
University of Pisa

Department of Computer Science

Ph.D. Thesis

Dynamic Detection and Tracking of Composite
Events in Wireless Sensor Networks

Claudio Francesco Vairo

Supervisors:

Stefano Chessa and Giuseppe Amato

Pisa, 2012

A mamma,
la mamma migliore del mondo.

Contents

1 Introduction 1
1.1 Static Event Detection . 2
1.2 Mobile Event Detection and Tracking 4
1.3 Outline of the Thesis . 4

2 Related Work 7
2.1 Monitoring of Static Events with WSN 7

2.1.1 Directed Diffusion . 8
2.1.2 Cougar . 13
2.1.3 TinyDB . 14

2.2 Detection and Tracking of Mobile Events with WSN 19
2.2.1 Distributed Cooperation for Event Detection 23
2.2.2 Composite Event Detection 24
2.2.3 ZebraNet . 26

3 Monitoring Static Events with MaD-WiSe 29
3.1 Design Goals and Assumptions . 30
3.2 Query Language . 31

3.2.1 MW-SQL Syntax . 33
3.3 Query Processing Model . 34

3.3.1 Streams . 34
3.3.2 Operators of the query algebra 36

3.4 Architecture . 40
3.4.1 Client-Side . 40
3.4.2 Network-Side . 42
3.4.3 Energy Efficiency in MaD-WiSe 44

3.5 Execution of a query: a walk-through example 46
3.6 Query optimization and results . 48

4 Detection and Tracking of Mobile Events 57
4.1 Modeling Events as Query-able Data 57
4.2 Declarative Language for Event Detection, Tracking, and Querying . 59

4.2.1 Event statement . 59

ii CONTENTS

4.2.2 Detection Statement . 61
4.2.3 Tracking Statement . 63
4.2.4 Query Statement . 64

4.3 In-network Event Query Processing 65
4.3.1 Detection Task . 65
4.3.2 Tracking Task . 66
4.3.3 Query Execution . 69

4.4 Finite State Machine . 70
4.4.1 Detection State Refinement 72
4.4.2 Tracking State Refinement . 73

4.5 Evaluation of EQL . 73
4.5.1 Cost Model . 74
4.5.2 Network, Event and Simulation Model 74
4.5.3 Cost of Event Query Language 75
4.5.4 Cost of CQA . 79
4.5.5 Results . 81

5 Conclusions 97

Bibliography 101

List of Figures

2.1 A simplified schematic for directed diffusion. 9

2.2 Cougar Query Plan at a source sensor. 12

2.3 Cougar Query Plan at the leader. 13

2.4 A query and results propagating through the network.§ 15

2.5 A semantic routing tree in use for a query. Gray arrows indicate
flow of the query down the tree; gray nodes must produce or forward
results in the query. 19

2.6 Network architecture in Composite Event Detection. 25

3.1 Example of query execution plans for the spatial maximum (a) and for
the spatial average (b). Spatial average uses two different operators:
pavg (partial average) and favg (final average) 38

3.2 Using the join operator, both sensor streams T and L should be pe-
riodic. Using the sync-join, the L sensor stream can be on-demand,
i.e. it is activated only when needed 39

3.3 The architecture of MaD-WiSe. 41

3.4 Energy efficiency mechanism. 45

3.5 Performance of the MaD-WiSe energy efficiency mechanism. 46

3.6 Three possible execution plans for the same query. 51

3.7 Three possible execution plans for the same query using joins. 52

3.8 Cost of the query plan QP5 as the distance in hop between the sensors
increases. 56

4.1 Detection Region - In the figure the external rectangle represents
the Detection Region where the event is monitored, the dotted cir-
cle represents the minimum expected size of the event (the Smallest
Event Size that in this case is 1 hop) related to the sensor repre-
sented with the big black spot, and the cloud represents the actual
area covered by the event when it occurs (the Event Area). 60

iv LIST OF FIGURES

4.2 Tracking phase - The figure shows the data collection tree built
inside the Event Area. The tree is rooted in the leader sensor, rep-
resented as the rounded circle. The figure also shows the updating
operation: the active boundary sensors (the empty squares) alert the
passive boundary sensors (the triangles). As a consequence, the pas-
sive boundary sensors are added to the data collection tree. The alert
operation is represented by the dotted arrows. 69

4.3 Automaton - Abstract representation of the Finite State Automa-
ton for EQL processing. The detection and tracking states are com-
plex super-states that are composed of several internal states. 70

4.4 Detection State Refinement - The Figure reports the refine-
ment to the detection super-state of the FSA reported in Figure 4.3.
The dotted lines represent the input/output transitions to/from the
detection super-state. 71

4.5 Tracking State Refinement - The dotted lines represent the in-
put/output transitions to/from the tracking super-state. The dotted
outgoing line related to the “sending data to sink” state is 72

4.6 Network - Each sensor has a transmission range rx. The small
square represents the Detection Region. The circle represents the
Event Area, and it moves according to the rectilinear motion vector
V .The sink is assumed to be in the center of the network. 75

4.7 First Alert - The solid circle is the Event Area with radius R. The
dotted circles represent the transmission of the alert messages and the
triangles are the alerted sensors. 77

4.8 Alert - The added sensors send the alert message. 78
4.9 Tree Updating - The solid circle represents the Event Area at time

t+∆t, while the dotted circle represents the Event Area at time t. The
newly involved sensors in the lune are added to the data collection
tree (the dotted arrows). 79

4.10 Power consumption with increasing values of event speed and different
values of expiration time. 81

4.11 Power consumption with increasing values of event speed and different
values of network density. 82

4.12 Power consumption with increasing value of event speed and different
size of Event Area. 83

4.13 Simulation with increasing values of sampling rate of the sensors and
different values of event speed. 84

4.14 Power consumption with increasing size of the Event Area and differ-
ent values of expiration time. 85

4.15 Power consumption with increasing size of the Event Area and differ-
ent values of network density. 86

4.16 Maximum energy consumption of the sensors with increasing values
of event speed. 87

0.0. LIST OF FIGURES v

4.17 Maximum energy consumption of the sensors with increasing values
of sampling rate of the sensors. 88

4.18 Maximum energy consumption of the sensors with increasing size of
Event Area. 89

4.19 Percentage of successful tracking with increasing size of the Event Area. 90
4.20 Percentage of successful tracking with increasing values of network

density. 91
4.21 Percentage of successful tracking with increasing values of expiration

time. 92
4.22 Percentage of successful tracking with increasing values of event speed

and different values of expiration time. 93
4.23 Power consumption with increasing value of the expiration time. . . . 94
4.24 Percentage of successful tracking with increasing values of the event

speed and different values of sampling rate of the sensors (a) and with
increasing size of Event Area and different values of network density
(b). 95

vi LIST OF FIGURES

List of Tables

2.1 An example of description of an animal tracking task. 10
2.2 An example of data generated by an animal tracking task. 10
2.3 An example of an initial interest of an animal tracking task. 10
2.4 A data message containing an event description in response to an

animal tracking task. 12
2.5 An example of TinyDB query. 16
2.6 An example of event-based query in TinyDB. 16

3.1 An example of a query executing a timestamp Join in MW-SQL. This
is different from standard SQL, where the FROM clause indicates a
cartesian product, since here the FROM clause indicates a timestamp
join among sources by default. 39

3.2 Power Consumption of the radio of an IRIS mote. 42
3.3 Query used for the query execution and optimization example. The

query performs a timestamp join between Magnetism, Acceleration,
and Temperature readings from nodes 1, 2, and 3, respectively, every
three seconds. If predicates p1, p2, and p3 are satisfied, results are
sent to the sink . 48

3.4 Costs of the three executions plans in Figure 3.6. 51
3.5 Cost of the query plans QP3, QP4, and QP5. 53
3.6 Costs of QP3, QP4, and QP5 obtained from the experiments. 54

4.1 Example of an explosion event description. tA, tN and tP are given
threshold values for, respectively, accelerometer, noise and pressure
measurements. 58

4.2 The query requests the position and the event speed GasCloud. . . . 58
4.3 The Event Statement . 61
4.4 The Explosion definition. 61
4.5 The GasCloud definition. 61
4.6 The Detection Statement. 62
4.7 The detection definition for the Explosion event. 62
4.8 The detection definition for the GasCloud event that depends on the

Explosion event. 63
4.9 The Tracking Statement . 64

viii LIST OF TABLES

4.10 The Tracking Statement for the GasCloud 64
4.11 The Query Statement . 64
4.12 The Query statement for the Gas Cloud example. 64
4.13 Glossary of the definitions related to the events. 69
4.14 Energy required for a sample from various transducers of MTS310CA

boards. 74
4.15 Energy required for sending and receiving a message of 50 bytes on

the IRIS mote. 74
4.16 Fixed parameters used for the analysis. 76
4.17 Variable parameters used for the analysis. In each scenario we study

the behavior when changing one of these parameters and keeping the
others fixed. 76

Chapter 1

Introduction

Wireless Sensor Networks (WSN) [16] are a recent technology suitable for contin-
uous and unattended monitoring of a large variety of environments. They play an
important role in many application fields, including environmental monitoring, dis-
aster area monitoring, structure and people health monitoring, ambient assistant
living, home applications, surveillance and security.

Ambient Assisted Living (AAL) [33] is an example of a recent application field
for WSN. AAL aims at improving the quality of life of elderly people, by increasing
their autonomy, assisting them in their daily activities, and by enabling them to feel
included, secure, protected and supported. In AAL applications, WSN are used to
monitor the status of the people and environmental parameters of their homes, offices
etc. WSN suit very well these applications since they require limited maintenance
and they can be adapted and hidden very well in the environment due to their small
size.

Another important application of WSN is in the recovery from environmental
disasters [58]. In this scenario, WSN can be used to monitor areas that are not
accessible by humans and can provide real-time support to emergency management
teams operating in the field. In these applications, WSN are appreciated due to
their ease of deployment and to the self-organization capability of the sensors.

WSN can also be effectively used in Structure Health Monitoring (SHM) [24].
This application serves as a precaution measure, and it can have great social and
economical impact. The goals of SHM systems include detecting, localizing, esti-
mating the extent of the damage and predicting the residual life of the structure.
The advantages of using WSN in SHM applications are their low deployment and
maintenance cost, their large physical coverage and their high spacial resolution.

A WSN is composed by a (possibly) large number of sensors, that can be easily
deployed in the environment (sensing field), and that self-organize to form a (multi-
hop) wireless network. The sensors can be programmed to sample parameters of
the surrounding environment, to process sampled data, and to forward this infor-
mation to a special sensor (called sink) that provides connectivity with external
networks. In typical applications, sensors are tiny microsystems that comprise a

2 CHAPTER 1. INTRODUCTION

low-performance processor, a limited amount of RAM (few KBs), a set of transduc-
ers, and a low-power radio transceiver (in most cases, the radio is compliant with
the IEEE 802.15.4 standard [1]). In most cases the sensors are battery powered,
although in some cases they make use of energy harvesting techniques to gather
energy from the environment [55, 48, 52, 31]. As a consequence, sensors have se-
vere computational and storage constraints, and energy efficiency is critical in most
applications. Furthermore, if they are powered by batteries, their lifetime is limited.

Programming WSN to execute specific application dependent tasks is still a rel-
evant issue. In fact, programming sensors requires non trivial skills of embedded
systems programming, massively distributed algorithms, and wireless communica-
tions. To address this issue, recent proposals [69, 40, 38] suggest the use of database
paradigms and declarative languages (generally SQL-like) to specify WSN tasks. In
a traditional database system, queries are used to search for data contained in per-
sistent storage repositories. In a WSN, the database consists of the environmental
data that can be measured/acquired by the transducers available on the sensors.
Queries instruct the sensors on the management, filtering, and processing of the
data acquired from the environment. Environmental data are thus acquired by the
transducers of the sensors whenever needed, in accordance with the query that the
network is processing.

However, the classical approaches to database management systems cannot be
applied as such to WSN, where state-of-the-art processing units are characterized by
very restrictive resource constraints. Hence most of the aspects related to database
systems have to be reinterpreted according to this purpose, and this gave rise in the
recent years to a rich research area.

This thesis fits this research trend and provides two main contributions:

• describes the static event detection problem in WSN and presents a solution,
the MaD-WiSe system, that efficiently addresses this problem by means of
a distributed query processor executed on the sensors of the network. The
results of this work are published in [12], [13].

• extends the query processing approach to the mobility context. To this pur-
pose this thesis defines the concept of composite mobile event in a WSN,
describes the problem of detecting and tracking such events, and presents an
approach, based on a high-level query language, to describe event tracking
tasks. Tracking tasks expressed by means of queries can be executed in an
automatic and dynamic manner, inside the WSN. The results of this work are
published in [62], [11].

1.1 Static Event Detection

Event detection is one of the application fields where WSN are commonly used. In
this case the WSN is typically configured in order to continuously collect environ-

1.1. STATIC EVENT DETECTION 3

mental data, that are sent to the sink where they are analyzed to detect the event.
Since the amount of collected data can be considerably large, sending all the data
to the sink may result in very inefficient and expensive tasks, especially in terms of
energy consumption. This cost can be reduced by executing part of the data anal-
ysis and filtering directly on the sensors, thus reducing the communication costs.
However, this approach requires programming more complex tasks on the sensors,
involving data acquisition, analysis, communication, storage, etc., and this also in-
creases the possibility of introducing programming errors. For this reason, recent
proposals introduce abstraction mechanisms for the sensors’ hardware, in order to
facilitate the programming of distributed applications over the WSN. In particu-
lar, in the last few years, several approaches [28, 69, 40, 38] suggest the use of the
database paradigm in WSN, and provide high-level SQL-like languages to specify
monitoring tasks. With these solutions, the user can thus focus on his needs (what
he wants from the WSN), rather than concerning on how the monitoring task should
be implemented. In this thesis we introduce the MaD-WiSe system, our solution
to address the problems of efficiently managing data and detecting static events in
WSN.

MaD-WiSe is a system for data management in WSN that can efficiently detect
static events. It exploits a query language based on SQL, with constructs specialized
for WSN, to define the monitoring task. A query defined with this query language
expresses the sensing activity to be performed, its timings, and the sensors and
transducers involved in it. In support to the query language, MaD-WiSe defines
data streams and a query algebra to model the query plan for each sensor. Streams
are used to implement both data acquisition and data transfer among sensors, and
the query algebra introduces operators that represent aggregation and/or filtering
operations on data streams. A query is thus translated into a distributed query
plan consisting of operators of the query algebra connected by streams. In order to
reduce the energy consumption of the query, MaD-WiSe exploits query optimiza-
tion strategies and energy efficiency techniques based on the synchronization of the
sensors to reduce their periods of activity.

The contributions of this thesis to MaD-WiSe are:

• evaluation of the performance of the system and experimentation of new au-
tomatic optimization techniques;

• definition of strategies for the energy efficiency, based on a cross-layer method
that extract from the query information about the sampling rate and use this
information to synchronize the network and MAC level activities of the sensors;

• a revised query processing model and a redesigned architecture, based on the
previous contributions.

MaD-WiSe is implemented in Java and TinyOS [4] for the Crossbow Mica platform
[5], and it is presented in Chapter 3.

4 CHAPTER 1. INTRODUCTION

1.2 Mobile Event Detection and Tracking

Query languages defined to monitor static events in WSN assume that the monitored
events do not move, and that they maintain their physical properties (shape, size,
etc...) for the whole duration of the query execution (for example, monitoring the
temperature in a room, or the health conditions of a building). However there are
events that move, or change their size or shape (for example a fire in the wood,
or a person moving in the environment). These systems are no longer efficient in
tracking this kind of events, since the query needs to be updated to be able to adapt
to the changing event. In addition, in traditional query language approaches, the
query addresses only specific sources, such as individual transducers on the sensors.
On the other hand, the user may be interested in high-level information about the
tracked event. For example the user may be interested in the speed and direction
of a moving event, rather than on data read from transducers.

In this thesis, we aim at achieving the following goals:

• provide a higher-level of abstraction as compared to the current approaches,
for the detection and tracking of events in WSN;

• express queries directly on events, rather than on specific sensors or transduc-
ers in the WSN;

• provide a mechanism for an efficient detection and automatic and dynamic
tracking of mobile events in WSN.

In the second part of this thesis (Section 4) we enhance the MaD-WiSe approach
and we propose a new mechanism to efficiently detect and track mobile events in
WSN. To this purpose, we model the concept of composite event in a WSN and we
define a new query language, called Event Query language (EQL), for the detection
and tracking of mobile events in WSN. Unlike other approaches, with EQL the user
can specify a tracking task that, once injected in the network, instructs the sensors
on how to cooperatively and autonomously detect and track an event, and on how
to dynamically and autonomously migrate the needed query processing tasks in the
network as the event moves. We also propose a query processing mechanism for
the efficient execution of EQL queries directly in the sensors. We show through
simulation that the proposed approach has a lower overhead, and that it scales
better with the mobility of the tracked events, as compared to a centralized query
approach where the sensors acquire the data and send them to a base station that
performs the detection and pilots the tracking of the event.

1.3 Outline of the Thesis

The rest of the thesis is organized as follows. Section 2 presents the state of the
art on data management in WSN related to the detection of static events and to

1.3. OUTLINE OF THE THESIS 5

the tracking of moving events. Section 3 is focused on the problem of detecting
static events and it describes the MaD-WiSe system, presenting an evaluation of
the optimization strategies in MaD-WiSe. Section 4 focuses on the detection and
tracking of moving events and it presents the EQL language and the query processing
mechanism for the efficient execution of EQL queries. It also includes an evaluation
of the proposed system and the comparison with a centralized query approach.
Finally, Section 5 draws the conclusions.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

2.1 Monitoring of Static Events with WSN

Directed Diffusion [28] was the first attempt to define a data management paradigm
in WSN. In Directed Diffusion the user queries the network by injecting interests,
associated with a sampling rate, that are broadcasted to all sensors in the network.
Data detected by the sensors that match a requested interest are propagated to the
sink through the network.

Paradigms integrating database management systems and WSN are the natural
evolution of Directed Diffusion. These paradigms use query languages (such as SQL,
for instance) to program the sensing task and translate the queries into query plans
executable by the sensors. Among the various proposals pursuing this approach,
pioneers and (to some extent) state of the art are considered Cougar [69], and
TinyDB [40]. The differences between these approaches are in the expressiveness of
the query language and on different assumptions on the network architecture.

Cougar [69] is a sensor database that integrates stored data (e.g. characteristics
of sensors and their position) and sensor data. Sensor data are physical environment
measurements acquired by the sensors, that are sent to the sink as consequence of
a query request. In TinyDB [40] all nodes execute locally the same query and
the results of the query are merged while they flow from the sensors to the sink.
TinyDB can process aggregate queries on data produced by several sensors (spatial
aggregation). In [25] TinyDB is extended to support the localization of the sensors,
thus enabling the execution of spatial queries, besides the standard ones.

DsWare [72] is another database-like abstraction that is tailored to sensor net-
works based on event detection. It provides more flexibility by supporting group-
based decision, reliable data-centric storage, and implementing a mix of approaches
to improve real-time execution performance, reliability of aggregated results and
reduce network communication (overhead). DsWare provides applications with ser-
vices supported by its architecture modules such as data storage, data caching, group
management, event detection, data subscription, and scheduling. Like Cougar [69],

8 CHAPTER 2. RELATED WORK

DsWare uses SQL-like language for the registration and cancellation of events.
In [38] a PCM-based (probabilistic compensation model) data transmission scheme

is proposed to compensate the possible loss of data in executing aggregate queries.
An efficient path selection algorithm is also presented, in which children select the
most effective parents to send messages, in order to reduce the communication traffic
cost while maintaining variance low.

liveSensor [43, 45] is a system that exploits the approach of XML enrichment in
order to provide the user with the required semantics to express powerful queries.
liveSensor uses XML metadata to describe the data stream, and it provides the
user with a high level query interface to deal with XML queries. These queries are
transformed from XML to lower level primitives that execute on raw sensor streams.

In [75] the authors model the WSN as a distributed database that can be queried
to access data generated by the sensor nodes. They develop an algorithm for
communication-efficient implementation of joining multiple data streams. In par-
ticular, their algorithm is based on the Perpendicular Approach (PA), which is
communication-efficient and load-balanced, and has nearly optimal communication
cost for binary joins in grid networks under the assumption of uniform generation of
tuples across the network. PA works by using appropriately defined horizontal and
vertical paths for tuple storage and join-computation, respectively. The approach is
able to efficiently incorporate joins with spatial constraints, and can be generalized
to sensor networks without location information.

In [17] the authors propose a framework to create and integrate light databases
within sensors to manage and process data. The databases are designed by means
of simple entity-relationship models from which the code needed to manage the
database is automatically generated. This code is composed of data structures and
the algorithms in charge of managing them. This architecture helps developers to
avoid data redundancy, thus enabling a better management of the sensor’s memory,
and it contributes to save time in application development.

In the next sub-sections we describe in detail those works that are more inti-
mately related to this thesis.

2.1.1 Directed Diffusion

Directed Diffusion [28] proposes a data-centric dissemination paradigm for WSN.
Data generated by sensors are named by attribute-value pairs. A sensing task is
disseminated throughout the sensor network as an interest for named data. This
dissemination sets up gradients within the network designed to “draw” events (i.e.,
data matching the interest). Events start flowing towards the originators of interests
along multiple paths. The sensor network reinforces one, or a small number of these
paths. Figure 2.1 illustrates these elements. A detection task that uses the directed
diffusion paradigm can be implemented as follows: the user’s query is transformed
into an interest that is injected in a given region of the network. When a sensor in
that region receives the interest, it starts acquiring the information needed to detect

2.1. MONITORING OF STATIC EVENTS WITH WSN 9

(a) Interest propagation.

(b) Initial gradients set up.

(c) Data delivery along reinforced path.

Figure 2.1: A simplified schematic for directed diffusion.

the event defined in the query. When the sensors detect the requested event, they
return the collected information about the event along the reverse path of interest
propagation. Intermediate sensors might aggregate the data by combining reports
from several sensors.

Naming

In directed diffusion, task descriptions are named by a list of attribute-value pairs
that describe a task. For example, a task for animal tracking might be described as
in Table 2.1.
The task description specifies an interest for data matching the attributes. For this

10 CHAPTER 2. RELATED WORK

type = four-legged animal // detect animal location

interval = 20 ms // send back events every 20 ms

duration = 10 seconds // .. for the next 10 seconds

rect = [-100, 100, 200, 400] // from sensors within rectangle

Table 2.1: An example of description of an animal tracking task.

reason, such a task description is called an interest. The data sent in response to
interests are also named using a similar naming scheme. For example, a sensor that
detects an animal might generate the data shown in Table 2.2:

type = four-legged animal // type of animal seen

instance = elephant // instance of this type

location = [125, 220] // node location

intensity =0.6 // signal amplitude measure

confidence =0.85 // confidence in the match

timestamp = 01:20:40 // event generation time

Table 2.2: An example of data generated by an animal tracking task.

Interests and Gradients

An interest is usually injected into the network at the sink node. Then it is diffused
through out the sensor network in the following way. For each active task, the sink
periodically broadcasts an interest message to its neighbors. The initial interest
contains the specified rect and duration attributes, but contains a much larger
interval attribute (for example, 1 event per second). Intuitively, this initial interest
may be thought of as exploratory; it tries to determine if indeed there are any
sensor nodes that detect the specified event. The desired data rate is achieved by
reinforcement. Then, the initial interest may take a form as shown in Table 2.3:

type = four-legged animal

interval = 1s

rect = [-100, 200, 200, 400]

timestamp = 01:20:40

expiresAt = 01:30:40

Table 2.3: An example of an initial interest of an animal tracking task.

The sink periodically refreshes the interest by resending the same interest with a
monotonically increasing timestamp attribute. This is necessary because interests
are not reliably transmitted through-out the network.

Every node maintains an interest cache. Each item in the cache corresponds to
a distinct interest. Two interests are distinct if their type attribute differs, their

2.1. MONITORING OF STATIC EVENTS WITH WSN 11

interval attribute differs, or their rect attributes are disjoint. An entry in the
interest cache has several fields. A timestamp field indicates the timestamp of the
last received matching interest. The interest entry also contains several gradient
fields, up to one per neighbor. Each gradient contains a data rate field requested
by the specified neighbor, derived from the interval attribute of the interest. It
also contains a duration field, derived from the timestamp and expiresAt attributes
of the interest, indicating the approximate lifetime of the interest. When a node
receives an interest, it checks if the interest exists in the cache. If no matching entry
exists, the node creates an interest entry. The parameters of the interest entry are
instantiated from the received interest. This entry has a single gradient towards the
neighbor from which the interest was received, with the specified event data rate. In
the example above, a neighbor of the sink sets up an interest entry with a gradient of
1 event per second towards the sink. If there exists an interest entry, but no gradient
for the sender of the interest, the node adds a gradient with the specified value. It
also updates the entry’s timestamp and duration fields appropriately. Finally, if
there exists both an entry and a gradient, the node simply updates the timestamp

and duration fields. When a gradient expires, it is removed from its interest entry.

After receiving an interest, a node may decide to send again the interest to some
subset of its neighbors. To its neighbors, this interest appears to originate from the
sending node, although it might have come from a distant sink. In this manner,
interests diffuse throughout the network. Not all received interests are sent more
than once. A node may suppress a received interest if it recently re-sent a matching
interest.

Data Propagation

A sensor that detects a target searches its interest cache for a matching interest entry.
In this case, a matching entry is one whose rect encompasses the sensor location,
and the type of the entry matches the detected target type. When it finds one, it
computes the highest requested event rate among all its outgoing gradients. The
node activates its transducers and generates event samples at this highest data rate.
In the example, this data rate is initially 1 event per second. Then, every second, the
source sends a data message to each neighbor for whom it has a gradient, containing
an event description, as shown in Table 2.4:

A node that receives a data message from its neighbors attempts to find a matching
interest entry in its cache. If no match exists, the data message is dropped. If a
match exists, the node checks the data cache associated with the matching interest
entry. This cache keeps track of recently seen data items to prevent loops. If a
received data message has a matching data cache entry, the data message is dropped.
Otherwise, the received message is added to the data cache and the data message is
re-sent to the node’s neighbors.

12 CHAPTER 2. RELATED WORK

type = four-legged animal // type of animal seen

instance = elephant // instance of this type

location = [125, 220] // node location

intensity =0.6 // signal amplitude measure

confidence =0.85 // confidence in the match

timestamp = 01:20:40 // event generation time

Table 2.4: A data message containing an event description in response to an animal
tracking task.

In-network

aggregation

Network

interface

Sensor

scan

Partially aggregated

data from

other sensors

Data from the

local sensor

Towards the leader

Figure 2.2: Cougar Query Plan at a source sensor.

Reinforcement

After the sink starts receiving the low data rate events, it reinforces its neighbors
in order to “draw down” higher quality (higher data rate) events. To reinforce a
neighbor, the sink resends the original interest message but with a smaller interval,
for example 10ms. When a neighboring node receives this interest, it notices that it
already has a gradient towards this neighbor, and that the sender’s interest specifies
a higher data rate. If this new data rate is also higher than that of any existing
gradient, the node also reinforces its neighbors. Through this sequence of local
interactions, a path is established from source to sink for the transmission of high
data rate events.

2.1. MONITORING OF STATIC EVENTS WITH WSN 13

 Select

 AVG > threshold

 Aggregate

 Operator (AVG)

 Network

 Interface

Towards the gateway

Average value

Partially aggregated

results

Figure 2.3: Cougar Query Plan at the leader.

2.1.2 Cougar

Cougar [69] is one of the first works integrating the database approach to WSN.
To enable declarative querying of sensor networks, Cougar proposes a query layer
consisting of a query proxy running on every sensor node. The Cougar architecture
on the sensors is composed of three layers: the network layer, the query proxy layer
and the application layer. The query proxy provides higher-level services through
queries that can be injected into the network from a specified gateway node. In
order to reduce the energy consumption, one of the main roles of the query proxy
is to perform in-network processing.

A query optimizer is located on the gateway node to generate distributed query
processing plans after receiving queries from the outside. The query plan is created
according to catalog information and the query specification. Such a query plan
specifies both the data flow (between sensors) and an exact computation plan (at

14 CHAPTER 2. RELATED WORK

each sensor). The plan is then disseminated to all relevant sensor nodes. Control
structures are created to synchronize sensor behavior, and the query is started. At
run-time, data records flow back to the gateway node as in-network computation
happens on-the-fly.

In order to illustrate the individual components of the architecture in more detail,
consider the following example: a long-running query Q monitoring the average
temperature of an office every t seconds. The query Q has to notify the user (i.e., Q
generates an output record) if the average temperature in the office is greater than
t. As a first step in evaluating the query, the query optimizer generates a query
plan QP that specifies how to determine the leader of this query, a designated node
where the computation of the average temperature will take place. The leader could
be a fixed sensor with more remaining power and energy, or a randomly selected
node by some distributed leader election algorithm. Two computation plans are
then produced, one for the leader node, and a second plan for the remaining nodes
in the query region.

Figure 2.2 shows the query plan for a non-leader node that participates in the
query. Non-leader nodes have a scan operator to sample transducers readings peri-
odically and to send them to the leader node. In addition, their plan contains an
aggregation operator to aggregate data from other sensors. Figure 2.3 shows the
query plan for the leader node, which contains an AVG operator to compute the
average value over all sensor readings received in the last round of the query, and a
SELECT operator that checks if the result is above the threshold.

At query start time, the generated query plans are disseminated to the query
proxies of all relevant sensor nodes. The query proxies registers the query, create a
local operator tree, active relevant transducers, and return records according to the
specification of the query plan. The leader generates a record only if the average
temperature is above the user-defined threshold.

2.1.3 TinyDB

TinyDB [40] is a distributed acquisitional query processor for data collection in sen-
sor networks. By focusing on the locations and costs of acquiring data, TinyDB al-
lows to reduce power consumption compared to traditional passive systems. TinyDB
operates at all levels of query processing: in query optimization, in query dissemina-
tion, and in query execution. It also inherits a lot of features and optimizations of
a traditional query processor (e.g., the ability to select, join, project, and aggregate
data). Figure 2.4 illustrates the basic architecture of TinyDB: user submits a query
at the sink, where the query is parsed, optimized, and disseminated in the WSN. In
turn, the sensors process the query and send the results back to the sink, through
the routing tree that was formed during the query dissemination.

2.1. MONITORING OF STATIC EVENTS WITH WSN 15

SELECT nodeid, light
FROM SENSORS

PC

Mote

1

Result

28

2 55

3 48

Query
FIELDS

nodeid
light

OPS

NULL

3 48

2 55

Result

Result

Figure 2.4: A query and results propagating through the network.§

Data Model

In TinyDB, sensor tuples belong to a table sensors which, logically, has one row per
node per instant of time, with one column per attribute (e.g., light, temperature,
etc.) that the device can produce. Records in this table are put (i.e., acquired) only
as needed to satisfy the query, and are usually stored only for a short period of time
or delivered directly to a terminal outside the network. Sensors can insert NULLs for
attributes corresponding to missing transducers. Physically, the sensors table is
partitioned across all of the devices in the network, with each device producing and
storing its own readings. Thus, to compare readings from different sensors, those
readings must be collected at some common node, for example, the sink.

Basic Language Features

Queries in TinyDB consist of a SELECT-FROM-WHERE-GROUPBY clause supporting
selection, join, projection, and aggregation, just as in SQL, with the same semantic.
Tuples are produced at well-defined sample intervals that are a parameter of the
query. The period of time between two consecutive sample periods is called epoch.
An example of TinyDB query is shown in Table 2.5:

16 CHAPTER 2. RELATED WORK

SELECT nodeid, light, temp

FROM sensors

SAMPLE PERIOD 1s

FOR 10s

Table 2.5: An example of TinyDB query.

A sensor executing the query in the table returns (i.e. it put the data information in
the virtual table sensors) its own identifier, light, and temperature readings once
per second for 10 s. The output consists of a stream of tuples, clustered into 1-s
time intervals. Each tuple includes a time stamp corresponding to the time it was
produced. When a query is issued in TinyDB, it is assigned an id that is returned
to the issuer and it is used to identify data related to a particular query.

TinyDB also includes support for grouped aggregation queries: as data from an
aggregation query flows up the tree, it is aggregated in-network according to the
aggregation function and value-based partitioning specified in the query. However it
cannot execute queries that relate and compare in-network data acquired by different
sensors (for instance, to check if the temperature in room 1 is greater than that in
room 2).

Event-Based Queries

TinyDB supports events as a mechanism for initiating data collection. Events in
TinyDB are generated explicitly, either by another query or by a lower-level part of
the operating system (in which case the code that generates the event must have
been compiled into the sensor node).

ON EVENT bird-detect(loc):

SELECT AVG(light), AVG(temp), event.loc

FROM sensors AS s

WHERE dist(s.loc, event.loc) < 10m

SAMPLE PERIOD 2s

FOR 30s

Table 2.6: An example of event-based query in TinyDB.

For example, the query in Table 2.6 reports the average light and temperature
level at sensors near a bird nest where a bird has just been detected. Every time
a bird-detect event occurs, the query is issued from the detecting node and the
average light and temperature are collected from nearby nodes once every 2 s for 30
s. In this case, it is assumed that bird-detection is done via some low-level operating
system facility, such as a switch that is triggered when a bird enters its nest.

2.1. MONITORING OF STATIC EVENTS WITH WSN 17

Metadata Management

Before queries are disseminated, the sink performs a simple query optimization phase
to choose the ordering of sampling, selections, and joins that minimizes the power
consumption. Each node in TinyDB maintains a catalog of metadata that describes
its local attributes, events, and user-defined functions. This metadata is periodically
copied to the sink to be used by the optimizer. Event metadata consists of a name, a
signature, and a frequency estimate that is used in query optimization. User-defined
predicates also have a name and a signature, along with a selectivity estimate which
is provided by the user himself. Metadata associated with node attributes are: how
much energy and time are required to sample this attribute, if this attribute is
constant or variable, what range this attribute can take on, how fast this attribute
can change. The catalog also includes names of aggregates and pointers to their code.
Each aggregate consists of a triplet of functions, that initialize, merge, and update
the final value of partial aggregate records as they flow through the system. TinyDB
also stores metadata information about the costs of processing and delivering data.

Power-Based Query Optimization

Sampling is a more expensive operation, in terms of energy consumption, than
executing an operator. However, if a predicate is required to be evaluated over
an attribute of a sensor node, the corresponding transducer must be activated to
execute the sampling. On the other hand, if a predicate discards a tuple of the
sensors table, then subsequent predicates do not need to examine the tuple, so
the cost of sampling any attributes referenced in the subsequent predicates can be
avoided. Thus, ordering carefully the expensive operators, can save energy. In order
to efficiently order the predicates, TinyDB considers two problems: (a) an attribute
may be referenced in multiple predicates, and (b) expensive predicates are only on
a single table, sensors. The first point introduces some subtlety, as it is not clear
which predicate should be “charged” with the cost of the sample.

To model this issue, TinyDB handles the sampling of a sensor as a particular
operator, τ , that is scheduled along with the predicates, p. TinyDB deals the prob-
lem of determining the minimum-cost order of predicates and sampling operations,
under the constraint that τi must precede pj if pj references the attribute sampled
by τi. The proposed solution is as follows: (a) data are acquired only when any
predicate over that data must be evaluated, unless it was already sampled in or-
der to evaluate a previous predicate; (b) if a query requires two or more sampling
operations, they are performed in ascending order of sampling energy.

Dissemination and Routing

After the query has been optimized, it is disseminated into the network; dissemi-
nation begins with a broadcast of the query from the sink. As a node receives the
query, it decides whether the query applies locally and/or whether it needs to be

18 CHAPTER 2. RELATED WORK

broadcast to its children in the routing tree. We say a query q applies to a node n if
there is a nonzero probability that n will produce results for q. If a query does not
apply at a particular node, and the node does not have any children for which the
query applies, then the entire subtree rooted at that node can be excluded from the
query, saving the costs of disseminating, executing, and forwarding results for that
query. In order to address the problem of determining when a node or its children
need not participate in a particular query, TinyDB uses a data structure called a
semantic routing tree (SRT), that maintains information about child attribute val-
ues. With SRT a node can determine whether none of its children currently satisfy
the value of some selection predicate, for example, because they have constant (and
known) attribute values outside the predicate’s range.

Conceptually, an SRT is an index that can be used to locate nodes that have data
relevant to the query. When a query q with a predicate over a constant attribute
A arrives at a node n, n checks if any of the values related to A and produced by
its children overlap the query range of A in q. In this case, it prepares to receive
results and forwards the query. Otherwise, the query is not forwarded. Moreover, if
the query also applies locally, n begins executing the query itself. If the query does
not apply at n or at any of its children, it is simply ignored. Building an SRT is
a two-phase process: first the SRT build request is flooded through out the whole
network. This request specifies the name of the attribute A over which the tree
should be built. When a node n receives the request, if it has no children, then it
chooses a node p from available parents to be its parent, and reports the value of A
to p in a parent selection message. If n has children, it forwards the request to them
and waits for their replies. When it has heard from all of its children, it chooses
a parent and sends a selection message indicating the range of values of A which
it and its descendants cover. Because children can fail, nodes also have a timeout
which is the maximum time they will wait to hear from a child; after this period
is elapsed, the child is removed from the child list. Figure 2.5 shows an SRT over
the X coordinate of each node on a Cartesian grid. The query arrives at the root
and it is forwarded down the tree. Only the gray nodes are required to participate
in the query (node 3 must forward results for node 4, despite the fact that its own
location precludes it from participation).

Processing Queries

Once queries have been disseminated and optimized, the query processor executes
them. Time is divided in epochs. Nodes sleep for most of an epoch to minimize
power consumption. Once a node is awake, it begins sampling and filtering results
according to the plan provided by the optimizer. Filters are applied and results are
routed to join and aggregation operators further up the query plan. Results are
put into a radio queue for delivery to the node’s parent. This queue contains both
tuples from the local node, as well as tuples that are being forwarded on behalf of
other nodes in the network. The queue can fill depending on the number of queries

2.2. DETECTION AND TRACKING OF MOBILE EVENTS WITH WSN 19

0
X

1 2 3 4 5 6 7 8 9 10 11

0Y

1

2

3

4

5

6

7

8

9

10

11

12

4

2

5

Location: (1,7)

SRT(x)

3

QUERY
SELECT light
WHERE x > 3
AND x < 7

Location: (8,7)

SRT(x)
4: [5,5]
5: [10,10]

Location: (4,12)

SRT(x)
1: [1,1]
3: [5,10]

Location: (10,3)

SRT(x)

Location: (5,3)

SRT(x)

1

Figure 2.5: A semantic routing tree in use for a query. Gray arrows indicate flow of
the query down the tree; gray nodes must produce or forward results in the query.

running, the cardinality of joins, and the number of groups and aggregates. In this
case, the system must decide if it should discard the overflow tuple, discard some
other tuple already in the queue, or combine two tuples via some aggregation policy.

2.2 Detection and Tracking of Mobile Events with

WSN

Kumar et al. [50] propose a framework for distributed event detection where groups
of nodes cooperate to detect a composite event. The framework consists of two
protocols that build a tree to detect an event by using a communication model
similar to the Publish-Subscribe paradigm, where the communication is done in an
asynchronous manner. An application subscribes to an event by specifying the area
where the event is expected to occur. Then the protocol builds an event-based data
collection tree. For composite events, a counter is maintained for each atomic event
part of the composite event. Counters keep track of the number of sensors which
can sense atomic events. Sensors are added to the tree until counters exceed some

20 CHAPTER 2. RELATED WORK

predefined thresholds.
In [64] the Timely Energy-efficient k-Watching Event Detection problem (TEK-

WED) is examined. The authors move the computation needed to detect an event
inside the network, which now takes place at a gateway node. This node is respon-
sible for reaching a conclusion and notifying the users when an event happens. The
gateway node is properly selected, and every sensor in the network has a chance to
serve as a gateway node in order to balance the energy consumptions. The sensors
are grouped in detection sets and only one detection set is active at any time, thus
saving energy. The gateway node disseminates the threshold to be checked to detect
the event to the sensors, and they notify the gateway when the current sensed values
are over the threshold. The gateway then computes the information coming from
the sensors and determines whether the event occurred.

In [35] the authors propose a cluster based, energy-aware event-detection scheme
where events are reliably relayed to a sink in the form of aggregated data packets.
The clustering scheme proposed provides fast and accurate event detection and
reliability control capabilities to the areas of the network where an event is occurring.
In particular, the sink assigns a dynamically adaptable reliability factor to clusters,
according to their size and event proximity such that the clusters closer to the event
send packets to the sink more frequently. In order to reduce the energy consumption,
the proposed scheme includes an energy-level based CH selection that ensures that
higher energy nodes remain as cluster heads for a longer time. In addition, it also
provides a mechanism for the CH to control the transmission rate of the sensors
according to the assigned cluster reliability.

In [73] the authors investigate the detection performance of randomly deployed
WSN. They address the problem of detecting mobile targets that have continuous
movement. They distinguish two kind of targets. In the first type, called rational
targets, the knowledge of existing sensors is assumed. In the second type of targets
this assumption does not hold, and it is assumed that the targets neither know
anything about the sensors, nor do they plan their path for specific purposes, while
their traces are assumed to be straight lines. They propose a mechanism to find
critical positions to deploy additional sensors, so that the freedom of mobile targets
can be limited, and the probability of detection on mobile targets is increased.

In [68] the Scheduling for Composite Event Detection (SCED) problem is ad-
dressed. They propose a sensor scheduling mechanism that ensures both coverage
and connectivity requirements, and maximizes the network lifetime. They assume
that sensors are densely deployed, and that they are equipped with multiple sensing
components for watching a composite event. The proposed method is to put some
redundant sensors to sleep. They consider the network lifetime organized in rounds,
where each round has two phases: initialization phase and data collection phase.
The initialization phase chooses a set of active sensors as sensing nodes in order to
achieve both coverage and connectivity requirements. Sensors which are not chosen
to be active in this round go to sleep to save energy. In the data collection phase,
active sensors perform sensing and data relaying.

2.2. DETECTION AND TRACKING OF MOBILE EVENTS WITH WSN 21

In [74] the authors investigate the problem of how to design a detection scheme
to minimize the energy consumption of WSN while providing the required detection
accuracy. They propose an adaptive scheme that leverages the discrepancy among
individual sensor’s detection accuracy, which is obtained from a collaborated training
process, to allow each sensor to operate at its most energy efficient level while
guaranteeing the overall detection accuracy.

Recently, the fuzzy logic paradigm has been applied in the event detection in
WSN. FED [41] is a fuzzy event detection model that benefits from fuzzy variables
to measure the intensity as well as the occurrence of detected events. FED uses fuzzy
rules to define composite events to enhance handling uncertainty. FED also provides
a node level knowledge abstraction, which offers flexibility in applying heterogeneous
sensors. The model is also applicable to a clustered network for distributed event
detection.

In [32] the authors focus on improving the definition of the event to be detected in
order to increase the detection accuracy. In particular they believe that using precise
values to specify event thresholds cannot adequately handle the often imprecise
sensor readings. They use fuzzy values instead of crisp ones to define the event to
detect, thus improving the accuracy of event detection.

One of the first works on tracking moving objects with WSN is ZebraNet [30]. In
this work the sensors operate as a peer-to-peer network to compute local information
about the moving objects to be tracked. This information is then stored inside
the network. The base station periodically traverses the network and gathers the
acquired data from the sensors when it is close to them.

In [67] a distributed and scalable prediction-based algorithm that accurately
tracks mobile targets using WSN is proposed. The algorithm uses a cluster based
architecture for scalability and robustness. Given a target to track, the proposed
algorithm provides a distributed mechanism for locally determining the optimal
set of sensors suitable for the task. Only the selected sensors are activated, thus
minimizing the energy spent. Additionally, the protocol uses a predictive mechanism
to alert the cluster heads about the approaching targets. Based on this prediction,
the cluster heads activate the most appropriate sensors for the task immediately
before the arrival of the target.

A prediction-based approach is also used in [21], where the cluster organization
of the network is exploited to track multiple moving objects.

EnviroTrack [6] is an embedded tracking application for WSN. It adopts a data
centric programming paradigm called attributed-based naming through “context la-
bels”, where the routing and addressing are based on the content of the requested
data rather than the identity of the target sensor node. The attribute-based nam-
ing is applied by associating user-defined entities (context label) to real physical
targets. With this network abstraction layer the programmer declares the environ-
mental characteristics which define the context label of the object to be tracked.
Based on this, all sensors that sense the same declared characteristics (object) are
aggregated to track that physical target. With network management mechanisms

22 CHAPTER 2. RELATED WORK

such as lightweight group management and group leader election, it supports the
dynamic behavior of the tracked targets such as mobility.

In [36] the authors address the problem of tracking moving objects in a WSN
by considering the physical network topology to build a logical tracking tree for
the collection of tracking data. The tree is optimized in order to minimize the tree
updating and query execution costs.

RARE [47] proposes two algorithms for performing an efficient target tracking
based on a static cluster organization of the WSN. The first algorithm reduces the
number of sensors participating in tracking by excluding the sensors too far from
the target object. The second one reduces redundant information by identifying
overlapping sensors.

In [8] the data acquired by the sensors are analyzed, in a centralized manner,
outside the network, in order to detect phenomena to track and from which data is
acquired. A phenomenon is detected when different sensors report similar readings
over a period of time. Once the phenomenon has been detected, the information
about the spatial properties of the phenomenon are used to optimize subsequent
user queries.

DELTA [66] is a fully distributed event localization and object tracking frame-
work for WSN. DELTA adopts a distributed algorithm for detecting an event and
for dynamically building groups around the object to be tracked. For each group,
a leader is responsible for group maintenance, gathering and processing of tracking
data. In [65] the DELTA framework is extended with mechanisms for the localization
and classification of events.

CODA [20] is an algorithm for the detection and the tracking of continuous
phenomena (fires, gas clouds, etc...) based on a hybrid static/dynamic clustering
technique. A static backbone comprising a designated number of static clusters is
constructed during the initial network deployment stage. Upon detecting a contin-
uous phenomenon, the cluster heads of the backbone pilot the creation of dynamic
clusters by using the information acquired by the sensors at the boundaries of the
phenomenon, thus reducing the amount of communications between the sensors.
The dynamic clusters are used to track the phenomena and to acquire data from
them.

In [59] the main effort is in reducing the number of environmental readings and,
as a consequence, the amount of data delivered outside the network. They take
infrequent snapshots of the area and they adopt a low-quality target tracking algo-
rithm to maintain object identities. The target tracking algorithm they adopt is a
leader-based algorithm, in which the node that is considered to have the best reading
for the moving object, is elected as leader. The leadership is passed from a sensor to
another (a neighbor of the previous leader) by exploiting probabilistic estimation of
the direction of the moving object. Periodically (exactly when the snapshot period
elapses), the leader collects and aggregates the readings of its neighbors to achieve
a high-quality belief on the target moving object, and it sends this information to
the base station.

2.2. DETECTION AND TRACKING OF MOBILE EVENTS WITH WSN 23

In [18] the authors present a novel framework for time-critical event generation
in WSN environments that includes tools to model intruder detection events, as
well as fire and gas propagation scenarios. The different models developed are
integrated into an application optimized for ns-2 compatibility. They also provide
a front-end to simplify the interactions with the user and to allow visualizing the
different events generated. In [37] they use the framework developed in [18] to
performed a comprehensive analysis of the performance of IEEE 802.15.4 based
WSNs at supporting time-critical applications. In particular, they measure the
accuracy and the delay introduced by gas and fire monitoring processes.

In [53] the authors propose a prediction based tracking technique using sequential
patterns (PTSPs) designed to achieve significant reductions in the energy dissipated
by WSN while maintaining acceptable missing rate levels.

All the works presented above either address only the detection of events or
on the tracking of objects in WSN, or they are focused on a specific application
scenario. On the other hand, we propose a comprehensive system that enables to
both detect a user-defined composite event and to automatically track it and collect
interesting data from the event without any further intervention from the user.

In the next sub-sections we describe in more detail the works that are more
related to this thesis about detection and tracking of mobile events.

2.2.1 Distributed Cooperation for Event Detection

Kumar et al. in [50] propose a framework that exploits the collaboration among
sensors for distributed event detection in WSN. It consists of two protocols (simple
event detection protocol and composite event detection protocol) that build a tree
to detect an event. Each protocol is composed of two phases, namely initialization
phase and collection phase. Different components are present on different nodes
depending on the functionality of each node. The communication model that is
used in the framework is similar to the Publish/ Subscribe paradigm [60]. It is
scalable and it offers the advantage to entirely decouple the publishers from the
subscribers so the communication is done in an asynchronous manner.

In the initialization phase, the application submits events of interest to the sensor
network. Here the application acts as a subscriber for the event of interest. The
events of interest can be a simple event or a combination of simple events. Based on
these events, an event based tree (EBT) is built according to the Publish/Subscribe
communication paradigm. Nodes which can generate data related to any simple
event join the tree. Generation of data depends on the sensing capabilities of the
nodes, thus, an EBT is constructed as required by the application. This tree can be
shared by different applications if a simple event is present in more than one events
of interest supplied by them. The collection phase is responsible of gathering results
after an event has occurred. The aggregation happens at each node depending on
the event and the corresponding generated data.

An application submits predicates over attributes in the form of A1 > value1, A2 >

24 CHAPTER 2. RELATED WORK

value2, ..., An > valuen, where A1, A2, ..., An are low level sensing attributes like tem-
perature, pressure, etc. Subscription messages with the above mentioned predicates
are generated by the middleware, that also plays the role of event disseminator in
the WSN. After receiving a subscription message, each node checks whether it has
the capability to sense the attributes specified in the message. If so, it produces an
entry of the application identifier (application id) along with the parent id, that is
the node from which it has received the message. The application id is maintained
to distinguish between different subscriptions. A node receiving a subscription from
a user node will act as the sink for that subscription, and the related tree is built
with the sink as root.

The application submits the event to be reported in the form of a simple event.
It also specifies the location regions where the event has to be detected, the number
of hops, and the tolerable delay between events. The number of hops determines
the number of groups to be formed in the desired region. This parameter is entirely
dependent on the application. For example, in a target tracking application sen-
sors will form several groups in the region of interest to increase the probability of
detection.

In this work, the sensors are assumed to be aware of their position. Thus each
node can check whether it is present in the desired region and, hence, decide whether
to participate in the event detection task. The system keeps track of how many
nodes are required to infer that an event i has happened, and it also keeps track
of how many nodes are currently detecting that particular event. If the number of
nodes which are already detecting some event exceeds the minimum number of nodes
requested to detect that event, the other nodes can skip detecting this particular
event, hence saving energy, or they may contribute to detect other events. In this
way nodes collaborate among themselves and contribute for event detection.

2.2.2 Composite Event Detection

Vu et al. [64] propose a scheme for detection of composite events in WSN. They
move the computation needed to determine the occurrence of the event, inside the
network, in one or more gateway nodes. The network is composed of different types
of sensors. For example, in Figure 2.6, type1, type2, and type3 sensors are used
for temperature, smoke density, and light monitoring, respectively. An event E is
defined as following:

E = F(P1(x), ..., Pn(x)) (2.1)

where P1(x) through Pn(x) are predicates, and F is a function of Boolean algebra
operators such as ’∧’, ’∨’, or ’¬’. For example, an event fire can be defined as
Fire = P1(x) ∧ P2(x) ∧ P3(x), where P1(x) denotes the predicate temperature >

2.2. DETECTION AND TRACKING OF MOBILE EVENTS WITH WSN 25

Gateway sensor

Type1 sensor

Type2 sensor

Type3 sensor

Figure 2.6: Network architecture in Composite Event Detection.

300◦C, P2(x) denotes the predicate smoke > 100mg/L, and P3(x) denotes the
predicate light > 500cd.

In event alarming applications the connectivity is extremely important since an
event needs to be alerted on time. However, energy conservation is always a primary
objective for WSNs. To meet these requirements, the proposed scheme divides the
sensors into non-disjoint subsets (detection sets), and each subset can conduct the
event alarming process with a user defined fault-tolerance level. Instead of requiring
all the sensors to be active all the time, only one subset is responsible for the event
alarming task at any time. In this way, energy can be conserved and the network
lifetime can be extended. Each detection set is provided with a BFS tree built at the
set definition moment; such tree is used to route the messages to the gateway node.
During the active time of a detection set, the sensors in this set route their messages
to the gateway node based on the topology and routing information provided by the
sink.

The detection set construction algorithm first selects a gateway node (where the
gateway can simply be any node with enough residual energy). Then, it constructs
a set of connected BFS-like trees rooted at the gateways, and the nodes in each
of these trees form a detection set. Several parameters are considered by a sensor
in order to be added to a tree: its residual energy, the energy needed to transmit
a message to its parent node, and the number of transducers that belong to the
predicates of the event to detect. Once the detection sets are built, the sensors start
monitoring the events to be detected.

An event E and the related threshold values can be either disseminated to gate-

26 CHAPTER 2. RELATED WORK

way and non-gateway nodes by the sink at the initial phase, or pre-installed in each
sensor. Only the gateway nodes have the information about an event E. All the
other nodes only know the threshold values of its monitored properties. During the
network operation time, when a sensor detects that the current sensed value is over
the threshold of its monitored property, it sends one bit ’1’, instead of the sensed
value, to the gateway node in its detection set. If a gateway node receives a ’1’,
it checks if the propositional function which defines the event E derives a TRUE
value. If so, it immediately notifies the sink. By sending only one bit of notifica-
tion, instead of sending raw data each time, the amount of data transmitted in the
network is significantly reduced.

2.2.3 ZebraNet

ZebraNet [30] is a WSN system for wildlife tracking. In this case, the sensors are
tracking collars carried by animals across a large area. The collars are equipped
with GPS, and they operate as a peer-to-peer network to deliver logged data back
to the user. The scenario in which operates ZebraNet is the following:

1. sensors store their readings (GPS position included) for 3 minutes every hour.
Differently from traditional WSN applications, they do not send the acquired
data to the user immediately;

2. the WSN runs for 1 year without the human intervention;

3. the sensing-field is very large (over 40,000 square Km);

4. the sink is not fixed; it periodically traverses the network to gather the stored
data;

5. latency is not critical, but a high success rate (close to 100%) for the data
collection phase is required;

The collars are equipped with two radios: a data radio with a range of only 100
meters but a very low power consumption, and a slow but higher-power data radio
for longer-range (8km) transmissions. The short-range radio is power-efficient for
peer transmissions, while the longer-range radio is necessary for communicating to
the sink to deliver the data. However, even with the long-range radio, the area
where the sensors operate is too large for direct communications with the sink.
Sensors forward data coming from other sensors in multi-hop paths. In ZebraNet
the sensors are extremely mobile, therefore no fixed network topology can be built
to collect data. Also the sink is mobile, depending on the route taken by researchers
in their vehicles. Furthermore, it is active only for a limited period of time, when
researchers are driving around gathering data. During the period when the sink is
inactive, the network has no known destination where data can be sent.

2.2. DETECTION AND TRACKING OF MOBILE EVENTS WITH WSN 27

A simple approach to send data to the sink is to flood data to all neighbors
whenever they are discovered. If the sensors move extensively and meet a fair number
of other sensors, data will eventually reach the sink. In this way, the percentage
of the delivered data is high. By using multi-hop paths, the sink does not need to
interact directly with all the sensors in the system. While flooding can potentially
return the highest success rate in a peer-to-peer network, the large amount of data
flooded through the network can lead, in some situations, to exorbitant demands
for network bandwidth, storage capacity, and energy.

ZebraNet also considers a history-based protocol that smartly selects sensors that
will be visited by the sink to collect data, based on prior communication patterns. A
good target sensor is one that can relay the data to the sink. This protocol encodes
the likelihood of a sensor being within the sink’s range by assigning each sensor
a hierarchy level, based on its past success at transferring data to the sink. The
higher the level, the higher the probability that this sensor is within sink range.
The idea behind this approach is that sensors that were previously within range of
the sink will still be close by, so they will be able to relay the data back to the
sink either directly (if they are still within range), or indirectly through a reduced
set of intermediate sensors. Each sensor remembers its own current hierarchy level.
Each time a sensor scans for neighbors, it requests the hierarchy level of all of its
neighbors. It then sends the data it has collected to the neighbor with the highest
hierarchy level, with ties randomly broken. When a sensor comes within range of
the sink, its hierarchy level is increased. Conversely, when a sensor is outside the
range of the sink for a long time, its hierarchy level becomes lower at a rate of one
level per every D scans, where D is a configuration parameter. At the beginning, all
sensors start with a hierarchy level equal to zero. The success of the history-based
unicast routing protocol depends on the degree of mobility of both sink and sensors.
If the network changes very dynamically, a sensor that was previously near the base
station may no longer be the best communication target. Then, the history-based
protocol may result in a low success rate.

28 CHAPTER 2. RELATED WORK

Chapter 3

Monitoring Static Events with
MaD-WiSe

The detection of static events is one of the most common tasks in WSN. This task is
often achieved by instructing the sensors to continuously collect environmental data
and to send them to the sink for analysis. To implement this task efficiently, the most
common approach [69, 40, 13, 7] is to instruct the sensors to perform a preliminary
filter and preprocessing of the data, in order to reduce the communication costs. As
observed in many of the works presented in Chapter 2, the tasks of data sensing,
filtering and preprocessing can be easily expressed by means of SQL-like queries. In
this chapter we present MaD-WiSe, a system for data management in WSN that
exploits a query language based on SQL to define a monitoring task. MaD-WiSe
defines a stream based model and a query algebra to represent the query plan for each
sensor, and it uses a query optimization strategy to reduce the energy consumption
of the query. More specifically:

• MaD-WiSe defines a query language with constructs specialized for WSN. The
query language manipulates data sources consisting of specific transducers
located on individual sensors. The queries thus express the sensors and trans-
ducers involved in the sensing activity and the timings of such activity. Queries
can relate and compare data acquired by multiple (remote) sensors, and they
can also aggregate data in the spatial and temporal dimension. Queries are
fully executed in the sensors of the WSN. Section 3.2 discusses these aspects.

• To support the query language MaD-WiSe defines a stream model for WSN.
Streams are used to represent both data acquisition and data transfer among
sensors, and the model defines different energy costs depending on the stream
nature. The stream model is presented in Section 3.3.1.

• MaD-WiSe defines a query algebra that introduces operators that represent
aggregation and/or filtering operations on data streams. A query is thus trans-
lated into a distributed query plan consisting of operators of the query algebra

30 CHAPTER 3. MONITORING STATIC EVENTS WITH MAD-WISE

connected by streams. The query is executed by the WSN in a distributed
fashion: each sensor involved in a query executes the part of the query plan
assigned to it. The query algebra is described in Section 3.3.2.

• MaD-WiSe uses an algebraic approach to query optimization that uses trans-
formation rules based on heuristics aimed at reducing the energy consumption
of the query. Query optimization issues are discussed in Section 3.6.

It should be observed that the main purpose of MaD-WiSe is different than that
of traditional databases, where the main issue is to process queries as quickly as
possible. In fact, MaD-WiSe is oriented at the WSN lifetime maximization, that
implies a minimization of the energy consumed by queries. Besides query optimiza-
tion, MaD-WiSe adopts energy efficiency techniques based on the synchronization of
the sensors to reduce their periods of activity and communications. To this purpose,
the MaD-WiSe query optimizer extracts information about the data sampling rate
from the query, and uses this information to configure the MAC and network layers
of the sensors. Regarding this issue, MaD-WiSe exploits a cross-layer optimization.

The MaD-WiSe architecture comprises two main components, one component,
called client-side, that runs on the sink (in our case a PC or a PDA), and one
component, called network-side, that runs on the sensors. Both components are
organized as a protocol stack composed of independent layers. The MaD-WiSe
architecture is described in Section 3.4

MaD-Wise is implemented in Java and TinyOS [4] for the Crossbow Mica plat-
form [5] and it can be downloaded from the MaD-WiSe project web site [3].

Note that an early version of MaD-WiSe was already implemented at the begin-
ning of this thesis. However, that preliminary work was greatly improved during
the development of this thesis under these respects:

• we have first analyzed the performance of MaD-WiSe by means of simula-
tions and experimentations to identify and assess new query optimization
techniques;

• we have introduced cross-layer optimization strategies that extract informa-
tion about sampling rate of the query, and we have used this information to
configure the network and MAC layers of the sensors;

• we have revised the query processing model according to the above points, and
we have redesigned the architecture to implement the new optimizations and
the energy efficiency strategies.

3.1 Design Goals and Assumptions

The MaD-WiSe is a complex system, that addresses several aspects related to the
efficient data management in a WSN. It has been designed keeping in mind the
following goals:

3.2. QUERY LANGUAGE 31

• Modularity: despite the limited computational and memory resources of the
sensors, the network-side component of MaD-WiSe is not monolithic. It is
organized as a protocol stack with three layers with well defined interfaces.
This enables the possibility of replacing the policies implemented at each level
without affecting the whole system.

• Distributed in-network query processing: MaD-Wise aims at carrying
the major part of the computation within the network. To this purpose the
sensors execute the queries cooperatively and the query language exploits join
operators in order to enable in-network aggregation and filtering of data pro-
duced by different sensors.

• Abstraction of the Wireless Sensor Network: the user submits high-
level queries and he/she does not have to be concerned on how the results are
actually collected and processed.

• Hybrid push/pull behavior: the system provides both on-demand and
periodic data acquisition.

• Energy efficiency: MaD-WiSe adjusts the energy consumption to the effec-
tive needs of the query, by exploiting cross-layer techniques to synchronize the
sensors.

• Optimization: MaD-WiSe exploits optimization techniques to compute the
query execution strategy that are able to reduce the energy consumption.

Consistently with several other similar approaches [70, 40, 54, 61], MaD-Wise
also assumes a static network topology for the whole duration of an injected query.
Furthermore, it assumes that the client-side component of MaD-WiSe knows the
static locations of the sensors. This knowledge can be obtained from the network
itself, using techniques as those proposed in [19], or it can be manually generated
when the network is deployed, for instance, by annotating on a map the location
where the sensors were placed in the buildings or in the field subject to the mon-
itoring application. The current implementation of MaD-WiSe adopts the latter
method. In particular, it uses a manually-generated configuration file that specifies
the set of available sensors, their positions, and their sensing capabilities (i.e. the
set of on-board transducers).

3.2 Query Language

The MaD-WiSe query language, called MW-SQL, shares its basic constructs with
SQL. MW-SQL allows users to express queries to manipulate, filter, and organize
sequences of tuples generated by the sensors. While SQL uses the concept of table,
to denote a typology of data stored, MW-SQL relies on the concept of source to

32 CHAPTER 3. MONITORING STATIC EVENTS WITH MAD-WISE

provide the user with an abstraction of a sequence of tuples arriving from a precise
origin. MW-SQL queries are expressed through query statements whose complete
syntax is reported in Section 3.2.1 (additional details can also be found in the MaD-
WiSe manual [29]). The simplest type of data source (called basic source) is an
individual transducer on a sensor. MW-SQL also handles complex sources that are
constructed by combining together other sources (basic or complex) by means of
the MW-SQL operators. The operators include timestamp join (that is a join on
the timestamp attribute), spatial aggregation, union, etc. and they are described in
Section 3.3.2.

To get the flavor of the MW-SQL language, consider the following MW-SQL
query:

SELECT *
FROM avg(1.Temperature, 2.Temperature, 3.Temperature) as AVG
WHERE AVG.Temperature > 25
EVERY 10000

This query requests the WSN to compute the average of the values received every
10 seconds from the basic sources corresponding to the temperature transducers on
sensors 1, 2, and 3 (the aggregate of the temperature measured by the three sensors
is a spatial average, that is an aggregate computed between the values of the same
fields in different sources). If the average temperature is above 25, it is sent to the
sink. The query involves three sensors, each of which executes different operators
connected by streams. The information passed from one operator to the other
consists of tuples, each containing a data and its timestamp. Hence, in this case,
the result of the query is a pair (TS, Temperature), where TS is the timestamp and
Temperature is the computed average value. The Temperature parameter in the
FROM clause is different from the one in the WHERE clause.

By means of clause EVERY, the user states at which frequency the query should
be executed (in this particular case the user requests data to be delivered every 10
seconds). This information is extracted from the query by the Query Parser, and it
is given, along with the query plan, to sensors 1, 2, and 3 that are involved in the
query. Once these sensors begin to execute the query, they activate the transducers
and the radio interface every 10 seconds, only for the time needed to perform the
samplings and the communications required.

MW-SQL can also express temporal aggregates, that is, aggregates computed
between the values acquired in a given time interval. This can be expressed by
specifying the aggregate operator in the SELECT clause, and by defining the time
interval using the EPOCH clause. Other examples of queries can be found in Table
3.1 and Table 3.3.

If the sensors’ coordinates are known (for instance, if they embed GPS or if they
are assigned some sort of virtual coordinate [19]), it is possible to choose the sources
for a query by specifying the area where the needed sensors are located by indicating
the top-left and bottom-right corners of a rectangular area.

3.2. QUERY LANGUAGE 33

3.2.1 MW-SQL Syntax

MW-SQL specifies two constructs. One construct is used to express queries. The
other one is used to create virtual sources.

A MW-SQL query is defined as:

query ::= SELECT select-list
FROM source
[WHERE conditions]
[(EPOCH|WINDOW) samples [SAMPLES]]
[EVERY rate]

A select list is a list of fields or (temporal) operators on fields:

select list ::=select element(,select element)∗|*
select element ::=t aggr(field) | field
t aggr ::=MAX|MIN|AVG| . . .
field ::=simple source.field name
field name::=string

The from clause takes as argument a source. There are various types of sources:

source::= single source|source list
single source::=named s s|unnamed s s
named s s ::=unnamed s s AS virtual source
unnamed s s ::=simple source|basic source|s aggr source|UNION(source list)
|query
simple source::=virtual source|node source
virtual source::=string
node source::=number |area source|ALL
basic source::=node source.transducer name
transducer name::=string
s aggr source::=s aggr(source list)
area source::=AREA(number,number,number,number)
source list ::=single source(,single source)+

s aggr ::=MAX|MIN|AVG| . . .

Conditions take the following form:

conditions ::=condition [AND condition]∗

condition::= exp op exp
exp::= field |number
op::= =| < | > | <= | >= | . . .

34 CHAPTER 3. MONITORING STATIC EVENTS WITH MAD-WISE

Finally the timing is expressed as:

samples ::=number
rate::=number

The construct for creating virtual sources has the following syntax:

virt-source::= CREATE SOURCE source-name
AS source

source-name::=string

3.3 Query Processing Model

A WSN can be seen as a distributed data stream managements system, where data
can be accessed, processed, and cross-related using distributed query processing
techniques [34, 14, 46].

In MaD-WiSe the tasks executed by the WSN are expressed by using SQL-like
queries. A query is translated by the sink node (in case of MaD-WiSe a standard PC
that is connected to the WSN and that runs the client-side module of the MaD-WiSe
system) into a query plan that consists of a set of operators (defined in the query
algebra) connected by streams. Streams connect operators executed either on the
same sensor or on different sensors. Streams are also used to connect data sources
(i.e. transducers) to operators. The query is first handled by the Query Parser
(running on the sink), which generates a query execution plan, that, in turn, is
transformed by the Query Optimizer (also running on the sink) into an equivalent,
energy-efficient query plan. To this purpose the optimizer uses the configuration
file that specifies the set of available sensors and their capabilities. Finally, the
sink injects the optimized query plan into the sensors that, in turn, execute the
query. The operators of the query algebra are executed exclusively on the sensors.
Therefore, once a query is submitted, the WSN is able to autonomously execute it.
Note that in MaD-WiSe data are not stored into the sensors. Instead the portion of
the query plan they are executing specifies when the data should be acquired from
the environment, how it should be processed, and where it should be sent. In the
following we describe in more detail the query language, the streams, and the query
algebra operators of the MaD-WiSe system.

3.3.1 Streams

MW-SQL queries are parsed at the client side and translated into a query execu-
tion plan consisting of operators of the query algebra (discussed in Section 3.3.2)

3.3. QUERY PROCESSING MODEL 35

connected by streams of tuples. MaDWiSe uses three types of streams to pro-
vide operators with three modes of accessing data: sensor streams, which represent
streams of data acquired by the transducers, remote streams that model streams of
data connecting two operators on different sensors, and local streams that represent
streams of data generated by the execution of local operators and sent as input to
other local operators. These three types of streams model data acquisition (sensor
streams), data transmission (remote streams) and pipelined processing on a single
sensor (local streams). The flow of tuples in a stream is modeled by a single dynam-
ically changing tuple t. A stream maintains the last received tuple, and every new
tuple overwrites the previous one, forcing an on-the-fly processing of the tuples. A
small buffer can also be used to store tuples in case of delays during execution of
operators.

In the following the three types of streams are described.
Sensor Streams are used to sample environmental data. A sensor stream

receives tuples of data acquired by the associated transducer. Tuples in a sensor
stream have the following structure: (TS = ts, NI = ni, TR = value), where TS
is the field containing the timestamp, NI is the field containing the identifier of
the node, and TR is the name of the field corresponding to the transducer used
to acquire a value (for instance, Temperature, Light, Acceleration, etc.). Three
different modes for receiving the tuple of a sensor stream are considered:

1. In the periodic update mode the transducer is activated to acquire a tuple at a
fixed rate. The time interval between two consecutive transducer activations
is called sampling period.

2. In the on-demand update mode the transducer is activated as a consequence
of a read request on the stream that causes a tuple to be acquired. This mode
can be used to obtain transducers readings only under specific conditions.

3. In the asynchronous activation mode the tuple is acquired when some external
asynchronous event occurs, like, for instance, when a button is pressed.

Periodic updates can be used for periodic monitoring, for example to collect
the temperature readings every 10 seconds. On-demand updates can be used by
the Query Processor to acquire a value only when some other condition is verified
(for instance the light values are read only when the temperature is above a given
threshold). Asynchronous updates can be used to detect asynchronous environmen-
tal events (for example a vehicle passing through a gate). The update mode of a
sensor stream is decided during the query plan generation and query optimization,
on the basis of the role of the stream in the query. In on-demand sensor streams
the transducer activation (and then the tuple acquisition) is executed (on-demand)
when the read operation is invoked.

Remote streams. In general the queries are processed cooperatively by a group
of sensors. In these cases it is necessary partial query results produced by a sensor to

36 CHAPTER 3. MONITORING STATIC EVENTS WITH MAD-WISE

be sent to another operator located on another sensor, in order to complete the query
execution. For this purpose remote streams are used, where source and destination
endpoints (operators) are located on different sensors.

Local Streams model data transfers between operators located on the same
sensor in order to enable pipelined executions of the operations. Local streams differ
from remote streams since they have different costs in terms of energy consumption.
Local streams mainly consume memory resources, while their energy consumption
is negligible. On the other hand, remote streams mainly consume energy due to the
transmission of the tuples, and this energy consumption is predominant for the cost
evaluation of a query execution plan.

3.3.2 Operators of the query algebra

Operators of the query algebra read data from one or more streams and, after
processing the read tuples, write (output) result tuples on another stream. An
instance of an operator can be seen as a thread that runs on a specific node of the
WSN. All operators are non-blocking and have a strictly pipelined behavior: as soon
as an operator reads a tuple it processes the tuple and, if needed, it immediately
writes the result in the output stream, avoiding the use of temporary buffers for
producing results.

Regarding the selection and the projection of the tuples, MaD-WiSe provides
two basic operators that have the same semantics of the corresponding operators of
the traditional relational algebra.

In addition, MaD-WiSe provides a special definition for the n-ary operators, like
spatial aggregation, union, and join, that require the interaction of several sensors.
These operators are implemented as a combination of binary operators composed
to form a binary query execution tree (see Figure 3.1), using an approach similar
to that proposed in [15, 40] for computing aggregates. The nodes of the tree are
operators that compute partial states of the n-ary operator. To this purpose they
use locally computed data and/or partial states computed by their children. The
nodes are allocated and executed by different sensors of the network; this means that,
depending on their allocation, the nodes are connected by local or remote streams.
The representation of the partial state of binary operators depends on the specific
operator being executed. In some cases the partial state has a size comparable to
that of the final operation result (for instance in the case of max and min), while in
other cases the size of the partial state might be larger and can raise issues related
to resource scarcity (as in case of the median).

Clearly, given a group of sensors, an n-ary operator can be computed by orga-
nizing and connecting the binary operators in different way. However, the way in
which they are connected affects the cost of execution of the whole n-ary operator.
In section 3.6 we will discuss how the Query Optimizer can produce a query plan
consisting of a communication tree that minimizes the energy consumption.

In the following we discuss the n-ary operators in more detail.

3.3. QUERY PROCESSING MODEL 37

Spatial Aggregation aggregates data produced by different sensors, which
might be located in different positions of the space (field) where the WSN is de-
ployed. For example, consider applications that compute the average, the maxi-
mum, or the minimum of a given parameter measured at different locations of an
environment. Aggregation of data produced by a group of sensors is a very signifi-
cant feature in WSN since it allows reducing the amount of data that is sent to the
sink.

Figure 3.1(a) shows an example of how the maximum light measured by a group
of sensors can be obtained. Every node computes the maximum between the value
acquired locally and the maximum computed by its child. The computed aggregate
value is passed to the parent node. Figure 3.1(b) shows an example where the
average light measured by a group of sensors is computed. In this case, the partial
state is represented by the sum of the values to be aggregated and the number of
values that have been summed. The average is computed in the root of the tree by
dividing the sum of the values by the number of values. This is achieved using two
operators: partial average (pavg) and final average (favg). The former one computes
the sum and counts the values, and it is used in the intermediate nodes of the binary
tree. The latter one is used at the root, and it divides the sum by the number of
values. The pavg operator produces a tuple of type (TS, Light, count), where the
Light attribute contains the sum of the light readings, and count contains the number
of values that were summed. The favg operator produces a tuple of type (TS, Light),
where the Light attribute contains the computed average. Other aggregates might
need other types of partial state information to be transferred across the nodes of
the tree.

Union is used to gather data from several homogeneous basic sources, possibly
located on different nodes. In this case the partial nodes of the query execution tree
acquire the local data and add it to the current query result message. The root node
simply forwards all the received data to the next operator.

MaD-WiSe provides two definitions for the Join operator: timestamp-join and
sync-join. The timestamp-join operator, ⊲⊳ (S1, S2), is the default join operator
in MaD-WiSe, and it relates data acquired (almost) simultaneously on both input
streams. When a new tuple arrives on either stream, the timestamp-join operator
checks whether the last tuple received on the other stream has the same timestamp.
In this case it writes the tuple obtained by their combination in the output stream.
This operation is clearly non-blocking, and its execution requires only single-position
buffers. To solve the synchronization problem among sensors, a low resolution times-
tamp is used. In this way, even if two values are not read (strictly) simultaneously,
they have the same timestamp.

The definition of the timestamp-join operator implies that the two input streams
are read independently and in parallel. If several tuples (with different timestamps)
arrive at the first input stream before a tuple arrives at the second input stream,
all the readings from the first stream, except the last one, will be useless. This
produces a useless energy consumption due to the transducers or radio activations.

38 CHAPTER 3. MONITORING STATIC EVENTS WITH MAD-WISE

(a) Spatial maximum.

(b) Spatial average.

Figure 3.1: Example of query execution plans for the spatial maximum (a) and for
the spatial average (b). Spatial average uses two different operators: pavg (partial
average) and favg (final average)

Consider, for example, the query in Table 3.1. It retrieves the light and temper-
ature readings only when the temperature is above the specified threshold1. By

1Differently than standard SQL, where the FROM clause indicates a cartesian product among

3.3. QUERY PROCESSING MODEL 39

SELECT *
FROM Room1.Light, Room2.Temperature
WHERE Room2.Temperature > 20
EVERY 10000

Table 3.1: An example of a query executing a timestamp Join in MW-SQL. This is
different from standard SQL, where the FROM clause indicates a cartesian product,
since here the FROM clause indicates a timestamp join among sources by default.

σTemp>20

T L

Figure 3.2: Using the join operator, both sensor streams T and L should be periodic.
Using the sync-join, the L sensor stream can be on-demand, i.e. it is activated only
when needed

the previous join definition, this query can be processed by using two periodic sen-
sor streams associated with Light L and temperature T , respectively, and by using
the query execution plan given in Figure 3.2. Temperature and Light transducers
are both activated every 10 seconds. When the temperature is below the specified
threshold, no temperature tuple is sent to the join operator, and the current light
reading is lost, since it cannot be matched. Activating the light transducers when
the temperature is below the threshold is useless, and it introduces an additional
energy consumption. If the probability that the temperature is above the specified
threshold is very low, the above query plan consumes a lot of energy for unnecessary
light readings.

The same query can be processed more efficiently by defining L as an on-demand
sensor stream and by using a special definition of the join operator that requests the
activation of L only when a tuple arrives on the other stream. This avoids useless
transducer activations on the on-demand stream, thus saving energy. This operator
is called sync-join, ⊲⊳sync (S1, S2), where S2 is an on-demand stream. The sync-join
operator combines both the push and the pull sensing techniques and has a master-

tables, in MW-SQL the FROM clause indicates timestamp join among sources.

40 CHAPTER 3. MONITORING STATIC EVENTS WITH MAD-WISE

slave behavior: stream S1 is the master and the slave stream S2 is read only when a
tuple is received from the master. In this case, the sensor in which the slave stream
is instantiated, has to be the sensor that executes the join operator.

In addition to the operators described so far, MaD-WiSe also provides a Tem-
poral Aggregation operator that aggregates data over a time interval. Temporal
aggregation is achieved by using epochs (that is, jumping windows), or moving win-
dows. Epochs are consecutive, non overlapping, fixed size time intervals associated
with individual queries. Every epoch contains all tuples whose timestamp falls
within the corresponding interval. More formally, let us assume that the evaluation
of a query starts at time t0, and that the epoch duration for that query is te. The
i-th epoch of that query is the interval Epi = (tistart, t

i
end], where tistart = t0 + i · te

and tiend = t0+(i+1) · te. For moving windows, each time a tuple arrives, the oldest
one is deleted and the new one is stored in the sensor.

The temporal aggregation operator that uses epochs, groups together tuples
belonging to the same current i-th epoch, which is determined by using t0, te, and the
epoch counter i. When the epoch ends, the operator computes the final aggregates
and deposits the result in the output stream. Then it computes the first partial state
for the next epoch. The output tuple generated at the end of the epoch contains
the computed aggregated value and the timestamp set to the end of the epoch. The
functions used to compute partial and final states, and the information maintained in
partial states, depend on the specific aggregation operator being used. For instance,
for aggregations like the median, the partial state may contain all readings made
during an epoch.

Instead, the temporal aggregation operator that uses moving windows, groups
together tuples belonging to the same moving window. Partial states are contin-
uously updated when a new tuple comes. The final aggregation is also computed
every time, after the initial delay needed to fill the time window.

The complete semantics of the MW-SQL operators can be found in [9].

3.4 Architecture

The MaD-WiSe system consists of a set of modules that implement a distributed
stream management system on a WSN. Some of the MaD-WiSe modules (network
side) run on the sensors of the WSN and others (client side) run on a PC or on a
PDA connected to the WSN through a special sensor called sink. See Figure 3.3 for
an illustration.

3.4.1 Client-Side

The client side sub-system is composed of a user interface, a Query Parser, an
execution plan Optimizer, and a Query Manager. The user interface allows the user
to instruct the sensor network, by submitting MW-SQL queries, and to visualize

3.4. ARCHITECTURE 41

!"#$%&'(#)$*%+)$*

,-.!**
-/#0$/*

12$/3*
45/($/*

12$/3*
64#8$/*

12$/3*
95%5:$/*

;($/*
<%&$/=5>$*

?<@A*

@$&B+/C'(#)$*%+)$*

95-'D#?$*

E%$/:3*
$F>#$%>3*

G#%36?*

12$/3*4/+>$((+/*

?&/$57*?3(&$7*

@$&B+/C*

95-'D#?$*

Figure 3.3: The architecture of MaD-WiSe.

42 CHAPTER 3. MONITORING STATIC EVENTS WITH MAD-WISE

Radio Mode Power Consumption
Idle 0.016 mW
Ready 12.36 mW
Receive (Rx) 12.50 mW
Transmission (Tx)
0.1 power level 12.36 mW
0.4 power level 15.54 mW
0.7 power level 17.76 mW

Table 3.2: Power Consumption of the radio of an IRIS mote.

the results received. The Query Parser takes the MW-SQL query and translates it
into an initial distributed query execution plan, that is, it generates the operators
that execute the query and a first allocation plan of the operators on the sensors.
The Query Optimizer then generates a semantically equivalent query execution plan
where the operations to be executed and the assignments of operators to sensors of
the WSN are reorganized so that the costs required for radio communication and
transducer activations are reduced. The Query Manager disseminates the optimized
query execution plan in the network and handles the results received during the
in-network query execution.

Client applications that use MaD-WiSe can be built by relying on JDBC (Java
DataBase Connectivity) [44], using a JDBC driver developed for MaD-WiSe. This
way, WSN applications can be almost entirely developed using standard database
tools.

3.4.2 Network-Side

The network side of MaD-WiSe is developed in nesC [26] on top of the standard
MAC layer of TinyOS [4] for the sensor platform MicaZ/Iris [5]. Every sensor
contains three software layers (Network, Stream System, and Query Processor), as
depicted in Figure 3.3. The layers interact through well defined interfaces, and are
autonomous with respect to each other. Each layer can be replaced with a new
(different) implementation provided that it complies with the existing interfaces.

Network Layer

In MaD-WiSe the network layer should support routing between arbitrary pairs of
sensors. There are several implemented protocols providing this service in WSN,
such as, for example, [2] or [27]. The current version of MaD-WiSe uses a simplified
version of [49].

The Network layer offers both connectionless and connection-oriented commu-
nication services. In the second case, a reserved path is established between the
sensors by means of the connect command, and it is used for the communications

3.4. ARCHITECTURE 43

that follow a query. The network layer also implements an energy efficiency strat-
egy for the connection-oriented service. This strategy manages the duty cycles of
the sensors, in particular the on/off periods of the radio interfaces according to the
sampling rate expressed in the queries. In fact, the sampling rate of a query defines
the rate at which fresh data are sent by the sensors to the sink through the channels
implementing the remote streams of the query. The energy efficiency strategy of
MaD-WiSe is described in more detail in Section 3.4.3

Stream System Layer

The Stream System layer offers abstraction mechanisms for data access by means of
data streams. It can be seen as the equivalent of a file system on a sensor network, the
main difference being that, in the former, data is dynamically produced, rather than
stored, as a consequence of acquisition from transducers and communication between
sensors. The Stream System implements the three types of streams (the sensor, local
and remote streams) described in Section 3.3.1. The Stream System interacts with
the network layer by means of an interface that defines the connect, disconnect and
send commands. The interface also provides two events, connectDone and receive
that notifies to the Stream System layer the completion of the connect procedure
and the receipt of a message, respectively. When the Stream System layer invokes
a connect command with a specified destination, the network layer finds a route
(called channel) to the destination and allocates the needed data structures on the
sensors involved in the channel. When the connection is established, the network
layer notifies the completion of the operation by signaling to the Stream System
layer a connectDone event. The send command takes as input the message to be
sent and the identifier of the channel to be used for the communication, and sends
the message over this channel. Upon receiving a message, the Stream System layer
is notified of the incoming message by means of the receive event, specifying the
identifier of the channel the message is received from.

Query Processor Layer

The Query Processor layer is the core component of the system. It implements a
Query Processor of a distributed data stream management system over the Stream
System. It offers the implementation of the operators of the query algebra discussed
in Section 3.3.2, and it orchestrates the execution of distributed query plans com-
posed of operators connected by streams. The Query Processor of every sensor can
be programmed by the client-side subsystem in order to take part in a distributed
query execution. In particular, it is instructed by means of messages sent over the
serial, in case of the sink, and over the wireless channel, in case of all other sensors.
These messages contain information about the operator that has to be executed on
the sensor, and about the streams that have to be opened. As a consequence, the
Query Processor allocates the data structures related to the operator to be executed.

44 CHAPTER 3. MONITORING STATIC EVENTS WITH MAD-WISE

The Query Processor also interacts with the Stream System to open the required
streams, by means of an interface that provides the following commands:

• open s, open l, open r : opens the specified stream: a sensor stream in the case
of open s, a local stream in the case of open l, and a remote stream in the
case of open r. All these commands return the stream descriptor that is used
by the Query Processor to use the stream. The commands open s and open r
take as input the sampling rate at which the data has to be acquired or sent,
respectively.

• close is used to remove the specified stream.

• read allows the Query Processor to read the data from the specified stream.
If no data is available on the stream the read operation terminates without
returning any data. However, as soon as a new data arrives on the stream,
the Query Processor is notified by means of the readDone event.

• write is used to insert data into the specified stream.

3.4.3 Energy Efficiency in MaD-WiSe

The purpose of the energy efficiency strategy is to let the sensors keep their radios
off whenever possible, i.e. when they do not expect to send or receive data. In fact,
as observed in other works [71, 57], the radio interface is one of the main sources
of energy consumption, and the most critical to optimize. In general, the sensor’s
radios have four states: idle, ready, Tx (transmission mode) and Rx (receive mode).
The energy consumption is very low in idle mode, and it is high for ready, Tx or
Rx modes, as shown in Table 3.2. Furthermore, the energy consumption in Tx, Rx
and ready modes is quite similar. Hence, to save energy, sensors should keep the
radio idle as much as possible. On the other hand, while in idle mode, the radio
cannot receive and send packets, and the sensors in this mode behave as if they are
disconnected from the network. Hence, if the radio of the sensors is not properly
switched off, the network may get disconnected and the sensors may become unable
to communicate. Existing MAC layer approaches [10, 23, 51] exploit this feature
to reduce the radio energy consumption. We build the energy efficiency strategy of
MaD-WiSe based on the work [10].

This strategy manages the on/off periods of the radio interface according to
the duty cycles associated to the queries the sensor is involved in. More precisely,
each connect message has, as a parameter, the sampling rate at which the data
are requested by the sink. This information is given to all the energy efficiency
components of the sensors involved in the path supporting the connection. In turn,
all these components control the radio activations accordingly for the entire duration
of the query.

3.4. ARCHITECTURE 45

query2

query1

time line
and radio
status 0 10 20 40 30

too near => radio kept on

50

Figure 3.4: Energy efficiency mechanism.

Figure 3.4 shows an example of how the energy efficiency mechanism works, by
showing the status of the radio of a sensor involved in the execution of two queries
(query1 and query2). The first two lines show the duty cycles related to the two
queries. The last line shows the overall radio activity (portions of this line not
marked by a colored bold line, mean radio turned off). In this example query1 has
a duration of 2 seconds, and a period of 9 seconds, while query2 has a duration of
2 seconds and a period of 15 seconds. The energy efficiency component computes
the union of all the duty cycles of the sensor, and determines when it should turn
off the radio, according to two additional parameters, tolerance and radioDelay,
that provide more flexibility to the system. The tolerance parameter specifies the
minimum time interval between the end of a duty cycle and the beginning of the
following one: if two duty cycles are too close the radio is kept on until the second
one ends (as happens in Figure 3.4 at second 17 and at second 29). The logic behind
this behavior is that turning the radio on and off consumes additional energy and
time, so two commutations of the radio could waste more energy than keeping the
radio on. The radioDelay parameter is used to postpone the radio turning off, so
that the delay introduced by the transmission of the packets over a multi-hop path is
compensated. The duration of the duty cycles is set such that a packet can traverse
the longest path in the network and reach the destination before the end of the duty
cycle.

The performance of the energy efficiency mechanism is assessed by measuring
the periods of radio activity of a sensor. In this evaluation, we use 4 IRIS motes
[5] (s1, s2, s3, s4) connected in a line, i.e. s1 is connected to s2, s2 to s3 and s3 to
s4. Node s1 acts as the sink, and receives the results of the queries, and the queries
are all directed to s4, which is the node that produces data. In the experiments,
we measure the radio activity on node s2. We repeat four sets of experiments with
a number of queries ranging from 0 to 4. The rate of each query is set randomly

46 CHAPTER 3. MONITORING STATIC EVENTS WITH MAD-WISE

Figure 3.5: Performance of the MaD-WiSe energy efficiency mechanism.

in each experiment. Each experiment is repeated 10 times for 180 seconds, and
in each experiment we measure the average period of time in which the radio of
sensor s2 is in the following states: idle, ready, Rx and Tx. From these data we
obtain the average energy consumption of sensor s2 (expressed in mAh) in all the
sets of experiments, as shown in Figure 3.5. The figure also reports the energy
consumption estimated with the TOSSIM simulator, and the energy consumption
in the case where the energy efficiency mechanism is disabled. From the figure it is
seen that the energy efficiency strategy enables significant energy savings, and that
the energy consumed grows sub-linearly with the number of queries.

3.5 Execution of a query: a walk-through exam-

ple

In this section we describe step by step all the phases executed by the system in
executing the example query reported in Table 3.3. The query performs a timestamp
join among values acquired by magnetic, acceleration, and temperature transducers
on nodes 1, 2, and 3, respectively. When the condition defined in the WHERE
clause is true, the result of the query is sent to the sink. Given that the asterisk

3.5. EXECUTION OF A QUERY: A WALK-THROUGH EXAMPLE 47

”∗” is used in the SELECT clause, no projection is executed on the result, and all
fields of the tuples that satisfy the condition are sent to the sink.

In order to be executed, the query has to go through 4 steps. 1) The query
is parsed, and after syntax and type checking an initial query execution plan is
generated. 2) The query execution plan is analyzed by the query optimizer that
generates an alternative, semantically equivalent, query execution plan that requires
lower energy consumption to be executed on the nodes of the WSN. 3) The optimized
query execution plan, consisting of streams connecting operators, is injected in the
WSN. 4) Each node of the WSN executes its portion of the query execution plan.

Steps 1) and 2) are executed at the sink (for instance a PC, a palmtop, etc).
Step 3) is jointly executed by the sink and nodes of the WSN. Step 4) is exclusively
executed by nodes of the WSN. These 4 steps are better described in the following.

1) Initial query plan generation: The query parser takes the query expressed
using the MW-SQL syntax and translates it into a query execution plan consisting
of operators of the query algebra connected by streams. The query plan gener-
ation starts from the FROM clause, where the source of the query is specified.
The generated query execution plan can be seen in Figure 3.6a. According to the
query in Table 3.3, the leaves of the tree representing the query execution plan are
three periodic sensor streams representing magnetic, acceleration, and temperature
transducers from nodes 1, 2, and 3, respectively, where the three streams are allo-
cated. The FROM clause also specifies that a timestamp join should be executed
among the tuples received by the three streams. Given that the timestamp join
is a binary operator, the join among the three streams is obtained by using two
cascading binary joins. In Figure 3.6a the two join operators are assigned to nodes
2 and 3. However, given that this is the initial query execution plan, this is rather
arbitrary and the query optimizer will improve the allocation strategy. The query
parser takes the selection operators to be added to the query execution plan in the
WHERE clause. In Figure 3.6a the selection operators corresponding to predicates
p1, p2, and p3 are simply appended on top of the top-most join operator, and are
assigned to node 3. As before, this is again arbitrary, and the optimizer will chose a
better placement. Given that there is no projection defined in the SELECT clause,
the query execution plan is almost complete. Connections between operators are
realized with streams. Operators assigned to the same node are connected with
local streams, while operators assigned to different nodes are connected with remote
streams. Finally, the acquisition rate is taken from the EVERY clause and used to
set the periodic sensor stream acquiring rate.

2) Query plan optimization: Once the initial query execution plan is gen-
erated it is given to the query optimizer to generate a better and equivalent one.
Figures 3.6b and 3.6c show two examples of better, yet semantically equivalent,
query plans. This is discussed in more detail in section 3.6.

3) Query plan dissemination: The optimized query plan is then disseminated
in the WSN. To do so, messages corresponding to the operators to be executed and
the streams to be set-up are sent to the nodes involved in the execution of the

48 CHAPTER 3. MONITORING STATIC EVENTS WITH MAD-WISE

SELECT *
FROM 1.Magnetism, 2.Acceleration, 3.Temperature
WHERE p1(1.Magnetism) and p2(2.Acceleration) and
p3(3.Temperature)
EVERY 3000

Table 3.3: Query used for the query execution and optimization example. The
query performs a timestamp join between Magnetism, Acceleration, and Tempera-
ture readings from nodes 1, 2, and 3, respectively, every three seconds. If predicates
p1, p2, and p3 are satisfied, results are sent to the sink

query. For instance, if the optimized query execution plan is the one given in Figure
3.6c, node 1 receives requests to set up a sensor stream (associated to its magnetic
transducer), a selection operator, and a remote stream towards node 2. The sensor
stream is connected to the selection operator on the same node, which in turn is
connected to the join operator, instantiated on node 2, by means of the remote
stream. Similar requests are sent to the other nodes involved in the query.

4) Distributed query plan execution: When all relevant nodes have received
their portion of query execution plan, a query − start message is broadcasted and
the query execution starts in all nodes in a distributed fashion. The query execution
process is actually driven by periodic sensor streams. They acquire data at a fixed
rate and pass the corresponding tuple (including the data and the timestamp) to the
operator connected to them, which, after processing it, may pass the result to the
next operator. For instance, in the query execution plan given in Figure 3.6c, the
query execution is driven by the periodic sensor stream associated with the magnetic
transducer in node 1. The acquired tuple is given to the selection operator on the
same node. If the tuple satisfies predicate p1, the tuple goes through a remote stream
to the sync-join operator on node 2. The sync-join operator, as soon as it receives
the tuple, asks the on-demand sensor stream on node 2 to acquire the acceleration.
The tuple, obtained after the join, is given trough a local stream to the selection
operator on node 2. If the tuple satisfies predicate p2, it is sent to node 3, etc. This
process is repeated every time the periodic sensor stream on node 1 acquires a new
tuple.

The output of the query execution is a stream of the tuples resulting from the
execution of the topmost operator on the query execution plan. These tuples are
sent to the sink to be used by the application running on it.

3.6 Query optimization and results

While in traditional databases the Query Optimizer looks for a query plan such
that the query execution is faster, in MaD-WiSe the focus of the optimization is the
energy consumption. The Optimizer thus tries to find an optimal cost query plan,

3.6. QUERY OPTIMIZATION AND RESULTS 49

where the cost is measured in terms of the energy required to compute a query.
MaD-WiSe uses an algebraic optimization approach, that is based on transfor-

mation rules transforming a query plan into a semantically equivalent one with a
lower cost. The final query plan is obtained by applying successive transformations
to an initial query plan built from the MW-SQL query. It also uses some strate-
gies for re-ordering of the operators according to selectivity of predicates, cost of
acquisition, and topology.

MaD-WiSe relies on some well-known transformation rules proposed in the lit-
erature to optimize traditional database query execution. For instance, rules to
push-down selection and projection operators, and selectivity-based ordering of se-
lections are very useful since they contribute to reduce the amount of data to be
transferred upward in a query plan. This implicitly reduces the amount of data
traversing remote streams, and, in turn, it reduces the amount of radio activity and
of energy consumed.

In particular, MaD-WiSe uses the transformation rules defined according to the
following guidelines:

SJ rule (Sync-Join): Sync-join and on-demand streams should be used whenever
possible, to reduce cost of acquisition.

LDJT rule (Left Deep Join Trees): Given that a sync-join requires a sensor
stream on the right side, trees representing query plans should be unbalanced
to the left. In this way, the chance that a sensor stream (a leaf node) is found
as the right argument of a join is increased.

PD rule (Push-Down): Unary operators such as selections, projections, and tem-
poral aggregates (which reduce the amount of data being forwarded) should
be moved as close as possible to the node where data is acquired, to reduce
the cost of communication.

Given a query plan, the Optimizer executes three sequential steps:

1. Heuristically uses the transformation rules that apply to it, until there are no
transformation rules that can be applied.

2. Performs operator re-ordering, according to the selectivity of predicates, cost
of acquisition, and topology criteria.

3. Evaluates all the query plans obtained and, according to a proper cost model,
it chooses the query plan that consumes less energy.

Optimization strategies, analysis and experiments

Let us assume that we submit the MW-SQL query showed in Table 3.3, where p1, p2,
and p3 are some predicates on magnetism, acceleration and temperature readings,

50 CHAPTER 3. MONITORING STATIC EVENTS WITH MAD-WISE

with probability Pr(p1) = 0.005, Pr(p2) = 0.025, Pr(p3) = 0.05, respectively. These
probabilities represent the selectivity of the predicates, and they are used by the
query optimizer to perform the re-ordering of the operators.

Figure 3.6 shows three possible equivalent query plans that can be considered
by the query optimizer to process the above query. The sink is assumed to be an
external node connected to sensor 3. QP1, on the left, is obtained by applying the
LDJT rule. It first acquires all specified data, and then joins them before applying
the three selections on the last sensor. This requires all magnetism readings to be
sent to sensor 2 and joined with the acceleration readings. The result of the join
is sent to sensor 3 where it is joined with the temperature reading; then, the three
selections are applied. QP2, in the middle, is obtained from QP1 by using the PD
rule. In this query plan all data must be acquired. However, the magnetism reading
is sent to sensor 2 only if it satisfies p1. The join on sensor 2 is thus executed only
if both p1 and p2 are satisfied, and in this case the result is sent to sensor 3. The
join in sensor 3 is executed only if all the three predicates are true, and in this case
the result is sent to the sink. QP3, on the right, is obtained from QP2 by using the
SJ rule. In this case, magnetism is always acquired, and it is sent to sensor 2 if it
satisfies predicate p1. Only in this case the acceleration is acquired and joined with
the magnetism value. The result of the join is sent to sensor 3 if p2 is satisfied and,
as a consequence, temperature is acquired. Finally, if p3 is satisfied, the result is
sent to the sink.

The costs of the three query plans are reported in Table 3.4. The costs reported
in this table refer to the MicaZ motes, and they are obtained by analysis. In partic-
ular, for each query plan QP1, QP2, and QP3 the energy cost of each component of
the sensors that is activated by the query plan, for a single round of data sampling, is
considered. The energy cost of each component is taken from the MicaZ datasheets
[5]. The transmission cost in the table includes both the send and receive costs for
the sensors involved. In the table the total energy of each operation is computed by
taking into account the probabilities Pr(p1), Pr(p2), Pr(p3) of success of the predi-
cates p1, p2, and p3, respectively. These probabilities affect the frequency (shown in
column Freq.) with which the single operations involved into the query plans are
executed. This is why, for example, the power required for the transmission of the
magnetism in QP1 is always accounted for in the total energy cost of the query,
while it is accounted with a weight equal to 0.005 in QP2 and QP3. The lower cost
of QP2 with respect to QP1 is due to the reduced number of communications that it
requires. The lower cost of QP3 with respect to QP2 is due to the combined reduc-
tion of communications and acquisitions. In this simple example, the improvement
of QP3 with respect to QP2 is limited. However the next section shows how the
use of sync-joins (as produced for QP3) with appropriate ordering of operators can
provide significant performance improvements in more general cases.

3.6. QUERY OPTIMIZATION AND RESULTS 51

1.M. 2.A.

22 3.T.

33

σ
3
p3(3.T.)

σ
3
p2(2.A.)

σ
3
p1(1.M.)

Node 3

Node 2

Node 1

(a) Query Plan QP1

1.M. 2.A.

22

33

σ
3
p3(3.T.)

σ
2
p2(2.A.)σ

1
p1(1.M.)

3.T.

Node 3

Node 2

Node 1

(b) Query Plan QP2

1.M.

σ
2
p2(2.A.)

σ
1
p1(1.M.)

2.A.

2

sync

2

sync

3.T.

σ
3
p3(3.T.)

3

sync

3

sync

Node 3

Node 2

Node 1

(c) Query Plan QP3

Figure 3.6: Three possible execution plans for the same query.

QP1: QP2: QP3:
Action Energy(mJ) Freq. Power Freq. Power Freq. Power
Acquire M. 0.2685 1 0.2685 1 0.2685 1 0.2685
Send M. 0.31087 1 0.31087 0.005 0.00155 0.005 0.00155
Acquire A. 0.03222 1 0.03222 1 0.03222 0.005 0.00016
Send M.A. 0.31087 1 0.31087 0.000125 3.89E-5 0.000125 3.89E-5
Acquire T. 0.00009 1 0.00009 1 0.00009 0.000125 1.11E-08
Send M.A.T. 0.31087 6.25E-6 1.94E-06 6.25E-6 1.94E-06 6.25E-6 1.94E-06
Total Cost: 0.92254 0.3024 0.2702

Table 3.4: Costs of the three executions plans in Figure 3.6.

52 CHAPTER 3. MONITORING STATIC EVENTS WITH MAD-WISE

1.M.

σ
2
p2(2.A.)

σ
1
p1(1.M.)

2.A.

2

sync

2

sync

3.T.

σ
3
p3(3.T.)

3

sync

3

sync

Node 3

Node 2

Node 1

(a) Query Plan QP3

3.T.

σ
2
p2(2.A.)

σ
3
p3(3.T.) 2.A.

2

sync

2

sync

1.M.

σ
1
p1(1.M.)

1

sync

1

sync

Node 1

Node 2

Node 3

(b) Query Plan QP4

3.T.

σ
1
p1(1.M.)

σ
3
p3(3.T.) 1.M.

1

sync

1

sync

2.A.

σ
2
p2(2.A.)

2

sync

2

sync

Node 2

Node 1

Node 3

(c) Query Plan QP5

1

3 6

2

7

4

sink

5

1

3 6

2

7

4

sink

5

1

3 6

2

7

4

sink

5

(d) Geographical placement of sensors and remote streams connecting the sensors. Grey nodes
represent the sensors involved in the query, white nodes represent other sensors, that can be used
as intermediate sensors that forward packets. Arrows represent remote streams used to send data
among sensors.

Figure 3.7: Three possible execution plans for the same query using joins.

Ordering of operators

Several equivalent query plans that maintain the same overall structure can be
obtained by changing the order of the operators in a tree. MaD-WiSe considers the
following three different ordering criteria:

criterion S (Selectivity): more selective selections are pushed down in the tree;

criterion P (Power): less expensive transducers are pushed down in the tree;

criterion T (Topology): short range communications are given priority;

The first criterion (S selectivity) gives precedence to very selective predicates to fil-
ter immediately useless data, thus reducing communications and data acquisitions

3.6. QUERY OPTIMIZATION AND RESULTS 53

QP3:

Action Energy(mJ) Freq. Power

Acquire M. 0.2685 1 0.2685
Transmit M. 0.31087 0.005 0.00155
Acquire A. 0.03222 0.005 0.00016
Transmit M., A. 0.62174 0.000125 7.77E-5
Acquire T. 0.00009 0.000125 1.11E-08
Transmit M., A., T. 1.24347 6.25E-6 7.77E-06

Total Cost: 0.2703

QP4:

Action Energy(mJ) Freq. Power

Acquire T. 0.00009 1 0.00009
Transmit T. 0.62174 0.05 0.03109
Acquire A. 0.03222 0.05 0.0016
Transmit T., A. 0.31087 0.00125 0.00039
Acquire M. 0.2685 0.00125 0.00034
Transmit T., A., M. 0.62174 6.25E-6 3.89E-06

Total Cost: 0.03351

QP5:

Action Energy(mJ) Freq. Power

Acquire T. 0.00009 1 0.00009
Transmit T. 0.31087 0.05 0.0155
Acquire M. 0.2685 0.05 0.01342
Transmit T., M. 0.31087 0.00025 7.77E-5
Acquire A. 0.03222 0.00025 8.05E-6
Transmit T., M., A. 0.31087 6.25E-6 1.94E-06

Total Cost: 0.02914

Table 3.5: Cost of the query plans QP3, QP4, and QP5.

by means of sync-joins. This criterion exploits (if available) the probability of suc-
cess of the predicates involved in the query. The second criterion (P power) gives
precedence to low cost acquisitions. High cost acquisitions are thus executed with
low probability since they are high in the tree, and the data collected at the lower
levels of the tree must pass the selections first. The third criterion (T Topology)
reduces the communication costs by choosing an ordering of the operators and their
allocation on the sensors such that the multi-hop communication paths are short-
ened.

Figure 3.7 shows the different query plans obtained by applying these criteria.
Differently from the previous section, multi-hop paths are taken into account here.
The figure also shows an hypothetical placement in the space of nodes involved in
the query, and the remote streams that connect nodes to execute the query. Streams
are labelled with the hypothetical number of hops needed to support communication
through them. In QP3 operators are ordered according to criterion S; criterion P

54 CHAPTER 3. MONITORING STATIC EVENTS WITH MAD-WISE

case 1 - p1, case 2 - only the case 3 - only the up- case 4 - p1, p2, and
is false lowest predicate is true most predicate is true p3 are all true

QP3 1.5393 1.8901 2.5274 3.4832
QP4 1.27089 1.9403 2.5274 3.1646
QP5 1.27089 1.8579 2.2088 2.5274

Table 3.6: Costs of QP3, QP4, and QP5 obtained from the experiments.

is used in QP4, and criterion T is used in QP5. Their costs are reported in Table
3.5. The costs in this table refer to MicaZ motes, and they are obtained by analysis.
In particular, for each query plan QP3, QP4, and QP5, the energy cost of each
component of the sensors that is activated by the query plan, for a single round of
data sampling, is considered. The frequency at which the component is activated
(reported in column Freq. in the table) depends on the probability of success of the
predicates p1, p2, and p3.

The cost of QP4 (0.033 mJ) is one order of magnitude smaller than the cost
of QP3 (0.27 mJ). The cost of QP5 (0.029 mJ) is slightly smaller than the cost of
QP4. Therefore, the expected lifetime of a network running QP4 or QP5 is about
8 times longer than when running QP3. However, this is not a proof that ordering
according to the topology of the network is always the best solution. The results
can vary depending on the selections filtering and on the acquisitions costs. In
general, there is not an optimal ordering strategy. For this reason the Optimizer
generates different orderings according to the various criteria, and chooses the one
providing the best performance, according to the cost model adopted. As shown in
the example, this may lead to performance improvements of orders of magnitude.

These analytical results have also been confirmed by experimentation where the
three query plans QP3, QP4, and QP5 have been executed on a MicaZ sensor
network. For each sensor have been measured the duration of the periods in which
its radio is in idle, off, transmit, and receive mode, and the duration of the periods
in which the transducers are active. Then this information has been crossed with
the energy cost per unit of time taken from the datasheets of the MicaZ motes. The
results of this experiment are reported in Table 3.6, that shows the cost of the three
query plans for different values of the tree predicates p1, p2, and p3. In particular,
the table shows the results in four cases: case 1 - the lowest predicate is false (it is
p1 in QP3 and p3 in QP4 and QP5), case 2 - only the lowest predicate in the query
plan is true, case 3 - only the upmost predicate is false (it is p3 in QP3, p1 in QP4,
and p2 QP5), and case 4 - all the three predicates are true.

Scalability of the query

As the size of the WSN scales up, both the number of sensors involved in a query
and the distance (in terms of number of hops) between them may also scale up.
However, these facts do not affect the complexity of the tasks to be executed by

3.6. QUERY OPTIMIZATION AND RESULTS 55

each individual sensor. In fact, MaD-WiSe constructs the query plan as a binary
tree in which each sensor is a node of the tree and it aggregates and processes the
input from its two children (if any). This means that, despite the number of sensors
involved in the query and their distances, the amount of work assigned to each
sensor in the query plan is limited, and the query optimizer enforces this property
by imposing that the number of tasks assigned to a sensor in a query plan does not
exceed its capacity. However, as the query gets more complex and the distances
among the sensors involved in the query increase, the global cost of the query also
increases, mainly due to the larger number of sensors involved either in the query
or in the communications.

In order to evaluate this effect consider the query in Table 3.3 and its query
plan QP5. This query, that involves three sensors and a sink, can be executed both
in small and in large networks. Hence, it can be used to evaluate how it scales as
the distances among the sensors involved in the query increase. In particular, the
distance between sensors is expressed in hops, and the values analyzed are 1, 5, 10,
15, and 20 hops. The result of this analysis is shown in Figure 3.8 that reports,
for each value of distance between the sensors, the cost of the query plan QP5 in
the same cases considered in the previous section, i.e.: case 1 - the lowest predicate
p3 is false, case 2 - only the lowest predicate p3 is true, case 3 - only the upmost
predicate p2 is false (i.e. p3 and p1 are both true), and case 4 - all the three predicates
are true. The figure shows that the cost of the query plan scales linearly with the
distances in all the four cases, and as the distances increase the cost of transmission
becomes dominant. The differences between the four curves are due to the fact that,
when some of the predicates are false, the sensors avoid the cost of transmitting and
receiving packets. For example, if p3 is false (case 1) then no packet is actually
sent, and thus the total cost accounts for merely the cost of keeping the radio of the
sensors in idle mode, while in case 4 all the predicates are true; hence, the total cost
accounts for both the idle mode of the radio and the transmission and reception of
the packets.

56 CHAPTER 3. MONITORING STATIC EVENTS WITH MAD-WISE

�

�

��

��

��

��

��

��

��

��

��

� � �� �� �� ��

��	
 �

��	
 �

��	
 �

��	
 �

Figure 3.8: Cost of the query plan QP5 as the distance in hop between the sensors
increases.

Chapter 4

Detection and Tracking of Mobile
Events

Most of the current query processing approaches are inefficient when tracking mobile
events, since they require continuous updates to the query every time the event
moves or changes its shape and size. Furthermore, the queries expressed with these
approaches usually address the individual transducers, while in tracking an event a
user is mostly interested in information about the event such as speed, direction,
size and shape, information that cannot be obtained by reading a transducer.

In this section we present a proposal for the detection of moving events and for
their tracking. Specifically, we model the concept of composite event in WSN in
Section 4.1, and we define the Event Query language (EQL) for the detection and
tracking of such events in Section 4.2. EQL is a declarative query language that
allows the definition of composite events, and also of detection and tracking tasks.
In Section 4.3 we propose a query processing mechanism for the efficient execution
of EQL queries, and we model this mechanism by means of finite state machines in
Section 4.4. In Section 4.5 we evaluate the proposed approach, showing that it has
a lower overhead in terms of energy consumption, and that it scales better with the
mobility of the tracked events when compared to a centralized query approach.

4.1 Modeling Events as Query-able Data

An event, in the physical environment, can be recognized by the occurrence of
a combination of values measured by appropriate transducers. For example, an
”explosion” can be characterized by a sudden peak of vibration, noise and pressure,
and a subsequent increase of heat. The detection of an event can be modeled by
defining a condition on the values measured by a specific set of sensors, installed in
a specific area, as in the example shown in Table 4.1.

The occurrence of an event can also produce the occurrence of other dependant
events. For instance, we can suppose that, after the explosion, it is possible that a

58 CHAPTER 4. DETECTION AND TRACKING OF MOBILE EVENTS

Explosion: (Accelerometer > tA) AND (Noise > tN)
AND (Pressure > tP)

Table 4.1: Example of an explosion event description. tA, tN and tP are given
threshold values for, respectively, accelerometer, noise and pressure measurements.

SELECT Position, Speed
FROM GasCloud

Table 4.2: The query requests the position and the event speed GasCloud.

”gas cloud leak” event may also occur. As before, the event is detected by checking
the occurrence of a combination of measured values. However, given that the event
depends on another event, the condition should be checked just after the occurrence
of the previous event. In this way it is possible to define and take control of chains
of related events.

The gas cloud example also suggests that there are events that evolve once they
first occur. The gas cloud can move in the environment, can expand, or change
density, etc. Therefore, in many cases, in addition to the fact that an event has
occurred, it might also be useful to track the event in space and to monitor its
evolution.

Once an event has been detected and is being tracked, we might be interested
in obtaining information about the event itself. For instance, once we detect that
a gas cloud has been produced we might be interested in its position, its speed, its
density (in case the gas cloud is moving or expanding), etc. In this work we treat
events as fist-class citizens, and we express queries that directly use events as data
sources. A very simple example of a possible query on the gas cloud event is given
in Table 4.2.

Clearly, the information about the event can also be obtained by analyzing and
acquiring data from sensors installed in the area where the event occurred. However,
as the example in Table 4.2 suggests, we aim at providing users with a higher level of
abstraction, so that users can express queries directly on events, rather than specific
transducers in the WSN. With our approach, the user just has to decide which
information should be obtained from the event. All details related to activation of
sensors, and strategies to detect and track the event, are specified once when the
event is first defined, and are hiddenly managed by the event query processor at
query time.

In order to deal with events according to the scenario above, we need to define
a query language and in-network query processing strategies that allow to:

1. define events and data that can be read by events;

2. define and process event detection tasks;

3. define and process tracking tasks;

4.2. DECLARATIVE LANGUAGE FOR EVENTDETECTION, TRACKING, AND QUERYING59

4. express and process queries that have events as data sources.

In the rest of the paper, Section 4.2 will address these four points defining EQL
(Event Query Language), a query language for querying and tracking events; Section
4.3 proposes an in-network query processing solution for this language.

4.2 Declarative Language for Event Detection, Track-

ing, and Querying

The language that we propose in this section allows the definition of:

1. events in terms of conditions on values measured by transducers in the envi-
ronment, and values returned by the event once detected;

2. rules for detecting the event;

3. rules for tracking the event during its evolution;

4. queries on events that gather data from them, and monitor their evolution.

The language reflects these aspects by providing users with the possibility of defining
four different types of statements:

• Event statement - conditions to recognize events and values returned by the
event;

• Detection statement - rules specifying how and where to detect an event;

• Tracking statement - rules specifying how to track an event;

• Query statement - syntax for expressing queries on events.

In the rest of the section, we provide the syntax and analyze each statement in more
detail.

4.2.1 Event statement

In order to define a new event we need to specify the condition on the environmental
parameters, used to recognize the event, and the attributes that can be read from
the event after it is detected. In addition, we also need to specify the minimum
expected size of the area that will be covered by the event, when it happens. We
call this size the Smallest Event Size. The Smallest Event Size also determines
the minimum expected amount of contiguous sensors that are covered by an event
when it occurs (see Figure 4.1). The decision about the occurrence of an event is
taken by using the information acquired by all sensors in the radius defined by the

60 CHAPTER 4. DETECTION AND TRACKING OF MOBILE EVENTS

Detection Region

Event Area

Smallest Event
Size

Figure 4.1: Detection Region - In the figure the external rectangle represents
the Detection Region where the event is monitored, the dotted circle represents the
minimum expected size of the event (the Smallest Event Size that in this case is
1 hop) related to the sensor represented with the big black spot, and the cloud
represents the actual area covered by the event when it occurs (the Event Area).

Smallest Event Size. For instance, in order to detect an explosion, we can specify
that the average computed on the values measured by a group of sensors, covering
an area of the specified size, should be above a specified threshold. Isolated sensors
individually measuring high values do not detect the event.

Table 4.3 reports the syntax of the Event Statement. We explain this syntax,
and that of the other statements, building an example that defines explosion and
the gas cloud events. Tables 4.4 and 4.5 contain the definitions of these two events.

The clause SIZE specifies the extent of the Detecting Area in terms of number
of hops between nodes. If we specify size n, the event will be detected when the
values measured by a group of sensors, having pairwise hop-distance of at least n,
contribute to get a value above the threshold.

For instance, in the examples in tables 4.4 and 4.5, the clause SIZE specifies that
the Smallest Event Size is 2 and 3 hops, respectively (if sensors are aware of their
position, size can be expressed in terms of euclidean distance). This means that the
event will be detected when there is a group of nodes, having pairwise hop distance
as specified in clause SIZE, for which the condition expressed in the WHERE clause is
satisfied.

The clause AS specifies the attributes that can be read from the event. Given
that these values are computed by using the values acquired by all sensors in the
radius defined by the Smallest Event Size, the returned values will be obtained as
aggregates. For example, in Table 4.4, the values returned by the explosion event
are the noise, the average acceleration, and the average pressure computed in an
area of size 2 hops.

4.2. DECLARATIVE LANGUAGE FOR EVENTDETECTION, TRACKING, AND QUERYING61

In Table 4.5 the gas cloud is characterized by the average light, the average
temperature, and the average level of oxygen in an area of size 3 hops.

The WHERE clause specifies the condition that should be checked to determine
that the event occurred. Values defined in the AS clause can be used here.

eventSpecification::=

DEFINE EVENT <eventName>

SIZE: <len>

AS: <aggregate list>

WHERE: <condition list>

Table 4.3: The Event Statement

DEFINE EVENT Explosion

SIZE: 2hops

AS: Avg(Accelerometer) as accelExplAvg,

Min(Noise) as noiseAll,

Avg(Pressure) as pressAvg

WHERE: accelExplAvg > 80 AND noiseAll > 30 AND

pressureAvg > 90

Table 4.4: The Explosion definition.

DEFINE EVENT GasCloud

SIZE: 3hops

AS: Avg(Light) as lightGasAvg,

Avg(Temperature) as tempAvg,

Avg(Oxygen) as oxygenAvg

WHERE: lightGasAvg < 50 AND tempAvg > 40 AND

oxygenAvg < 60

Table 4.5: The GasCloud definition.

4.2.2 Detection Statement

The Detection Statement defines the rules that will be used by the nodes of the
WSN to perform the detection task of an event as defined by the Event Statement.

In several cases, detection of an event is not necessary to be monitored in the
whole environment covered by the WSN. Rather, just nodes deployed on some spe-
cific critical regions have to execute the detection task. After an event occurs, if the
event moves, neighbor nodes will be alerted as well. We call the critical region of
the environment, where an event is initially monitored, the Detection Region. For

62 CHAPTER 4. DETECTION AND TRACKING OF MOBILE EVENTS

instance, only the nodes close to the gas tank need to execute the detection task
for the explosion event. The remaining nodes will be alerted, if needed, in order to
monitor the evolution of the event.

The Detection Statement specifies the Detection Region, the frequency at which
the event conditions should be checked, and other events that the current event
might depend on.

The Detection Region identifies the set of nodes of the WSN where the occurrence
of the event will be initially monitored. All nodes in this area are instructed to
perform the detection task [56]. When an event occurs, a subset of the nodes of
the Detection Region within an area of size Smallest Event Area (as specified in the
Event Statement), will cooperate to detect the event (see Figure 4.1).

The sampling rate expresses the frequency at which the sensors must activate the
transducers to sample the environment. This is necessary because some events can
be monitored at low frequency (for example, the rising or falling of the tide), while
other events should be monitored at high frequency (for example an explosion), since
they manifests themselves very fast.

The syntax of the Detection Statement is shown in Table 4.6.

detectionSpecification::=

DEFINE DETECTION for <eventName list>

ON REGION: <area> | <id list> | <all> |

<eventName>

EVERY: <rate>

[TIMEOUT: <duration>]

Table 4.6: The Detection Statement.

The clause ON REGION defines the Detection Region where the detection of the
event should be initially executed. It can be expressed in different ways: by means
of geographical coordinates, by a list of sensor identifiers that are known to belong
to the region, by all the sensors of the network, or by an event name. In the latter
case, the Detection Region of the event being defined corresponds to the set of nodes
that actually contributed to detect the named event. This area is larger than the
Detection Area of the named event (see Figure 4.1). With this option it is possible
to define chains of events, where the definition of an event depends on a previously
defined event.

DEFINE DETECTION for Explosion

ON REGION: DangerousZone

EVERY: 500

TIMEOUT: 30d

Table 4.7: The detection definition for the Explosion event.

4.2. DECLARATIVE LANGUAGE FOR EVENTDETECTION, TRACKING, AND QUERYING63

DEFINE DETECTION for GasCloud

ON REGION: Explosion

EVERY: 1000

Table 4.8: The detection definition for the GasCloud event that depends on the
Explosion event.

Tables 4.7 and 4.8 show an example of the detection for the Explosion event
and for the GasCloud event. In the example, the GasCould event depends on the
explosion event. This means that the detection task for the GasCould event will
start after an explosion, using the area where the explosion occurred as the Detection
Region.

The clause EVERY sets the event sampling rate for acquiring data and evaluating
the boolean expression. The optional clause TIMEOUT specifies how long the detection
task has to be executed.

4.2.3 Tracking Statement

When an event occurs and, consequently, the condition of the Event Statement
evaluates to true, the detection task ends, and the tracking task begins. Tracking
has the purpose of monitoring the evolution of the event in time and space.

The event can evolve in multiple ways: it may just move, maintaining its shape
and its size (for example an intruder in a building, a car moving along a street, etc.),
and/or it may change its physical properties (for example, the gas cloud may move
according to atmospheric conditions, and it may expand or change its shape and
size).

The Tracking Statement specifies how the event should be tracked, and also
the sampling rate for acquiring the data related to the event during tracking. The
tracking task is executed by the sensors currently involved in the event. As we will
discuss in Section 4.3, one of the activities executed during the tracking task by
nodes is to alert their neighbors, even outside the Alert Region, to start checking
the detection conditions of the event being tracked. If alerted nodes detect the
event, then they start executing the tracking as well. Elsewhere, they quit after a
time-out.

Table 4.9 reports the syntax of the Tracking Statement, and Table 4.10 reports
the Tracking Statement for the GasCloud event.

The clause EVOLUTION specifies the area where the tracked event can be detected
during its evolution. It represents the area where the neighbors of nodes executing
the tracking task should be alerted to check the detecting condition of the event
being tracked. This area is generally larger than the area where the event occurred,
and in the case of Table 4.10, it is expressed in number of hops.

The clause EVERY specifies the sampling rate for the tracking task, and the clause
TIMEOUT specifies the expiration time of the tracking.

64 CHAPTER 4. DETECTION AND TRACKING OF MOBILE EVENTS

trackingSpecification::=

DEFINE TRACKING for <eventName list>

EVOLUTION: <alert extension>

EVERY: <rate>

TIMEOUT: <sleepTime>

Table 4.9: The Tracking Statement

DEFINE TRACKING for GasCloud

EVOLUTION: 1hop

EVERY: 1000

TIMEOUT: 5m

Table 4.10: The Tracking Statement for the GasCloud

4.2.4 Query Statement

The Query statement is used to gather and process information related to an event.
This statement is similar to a standard SQL query and uses events rather than tables
in the FROM clause.

dataSpecification::=

SELECT <attribute list>

FROM <eventName>

WHERE <condition list>

Table 4.11: The Query Statement

SELECT Position, Speed, oxygenAvg

FROM GasCloud

WHERE oxygenAvg < 50

Table 4.12: The Query statement for the Gas Cloud example.

Table 4.11 reports the syntax of the Event Statement, and Table 4.12 reports
the Data Statement for the gas cloud example.

The clause SELECT specifies the list of attributes to be reported to the user. In
general, these are properties of the tracked event among those defined in the Event
Statement. We also suppose that standard attributes, like position, speed, and
direction can be expressed as well. The clause FROM specifies the event to be used
as source of information. Of course, data will start coming from an event just after
it occurs. The clause WHERE specifies a list of conditions that have to be satisfied on
the properties of the event.

Table 4.12 contains a query on the GasCloud event. The example consists of a
request for the position and the speed of the gas cloud only when the average value
of the oxygen is below 50.

4.3. IN-NETWORK EVENT QUERY PROCESSING 65

4.3 In-network Event Query Processing

In this section we describe in more detail the three main phases for processing EQL:
detection task, tracking task and query execution task.

4.3.1 Detection Task

When a Query Statement is submitted, it is necessary to ask the nodes included in
the Detection Region, of the event being queried, to start executing the detection
task, unless they are already executing it. Clearly, a Query Statement cannot be
submitted if the corresponding event has not yet been defined.

The pseudo-code of the detection task executed by all nodes of the Detection
Region is reported in Algorithm 1.

The detection task, executed by a node, (1) acquires the needed data (as defined
in the Event Statement) from local transducers and (2) broadcasts them to neighbors
reachable up to S hops. Then, it (3) receives data acquired by its neighbors and (4)
evaluates the aggregate operators and the condition to check if the event occurred.
If the event did not occur, then it (5) repeats the previous steps. Elsewhere, (6) the
set of sensors, which contributed to detect the event, are collected by means of the
EventAreaDefinition procedure. After this, it launches the (7) tracking task, and
it checks (8) if there is some other event depending from the detected one; in this
case, the detection task of the next dependent event is started as well.

The set of sensors that detect an event may cover an area larger than the one
defined by the Smallest Event Size. We call Event Area the area actually covered
by the set of sensors that contributed to detect the event. The pseudo-code of the
procedure for the collection of the nodes involved in the event and the definition of
the Event Area is shown in Algorithm 2. This procedure is executed locally by all
nodes involved in an event and the aim, shortly, is to provide all of them with the
list of all nodes that detected the event. In order to prevent the procedure from
running for a long time, (1) a timer is set to stop the execution. The list of nodes
is (2) initialized with the node executing the procedure. This information is (3)
broadcasted to the neighbors reachable up to S hops. Then, it (4) receives the list
of nodes collected by its neighbors. The list of nodes collected is (5) updated by
making the union of the previous list and the list received by the neighbors. If the
new (6) list is different from the old one (it was actually updated), then it goes
to (3). Elsewhere, (7) if the timer has not expired, it goes to (4). Eventually, (8)
the list of the collected nodes is returned. Note that, with this procedure, all nodes
have the full list of nodes that participated in the detection of the event, so all nodes
become aware of the Event Area.

66 CHAPTER 4. DETECTION AND TRACKING OF MOBILE EVENTS

Algorithm 1 DetectionTask (eventName)

Require: eventName
1: acquire data from transducers
2: broadcast acquired data up to S hops
3: receive acquired data from neighbors
4: whereClause = CheckCondition(received + local data)
5: if whereClause is FALSE then
6: go to 1
7: else
8: activeSensorList = EventAreaDefinition(localNode)
9: TrackingTask(eventName, activeSensorList)
10: GetDependentEvent(eventName, activeSensorList)
11: go to 1
12: end if

Algorithm 2 EventAreaDefinition(localNode)

Require: localNode
1: start(Timer)
2: localActiveSensorList = neighbours + thisNode
3: broadcast localActiveSensorList up to S hops
4: receive remoteActiveSensorList from neighbors
5: updated = updateList(localActiveSensorList, remoteActiveSensorList)
6: if updated is true then
7: go to 3
8: else if !expired(Timer) then
9: go to 4
10: else
11: return activeSensorList
12: end if

4.3.2 Tracking Task

Once the tracking task is triggered by the detection task, nodes involved in the event
start executing it cooperatively, so that they can contribute to track and collect
data from the detected event. The pseudo-code of the tracking task is sketched in
Algorithm 3.

Nodes executing the tracking task (1) elect their leader, then they (2) build a
routing and data collection tree. Nodes that are at the border of the event (that is,
leaf nodes of the tree) alert (3,4) their neighbors, reachable up to S hops, to check
if they also detect the event. Note that these nodes might currently be outside the
Event Area, and they can become part of it if they detect the event. At this point
nodes can check if they still see the event. If they (5) no longer see the event, and if

4.3. IN-NETWORK EVENT QUERY PROCESSING 67

Algorithm 3 TrackingTask(eventName, activeSensorList)

Require: eventName, activeSensorList
1: leader=leaderElection(activeSensorList)
2: tree=treeBuilder(leader,activeSensorList)
3: if thisNode is boundary(tree) then
4: broadcast alert(eventName, leader, tree, timeout) up to S hops
5: end if
6: if !checkInclusion(eventName) and expired(timeout) then
7: return
8: else
9: activeSensorList=updateActiveSensorList(leader, tree)

10: go to 1
11: end if

the timer has expired, they quit the Tracking task. Elsewhere, they (6) update the
list of nodes involved in the event and (7) restart the tracking loop. Note that, after
the first execution of the tracking task, the tree is just updated, rather than created
from scratch, by adding/removing new/old nodes, and that the leader is updated
only when needed, that is, when it is not covered by the event anymore.

The tracking task pseudo-code makes use of the following procedures:

• leaderElection

• treeBuilder

• alert

• checkInclusion

• updateActiveSensorList

At the first iteration of the tracking task, the leaderElection procedure elects a
leader according to distributed algorithms available in the literature [42], [63] (the
actual algorithm is not relevant to the purposes of this work, it can be based on
the sensors’ identifiers or it can be a more sophisticated one). In all the subsequent
iterations, the new leader is not elected by means of a distributed algorithm (that
is expensive in terms of energy consumption), rather a simple protocol that exploits
the current tree is used. This protocol requires that the current leader knows the
diameter, in number of hops, of the Event Area. This information can be easily
obtained when the acquired data are sent back to the leader through the tree. When
the current leader exits from the Event Area, it sends a direct message on the tree
with a counter equal to half the diameter of the Event Area. Each node receiving
this message decreases the counter until it reaches 0. The node that receives the
message with counter 0 will be the new leader, and it will be located, approximately,

68 CHAPTER 4. DETECTION AND TRACKING OF MOBILE EVENTS

in the middle of the Event Area. In order to ensure that only one node will be the
leader, each node receiving this message (including the current leader that generates
it) sends the message to the node with the minimum ID among its children.

If two or more occurrences of the same kind of event occur in two disjoint areas
of the Detection Region, different detection tasks are executed. In this case different
Event Areas are defined for the events detected and, correspondingly, different lead-
ers. On the other hand, if the Event Areas of two or more identical events overlap,
a unique Event Area, spanning the whole space covered by the detected events, is
defined. In this case a single leader is elected, and a single data collection tree is
built.

The treeBuilder procedure builds a data collection tree spanning the whole Event
Area. The leader coordinates this task, which is executed by all the other sensors
in the Event Area. Each sensor receives a proper message containing the identifier
of the sender, sets the sender as its parent on the tree and forwards the message
with its own identifier. The tree is used to forward to the leader the interested data
acquired from the event. This technique is commonly used in the literature [39],
[40].

The alert procedure is executed by nodes at the border of the event area (leaf
nodes of the data collection tree) to request to their neighbors to check if they also
detect the event. Since we cannot predict the movement of the event, the nodes in
the boundary notify the alert to nodes reachable within the number of hops specified
by the clause EVOLUTION of the Tracking Statement. We call active boundary nodes
the nodes that are at the boundary of the Event Area. We call passive boundary
nodes those that have been alerted (since they are not part of the event area until
they detect the event). Alerted sensors are included in the data collection tree,
and they are notified about the leader (see Figure 4.2). Passive boundary nodes
then start acquiring the data needed to detect the event according to the sampling
period specified by the clause EVERY, and for a total time specified by the clause
TIMEOUT of the Tracking Statement. If, during this time, an alerted sensor detects
the event, it notifies the other sensors in the Event Area about the detection, so
that the Event Area can be updated, it executes the tracking task, and it starts
acquiring the requested data from the event.

The checkInclusion procedure is executed by the sensors to check if the event
does not involve them anymore. Each sensor periodically checks if the conditions of
the tracked event (specified in the clauses AS and WHERE of the Event Statement) are
still satisfied (the period is the same of the sampling of the requested data). When
a sensor x does not detect the tracked event for a specified period, and if it does not
have at least one active neighbor, then x is removed from the data collection tree.

The updateActiveSensorList procedure updates the list of sensors involved in the
event, as a consequence of the addition of new sensors, or the removal of sensors.
This procedure basically collects all nodes of the tree that have detected the event.

Figure 4.2 represents the data collection tree built for the gas cloud example.
The tree is rooted in the leader sensor that is represented as the rounded circle.

4.3. IN-NETWORK EVENT QUERY PROCESSING 69

Name Definition
Detection Region Area where the event is monitored
Smallest Event Size Minimum expected size of the event
Event Area Area actually covered by the event
Active sensors Sensors involved in the event
Passive sensors Sensors not involved in the event
Active Boundary sensors Active sensors that have at least one passive neighbor
Passive Boundary sensors Passive sensors that have at least one active neighbor

Table 4.13: Glossary of the definitions related to the events.

Figure 4.2: Tracking phase - The figure shows the data collection tree built
inside the Event Area. The tree is rooted in the leader sensor, represented as the
rounded circle. The figure also shows the updating operation: the active boundary
sensors (the empty squares) alert the passive boundary sensors (the triangles). As
a consequence, the passive boundary sensors are added to the data collection tree.
The alert operation is represented by the dotted arrows.

The figure also shows the alert notifications (the dotted arrows) sent by the active
boundary sensors (the empty squares in figure) to the passive boundary sensors (the
triangles). Table 4.13 summarizes the definitions used in this Chapter.

4.3.3 Query Execution

The detection and the tracking tasks have the purpose of preparing the network to
the acquisition of data related to the tracked event. In particular, the detection task
defines the set of active sensors, and the tracking task builds and maintains the data
collection tree involving the active sensors. The query execution task is executed by
all the active sensors, and it uses the data collection tree to send to the leader the
data about the event as specified in the Query Statement.

70 CHAPTER 4. DETECTION AND TRACKING OF MOBILE EVENTS

!"#"$%"&'()"!*'

+,-'$+#.)/"/'$+'

0"-"#1,+'2"3$,+'

/"-"#-&'4+'

$+-"!5"/$4-"'

"%"+-'$+'#64$+'

!"#"$%"&'

4."!-'

$/."' /"-"#1,+'

/"-"#1,+'()"!*'

"78$!"&'

-!4#9$+3'

/"-"#-&'-6"'

.4&-'"%"+-'

$+'#64$+'

-!4#9$+3'

()"!*'

"78$!"&'

Figure 4.3: Automaton - Abstract representation of the Finite State Automaton
for EQL processing. The detection and tracking states are complex super-states
that are composed of several internal states.

To this purpose, the root of the data collection tree, created by the detection
task, and continuously updated by the tracking task, is used as a data source. Data
arriving at the root of the tree are processed by using techniques for in-network
distributed WSN query processing already available in the literature. These issues
are, for instance, extensively addressed in systems such as MaD-WiSe [13] or TinyDB
[69].

These approaches exploit classical relational operators [22] and data base query
processing techniques, appropriately adapted to theWSN data management context.

4.4 Finite State Machine

Figure 4.3 represents a high-level abstraction of the Finite State Machine about the
processing of an EQL query. Each sensor passes through three states, idle, detection
and tracking, which are actually super-states that can be refined by several internal
states. Note that a sensor can be involved in more than one query, so it can be
executing more than one tracking task. However, the FSM described in this section
aims to show how the proposed solution works, thus it refers to the execution of just
one query processing.

Initially each sensor is in the idle state, with its internal status set to passive.
In this state, when a sensor receives a query, it passes to the detection state and
checks if it is included in the Detection Region specified in the query. A sensor that

4.4. FINITE STATE MACHINE 71

!"#"$%"&'

()"!*'

+,'"%"+-'."-"#-".'/'

&0123$+4'51"!'6!"&'

$+#3).".'$+'

7"-"#5,+'8"4$,+'#9"#:$+4'

$+#3)&$,+'

."-"#5,+'()"!*'

";2$!"&'

."-"#-&'

30&-'"%"+-'

$+'#90$+'

."-"#5+4'

<&-'"%"+-'

$+'#90$+'

."-"#-&'

<&-'"%"+-'

$+'#90$+''

."-"#5+4'

$-9'"%"+-'

$+'#90$+'

."-"#5+4'

30&-'"%"+-'

$+'#90$+'

+,'"%"+-'."-"#-".'/'

&0123$+4'51"!'6!"&'

+,-'$+#3).".'$+'

7"-"#5,+'8"4$,+'

."-"#5,+'

()"!*'";2$!"&'
+,-'$+#3).".'$+'

7"-"#5,+'8"4$,+'

='

='

."-"#-&'

$-9'"%"+-'

$+'#90$+''

."-"#-&'

$-9><'"%"+-'

$+'#90$+''

Figure 4.4: Detection State Refinement - The Figure reports the refinement
to the detection super-state of the FSA reported in Figure 4.3. The dotted lines
represent the input/output transitions to/from the detection super-state.

belongs to the Detection Region sets its internal status to active (either inner or
boundary), otherwise it switches back to the idle state. In the detection state each
sensor scans the chain of events and begins the detection of the next event in the
chain. If a sensor detects the current event, it initiates the detection of the next
event in the chain, otherwise it switches to the idle state and sets its current status
to passive.

When a sensor detects the last event in the chain, it switches to the tracking
state because it belongs to the Event Area of the event to be tracked (see Figure
4.4). In this state it periodically acquires the data from the event to be sent to the
leader. The leader, besides sampling the local readings, aggregates the received data
and sends the result to the sink.

The tracking state can also be reached from the idle state as a consequence of the
reception of an alert message. This message is sent by the active boundary sensors,
and only the passive sensors (that are in idle state) handle this message. In this case
they pass to the tracking state, become passive boundary and start executing the
tracking task. If a passive boundary sensor in the tracking state detects the event,
then it becomes active and remains in this state; otherwise, after the timer of the
tracking query expires, it switches back to idle state and becomes passive again.

In the following we provide a refined version of the detection and the tracking

72 CHAPTER 4. DETECTION AND TRACKING OF MOBILE EVENTS

!"#$%$!&#'$&$(&$'#)#

+,-./!0#1,$2#32$#

$.$(&$'#

+*#.$+'$2#$.$(1!0##

.$+'$2#

'$&$(&*#$%$!&#

&2$$#

45/.'/!0#

+*#.$+'$2#

!"&#/!(.5'$'#/!#

6%$!H$+#)#

*+,-./!0#1,$2#

32$*#

-+**/%$#

4"5!'+28#

/!(.5'$'#/!#

6%$!H$+#

/!(.5'$'#/!#6%$!&#

72$+#)#*+,-./!0#

1,$2#32$*#

!"&#/!(.5'$'#

/!#6%$!H$+#

&2+(9/!0##

:5$28#$;-/2$*#

!"&#/!(.5'$'#

/!#6%$!H$+#

.+*&#$%$!&#

/!#(<+/!#

'$&$(&$'#
*+,-./!0#)#

+002$0+1!0#

'+&+#

*$!'/!0#'+&+#

&"#*/!9#

&2$$#45/.'/!0#

+*#-+21(/-+!&#

$.$(&$'#+*#

!"!=.$+'$2#

*+,-./!0#)#

*$!'/!0#'+&+#

&"#.$+'$2#

(<$(9/!0#

/!(.5*/"!#

2$($/%$*#

+.$2&#

1,$"5&#&2+(9/!0#$;-/2$*#

&2+(9/!0##

:5$28#$;-/2$*#&2$$#

45/.&#

&2$$#

45/.&#

&2+(9/!0##

:5$28#$;-/2$*#

/!(.5'$'#/!#6%$!H$+#

)#*+,-./!0#1,$2#32$*#

Figure 4.5: Tracking State Refinement - The dotted lines represent the in-
put/output transitions to/from the tracking super-state. The dotted outgoing line
related to the “sending data to sink” state is

states.

4.4.1 Detection State Refinement

A first refinement of the detection super-state is presented in Figure 4.4. For simplic-
ity, we limit the discussion to this level of refinement; further levels of refinements
are straightforward.

The input event to this super-state is the reception of a query that is firstly
handled in the checking inclusion state. In this state the sensors check if they
belong to the Detection Region defined in the query. Sensors not included in the
specified Detection Region exit from this super-state and switch back to idle; the
others switch to the detection of the 1st event in the chain of events. If the sensors
in this state do not detect the event within a timeout, they go back to the idle
state, otherwise they become active (either inner or boundary) and switch to the
detection of the next event in the chain. When the sensors detect the last event in
chain, they go to the tracking super-state.

4.5. EVALUATION OF EQL 73

4.4.2 Tracking State Refinement

The refinement for the tracking super-state is reported in Figure 4.5. In the first
state of the tracking task (electing leader) the leader is elected. This state forks the
execution of the task in two branches, one executed by the leader and the other one
executed by all the other sensors. The leader first initiates the building of the data
collection tree, then it executes a loop of two states in which it samples the local
transducers, aggregates data coming from the sensors in the tree, and sends the
aggregated data to the sink. The leader exits from this state if the tracking timeout
expires, or if the event moves and it is not included in the Event Area anymore. For
the sake of simplicity we do not report the states related to the maintenance of the
tree (including the election of a new leader).

The branch executed by the other sensors is similar to the the branch executed
by the leader. These sensors first participate to the tree building phase. Then they
execute a loop in which they acquire the data from the event and send them to the
leader. A sensor exits from this state if the tracking timer expires, or if it does not
detect the event anymore. In the former case it switches to the idle state, in the
latter it goes to the checking inclusion state. In this state it continues detecting the
event until the tracking timeout expires. When this happens it switches to idle.

Finally, a sensor reaches the passive boundary state from idle when it receives
an alert message by an active neighbor sensor. In this state, the sensor checks for
the conditions related to the event to be tracked. If the sensor detects the event,
then it is included in the data collection tree and it switches to the data sampling
loop.

4.5 Evaluation of EQL

In this section we present the evaluation of the proposed system in terms of power
consumption and of percentage of successfully tracked events. We also compare the
power consumption of EQL with the power consumption of executing the detection
and tracking of a moving event with a centralized query approach (CQA). In this
approach the sensors acquire the data and send them to a base station that performs
the detection and pilots the tracking of the event. This approach is based on the
TinyDB query processor adapted, with some abstraction, to the event detection
scenario and to the use of a geographic routing protocol. In particular, in CQA we
assume that the base station can deduce the direction and the speed of the event,
and thus it submits a new query to the sensors displaced in the area that will be
covered by the event every time it moves for a distance equal to its radius.

In order to compute the power consumption of the two systems, we present
a cost model that takes into account the communications among sensors and the
activations of the transducers, and we will present the MATLAB simulator that
we used to perform the experiments. In particular, the simulation models generic

74 CHAPTER 4. DETECTION AND TRACKING OF MOBILE EVENTS

Transducer Energy per Sample (mJ)
Accelerometer 0.03222
Magnetometer 0.2685

Light 0.00009
Temperature 0.00009

Table 4.14: Energy required for a sample from various transducers of MTS310CA
boards.

Operation Energy required (mJ)
c(Send) 0.1494225
c(Rec) 0.16917375

Table 4.15: Energy required for sending and receiving a message of 50 bytes on the
IRIS mote.

events with a circular shape, and assumes uniform rectilinear motion of events. We
evaluate the power consumption of EQL queries and CQA queries by using the cost
model described in the next section, and the implementation model given in Section
4.3.

4.5.1 Cost Model

The cost model takes into account the number of messages transmitted and received
by the sensors, as well as the number of the transducers activations during the
execution of an EQL and a CQA query. Regarding the communications, we take
into account only the overhead caused by the actual transmission and reception of
a message of 50 bytes with respect to the power consumption of keeping the radio
active. We disregard the cost of sending the tracking data to the sink, and the
cost of the internal computation of the sensors, since these costs are equivalent for
both systems, and they are negligible compared to the other costs. For the sake of
simplicity, we also assume that all messages have the same size.

We assume that IRIS motes with MTS310CA sensor boards for the transducers
[5] are used to implement the query, and we evaluate the costs referred to this
hardware platform. Tables 4.14 and 4.15 report the related costs.

4.5.2 Network, Event and Simulation Model

We consider a network composed of sensors uniformly distributed over a square area
of size L × L meters (see Figure 4.6), where each sensor has a fixed transmission
range rx, an average number of neighbors nx, and it is aware of its position. We
assume that the sink is placed in the center of the network, and that a geographic
routing protocol is used to route packets. The network density ρ (defined as the
number of sensors per unit area) is given by ρ = nx/(πr

2
x). We assume that the

4.5. EVALUATION OF EQL 75

l

Sink

r
x

L

R

Alert Region V

Figure 4.6: Network - Each sensor has a transmission range rx. The small square
represents the Detection Region. The circle represents the Event Area, and it moves
according to the rectilinear motion vector V .The sink is assumed to be in the center
of the network.

Detection Region is a square area with side l placed in the bottom-left corner of the
network, and that the Smallest Event Size is 1 hop.

We model an event as a circle with radius R that moves with uniform rectilinear
motion V . Without loss of generality we assume that the event moves from the
Detection Region to the opposite corner of the network.

The simulator has the following parameters: number of neighbors per node, size
and speed of the event, sampling rate of the sensors and timeout duration. We
make simulations in different scenarios: in each scenario we vary one parameter of
the simulator while keeping fixed the other parameters. For each scenario we perform
50 independent experiments on different randomly generated network topologies.

Table 4.16 reports the list of parameters that we kept fixed in our simulations,
and Table 4.17 shows the parameters that we changed during the simulations.

4.5.3 Cost of Event Query Language

In this section we evaluate the cost, in terms of energy consumption, of the detection
of an event ev1 and of the tracking of an event ev2 dependent on ev1, with EQL.

76 CHAPTER 4. DETECTION AND TRACKING OF MOBILE EVENTS

Name Description Value
L length of the network 1000 m
l length of the Detection Region 20 m
rx sensor’s transmission range 10 m
γ transducer activation cost 0.3 mJ
β unicast communication cost c(Send) + c(Rec)
δ broadcast communication cost c(Send) + nxc(Rec)
T life time of the event 1800 sec

Table 4.16: Fixed parameters used for the analysis.

Name Description
nx number of neighbors per sensor
R Event Area radius
v event speed
exp timeout for detecting the event
∆t sampling rate

Table 4.17: Variable parameters used for the analysis. In each scenario we study
the behavior when changing one of these parameters and keeping the others fixed.

To this purpose, we analyze all phases executed during the detection and tracking
(we assume that the query has already been injected), that are:

• Detection - detection of the next event in the chain of events.

• Alert - alerting of the neighbor sensors to be ready to detect the event.

• Check Event - detection, by the alerted sensors, of the currently tracked
event in order to follow the evolution of the event.

• Tree Updating - updating of the Event Area and the data collection tree.

Note that the last three phases are executed periodically, according to the sam-
pling period ∆t.

Detection

Once the query is received, the sensors in the Detection Region start monitoring the
conditions that describe the first event in the chain of events. In particular, each
sensor acquires the needed data from the local transducers and sends them in a local
broadcast to its 1-hop neighbors (recall that we assume that the Smallest Event Size
is 1 hop). Then each sensor computes the average value of the received data and
determines if the event occurred. Let Ar be the set of of sensors in the Detection

4.5. EVALUATION OF EQL 77

R

Figure 4.7: First Alert - The solid circle is the Event Area with radius R. The
dotted circles represent the transmission of the alert messages and the triangles are
the alerted sensors.

Region; the cost of one iteration of the detection is given by the cost of transducers
activation times the senors in Ar plus the cost of a broadcast communication times
the sensors in Ar:

cEQL
dt = (γ + δ)|Ar| (4.1)

where |Ar| is the cardinality of Ar. This is repeated, according to the specified
sampling rate, until the event occurs.

Alert

The alert is used to involve in the tracking task the sensors around the Event Area
that are not already involved in this task. Specifically, all the sensors around the
Event Area are alerted, in an area as big as specified in the clause EVOLUTION of the
Tracking Statement.

Except for the first iteration, where all the active boundary sensors execute the
alert operator (see Figure 4.7), at each iteration only the new active sensors (i.e.
the sensors that become part of the Event Area at the previous iteration) alert their
neighbors (see Figure 4.8). We call these sensors Added Sensors, and we denote this
set by Ds. Each of these sensors sends a broadcast alert message up to the distance
specified in the Tracking Statement. Therefore, the cost of the Alert phase is given
by the cost of a broadcast communication times the sensors in Ds:

78 CHAPTER 4. DETECTION AND TRACKING OF MOBILE EVENTS

Figure 4.8: Alert - The added sensors send the alert message.

cEQL
al = δ|Ds| (4.2)

Check Event

During the tracking task, the active and the alerted sensors periodically monitor the
conditions that define the event either to check if they are still involved in it (for the
active sensors), or to check if they have just been included in the area covered by
the event (the alerted sensors). Let Cs and Ls, respectively, be the set of active and
alerted sensors; the cost of the Check Event phase is given by the cost of transducers
activation times the number of sensors in the two sets Cs and Ls:

cEQL
ck = γ|Cs ∪ Ls| (4.3)

Since the data to be returned to the user (i.e. the data specified by the clause
SELECT of the Query Statement) are a subset of the data needed to check the event,
the data collection task is implicitly executed during this phase.

Tree Updating

Due to the event movements the sensors that can detect the event are only a subset
of all the alerted sensors (i.e. Ds). In particular, only the sensors displaced in the

4.5. EVALUATION OF EQL 79

!"

!"#"Δt"

Figure 4.9: Tree Updating - The solid circle represents the Event Area at time
t + ∆t, while the dotted circle represents the Event Area at time t. The newly
involved sensors in the lune are added to the data collection tree (the dotted arrows).

lune-shaped region between the Event Area at time t and the Event Area at the time
t+∆T will be covered (see Figure 4.9). These sensors thus become active and they
are added to the data collection tree to start executing the tracking of the event.
To this purpose they send a unicast message to one of their active neighbor sensors
as an acknowledgement of the actual event detection. Thus, the cost of the Tree
Updating phase is given by the cost of a unicast communication times the number
of sensors in Ds:

cEQL
tu = β|Ds| (4.4)

4.5.4 Cost of CQA

As said in Section 4.5, we compare the power consumption of EQL with the power
consumption of a centralized query approach (CQA) that is based on the TinyDB
query processor. In this approach the sensors acquire the data from the event,
and send them to the base station that performs the actual detection and pilots
the tracking of the event. The detection task executed in CQA is similar to that
executed in EQL, while the tracking task of CQA is different from that of EQL since
in CQA the sensors are not able to autonomously follow the event, but new queries
have to be submitted according to the movements of the event. In particular, the
phases executed by CQA are the following:

• Detection - detection of the next event in the chain of events.

80 CHAPTER 4. DETECTION AND TRACKING OF MOBILE EVENTS

• Query Submission - submission of the query to the center of the new Event
Area.

• Query Broadcast - broadcast of the query inside the Event Area and building
of the data collection tree.

• Data Acquisition - acquisition of the requested data.

Detection

This phase is executed in the same manner as EQL, and it has the same cost.

Query Submission

In CQA the sink has to renew the query when the event moves outside the region
covered by the previous query. To do this effectively, the sink needs to know the
speed at which the event moves, and, without this information, it may lose the
event, or it may be forced to inject more queries than needed. For the purpose of
comparison against EQL, we assume that the CQA sink has the information about
the event speed, so that it can inject a new query as soon as the event has moved
for a distance equal to twice the radius of the event (s = 2r). Note that this is
the minimum rate at which the sink can submit a new query without losing the
event. The message containing the query is sent to the sensors in the Event Area
by means of unicast transmissions using the path used to collect the data from the
event. In order to estimate the cost of this operation, we compute the euclidean
distance dx between the sink and the center of the event. With this information,
and by knowing the transmission range rx of the sensors, we determine the number
of hops needed to forward the query on a path of length dx. Therefore, the cost of
the query submission in CQA is given by the number of the sensors thus computed
times the cost of a unicast communication:

cTDB
qs = β⌈dx/rx⌉ (4.5)

Query Broadcast

Once the query arrives to the center of the Event Area, a local broadcast is executed
inside this area to forward the query to all the active sensors, and also to alert the
sensors around the event. This is needed to let the sink understand in which direction
the event is directed, and to submit the query at the following iteration. We call Fs

the set of the sensors involved in this broadcast communication. This phase is also
used to build an updated data collection tree, and it has a cost equal to the cost of
a broadcast communication times the number of sensors in Fs:

cTDB
qb = δ|Fs| (4.6)

4.5. EVALUATION OF EQL 81

2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

Speed (Km/h)

P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

n
x
 = 13

r
x
 = 10

r = 20

EQL, exp=30
EQL, exp=60
EQL, exp=120
CQA, exp=30
CQA, exp=60
CQA, exp=120

Figure 4.10: Power consumption with increasing values of event speed and different
values of expiration time.

Data Acquisition

When the Query Broadcast phase ends, the sensors in Fs activate the transducers
and acquire the requested data from the event. The cost of this phase is given by
the cost of the transducers activation times the number of sensors in Fs:

cTDB
da = γ|Fs| (4.7)

This phase is executed periodically (according to ∆t parameter) for the whole
lifetime of the query, that is the time needed by the event to move for a distance
s = 2r.

4.5.5 Results

In order to evaluate the power consumption (in terms of energy consumed by all
sensors in a unit of time) of our system compared to CQA, we analyze different
scenarios, by combining the parameters reported in Table 4.17. All the results
presented in this section are obtained with a 95% confidence interval. For each
scenario we performed 50 iterations, each time generating a new network topology

82 CHAPTER 4. DETECTION AND TRACKING OF MOBILE EVENTS

2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

Speed (Km/h)

P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

r
x
 = 10

r = 20
TTL = 20

EQL, n
x
=12

EQL, n
x
=13

EQL, n
x
=14

CQA, n
x
=12

CQA, n
x
=13

CQA, n
x
=14

Figure 4.11: Power consumption with increasing values of event speed and different
values of network density.

according to the uniform distribution of the density of the sensors. Therefore, each
point plotted is the average value of power consumption computed over the 50
iterations. In all the experiments we change the value of the analyzed parameters,
while we fix the value of the other parameters as follows: number of neighbors per
node nx = 13, radius of the event r = 20, event speed v = 2Km/h, sampling rate
of the sensors ∆t = 2seconds, transmission range of the sensors rx = 10mt and
TIMEOUT value exp = 20seconds.

In Figures 4.10, 4.11, 4.12 we report the power consumption of the two systems
by combining increasing values of event speed and different values of expiration
time, network density and size of the Event Area, respectively. The graphs show
that, for both systems, the power consumption is higher as the event speed increases
since more new sensors, in each sampling cycle, become involved in the event. This
results in more communications and in more transducer activations. In all these
experiments EQL shows a power consumption lower than CQA, and it also scales
better as the studied parameters increase. This occurs because, each time that in
CQA a new query is submitted, more sensors are involved in the query, and so
the power consumption results higher. In EQL, on the other hand, the operations
executed to track the event are local to the nodes in the boundary of the Event
Area, and thus the power consumption in this case is less affected than in case of

4.5. EVALUATION OF EQL 83

2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

120

140

160

180

Speed (Km/h)

P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

n
x
 = 15

r
x
 = 10

TTL = 20

EQL, r=20
EQL, r=25
EQL, r=30
CQA, r=20
CQA, r=25
CQA, r=30

Figure 4.12: Power consumption with increasing value of event speed and different
size of Event Area.

CQA.

In the scenario reported in Figure 4.10 we note that CQA is independent from
the expiration time, since in this case the sensors are not alerted, while in EQL
a higher value of this parameter results in a higher power consumption, since the
sensors remain active in the monitoring phase for a longer time. More specifically,
the power consumption of EQL, with expiration time of 30 seconds, ranges from 3,8
mW, with a event speed of 2 Km/h, to 16,9 mW if the event speed is 11 Km/h.
With an expiration time of 60 seconds, the power consumption of EQL ranges from
4,3 mW, with an event speed of 2 Km/h, to 19,2 mW if the event moves at 11
Km/h. With an expiration time of 120 seconds, EQL has a power consumption that
ranges from 5,2 mW, if the event speed is 2 Km/h, to 23,5 mW with an event speed
of 11 Km/h. CQA, on the other hand, has a much higher power consumption as
the event speed increases. In fact, its power consumption is 12,1 mW with an event
speed of 2Km/h, while it is 62,6 mW if the event moves at 11 Km/h.

Figure 4.11 reports the power consumptions of the two systems in the scenario in
which the event speed is studied with different values of network density. A higher
number of neighbors per node results in a greater number of sensors involved in
the event in each iteration, and thus in a higher power consumption. Also in this
case, the power consumption of CQA is more affected than that of EQL because of
the greater number of sensors involved in the event. In particular, with a number

84 CHAPTER 4. DETECTION AND TRACKING OF MOBILE EVENTS

11.522.533.544.555.5
0

5

10

15

20

25

30

35

Sampling Period (seconds)

P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

n
x
 = 15

r
x
 = 10

r = 20
TTL = 20

EQL, v=2
EQL, v=3
EQL, v=4
CQA, v=2
CQA, v=3
CQA, v=4

Figure 4.13: Simulation with increasing values of sampling rate of the sensors and
different values of event speed.

of neighbors per node of 12, the power consumption of EQL ranges from 3,6 mW
to 16,4 mW as the event speed grows from 2 Km/h to 11 Km/h, while the power
consumption of CQA, with the same network density and the same event speed,
ranges from 12,5 mW to 65,7 mW. With a number of neighbors per node of 13,
EQL has a power consumption that ranges from 4 mW, with an event speed of
2 Km/h, to 17,8 mW, with an event speed of 11 Km/h, while CQA has a power
consumption that ranges from 13,2 mW to 70,6 mW with the same values of network
density and event speed. With a number of neighbors per node of 14, the power
consumption of EQL ranges from 4,3 mW, if the event moves at 2 Km/h, to 19 mW,
if the event moves at 11 Km/h, while the power consumption of CQA ranges from
14,5 mW to 74,8 mW, with the same values of network density and event speed.

In Figure 4.12 we can see the power consumption of EQL and CQA in the scenario
in which the speed and the size of the event are studied. Also in this case, as for the
network density, a bigger event has a larger number of sensors involved in it, and this
results in a greater power consumption. CQA shows a higher power consumption
with respect to EQL, and it also grows more than EQL as the radius of the event
increases, since submitting a query in a larger area is more expensive. EQL, on the
other hand, is slightly affected by the size of the event, since the operations executed
to track the event are local to the boundary nodes of the event, and a wider event

4.5. EVALUATION OF EQL 85

20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

Radius of Event (m)

P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

n
x
 = 13

r
x
 = 10

v = 2

EQL, exp=30
EQL, exp=60
EQL, exp=120
CQA, exp=30
CQA, exp=60
CQA, exp=120

Figure 4.14: Power consumption with increasing size of the Event Area and different
values of expiration time.

does not imply too much overhead in this case. In particular, with an event of radius
20 meters, the power consumption of EQL ranges from 4,6 mW, if the event speed is
2 Km/h, to 20,6 mW, if the event speed is 11 Km/h, while the power consumption
of CQA, with the same size and same event speed, ranges from 15,3 mW to 80
mW. With an event radius of 25 meters, EQL has a power consumption that ranges
from 6 mW, if the event moves at 2 Km/h, to 25,8 mW, if the event moves at 11
Km/h, while, with the same event conditions, CQA has a power consumption that
ranges from 23,3 mW to 120,9 mW. With an event of radius 30 meters, the power
consumption of EQL is 7,4 mW, with an event speed of 2 Km/h, and it is 31,1 mW,
with an event speed of 11 Km/h. The power consumption of CQA with the same
event speed and size, ranges from 32,7 mW to 169,1 mW.

Figure 4.13 reports the power consumption of EQL and CQA in the scenario
where we increase the sampling rate of the sensors with different values of event
speed. We can see that, for both systems, the power consumption is higher as
the sampling rate increases (i.e. the period between two consecutive sampling in
seconds decreases) because the transducers are activated more frequently. The power
consumption also grows as the event speed increases. This happens because, as
noticed before, if the event is quicker more new sensors become involved in the
event between two consecutive samples, and thus more communications overhead

86 CHAPTER 4. DETECTION AND TRACKING OF MOBILE EVENTS

12 14 16 18 20 22 24 26 28 30
0

5

10

15

20

25

30

Radius of Event (m)

P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

r
x
 = 10

v = 2
TTL = 20

EQL, n
x
=13

EQL, n
x
=14

EQL, n
x
=15

CQA, n
x
=13

CQA, n
x
=14

CQA, n
x
=15

Figure 4.15: Power consumption with increasing size of the Event Area and different
values of network density.

is necessary. We can notice, however, that the impact of the event speed is bigger
than the impact of a higher sampling rate, because the communications caused by a
quicker event are more expensive than the activations of the transducer. The figure
also shows that the impact on the power consumption when increasing the sampling
rate of the sensors is smaller in CQA than in EQL, because in CQA only the sensors
in the Event Area activate their transducers, while in EQL also the alerted sensors
execute the sampling, thus consuming more energy. In fact, for an event speed of
2 Km/h, the power consumption of EQL ranges from 3,7 mW, with a sampling
rate of 5,5 seconds, to 6,1 mW, with a sampling rate of 1 second, while the power
consumption of CQA ranges from 14,7 mW to 16,5, with the same sampling rate
and event speed. That represents a growth of the power consumption of 0,54 mW/s
in case of EQL, against a growth of 0,41 mW/s in case of CQA. With an event speed
of 3 Km/h, EQL has a power consumption of 5,4 mW, if the sampling rate is 5,5
seconds, and it is 8,1 mW, if the sampling rate is 1 second, while, with the same
sampling rate and the same event speed, CQA has a power consumption that ranges
from 21,9 mW to 23,7 mW. In this case, the growth of the power consumption in
EQL is 0,61 mW/s, while in CQA it is 0,39 mW/s. With an event speed of 4 Km/h,
the power consumption of EQL ranges from 6,9 mW, with a sampling rate of 5,5
seconds, to 10 mW, with a sampling rate of 1 second, while the power consumption

4.5. EVALUATION OF EQL 87

2 3 4 5 6 7 8 9 10 11
2

4

6

8

10

12

14

16

Speed (Km/h)

M
ax

 S
en

so
r

C
on

su
m

pt
io

n
(m

J)

n
x
 = 15

r
x
 = 10

r = 20
∆t = 2
TTL = 20

EQL
CQA

Figure 4.16: Maximum energy consumption of the sensors with increasing values of
event speed.

of CQA, with same sampling rate and event speed, ranges from 28,9 mW to 30,8
mW. In this case, the growth of the power consumption in EQL is 0,69 mW/s, while
in CQA it is 0,41 mW/s.

In Figures 4.14, 4.15 we analyze the power consumption of the two systems for
increasing values of the size of the Event Area and different values of the expiration
time and the network density, respectively. We can see that, in both cases, the
power consumption increases with the size of the event, but this affects CQA much
more than EQL, since a wider event involves more sensors that have to receive the
query, so more communications are needed; in EQL the tracking of the event is
executed locally by the sensors at the border of the event, requiring a much smaller
overhead. Figure 4.14 shows also that CQA is independent from the expiration time
parameter, since the sensors are not alerted. On the other hand, this affects the
power consumption of EQL because, for a greater value of the expiration time, the
alerted sensors have to monitor the event for a longer time. In particular, with an
expiration time of 30 seconds, EQL has a power consumption of 3,8 mW, if the
radius of the event is 20 meters, and of 11,9 mW if the radius of the event is 50
meters. With an expiration time of 60 seconds, the power consumption of EQL
ranges from 4,3 mW, if the event has a radius of 20 meters, to 12,9 mW if the
event has a radius of 50 meters. With an expiration time of 120 seconds, the power

88 CHAPTER 4. DETECTION AND TRACKING OF MOBILE EVENTS

11.522.533.544.555.5
2

4

6

8

10

12

14

16

Sampling Period (seconds)

M
ax

 S
en

so
r

C
on

su
m

pt
io

n
(m

J)

n
x
 = 15

r
x
 = 10

r = 20
v = 2
TTL = 20

EQL
CQA

Figure 4.17: Maximum energy consumption of the sensors with increasing values of
sampling rate of the sensors.

consumption of EQL is 5,3 mW, with an event of radius 20 meters, and it is 14,8
mW with an event of radius 50 meters. CQA, on the other hand, for every value
of the expiration time, has a power consumption that ranges from 12,1 mW, if the
event has radius 20 meters, to 68,3 mW, if the event has a radius of 50 meters.

Figure 4.15 shows that both systems are affected by the network density. How-
ever, this has a bigger impact on CQA than on EQL, since, also in this case, more
sensors are involved in the event. In particular, with a number of neighbors per
node of 13, the power consumption of EQL ranges from 2 mW, with a radius of the
event of 12 meters, to 6 mW, with a radius of the event of 30 meters. The power
consumption of CQA, with the same network density and the same event size, ranges
from 5,4 mW to 25,5 mW. With a number of neighbors per node of 14, EQL has
a power consumption of 2,2 mW, if the event has a radius 12 of meters, and of 6,4
mW, if the event has a radius of 30 meters. CQA has a power consumption that
ranges from 5,7 mW to 27,3 mW. With a number of neighbors per node of 15, the
power consumption of EQL is 2,4 mW, with an event of radius 12 meters, and it is
6,9 mW, with an event of radius 30 meters, while the power consumption of CQA,
with the same network density and same event size, ranges from 6 mW to 29,1 mW.

We also analyze the energy consumption of the individual sensors and we report,
in Figures 4.16, 4.17, 4.18, the total energy consumption of the sensor that consumes

4.5. EVALUATION OF EQL 89

12 14 16 18 20 22 24 26 28 30 32
0

5

10

15

20

25

Radius of Event (m)

M
ax

 S
en

so
r

C
on

su
m

pt
io

n
(m

J)

n
x
 = 15

r
x
 = 10

v = 2
∆t = 2
TTL = 20

EQL
CQA

Figure 4.18: Maximum energy consumption of the sensors with increasing size of
Event Area.

most energy in the scenarios where we increase the event speed, the sampling rate
of the sensors and the size of the Event Area, respectively.

Figure 4.16 reports the maximum energy consumption of a sensor as the event
speed increases. Despite what happens with the power consumption, that is inde-
pendent from the time and thus increases with the event speed (see Figure 4.11),
the energy consumption decreases as the event moves quicker, because each sensor
is involved in the event for less time, thus wasting less energy. The figure shows also
that a sensor in EQL has a smaller energy consumption than one in CQA because a
sensor in CQA is, in general, involved in more communications than a sensor in EQL.
However, we can also notice that the energy consumption decreases more deeply in
EQL than in CQA as the event speed increases. In fact, the energy consumption in
EQL ranges from 4,4 mJ, with an event speed of 2 Km/h, to 3,5 mJ, with an event
speed of 11 Km/h, which corresponds to a decrease of 0.102 mJ/Km/h. Instead,
the energy consumption in CQA, with the same values for the event speed, ranges
from 14,6 mJ to 13.6 mJ, which corresponds to a decrease of 0.104 mJ/Km/h.

In Figure 4.17 we report the maximum energy consumption of a sensor with
increasing value of the sampling rate of the sensors. Also in this case, EQL shows a
smaller energy consumption, with respect to CQA, because of the smaller number
of communications involved. However, in this case, the energy consumption of EQL
grows faster than that of CQA. This happens because, in CQA, only the sensors in

90 CHAPTER 4. DETECTION AND TRACKING OF MOBILE EVENTS

16 18 20 22 24 26 28 30 32
0.7

0.75

0.8

0.85

0.9

0.95

1

Radius of Event (m)

%
su

cc
es

s

n
x
 = 13

r
x
 = 10

v = 2
∆t = 2
TTL = 20 ELQ

Figure 4.19: Percentage of successful tracking with increasing size of the Event Area.

the Event Area activate their transducers, since there is no sensor alert mechanism,
while in EQL also the alerted sensors perform the sampling, thus wasting more
energy as the sampling rate increases. In fact, the energy consumption of EQL
ranges from 3,5 mJ, with a sampling rate of 5,5 seconds, to 5,8 mJ, with a sampling
rate of 1 second, that is an increment of 0,416 mJ/s. CQA, on the other hand, has
an energy consumption that ranges, for the same values of sampling rate, from 13,8
mJ to 15,7 mJ, that is an increment of 0,508 mJ/s%.

Figure 4.18 reports the energy consumption of a sensor when the size of the event
increases. This means that more sensors are involved in the event and, thus, each
sensor is involved in more communications. CQA has a bigger energy consumption
since, each time a new query is submitted, the sensors perform several transmissions
to forward the query, while EQL executes only local communications in the border
of the Event Area. This means that the energy consumption will grow more in CQA
than in EQL as the size of the event increases. In fact, the energy consumption of
EQL ranges from 4 mJ, with an event of radius 12 meters, to 5 mJ, with an event of
radius 32 meters, that is an increment of 0,05 mJ/m. CQA, instead, has an energy
consumption that ranges, for the same event size, from 8,7 mJ to 23,3 mJ, that is
an increment of 0,73 mJ/m.

4.5. EVALUATION OF EQL 91

11 11.5 12 12.5 13 13.5 14 14.5 15
0.7

0.75

0.8

0.85

0.9

0.95

1

Density (number of neighbors per node)

%
su

cc
es

s

r
x
 = 10

r = 20
v = 2
∆t = 2
TTL = 20 ELQ

Figure 4.20: Percentage of successful tracking with increasing values of network
density.

Success Rate

In this section we analyze the percentage of successfully tracked events (hereafter
denoted with %success). The purpose of these experiments is to find a proper cali-
bration of the parameters in order to ensure that the events are tracked successfully
and with a low energy consumption.

The event can be lost because of the following reasons:

• the event is too slow and the expiration time is not large enough, so the alerted
sensors stop monitoring for the event before it reaches them;

• the event is too fast and the sampling rate too short, so the sensors do not
detect it between two consecutive samplings;

• the event reaches a hole in the network where no sensor can detect it.

We first analyze the percentage of successfully tracked events for some parameters
that vary individually, then we analyze different combinations of varying parameters.

Figures 4.19 and 4.20 show the %success with respect to the size of the Event
Area and the network density, respectively. In these cases the event may be lost
when traversing areas of the network in which there are no sensors (network holes).
With a bigger Event Area, or a more dense network, the probability to lose the event

92 CHAPTER 4. DETECTION AND TRACKING OF MOBILE EVENTS

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Expiration Timeout

%
su

cc
es

s

n
x
 = 15

r
x
 = 10

r = 20
v = 2
∆t = 2 ELQ

Figure 4.21: Percentage of successful tracking with increasing values of expiration
time.

for this reason becomes lower and lower. In fact, we can see in Figure 4.19 that,
with an event of radius 15 meters, the percentage of success is of about 74% over 50
iterations, while the event is not lost at all when its radius becomes bigger than 24
meters. Similarly, Figure 4.20 shows that the percentage of success with a number
of neighbors per node equal to 11 is 86%, while it becomes 100% with a number of
neighbors per node equal or greater than 14.

Figure 4.21 shows the %success for different expiration time values. In this case,
if the expiration time is too short, the event is lost because the alerted sensors stop
monitoring for the event before it reaches them. We can see in the figure that,
with an expiration time of 5 seconds, the event is always lost, but the percentage
of success increases as the expiration time grows; also we observe that the event is
never lost with an expiration time equal or greater to 15 seconds. Obviously, the
expiration time is strictly related to the event speed. If the event moves with a high
speed, even a low value of the expiration time can be sufficient to successfully track
the event. In Figure 4.22 we analyze the %success with a combination of these two
parameters. With an expiration time of 15 seconds, an event speed of 2 Km/h is
enough to guarantee a success rate of almost 100%. With an expiration time of
10 seconds the event should move with a speed of at least 3 Km/h in order to be
successfully tracked with a probability of more than 90%; with an expiration time
of 15 seconds, the speed should grow to 6 Km/h in order to have a success rate

4.5. EVALUATION OF EQL 93

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Speed (Km/h)

%
su

cc
es

s

n
x
 = 13

r
x
 = 10

∆t = 2
r = 20

EQL, exp=5
EQL, exp=10
EQL, exp=15

Figure 4.22: Percentage of successful tracking with increasing values of event speed
and different values of expiration time.

greater than 90%. Therefore, the expiration time should be set according to the
event speed, if this information is available.

The expiration time also affects the power consumption of EQL, since a high
value for this parameter means that the alerted sensors, that are not involved in
the event, remain monitoring for it for a longer time, thus wasting more energy.
Figure 4.23 shows that a value of the expiration time greater than 700 leads to a
power consumption higher than that of CQA (we recall that CQA is independent
from the expiration time, because in that case the sensors are not alerted, meaning
that the line related to CQA is flat). There is a trade-off between the percentage
of successful tracking and the power consumption of EQL related to the expiration
time. A larger value of this parameters ensures an higher success rate, but it also
implies a greater power consumption of the sensors.

Figure 4.24(a) shows the relation between the event speed and the sampling rate
of the sensors. If the event is too fast and the sampling rate is too short, it can
happen that the alerted sensors monitor for the event before it reaches them, and
then they perform the subsequent sampling when the event has already passed by.
in this case the event is also lost. We can see in the figure that, for a sampling rate
of 2 seconds, the success rate of the tracking is 100% if the event speed is equal
or less than 4 Km/h, while it is always lost if the event moves at a speed equal or
greater than 8 Km/h. With a sampling rate of 4 seconds the event is successfully

94 CHAPTER 4. DETECTION AND TRACKING OF MOBILE EVENTS

100 200 300 400 500 600 700 800 900 1000
6

8

10

12

14

16

18

20

Expiration Timeout (seconds)

P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

n
x
 = 15

r
x
 = 10

r = 20
v = 2
∆t = 2

EQL
CQA

Figure 4.23: Power consumption with increasing value of the expiration time.

tracked with a probability of 100% if it has a speed of 8 Km/h or less, while it is
always lost if it moves at 10 Km/h or more. With a sampling rate of 6 seconds, the
event can move at a speed of at most 14 Km/h, and it is still successfully tracked
with a probability of 100%, while it is always lost if it moves at 18 Km/h or more.
Similarly to the expiration time, the sampling rate should be also set according to
the event speed, if available (and of course to the application requirements).

Finally, Figure 4.24(b) provides results for the scenario in which the event is lost
because it moves to a region of the network with no sensors. This can be avoided if
either the network is more dense, or the event covers a wider area. The figure shows
that, with a number of neighbors per node of 13, if the event has a radius of 12
meters it is successfully tracked only the 40% of times, while this percentage reaches
100% if the event has a radius of at least 22 meters. With a number of neighbors
per node of 14, the successful tracking percentage grows to 74% with an event of
radius 12 meters, and it reaches 100% if the event has a radius of 20 meters. The
100% of successful tracking is reached with an event of radius 20 meters also in case
the number of neighbors per node is 15, but in this case the probability of not losing
the event if it has a radius of 12 meters is almost 90%.

4.5. EVALUATION OF EQL 95

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Speed (Km/h)

%
su

cc
es

s

n
x
 = 15

r
x
 = 10

r = 20
TTL = 20

EQL, ∆t=2
EQL, ∆t=4
EQL, ∆t=6

(a) Success rate in the speed-sampling rate scenario.

12 14 16 18 20 22 24 26 28 30
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius of Event (m)

%
su

cc
es

s

r
x
 = 10

v = 2
∆t = 2
TTL = 20

EQL, n
x
=13

EQL, n
x
=14

EQL, n
x
=15

(b) Success rate in the size of event-density scenario.

Figure 4.24: Percentage of successful tracking with increasing values of the event
speed and different values of sampling rate of the sensors (a) and with increasing
size of Event Area and different values of network density (b).

96 CHAPTER 4. DETECTION AND TRACKING OF MOBILE EVENTS

Chapter 5

Conclusions

WSN are an important enabling technology in several application fields, especially
in tasks of detection of static events and tracking of mobile events. Although these
tasks are common in WSN, their efficient implementation is still an issue, because
it requires the execution of a number of low-level tasks distributed across a large
number of low-power sensors. In this thesis we address these problems and we give
two main contributions in terms of SQL-like languages and systems for the detection
of static events, and for the detection and tracking of mobile events in WSN.

In particular, with respect to the detection of static events, we present MaD-
WiSe, a system for data management in WSN that exploits a query language based
on SQL to define a monitoring task that can be used to efficiently detect static events.
MaD-WiSe was already implemented in a preliminary version at the beginning of
this thesis, but it was significantly improved in the course of this thesis. Specifically,
we have evaluated and implemented different strategies of query optimization, and
we have introduced new cross-layer energy efficiency strategies. The introduction
of these improvements have required an overall re-engineering of the MaD-WiSe
architecture. The results of this work have been presented in [12], [13].

In the second part of the thesis we extended the approach proposed in MaD-WiSe
to address the problem of tracking mobile events in WSN. Traditional query pro-
cessing approaches are not efficient in tracking events, since movements or changes
in the size or the shape of events require an update of the query, which in turn,
implies an additional overhead to stop the outdated query and injection of the new
one. Furthermore, traditional approaches do not consider the event as a data source,
and, consequently, they are based on queries addressing individual transducers. On
the other hand, by addressing the whole event as a source of data, it is possible to
obtain higher-level information, such as speed and direction of the moving event.
To this purpose we modeled the concept of composite event in WSN and we defined
a new declarative language, EQL, that lets the user specify detection and tracking
tasks of mobile, composite events. By means of an EQL query the sensors are in-
structed on how to cooperatively detect an event, and how to dynamically migrate
the query in response to event movements. An EQL query can also specify the

98 CHAPTER 5. CONCLUSIONS

high-level information related to the event (such as speed or direction) that need to
be collected. The performance improvement in terms of overhead and scalability of
EQL with respect to traditional approaches has been shown by simulations. The
results of this activity have been presented in [62], [11].

The extension of EQL towards WSN where sensors may also be mobile is a short-
term future direction of research. On the long term, future directions of research are
the extension of this methodology for applications of ambient intelligence and web of
things, thus also addressing different devices such as new generation smart-phones,
intelligent appliances, domotic devices etc.

Acknowledgements

Questa tesi è il risultato di un lungo lavoro iniziato ben quattro anni fa! Ci sarebbero
troppe persone da ringraziare, una alla volta, e ci vorrebbe un’altra tesi solo per
quello.

Per cui mi limito a ringraziare la mia famiglia, che come al solito mi ha sempre
sostenuto e mi è stata vicina in ogni momento; il Professor Stefano Chessa e il
Dottor Giuseppe Amato, che mi hanno guidato e assistito pazientemente per tutta
la durata del Dottorato; tutti i colleghi e amici di lavoro, gli amici d’infanzia, gli
amici di vita, i compagni e amici delle varie squadre di calcetto che, anche senza
volerlo o saperlo, mi hanno supportato durante questi anni e mi hanno aiutato ad
arrivare in fondo a questa esperienza.

100 Acknowledgements

Bibliography

[1] http://standards.ieee.org/getieee802/download/802.15.4-2003.pdf.

[2] TinyAODV implementation, TinyOS source code repository,
http://cvs.sourcefourge.net/viewcvs.py/tinyos/tinyos-1.x/contrib/hsn/,
11/2009.

[3] MaD-WiSe: Management of Data in Wireless Sensor networks. http://mad-
wise.isti.cnr.it.

[4] TinyOS. http://www.tinyos.net/.

[5] 2010. MEMSIC Powerful Sensing Solutions for a Better Life,
http://www.memsic.com/company/about-memsic.html.

[6] T Abdelzaher, B Blum, Q Cao, Y Chen, D Evans, J George, S George, L Gu,
T He, S Krishnamurthy, and et al. Envirotrack: Towards an environmental
computing paradigm for distributed sensor networks. Proceedings of the Inter-
national Conference on Distributed Computing Systems ICDCS, pages 582–589,
2004.

[7] Michele Albano, Stefano Chessa, Francesco Nidito, and Susanna Pelagatti.
Dealing with nonuniformity in data centric storage for wireless sensor networks.
IEEE Transactions on Parallel and Distributed Systems, 22(8):1398–1406, Au-
gust 2011.

[8] Mohamed H. Ali. Phenomenon-aware sensor database systems. In In Proc. of
the EDBT Ph.D. Workshop, pages 1–11, 2006.

[9] Giuseppe Amato, Paolo Baronti, and Stefano Chessa. Mad-wise: a distributed
query processor for wireless sensor networks. In Technical Report ISTI-2006-
TR-39, Istituto di Scienza e Tecnologie dell’Informazione del CNR, Pisa, Italy,
page 39, 2006.

[10] Giuseppe Amato, Antonio Caruso, and Stefano Chessa. Application-driven,
energy-efficient communication in wireless sensor networks. Computer Com-
munications, 32(5):896–906, 2009.

102 BIBLIOGRAPHY

[11] Giuseppe Amato, Stefano Chessa, Claudio Gennaro, and Claudio Vairo. Effi-
cient detection of composite events in wireless sensor networks: Design and eval-
uation. In IEEE Symposium on Computers and Communications (ISCC11).,
pages 821 – 823, Corfu, Greece, 2011.

[12] Giuseppe Amato, Stefano Chessa, and Claudio Vairo. Optimizing network-
side queries with timestamp-join in wireless sensor networks. In 35th Annual
Conference of IEEE Industrial Electronics (IECON09)., pages 2653 – 2658,
Porto, Portugal, 2009.

[13] Giuseppe Amato, Stefano Chessa, and Claudio Vairo. MaD-WiSe: A dis-
tributed stream management system for wireless sensor networks. Software
Practice & Experience, 40(5):431–451, 2010.

[14] Magdalena Balazinska, Hari Balakrishnan, Samuel Madden, and Michael Stone-
braker. Fault-tolerance in the borealis distributed stream processing system.
In SIGMOD Conference, Baltimore Maryland, pages 13–24, 2005.

[15] François Bancilhon, Ted Briggs, Setrag Khoshafian, and Patrick Valduriez. Fad,
a powerful and simple database language. In Peter M. Stocker, William Kent,
and Peter Hammersley, editors, 13th International Conference on Very Large
Data Bases (VLDB), Brighton, England, pages 97–105. Morgan Kaufmann,
1987.

[16] Paolo Baronti, Prashant Pillai, Vince Chook, Stefano Chessa, Alberto Gotta,
and Y. Fun Hu. Wireless Sensor Networks: a Survey on the State of the Art and
the 802.15.4 and ZigBee Standards. Computer Communications, 30:1655–1695,
2007.

[17] Eduardo Cañete, Manuel Dı́az, and Bartolomé Rubio. A wireless sensor network
framework based on light databases. Software Practice & Experience, 42(7),
2012.

[18] Carlos T. Calafate, Carlos Lino, Juan-Carlos Cano, and Pietro Manzoni. Mod-
eling emergency events to evaluate the performance of time-critical WSNs. In
Proceedings of the The IEEE symposium on Computers and Communications,
ISCC ’10, pages 222–228, Riccione, Italy, 2010. IEEE Computer Society.

[19] Antonio Caruso, Stefano Chessa, Swades De, and Alessandro Urpi. Gps free
coordinate assignment and routing in wireless sensor networks. In Proceedings
of IEEE INFOCOM, Miami FL, pages 150–160, 2005.

[20] Wang-Rong Chang, Hui-Tang Lin, and Zong-Zhi Cheng. Coda: A continuous
object detection and tracking algorithm for wireless ad hoc sensor networks.
In 5th IEEE Consumer Communications and Networking Conference CCNC,
pages 168–174, Las Vegas, NV, 2008.

5.0. BIBLIOGRAPHY 103

[21] Chee-Yee Chong, Feng Zhao, S. Mori, and S. Kumar. Distributed tracking in
wireless ad hoc sensor networks. In Proceedings of the Sixth International Con-
ference of Information Fusion, pages 431–438, Cairns, Queensland, Australia,
2003.

[22] E. F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 13(6):377–387, 1970.

[23] Soledad Escolar, Stefano Chessa, and Jesús Carretero. Cross-layer optimiza-
tion of low power listening mac protocols for wireless sensor networks. IEEE
Symposium on Computers and Communications, 0:684–691, 2011.

[24] C R Farrar, S W Doebling, and D A Nix. Vibration-based structural damage
identification. Philosophical Transactions of the Royal Society A Mathematical
Physical and Engineering Sciences, 359(1778):131–149, 2001.

[25] Paolino Di Felice, Massimo Ianni, and Luigi Pomante. A spatial extension of
TinyDB for wireless sensor networks. In IEEE Symposium on Computers and
Communications (ISCC), pages 1076–1082, Marrakech 2008.

[26] David Gay, Philip Levis, David Culler, and Eric Brewer. NesC 1.1 Language
Reference Manual, May 2003. http://nescc.sourceforge.net.

[27] C. Gomez, P. Salvatella, O. Alonso, and J. Paradells. Adapting aodv for ieee
802.15.4 mesh sensor networks: Theoretical discussion and performance eval-
uation in a real environment. In International Symposium on on World of
Wireless, Mobile and Multimedia Networks (WoWMoM, Buffalo-Niagara Falls
NY), pages 159–170, 2006.

[28] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed
diffusion: a scalable and robust communication paradigm for sensor networks.
In 6th annual ACM/IEEE international conference on mobile computing and
networking, Boston, MA, USA, pages 56–67, 2000.

[29] ISTI-CNR, Via G. Moruzzi, 1, 56124, Pisa, IT. SensorViz/MaD-
WiSe, version 1.3 edition, July 2006. http://www.di.unipi.it/∼ste/MaD-
WiSe/manual 13.pdf.

[30] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li Shiuan Peh,
and Daniel Rubenstein. Energy-efficient computing for wildlife tracking: de-
sign tradeoffs and early experiences with zebranet. SIGARCH Comput. Archit.
News, 30(5):96–107, 2002.

[31] Aman Kansal, Jason Hsu, Sadaf Zahedi, and Mani B. Srivastava. Power man-
agement in energy harvesting sensor networks. ACM Transactions on Embedded
Computing Systems (TECS), 6(4), September 2007.

104 BIBLIOGRAPHY

[32] Krasimira Kapitanova, Sang H. Son, and Kyoung-Don Kang. Using fuzzy
logic for robust event detection in wireless sensor networks. Ad Hoc Networks,
10(4):709–722, June 2012.

[33] Thomas Kleinberger, Martin Becker, Eric Ras, Andreas Holzinger, and Paul
Müller. Ambient intelligence in assisted living: enable elderly people to handle
future interfaces. In Proceedings of the 4th international conference on Universal
access in human-computer interaction: ambient interaction, UAHCI’07, pages
103–112, Berlin, Heidelberg, 2007. Springer-Verlag.

[34] Donald Kossmann. The state of the art in distributed query processing. ACM
Comput. Surv., 32(4):422–469, 2000.

[35] Sunil Kumar, Kashyap K. R. Kambhatla, Bin Zan, Fei Hu, and Yang Xiao.
An energy-aware and intelligent cluster-based event detection scheme in wire-
less sensor networks. International Journal of Sensor Networks, 3(2):123–133,
February 2008.

[36] Chih-Yu Lin, Wen-Chih Peng, and Yu-Chee Tseng. Efficient in-network mov-
ing object tracking in wireless sensor networks. IEEE Transactions on Mobile
Computing, 5(8):1044–1056, 2006.

[37] Carlos Lino, Carlos T. Calafate, Arnoldo Diaz-Ramirez, Pietro Manzoni, and
Juan-Carlos Cano. Studying the feasibility of IEEE 802.15.4-based WSNs for
gas and fire tracking applications through simulation. In 11th IEEE Inter-
national Workshop on Wireless Local Networks (LCN), pages 875–881, Bonn,
Germany, 2011.

[38] Kebin Liu, Lei Chen, Yunhao Liu, and Minglu Li. Robust and Efficient Ag-
gregate query processing in wireless sensor networks. Mobile Networks and
Applications, 13(1-2):212–227, 2008.

[39] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
Tag: A tiny aggregation service for ad-hoc sensor networks. In 5th Sympo-
sium on Operating System Design and Implementation (OSDI 2002), Boston,
Massachusetts, USA, 2002.

[40] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
Tinydb: an acquisitional query processing system for sensor networks. ACM
Trans. Database Syst., 30(1):122–173, 2005.

[41] H. Tabatabaee Malazi, K. Zamanifar, and S.O. Dulman. Fed: Fuzzy event
detection model for wireless sensor networks. International Journal of Wireless
& Mobile Networks (IJWMN), 3(6):29–45, dec 2011.

5.0. BIBLIOGRAPHY 105

[42] Navneet Malpani, Jennifer L. Welch, and Nitin Vaidya. Leader election al-
gorithms for mobile ad hoc networks. In Proceedings of the 4th international
workshop on Discrete algorithms and methods for mobile computing and com-
munications, DIALM ’00, pages 96–103, New York, NY, USA, 2000. ACM.

[43] Dónall McCann and Mark Roantree. A query service for raw sensor data. In
EuroSSC, volume 5741 of Lecture Notes in Computer Science, pages 38–50.
Springer, 2009.

[44] Sun Microsystem. Jdbc: Java database connectivity. http://java.sun.com/jdbc.

[45] M.F. O’Connor, K. Conroy, M. Roantree, A.F. Smeaton, and N.M. Moyna.
Querying xml data streams from wireless sensor networks: an evaluation of
query engines. In Third International Conference on Research Challenges in
Information Science (RCIS), Fes, Morocco, pages 22–30. IEEE, 2009.

[46] Chris Olston, Jing Jiang, and Jennifer Widom. Adaptive filters for continuous
queries over distributed data streams. In SIGMOD Conference, San Diego
California, pages 563–574, 2003.

[47] Elizabeth Olule, Guojun Wang, Minyi Guo, and Mianxiong Dong. Rare: An
energy-efficient target tracking protocol for wireless sensor networks. In Inter-
national Conference on Parallel Processing Workshops ICPPW, pages 76–81,
Xian, China, 2007. IEEE Computer Society.

[48] Joseph A. Paradiso and Thad Starner. Energy scavenging for mobile and wire-
less electronics. IEEE Pervasive Computing, 4(1):18–27, January 2005.

[49] C. Perkins and E. Belding-Royer. Ad hoc on demand distance vector routing.
In Mobile Computing Systems and Applications (WMCSA), New Orleans LA,
pages 90–100, 1999.

[50] A V U Phani Kumar, Adi Mallikarjuna Reddy V, and D. Janakiram. Dis-
tributed collaboration for event detection in wireless sensor networks. In Pro-
ceedings of the 3rd international workshop on Middleware for pervasive and
ad-hoc computing, MPAC ’05, pages 1–8, New York, NY, USA, 2005. ACM.

[51] Joseph Polastre, Jason Hill, and David Culler. Versatile low power media access
for wireless sensor networks. In Proceedings of the 2nd international conference
on Embedded networked sensor systems, SenSys ’04, pages 95–107, New York,
NY, USA, 2004. ACM.

[52] Vijay Raghunathan, Aman Kansal, Jason Hsu, Jonathan Friedman, and Mani
Srivastava. Design considerations for solar energy harvesting wireless embedded
systems. In Proceedings of the 4th international symposium on Information
processing in sensor networks, IPSN ’05, Piscataway, NJ, USA, 2005. IEEE
Press.

106 BIBLIOGRAPHY

[53] V. Solai Raja and S. S. Sreeja Mole. A predictive energy-efficient mechanism
to support object-tracking sensor networks. IJCA Proceedings on International
Conference in Recent trends in Computational Methods, Communication and
Controls (ICON3C 2012), ICON3C(8):13–17, April 2012. Published by Foun-
dation of Computer Science, New York, USA.

[54] Ross Rosemark, Wang-Chien Lee, and Bhuvan Urgaonkar. Optimizing energy-
efficient query processing in wireless sensor networks. In 8th International Con-
ference on Mobile Data Management (MDM), Mannheim, Germany, pages 24–
29, 2007.

[55] Shad Roundy, Dan Steingart, Luc Frechette, Paul K. Wright, and Jan M.
Rabaey. Power sources for wireless sensor networks. In European Conference
on Wireless Sensor Networks (EWSN), pages 1–17, 2004.

[56] Ghalib Shah, Muslim Bozyigit, and Demet Aksoy. Adaptive pull-push based
event tracking in wireless sensor actor networks. International Journal of Wire-
less Information Networks, 18:24–38, 2011. 10.1007/s10776-010-0126-9.

[57] Mark Stemm and Randy H. Katz. Measuring and reducing energy consumption
of network interfaces in hand-held devices, 1997.

[58] Maneesha Sudheer. Wireless Sensor Network for Disaster Monitoring. Yen
Kheng Tan (Ed.), 2010.

[59] Egemen Tanin, Songting Chen, Junichi Tatemura, and Wang-Pin Hsiung. Mon-
itoring moving objects using low frequency snapshots in sensor networks. In
MDM ’08: Proceedings of the The Ninth International Conference on Mobile
Data Management, pages 25–32, Washington, DC, USA, 2008. IEEE Computer
Society.

[60] Wesley W. Terpstra, Stefan Behnel, Ludger Fiege, Andreas Zeidler, and Alejan-
dro P. Buchmann. A peer-to-peer approach to content-based publish/subscribe.
In Proceedings of the 2nd international workshop on Distributed event-based sys-
tems, DEBS ’03, pages 1–8, New York, NY, USA, 2003. ACM.

[61] Niki Trigoni, Yong Yao, Alan Demers, Johannes Gehrke, and Rajmohan Ra-
jaraman. Multi-query optimization for sensor networks. In International Con-
ference on Distributed Computing in Sensor Systems (DCOSS), Marina del Rey
CA, pages 307–321, 2005.

[62] Claudio Vairo, Giuseppe Amato, Stefano Chessa, and Paolo Valleri. Modeling
detection and tracking of complex events in wireless sensor networks. In IEEE
International Conference on Systems, Man, and Cybernetics (SMC), pages 235–
242, Istanbul, Turkey, 2010.

5.0. BIBLIOGRAPHY 107

[63] Sudarshan Vasudevan, Jim Kurose, and Don Towsley. Design and analysis of
a leader election algorithm for mobile ad hoc networks. In Proceedings of the
12th IEEE International Conference on Network Protocols, ICNP ’04, pages
350–360, Washington, DC, USA, 2004. IEEE Computer Society.

[64] Chinh T. Vu, Raheem A. Beyah, and Yingshu Li. Composite event detection
in wireless sensor networks. 21st IEEE International Performance, Computing,
and Communications Conference., 0:264–271, 2007.

[65] Markus Wälchli, Samuel Bissig, Michael Meer, and Torsten Braun. Distributed
event tracking and classification in wireless sensor networks. Journal of Internet
Engineering, 2(1):117–126, 2008.

[66] Markus Wälchli, Piotr Skoczylas, Michael Meer, and Torsten Braun. Dis-
tributed event localization and tracking with wireless sensors. In WWIC ’07:
Proceedings of the 5th international conference on Wired/Wireless Internet
Communications, pages 247–258, Berlin, Heidelberg, 2007. Springer-Verlag.

[67] H. Yang and B. Sikdar. A protocol for tracking mobile targets using sensor
networks. In Proceedings of the First IEEE International Workshop on Sensor
Network Protocols and Applications, pages 71–81, Anchogare, AK, 2003.

[68] Yinying Yang, Arny Ambrose, and Mihaela Cardei. Coverage for composite
event detection in wireless sensor networks. Wireless Communications and
Mobile Computing, 11(8):1168–1181, August 2011.

[69] Yong Yao and Johannes Gehrke. The cougar approach to in-network query
processing in sensor networks. SIGMOD Record, 31(3):9–18, 2002.

[70] Yong Yao and Johannes Gehrke. Query processing in sensor networks. In CIDR,
Asilomar CA, 2003.

[71] Wei Ye, John Heidemann, and Deborah Estrin. Medium access control with
coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Trans-
actions on Networking, 12(3):493–506, June 2004.

[72] Xingbo Yu, Koushik Niyogi, Sharad Mehrotra, and Nalini Venkatasubrama-
nian. Adaptive middleware for distributed sensor environments. IEEE Dis-
tributed Systems Online, 4(5):–, May 2003.

[73] Shu Zhou, Min-You Wu, and Wei Shu. Improving mobile target detection on
randomly deployed sensor networks. International Journal of Sensor Networks,
6(2):115–128, October 2009.

[74] Zheng Zhou and Gang Qu. An energy efficient adaptive event detection scheme
for wireless sensor network. Application-Specific Systems, Architectures and
Processors, IEEE International Conference on, 0:235–238, 2011.

108 BIBLIOGRAPHY

[75] Xianjin Zhu Xianjin Zhu, H Gupta, and Bin Tang Bin Tang. Join of multiple
data streams in sensor networks, 2009.

