2 i*'" edge is joining together (Figure 5) the ¡=1" polygon to the 
i=2n<1 polygon 

a) At the PI' 1 peak of the convex polyhedron: originally there is no edge cut, 
so the polygons marching into this peak have the angle (sum of their plane-angle): 
alfapi'* <360°; if at the unfolding process one edge of PI' 1 is indicating to cut, this 
angle will be alfan'"1 =360°. So the ¡=1" (actual) "essential star branch" bordered 
Pl'*'=P2 j"1 polyhedron peak and the P2'"2 (i=l) peak joining actual "essential star 
branch" having P2'~'-P2' "2 will be opened. So it will be cut to half-edges, then the i= 
2nd "essential star branchV'actnal polygon will move off the i= 1 " "essential star 
branch V a c t u a l j=2 polygon. 

b) At the P2'~' peak of the convex polyhedron: originally there is also no edge 
cut, so the polygons marching into this peak have the angle (sum of their plane-angle): 
alfapi'"1 <360°; if at the unfolding process one edge of P2'"1 is indicating to cut, this 
angle will be alfa?:'"1 =360°. So each polygons marching into the P2'" : can be unfolded 
and will move off the polygon being in the cutting edge's other endpoint being the k= 
2nd polygon of the i= 2nd "essential star branch". Thus we can state, that the joining 
edge between the i= l " and i= 2nd polygons, the Pl '° ' -P2 '° ' winged edge has both of 
two endpoints cutting edge, this way the polygons —earlier touched one another— 
being in P i " 1 and P2'"1 will move ofT each other. 
2"dstep: The "Pl i" : !-P2 i" :" edge is joining together(Figure 5) the i=2nd polygon to the 
i=3rd polygon. 

a) At the PI' 2 peak of the convex polyhedron: originally there is no edge cut, 
so the polygons marching into this peak have the angle (sum of their plane-angle): 
alfapi'"" <360°; if at the unfolding process one edge of PI'"2 is indicating to cut, this 
angle will be alfapi'"2 =360°. So the i=2nd (actual) "essential star branch" bordered 
P1 ,"2=P2''1 polyhedron peak and the P2j~2 (i=2) peak joining actual "essential star 
branch" having P2J ' - P2'~2 will be opened. Thus it will be cut to half-edges, then the 
i= 3 rd "essential star branch's"actual polygon will move off the i= 2nd "essential star 
branchV'actual j=2nd polygon. 

b) At the P2'"2 peak of the convex polyhedron: originally there is also no edge 
cut, so the polygons marching into this peak have the angle (sum of their plane-angle): 
alfap2'"2 <360°; if at the unfolding process one edge of P2'"2 is indicating to cut, this 
angle will be alfap2'°2 =360°. So each polygons marching into the P2' 2 can be unfolded 
and will move off the polygon being in the cutting edge's other endpoint being the k= 
3rd polygon of the i= 3rd "essential star branch". Thus we can state, that the joining 
edge between the i= 2nd and i= 3rd polygons, the Pl'~2-P2'*2 winged edge has 
both of two endpoints cutting edge, this way the polygons —earlier touched one 
another— being in PI'"2 and P2'"2 w ill move off each other. 
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3 rd step: The ••Pl l '"" "-P2 i ' ' "" edge is joining together the i=(m-l)" polygon to the 
i=mlh polygon 

a) At the Pi'"«""11 peak of the convex polyhedron: originally there is no edge 
cut, so the polygons marching into this peak have the angle (sum of their plane-angle): 
alfaP iH m '1 ,<360o ; if at the unfolding process one edge of p i N m , ) is indicating to cut, 
this angle will be alfaPl

i"<m"1)=360o. 

Figure 5 The Application of the Winged Edges Mode! 
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Thus the i=(m-l)" actual "essential star branch" bordered pi i _ , r o l ,=p2 j"' polyhedron 
peak and the P2'* (i=m-l) peak joining actual "essential star branch" having P21 ' -
P2'"2 will be opened. Thus will be cut to half-edges, then the i=m"' "essential s tar 

branch V'actual polygon move off the i=(m-l)" "essential star branch 's"actual j=2 
polygon. 

b) At the P a * " " " peak of the convex polyhedron: originally there is also no 
edge cut, so the polygons marching into this peak have the angle (sum of their plane-
angle a l f a , < 3 6 0 ° ; if at the unfolding process one edge of P 2 H m " is indicating 
to cut, this angle will be alfap: '"""" =360°. So each polygons marching into the P2i"<m" 
" can be unfolded and will move off the polygon being in the cutting edge's other 
endpoint being the k= 2nd polygon of the i=m'1' "essential star branch" . Thus we can 
state, that the joining edge between the i=(m-l)" and i=m lh polygons, the P l ' ° ' " " " -
P2'""' winged edge has both of two endpoints cutting edge, this way the polygons — 
earlier touched one another— being in PI'""11"1' and P2'"m will move off each other. 
Conclusion: On the base of the above mentioned "proof with complete induction" 
that the polygons of the Equatorial one-rowed joined polygon-chain —having m 
polygons marching E«-> Ee— can be unfolded to a plane, and at their cutting out 
edges the earlier touching polygons move off each other at all of the analysed 
convex polyhedrons. B 

III) Affirmation: The polygons of the "essential star branches" chosen arbitrarily 
move off each other and form any earlier neighbouring unfolded polygons — af ter the 
suitable edges cut at all of the finite convex polyhedrons. In this main step one had 
to be indicated to all of the "essential s tar-branches" branching off the E polygon-
chain, which were marching from West to East: EW -> Ee =Ew (i=l,2,. . . ,m). At all of 
the "essential s tar-branches" we must apply the proof with complete induction from 
the North and South Pole/CPi backwards in the steps j ,k=n,(n-l) , . . . ,2, l upto the E 
Circle or upto the borders of the next "essential star branch"/recursive s tar -branch. 
This proof with complete induction can be introduced in II) case may apply also to 
this III) case but with opposite direction. In this manner we proved with complete 
induction at all of the one-rowed joined polygon-chains/essential s tar-branches, 
that in their environment —unfolding the convex polyhedrons by cutting the suitable 
edges to half-edges,— the polygons move off each other and all the earlier unfolded 
neighbouring polygons. B 

6. SUMMARY 

The author developed and introduced a modified winged edge structure solid 
body/surface modelling tool, which was applied by him for unfolding the surface of the 
finite convex polyhedrons. He gave an creative proof for the Diircr's conjecture 
pulished about 1525: "all the convex polyhedrons can be unfolded to a plane for a 
joined, non-overlapping polygon by their suitable cutting edges [Dürer, 1]. First 
O'Rourke at al. said, that this conjecture is true and they gave probably a proof in a 
creative way -as the author knows-about 1992 [O'Rourke, 9]. 

The author would like to draw attention to unfolding the concave polyhedrons 
and to the free fomi surfaces covered bodies, contained p=3,4,..,6,...sided 
polygons/patches to reach less overlapping and deformation during the unfolding 
process, which tasks are very important in the engineering applications. 
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