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Abstract

A new model of the self-consistent coupling between low frequency, ion-scale coherent magnetic
structures and high frequency whistler waves is proposed in order to interpret space data gathered
by Cluster satellites during substorm events, in the night sector of the Earth’s magnetosphere.
The coupling provides a mechanism to spatially confine and transport whistler waves by means of
a highly oblique, propagating nonlinear carrier wave. The present study relies on a combination of
data analysis of original in situ measurements, theoretical modeling and numerical investigation.

During substorms, the magnetosphere undergoes strong magnetic and electric field fluctua-
tions ranging from low frequencies, of the order or less than the typical ion-time scales, to higher
frequencies, of the order or higher than the typical electron time-scales. To understand basic
plasma physical processes which characterize the magnetosphere dynamics during substorms an
analysis of whether, and by which mechanism, waves occurring at these different time scales are
coupled, is of fundamental interest. Low frequency magnetic structures are commonly detected
in environments such as the magnetosheath and the solar wind, as well as in the dusk magneto-
sphere, possibly correlated with higher frequency whistler waves. In this Thesis it is shown that
similar magnetic structures, correlated with whistler waves, are observed in the magnetospheric
plasma sheet during substorms. The interesting question arises as to how the inhomogeneity
associated with such magnetic structures affects the propagation of higher frequency waves. The
Cluster mission, thanks to its four satellites in tetrahedron configuration and high temporal res-
olution measurements, provides a unique opportunity on the one hand to explore the spatial
structure of stationary and propagating perturbations observed at low frequencies and on the
other hand to study dynamics occurring at higher temporal scales, via whistler mode waves.

With regard to this, I will describe the Cluster spacecraft detection of large amplitude whistler
wave packets inside coherent ion-scale magnetic structures embedded in a fast plasma flow during
the August 17, 2003 substorm event. In this period the Cluster satellites were located in the
plasma sheet region and separated by a distance which is less than the magnetotail typical
ion-scale lengths, namely the ion gyroradius and the ion inertial length. The observed whistler
emissions are correlated with magnetic field structures showing magnetic depletions associated
with density humps. As a first step, the latter have been modeled as one dimensional nonlinear
slow waves which spatially confine and transport whistlers, in the framework of a two-fluid
approximation. This schematic model is investigated through a theoretical and numerical study
by means of a two-fluid code, and it is shown that the proposed model goes quite well with data
interpretation. Its possible role in substorm dynamics is also discussed.

This new trapping mechanism, studied here by using a highly oblique slow magnetosonic
soliton as a guide for whistler waves, is of more general interest beyond the specific context of
the observations reported in this Thesis. Other nonlinear structures showing similar features, for
example highly oblique nonlinear Alfvén waves or kinetic Alfvén waves in high beta plasmas, can
in principle act as wave carriers. The model proposed provides an explanation for the recurrent
detection of whistlers inside ion-scale magnetic structures which is alternative to usual models
of stationary magnetic structures acting as channels. Moreover, the study described in this
Thesis addresses more general questions of basic plasma physics, such as wave propagation in
inhomogeneous plasmas and the interaction between wave modes at different temporal scales.
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Résumé

Dans cette thèse, on propose un nouveau modèle de couplage auto-cohérent entre des struc-
tures magnétiques cohérentes sur les échelles ioniques et des ondes dites de sifflement (whistlers,
en anglais) à plus hautes fréquences, afin d’interpréter les données expérimentales recueillies par
les satellites Cluster pendant un sous-orage magnétique dans la région nocturne de la magné-
tosphère terrestre. Le couplage fournit un mécanisme pour confiner et transporter les ondes
whistlers par l’intermédiaire d’une onde nonlinéaire qui se propage obliquement par rapport au
champ magnétique. Cette étude s’appuie sur une analyse des données expérimentales, sur une
modélisation théorique ainsi que sur des simulations numériques.

Pendant les sous-orages magnétiques, la magnétosphère est soumise à de fortes perturba-
tions magnétiques et électriques dans une vaste gamme de fréquences, qui vont des basses
fréquences, inférieures ou de l’ordre de l’échelle temporelle typique ionique, aux hautes fréquences,
supérieures ou de l’ordre de l’échelle temporelle typique électronique. Afin de connaître les pro-
cessus physiques qui déterminent la dynamique de la magnétosphère pendant les sous-orages, il
est fondamental de comprendre si, et avec quel méchanisme, des couplages peuvent se produire
entre des ondes qui se propagent sur des temps caractéristiques différents. Des structures magné-
tiques à basse fréquence ont déjá été obsérvées dans des régions comme la magnétogaine et le vent
solaire, éventuellement associées à des ondes whistlers à plus haute fréquence. Dans cette thèse,
on montre que des structures similaires sont obsérvées dans la couche de plasma à l’intérieur de
la magnétosphère. On s’interroge ensuite sur la façon dont l’inhomogénéité de telles structures
peut influencer la propagation des ondes à plus haute fréquence. Grâce à ses quatre satellites
en configuration tetraédrique et à ses mésures à haute résolution temporelle, la mission Cluster
nous offre une occasion unique de pouvoir analyser la structure spatiale des perturbations sta-
tionnaires (ou se propageant) et d’étudier la dynamique du plasma sur des échelles temporelles
plus courtes, telles que celles des ondes whistlers.

Ainsi, je décrirai les émissions d’ondes whistlers détectées par les satellites Cluster à l’intérieur
de structures magnétiques cohérentes situées dans un écoulement de plasma rapide pendant le
sous-orage du 17 Août 2003. Au cours de cette période, les satellites Cluster sont situés dans
la couche de plasma, séparés d’une distance de l’ordre des échelles spatiales typiques ioniques
(le rayon de giration ou la longueur d’inertie des ions). Les ondes whistlers sont corrélées avec
des structures magnétiques charactérisées par un minimum du module du champ magnétique et
un maximum de densité du plasma. Ces dernières ont été modélisées comme des ondes planes
nonlinéaires de type lent qui piègent et transportent les ondes whistlers. A partir d’une étude
théorique et numérique en utilisant une approche bi-fluide, on peut alors reproduire les données
observationnelles. Le rôle possible de telles structures couplées dans la physique des sous-orages
est aussi discuté.

Ce nouveau mécanisme de piégeage, étudié ici en utilisant comme guide pour les whistlers
une onde oblique de type magnétosonique, est d’intérêt plus général par rapport au contexte
spécifique des observations présentées dans cette thèse. En effet, d’autres ondes nonlinéaires,
comme par exemple les ondes d’Alfvén obliques ou d’Alfvén cinétiques dans les plasmas à beta
fort (où beta est le rapport de la pression thermique du plasma sur la pression magnétique),
pourraient aussi transporter les whistlers. Ce modèle de piégeage constitue aussi une explication
alternative aux modèles existants qui considèrent une inhomogénéité stationnaire sous la forme
d’un canal de densité. Enfin, l’étude décrite dans cette thèse concerne des problématiques fonda-
mentales en physique des plasmas, comme la propagation d’ondes dans les milieux inhomogènes
et l’interaction entre modes sur des échelles temporelles différentes.
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Riassunto

In questa Tesi viene proposto un nuovo modello di accoppiamento auto-consistente tra strut-
ture magnetiche coerenti sulle scale ioniche e le cosiddette onde whistlers a piú alta frequenza,
al fine di interpretare dati sperimentali raccolti dai satelliti Cluster durante una sotto-tempesta
magnetica nella regione notturna della magnetosfera terrestre. L’accoppiamento fornisce un
meccanismo per confinare spazialmente e trasportare onde whistlers tramite un’onda nonlineare
che si propaga obliquamente rispetto al campo magnetico. Questo studio si basa su un’ analisi
originale di dati sperimentali, modellizzazione teorica e indagine numerica.

Durante le sotto-tempeste magnetiche, la magnetosfera è soggetta a forti fluttuazioni mag-
netiche ed elettriche in una vasta gamma di frequenze, da quelle dell’ordine o inferiori alla tipica
scala temporale ionica, alle alte, dell’ordine o maggiori della tipica scala temporale elettronica.
Per conoscere i processi fisici di base che determinano la dinamica della magnetosfera durante le
sotto-tempeste magnetiche, è fondamentale capire se, e con quale meccanismo, si possono accop-
piare onde che si propagano su tempi scala diversi. Strutture magnetiche a bassa frequenza sono
osservate comunemente in regioni come la magnetoguaina e il vento solare, eventualmente asso-
ciate alle onde whistlers. In questa Tesi viene mostrato che simili strutture sono osservate nello
strato di plasma all’interno della magnetosfera terrestre. Si pone quindi l’interessante problema
su come la disomogeneità di tali strutture influenzi la propagazione di onde a piú alta frequenza.
La missione Cluster, grazie ai suoi quattro satelliti in configurazione tetraedrica e alle misure
ad alta risoluzione temporale, offre un’ occasione unica, da un lato per analizzare la struttura
spaziale di perturbazioni stazionarie o che si propagano, dall’altro di studiare la dinamica mediata
dai whistlers su scale temporali piú rapide.

A questo proposito descriveró le misure di onde whistlers effettuate dai satelliti Cluster all’
interno di strutture magnetiche coerenti immerse in un flusso di plasma rapido, durante la sotto-
tempesta magnetica del 17 Agosto 2003. In quel periodo i satelliti Cluster erano localizzati
all’interno dello strato di plasma nella regione notturna della magnetosfera, separati da una
distanza dell’ordine delle tipiche scale spaziali ioniche, il raggio di Larmor e la lunghezza inerziale
ionica. Le onde whistlers osservate sono correlate con strutture coerenti caratterizzate da un
minimo del modulo del campo magnetico e un massimo della densità del plasma. In prima
approssimazione, queste ultime sono state modellizzate come onde piane nonlineari di tipo lento
che intrappolano e trasportano le onde whistlers in un plasma a due fluidi. Questo modello
viene approfondito attraverso uno studio teorico e numerico con un codice a due fluidi, e viene
mostrato che risulta adeguato all’interpretazione dei dati osservativi. Viene discusso anche il
possibile ruolo di tali strutture accoppiate nella dinamica delle sotto-tempeste magnetiche.

Il nuovo meccanismo di intrappolamento proposto in questa Tesi, studiato usando un’onda
obliqua di tipo magnetosonico come guida per i whistlers, è di interesse piú generale rispetto allo
specifico contesto dato dalle osservazioni riportate in questa Tesi. Altre onde nonlineari, come
per esempio le onde oblique di Alfvén o le onde di Alfvén cinetiche in plasmi ad alto parametro
beta, possono agire come mezzo per trasportare i whistlers. Il modello proposto fornisce anche
una spiegazione per le ricorrenti osservazioni di whistlers all’interno di strutture magnetiche alle
scale ioniche, che è alternativa rispetto agli usuali modelli in cui la disomogeneità stazionaria
agisce come canale. Inoltre, lo studio descritto in questa Tesi è rivolto a problematiche di fisica
del plasma di base, come la propagazione di onde in mezzi disomogenei e l’interazione tra modi
su scale temporali diverse.
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Chapter 1

Introduction

In this Thesis I present my research work which has focused on the interaction between whistler
waves and nonlinear electromagnetic structures at the ion-scales in the plasma of the Earth’s
magnetosphere. This work comprises an observational study based on data gathered in the night
sector of the Earth’s magnetosphere by the Cluster spacecraft during a substorm event as well
as a theoretical modeling of these observations, supported by numerical simulations involving
a two-fluid model of the plasma. This work aims at investigating the spatial structure of low
frequency fluctuations, namely at the typical ion-time scales by directly exploiting the unique
multipoint capabilities and high time resolution measurements of the Cluster mission. It is found
that such spatial structures can act as carriers for the higher frequency whistler waves during
substorms.
During substorm expansion Cluster detects, as shown both in the literature and in the following
chapters, strong electric and magnetic field fluctuations ranging from low frequencies, of the
order or less than the typical ion-time scales, to high frequencies, of the order or higher than
the typical electron-time scales. An intrinsic property of plasmas is that once they have under-
gone some perturbation, they self-organize and exhibit collective motions coupled to electric and
magnetic field fluctuations in the form of waves. In addition, in weakly collisional plasmas such
as the magnetosphere, waves represent a fundamental way not only to transport information
through the plasma, but also to mediate dynamics between particles. For this reason, the study
of plasma wave modes and the interaction between waves occurring at different time scales is
fundamental in order to understand magnetosphere dynamics and processes coming into play
during substorms. In this sense, the four satellites of the Cluster mission, thanks to multipoint
and high time resolution measurements, offer a unique opportunity to inspect the spatial struc-
ture of stationary and propagating magnetic fluctuations at low frequencies, and weather they
are related to higher frequency waves.
The present Thesis provides an investigation of the self consistent interaction between whistler
mode waves and slow mode solitary waves by means of a combined study of observations, theo-
retical modeling and numerical investigation.

The very existence of the magnetosphere is due to the continuous interaction of the Earth’s
intrinsic dipolar magnetic field with the supersonic and superalfvénic streaming solar wind which
drags the Interplanetary Magnetic Field (IMF) [1]. As shown in Fig. 1.1, the impinging solar
wind compresses the Earth’s magnetic field on the dayside of the magnetosphere while on the
nightside it stretches magnetic field lines outwards in a cometary tail-like configuration extending
up to a few hundred Earth radii in the anti-sunward direction. The magnetospheric environment,
as illustrated in Fig. 1.1, is structured in various regions. In this Thesis I investigate plasma
dynamics occurring in the nightside magnetosphere, the magnetotail, where magnetic substorm
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Figure 1.1: Schematic representation of the near Earth’s magnetosphere.

onset and expansion take place. The stretched configuration of the magnetotail is supported
by an electric current across the tail, the central current sheet, also known as the cross-tail
current. The latter is directed dawn-to-dusk and has a nominal value Jy = 1− 4nA/m2 during
quiet periods [2, 3, 4], while during geomagnetic activity, as discussed below and in Chapter 3, it
becomes more intense, reaching values of about 20−40nA/m2 at the end of the substorm growth
phase. The current sheet is about 2 − 5 Earth radii thick during quiet periods and it becomes
thinner during substorms, with a thickness of about 0.2 − 1 Earth radii [2, 3, 4]. The central
current sheet separates the magnetic field lines pointing Earthward in the northern hemisphere
from those pointing tailward in the southern hemisphere. The lobes are the two regions of tenuous
plasma which surround the denser and warmer central plasma sheet. In the lobes the plasma
has an extremely low density, n ∼ 0.01 cm−3, and electron and ion temperatures are Te ∼ 50 eV
and Ti ∼ 150 eV [5], respectively, suggesting that field lines in this region are connected to the
solar wind, allowing ions and electrons to flow away. The plasma sheet is typically 10−15 Earth
radii thick and it carries part of the cross-tail current. In this region the plasma density is nearly
n ∼ 0.1 − 1 cm−3 and temperatures are Te ∼ 0.6 keV and Ti ∼ 4 keV [5]. The plasma beta β,
which is defined as the ratio between the thermal plasma pressure and the magnetic pressure, is
of order unity since the magnetic field is relatively weak, especially in the field-reversal region
(the so-called magnetic equator). The magnetic field lines of the plasma sheet connect to the
auroral ovals (Fig. 1.2) where diffuse auroral precipitations take place in a quasi stationary
regime, in addition to the brighter discrete auroral displays enhanced during highly magnetically
disturbed periods. Finally, the plasma sheet is separated from the tail lobes by the plasma sheet
boundary layer, where field aligned currents and plasma flows toward and away from Earth are
often detected.

The magnetosphere is dynamic, as it is continuously exposed to the variable conditions in the
solar wind. The magnetosphere as described above, and represented in Fig. 1.1, can be con-
sidered the typical configuration reached by the Earth-solar wind system during quiet periods.
Under particular conditions of the IMF, namely when it turns southward, the magnetosphere
can undergo strong perturbations leading to a reconfiguration of the magnetic field and a redis-
tribution of magnetic and particle energy, the magnetospheric substorms.
A magnetospheric substorm is “a transient process initiated on the nightside of the Earth in which
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a significant amount of the energy derived from the solar wind-magnetosphere interaction is de-
posited in the auroral ionosphere and in the magnetosphere” (Rostoker et al., JGR (1980) [6]).
The substorm process can be divided into three main phases: a growth phase, an expansion
phase and a recovery phase. The growth phase [7] is the first stage of the substorm dynamics
and typically starts after the IMF has turned southward allowing magnetic field lines to merge
at the dayside boundary of the magnetosphere. The reconnected magnetic field lines then are
dragged downstream of the Earth where they start to pile up. During the growth phase, which
lasts about 0.5–1 hour, energy is stored in the magnetospheric nightside as the central current
sheet intensifies and thins in the near-Earth plasma sheet region, extending all the way down to
the geosynchronous orbit [8]. At the same time the auroral oval is seen to move equatorward [9]
as the magnetic field lines are stretching in the tail, and the most equatorward auroral arc is
seen to brighten as a consequence of the enhanced field aligned currents. Once the stored energy
reaches a critical level, a local current instability is triggered (substorm onset) which leads to the
disruption of the central current sheet. Energy is then rapidly released to the plasma sheet dur-
ing the expansion phase, where particles are heated, accelerated and injected both Earthward, in
the inner magnetosphere, and tailward [10]. Both ground based and in situ measurements reveal
strong electromagnetic field fluctuations in a wide range of frequencies. With the disruption of the
central current, the previously stretched magnetic field recovers a more dipolar-like configuration,
a process called dipolarization. The most direct, and perhaps fascinating, evidence of substorm
expansion are discrete auroras, or auroral substorms [9]. These are temporary brightenings in
visible light, typically from red to green, that can be observed in the sky at high latitudes.

Figure 1.2: Auroral oval.

Auroral displays appear at or near the substorm onset in the
midnight sector and then they propagate westward and pole-
ward. Discrete auroras are due to plasma sheet particle ac-
celeration along the magnetic field lines connecting to the au-
roral oval. If electrons are sufficiently energetic to overcome
the repulsive mirror force due to converging magnetic field
lines toward the ionosphere, they fall into the ionosphere it-
self where they are lost through collisions with neutral atoms.
After the expansion phase, which typically lasts 1 hour, the
system recovers its pre-substorm state (recovery phase).

The primary origin of the substorm onset is still a mat-
ter of debate. Two major paradigms have been proposed,
known as the near-tail initiation and the mid-tail initiation
paradigms. A detailed review of the pros and cons of these
two scenarios is beyond the scope of the present Thesis, and

can be found for instance in the review paper by Lui (2004) [11]. For the sake of completeness,
I only briefly summarize here the main features of the proposed scenarios. In the near-Earth
initiation paradigm, a current disruption which could be provided by, e.g., ballooning modes or
the cross-field current instability, is thought to take place in the near Earth region, between 6
and 15 Earth radii down in the tail. The local dipolarization enhances Earthward convection and
the whole disturbance propagates tailward, in order to explain the poleward movement of the
auroral arcs, as mentioned above. Magnetic reconnection at the magnetic equator can eventually
occur as a result of a secondary instability. On the contrary, the mid-tail initiation paradigm
relies on the hypothesis that magnetic reconnection is the primary origin of the onset mechanism,
taking place at a radial distance between 15 and 30 Earth radii. The plasma outflow piles up in
the near Earth region, where the dipolar field brakes the flow which in turn deviates to form a
dusk-to-dawn current, yielding local dipolarization.
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While the gross features of this process of energy storage and release rely on consolidated and
widely recognized signatures in the ionosphere and magnetosphere, the nature of the microscopic
processes related to substorm onset and expansion, and how they are related, is still not com-
pletely understood. With regard to this, whatever substorm onset mechanism is considered, it is
crucial to understand plasma wave mode dynamics inside the magnetosphere. Since the plasma
in the magnetosphere is low collisional, waves play indeed a crucial role in the dissipation pro-
cesses needed to convert magnetic energy into thermal and kinetic energy through wave-particle
interactions or, vice-versa, to provide a means to absorb and transport plasma energy. In this
work I will focus mainly on whistler waves. Whistler waves are electromagnetic waves propagat-
ing in a magnetized plasma at frequencies fci < f � fce, fci and fce being the ion and electron
cyclotron frequencies, respectively. The interest in understanding the origin and propagation of
whistler waves stems from the fact that the electron scattering by whistler waves causes electron
pitch angle diffusion into the loss cone and the subsequent enhancement of precipitations into
the ionosphere [12]. Moreover, whistlers may affect the development of large scale instabilities,
such as the tearing instability [13], by controlling the level of electron temperature anisotropy.
Earlier observations of wave activity in the night sector of the magnetosphere reported sporadic
emissions in the whistler frequency range, f = 10−300Hz, and amplitudes of about 0.01−0.1nT ,
while spacecraft were crossing the plasma sheet. These emissions were recorded both in the near
magnetotail regions, at radial distances ranging from 10 to 35 Earth radii [14, 15, 16, 17] and
in the distant tail, at radial distances between 100 and 210 Earth radii [17]. It was suggested
that whistlers were more likely excited by electron beams in the regions near the boundary of
the plasma sheet. These observations showed that whistlers can be commonly detected in the
plasma sheet, but did not show how they could be related to substorm activity.
More recently whistler observations have been related directly to processes occurring during
substorms at radial distances of 10-15 Earth radii in the plasma sheet, such as local dipolar-
ization [18] or plasma jet braking at flux pile-up regions [19]. In both cases, electrons respond
adiabatically to variations of the magnetic field by developing a temperature anisotropy in their
distribution function, enabling whistler waves to grow [20]. Whistlers have been also correlated
with reconnection events as they were detected just prior and after the detection of a southward
turning of the Bz component of the magnetic field associated to a tailward ion fast flow [21]. It
has been also suggested that whistlers may be used as proxy for magnetic reconnection on the
dayside of the magnetopause [22].

In addition to observations related to substorms, it is worth mentioning that in situ space
measurements reported quasi monochromatic whistler waves in the frequency range f ≈ 0.1 −
0.2 fce, the lion roars, inside magnetic field depressions associated with density humps whose
typical scale length is of the order of the ion-scales, so-called magnetic holes. The latter are
usually interpreted as non-propagating mirror mode structures and have been detected in the
Earth’s magnetosheath and in the dusk magnetosphere [23, 24, 25, 26, 27]. Mirror modes are
the final stage of the ion mirror instability, so that they need proper environmental conditions in
order to develop [28, 29]. On the other hand, other nonlinear structures can naturally arise in a
weakly collisional, magnetized plasma characterized by a magnetic field depletion in opposition
of phase with a density inhomogeneity, as discussed for instance by Bäumgartell, JGR (1999) [30]
or Stasiewicz, PRL (2004) [31] with regard to magnetic structures observed in the magnetosheath
and solar wind. Theoretical models of such structures are provided by, e.g., highly oblique Alfvén
solitary waves and slow magnetosonic solitons in high beta plasmas [32, 33, 30, 34, 35]. If the
whistler waves become trapped inside such structures, the problem arises as to how low frequency
nonlinear modes can act as carriers for higher frequency waves. Indeed, as will be discussed in
Chapter 2, a known property of whistlers is that in the presence of field aligned tubes of plasma
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density inhomogeneities, or density ducts, their energy can be guided for long times without
spreading [36, 37, 38, 39]. Examples of such ducted propagation have been found using satellite
observations in the near Earth magnetosphere [40, 41, 42] and also in laboratory plasmas [43].

Throughout this Thesis I will discuss new aspects of whistler wave generation and propagation
by investigating the linear coupling of whistlers with quasi perpendicular, “slow” electromagnetic
waves at the ion-scales. In this sense the Cluster mission, by combining high time resolution and
multipoint measurements, is very well suited, allowing the detailed investigation of the interaction
between wave modes occurring at different time scales, as well as identifying propagating or
stationary spatial structures at the inter-satellite distance.
In this work I report observations of intense, broad band whistler emissions, with amplitudes
of about 0.5 − 0.8nT and in the frequency range f ≈ 0.1 − 0.4 fce, correlated to magnetic field
strength depressions associated with density humps, embedded in a fast ion flow. A new model
for the self-consistent coupling between low frequency, ion-scale coherent structures with high
frequency whistler waves is presented, providing a natural interpretation of the Cluster data.
The idea relies on the possibility of trapping whistler waves by inhomogeneous external fields,
where the whistlers can be spatially confined and propagate for times much longer than their
characteristic electronic time scale. As a first step, I will take the example of a slow magnetosonic
soliton acting as a wave guide in analogy with the ducting properties of an inhomogeneous plasma.
The soliton is characterized by a magnetic dip and density hump that traps and advects high
frequency waves on many ion times. In addition, observations show that inside such low frequency
magnetic structures favorable conditions for whistler wave growth set in, namely an electron
temperature anisotropy develops. In this way, the magnetic structures provide a mechanism for
both whistler mode wave generation and transport. A possible role of this mechanism in the
substorm process is also discussed.

Besides the possible application to substorms, the present work addresses fundamental ques-
tions of basic plasma physics, namely the interaction between wave modes at different time
scales and the associated wave energy transport, as well as wave propagation in inhomogeneous
plasmas. Finally, the trapping mechanism proposed provides an explanation to the recurrent
detection of whistler waves inside magnetic holes alternative with respect to stationary inhomo-
geneities acting as channels for whistler.

The Thesis is organized as follows: in Chapter 2 I summarize the known theory of whistlers
and slow magnetosonic solitons that are at the base of the present work; in Chapter 3 I will re-
port a detailed analysis of the observation of whistler waves inside ion-scale magnetic structures
during the August 17, 2003 substorm event; in Chapter 4 I report the theoretical and numeri-
cal analysis carried out to model observations and finally, in Chapter 5 the concluding discussion.
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Chapter 2

Theoretical Background

This chapter reviews the main plasma dynamics relevant to the present research. As explained
in the Introduction, throughout the Thesis I will discuss the linear coupling between whistler
mode waves and magnetic structures at the ion-scales, that will be modeled as a high frequency
solitary wave arising from the MHD slow mode branch. In order to facilitate the reading of
the following chapters, I will summarize the basics of whistler wave theory and of nonlinear
magnetohydrodynamic solutions of the slow mode. This chapter is organized as follows: in
Section 2.1 I will consider dynamics occurring at typical frequencies ωci � ω < ωce, where
ωci and ωce are the electron and the ion cyclotron frequency, respectively, focusing on whistler
wave properties; in Section 2.2 I will consider dynamics occurring at the ion scales, that is at
typical time scales of the order or less than the ion cyclotron frequency ω . ωci, showing how
magnetosonic solitary waves arise as solutions of a two-fluid system.

2.1 Whistler waves

In this section I summarize whistler wave properties within both the fluid (§2.1.1) and the
kinetic (§2.1.2) formalism. Fluid equations are obtained in the cold plasma approximation,
vth,e � vph, where vth,e and vph are the electron thermal velocity and the whistler phase velocity,
respectively. Even if this condition is not always fulfilled in space plasmas, it greatly simplifies
equations and allows to provide a good description of the main characteristics of whistler waves.
Nevertheless, there are effects due to the thermal motion of electrons that have to be dealt with
a kinetic approach. In particular, by using the kinetic equations, I will review a particular type
of microscopic instability, the whistler temperature anisotropy instability due to a bi-maxwellian
equilibrium distribution function. This instability is relevant for us because it provides a source
for whistlers, as will be discussed in the section about data analysis.

2.1.1 Whistler mode in the cold plasma approximation

2.1.1.1 Propagation in a homogeneous medium

Whistlers can be obtained in a simple way as normal modes of the Electron-Magneto-Hydro-
Dynamics model (EMHD hereafter). The EMHD is a one fluid model which is suited for describ-
ing plasma dynamics at frequencies ω > ωci. In particular, we assume that frequencies satisfy
ωci � ω < ωce � ωpe, where ωpe = 4πn0e

2/me is the plasma frequency. In this condition a useful
simplification is to neglect the dynamics of ions, which can be considered as a neutralizing back-
ground. Moreover, since ω � ωpe we can assume quasi neutrality and neglect the displacement
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current in Maxwell’s equations. All these assumptions yield the following EMHD equations:

∂ue
∂t

+ (ue · ∇)ue = − e

me
E− e

mec
ue ×B (2.1a)

∇×B = −4π

c
neue (2.1b)

∇×E = −1

c

∂B

∂t
. (2.1c)

In the above equations, B and E are the magnetic and electric fields, respectively, ue is the
electron fluid velocity and n is the plasma particle density.

Consider now an homogeneous magnetized plasma at rest with an equilibrium magnetic field
B0 directed along the z direction and density n0. The set of equations (2.1) can be arranged by
taking the curl of equation (2.1a), and combining it with Maxwell’s equations (2.1b)–(2.1c), as
to obtain the induction equation

∂

∂t

(
∇2 − 1

d2
e

)
B +

e d2
e

mec
∇×

[
(∇×B)×

(
∇2 − 1

d2
e

)
B

]
= 0, (2.2)

where d2
e = c2/ω2

pe is the electron inertial length. Assume now perturbations to the equilibrium
of the form A exp(ik · r − iωt), where k = (kx, 0, kz) ≡ (k⊥, 0, k‖) is the wave vector. The
propagation angle θ with respect to B0 is θ = arctan k⊥/k‖. Linearization of equation (2.2)
around the equilibrium gives the following equation for the magnetic field perturbation b

i
mec

e
ω

(
k2 +

1

d2
e

)
b = −(B0 · k)(k× b), (2.3)

which yields the whistler dispersion relation

ω = ωce
k‖kd

2
e

1 + d2
e k

2
, (2.4)

where ωce = eB0/(mec) is the electron cyclotron frequency. The components of the magnetic
and electric field, b and e, respectively, of the corresponding eigenvectors are

by
bx

=
i

cos θ
,

bz
by

= − tan θ (2.5a)

ey
ex

= i
ω/ωce cos θ − 1

ω/ωce − cos θ
,

ez
ex

=
sin θ

ω/ωce − cos θ
. (2.5b)

From the expressions in the set of equations (2.5) we infer that for a generic propagation angle θ
whistlers are elliptically, right handed polarized with respect to the direction ofB0, while they are
circularly polarized with respect to the direction of the wave vector. The maximum propagation
angle is θm = arccos(ω/ωce). Above this value the wave is evanescent. The plot of the normalized
frequency ω/ωce as a function of the normalized wave vector kde is shown in Fig. 2.1, right panel,
for different propagation angles. For future convenience, in Fig. 2.1, middle and right panels, I
show the shaded isocontours of the normalized frequency ω/ωce, given by equation (2.4), in the
plane (k⊥, k‖). These contour plots are also known as refractive-index surfaces, shown, for the
sake of illustration, only for positive values of k‖ and k⊥. The surfaces can be obtained in the
whole domain of wave vectors by tilting the plot with respect to the k⊥ axis and rotating around
the k‖ axis. The shaded isocontours of the frequency are represented for values in the range
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ω/ωce < 1/2 and ω/ωce > 1/2, in left and right hand panels, respectively. Fig. 2.1 shows that at
fixed frequency and k‖ there are two values, or two branches, for the perpendicular wave vector
k⊥, indicated as k− and k+, respectively. For frequencies ω/ωce < 1/2 the two branches coexist,
k− corresponding to a smaller angle of propagation with respect to k+, while for frequencies
ω/ωce > 0.5 only k+ can propagate.
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Figure 2.1: Whistler dispersion relation. Left Panel: whistler dispersion relation (2.4) as a function of
the modulus of the wave vector k for three different propagation angle θ. Middle and right panels: shaded
isocontours for the whistler frequency ω/ωce given by equation (2.4), in k space. Middle and right hand
panels correspond to the frequency regime ω/ωce < 1/2 and ω/ωce > 1/2, respectively.

2.1.1.2 Propagation in density inhomogeneities. Geometrical optics

The geometrical optics, or ray tracing theory, describes the propagation of electromagnetic
wave packets in an inhomogeneous medium in terms light ray paths. This formalism is valid in
the limit of small wavelengths with respect to the scale length of variation of the equilibrium
quantities. In the following, the equations describing ray paths are derived in the simplified case
of an isotropic medium (references can be found for instance in the textbooks “The Classical
Theory of Fields” by Landau [44] §7, or “Principles of Optics” by Born and Wolf [45] §3). A
detailed calculation for the case of whistlers in a magnetized plasma is presented in Appendix C.
Let me consider for simplicity an isotropic, inhomogeneous medium whose properties vary over a
typical scale length L, and consider time harmonic perturbations of the equilibrium of the form

A(r/L)eik0LS(r/L)e−iωt. (2.6)

In equation (2.6), k0 = ω/c is the vacuum wave vector that satisfies k0L� 1. The phase S(r/L)
and the amplitude A(r/L) are slowly varying functions of the position r, with respect to the
wavelength. According to these assumptions, the set of Maxwell’s equations can be reduced to
the wave equation

∇2E + k2
0ε(r, ω)E = 0, (2.7)

where ε(r, ω) is the local dielectric response of the medium, and spatial lengths have been nor-
malized to L. Since the dielectric function is a scalar, hereafter we can focus our attention to
only one scalar component of the electric field. By inserting the explicit spatial form of the field
E(r) = A(r)eik0S(r) into the wave equation (2.7), we get the following expression

∇2A− k2
0 (∇S)2A+ 2ik0∇A ·∇S + iAk0∇2S + k2

0εA = 0, (2.8)

that can be solved, according to the WKB method, by expanding the amplitude A and the phase
S in powers of k−1

0 : A = A0 + k−1
0 A1 + . . . , S = S0 + k−1

0 S1 + . . . . If only the leading terms are
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retained in equation (2.8), the phase of the wave is described by the so called eikonal equation

(∇S0)2 = ε, or [∇ (k0S0)]2 = k2, (2.9)

which yields E(r, t) = E0 exp
{
i
[
k0

∫ r
(√

ε(r′) ∇S0
|∇S0| · dr

′
)
− ωt

]}
. This solution corresponds

to the geometrical optics approximation. Remark that the amplitude of the wave varies slower
than the phase k0S. As a consequence, the first corrections in the amplitude are due to terms
proportional to ∼ k−1

0 in equation (2.8), which yield an amplitude A0 = 1/2
√
ε(r).

In summary, in the small wavelength limit k0L � 1 waves propagating in an inhomogeneous
medium can be described by the form eiφ, where φ = k0S0−ωt. The frequency is ω = ∂φ/∂t and
the wave vector k = ∇φ is locally orthogonal to the surfaces of constant phase. These equations
are analogous to those of a classical particle, the wave vector k and the frequency ω of the wave
playing the role of the momentum p and the Hamiltonian H of the particle, respectively. By
analogy, wave packets propagate along ray-paths r(t) of constant phase φ, at the group velocity
ṙ = ∂ω/∂k. The equation describing the time evolution of the ray path is given by the solution
of the Hamiltonian system

∂ω

∂r
= −k̇(t),

∂ω

∂k
= ṙ(t). (2.10)

In support of the analysis carried out in Section 4.2, it is useful to briefly describe here the
propagation of whistlers in field aligned density enhancements or depletions, the so called density
ducts, in the geometrical optics approximation, highlighting the basic mechanism of whistler
trapping.

Whistler propagation in density ducts was first studied by Smith and Helliwell by using the
ray tracing technique in order to explain whistler propagation in the near-Earth magnetosphere
(see for instance the paper by Smith, Helliwell and Yabroff “A theory of trapping of whistlers
in field-aligned columns of enhanced ionization” [36] or the textbook “Whistlers and Ionospheric
Related Phenomena” by Helliwell [46], §3.6). Following their treatment, consider a stationary
inhomogeneity in a two dimensional slab geometry where the density inhomogeneity has gradi-
ents, say, along the x direction, perpendicular to the magnetic field which is taken along the z
direction. See for instance the density enhancement shown in Fig. 2.2. The slab geometry is

Figure 2.2: Density duct in two dimensional slab geometry. The magnetic field B0 is along the z axis.

a good approximation for whistlers propagating along magnetic field lines whose typical length
scale of the gradient along the magnetic field is negligible with respect to the whistler wave-
length. This condition is usually satisfied in the magnetosphere. The evolution of the ray path
in such inhomogeneities can be inferred graphically by using the refractive index surfaces, shown
for two different frequency regimes in Fig 2.1. In the presence of density gradients perpendicular
to the magnetic field, wave packets propagate according to the equations describing the wave
trajectory (2.10). Rays will propagate at the group velocity ∂ω/∂k along paths in the plane
(x, z) such that the frequency ω and the parallel wave vector k‖ are constant. On the contrary,
the perpendicular wave vector k⊥ evolves because of the variation of the index of refraction.
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In this way, for a fixed initial angle θ between the wave vector k and the magnetic field B0,
the wave trajectory can be inferred by tracing the rays perpendicular to the refractive index
surfaces, in correspondence to the chosen k‖. In Fig. 2.3 the surfaces of constant ω are shown in
correspondence to different values of the coordinate x for low frequency whistlers, ω/ωce < 1/2.
The horizontal line shows the parallel projection of the wave vector, which must be conserved
during propagation. In order to fix ideas let us consider a density hump. If the wave starts from
the center of the inhomogeneity, which corresponds to the density maximum, the ray of the k+

branch (recall that the k+ branch corresponds to the largest propagation angle at fixed k‖ with
respect to k−) bends outwards and cannot be trapped. The ray of the k− branch instead bends
inwards. The contrary holds for a density minimum. In a similar way it can be shown that for
higher frequencies, ω/ωce > 1/2, the rays of the k+ branch, which is the only one propagating,
bend inwards if it is propagating in a density minimum.

Figure 2.3: Index surfaces at different points x and schematic representation of ray tracing. The hori-
zontal line represents a fixed value of k‖ (adapted from “Whistlers and Ionospheric Related Phenomena”
by Helliwell [46]).

2.1.2 Effect of temperature and the whistler anisotropy instability

In order to properly deal with effects due to the thermal motion of particles in a weakly
collisional plasma, a kinetic description of the plasma dynamics by means of the Vlasov equation
is necessary. In the following it will be shown that an equilibrium defined by a bi-maxwellian
distribution function f0(T⊥, T‖) that have the electronic temperature parallel to the background
magnetic field B0, T‖e, lower than the perpendicular one, T⊥e, can be unstable with respect to
electromagnetic perturbations in the whistler mode [20]. This instability leads to the growth of
the whistler waves and provides a possible generation mechanism for whistler mode waves. We
consider for simplicity space and time harmonic perturbations of the form Aeikz−iωt propagating
parallel with respect to B0, which is taken along the z axis. Linearization of the Vlasov equation
around the bi-maxwellian equilibrium yields the following dispersion relation for right handed
polarized waves (see for instance the textbook “Theory of Space Plasma Microinstabilities” by
Gary [47], §7):

K(ω, k) ≡ k2c2

ω2
+
∑
s

4πe2

msω2

∫
d3v

{[
(ω − kvz)f0s −

kv2
⊥

2

∂f0s

∂vz

]
1

ω − kvz + ωcs

}
= 0. (2.11)

In equation (2.11) the sum is extended to both electrons and ions, and f0s is the equilibrium
distribution function for species s, defined as

f0s =
ns

π3/2v2
t⊥,svt‖,s

exp

[
−
(
v⊥,s
vt⊥,s

)2

−
(
v‖,s

vt‖,s

)2
]
, (2.12)
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where v2
t‖,s = 2T‖s/ms is the squared parallel thermal velocity of species s. Similarly, the

perpendicular squared thermal velocity is v2
t⊥,s = 2T⊥s/ms. Remark that in equation (2.11)

ωcs is the cyclotron frequency of species s, and it is positive for ions and negative for electrons.
The integral in equation (2.11) can be solved, in the complex plane, by assuming a frequency
ω = ωr + iγ with a small imaginary component |γ| � ωr. By using the Plemelj formula

lim
γ→0

1

ωr − (kvz − ωcs) + iγ
= P 1

ωr − (kvz − ωcs)
− iπδ(ωr − (kvz − ωcs)) (2.13)

it is possible to write the function K in equation (2.11) as the sum of a real and an imaginary
part, K(ω, k) = Kr(ωr + iγ, k) + iKi(ωr + iγ, k), and expand it for small values of γ:

K = Kr(ωr, k) + iγ∂Kr/∂ωr + iKi(ωr, k). (2.14)

The real part of the frequency is given by Kr(ωr, k) = 0 while the growth (or damping) rate
by γ = −Ki/(∂Kr/∂ωr). By using equation (2.13) and with the usual approximation vz �
(ω ± ωcs)/k we can expand the integral in equation (2.11) in powers of vzk/(ω − ωcs) and solve
for the real and imaginary components ofK. Terms proportional to vzk/(ω−ωcs) give the thermal
corrections to the cold dispersion relation. If the first non vanishing thermal contributions are
retained, by introducing the electron plasma beta βe = v2

t‖,e/v
2
a, where va is the Alfvén speed,

the real and imaginary part of the frequency read

ωr ' k2d2
eωce

[
1 +

βe
2

(
T⊥e
T‖e
− 1

)]
and (2.15a)

γ ' π
ω2
pe

ωr

1

kvt‖,e
√
π

exp

[
−
(
ωr − ωce
kvt‖,e

)2
] [
−ωr

T⊥e
T‖e

+ ωce

(
1− T⊥e

T‖e

)]
. (2.15b)

In the above equations the ion response has been neglected for simplicity, and consistently with
the whistler frequency regime ω � ωci, and in equation (2.15a) it has been assumed ω � ωce.
As can be seen from equation (2.15b), if ω � ωce, a necessary condition for instability is given
by (

T⊥e
T‖e
− 1

)
>

1

|ωce|/ω − 1
. (2.16)

For oblique propagation, the single resonances at vzk‖ = ω+mωce (m = 0, ...±n) will contribute
to the total growth rate with single growth rate γm. The resonance at m = 0 corresponds to the
Landau resonance. For small propagation angles and frequencies ω � ωce the net contribution
to the growth rate will give unstable modes, provided γm=−1 is positive. This trend is less pro-
nounced by increasing θ, and Landau damping can become dominant [48]. Fig. 2.4 represents
the frequency ωr, solid line, and the growth rate γ, dots, normalized to the ion cyclotron fre-
quency for βe = 1 and θ = 0. Left, middle and right panels correspond to T⊥e/T‖e = 1, 1.5, 2,
respectively (from Gary and Madland, JGR (1985) [20]).

2.2 Slow magnetosonic solitons

We consider here the nonlinear counterpart of Magneto Hydro Dynamic (MHD hereafter)
slow and fast waves, the magnetosonic solitons. Magnetosonic solitons are one dimensional
perturbations propagating in a warm plasma, obliquely to the equilibrium magnetic field [32, 34,
35]. These nonlinear waves are characterized by magnetic field strength and density perturbations



2.2. Slow magnetosonic solitons 13

Figure 2.4: Frequency ωr (solid line) and growth rate γ (dots) normalized to the ion cyclotron frequency
for βe = 1. Left, middle and right panels correspond to T⊥e/T‖e = 1, 1.5, 2, respectively (from Gary and
Madland, JGR (1985) [20]).

in phase (fast solitons) or in opposition of phase (slow solitons). In particular, for the purposes
of the present work, I will focus the attention mainly on the slow mode.

Solitary waves propagate with a constant profile and arise when the non linear terms are bal-
anced by the dispersion terms. As a consequence, the ideal MHD model, being not dispersive, is
no longer appropriate to describe nonlinear waves and a two-fluid model may be adopted. In a
two-fluid model the required dispersion which gives rise to magnetosonic solitons is given by the
Hall term and the electron inertia. Nonetheless, for non perpendicular propagations, the Hall
term dominates the dispersion and the typical scales of solitons are ∼ di.
A standard method used in order to find an evolution equation for solitons is the reductive
perturbation method [49]. By using this method, it can be shown that at some level of approxi-
mation the system of two-fluid equations can be reduced to a Korteweg-de Vries (KdV) equation
for the density [32], which has solitary wave solutions.

Let me consider a soliton moving in the positive x direction in a homogeneous magnetized
plasma at rest, with equilibrium quantities defined as follows:

B = B0 = (B0x, 0, B0z) ui, e = (0, 0, 0) (2.17a)

n = n0 Pi, e = P0, (2.17b)

where ui, e and Pi, e are the ion and electron velocity and pressure, respectively, n the density and
B the magnetic field. The angle of propagation Θ of the soliton is defined as the angle between
the direction of propagation, namely the x direction, and the equilibrium magnetic field B0. The
basic idea is to expand quantities in power series of a small parameter ε (remark: here ε is an
expansion parameter, to not be confused with the dielectric constant ε), as to obtain to leading
order the linear mode of interest, the slow and the fast MHD mode. Departures from this state
are due to both nonlinearity and dispersion, that are introduced throughout small corrections,
by choosing the following expansion:

n = 1 + εn1 + ε2n2 + . . . , Pj = P0j + εp1j + ε2p2j + . . . (2.18a)

Ey = εE1y + ε2E2y + . . . , Bz = sin Θ + εBz1 + ε2Bz2 + . . . (2.18b)

vx = εv1x + ε2v2x + . . . , vzj = εvz1j + ε2vz2j + . . . , (2.18c)
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vyj = ε3/2vy1j + ε5/2vy2j + . . . By = ε3/2By1 + ε5/2By2 + . . . (2.18d)

Ex = ε3/2Ex1 + ε5/2Ex2 + . . . Ez = ε3/2Ex1 + ε5/2Ex2 + . . . . (2.18e)

Next, introduce the stretched variables

τ = ε3/2t ξ = ε1/2(x− vp0t) (2.19)

and write the system of two fluid equations order by order in ε. The stretched variables (2.19)
are introduced in view of the scaling law of the quantities of the KdV equation which relates
the perturbation amplitude n1, width ` and propagation time τ . A balance of the terms in
the KdV (see for instance equation (2.21) below) yields n1 ∼ ε, ` ∼ ε−1/2 and τ ∼ ε−3/2.
The development of the higher order quantities, e.g., vy, must be of fractional order to have
consistency when balancing terms in the fluid equations order by order. To order O(ε) we get

vz1i = vz1e = vz1, 0 = Ey1 + vz1 cos Θ− vx1 sin Θ. (2.20)

To O(ε3/2) we obtain the set of equations for the leading order quantities vx1, vz1, n, Ey, Bz1 and
P1j . The solvability condition yields an equation for vp0, which corresponds to the MHD linear
dispersion relation for slow and fast waves. The next order, O(ε2), yields a set of equations for
the quantities Ez1, By1 and vy1j in terms of vz2, vx2 and Ey2. The system of equations can be
closed at order O(ε5/2). When all the quantities are eliminated with respect to the density, it is
found that the density must satisfy the KdV equation

∂n1

∂τ
+ αn1

∂n1

∂ξ
+ µ

∂3n1

∂ξ3
= 0, (2.21)

where µ and α, whose explicitly expression is given in Appendix D, are functions of the angle Θ,
of the phase velocity vp0, the Alfvén speed va and sound speed cs. The parameter µ represents
the dispersion term: a positive or negative value gives a positive or negative soliton solution,
respectively. For the slow mode µ > 0, and only density humps can exist in this mode. For the
fast mode instead µ < 0 for 0 < Θ < Θc or µ > 0 for Θc < Θ ≤ π/2, where Θc is a critical angle
depending on the electron to proton mass ratio [32]. The parameter α is always positive for slow
and fast mode.

Since in the next chapters I will deal with plasma inhomogeneities characterized by a density
hump in opposition of phase with the magnetic field magnitude, from now on let me consider
only the slow mode. In this case, calling A the arbitrary (“small”) amplitude of the soliton, the
solution of equation (2.21) is given by

n1 =
A/α

cosh2
(√

A
12µ

[
ξ −Aτ/3

]) (2.22)

or, in the (x, t) variables, by

n1 =
A/α

cosh2
(√

A
12µ

[
x− (vp0 ±A/3)t

]) . (2.23)

The magnetic field perturbation parallel to the background magnetic field Bz1 is

Bz1 =

[
(v2
p0 − c2

s)

sin Θ

]
n1, (2.24)
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showing that for the slow mode the magnetic field perturbation corresponds to a magnetic hole,
since vp0 < cs. According to this theoretical analysis, the propagation speed of the soliton is
V0 = vp0 + A/3 and the typical width is ` ∼ 2

√
12µ/A. The parameter √µ, which determines

the width of the soliton, is a growing function of the temperature, ranging from values smaller
than, or of the order of, di to values much greater than di. The analytical solution for the slow
soliton is valid as long as the propagation is not parallel (Θ = 0) in which case µ equals zero (if
cs < 1) or infinity (if cs > 1) [32].

The complete solution representing the slow magnetosonic soliton is given, at the initial time
t = 0, in Appendix D. These expressions correspond to the initial conditions used in the
simulations discussed in Chapter 4, and the notation is slightly different. In particular, n1 = nsol,
Θ = π/2 − ϕ0 and a rotation of π/2 around the x axis has been made in order to have the
background magnetic field in the (x, y) plane instead of the (x, z) plane.

To summarize, slow mode solitons carry a density hump perturbation associated with a mag-
netic field depletion and propagate obliquely with respect to the background equilibrium magnetic
field at speeds which are much smaller than that of whistler waves. As has been briefly explained
previously in Section 2.1.1.2, low frequency whistlers can be trapped by density humps. The idea
is then to extend this propriety of whistlers to more general configurations, which include mag-
netic field inhomogeneities. Slow magnetosonic solitons have the rights properties to provide a
theoretical model for whistler channeling structures. As a first approximation, it is then possible
to consider the soliton perturbation superposed on the background equilibrium as a local and
instantaneous magnetic hole for whistlers that are injected inside the soliton.



16 2. Theoretical Background



17

Chapter 3

Observations: the substorm event on
August 17, 2003

This chapter describes the observational study of whistler waves correlated with magnetic
field structures at the ion-scales recorded during the magnetic substorm which occurred on
August 17, 2003 from nearly 16:30 to 17:00 Universal Time. In this period the Cluster satellites
are located in the magnetotail, near the magnetic equator, in the near tail region at radial
distances of 17 Earth radii. The inter-satellite distance of the four spacecraft is about d = 200 km,
less than the typical ion-scale lengths of the magnetotail, namely the ion gyroradius and the ion
inertial length, which are of the order of 1000 km. In addition, the Cluster spacecraft were in
high telemetry mode, allowing waveform measurements of the magnetic field fluctuations from
frequencies of the order or less than the ion-cyclotron frequency up to the whistler frequency
range. By combining time and multi-point measurements, Cluster offers, during this substorm
event, a precious set of data allowing us to inspect dynamics occurring both at electron-scales,
via whistler waves, and at ion-scales, as well as to inspect stationary and propagating magnetic
structures. The present study aims at investigating if and how dynamics at these different scales
are related during the expansion phase of the substorm.

As already discussed in the Introduction, waves provide an efficient mechanism for plasma
energy transfer and dissipation, as the plasma sheet is weakly collisional. The energy conversion
and transport involves dynamics occurring at different scales, from ion- down to electron-scales.
As indeed shown in the following sections, strong magnetic field perturbations ranging from low
(f � fci and f ≈ fci) to high (fci � f < fce and higher) frequencies are recorded during the
substorm expansion phase. It is of general interest investigating if and how wave modes occurring
on different time scales can interact in order to understand the magnetosphere dynamics and
in particular processes coming into play during substorms. Here I focus on the detection of
large amplitude whistler waves of about 0.1 − 0.8nT , in the frequency range 0.1 < f/fce / 0.4
correlated with magnetic structures at ion-scales characterized by a magnetic field minimum
and a density hump. The observed magnetic field signatures are interpreted as nonlinear waves
propagating slowly with respect to the whistler phase velocity which trap and transport the
higher frequency whistlers. A possible role in particle energy dissipation is also discussed.

This chapter is organized as follows: in Section 3.1 I explain the data set used; Section 3.2 is
dedicated to a description of the global context and the main features of this substorm event;
in Section 3.3 I describe the whistler waves detected during the substorm, focusing on those
correlated with ion-scale structures showing a magnetic field minimum and a density hump;
conclusions and comments about observations are discussed in Section 3.4.
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3.1 Data and instrumentation

On August 17, 2003 most instruments on board of the Cluster satellites were in high telemetry
mode, thus allowing high time resolution measurements.

The low frequency magnetic field data, including the continuous component of the magnetic
field, are provided by the FGM instruments (Fluxgate Magnetometer) [50], at 4 s time resolution.
During this event, data at 14ms time resolution are also available. The high frequency magnetic
field fluctuations are provided by the STAFF instruments (Spatio-Temporal Analysis of Field
Fluctuations) [51]. The Search Coils (STAFF-SC) provide the waveform up to 2.22ms time res-
olution and the Spectrum Analyser (STAFF-SA) calculates in real time the cross-spectral matrix
in the frequency range 60Hz 6 f 6 4 kHz of magnetic and electric fluctuations. The waveform
of the electric field is provided by the EFW instruments (Electric Fields and Waves) [52] at
2.22ms resolution. For the time intervals analyzed, only electric field waveform data measured
by spacecraft 2 and 4 are reliable (cfr. Cluster Active Archives caveats). See also Section F.1,
in Appendix F, for more details about the displayed electric field data.
Ion particle data are obtained from CIS-CODIF [53] (Cluster Ion Spectrometry-COmposition
and DIstribution Function analyser) on spacecraft 4. Electron particle data are provided by
PEACE [54] (Plasma Electron And Current Experiment). For this event, high energy mea-
surements at 125ms time resolution of electron Pitch Angle Distribution functions, PADs for
brevity, are available. In particular, the data set 3DX from the High Energy Electron Analyzer
(HEEA) gathered by spacecraft 2 is used for PADs. Both ion and electron moments, such as
plasma density, bulk velocity and temperature, are available at 4 s time resolution, providing us
the average plasma parameters. The spacecraft potential measured by EFW is used to display
electron density fluctuations at 200ms time resolution [55], as briefly explained in Appendix F,
Section F.2.

Throughout this chapter, plotted FGM, EFW, CIS-CODIF and PEACE data are obtained
from Cluster Active Archives (CAA) except for specific products mentioned in the text. STAFF-
SC data are obtained from calibration routines designed at Laboratoire de Physique des Plasmas,
and the used parameters for calibration are given in Appendix F, Section F.3.

For the sake of clarity, the low frequency magnetic field components from FGMwill be indicated
with capital letters Bx, By and Bz. High frequency magnetic field fluctuations, measured by
STAFF-SC, will be indicated with small letters bx, by and bz.
In order to facilitate the reading, in Table 3.1 I summarize the different instruments and the
relative products which have been used, specifying their time resolution. I also briefly describe,
below, the geophysical coordinate systems that I will use in the following.

Geocentric Solar Ecliptic system (GSE): The X-axis points from the Earth towards the
Sun. The Y -axis and the X-axis lie in the ecliptic plane and the Y -axis points towards the dusk.
The Z-axis is perpendicular to the ecliptic plane and is parallel to the ecliptic pole.

Geocentric Solar Magnetospheric system (GSM): The X-axis points from the Earth
towards the Sun. The X − Z plane contains the dipole axis. The Y -axis is perpendicular to
Earth’s magnetic dipole, it points towards the dusk.

Inverted Spin Reference #2 (ISR2): The Z-axis is antiparallel to the spacecraft spin axis.
The X and Y -axes are in the spin plane, with X pointing as near sunward as possible. The
Y -axis points duskward and it is perpendicular to the sunward direction. The difference between
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Instrument Product s/c
FGM Magnetic field B All

(4 s and 14ms)
STAFF-SC Magnetic field b All

(2.22ms)
STAFF-SA Spectra All

(60Hz 6 f 6 4 kHz)
EFW Electric field E C2 and C4

(2.22ms)
Spacecraft potential P All

(200ms)
PEACE Electron moments (4 s) All

PAD (125ms) C2
CIS-CODIF Ion moments (4 s) C4

Table 3.1: Summary of the products used. Left column: name of the experiment. Middle column:
the product and the time resolution of measurements. Right column: spacecraft, s/c for brevity, where
measurements are available during the time intervals considered.

ISR2 and the GSE is a tilt of 2◦ to 7◦ of the Z-axis.

3.2 Overview of the event

On August 17, 2003 from 16:30 to 17:00 Universal Time (UT hereafter) the Cluster satellites
crossed the magnetotail at about 17 RE (Earth radii, RE = 6378 km) inside the plasma sheet
near the magnetic equator, during a substorm event. The magnetic activity can be quantified
by using the Auroral Electrojet index, AE for brevity1. According to the Kyoto quicklook AE
monitor, shown in Fig. 3.1, the AE reaches 700nT around 17:00 UT, indicating that a substorm is
taking place. The Cluster position in the magnetosphere at 16:50 UT and at subsequent times is
shown in Fig. 3.2, in the plane (X,Z)gsm. In this picture, the configuration of the magnetosphere
has been obtained by using the semi-empirical model T87 of Tsyganenko2 [57, 58]. Fig. 3.3 shows
the Cluster spacecraft coordinates in Earth radii units and the scale length of the tetrahedron,
in GSE coordinates. In these plots, spacecraft, s/c for brevity, are represented by a different

1The AE index, introduced by Davis and Sugiura, JGR (1966) [56], is an auroral electrojet index obtained from
ground based measurements of stations, usually more than 10 stations, located at high latitudes in the northern
hemisphere, near the auroral oval. Each station measures perturbations in the the north-south component of the
magnetic field, which are due to local enhancements of ionospheric currents, as a function of Universal Time.
By combining the data obtained from all the stations a maximum negative excursion, the AL index, can be
determined. Similarly, a maximum positive excursion is inferred, the AU index. The AE index is the difference
between these two indices, and it gives a measure of the overall perturbation. Excursions in the AE index from
a nominal daily baseline are called magnetospheric substorms and may have durations of few minutes to several
hours.

2The T87 model gives a representation of the magnetosphere that depends on the value of the Kp index, which
characterizes the magnetic activity of the magnetosphere itself. In this case the Kp index was Kp=2. Remark
however that this model usually fails to reproduce a very thin current sheet in the near-Earth tail and gives only an
approximate representation of the magnetosphere during pre-substorm periods. Indeed, as will be shown below,
at 16:50 the Xgse component of the magnetic field (which is equal to the Xgsm one) is negative, thus meaning
that s/c are located in the southern hemisphere of the magnetotail, while Fig. 3.3 suggests that the Cluster s/c
are located in the northern hemisphere.
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Figure 3.1: Geomagnetic activity indices as a function of Universal Time on August 17, 2003. The AL
and AU measure the maximum negative and positive perturbations of the north-south component of the
magnetic field, respectively. The difference between these two indices, the AE index, gives a measure
of the overall perturbation. The color coded numbers indicate the number of stations used to infer the
indices. From 16:30 UT to 17:00 UT, when spacecraft are near the magnetic equator, the magnetic activity
reaches 1000nT , indicating that a substorm is taking place. Source: http://wdc.kugi.kyoto-u.ac.jp/aedir.

color, following the usual convention: black for Cluster 1, red for Cluster 2, green for Cluster 3
and blue for Cluster 4. For the sake of clarity, this convention will be used from now on, and
satellites from Cluster 1 to Cluster 4 will be referred to as C1, C2, C3 and C4, respectively.

In order to give a global overview of the event, I show from Fig. 3.4 to Fig. 3.6 magnetic field
and particle data between 16:00 and 17:30 UT. All quantities are plotted in GSE coordinates.

The first panel of Fig. 3.4 displays the three magnetic field components Bx, By and Bz in black,
red and green color, respectively, measured by FGM on board of C2 at 4 s time resolution. Data
show that the Cluster s/c cross the magnetic equator from the northern towards the southern
lobe of the magnetotail at nearly 16:05 UT, as Bx changes from positive to negative values.
From nearly 16:30 to 17:03 UT, during the local expansion of the substorm, Cluster detects
strong magnetic field fluctuations corresponding to frequencies of the order or less than the ion
cyclotron frequency (i.e., periods of oscillations from minutes up to few seconds). In the second
panel, I show the spectral intensity of magnetic fluctuations bz measured by C2. This spectrum
has been obtained from a Fourier Transform of the waveform measured by STAFF-SC3. As can
be seen, starting from 16:30 UT a strong wave activity up to 200Hz, which is in the whistler
frequency range, is observed. On the contrary, before 16:30 UT and also during the first equator
crossing around 16:05 UT, the tail is quiet and no wave activity is detected. In the third panel I
show the current density: black, red and green colors correspond to Jx, Jy and Jz, respectively.
The method used to calculate the current, basically by estimating the curl of the magnetic field,
is explained in more detail in Appendix F, Section F.4. During the first equator crossing, around
16:05 UT when the growth phase is expected to take place, the dawn-to-dusk current density Jy

3Parameters for the Fourier Transform: waveform high-pass filtered at 10Hz, spectrum over 64 point mea-
surements and hanning windowing



3.2. Overview of the event 21

  01 0  - 1 0  - 2 0  - 3 0  - 4 0  0

  0

- 1 0

- 2 0

 1 0

 2 0

  0

- 1 0

- 2 0

 1 0

 2 0

C L U S T E R 2 0 0 3 - A u g - 1 7 1 6 : 5 0 : 0 0

 T 8 7 s ,  i o p = 4  K p =  2 ,  G S M  s y s t e m

2 2 : 5 0 : 0 0

Figure 3.2: The Cluster spacecraft orbit (magenta line) inside the Earth’s magnetosphere in the
(X,Z)gsm plane. The length scale is expressed in Earth radii units. Black arrows indicate the spacecraft
position at 16:50 UT and 22:50 UT. The red arrow represents the Earth’s magnetic dipole axis. The bow
shock is represented with a yellow line. The magnetosphere configuration has been obtained by means of
the Tsyganenko model T87 [57, 58] (by courtesy of P. Robert LPP/CNRS).

in the central current sheet is Jy ≈ 20nA/m2. Once the substorm develops, the central plasma
sheet strongly oscillates and plasma convection is greatly enhanced. In the last panel I show the
Xgse component of the ion velocity Vi,x in order to have a time reference for comparisons with
particle data plots. Electric and magnetic field spectra in the frequency range 60Hz 6 f 6 4 kHz
from STAFF-SA are shown in Appendix E (source: http://lesia.obspm.fr/cluster), showing that
the wave activity reaches frequencies up to the electron cyclotron frequency.

The first and second panels of Fig. 3.5 display the ion flux and density n, respectively. In the
third panel the three components of the ion velocity Vi and in the last one the ion kinetic energy
flux are shown. In Fig. 3.6, first and second panels, the electron flux measured by the High
Energy Electron Analyser (HEEA) and the Low Energy Electron Analyser (LEEA) instruments
are shown, respectively. Particle data show that the ion velocity is directed tailward and
Earthward in the time intervals 16:33–16:52 UT and 16:55–17:03 UT, respectively, during which
ions can reach speeds up to 1000 km/s (cfr. also Vi,x in the third panel of Fig. 3.5, for instance).
The plasma density values range between ni ∼ 1 cm−3 and ni ∼ 0.1 cm−3, as expected inside the
plasma sheet. Note that in the time interval 16:45–17:03 UT ions are strongly accelerated. As a
consequence, those corresponding to energies higher than E ∼ 10 keV are no longer detected by
CIS-CODIF and the density is probably underestimated. The ion velocity reversal is marked by a
lobe encounter between 16:52 and 16:55 UT. There are two other lobe encounters in time intervals
16:45-16:46 UT and 16:47-16:48 UT, as energy fluxes weaken and drop abruptly for both ions and
electrons at low energies, E . 100 eV , and density reaches values ni < 0.1 cm−3. During all the
lobe encounters no high frequency waves are detected. Finally, electrons are strongly accelerated
from energies E < 1 keV , during the tailward ion velocity, to energies E & 10 keV after the
flow reversal. Remark that when the magnetotail recovers its quiet state, after 17:00 UT, the
high energy particle fluxes are enhanced (cfr. Fig. 3.5 and Fig. 3.6). In addition, the magnetic
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Figure 3.3: The Cluster spacecraft GSE coordinates on August 17, 2003. Lengths are expressed in
Earth radii units. The circle represents the scale length of the inter-satellite separation (by courtesy of
P. Robert LPP/CNRS).

field Bx component is smaller and the Bz one is larger than their values before the substorm
(cfr. Fig. 3.4). These signatures denote both particle energization and a change towards a more
dipolar configuration of the magnetic field.

During the substorm, from 16:30 to 17:03 UT, s/c cross the central current sheet several times.
It is worth noting that the magnetic field strongly oscillates and variations are due to both local
plasma perturbations “superposed” on the equilibrium configuration of the plasma sheet and large
scale oscillations of the tail northward and southward. We usually consider as central plasma
sheet crossings those variations leading to the crossing of the magnetic equator, where Bx = 0.
Two categories can be distinguished: (1) a quasi-neutral current sheet when Bx = 0, By = 0
and Bz 6= 0 but Bz/BLobe � 1, where BLobe is the magnetic field in the lobes; (2) a current
sheet with a guide field when a large By component is measured at the equator. Henderson et
al., GRL (2006) [59] and Nakamura et al., JGR (2008) [60] have analyzed in detail two examples
of such central plasma sheet crossings. Henderson et al. analyze equator crossings of the first
type during the tailward ion flow. The authors associate the crossing events considered in their
study to an X line traversals near a reconnection site. Reconnection signatures have also been
reported for this substorm event by Asano et al., JGR (2008) [61], based on electron particle
data gathered just after the flow reversal. Yet, Nakamura analyzes an equator crossing of the
second type, during the Earthward ion flow. This equator crossing is characterized by a strong
dawn-to-dusk current Jy, Jy ≈ 100nA/m2, and a strong By component of the tail magnetic
field. This equator crossing has not a straightforward interpretation in terms of reconnection. In
spite of the different interpretations for the configuration of the central plasma sheet, crossings
of the central current sheet during the substorm expansion reveal a very thin current layer, at
the scale of the ion inertial length and ion Larmor radius. In the following section, I will deal
with whistler wave emissions observed in the south of the magnetic equator.

3.3 Whistler wave analysis

During the substorm expansion, in the time interval 16:30–17:03 UT, the Cluster s/c detect
short lived electromagnetic emissions, lasting a few seconds or even less, identified as whistler
wave packets in the frequency range 20 / f / 200Hz, as shown by the spectral density repre-
sented in Fig. 3.4, fourth panel, up to nearly f ≈ 400Hz (from STAFF-SA, see Appendix E). In
agreement with previous observations [14, 15, 16, 17, 21, 18, 19], whistlers turn out to be localized
in the plasma sheet or in the plasma sheet boundary layer, where the density is n ≈ 1−0.1 cm−3
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Figure 3.4: Magnetic field and ion data in GSE. Panel one: the three magnetic field components Bx,
By and Bz (FGM instrument, 4 s time resolution) for C2. Panel two: the spectral intensity of magnetic
fluctuations bz for C2 (from Fourier Transform of STAFF-SC data). Panel three: current density J. Last
panel: Xgse component of the ion velocity Vi,x for C4 (from CIS-CODIF).

and the magnetic field Bx ≈ −(20 − 10)nT . In spite of this global trend of whistlers, their
local behaviour is multifaceted, because of the highly disturbed, variable and inhomogeneous
background medium. The observed whistler wave packets have both small and large amplitudes,
ranging form |b| � 0.1nT to |b| > 0.1nT , respectively. Spectra obtained from the waveform
reveal both nearly monochromatic and broad-band waves, propagating almost quasi parallel to
the local background magnetic field. However, the largest amplitude waves are often detected in
correspondence to minima in the magnetic field magnitude correlated with density humps, which
may act as to duct whistlers, and/or in regions where a strong electron temperature anisotropy
exists.

Previous works have shown that unducted whistlers may be generated during substorms in
the plasma sheet by electron temperature anisotropy which sets in near the equator [18] or as a
consequence of betatron acceleration in flux pile-up regions [19], as well as by reconnection re-
lated processes [21, 22]. On the other hand, to our knowledge, whistlers correlated with ion-scale
electromagnetic structures similar to magnetic holes have never been detected in the magnetotail.
In situ space observations in the magnetosheath [23, 24, 25] and in the northern dusk magneto-
sphere [27] have reported whistlers correlated with such magnetic structures, usually interpreted
as non propagating mirror modes. Bearing in mind this recurrent feature of whistlers, the ques-
tion as weather and how the local inhomogeneous structures trap whistlers during substorms,
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Figure 3.5: Ion particle data from CIS. First panel: ion flux. Second panel: ion particle density n.
Third panel the three components in GSE of the ion velocity Vi. Last panel the heat fluxes of ions.
Source: http://clweb.cesr.fr.

as well as their role in the geomagnetic activity, naturally arises. Below, I focus on the largest
amplitude emissions which are correlated with ion-scale structures.

Emissions have been selected on the basis of the following criteria: whistlers should have
large amplitudes, |b| > 0.1nT ; the ducting ion-scale structure must be detected by at least 3
spacecraft and should be detected by spacecraft with a clear delay; the local perturbations that
can be interpreted as standard global movements towards the magnetic equator, or flapping
motions, are excluded. The latter correspond to those excursions leading to a decrease of the
magnitude of Bx during which C1, which is the nearest s/c to the magnetic equator, detects
the smallest value of the magnitude of Bx, C4, the farthest s/c from the equator detects the
strongest component of Bx, in magnitude, and C2 and C3, which are between C1 and C4, an
intermediate value. The above conditions are quite restrictive, but allow identification of non
ambiguous ion-scale ducting structures moving in a definite direction with respect to the Cluster
spacecraft. Finally, the largest amplitude whistlers have been selected because we assume that
the strongest emissions are nearer to, or even in correspondence with, the source region than the
weakest ones. The selected emissions are described in detail in Section 3.3.1.

For the sake of completeness, examples of typical large amplitude non-ducted emissions ob-
served during this substorm event are displayed in Fig. 3.7 and Fig. 3.8. Fig. 3.7 represents
a series of whistler wave packets: wave packets number 1 and 4 correspond to magnetic field
minima which are consistent with equatorward excursions; whistlers numbered 2 are detected
in correspondence to a magnetic depression only by C2 and C3 while those numbered 3 are
an example of unducted whistlers. Fig. 3.8 shows the largest amplitude whistler wave packets
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Figure 3.6: Electron particle data from PEACE. First and second panels: electron flux from the
High Energy Electron Analyser (HEEA) and the Low Energy Electron Analyser (LEEA) instruments,
respectively.

observed during this substorm event. These emissions are non-ducted and they are associated
with a strong electron temperature anisotropy (not shown).

3.3.1 Whistler wave detection inside coherent ion-scale structures

The events of interest to this work, henceforth referred to as Case 1, Case 2 and Case 3, are
detected during the Earthward ion flow which takes place between 16:55 and 17:03 UT. Each
single event is analyzed in detail in the following, and I will summarize the inferred results at
the end of this section. In each case-study, the high frequency waves, the low frequency waves
and particle dynamics are studied independently.

High frequency waves are studied by means of a polarization analysis in Fourier space, in
order to show that these emissions are in the whistler mode. The polarization analysis follows
the methods of Means [62], and Samson and Olson [63] (see also Appendix G, Section G.1). Both
spectra and polarization parameters, e.g., the propagation angle with respect to the magnetic
field, are obtained from data projected in the Magnetic Field Aligned reference system (MFA
hereafter). By definition, the MFA system is a set of orthogonal unitary vectors where the
ẑmfa direction is parallel to the background magnetic field while the other two directions, x̂mfa
and ŷmfa, are perpendicular. In particular, we have defined x̂mfa = ŷgse × ẑmfa and ŷmfa =
ẑmfa× x̂mfa. The FGM magnetic field B, at 14ms time resolution, has variations on time scales
longer than the typical time scales of the whistler emissions. For this reason, it can be considered
the local background magnetic field for the purpose of defining the MFA system for whistlers.

The magnetic structures, or low frequency perturbations, will be considered as nonlinear per-
turbations δB of an equilibrium magnetic field B0 such that B = B0+δB. The average magnetic
field B0 and the other plasma parameters, used to define the equilibrium of the low frequency
perturbations, are obtained by averaging fields over few seconds, and they will be labelled with
a zero. In order to carry out a comprehensive and exhaustive description of these low frequency
structures, both multi- and single-spacecraft methods of data analysis have been employed. In
the former case, the method of analysis of magnetic discontinuities has been used, hereafter re-
ferred to as the timing technique. In the latter case, the Minimum Variance Analysis, henceforth
MVA, has been employed. The timing technique assumes that a planar, or one dimensional,
structure in uniform motion crosses satellites. By using the crossing time delay of the structure
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Figure 3.7: Example of a series of whistler emissions. Wave packets numbered 1 and 4 correspond to
magnetic field minima which are consistent with equatorward excursions; whistlers numbered by 2 are
detected in correspondence to a magnetic depression only by C2 and C3 while those numbered 3 are an
example of unducted whistlers.
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Figure 3.8: Example of a large amplitude unducted whistler emission. Waves are associated with
electron temperature anisotropy (not shown).
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between satellites and their spatial separation, the timing technique enables both the direction
n and the speed V at which the structure crosses spacecraft to be determined [51, 64] (see also
Appendix G, Section G.3). With the same assumptions, the MVA allows to estimate, for a given
satellite, the minimum variance direction ẑmva of the magnetic field. Note that, for a moving
planar structure, the minimum variance direction ẑmva of the magnetic field is a proxy for the
normal direction n [65] (see also Appendix G, Section G.2). As I will show, single- and multi-
spacecraft methods yield, as expected, almost the same value for ẑmva and n, respectively. For
this reason, I will adopt, in the text, the same symbol n to indicate both the minimum variance
and the normal directions. I will highlight the properties of the polarization of the structures
by projecting the magnetic field δB and related fields, e.g., the current and the electric field,
in both the MVA and MFA reference systems. In this case, the average magnetic field B0 has
been used in order to define the MFA system for the low frequency perturbation. I will not
display the magnetic field B0 for the different case-study, but it is worth mentioning that B0

is not constant and it is slightly inhomogeneous at the inter-satellite separation length scale, as
it varies slowly with time and satellites measure different values of the average magnetic field.
Thus the structure is not strictly embedded in an homogeneous magnetic field.

Finally, particle dynamics is investigated by means of distribution functions of ions and elec-
trons.

If not stated explicitly in the text, data are plotted in GSE coordinates. The displayed
magnetic field from the FGM instruments has 14ms time resolution. The calibrated waveform
from STAFF-SC (see also Appendix F, Section F.3) shown in the following plots is high-pass
filtered at 20Hz. The frequency spectra are inferred from the magnetic field waveform measured
by STAFF-SC, high-pass filtered at 10Hz. The time series of the spectra have been obtained from
a Fourier Transform of the calibrated signal carried out over sub-intervals of 14ms time length,
i.e. every 64 point measurements, which corresponds to a resolution in frequency ∆f = 7Hz. A
hanning windowing is used in the Fourier Transform.

3.3.1.1 Case 1

Identification of the structure: In Fig. 3.9 and Fig. 3.10 I show data for Case 1 in the
time interval 16:57:07–16:57:18 UT. In Fig. 3.9, first and second panels, I show the magnitude
of the magnetic field |B| ≡ B and the spacecraft potential P which allows to display electron
density fluctuations. The third panel shows the z component of the high frequency magnetic
field fluctuations bz, measured by each spacecraft. In the fourth panel, the three components
Vi,x, Vi,y and Vi,z of the ion velocity are displayed in black, red and green colors, respectively.
In Fig. 3.10, the first three panels show the components Bx, By and Bz of the magnetic field
and the fourth panel the magnitude B. The fifth panel represents the three components Jx,
Jy and Jz of the current density in black, red and green colors, respectively. In the last two
panels the two components of the electric field Ex, isr2 and Ey, isr2 are shown in the ISR2 system
for C2 and C4. Here, the electric field data are averaged over 22ms in order to display almost
the same resolution as the magnetic field. As shown in these plots, the s/c detect a magnetic
structure from nearly 16:57:10 UT to 16:57:15 UT. This magnetic structure is at the scale of
the inter-satellite distance, since each satellite measures a different value of the magnetic field
(cfr. panel one to four of Fig. 3.10, for instance). In particular, C4 does not detect the magnetic
field depressions, thus suggesting that the low frequency magnetic structure is localized between
the satellites. Outside the magnetic structure the current is almost zero and in correspondence
of the structure strong negative values of Jy are observed, Jy ≈ −60nA/m2.

The magnetic structure, or low frequency wave, is characterized by a double minimum in
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the magnetic field magnitude correlated with two density humps, as can be seen by looking at
the plots in the first and second panels of Fig. 3.9. The magnetic field magnitude drops from
B = 25nT outside the structure down to B = 15nT in correspondence with the minimum,
corresponding to a magnetic rarefaction δB/B = −0.4. At the same time, the density increase
is about δn/n = 0.3. Two high frequency wave packets in the whistler mode are detected inside
the minima by C1, C2 and C3, with the same delay as the low frequency magnetic structure, as
can be seen in the third panel of Fig. 3.9.

It is worth noting that the first magnetic depression is detected before by C3 (green) and then
by C2 (red) and C1 (black). During the detection of the second magnetic depression, instead,
the traces of the three satellites are confused and then at the exit of the structure the order
C3-C2-C1 is recovered. Moreover the delay is not constant during the crossing of the structure.
These first remarks suggest that the two minima may correspond to the same magnetic flux
tubes, which are crossed twice, and that the movement of the magnetic structure relative to the
s/c is affected by the bulk ion flow which can drag the structure itself.

Whistler waves: The spectrogram and the polarization analysis of the high frequency waves
are displayed in Fig. 3.11 for C2. The waveform of the perpendicular component bx,mfa of
the magnetic fluctuations is shown in the first panel. The second panel displays the spectral
energy density of the same component. The white line superposed corresponds to one tenth of
the electron cyclotron frequency which is about f0

ce = 700Hz. The third panel represents the
propagation angle θ between the wave vector and the equilibrium magnetic field direction. The
fourth panel shows the ellipticity, which is defined as the ratio between the minor and the major
axis of the ellipse transcribed by the wave components transverse to the ẑmfa direction. A positive
ellipticity indicates a right-handed polarization. The last panel shows the degree of polarization
P: usually, the minimum value for reliable results of the polarization analysis is P = 0.7. Since
during the whistler emission P > 0.7, the wave packets have a well defined polarization. The
first and second wave packets have frequencies mainly in the ranges f = 100 − 200Hz and
f = 50− 150Hz, respectively, which correspond to f = 0.1− 0.3 f0

ce. Moreover, the polarization
analysis shows that these waves are right-handed and elliptically polarized with respect to the
background magnetic field B, since the ellipticity is Ell. ≈ +1. Finally, the inferred propagation
angle is 0◦ < θ < 30◦. Analogous conclusions hold for the other s/c, not shown here.

Low frequency perturbation: The equilibrium magnetic field B0 is obtained by averaging
the total magnetic field measured by FGM over 10 s since the typical transit time of the structure
is about 5 s. The average plasma parameters, listed in Table 3.5, are given by the magnetic field
components Bx,0 = −15nT , By,0 = −20nT and Bz,0 = 5nT , the magnitude of the magnetic field
B0 = 25nT , the ion cyclotron frequency f0

ci = 0.38Hz, the ion-scale lengths ρi ≈ di = 600 km,
the density n0 = 0.15 cm−3 and the ion and electron plasma beta βi = 0.67 and βe = 0.067,
respectively. In this case the timing technique can not be applied, since C4 does not detect
the same magnetic perturbation, and only single-spacecraft methods have been used to carry
out a description of the low frequency perturbation. In particular, the polarization of the low
frequency wave is analyzed by projecting the perturbed fields in the MVA and MFA coordinate
systems.

Magnetic Field Aligned system analysis – In Fig. 3.12 I show the normalized nonlinear per-
turbation δB/B0 in the MFA coordinate system. The first three panels display the components
of δBmfa/B0 and panels four to six the components of the normalized current perturbation
δJmfa/J0 obtained from the curlometer technique. The seventh panel represents one of the two
components of the raw electric field data Ey,isr2 for C2 and C4 in the ISR2 system. Panels eight
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to ten display the inferred three dimensional electric field Emfa for C2 and C4. Electric field
data are averaged over 111ms in order to smooth high frequency oscillations. The last panel
of Fig. 3.12 represents the elevation angle θelev which is the angle between the magnetic field
component Bz and the spin plane: for θelev < 10◦, represented by the dashed line, the three
dimensional electric field is imposed equal to zero. I recall here that raw electric field data, in
the ISR2 system, are two dimensional and the third component of the electric field is calculated
by hand imposing E ·B = 0. Details on the displayed electric field can be found in Appendix F,
Section F.1.

The projection of δB in the MFA system highlights the compressional component δB‖ of
the nonlinear perturbation (δBz,mfa, third panel, Fig. 3.12), and the shear component δB⊥
(δBy,mfa, second panel, Fig. 3.12), which turns out to be of the same order than the former
one. Unfortunately, electric field data are available only at the very beginning of the magnetic
structure, so that no clear electric signatures are found for this case-study. The signature of δJ
shows that the current associated with the structure is quasi parallel to the magnetic field (sixth
panel, Fig. 3.12).

Minimum Variance Analysis – The MVA has been carried out for C1, C2 and C3 in the time
interval 16:57:10–16:57:15 UT for all the s/c. I determined the minimum variance direction in
GSE coordinates, nx, ny and nz being its GSE components. The same MVA for both δB/B0 and
the total magnetic field B, not shown here, leads to similar results. As a consequence, even if
the background is not homogeneous, the structure turns out to be well defined and isolated from
the background itself. In Table 3.2 I list the values of nx, ny and nz for each s/c and in the last
row the mean value of each component obtained by averaging over all the s/c. The maximum,
intermediate and minimum variance values, λmax, λint, λmin, respectively, are also listed. The
MVA results are consistent with an almost 1D structure, since the maximum, intermediate and
minimum variances satisfy λmax/λint & 2 and λint/λmin � 1. Note that λint and λmax are of
the same order. This is consistent with the analysis carried out in the MFA system, where we
found that the two perturbed components δB‖ and δB⊥ were almost of the same order. The
inferred normal of the structure is directed mainly along the Zgse direction and it forms an angle
Θ ≈ 80◦ with the average magnetic field B0, defined as Θ = arccos (B0 · n/B0).

Case 1

s/c nx ny nz λmax λint λmin

C1 0.357 −0.257 0.898 0.038 0.020 0.003
C2 0.336 −0.305 0.890 0.035 0.018 0.003
C3 0.204 −0.296 0.908 0.043 0.016 0.003

Average 0.33± 0.04 −0.29± 0.02 0.899± 0.005

Table 3.2: Minimum variance analysis for the time interval 16:57:10–16:57:15 UT. The components
of the normal direction in GSE for each s/c, their average value and the maximum, intermediate and
minimum variances λmax, λint and λmin, respectively, are listed.

Fig. 3.13 shows fields projected in the MVA system relative to C2. From the first to the
third panel I show the normalized maximum, intermediate and minimum variance components,
δBmax, δBint and δBmin, respectively, of the magnetic perturbation δB. The fourth panel
displays the normalized current perturbation δJmva/J0: the continuous, dashed and dotted lines
correspond to the current projected along the maximum, intermediate and minimum variance
directions, respectively. The fifth panel shows the E×B drift for C2 and C4, solid lines, and
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the ion velocity Vi,n, dot-dashed line, along the normal. In this case-study, in order to project
these quantities along the normal of the structure, I used the average value of n. Panels six
to nine display the electric field for C2 and C4. As for the MFA system, I show here one
perpendicular component of the raw data, Ey, isr2, and the three electric field components along
the maximum, intermediate and minimum variance directions. Both E×B and electric field
data are averaged over 111ms. The last panel represents the elevation angle. Accordingly to the
analysis carried out in the MFA system, the MVA also shows that the low frequency perturbation
has both a strong shear component, represented by the maximum variance component δBmax,
and a compressional component, represented by the intermediate variance component δBint. As
already explained, the electric field does not show clear signatures. Yet it can be seen that the
latter, at the beginning of the structure, has its dominant component along the normal direction.

Even if it is not possible to infer the velocity of propagation with the timing technique, remark
that along the Zgse direction C2 and C3 are farther from the magnetic equator than C1. The
perturbation is thus moving in the positive Zgse direction. Moreover, what we can do in this case-
study is to roughly estimate the propagation speed with respect to the s/c, or the crossing speed,
by evaluating ∆r1,3/∆T1,3, where ∆r1,3 ≈ 130 km is the separation between C1 and C3 along
the average normal direction and ∆T1,3 ≈ 0.5 s the time delay between C1 and C3 in the first
detection of the magnetic field minimum. In this way, the inferred crossing speed is v0 ≈ 260 km/s
along the normal, which is oriented in the sense C3→C1 of propagation. As already remarked in
the paragraph “Identification of the structure”, the two minima in the magnetic field magnitude
correspond probably to the same magnetic flux tubes which are crossed twice. I thus consider
that the structure is roughly given by the one corresponding to the excursion of δBmax from
the positive to the negative values and, correspondingly, to the detection of the first minimum.
By using the crossing speed and the crossing time interval, which is almost ∆T = 2 − 3 s, it is
possible to estimate the scale length of the structure ` ≈ 520− 780 km, which is of the order of
the ion-scales. In order to describe the low frequency structure as purely advected by the plasma
flow or as a propagating nonlinear wave, we have to compare the ion velocity along the normal
direction and the inferred velocity v0. Keeping in mind the simplified model of a nonlinear wave
propagating in an homogeneous plasma, the propagation velocity with respect to the plasma
will be given by V = v0 − Vi,n, where Vi,n, the ion velocity along the normal direction, must
be evaluated outside the structure. Remark that the magnetic field is varying over the satellite
spin period, i.e. 4 s, thus particle moment calculations cannot be accurate. Furthermore, the
energy of ions can exceed the maximum energy which can be detected by the ion instrument CIS-
CODIF (cfr. first panel in Fig. 3.5), thus leading to an underestimated ion velocity. However, I
chose as a reference value for estimating the ion velocity outside the structure, the measurement
before the detection of the magnetic structure, where the magnetic field is almost constant. I
assume the standard value 20 km/s for the error in the ion velocity measurement and an error
0.01 for the normal direction. In this case-study, as the ion velocity is almost along the Xgse

direction, the projection along the normal yields a very low value for Vi,n, smaller than the error,
Vi,n ≈ 20± 40 km/s. The propagation velocity thus turns out to be V ≈ 240± 40 km/s. Since
the latter is of the same order than the ion velocity along the Zgse direction in correspondence
with the structure, Vi,z ≈ −200,−250 km/s inside the structure, if the bulk flow oscillates during
the detection of the structure, the structure itself can be dragged in the opposite direction of its
propagation. The fourth panel of Fig. 3.9 shows that Vi,z has a trend to increase in intensity and
this could explain the detection of the same structure twice.

According to the present analysis, to a good approximation we can consider the low frequency
perturbation as a 1D structure, propagating in a direction quasi perpendicular to the average
magnetic field B0. The perturbation has a typical length scale of the order of the ion-scales and
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it has both a compressive and a shear component propagating almost along the Zgse direction.

Particles: Fig. 3.14 shows snapshots of the contour plots of the ion distribution function ob-
tained from CIS-CODIF records at 4 s time resolution in the time interval 16:57:04–16:57:20 UT.
Remark that the magnetic field is not stationary over one spin period (4 s). The stationarity of
the medium is a necessary condition to properly infer the total distribution function by integrat-
ing the partial ion fluxes measured during one spin. If the medium changes in one spin period
ion populations moving in different directions can be mixed in the process of integration, and
attention must be paid in the interpretation of ion distribution functions. Nevertheless, it is clear
that ion distributions exhibit the existence of a population moving in the Earthward direction at
high velocities. This suggests that the low frequency structure is embedded in a fast flow event,
which usually is marked by ion velocities exceedingly Vx > 300− 400 km/s. See also the fourth
panel of Fig. 3.9, which shows a bulk ion velocity Vi,x ≈ 1000 km/s.

In Fig. 3.15 I display the time evolution of the electron PADs obtained by data gathered by
the HEEA sensors of PEACE, at 125ms time resolution (data set 3DX) on board of C2. In
particular, I show PADs along the direction parallel, or antiparallel, and perpendicular with
respect to the magnetic field, when data along these two directions are available simultaneously.
Remark that at this time resolution the s/c do not complete one spin so that only partial
informations about the electron distribution function can be extrapolated. Nevertheless, as the
magnetic field changes significantly over few seconds, snapshots of the electron PADs provide
important informations about their time evolution when crossing the magnetic structure.

Fig. 3.15, upper plot, represents the magnetic field data. From the first to the fourth panel the
three components and the magnitude B of the magnetic field are shown, and in the last panel
the bz component of the whistler waves detected by C2 is displayed. Each symbol superposed to
B corresponds to a specific type of electron PAD. Below the magnetic field, PADs samples for
each type are displayed. The latter are shown before, during and after the magnetic structure
has passed past the s/c. Since the magnetic field is almost constant outside the structure, in
this way it is possible to identify the typical PADs of the background equilibrium and how they
change inside the structure.

The first remarkable feature is that electrons are highly energetic, with energies exceedingly
10 keV and can be classified as flat-top distributions. These type of distributions are charac-
terized by a plateau of the phase space density at high energy which steeply decreases at the
so-called shoulder energy. Flat-tops are usually interpreted as a signature of the ion diffusion
region which forms at a reconnection site [66, 67, 68, 61], since they are often detected during
ion fast flows (Vi,x > 300 − 400 km/s) and possibly they exhibit signatures which are consis-
tent with the Hall-current [68]. However, the generation mechanism of such distributions and
how they are related to magnetic reconnection is still an open issue [61]. Asano et al., JGR
(2008) [61] carried out a statistical study of flat-top distribution functions. The authors show
that they are characterized by a plateau with an average phase space density less than 1 s3km−6,
typically in the energy range E = 1− 5 keV . At the shoulder energy, which is about E = 5 keV ,
the distribution has a steep decrease. As already mentioned, Asano et al., JGR (2008) report
flat-top distributions also during this substorm event, just after the ion flow reversal at nearly
16:55:15 UT, two minutes before the detection of our magnetic structure.

The PADs observed here have a flat plateau at low energies, 0.5 < E < 8 keV , both outside
and inside the structure. At higher energies, E > 8 keV , PADs are anisotropic inside the
structure. We can thus identify mainly three types of flat-top PAD: the flat top with no electron
temperature anisotropy in the perpendicular/parallel (or antiparallel) directions at energies E >
8 keV , represented by an empty circle; the flat-top with a perpendicular/parallel anisotropic
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distribution at energies E > 8 keV , identified by a solid circle; the flat-top with more particles
in the parallel direction than in the perpendicular one at energies 0.5 < E < 8 keV , triangles.

Referring to Fig. 3.15, outside the structure, before and after it is detected by the s/c, electrons
show clear isotropic flat-tops in both the parallel, or antiparallel, and perpendicular directions
(Figg. 3.15a, 3.15b and 3.15f). In correspondence with the magnetic structure, distributions asso-
ciated with a perpendicular/parallel(antiparallel) anisotropy, that from now on will be indicated
T⊥,e/T‖,e, are detected in correspondence with high energy values E > 8 keV . In particular, in
this energy range there are more particles in the perpendicular than in the parallel or antiparallel
direction, T⊥,e > T‖,e (Figg.3.15c and 3.15d). At the exit of the structure PADs show more par-
ticles in the parallel direction than in the perpendicular one in correspondence with the flat-top
at energies 0.5 < E < 8 keV (Fig. 3.15e).

The presence of the anisotropy inside the structure is consistent with the detection of large
amplitude whistler waves. In the simple case of a bi-Maxwellian distribution, a configuration
with an electron temperature anisotropy T⊥,e > T‖,e can be unstable for resonant interaction
with perturbations in the whistler mode, leading to the whistler anisotropy instability [20] (see
also Chapter 2). According to eq. (2.15b), the energy of electrons which resonate with whistler
waves is ER = 1/2me[(ω − ωce)/k‖]2, where the frequency and the wave vector are given by the
whistler dispersion relation. The resonant energy can thus be written as

ER = Em
ωce
ω

(
1− ω

ωce

)3

, (3.1)

where Em = B2/2µ0n is the magnetic energy per particle. For a given density n = 0.15 cm−3,
magnetic field magnitude B = 25nT and frequencies 0.1 − 0.3 f0

ce, eq. (3.1) yield ER = 75 −
10 keV , consistent with the observed anisotropy. Remark that inside the structure the magnetic
energy is lower and the normalized frequency is higher, so that these values give an upper bound
for the resonant energy.

In conclusion, PADs show flat-top electron distribution functions before, during and after the
observation of the magnetic structure. This suggests that flat-tops are a proper feature of the
environment where our structure is located, and that they are related to processes taking place
on scales which are larger than the typical ion time scale. The presence of a very fast ion flow
(Vi,x ≈ 1000 km/s) could suggest, in the framework of earlier studies, that our low frequency
perturbation is embedded in an outflow region near a reconnection site.

The magnetic structure is correlated with a T⊥,e > T‖,e anisotropy at energies E > 8 keV ,
which can provide the energy source for the observed large amplitude whistler waves. The growth
of whistler waves can be due to the contribution of two effects: the decrease of the number of
magnetic field aligned particles and the simultaneous increase of the plasma beta. It has been
shown, indeed, by Gary and Wang, JGR (1996) [69] that the threshold for the onset of the
whistler anisotropy instability decreases with increasing electron plasma beta.

3.3.1.2 Case 2

Identification of the structure: Fig. 3.16 and Fig. 3.17 shows data for Case 2 in the time
interval 16:57:36–16:57:55 UT (the following results have been accepted for publication in A.
Tenerani et al., Phys. Rev. Lett. (2012) [70]). As in the previous case-study, the first and second
panels display the magnitude of the magnetic field B and the spacecraft potential P . The third
panel shows the z component of the magnetic field fluctuations bz for each s/c and the last panel
the ion velocity. In Fig. 3.17, the first three panels display the three components Bx, By and Bz
of the magnetic field and the fourth panel the magnitude B. The fifth panel represents the three
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components of the current density J. In the last two panels the two components of the electric
field Ex,isr2 and Ey,isr2 are shown in the ISR2 system for C2 and C4, averaged over 22ms. Plots
show that the low frequency magnetic structure is detected by the four spacecraft from around
16:57:42 UT to 16:57:49 UT and that it is characterized by a magnetic field depression of nearly
δB/B = −0.25 and a density increase of δn/n = 0.5, see for instance the first and second panel in
Fig. 3.16. The structure, being detected with a delay by the four s/c, is at the scale of the inter-
satellite separation. The current component Jz oscillates between ±40nA/m2 and the Jx and Jy
components, after an initial increase towards positive values, show an almost symmetric profile
with maximum negative values (see comments in paragraph “Low frequency structure” below).
Whistlers are correlated with the minimum of the magnetic field and the density hump, as for the
previous case-study. The two electric field components show bipolar signatures at the edges of
the magnetic structure which are detected with same delay, suggesting that they are associated
with the propagation of the low frequency structure itself. These secondary electromagnetic
structures are at the electronic spatial scales and will not be considered in the present work.

Whistler waves: The spectrogram and the polarization analysis are shown in Fig. 3.18 for C2.
As in the previous event, the first panel represents the waveform of the magnetic fluctuations
bx,mfa and the second panel the spectral energy density of the same magnetic field component.
The white line corresponds to one tenth of the electron cyclotron frequency which has an average
value f0

ce = 800Hz. The third panel represents the propagation angle θ. In the fourth and last
panel I show the ellipticity and the degree of polarization, respectively. The latter confirm
that the waves are elliptically, right-handed polarized. The frequency is f = 100 − 225Hz,
corresponding to f = 0.1 − 0.3 f0

ce. Spectra from STAFF-SA, in Appendix E, show that the
frequency reaches nearly f = 300Hz ≈ 0.4 f0

ce. In this case-study, as in the previous one,
whistlers are quasi parallel, with a propagation angle 0◦ < θ < 30◦. Fig. 3.19 shows a zoom
of the waveform of the magnetic and electric fields of the whistlers in MFA coordinates, bmfa
and emfa, respectively. Since the waves have frequencies f > 30Hz, in this plot data are
high-pass filtered at 30Hz. The electric field shown in this time interval is obtained from the
three dimensional data provided by CAA. Black, red and green colors correspond to the two
perpendicular components, xmfa and ymfa, and to the parallel component zmfa, respectively.
From the values of the perpendicular components it is possible to estimate the phase velocity
vph ∼ e⊥/b⊥ of the waves, vph ≈ 104km/s.

Low frequency structure: The equilibrium quantities are obtained by averaging fields over
10 s, as in Case 1, since the typical transit time of the structure is 5 s. The typical average plasma
parameters (see also Table 3.5) are given by the magnetic field components Bx,0 = −25nT ,
By,0 = −15nT and Bz,0 = 10nT , the magnitude of the magnetic field B0 = 30nT , the ion-scale
lengths ρi ≈ di = 600 km, the density n0 = 0.15 cm−3, the ion cyclotron frequency f0

ci = 0.43Hz
and the ion and electron plasma beta βi = 0.67 and βe = 0.067, respectively. Similarly to the
previous event, the nature of low frequency perturbation has been investigated by means of the
MVA and by projecting the perturbed fields in the MFA system, defined by B0. For this event
the timing technique can also be employed.

Timing technique – The crossing velocity of the structure turns out to be v0 = 174± 16 km/s
along ngse = {0.5, −0.8, −0.4} ± 0.1, see also Table 3.3, last row. The typical scale length
of the structure ` can estimated by means of the crossing velocity v0 and the crossing time
interval ∆T ∼ 5 s during which the perturbation is detected by each s/c. The estimated scale
length turns out to be ` ∼ 900 km, which is of the order of the ion-scales ρi and di, similarly
to Case 1. With the same reasoning and assumptions of the previous case-study, I estimated



34 3. Observations: the substorm event on August 17, 2003

the velocity with respect to the bulk plasma flow. For this event, the velocity along the normal,
estimated before the detection of the structure, is Vi,n ≈ 400± 100 km/s, see also the fifth panel
in Fig. 3.21, which yields a propagation velocity V ≈ −225 ± 116 km/s. This result suggests
that the structure is mainly propagating dawnward, in the opposite direction with respect to the
bulk flow component along the normal n.

Magnetic Feld Aligned system analysis – In Fig. 3.20 the nonlinear perturbation is represented
in MFA coordinates. The first three panels display the components of δBmfa/B0 and panels four
to six the components of the normalized current density perturbation δJmfa/J0. In the seventh
panel I show one of the two components of the raw electric field data Ey,isr2, in the ISR2 system,
for C2 and C4. Panels eight to ten display the inferred three dimensional electric field Emfa,
again for C2 and C4. Electric field data are averaged over 111ms in order to smooth oscillations
at frequencies higher than the ionic ones. The last panel of Fig. 3.20 represents the elevation
angle θelev.

The perturbation δB turns out to have both a compressional component δB‖ (δBz,mfa, third
panel, Fig. 3.20), and a strong shear component δB⊥ (δBy,mfa, second panel, Fig. 3.20). As
expected from magnetic field data, the current is quasi parallel to the magnetic field (sixth
panel, Fig. 3.20), showing an almost symmetric profile. However, since the waveform in the
shear component is not exactly antisymmetric in time, the J‖ component does not show an exact
symmetry with respect to the center of the structure itself. In order to clarify the profiles of
the current which are expected for the observed magnetic field signatures, in Figg. 3.20a–3.20c I
show an empirical waveform which suits to the magnetic field observations and the corresponding
current profile. In the perpendicular directions the current is instead antisymmetric, compare
also with Figg. 3.21a–3.20c. For this case-study, electric field data are available over a time
interval which covers more than one half of the structure. It can be clearly seen that in the
perpendicular direction the same signatures as for the magnetic field are found in the electric
field Ey,mfa, see the eighth and ninth panels of Fig. 3.20.

Minimum Variance Analysis – The MVA has been applied, similarly to the previous event, to
δB/B0 in the time intervals 16:57:43–16:57:48.5 UT for C1 and C4, and 16:57:42–16:57:47.6 UT
for C2 and C3. In Table 3.3 I list the components of the minimum variance direction in GSE co-
ordinates obtained for each satellite and the maximum, intermediate and minimum variance. In
the last row I indicate also the normal direction components inferred with the timing technique.
By comparing the MVA results with those obtained from the timing technique, we see that the
two methods are in good agreement, yielding both a normal directed mainly along the Ygse direc-
tion. The maximum, intermediate and minimum variance are well defined, λmax/λmin � 1 and
λint/λmin � 1. As for Case 1, the normal of the structure turns out to be quasi perpendicular,
at an angle Θ ≈ 80◦ with the average magnetic field B0.

In Fig. 3.21 I show fields projected in the MVA system relative to C4. The first three pan-
els display the normalized maximum, intermediate and minimum variance components, δBmax,
δBint and δBmin, respectively, of the magnetic perturbation δB. The fourth panel represents the
normalized perturbation in the current δJ: the continuous, dashed and dotted lines correspond
to the current projected along the maximum, intermediate and minimum variance directions,
respectively. The fifth panel represents the E×B drift for C2 and C4, solid lines, and the ion
velocity, dot-dashed line, along the normal direction obtained from the timing technique. Panels
six to nine display the electric field for C2 and C4 averaged over 222ms. As in the previous
case-study, I display both the electric field raw data in the ISR2 coordinates, Ey,isr2, and the
inferred three dimensional electric field Emva along the maximum, intermediate and minimum
variance directions. The last panel represents the elevation angle. In this case, the electric field
along the normal direction shows a clear anti-correlation with δBmax, as expected for highly
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oblique waves. Consistently with the MFA analysis, it is possible to clearly identify a shear
antisymmetric component of the magnetic field perturbation given by δBmax and a compressive,
symmetric, component represented by δBint. The current signature as well has an antisymmetric
profile in the maximum variance direction (solid line), and an almost symmetric profile in the
intermediate variance direction (dashed line). With regard to this, compare with the empirical
waveform of the magnetic field and the correspondent current profile shown in Figg. 3.21a–3.21c.
Finally, in Fig. 3.22 I show the time variation of δBint as a function of δBmax, the magnetic
hodogram, measured by C4 in the plane perpendicular to the normal direction pointing inwards
of the page. The hodogram allows to display the coherency of the perturbation, since the com-
ponents transverse to the normal direction form a very well defined ellipse, left-handed polarized
in the rest frame of the s/c.

Similarly to the previous case-study, the perturbation can be considered to a good approxi-
mation as a 1D structure. The structure propagates at a velocity much less than the whistler
phase velocity, quasi perpendicular to the magnetic field, mainly in the (X,Y )gse plane.

Case 2

s/c nx ny nz λmax λint λmin

C1 0.489 −0.775 −0.411 0.05 0.008 3× 10−4

C2 0.373 −0.864 −0.339 0.06 0.008 6× 10−4

C3 0.385 −0.873 −0.300 0.06 0.008 5× 10−4

C4 0.475 −0.849 −0.231 0.047 0.01 4× 10−4

Average 0.43± 0.06 −0.84± 0.05 −0.32± 0.09

Timing 0.5± 0.1 −0.75± 0.1 −0.4± 0.1

Table 3.3: Minimum variance analysis. The time interval for the MVA has been chosen 16:57:43–
16:57:48.5 UT for C1 and C4, and 16:57:42–16:57:47.6 UT for C2 and C3. Above, the components of the
normal direction in GSE, their average value and the maximum, intermediate and minimum variances
λmax, λint and λmin, respectively are listed. The last row shows the components of the normal obtained
with the timing technique.

Particles: Fig. 3.23 displays snapshots of the ion distribution functions from CIS-CODIF, in
the time interval 16:57:39–16:57:55 UT, that show a fast ion population moving Earthward. This
magnetic structure is again embedded in a fast ion flow, as can be seen also from Fig. 3.16, fourth
panel, showing a bulk ion velocity Vi,x ≈ 500 km/s. However, in this case-study the ion velocity
is weaker with respect to Case 1.

In Fig. 3.24, the electron PADs from the same data set as for Case 1 are shown. The format
is the same as for Fig. 3.15. Here PADs have been classified into four types: no flat-top in the
parallel and perpendicular direction and a not marked T⊥,e > T‖,e anisotropy at high energies
(E > 8 keV ), empty circle; no flat-top in the antiparallel and perpendicular directions and an
anisotropy T⊥,e > T‖,e, solid circle; flat-top in the parallel direction and a not marked T⊥,e > T‖,e
anisotropy, empty rectangle; flat-top in the antiparallel direction and a T⊥,e > T‖,e anisotropy,
solid rectangle.

Contrary to Case 1, outside the structure PADs are not of the flat-top type. In addition, at
energies E > 3 keV they show more particles in the parallel direction (same values as in the
perpendicular direction), thus tailward, than in the antiparallel one (lower values with respect
to the perpendicular direction). This is shown by the two couples of PADs samples displayed
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in the first two snapshots of the first row (Figg. 3.24a and 3.24b) and in the last two ones in
the last row (Figg. 3.24g and 3.24h), observed before and after the crossing of the magnetic
structure, respectively. Each couple of PAD displays the parallel/perpendicular and antiparal-
lel/perpendicular directions. Even if the parallel and the antiparallel directions are not observed
simultaneously, both before and after the magnetic structure, I assume that the background do
not change significantly outside the magnetic structure itself, so that these snapshots represent
the electron distribution functions of the background.

The same trend of the anisotropy between parallel and antiparallel directions is observed
also inside the structure. Here the T⊥,e > T‖,e anisotropy is more marked in the antiparal-
lel/perpendicular directions, at energies E > 10 keV (solid rectangles, Figg. 3.24e and 3.24f),
while in the parallel/perpendicular directions it is not always clear (empty rectangles, Figg. 3.24c
and 3.24d). For given density n = 0.15 cm−3 and magnetic field magnitude B = 30nT , the res-
onant energy for whistlers in the frequency range 0.1 − 0.4 f0

ce is ER = 110 − 8 keV , which is
consistent with the energy range corresponding to the T⊥,e > T‖,e anisotropy in the antiparallel
direction. At these energies the number of particles in the parallel direction is almost the same
than in the perpendicular one, possibly slightly less. This and the fact that inside the magnetic
structure the plasma beta increases, may provide the proper conditions for the development of
the whistler instability. In addition to the destabilization of whistlers, flat-top distributions in
both the parallel and antiparallel direction are observed when entering in the structure, but
not in the perpendicular direction as for Case 1. These flat-tops are slightly different from the
standard ones, as the plateau has an average phase space density higher than 1s3/km−6 and it
extends to low energies, E ≈ 0.2 keV .

To summarize the salient features, the PADs outside the structure are different from those
found in Case 1, because they do not show flat-top distributions and are characterized by more
particles in the parallel direction than in the antiparallel one. Flat-tops are observed in the field
aligned directions inside the structure. Inside the structure a T⊥,e > T‖,e anisotropy is found at
energies E > 10 keV , which is of the order of the electron resonant energy. These signatures are
consistent with the development of the whistler anisotropy instability. Moreover, the increase
of the plasma beta contribute to lower the threshold for the onset of the whistler instability, as
discussed for Case 1.

3.3.1.3 Case 3

Identification of the structure: Fig. 3.25 and Fig. 3.26 represent data for Case 3 in the
time interval 16:58:39–16:58:55 UT. The same quantities as in Fig. 3.9 and Fig. 3.10 are shown:
Fig. 3.25 displays the magnitude of the magnetic field B and the spacecraft potential P in the
first two panels, then the bz component of the magnetic field fluctuations and in the last panel the
ion velocity Vi; Fig. 3.26 shows the three components of the magnetic field B, its magnitude,
the current density J and finally the raw electric field data Eisr2 averaged over 22ms. The
same features as those in Case 2 are found. Indeed, the low frequency magnetic structure is
detected nearly in the time interval 16:58:41-16:58:51 UT and the perturbation is associated
with a magnetic field depression of δB/B = −0.5, as the magnetic field magnitude decreases
from 40nT just before the minimum, to 20nT inside the magnetic hole, and a density increase of
δn/n = 0.56. The current has an almost antisymmetric profile with respect to the magnetic field
minimum in the Jx component. The signature in the Jy component is less clear than that one for
Jx, maybe because of the presence of the Jy current of the central current sheet in background.
An almost symmetric profile is observed in the Jz component. The Jx component nearly oscillates
between Jx = ±50nA/m2. Again, whistlers are correlated with the minimum of the magnetic
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field and the density hump. Remark that at the end of the low frequency perturbation, when
the s/c are going out of the structure, a compression of the magnetic field is detected. The
electric field components show bipolar signatures of high frequency fluctuations at the beginning
and at the end of the structure, which are detected with the same delay as the low frequency
structure itself, as in Case 2. It is interesting to note that other small scale, at the electron
scales, current structures are observed at the center of the low frequency perturbation. Again,
we will not consider dynamics on these smaller scales, of the order of the electronic scales.

Whistler waves: The spectrum and the polarization analysis for Case 3 is shown in Fig. 3.27.
The same data set as for Case 1 and Case 2 has been used, and only data for C2 are displayed. The
waveform and the spectral density, calculated for the bx,mfa component, are shown in the first
and second panels, respectively (see the superposed white line). The average electron cyclotron
frequency turns out to be f0

ce = 950Hz. In the subsequent panels, the propagation angle θ, the
ellipticity and the degree of polarization P, are represented. Waves turn out to be right-handed
and elliptically polarized. Frequencies are in the range f = 100−225Hz and STAFF-SA spectra,
see Appendix E, show that they reach f ≈ 400Hz. Whistlers are thus in the frequency range
f = 0.1 − 0.4 f0

ce. The propagation angle is mainly 0◦ < θ < 30◦ and at nearly 16:58:45 UT
there is a wave packet propagating at θ ≈ 40◦. In Fig. 3.28 I show a zoom of the waveform
of the magnetic and electric fields of the whistlers in MFA, bmfa and emfa, respectively (data
are high-pass filtered at 30Hz). The electric field shown in this time interval is obtained from
the three dimensional data provided by CAA. Black, red and green colors correspond to the two
perpendicular components, xmfa and ymfa, respectively, and to the parallel component zmfa.
The estimated phase velocity of whistlers is vph ≈ 2× 104km/s.

Low frequency structure: For this event the typical transit time of the structure is 10 s
and equilibrium quantities are obtained by averaging over 15 s. The typical average plasma
parameters, listed in Table 3.5, are given by the magnetic field values Bx,0 = −29nT , By,0 =
−12nT and Bz,0 = 13nT , with magnitude B0 = 34nT , the ion-scale lengths ρi ≈ di = 600 km,
the density n0 ≈ 0.15 cm−3, the ion cyclotron frequency f0

ci = 0.5Hz and the ion and electron
plasma beta βi = 0.67 and βe = 0.067, respectively. In this case-study both single- and multi-
spacecraft methods are employed, and the same kind of analysis as in Case 2 has been done.

Timing technique – The spacecraft traversal velocity turns out to be v0 = 274 ± 40 km/s
in the ngse = {0.34 ± 0.2, −0.71 ± 0.1, −0.62 ± 0.1} direction, see also Table 3.4, last row.
This result shows that the normal is directed mainly in the (Z, Y )gse plane and that it forms
an angle Θ ≈ 100◦ with the average magnetic field. The traversal velocity yields a typical
size of the structure ` ∼ 1400 km, of the order of the ion-scales. With the same reasoning as
in Case 2, I chose as a reference value for estimating the ion velocity outside the structure,
the point measurement before the detection of the magnetic structure. For this case-study,
Vi,n ≈ 380± 180 km/s, see also the fifth panel in Fig. 3.30, which yields a propagation velocity
V ≈ −106± 210 km/s. The velocity turns out to be of the same order of the error, and for this
case-study the propagation velocity with respect to the bulk plasma can not be determined.

Magnetic Field Aligned system analysis – In Fig. 3.29 I show fields in MFA coordinates. In a
similar way to Case 2, I show here the normalized perturbation δBmfa/B0, the current δJmfa/J0,
the electric field components averaged over 222ms and the elevation angle. The same main
features as for the previous case-study are found: a compressive δB‖ (δBz,mfa) and a shear δB⊥
(δBx,mfa) component of δB and a quasi parallel current. The electric field in the perpendicular
direction Ey,mfa shows the same signature of the δBx,mfa component. The current has an almost
antisymmetric profile in the perpendicular direction xmfa and symmetric in the parallel direction
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but they have almost the same amplitude. Contrary to the previous case-study, the current is
not quasi parallel and we remark that the perpendicular component δBy,mfa is not constant as
well as Ez,mfa. As will be seen more clearly in MVA coordinates, this signature means that the
structure is not strictly 1D.

Minimum Variance Analysis – The MVA, applied to δB/B0, has been calculated in the time
intervals 16:58:44–16:58:52 UT for C1 and C4, and 16:58:43–16:58:52 UT for C2 and C3. Table 3.3
shows the components of the minimum variance direction in GSE coordinates obtained for each
satellite and the maximum, intermediate and minimum variance. In the last row I list the GSE
components of the normal direction inferred with the timing technique. In this case the MVA
results do not correspond to a well defined minimum variance direction. While in Case 1 and
Case 2 the minimum variance was at least an order of magnitude smaller than the intermediate
one, in this case-study λmin is of the same order than λint. This suggests that the structure is
more likely at least 2D at the scale of the spacecraft separation. In Fig. 3.30 I show fields in the
MVA reference system for C4. As a confirmation that the minimum variance is not well defined,
it turns out that the variation of the minimum variance component δBz,mva, shown in the third
panel of Fig. 3.30, is not negligible with respect to the other two components. In this Figure I
show the same quantities as for Case 1 and Case 2: δBmva/B0 in the first three panels and in the
fourth panel δJmva/J0 (solid, dashed and dotted lines correspond to the maximum, intermediate
and minimum variance components, respectively). The fifth panel shows the ion and the E×B
drift along the normal obtained from the timing technique. As already stated, the MVA is not
strictly consistent with a 1D structure. In spite of this discrepancy in the MVA analysis, the
perturbation shows as in the other two case-study a strong shear component, represented by
the maximum variance component, δBmax, and a compressional component, represented by the
intermediate variance component, δBint. The latter shows a magnetic rarefaction followed by a
magnetic compression.

The above analysis shows that this magnetic structure has the same salient features as for the
previous case-study, i.e., it carries both a shear and a compressive magnetic field component.
The one dimensionality is not as marked as for the previous cases. Nevertheless, a somewhat
preferred direction of the gradient has been inferred to be quasi perpendicular to the average
magnetic field, in the (Z, Y )gse plane. Because of the large experimental error, the propagation
velocity with respect to the bulk flow could not be determined.

Case 3

s/c nx ny nz λmax λint λmin
1 0.234 −0.741 −0.629 0.072 0.052 0.018
2 0.305 −0.562 −0.769 0.082 0.076 0.0194
3 0.249 −0.589 −0.768 0.077 0.062 0.0194
4 0.275 −0.837 −0.473 0.066 0.042 0.0163

Average 0.26± 0.03 −0.7± 0.1 −0.7± 0.1

Timing 0.341± 0.2 −0.708± 0.1 −0.618± 0.1

Table 3.4: Minimum variance analysis. The time interval for the MVA are 16:58:44–16:58:52 UT for
C1 and C4, and 16:58:43–16:58:52 UT for C2 and C3. Above, the components of the normal direction in
GSE, their average value and the maximum, intermediate and minimum variances λmax, λint and λmin,
respectively are listed. The last row shows the normal direction components obtained with the timing
technique.
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Particles In Fig. 3.31 I display snapshots of the ion distribution function for Case 3 in the time
interval 16:58:35 UT–16:58:51 UT, at 4 s time resolution. Ions have the same main characteristic
as for Case 2, showing an ion population directed Earthward, slightly dawnward. Again, ion
velocities are weaker than for Case 1 (see also the fourth panel of Fig. 3.26, showing an ion
velocity Vi,x ≈ 500− 600 km/s).

In Fig. 3.32 I show the time evolution of electron PADs before, during and after the crossing
of the magnetic structure, with the same format of Fig. 3.15. The data set for PADs is the same
as for the other case-study.

Even if the time evolution of the electron distribution functions is far richer with respect to the
previous case-study, the main features are similar to Case 2. In this case-study PADs have been
classified into six different types: no flat-top in the parallel and perpendicular direction and weak
or absent T⊥,e > T‖,e anisotropy (empty circle); no flat-top in the antiparallel and perpendicular
directions and a marked anisotropy T⊥,e > T‖,e at energies E ' 1 keV (solid circle); flat-top
in the parallel direction and a weak, or absent, T⊥,e > T‖,e anisotropy at energies E > 8 keV
(empty rectangle); flat-tops in all directions without T⊥,e > T‖,e anisotropy (cross); flat-top in
the antiparallel direction and a T⊥,e > T‖,e anisotropy at energies E > 20 keV (solid rectangle);
no flat-top and a marked anisotropy in the parallel and perpendicular direction T⊥,e > T‖,e at
energies E > 4 keV (triangle).

Similarly to Case 2, outside the structure, where the magnetic field is almost constant, no
flat-tops are observed and a T⊥,e > T‖,e is found in the antiparallel/perpendicular direction at
energies E & 1 keV (Figg. 3.32a and 3.32l), while in the parallel/perpendicular direction the same
anisotropy is very weak or even absent (Figg. 3.32b and 3.32k). Remarkably, when approaching
the magnetic structure the electron distribution suddenly changes to a flat-top in the parallel
direction (Fig. 3.32c). Inside the structure, in correspondence to the minimum of the magnetic
field, during the maximum of the whistler emission, the electron distribution is flat-top in almost
all directions, with shoulder energy of about 3 keV , indicated by crosses (Fig. 3.32e). When the
magnetic field starts to increase, PADs are flat-top in the parallel direction (the perpendicular
one is not observed) with a more or less marked T⊥,e > T‖,e anisotropy at energies E > 8 keV
(Fig. 3.32f, 3.32g and 3.32h). The latter is of the order of the resonant energy ER for the
whistler anisotropy instability. The latter is ER = 110 − 8 keV if the typical values of density
n0 = 0.15 cm−3, magnetic field B0 = 34nT and frequency 0.1 f0

ce are used. At the exit of the
structure, at nearly 16 : 58 : 50 UT, PADs show, in the antiparallel/perpendicular directions,
a flat-top in the antiparallel direction and a higher number of particles in the perpendicular
direction (Fig. 3.32i) while subsequently, in the parallel/perpendicular directions, PADs show a
strong anisotropy T⊥,e > T‖,e at energies E > 4 keV (Fig. 3.32j).

In summary, electron PADs change significantly from outside to inside the magnetic structure.
In particular, in the present case-study it is clear that flat-top distributions are correlated with
the detection of the structure. The same conditions of the previous case-study are found here
to enable whistler waves to growth, i.e., the increase of the plasma beta and a decrease of
electrons in the field aligned directions. Nevertheless, the anisotropy is not strictly detected in
correspondence to the maximum of the whistler emission.

3.3.1.4 Summary

The three case-study analyzed above show that large amplitude, high frequency waves in
the whistler mode are correlated with nonlinear structures at the ion-scales, characterized by
a magnetic field depression and a density hump. The observed whistlers propagate inside the
magnetic minimum.
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The case-study above occur in almost the same conditions. Typical quantities, which describe
the background environment where the structures are observed, are the ion and electron plasma
beta βi = 0.67 and βe = 0.067, the particle density n0 = 0.15 cm−3 and the magnetic field
magnitude |B0| = 30nT . In Table. 3.5 I summarize the average plasma parameters for the three
case-study. Magnetic field measurements suggest that the magnetic structures are observed

Case 1 Case 2 Case 3

B0,x (nT ) -15 -25 -20
B0,y (nT ) -25 -15 -15
B0,z (nT ) 5 10 15
|B0| (nT ) 25 30 34
βi, βe 0.67, 0.067 0.67, 0.067 0.67, 0.067
f0
ce (Hz) 700 800 950
Vi,x (km/s) 1000 500-600 500-600
cs (km/s) 1000 1000 1000
va (km/s) 1600 1600 1600
n0 (cm−3) 0.15 0.15 0.15
ρi (km) 600 600 600

Table 3.5: Average plasma parameters for the three case-study. Coordinates are in GSE. cs is the sound
speed and va the Alfvén speed.

when the Cluster s/c are located southward of the magnetic equator and in regions with closed
magnetic field lines, because Bx,0 ≈ −25nT and Bz,0 ≈ 10nT , respectively.

The observed “ducted” whistlers have an amplitude of nearly b = 0.5 − 0.8nT and they
propagate in a direction quasi parallel to the background magnetic field, B, at angles 0◦ < θ <
30◦. Only Case 3 shows also a wave packet propagating more obliquely, at an angle of nearly
θ = 40◦. Frequencies are in the range 0.1 < f/f0

ce / 0.4. In Table 3.6 the properties of whistlers
are listed.

Case 1 Case 2 Case 3

|b| (nT ) 0.5 0.8 0.8
vph (km/s) (no E data) 104 (1− 2)× 104

f/f0
ce 0.1–0.3 0.1–0.4 0.1–0.4

θ 0◦ − 30◦ 0◦ − 30◦ 0◦ − 40◦

ER (keV ) 75–10 110–8 110–8
ET⊥,e>T‖,e (keV ) > 8 > 10 > 8

Table 3.6: Whistler wave parameters for the three case-study.

The ion-scale structures are, to a good approximation, one dimensional at the scale of the
inter-satellite separation. However, for Case 3 the normal direction is of the same order of the
intermediate one, suggesting that the structure is more likely two dimensional (or even three
dimensional). In all Cases, the normal of the structure is nearly at right angles with respect to
the average magnetic field, the angle between n andB0 being Θ ≈ 80◦ (Case 1 and 2) or Θ ≈ 100◦

(Case 3). In particular, in Case 2 and Case 3 the normal lies in the (Y,X)gse and (Y,Z)gse plane,
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respectively, while in Case 1 it is directed almost along the Zgse direction. The propagation
velocity of the nonlinear structures with respect to the bulk plasma turns out to be subsonic
and much less than the whistler phase velocity for Case 1 and Case 2, |V | = 240± 40 km/s and
|V | = 125±16 km/s while for Case 3 the velocity could not be determined within the experimental
error. A summary of the results for each low frequency perturbations is in Table 3.7. Finally,
these low frequency, nonlinear perturbations have both a compressive component δB‖ and a
shear component δB⊥, corresponding to a quasi parallel current δJ‖ perturbation.

Case 1 Case 2 Case 3

n (GSE) (0.33, -0.29, 0.899) (0.5, -0.75, -0.4) (0.34, -0.7, -0.6)
Θ 80◦ 80◦ 100◦

v0 (km/s) 260 174 274
|V | (km/s) 240 225 not determ.
` (km) 520-780 900 1000
δB/B -0.4 -0.25 -0.5
δn/n 0.3 0.5 0.56

Table 3.7: Parameters of the low frequency structures for the three case-study.

Finally, ion and electron distribution functions showed that the structures are embedded in
Earthward ion fast flows (Vi,x > 300 km/s). Electrons are highly energetic, reaching energies
E & 10 keV , or higher, around and during the detection of the low frequency perturbation itself.
Inside the magnetic structures, electrons show flat-top distributions in the field aligned directions
and an electron temperature anisotropy T⊥,e > T‖,e consistent with the whistler anisotropy
instability, which may provide the source for the observed whistlers. In the last two rows of
Table 3.6 I list the electron resonant energy for the observed frequency range of whistlers and
the threshold energy marking the T⊥,e > T‖,e anisotropy inferred from PADs.

A remarkable difference between Case 1 and Cases 2–3 is given by PADs outside the low
frequency perturbations. In Case 1 electrons are highly energetic, with energies E � 10 keV ,
and they show marked isotropic flat-top PADs before and after the low perturbation has passed
past the s/c. On the contrary, PADs for Case 2 and Case 3 do not show flat-tops outside the
structures and electrons have energies slightly less than for Case 1, E & 10 keV . The ion flow
also is faster in Case 1 than in the other two case-study. The slow time variation of the properties
of particles may indicate a large scale evolution of the magnetotail dynamic. In particular, in
the framework of earlier studies, the fact that the structure of Case 1 is embedded in a region of
electron flat-top PADs and that particles are more energetic than for the other case-study could
suggest that Case 1 is located close to an ion acceleration region. This however has no relevance
for the following discussions.
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Figure 3.9: Case 1. First panel: magnitude of the magnetic field |B| (FGM); second panel: spacecraft
potential (EFW); third panel: the z component of the high frequency magnetic field fluctuations bz
measured by each spacecraft; fourth panel: the three components Vi,x, Vi,y and Vi,z of the ion velocity
in black, red and green color, respectively (CIS-CODIF).
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Figure 3.10: Case 1. Panels one to three: the three components Bx, By and Bz of the magnetic
field (FGM). Fourth panel: magnitude of the magnetic field |B| (FGM). Fifth and sixth panels: the two
components of the electric field Ey,isr2 and Ex,isr2 shown in the ISR2 system for C2 and C4, averaged
over 22ms (EFW).
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Figure 3.11: Case 1: polarization analysis for C2. First panel: waveform of the perpendicular component
bx,mfa of the magnetic fluctuations (STAFF-SC). Second panel: spectral energy density of bx,mfa. The
white line superposed corresponds to one tenth of the electron cyclotron frequency, 0.1 fce. Third panel:
propagation angle θ. Fourth panel: ellipticity Ell.. Last panel: degree of polarization P.
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Figure 3.12: Case 1: field projection in the Magnetic Field Aligned system. First, second and third
panels: the three normalized components of δB/B0. Panels four to six: the three components of the
normalized current δJ/J0. Seventh panel: raw electric field Ey,isr2. Panels eight to ten: the three
components of the electric field E (EFW). Electric field data are averaged over 111ms time resolution.
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Figure 3.13: Case 1: field projection in the MVA system relative to C2. Panels one to three: normalized
maximum, intermediate and minimum variance components of δB/B0 (FGM). Third panel: normalized
perturbation in the current: the continuous, dashed and dotted lines correspond to the current projected
along the maximum, intermediate and minimum variance directions, respectively; fifth panel: ion velocity
along the normal Vi,n (CIS-CODIF), diamonds, and the E×B (EFW and FGM) drift for C2 and C4,
solid lines, along the normal direction. Panels six to nine: the raw electric field Ey,isr2 in the ISR2
coordinates and three dimensional inferred electric field E (EFW) for C2 and C4. Last panel: elevation
angle. The dashed line corresponds to the value θelev = 10◦. Electric field data are averaged over 111ms
time resolution.
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Figure 3.14: Case 1: snapshots of the ion distribution function (source: http://clweb.cesr.fr/cl/clweb).
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Figure 3.15: Case 1: magnetic field and electron pitch angle distributions. First to third panels: Bx,
By and Bz components of the magnetic field (FGM). Fourth panel: magnitude |B| of the magnetic field
(FGM). Fifth panel: bz component of the high frequency fluctuations (STAFF-SC). Plots from (a) to
(f): selected snapshots of the electron distribution function along and perpendicular to the magnetic field
showing its evolution when entering the structure for C2 (PEACE-HEEA 3DX data set).
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potential (EFW); third panel: the z component of the high frequency magnetic field fluctuations bz
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Figure 3.17: Case 2. Panels one to three: the three components Bx, By and Bz of the magnetic
field (FGM). Fourth panel: magnitude of the magnetic field |B| (FGM). Fifth and sixth panels: the two
components of the electric field Ey,isr2 and Ex,isr2 shown in the ISR2 system for C2 and C4, averaged
over 22ms (EFW).
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Figure 3.18: Case 1: polarization analysis for C2. First panel: waveform of the perpendicular component
bx,mfa of the magnetic fluctuations (STAFF-SC). Second panel: spectral energy density of bx,mfa. The
white line superposed corresponds to one tenth of the electron cyclotron frequency, 0.1 fce. Third panel:
propagation angle θ. Fourth panel: ellipticity Ell.. Last panel: degree of polarization P.
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Figure 3.19: Case 2: zoom of the waveform of magnetic and electric fields in MFA coordinates for C2,
bmfa and emfa (STAFF-SC and EFW). Black, red and green colors correspond to the two perpendicular
components xmfa and ymfa and to the parallel component zmfa.
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Figure 3.20: Case 2: field projection in the Magnetic Field Aligned system. First, second and third
panels: the three normalized components of δB/B0. Panels four to six: the three components of the
normalized current δJ/J0. Seventh panel: raw electric field Ey,isr2. Panels eight to ten: the three com-
ponents of the electric field E (EFW). Electric field data are averaged over 222ms time resolution. Plots
(a) and (b) represent an empirical magnetic field waveform in the parallel and perpendicular direction
suitable for the observations. Plot (c) represents the current profile correspondent to the magnetic field,
in order to facilitate comparisons with experimental signatures.
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Figure 3.21: Case 2: field projection in the MVA system relative to C4. Panels one to three: normalized
maximum, intermediate and minimum variance components of δB/B0 (FGM). Third panel: normalized
perturbation in the current: the continuous, dashed and dotted lines correspond to the current projected
along the maximum, intermediate and minimum variance directions, respectively; fifth panel: ion velocity
along the normal Vi,n (CIS-CODIF), diamonds, and the E×B (EFW and FGM) drift for C2 and C4,
solid lines, along the normal direction. Panels six to nine: the raw electric field Ey,isr2 in the ISR2
coordinates and three dimensional inferred electric field E (EFW) for C2 and C4. Last panel: elevation
angle. The dashed line corresponds to the value θelev = 10◦. Electric field data are averaged over 222ms
time resolution. Plots (a) and (b) represent an empirical magnetic field waveform along the maximum and
intermediate directions suitable for the observations. Plot (c) represents the current profile correspondent
to the magnetic field, in order to facilitate comparisons with experimental signatures.
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Figure 3.22: Case 2: time variation of the δBint/B0 component as a function of the δBmax/B0 variation
(magnetic hodogram) for C4 in the plane perpendicular to the wave vector, pointing outwards of the page.
The star represents the starting point. The perturbation is left-handed polarized in the rest frame of the
satellites.
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Figure 3.23: Case 2: snapshots of the ion distribution function (source: http://clweb.cesr.fr/cl/clweb).
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Figure 3.24: Case 2: magnetic field and electron pitch angle distributions. First to third panels: Bx,
By and Bz components of the magnetic field (FGM). Fourth panel: magnitude |B| of the magnetic field
(FGM). Fifth panel: bz component of the high frequency fluctuations (STAFF-SC). Plots from (a) to (h):
selected snapshots of the electron distribution function along and perpendicular to the magnetic field
showing its evolution when entering the structure for C2 (PEACE-HEEA 3DX data set).
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Figure 3.25: Case 3. First panel: magnitude of the magnetic field |B| (FGM); second panel: spacecraft
potential (EFW); third panel: the z component of the high frequency magnetic field fluctuations bz
measured by each spacecraft; fourth panel: the three components Vi,x, Vi,y and Vi,z of the ion velocity
in black, red and green color, respectively (CIS-CODIF).
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Figure 3.26: Case 3. Panels one to three: the three components Bx, By and Bz of the magnetic
field (FGM). Fourth panel: magnitude of the magnetic field |B| (FGM). Fifth and sixth panels: the two
components of the electric field Ey,isr2 and Ex,isr2 shown in the ISR2 system for C2 and C4, averaged
over 22ms (EFW).
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Figure 3.27: Case 3: polarization analysis for C2. First panel: waveform of the perpendicular component
bx,mfa of the magnetic fluctuations (STAFF-SC). Second panel: spectral energy density of bx,mfa. The
white line superposed corresponds to one tenth of the electron cyclotron frequency, 0.1 fce. Third panel:
propagation angle θ. Fourth panel: ellipticity Ell.. Last panel: degree of polarization P.
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Figure 3.28: Case 3: zoom of the waveform of magnetic and electric fields in MFA coordinates for C2,
bmfa and emfa (STAFF-SC and EFW). Black, red and green colors correspond to the two perpendicular
components xmfa and ymfa and to the parallel component zmfa.
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Figure 3.29: Case 3: field projection in the Magnetic Field Aligned system. First, second and third
panels: the three normalized components of δB/B0. Panels four to six: the three components of the
normalized current δJ/J0. Seventh panel: raw electric field Ey,isr2. Panels eight to ten: the three
components of the electric field E (EFW). Electric field data are averaged over 222ms time resolution.
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Figure 3.30: Case 3: field projection in the MVA system relative to C4. Panels one to three: normalized
maximum, intermediate and minimum variance components of δB/B0 (FGM). Third panel: normalized
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Figure 3.31: Case 3: snapshots of the ion distribution function (source: http://clweb.cesr.fr/cl/clweb).
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3.4 Discussion

The whistler wave emissions correlated with magnetic structures analyzed in Section 3.3.1
show the main features which denote ducted propagation. Indeed, the magnetic structures are
characterized by both a density hump and a magnetic field minimum and they are, to a good
approximation, one dimensional structures with the gradient quasi perpendicular to the average
magnetic field. In addition, the frequency of the whistlers detected inside these structures is lower
than one half the average electron cyclotron frequency, f/f0

ce < 1/2. It is known, as discussed in
Chapter 2, that low frequency whistlers, with f/f0

ce < 1/2, can be trapped by stationary density
humps. In Chapter 4 I will show that the presence of an inhomogeneous equilibrium where the
magnetic field minimum is correlated with a plasma density hump, both having the gradient
perpendicular to the magnetic field, enhances the trapping of whistlers with respect to a simple
density duct.
The observed structures are clearly not purely perpendicular to the average magnetic field but
rather show a far richer pattern, with a non vanishing parallel current and a shear component
in addition to the compressive one. Moreover, thanks to time and multi-point measurements
it has been possible to estimate the propagation velocity of the structures, which turned out
to be about |V | ≈ 100 − 200 km/s with respect to the bulk plasma flow. However, since the
estimated propagation velocity is much less than the whistler phase velocity vph ≈ 104 km/s and
the gradient is almost perpendicular, it is reasonable that the structures, seen by whistlers as
local inhomogeneities, may channel whistlers as well.

The observed magnetic structures are modeled as nonlinear, low frequency perturbations of
the slow type, propagating quasi perpendicularly to the average magnetic field, at the ion spatial
scales ` ∼ k−1

⊥ ∼ ρi, di. The nonlinear waves, thanks to their compressive component, are able to
trap and transport whistlers perpendicularly to the background magnetic field. The term “slow”
is used to indicate the nature of the ion-scale perturbation, which has a magnetic field minimum
in opposition of phase with the density inhomogeneity. In the framework of this interpretation,
the low frequency perturbations can be classified as nonlinear kinetic Alfvén waves, because of
the length scales at play, ` ∼ ρi, di, and the type of polarization, δB⊥ & δB‖. It is known indeed
that at least during the linear regime, the shear kinetic Alfvén wave couples with the slow mode
if the plasma beta is of order unity so that a compressive component arises [71]. The efficiency
of the perpendicular whistler energy transport by slow nonlinear waves will be investigated in
detail in Chapter 4. As a first step, I address this problem within the two-fluid approximation,
where the slow mode soliton discussed in Chapter 2 is used as theoretical model for the nonlinear
waves. Such solutions, despite having the compressive components stronger than the shear one,
reflect the salient features of the observed perturbations: they are 1D and quasi perpendicular,
with density and magnetic field strength modulation in opposition of phase. A typical waveform
of a slow magnetosonic soliton propagating at an angle Θ = 80◦ is shown in Fig. 3.33.

The proposed model goes quite well in data interpretation. However, there are two aspects
that is worth discussing and that a simple 1D fluid model cannot take into account, namely, the
possible effects of the background magnetic field inhomogeneity and the whistler wave energy
source.

The analysis carried out in Section 3.3.1, and in particular the MVA analysis, showed that the
low frequency perturbations have a dominant gradient, which is well defined in Case 1–2 and
slightly less well defined in Case 3. The same MVA analysis carried out over the total magnetic
field yielded similar results. This means that the magnetic structure variations are well decou-
pled from the variations of the background.
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Figure 3.33: Typical profile of a slow
mode soliton which propagates at an angle
Θ = 80◦ with the average magnetic field
(here B0 = 1).

Nevertheless, the structures are embedded in the plasma
sheet, southward of the magnetic equator and in corre-
spondence to closed field lines, since Bx ≈ −20nT and
Bz ≈ 10nT . As a consequence, it is reasonable that
the background inhomogeneity and magnetic field line
curvature play a role in shaping the magnetic structures
at scales larger than the inter-satellite distance. Infor-
mations about the large scale magnetic field configura-
tion of the plasma sheet are completely lost, so that we
can only speculate about the possible connection of our
structures to the global magnetic environment. The fact
that the structures could be converging along the field
line direction, like in a bottle-like configuration, is sug-
gested by Case 3, where at the exit of the structure a
magnetic compression is detected. This signature would
be detected if the s/c crossed the structure obliquely,
thus explaining both the larger spatial scale detected

(the s/c stay longer in the central part of the structure) and the less marked minimum vari-
ance. In addition, further investigation should be necessary in order to inspect the effects of
the background inhomogeneity on the propagation and the temporal evolution of such magnetic
structures.

The fact that all satellites detect the trapped whistlers while the confining structure propagates
suggests that the source is either correlated with the structure itself or at least is active for a
time long with respect to the structure transit time. With regard to this, electron pitch angle
distribution functions show that the proper conditions for the onset of the whistler anisotropy
instability set inside the structures. Indeed, at energies E & 10 keV , which are of the order of
the electron resonant energy for the whistler frequency range considered, Cluster records more
particles in the perpendicular direction than in the field-aligned directions. This anisotropy
may be due to the fact that if magnetic field lines are denser and converging at the exit of the
structure, then trapping of electrons which are less energetic in the field aligned direction (i.e.
with large pitch angles) is possible, leading to the observed T⊥,e > T‖,e anisotropy.

Role of whistler trapping during substorms and further comments. The interpreta-
tion proposed above is related to the important topic of whistler energy transport and electron
precipitations during substorms.

The ion-scale structures prevent whistler energy to spread by spatially confining waves. In this
way, strong electron pitch angle scattering is favored, as the diffusion coefficient in phase space
scales with the whistler amplitude. Remark that our structures are located in correspondence
to closed field lines (Bz > 0), connected to the ionosphere. In this region, electrons bounce back
and forth from one hemisphere to the other with a bouncing period of few seconds. If the first
adiabatic invariant µ = v2 sin2 α/B is conserved, then electrons traveling towards the Earth will
experience a repulsive force due to the converging magnetic field lines towards the ionosphere.
The mirror point where particle reflection takes place is located nearer to Earth for smaller pitch
angles at the equator. The critical pitch angle α0 such that for α < α0 the mirror point is
located into the ionosphere determines the width of the loss cone. The first adiabatic invariance
is violated by whistler wave-electron scattering. As a consequence, if whistler waves scatter
particles efficiently into the loss cone, they enhance electron precipitations in the ionosphere,
where electron energy is dissipated through collisions with the neutral atoms. The diffusion
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coefficient D resulting from wave-particle scattering can be estimated by following the theory
developed by C. F. Kennel and H. E. Petschek, JGR (1966) [12],

D = (e2/m2
e)

ω/ωce
1 + 2ω/ωce

b2ω, (3.2)

where bω is the spectral energy density. As explained in [12], the diffusion strength in the
loss cone is parametrized by z2

0 = α2
0/(DTE), where α0 ≈ 1◦ is the halfwidth of the loss cone

calculated at the equator and TE ≈ 2.4 s is approximately one quarter of the electron bounce
period between the two hemispheres. The diffusion is strong or weak for small or large values of
z0, respectively. With typical values ω/ωce = 0.1 and b2ω = 10−3 nT 2/Hz the diffusion coefficient
and the parameter z0 turn out to be D ≈ 2.5Rad2/Hz and z0 ≈ 5×10−5 � 1, respectively. The
estimated values correspond to the regime of strong diffusion into the loss cone. Here I assumed
that scattering occurs at the equator. In principle whistlers interact with electrons when the
latter enter the magnetic structure, so that the diffusion strength could be underestimated.
Nevertheless, remark that the longitudinal extension of our structure must be greater than the
estimated transverse length scale ` ∼ 700 km and it is reasonable that the perturbed flux tube
extends close to the equatorial region. In principle the azimuthal (along Ygse) or poleward (along
Zgse) motion in the plasma sheet of the ion-scale structures should be detected in the auroral
region.

Finally it is worth noting that the formation of flat-top electron PADs in the field aligned
direction is correlated with the detection of the structures, at least for Cases 2–3. Further in-
vestigation should be carried out in order to study possible kinetic effects and wave-particle
interaction between alfvénic type perturbations and electrons. In particular, it has been sug-
gested that kinetic Alfvén waves may accelerate electrons thanks to its parallel component of
the electric field [72] (and references therein) so that the observed structures may contribute to
particle acceleration during the substorm expansion.

Comparisons with other models usually invoked for current structures. In the lit-
erature, observations of magnetic and current density structures in the central plasma sheet or
in the plasma sheet boundary layer are usually related to central current sheet (CCS hereafter)
flapping motions or to the crossing of the separatrices which form at X points in reconnection
sites. Since the work presented in this Thesis approaches the same problem from a different
point of view, it is worth comparing it with the standard models mentioned above. Of course, a
more detailed analysis should be carried out for a finer comparison which is beyond the scope of
the present Thesis. Nevertheless, few arguments suggest that an interpretation of the magnetic
structures described above in terms of flapping motions or crossings of the separatrices is not
straightforward and that it yields to inconsistent results with the known theories.

CCS flapping motions – The detection of sign reversals or small values of the Bx component
of the magnetic field are usually the main signatures of a CCS crossing due to flapping motions.
Another typical signature of CCS crossings is the detection of both a magnetic field minimum and
a density hump, as well as a maximum positive value of the dawn-to-dusk current density Jy in
correspondence to the minimum of the magnetic field. These signatures are observed for instance
by Henderson et al., GRL (2006) and Nakamura et al., JGR (2008) for the same substorm event
analyzed in this Thesis, but also for instance by Sergeev et al., GRL (2003) [73]. The magnetic
structures described in Section 3.3.1 are observed when the x component of the magnetic field
is Bx < 0 with the smallest value given by Bx / −10nT . As a consequence, if the perturbation
is due to a flapping motion, then the latter must be a partial excursion towards the magnetic
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equator and the flapping amplitude should be quite smaller with respect to those reported by
the papers mentioned above.

Both Henderson et al. (2006) and Nakamura et al. (2008) obtain a normal n of the CCS
mainly directed along the Zgsm direction, as expected for a standard, not tilted, Harris current
sheet. Sergeev et al. (2003), instead, find a normal of the CCS tilted in the (Y, Z)gsm plane
which changes direction during the CCS crossings, in agreement with the propagation in the
Ygsm direction of a kink mode, as shown schematically in Fig. 3.34.

In the following, I will show that a possible interpretation of the magnetic structures studied
in this Thesis in terms of flapping motions, due to a propagating kink mode or to oscillations
towards and away from the CCS along the normal direction, would yield inconsistent results with
those obtained from the MVA and the timing technique analysis. The GSM coordinate system is
best suited for describing the CCS. Nevertheless, since the GSE and GSM coordinates are only
slightly different and relevant results are not influenced by the small rotation between the two
systems around the X axis, I will refer to field and normal components of the structures in GSE
coordinates.

Let me consider the same framework interpretation as the one proposed by Sergeev et al. (2003),
assuming that the structures correspond to the propagation of a kink mode with λy ∼ ρi and
neglecting for simplicity the Xgse component of the normal. In this case, satellites should
cross the lower part of the perturbation, as shown by the blue line in Fig. 3.34, since the
excursion in the central current sheet is only partial. As a consequence, the normal direc-
tion should change in time during the crossing of the structure from n1 to n2 (see Fig. 3.34).

Figure 3.34: Representation of the kink
mode of the central current sheet in
the (Y,Z)gsm plane (adapted from W.
Baumjohann et al., Ann. Geo., (2007)).

Now, the normal of the magnetic structures has been
calculated by means of the MVA over C2 and C4 in the
two time intervals corresponding to the decrease and to
the ensuing increase of the magnetic field, respectively.
For Case 2 and Case 3 no significant change of the nor-
mal direction has been found. This means that if the
structures are a CCS crossing, then the latter is simply
tilted through a rigid rotation, as shown in Fig. 3.35,
right panel, for the projection in the (X,Z)gsm plane.
As a consequence, a possible crossing of the CCS should
be caused by a movement of the latter towards and away
from the satellites along the normal direction. This type
of CCS crossing is analogous to those reported by Hen-
derson et al. (2006) and Nakamura et al. (2008), for the
same substorm event as the present one. Concerning
Case 1, it has not be possible to determine a well defined
normal direction within the subintervals corresponding
to the decrease and the increase of the magnetic field

magnitude. This could be due to the fact that the statistical error is too large, as the subinter-
vals considered are four time smaller than the total time interval used to determine the normal
direction of the structure.

Further arguments discussed below suggest that magnetic and current density signatures are
not consistent with crossings of the CCS dues to oscillations of the CCS towards and away from
the spacecraft.

A fundamental point is that an oscillating motion towards and away from the neutral line,
possibly tilted, would be associated to a change, or a mixture, in the order of the satellites
that cross the same structure twice. The inversion of the order of satellites can be observed
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Figure 3.35: Sketch for Case 2 in the interpretation framework of a central current sheet flapping
motion. Left panel: not tilted current sheet; right panel: tilting of the current sheet in the (X,Z) plane.

in Henderson et al. (2006) and less marked in Nakamura et al. (2008). On the contrary, the
symmetric signature of the magnetic field magnitude of the structure reported in this study does
not correspond to an inversion of the spacecraft order, suggesting that rather than an oscillating
motion towards and away from the central current sheet it is a propagating mode.

Case 1 has the normal directed mainly along Zgse direction, similarly to the CCS crossings
reported for this same substorm event by Henderson et al. and Nakamura et al. (see Table 3.7).
However, a remarkable difference from Case 1 and the usual signatures expected for CCS crossings
is that the current density Jy has maximum negative component in correspondence with the
magnetic minimum, see Fig. 3.10. In addition, the structure is moving in the positive direction
while an oscillation of the CCS in the opposite direction is necessary to detect the density increase
and magnetic field strength decrease, since the s/c are southward the magnetic equator.

Case 2 and Case 3 have the normal components in all directions as if the CCS was tilted. The
tilt of the CCS normal n is mainly in the (X,Y )gse and (Z, Y )gse plane, for the former and the
latter case, respectively (see Table 3.7). For the sake of clarity, in Fig. 3.35 I report a sketch of
the tilting of the CCS in the interpretation framework of an oscillating motion along the normal
for Case 2. Even if the CCS was tilted, the current profile of the central current sheet should
have the dominant component along Jz because the normal n is tilted mainly along the Y axis.
Therefore a symmetric profile of Jz with maximum value in correspondence to the magnetic
field minimum is expected to be observed. On the contrary, the Jz component shows a rather
antisymmetric profile with respect to the minimum of the magnetic field.

Separatrix crossings – The classical scheme of the X point which forms at reconnection sites
is shown in Fig. 3.36. In particular, since the structures have Bx < 0 and Bz > 0, the magnetic
structures described in this Thesis should be located southward of the magnetic equator, in the
Earthward side of the X point (on the left – bottom corner of the X point), in this interpretation
framework. In the vicinity of separatrices, in correspondence to the Hall current, spacecraft
typically detect low energy particles (E . 4 keV ) flowing towards the X point, and high energy
(E . 20 keV ) particles flowing outwards of the X point, as discussed for instance by Nagai et al.,
JGR (2001) [68]. The magnetic structures reported in this Thesis are observed in correspondence
to fast ion flows, suggesting that the magnetic structures themselves should be embedded inside
the outflow region. Nevertheless, the measurement resolution of ion properties can not take
into account rapid spacecraft crossings of the separatrix possibly associated to the magnetic
structures. For this reason, I will consider electron dynamics through pitch angle distribution
functions, which have the proper time resolution.

The pitch angle distributions of electrons show signatures usually related to reconnection,
namely flat-top electron pitch angle distribution functions. On the other hand, the latter do not
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Figure 3.36: Schematic representation of the X point at reconnection site. The Hall current is repre-
sented with dotted lines encircling the separatrices. The outflow region is indicated by the big arrows
pointing Earthward and tailward. Ve is the electron velocity (from Asano et al., JGR (2004) [74]).

show, in none of the case-study described, low and high energy electrons flowing inwards and
outwards of the X point, respectively. In the case-study described in this work, where magnetic
structures should be located Earthward and southward of the magnetic equator, particles directed
towards the X point are in the parallel direction with respect to the magnetic field since Bx < 0,
while those flowing outwards of the X point are in the antiparallel direction.

It should be noted however that the August 17, 2003 substorm event is characterized by a
strong By component of the magnetic field out of the CCS plane, By ∼ Bx. As a consequence, the
regime of reconnection with strong guide would be more appropriate here. This could explain the
discrepancy between the observed pitch angle distribution functions and the expected signatures
for the Hall current. However, the signatures reported by the observations described in this Thesis
are not in agreement with those expected in the vicinity of the separatrices, even in the strong
guide field regime. In Case 2 and Case 3 spacecraft record more particles in the parallel direction,
thus towards a possible X point, than in the antiparallel direction at energies E > 2 keV , which
corresponds to velocities v ≈ 0.3va,e, va,e, being the electron Alfvén velocity. This feature could
be in agreement with simulation results reported by Pritchett and Coroniti, JGR (2004) [75]. The
latter show by means of numerical PIC simulations that, in the presence of a guide field By ∼ Bx,
parallel electron beams with velocities of the order of a few va,e flow inwards the X point along
the separatrices, in the region southward of the magnetic equator. However, contrary to Case 2
and Case 3, simulations show also that the separatrices with inwards electrons are associated
with electron density depletions rather than to density humps. In addition, in order to fit with
data described in this Thesis, a tilting of the reconnection X point should be assumed for Case 2
and Case 3, which, at present, has never been considered nor observed in reconnection models.

The arguments listed above reasonably show that an interpretation of the magnetic structures
described in this Thesis in terms of separatrix crossings is at least not straightforward.
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Chapter 4

Theoretical model for whistler ducted
propagation by ion-scale slow solitary
waves

The analysis carried out in Chapter 3 showed that the low frequency structures can be modeled
as non linear coherent waves, solitary waves or solitons, propagating at sub-sonic speed in a
direction quasi perpendicular to the magnetic field. As will be shown in Section 4.2 and 4.3, the
correlation between the density hump and the magnetic field depletion is crucial in order to have
ducted propagation of whistler waves. The mechanism of whistler confinement and transport
relies indeed on the shape of the inhomogeneity, which must have a magnetic field minimum
associated to a density hump quasi perpendicular to the background magnetic field, and on the
slow propagation velocity of the inhomogeneity with respect to the whistler phase velocity. In
this way the soliton can be considered as a local channel for whistlers but “slowly” propagating.
Even if a fully non-linear kinetic treatment should be necessary, as a first step I investigated
the trapping and transport of whistler waves, in the regime of frequencies ω/ωince < 1/2, by
an ion-scale soliton using a two-fluid model. In particular, I modeled the soliton with a quasi
perpendicular magnetosonic slow soliton, which has the required a magnetic field depletion and
density hump (see Chapter 2, §2.2). As will be discussed, these are the good properties to trap
whistlers.

This chapter is organized as follows: Section 4.1 is dedicated to the description of the model
equations used to study the whistler trapping by slow solitons and the numerical code used in the
simulations; in Section 4.2 I extend earlier works on whistler trapping to more general equilib-
rium configurations including both a density and a magnetic field inhomogeneity, with gradients
perpendicular to direction of the magnetic field itself. The aim is to mimic in a simplified manner
the configuration of interest to the theoretical model of observations, i.e. the carrier slow mode
soliton, which will be investigated numerically in Section. 4.3. The analytical treatment high-
lights the basic mechanism of the whistler wave trapping and provides a quantitative estimate
of the parameters to be used in the simulations, such as the value of the frequency and the angle
of propagation for trapped whistlers; in Section 4.3 I describe the study of whistler trapping by
slow solitons by means of numerical simulations.

The work presented in this Chapter has been published in the paper by A. Tenerani et al.,
Phys. of Plasmas (2012) [76].
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4.1 Model equations

The two-fluid system of equations is an appropriate model to describe simultaneously electron
and ion dynamics in the framework of a fluid description. The equations for both ions and elec-
trons are obtained by taking the zeroth and the first order moment, with respect to the velocity,
of the particle distribution function in the Vlasov equation. The system of fluid equations for
the two species is then closed by assuming a polytropic pressure for particles and with the set
of Maxwell’s equations. By assuming quasi neutrality and neglecting the displacement current,
since ω � ωpe, the system of equations for ions and electrons, labelled with i and e, respectively,
is given by

∂n

∂t
+ ∇ · (nui,e) = 0, (4.1a)

mi,e

[
∂ui,e
∂t

+ (ui,e · ∇)ui,e

]
= −∇Pi,e

n
± e

(
E +

ui,e ×B

c

)
, (4.1b)

∂

∂t
(Pi,en

−Γ) + ui,e ·∇(Pi,en
−Γ) = 0, (4.1c)

∇×B =
c

4π
J,

∂B

∂t
= −c∇×E, J = en(ui − ue). (4.1d)

In the above equations Pi,e is the pressure of ions and electrons, Γ is the adiabatic index, n and
mi,e the plasma density and the ion and electron mass, respectively, ui,e the velocity of ions and
electrons and E and B the electric and magnetic field, respectively.

4.1.1 Numerical model

The numerical code employed in this study is a 2.5D code that integrates the system of two
fluid equations, where a polytropic closure for electron and ion pressure is imposed. Equations
are written in ion normalized units, by using the following characteristic quantities:

n̄, ū = va, ω̄ = ωci, l̄ =
c

ωpi
= di, d

2
e =

me

mi

P̄e,i = n̄miV
2
a , Ē = miva

ωci
e
, B̄ = mic

ωci
e
, j̄ = n̄eva.

The system of equations in normalized form is given by

∂n

∂t
+ ∇ · (nU) = 0 (4.2a)

∂Se,i
∂t

+ ∇ · (Se,iue,i) = 0, Se,i = Pe,in
1−Γ (4.2b)

∂(nU)

∂t
= −∇ ·

[
n(uiui + d2

eueue) + (Pe + Pi +B2/2−BB)
]
. (4.2c)

(1− d2
e∇2)E = −ue ×B− (1/n)∇Pe−

d2
e{ui ×B− (1/n)∇Pi + (1/n)∇ · [n(uiui − ueue)]},

(4.2d)

ue = U− j

n
, ui = U + d2

e

j

n
, U = ui + d2

eue, (4.2e)

∇×E = −∂B
∂t
, j = ∇×B + ẑjextz , (4.2f)
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where jextz ẑ is an external forcing current used to inject whistlers. The equations above are
obtained by combining the ion and electron fluid equations given by the set of equations (4.1).
In particular, the generalized Ohm’s law, given by equation (4.2d), is obtained by subtracting
the electron momentum equation from the ion momentum equation and constant density n ∼ 1
is assumed in the electron inertia term on the left hand side [77]. Details on the integration
scheme are given in Appendix B. In Appendix A I report the study of the linear modes of the
system (4.2). In particular an analytical form for the whistler dispersion relation obtained from
equations (4.2) is given in the cold plasma approximation, in order to test the validity of the
numerical code to describe whistler propagation.

4.2 Analytical study of whistler wave trapping by magnetic and
plasma density inhomogeneities

Consider a plasma equilibrium characterized by a density hump and a magnetic field minimum,
that hereafter will be referred to as magnetic hole, as distinguished from the density duct that will
be referred to configurations with only density gradients. Assuming for the sake of illustration
a 2D geometry and that the gradient scale lengths of the inhomogeneity along the magnetic
field lines are large compared to the whistler wave length, the plasma can be represented in slab
geometry, with density and magnetic field gradients perpendicular to the magnetic field itself.
Let me consider a bump-like density profile in the x direction, perpendicular to the background
magnetic field directed along the y direction, and a magnetic field B0(x) = B0(x)ŷ with a
minimum in correspondence to the hump. A sketch of the geometry is illustrated in Fig. 4.1: the
wave propagates in the (x, y) plane and it is localized inside the magnetic hole.

Figure 4.1: Schematic representation of the trapping of whistler waves: the wave propagates in the
plane (x, y) containing the magnetic field and the inhomogeneity direction and is localized inside the
density hump. In the case of a warm plasma, a magnetic field depression of the form By(x) is associated
to the density enhancement

In order to study analytically the whistler trapping in a configuration similar to the one
represented in Fig. 4.1, I extended the method reported in Karpman and Kaufman, Sov. Phys.
JETP (1981) [37] for whistler trapping by only plasma density inhomogeneities to the more
general case where both density and magnetic field are inhomogeneous. Calculations are only
briefly summarized here, for more details see Appendix C.

For simplicity, let me consider the cold plasma limit, vth,e � vph, where vth,e and vph are the
electron thermal velocity and the whistler phase velocity, respectively. Even if this condition
is not always satisfied in space plasmas, this simplification is convenient because the cold di-
electric tensor ε includes the basic effects of trapping thanks to its dependence on the density
and the magnetic field strength, through the plasma frequency ωpe and the electron cyclotron
frequency ωce, respectively. As shown in Reference [37], the set of the two-fluid equations (4.1)
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for a magnetized plasma can be arranged so as to obtain the following system of equations for the
electric and magnetic fields, where a time dependence of the form exp(−iωt) has been assumed:

∇(∇ ·E)−∇2E =
ω2

c2
(ε ·E) (4.3a)

∇ · (ε ·E) = 0 (4.3b)

B = −i c
ω
∇×E. (4.3c)

Looking for spatial solutions of the form A(x) exp(ik‖y), where k‖ ≡ ky is the parallel wave
vector, equation (4.3a) can be reduced to two coupled differential equations of second order
for the electric field components Ex and Ez, while the third component Ey is obtained from
equation (4.3b). By rescaling the variable w = x/L, where L is the typical length of the large
scale inhomogeneity such that (c/ω)/L � 1, the two coupled equations for Ex and Ez can be
solved by means of the WKB approximation [37]. We impose solutions of the form

A(w) = B(w) exp

(
iLω/c

∫ w

q(w′)dw′
)

and retain only the terms to lowest order in (c/ω)/L. The perpendicular wave vector k⊥ ≡
(ω/c)q = kx, for a given parallel wave vector k‖ and frequency ω, must satisfy the whistler
dispersion relation of a homogeneous plasma (in ion normalized units, see also Section 4.1.1)
obtained in the limit ωci < ω < ωce � ωpe:

k2
⊥,±(x) =

1

2d2
e (ω/ωce(x))2×k2

‖d
2
e

[
1− 2

(
ω

ωce(x)

)2
]
− 2n(x)

(
ω

ωce(x)

)2

± dek‖

√
d2
ek

2
‖ − 4n(x)

(
ω

ωce(x)

)2
 . (4.4)

Equation (4.4) corresponds to the whistler dispersion relation in a homogeneous plasma

ω = ωce
d2
e

n

k k‖

1 + k2d2
e/n

, (4.5)

solved for the square of the perpendicular wave vector k2
⊥, where k

2
⊥+ k2

‖ = k2. Note that, using
ion normalized units, d2

e = (me/mi) and ωce = Bmi/me.
The whistler dispersion relation as expressed by equation (4.4) for the complex variable k⊥

shows that, for fixed k‖ and ω, there are two “branches” of the perpendicular wave vector corre-
sponding to the plus and minus sign, respectively (the “upper”and the “lower” branch), as already
discussed in Chapter 2, §2.1. For a solution given by a real k⊥, we get a propagating whistler
wave while for an imaginary k⊥, we get a purely evanescent (non propagating) whistler wave.
The transition within a given branch from real to imaginary values is at the basis of the wave
trapping, and is determined by the local values of the density n and of the parameter ω/ωce.

The general WKB solution is given by a linear combination of the four wave solutions cor-
responding to the four possible wave vectors ±k⊥,±. Near the critical points, where k2

⊥,± = 0

or k2
⊥,− = k2

⊥,+, the WKB approximation ceases to be valid. An analytical continuation of the
solution in the complex x plane around these points is therefore necessary in order to extend the
solution to all its domain of validity. The complex x plane is divided into different portions by
the so called Stokes and anti-Stokes lines which radiate out from the critical points [78]. When



4.2. Analytical study of whistler wave trapping by . . . 75

a Stokes line radiating from a turning point of a given branch is crossed, the two solutions of the
given branch, say, the ones corresponding +k⊥,− and to −k⊥,−, are coupled, corresponding to the
reflection of a given wave when approaching a turning point. In an similar way, when a Stokes
line radiating from a conversion point is crossed, the coupling between the two branches, for
example +k⊥,+ and +k⊥,−, occurs. The coupling between the two branches leads, for instance,
to the leakage of a propagating wave, again approaching a turning point. Because of the coupling
with the other branch at the conversion point, a fraction of the wave energy continues to prop-
agate past the turning point [37]. The coefficients of reflection or conversion are exponentially
small if the critical points are far from the real axis.

In the present analysis I will consider only the trapping of a given branch due to the presence
of turning points on the real axis, where k2

⊥,± = 0. The conversion between different branches
will be neglected, assuming that the term under the squared root of equation (4.4) does not
vanish on the real axis. Moreover, it is required that k2

⊥,± is real, positive or negative in order
to have propagating or evanescent waves. These conditions are fulfilled as long as

k2
‖ >

4n(x)

d2
e

(
ω

ωce(x)

)2

(4.6)

everywhere in the real axis.
From equations (4.4)–(4.6) it follows that the upper branch cannot be trapped in a magnetic

hole (neither in a density duct). Indeed, k2
⊥,+ is everywhere positive for frequencies ω/ωce < 1/2,

and thus the wave propagates in all regions. If ω/ωce > 1/2 then k2
⊥,+ is positive when k2

‖d
2
e >

n/[ωce/ω − 1]. If this condition is satisfied inside the magnetic hole, it is satisfied outside the
magnetic hole as well, since n(x) has lower values outside than inside the magnetic hole, and
vice versa for the function ωce(x). Then also in this range of frequencies the wave propagates in
all regions. We can therefore focus only on the lower branch k⊥,−.

With the same reasoning as above, it can be seen that the lower branch can be trapped in a
magnetic hole (or in a density duct) only for frequencies ω/ωce < 1/2. Indeed, for frequencies
ω/ωce > 1/2 the perpendicular wave vector corresponding to the lower branch is imaginary
everywhere while for ω/ωce < 1/2, the perpendicular wave vector is real when

k2
‖ <

n/d2
e

ωce/ω − 1
, (4.7)

while it is imaginary when

k2
‖ >

n/d2
e

ωce/ω − 1
. (4.8)

To summarize, for frequencies ω/ωce < 1/2, trapping is possible in a magnetic hole (and in a
density duct) if the parallel wave vector satisfies equation (4.6) everywhere (which means that
k⊥ is either imaginary or real), and safisfies equation (4.7) inside the magnetic hole, giving a
propagating wave, and equation (4.8) outside the magnetic hole, giving an evanescent wave.
Since we are interested in whistler modes trapped into the magnetic hole, from now on let me
consider only the lower branch in the frequency range ω/ωce < 1/2 and drop the subscript “−”.
For the sake of clarity, I define nin and nout the density calculated at the center of the magnetic
hole (thus in correspondence to the minimum of the magnetic field and to the density maximum)
and outside the magnetic hole (where the medium is homogeneous), respectively. By analogy,
the frequencies ωince and ωoutce , are defined as the electron cyclotron frequency calculated at the
center and outside the magnetic hole, respectively. In this way, the trapping condition for the
lower branch in a magnetic hole can be written as follows:

kinf < k‖ < ksup, (4.9)
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where

kinf (ω) = max


[

4nin
d2
e

(
ω

ωince

)2
]1/2

,

[
nout
d2
e

1

ωoutce /ω − 1

]1/2
 (4.10)

and

ksup(ω) =

√
nin
d2
e

1

ωince/ω − 1
. (4.11)

Fig. 4.2 shows a graphical representation of the portions in the parameter space (ω/ωince , k‖)
corresponding to real values of k⊥, calculated at the center (solid lines) and outside (dashed
lines) the channel provided by the magnetic hole or the density duct. Red and black lines
correspond to the right-hand-side of equation (4.6) and equation (4.7), respectively. The left
panel corresponds to a plasma equilibrium with a magnetic hole (∆B/B = |Bin −Bout|/Bout =
0.3 and ∆n/n = |nin − nout|/nout = 0.37) and the right panel to a density duct with the same
density inhomogeneity than the magnetic hole (∆B/B = 0 and ∆n/n = 0.37). Referring to
Fig. 4.2, left panel, the points (ω/ωince , k‖) lying in the portion a+b and b+c correspond to a
propagating wave in the region inside and outside the channel, respectively. The intersection
b of these two regions corresponds to the untrapped modes, as they propagate both inside and
outside the channel. The trapped modes are those corresponding to the portion a, where k⊥ is
real inside and imaginary outside the channel. The maximum angle θmax(ω) of trapped modes
for a given frequency is determined by kinf , and by the corresponding k⊥(ω, kinf ):

θmax(ω) = arctan

[
k⊥(ω, kinf )

kinf

]
. (4.12)

A comparison between the magnetic hole, left panel in Fig. 4.2, and the density duct, right
panel in Fig. 4.2, shows that the presence of magnetic variations (magnetic hole) leads to less
strict trapping conditions. Indeed, for an equal density variation, the portion of trapped modes
in a channel provided by both density and magnetic inhomogeneities is larger than in a channel
formed only by a density inhomogeneity. In addition, the maximum angle of trapping (not shown
here) results to be higher.

4.3 Numerical study of whistler trapping by slow magnetosonic
solitons

Slow solitary waves, as will be explained in the following, can trap whistler waves similarly
to magnetic holes. The properties of these nonlinear waves have already been discussed in
Chapter 2, §2.2, and I only recall here that they are (highly) oblique waves which propagate
at a speed less than the sound speed, carrying a perturbation characterized by a density hump
and a magnetic field depression. In addition, since solitary waves propagate almost unchanged,
they provide an efficient channel that not only confines but also transports whistler energy at
the typical soliton propagation speed.

It has been shown analytically in the previous section the whistler wave can be trapped by a
magnetic hole with gradients perpendicular to the magnetic field itself. The trapping mechanism
has been highlighted and the conditions for trapped waves given. The same kind of analysis with
an inhomogeneity provided by a slow magnetosonic soliton is hardly attainable and a numerical
study is necessary. Nonetheless, the simplified model given by a stationary inhomogeneity rep-
resents a good approximation of the oblique slow soliton, and the conditions found analytically
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Figure 4.2: Plot of the curves which bound the region in the parameter space (ω/ωin
ce , k‖) corresponding

to real values of k⊥,−. Solid and dashed lines are calculated in correspondence to the region inside and
outside the channel, respectively. Red (straight) and black (curved) lines correspond to the right-hand-
side of equation (4.6) and equation (4.7), respectively. The portion a+b and b+c correspond to real
values of k⊥ inside and outside the inhomogeneous region, respectively. The portion a corresponds to the
trapped modes. Left panel: plasma equilibrium with a magnetic hole; right panel: plasma equilibrium
with a density hump on a uniform magnetic field.

can be used as a reference model. This enables parameters of the simulations, such as the angle
and frequency of trapped whistlers, to be properly chosen.

The numerical code and model equations have been already treated in Section 4.1.1. In the
following, I will explain the initial conditions implemented in the code (Section 4.3.1) and the
numerical results (Section 4.3.3).

4.3.1 Initial conditions

As initial condition, I consider a slow mode solitary wave centered in the simulation domain
and superposed to a homogeneous magnetized plasma at rest. Oblique whistlers, as explained
in the following, are injected artificially in the simulation box, during the initial phase, in corre-
spondence to the soliton. In order to do this I make use of an oscillating forcing current lasting
over a characteristic time τ . Fig. 4.3 represents a schematic view of the system. The dashed lines
indicate the region filled by the soliton moving in the positive x direction with velocity V ; Bin

tot

is the total magnetic field at the center of the soliton, forming an angle ϕ with the y axis, and
k is the whistler wave vector. In particular, when whistlers are generated inside the soliton, the
subscripts “⊥”and “‖” of the wave vector refer to the total magnetic field Bin

tot at the center of
the soliton. Outside the soliton the total magnetic field reduces to the equilibrium magnetic field
B0 forming an angle ϕ0 with the y axis. For the sake of clarity, a subscript “tot” is used to indi-
cate the quantities resulting from the sum of the homogeneous background equilibrium plus the
soliton perturbations. These large scale variation fields can be considered as the “inhomogeneous
equilibrium” supporting the whistler waves.

The analytical form of the fields representing the soliton superposed to the homogeneous
equilibrium at the initial time are given in Appendix D.

4.3.1.1 Test of the slow soliton stability

To our knowledge, the numerical stability of the approximate solutions discussed in Chap-
ter 2, §2.2, has never been investigated. Therefore, before studying the possible role of slow soli-
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Figure 4.3: Schematic view of the system. The dashed lines indicate the region filled by the soliton
moving in the positive x direction with velocity V ; Bin

tot is the total magnetic field at the center of the
soliton, forming an angle ϕ with the y axis, and k is the whistler wave vector, which forms an angle θ
with the magnetic field Bin

tot. Outside the soliton the equilibrium magnetic field B0 forms an angle ϕ0

with the y axis.

tons in acting as wave carriers for whistlers, I tested the stability of the solitary wave solutions
numerically using the two-fluid code. The stability has been studied in a wide range of parame-
ters, by varying the propagation angle of the soliton, the amplitude and the plasma temperature.
Results show that they are well stable in the range of propagation angles ϕ0 = 0.57− 0.17 and
of typical variations with respect to the equilibrium nsol ∼ 0.02− 0.8, |By, sol|/B0y ∼ 0.01− 0.5.
They propagate at the expected velocity maintaining almost unchanged their initial profile over
times t ∼ 1000. The full list of simulations that have been done for different parameters of the
soliton are reported in Appendix D.

Fig. 4.4 shows two examples of quasi perpendicular (ϕ0 = 0.17) magnetosonic solitons prop-
agating along the x axis at three different times up to t ∼ 1000. The red lines represent the
density profile ntot and the black lines the magnetic field By, tot. In the left panel I represent
a narrow, strong amplitude soliton (∆n/n ∼ 0.9) and in the right panel a wider and weaker
soliton (∆n/n ∼ 0.2). Notice that the initial soliton profile slightly modify during the temporal
evolution, especially for strong amplitude solitons, since the analytical profile is not an exact
solution of the two-fluid system.

4.3.1.2 Mechanism of whistler wave injection

I injected small amplitude oblique whistlers with frequency ω0 and propagating at an angle θ
with respect to the total magnetic field direction with an external forcing current acting as an
antenna. The external forcing is spatially confined inside the soliton and is applied during a
characteristic time scale τ by means of an out-of plane current, Jextz , given by

Jextz (x, y, t) = Ae−(y′/`Jy )
2

e−(x′/`Jx)
2

e−t/τ cos (ω0 t) (4.13)

where A ≈ 10−3 is the amplitude of the forcing current and x′ and y′ are the rotated coordinates

x′ = x cos (θ + ϕ)− y sin (θ + ϕ)

y′ = x sin (θ + ϕ) + y cos (θ + ϕ).
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Figure 4.4: Examples of slow magnetosonic solitons at three different times: the black lines (depletions)
represent the magnetic field By, tot and the red lines (humps) the density ntot. In the left panel I
represent a narrow, strong amplitude soliton (∆n/n ∼ 0.9) and in the right panel a wider and weaker
soliton (∆n/n ∼ 0.2). Notice that the initial soliton profile slightly modify during the temporal evolution,
especially for strong amplitude solitons, since the analytical profile implemented as initial condition is
not an exact solution of the two-fluid system.

In order to generate as much as possible plane waves inside the soliton, the length scales `Jy and
`Jx satisfy `Jy � `Jx . The length scale transverse to the injection direction, `Jx , is of the order of
the width of the soliton and `Jxky′ & 1, where ky′ is the wave vector of whistlers along the rotated
direction y′. In this way we can inject inside the soliton almost plane waves. For the sake of
clarity, let me recall that the rotation angle of the current profile given by equation (4.13), θ+ϕ,
is referred to the y axis. The angle θ is the whistler propagation angle with respect to the total
magnetic field inside the soliton Btot

in and ϕ is angle that Btot
in forms with the y axis.

Test of the forcing current – Before injecting whistlers inside the soliton I tested the validity
of the forcing current as whistler generation mechanism. In order to do this, whistlers with
frequency ω0 and propagation angle θ have been injected in an homogeneous plasma with equi-
librium given by

By = By0 = 1, Bx = Bz = 0, U = 0, n = n0 = 1, (4.14)

and I verified the polarization and the Fourier spectrum of the injected wave. Results are shown in
Fig. 4.5 for ω0 = 2 and propagation angle θ = 0.7. The first row displays the shaded isocontours
of the forcing current Jextz (x, y) (left panel) and of one component of the magnetic field b of the
wave perpendicular to the background magnetic field B0, namely the bx component (right panel).
In the second column, left panel, the time variations of the magnetic components perpendicular
to B0, namely bx and bz are shown at a fixed point in the simulation domain. The star indicates
the starting point, and it can be seen that the wave is elliptically polarized and rotates in a
counterclockwise direction (B0 points outwards of the sheet). The Fourier analysis is reported
in second column, right panel, which displays the shaded isocontours of the Fourier component
b̃x(kx, ky). The inferred frequency of the wave is ω = 2, as expected (the time spectrum is
not shown). The wave vectors inferred from the Fourier Transform in the parallel and in the
perpendicular direction with respect to the magnetic field direction are k‖ = 1 and k⊥ = 0.8,
respectively (the resolution in Fourier space is ∆k‖ = 0.05 and ∆k⊥ = 0.1). The values of ω, k⊥
and k‖ are in agreement with those expected from the whistler dispersion relation of a two-fluid
plasma, given by equation (A.4) in Appendix A.
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Figure 4.5: Test of the forcing current as whistler injection mechanism. First row: the forcing current
Jext
z shaded isocontours (left panel); shaded isocontours of one component, namely, the bx component,

of the magnetic field of the whistler wave perpendicular to B0, at time t = 13 (right panel). Second row:
time variations of the magnetic components perpendicular to B0, namely bx and bz at x0 = 45, y0 = 73.
The star indicates the starting point (left panel); Fourier spectrum in Fourier space (k⊥, k‖) of bx (right
panel).
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4.3.2 Parameters of the simulations

The dimensions of the simulation box, Lx and Ly, and the resolution of the grid, dx and dy, are
chosen in order to find a compromise between the different time and length scales at play. Ly is
chosen in order to let the whistler wave train propagate for several tens of ω−1

ci , without reaching
the boundaries. Lx is chosen in order to contain the soliton which is wider or of the order of di
and moves at a speed V ∼ 0.1. Finally, the mesh size must resolve the whistler wavelength. In
Table 4.1 the parameters of the simulation box are listed. The ion to electron mass ratio is fixed
to mp/me = 100. The parameters of the soliton, listed in Table 4.2, are chosen in order to have

ω0 ω0/ω
in
ce θ Lx Ly dx dy `

Sim. 1 2.37 0.03 -0.198 24π 160π 0.08 0.1 2
Sim. 2 2.37 0.03 0.6 24π 60π 0.08 0.04 2
Sim. 3 2.37 0.03 1.25 24π 60π 0.08 0.04 2
Sim. 4 8 0.1 -0.198 24π 60π 0.08 0.04 2
Sim. 5 8 0.1 0.6 24π 60π 0.08 0.04 2
Sim. 6 8 0.1 1.3 24π 60π 0.08 0.04 2
Sim. 7 3 0.04 -0.24 24π 160π 0.08 0.1 13
Sim. 8 3 0.04 0.3 24π 120π 0.08 0.08 13
Sim. 9 3 0.04 0.6 24π 240π 0.08 0.16 13

Table 4.1: Parameters of the simulation box, injected whistlers and the characteristic width of the
soliton `.

a narrow soliton with a width ` of the order of the ion inertial length (simulations 1 to 6) or a
wider soliton with ` of the order of several ion inertial lengths (simulations 7 to 9).

A P0 i,e ϕ0 ` Bin
y, tot nintot ϕ V ωince

Sim. 1–6 0.05 0.05 0.17 ∼ 2 0.847 1.873 0.198 0.09 86.4
Sim. 7–9 0.03 0.5 0.17 ∼ 13 0.694 1.181 0.240 0.12 71.4

Table 4.2: Parameters of the solitons.

4.3.3 Numerical results

In this section I show, by means of numerical simulations, that whistlers can be trapped
and transported away by a slow magnetosonic soliton. Even if a slow soliton propagating in a
homogeneous magnetized plasma is more complicated than the so called magnetic hole, as a first
approximation the same properties of whistler ducting apply, and the trapping conditions found
for the magnetic hole discussed in Section 4.2 are therefore a good reference when asking which
whistler modes can be trapped by the soliton.

I have investigated the slow magnetosonic ducted and unducted regime of whistler modes by
varying the typical width of the soliton. Here I report two different typical cases: a narrow
soliton of width ` ∼ 2 . k−1 and a wider soliton of width ` ∼ 13 > k−1 (in units of di), where
k is the whistler wave vector estimated for a given frequency and propagation angle from the
two-fluid cold dispersion relation (see equation (A.4) in Appendix A). A list of the parameters
used in the simulations for the “small” and “large” soliton are listed in Table 4.2. The wider
soliton has a weaker density hump but a stronger magnetic field depression than the narrow
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one. The injected whistler modes fluctuate at low frequencies (ω0 � 0.1ωince ) or high frequencies
(ω0 ∼ 0.1ωince ) with different angles of propagation ranging from θ � θω0

max to θ > θω0
max. In the

following, I focus on two simulations, namely Sim. 1 for the narrow soliton and Sim. 7 for the
wide soliton, to show the trapping of whistlers.

In these simulations the injected whistlers have frequency ω0 ∼ 0.03ωince and ω0 ∼ 0.04ωince
respectively. They are injected along the y axis, slightly oblique with respect to the local total
magnetic field, forming an angle θ = −0.198 and θ = −0.24, respectively, then satisfying |θ| �
θω0
max. The forcing current oscillates at the center of the simulation domain and switches off
exponentially on a characteristic time shorter with respect to that of the soliton propagation.
In this way, the forcing generates two finite size wave packets in the (x, y) plane propagating
away from the source region in the two opposite directions, namely in the positive y direction
(upward) and in the negative y direction (downward). The two wave packets propagate upward
or downward, respectively, and remain spatially confined along the inhomogeneous x direction in
correspondence to the soliton, following its displacement along x. This is shown in Fig. 4.6 by the
contour plots of the x component of the magnetic field bx of the whistler waves in the simulation
domain when the current has switched off and the wave packets are well developed. The profile
of the soliton is represented (not in scale) by black lines and the dashed line corresponds to
the soliton at time t = 0. The left panel represents the two wave packets at time t = 100,
for the narrow soliton. In the middle panel I show the propagation of the same wave packets
as injected in Sim. 1, but in a homogeneous equilibrium, i.e. with B0y = Bin

y,tot = 0.847 and
n0 = nintot = 1.873. We see that in the absence of the soliton the injected wave packets spread out
during propagation. Finally, the right panel shows the wave packets at time t = 60, for the wide
soliton. To summarize, our simulations provide evidence that the waves, initially injected inside
the soliton structures, propagate along the duct provided by the soliton, upward or downward,
advected at the same time in the perpendicular x direction by the soliton. The whistlers are
thus confined and transported by the slow soliton over times much larger than their typical time
scale.

Figure 4.6: Contour plot of the x component of the whistler magnetic field bx. The profile of the
soliton is represented by the black lines. The dashed line represents the soliton at time t = 0. Left panel:
trapping of whistlers in Sim. 1 at time t = 100. Middle panel: the whistler wave packets in the entire
space domain at t = 30 as in Sim. 1 but in the absence of the soliton. Right panel: trapping of whistlers
in Sim. 7 at time t = 60.

We consider now two simulations, Sim. 3 and Sim. 6 where I inject highly oblique whistlers
with θ > θω0

max. In this case the waves escape outside the solitons. An example is shown in
Fig. 4.7, left panel, where I show the contour of bx and the profile of the soliton at time t = 16
in the case of Sim. 6. Here the injected whistlers are at high frequency (ω0 ∼ 0.1ωince ) and at an
angle of propagation θ = 1.3.
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Figure 4.7: Contour plot of the x component of the whistler magnetic field bx, with the profile of the
soliton represented by the black lines. The dashed line corresponds to the soliton at t = 0. Left panel:
Sim. 6 at time t = 16, corresponding to a high frequency, highly oblique whistler that escapes from the
narrow soliton. Middle panel: Sim. 4 at time t = 30, corresponding to a high frequency whistler that
is trapped only in the upward direction while the downward wave packet becomes evanescent after one
reflection. Right panel: Sim. 9 at time t = 60, corresponding to an upward whistler that escapes outside
the soliton while the downward wave packet is trapped. The periodic boundary conditions cause the
waves approaching the upper (lower) boundary of the simulation box to appear in the lower (upper)
boundary.

These results are in good agreement with the ducting theory. However, the model used in our
numerical study is far richer than the reference model of the magnetic hole (Section 4.2), and
there are important effects that can modify the trapping conditions.

First of all, even if the displacement of the soliton is neglected, there is a finite perturbation in
the plasma velocity of the form U(x) (see equatons (D.1d)–(D.1e) in Appendix D). The presence
of the fluid velocity introduces an asymmetry in the system, due to the Doppler effect, between
wave packets propagating upward and downward, ky > 0 and ky < 0, respectively. Second, there
are gradients along the total magnetic field, which can drive whistlers outside the soliton even if
trapping conditions are satisfied. In the case of the magnetic hole k‖ and ω are fixed quantities,
while for the soliton ω and ky are constant but the parallel wave vector varies as the whistler
propagates inside the soliton. As a consequence, while the whistler propagates towards the edge
of the soliton, k‖ can approach the value kinf (as defined in Section 4.2, see also Fig. 4.2, left
panel) thus allowing the whistler to become untrapped. An example is given in Fig. 4.7, right
panel, which refers to Sim. 9. In this simulation only the lower wave packet is trapped while
the upper wave packet is guided outside the soliton. An interpretation of Sim. 9 can be given
in terms of geometrical optics. Since the soliton moves along the x axis at a speed V ∼ 0.1
much smaller than the whistler phase velocity (greater than unity), as a first approximation the
displacement of the soliton is neglected. Because of the Doppler shift, the frequency ω0 measured
in the simulation is given by

ω0(k, x) = ω(k, x) + k ·U(x), (4.15)

where ω(k, x) is the whistler two-fluid dispersion relation in a plasma at rest obtained in the cold
limit (see equation (A.4) in Appendix A). The dispersion relation ω(k, x) is given in terms of ky
and kx and the density and magnetic field profiles are given by n = 1 + nsol and B = B0 +Bsol,
respectively. In the framework of the geometrical optics, the contours of ω0 in the plane (kx, x)
for fixed ky represent the orbits of the whistler wave packet. The solution of the Hamiltonian
system

∂ω

∂x
= −k̇x(t),

∂ω

∂kx
= ẋ(t)
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Figure 4.8: Contours of the whistler dispersion relation in the rest frame of the soliton, ω0(k, x) =
ω(k, x) +k ·U(x), in the (kx, x) plane with the parameters of Sim. 9. The left panel refers to the upward
wave packet, which has ky ∼ 1.3, and the right panel to the downward wave packet, which has ky ∼ −1.7.
Whistler wave packets with a given ky evolve moving along the orbits at constant frequency. In Sim. 9
the frequency is ω0 = 3 that corresponds to an open orbit for the upper wave packet and to a closed orbit
for the lower wave packet.

gives the evolution of the wave vector and the trajectory of the wave packet. In Fig. 4.8 I show
the contours of ω0 as defined in equation (4.15) obtained using the soliton profile of Sim. 9.
The wave vector ky can be estimated from the forcing frequency and injection angle taking into
account the doppler shift, giving ky ∼ 1.3 and ky ∼ −1.7. The contours in Fig. 4.8 show that
the orbit corresponding to ω0 = 3 is open for the wave packet propagating upward while it is
closed for the wave packet propagating downward. A Fourier analysis of the x component of the
magnetic field in Sim. 9 confirms that the wave vectors with |ky| ∼ 1.7 are trapped inside the
soliton. Similar results are obtained for Sim. 2 and Sim. 8. However, because of the movement
along the x axis, the soliton behaves as a “moving mirror” thus causing the frequency of the
injected whistler to change with time. We qualitatively estimate the shifted frequency after the
first reflection at the soliton edge ω′0 = ω0 − 2k ·V. The change in frequency could cause the
wave to become evanescent. An example is given by Sims. 4 and 5 in a high frequency whistler
regime (ω ∼ 0.1ωince ) and using a narrow soliton. In these simulations only the upper wave packet
is trapped, as expected, while after the first reflection at the left boundary of the soliton, the
lower wave packet becomes evanescent. Fig. 4.7, middle panel, refers to Sim. 4 and shows the
contour of bx and the profiles of the soliton at time t = 30 (solid line) and t = 0 (dashed line). In
this simulation the lower wave packet has a wave vector ky estimated to ky ∼ −5 (in agreement
with the Fourier spectrum of the simulation results). The solution of the Hamiltonian equations
for the wave packet with initial conditions x(0) = 0, kx(0) = 0 gives wave packet reflected at
nearly δx ∼ −1.5 from the center of the soliton with kx ∼ 25 (in agreement with the small scales
which form in the x direction at the edge of the soliton). In this point the reflected frequency
is estimated as ω′0 ∼ ω0 − 2kxV ∼ 3.5, which is below the minimum frequency calculated in
correspondence to the edge of the soliton for ky ∼ −5, explaining why the lower wave packet
does not propagate after reflection.
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Chapter 5

Discussions and conclusions

In this Thesis I have investigated how nonlinear slow waves can trap and transport whistler
mode waves. Three main different methodologies have been adopted, namely, space data analysis,
theoretical modeling and numerical investigation, in order to understand the basic plasma physics
processes underlying the reported in situ measurements.

Large amplitude whistler mode wave packets propagating inside coherent structures, charac-
terized by a magnetic field depletion and a plasma density enhancement at the spatial ion-scales,
have been observed. These whistler emissions correlated with magnetic structures are detected
in the magnetospheric plasma sheet by Cluster during the August 17, 2003 substorm event. The
observed whistler wave packets have large amplitudes, of nearly 0.5 − 0.8nT , and propagate
quasi parallel to the magnetic field at frequencies 0.1 < ω/ωce / 0.4. A detailed analysis car-
ried out for the low frequency magnetic structures showed that the latter have the properties of
slow, nonlinear waves. From multipoint measurements it turned out that these structures are,
to a good approximation, one dimensional at the inter-satellite separation, with a shear com-
ponent stronger or of the order of the compressive one, δB⊥ ' δB‖ (Tenerani et al., accepted
for publication in Phys. Rev. Lett. (2012) [70]). They propagate quasi perpendicularly to
the average magnetic field and the typical length scale turns out to be of the order of the ion
Larmor radius and the ion inertial length, k⊥ρi ∼ k⊥di ≈ 1. In addition, inside the structures,
an electron temperature anisotropy sets in which provides the energy source for whistler wave
growth. The observed anisotropy may be due to the trapping of electrons with large pitch angle
if the structures were not strictly one dimensional but rather had a sort of elongated bottle-like
configuration at scales larger than the inter-satellite distance.

The observed structures have been modeled as one dimensional nonlinear slow waves which
spatially confine and transport whistlers. As shown theoretically and by numerical simulations,
indeed, low frequency whistler waves, with frequencies ω/ωce < 1/2, can be efficiently trapped
and advected across the magnetic field lines by oblique magnetosonic slow solitons with typical
scale length of the order or greater than the ion inertial length (Tenerani et al., Phys. of Plasmas
(2012) [76]). Oblique slow solitons carry a quasi perpendicular density perturbation which is
anti-correlated with the magnetic field perturbation. In addition, as the propagation velocity of
these solitons is much smaller than the whistler phase velocity, they can be viewed by whistler
waves as quasi stationary inhomogeneities. The soliton then acts as a true wave guide during
whistler propagation. In addition, due to the presence of the magnetic field inhomogeneity, less
strict conditions are required for trapping with respect to a channel provided by only a density
variation.

As a consequence for substorm dynamics, the presence of the structures may affect electron
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precipitations into the ionosphere, and thus enhance energy dissipation during the substorm
expansion. The soliton indeed prevents the spreading of the whistler energy, so that strong
electron pitch angle diffusion into the loss cone is favored. In particular, the mapping of the
propagating structures, where strong electron pitch angle scattering takes place, into the auroral
region would correspond to small scale auroral arcs moving both azimuthally and poleward (along
Xgse−Zgse) because of both their propagation and the advection by the Earthward bulk plasma
flow, respectively.

The model proposed fits quite well in the interpretation of Cluster data. Nevertheless, because
of the length scales at play, a kinetic approach should be more appropriate. In this sense, solitary
kinetic Alfvén waves in a high beta plasma may provide a more proper model for the observed
structures than the slow magnetosonic soliton used in the simulations. This, however, does not
invalidate the theoretical study carried out in this Thesis. The mechanism of whistler trapping
discussed here relies indeed on the “inhomogeneous, slow nature” of the wave carrier: the plasma
density and the magnetic field magnitude are anti-correlated and quasi perpendicular to the
background magnetic field and the velocity of propagation is smaller than the whistler phase
velocity. As a consequence, other solitary structures, propagating slowly with respect to the
whistler wave packets, could in principle play the same role in trapping and advecting whistlers,
e.g., the solitary kinetic Alfvén waves mentioned above. A kinetic approach would be more
suitable also to investigate how kinetic effects can come into play and affect the stability of the
soliton itself, as well as to investigate possible wave-particle resonances which could explain the
observed electron distribution functions, namely the flat-tops of the distribution function found
in the field aligned directions. In addition, solitary kinetic Alfvén waves relate to the important
issue concerning the particle acceleration mechanisms during substorms. It has been suggested,
indeed, that kinetic Alfvén waves, thanks to the parallel component of the electric field, may
accelerate electrons [72]. Finally, an investigation of the possible effects of the background
inhomogeneities in the formation, propagation and temporal evolution of such structures should
be necessary. These questions will be addressed in a future work.

Besides the particular context of substorms, the trapping mechanism proposed here has gen-
eral relevance. It provides an explanation to the recurrent observations of whistler waves in
correspondence to local minima of the magnetic field and density humps different from the usual
models where stationary structures, such as mirror modes, act as channels for whistlers. Fur-
thermore, it provides a mechanism to transport low frequency whistler energy across magnetic
field lines. It is known from linear theory that whistler energy propagates at small angles to the
magnetic field lines because of the anisotropy introduced by the background magnetic field itself.
Finally, in order to understand plasma dynamics in inhomogeneous environments such as not
only the magnetosphere, but also the interplanetary medium, where such magnetic structures
are commonly detected, it is of fundamental interest to understand how magnetic structures may
affect the stability and the propagation of higher frequency waves, as well as wave propagation
in inhomogeneous plasmas.
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Appendix A

Dispersion relation of a two fluid
plasma

I show in the following the dispersion relation of a warm, homogeneous magnetized plasma
obtained by linearization of the set of two-fluid eqs. (4.2), without giving detailed calculations.
I infer the whistler dispersion relation within the simplifying assumption of cold plasma starting
from the general expression. This relation allows to verify if the numerical code responds correctly
to the excitation of transverse waves at whistler frequencies, and it will be used as a reference
to estimate the frequency, angle of propagation and wave vector of whistlers injected inside the
solitons in the simulations of Chapter 4.

Two-fluid dispersion relation with finite temperature. Consider a warm, homogeneous,
magnetized plasma with density n0 and magnetic field B0, and consider small amplitude elec-
tromagnetic perturbations to this equilibrium of the form Aei(kr−ωt). Linearization of the set of
eqs. (4.2) yields the following dispersion relation{

v2
ϕ(1 + k2d2

e)−

[
v2
a⊥v

2
ϕ

v2
ϕ − c2

s

+ v2
a ‖

]}[
v2
ϕ(1 + k2d2

e)− v2
a ‖

]
= k2d2

i v
2
a ‖v

2
ϕ, (A.1)

where vϕ ≡ ω/k is the phase velocity of the perturbation, va = B0/
√

4πn0mi is the Alfvén
speed, va ‖ ≡ va cos θ and va⊥ ≡ va sin θ are the parallel and perpendicular Alfvén velocity,
respectively, and θ the angle between the wave vector k and B0. The other quantities are the
ion and electron inertial length di = c

√
mi/(4πn0e2) and de = dime/mi, respectively, and the

sound speed cs =
√

Γ(P0,i + P0e)/n0mi. Eq. (A.1) has three branches for the frequency ω and
it can be solved numerically. Fig. A.1 shows the three branches ω(k), in a finite temperature
plasma (β = c2

s/v
2
a) for quasi-parallel and quasi-perpendicular propagation, in the left and right

hand panel, respectively. Black lines represent the three branches solutions of eq. (A.1), green,
blue and orange dotted lines represent the approximate dispersion relation of the three MHD
modes in a low temperature plasma and red horizontal lines represent the asymptotic values of
the frequency, ωce cos θ and ωci cos θ. Note that the quasi neutrality condition has been assumed,
so that the asymptote at ω = ωpi, due to the saturation of the ion acoustic mode, is completely
lost. In the limit of long wavelengths with respect to the electron inertial length, (kde)

2 � 1,
eq. (A.1) reduces to[
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Figure A.1: Two fluid dispersion relation for quasi-parallel (left panel) and quasi perpendicular (right
panel) propagation in a warm plasma, with β = 0.1.

Left hand side of eq. (A.2) represents the three MHD modes that are recovered in the limit of
large scales, (kdi)

2 � 1: the shear Alfvén mode corresponds to the root of the second square
bracket and the slow and fast magnetosonic modes to the roots of the first square bracket. The
right hand side is proportional to (kdi)

2 and represents the dispersion term due to the Hall term
J×B in the generalized Ohm’s law (4.2d).

Two fluid dispersion relation in the cold plasma approximation. Now let me come back
to the whistler mode. In order to have an analytical expression easy to deal with, it is useful to
consider the cold limit of our starting eqs. (4.2). By neglecting the temperature, the slow branch
disappears so that the two-fluid cold dispersion relation is a second order polynomial in ω2:{

v2
ϕ(1 + d2

ek
2)− v2

a

}{
v2
ϕ(1 + d2

ek
2)− v2

a ‖

}
= k2d2

i v
2
a ‖v

2
ϕ. (A.3)

The two solutions are the whistler and the ion cyclotron branches. Below I report the whistler
branch only:

ω2 =
1

2
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ak
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ek
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+
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(A.4)

In the MHD limit, (kdi)
2 � 1, the whistler and ion cyclotron branches connect to the fast and

shear Alfvén waves, respectively:

ω2
Fast = k2v2

a ω2
Alf = k2

‖v
2
a. (A.5)

Numerical test of the whistler dispersion relation – I tested the dispersion relation given by
eq. (A.4) by initializing the code with a noise in the whistler mode in a homogeneous plasma (I do
not report here the whistler polarization of electric, magnetic and velocity fields). The dispersion
relation obtained from a Fourier spectrum of the noise is reported in Fig. A.2, for parallel and
quasi parallel propagation, in left and right-hand panels, respectively. Stars represent numerical
data and the solid line is the theoretical dispersion relation eq. (A.4).
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Figure A.2: Dispersion relation obtained from the numerical code for parallel (left hand panel) and quasi
parallel propagation (right panel). Stars represent numerical data and the solid line is the theoretical
dispersion relation eq. (A.4).



90 A. Dispersion relation of a two fluid plasma



91

Appendix B

Numerical scheme

The numerical code employed integrates the set of equations (4.2), which are of the form

∂

∂t
f = g(f, x, y, t), (B.1)

by using an explicit temporal advancement scheme Adams-Bashforth of the third order. The
“source” term g is calculated by means of the Fourier Transform in the periodic direction. The
compact finite difference scheme [79] can be used in the x direction when open boundary con-
ditions are adopted along this direction. The open boundary conditions allow perturbations on
the MHD scales to exit from the simulation box. These conditions have been adopted in the
simulations done to investigate the propagation of solitons, described in Appendix D (see for
instance Fig. D.1, that shows solitons which exit from the simulation domain). When whistlers
are injected in the simulation box, the periodic boundary conditions are the most appropriate
to impose in both x and y directions, and this is the code mainly used in the present work.

At each time step, the code first calculates the term nU. Then, it advances in time the
functions Si,e and the density n by using eqs. (4.2a)–(4.2b). The quantity nU is advanced by
using eq. (4.2c), which enables the fluid velocity U to be calculated. The magnetic field B
is advanced with the Faraday’s equation and the current J is then calculated from Ampère’s
equation. The ion and electron fluid velocities can be obtained by combining J and U. Finally,
The electric field is obtained through the generalized Ohm’s law (4.2d). The Ohm’s law can be
written in the form of a Poisson’s equation (1−d2

e∇2)E = RHS. If periodic boundary conditions
are employed then the latter can be solved in Fourier space.
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Appendix C

Whistler propagation in an
inhomogeneous plasma. WKB

I develop here the WKB calculation reported in the paper by Karpman and Kaufman, Sov.
Phys. JETP (1981) [37] for whistler wave propagation in a slowly varying medium. For the sake
of simplicity the equilibrium magnetic field B0 is taken along the z axis, B0(x) = B0(x)ẑ. Recall
that in Chapter 4 B0 is along the y direction. Linearization of the set of the two-fluid equations
for a cold magnetized plasma yields the following system for the electric and magnetic fields

∇(∇ ·E)−∇2E =
ω2

c2
(ε ·E) (C.1a)

∇ · (ε ·E) = 0 (C.1b)

B = −i c
ω
∇×E, (C.1c)

where a time dependence of the form exp(−iωt) has been assumed and factored out. The
dielectric tensor ε, in the whistler frequency regime ωci < ω < ωce � ωpe, can be written as

ε =


ω2
pe

ω2
ce−ω2 −i ω2

peωce

ω(ω2
ce−ω2)

0

i
ω2
peωce

ω(ω2
ce−ω2)

ω2
pe

ω2
ce−ω2 0

0 0 −ω2
pe

ω2

 .

It is useful to write the elements of the dielectric tensor in the following, more compact, form:

a =
ω2
pe

ω2
ce − ω2

, g =
ω2
peωce

ω(ω2
ce − ω2)

, η = −
ω2
pe

ω2
.

Now look for spatial solutions of the set of eqs. (C.1a)–(C.1c) of the form A(x) exp(ik‖z), where
k‖ ≡ kz is the parallel wave vector:

Ex(x) = f(x)eik‖z, Ey(x) = iF (x)eik‖z, (C.2)

and define the function
Φ(x) = a(x)f(x) + g(x)F (x). (C.3)

From eq. (C.1b), get Ez = i/(k‖η)Φ′, where a prime is used to indicate derivation with respect
to x. Substitution of Ez into the two components of eq. (C.1a) transverse to the equilibrium
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magnetic field leads to the following two coupled differential equations of second order for the
electric field components Ex and Ey:

Φ′′ − Φ′ [ln(η)]′ =
ηk2
‖

a
(Φ− gF )− ω2

c2
Φ, (C.4a)

F ′′ = k2
‖F +

ω2

c2

[g
a

(Φ− gF ) + aF
]
. (C.4b)

By rescaling the variable w = x/L, where L is the typical length of the large scale inhomogeneity
such that (c/ω)/L� 1, eqs. (C.4a)–(C.4b) can be solved by means of the WKB approximation.
Impose then solutions of the form[

Φ(w)
F (w)

]
=

[
ϕ1(w)
ϕ2(w)

]
exp

(
iL
ω

c

∫ w

q(w′)dw′
)
, (C.5)

where the functions ϕ1,2(w) are expanded in powers of (c/ω)/L:

ϕ1,2(w) = ϕ
(0)
1,2(w) + (c/ω)/Lϕ

(1)
1,2(w) + . . . .

Insertion of eq. (C.5) in eq. (C.4a) and eq. (C.4b), by indicating now with a prime the derivative
with respect to w, yields
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(C.6b)

By retaining only the terms to lowest order in (c/ω)/L, the following set of equations is obtained,
written in matrix form: η(a− c2

ω2k
2
‖)− a
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ω2k
2
⊥ gη c
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ω2k
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2(w)

)
= 0. (C.7)

By equating the determinant of the set of eqs. (C.7) to zero, we obtain the local dispersion
relation for whistlers (written below in non-normalized units) which expresses k⊥ ≡ (ω/c)q as a
function of the parallel wave vector k‖ and the frequency ω:
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The correspondent amplitudes are

[
ϕ0

1(w, ki)
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where
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and
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c
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c
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Eq. (C.9) shows that the WKB approximation ceases to be valid in correspondence of points of
the real axis where k+ = k− (tunneling points) and where k± = 0 (reflection points) as discussed
in Chapter 4.
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Appendix D

Analytical solution of slow
magnetosonic solitons

The set of equations (D.1) below represents the initial condition given in the numerical code
corresponding to a slow solitary wave [32]. Quantities are normalized to asymptotic equilibrium
values outside the soliton. Ion normalized units are used, as explained in Section 4.1.1.

nsol =
A/α

cosh2
[√

A/(12µ)x
] , n = 1 + nsol, Pe,i = P0e,i (1 + Γnsol) (D.1a)

Bx = sinϕ0, By = cosϕ0 +

[
(v2
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cosϕ0

]
nsol (D.1b)
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Ux = vp0 nsol, Uy = −

[
(v2
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(D.1d)
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where c2
s = Γ(Pe0 + Pi0) is the sound speed in normalized units and

µ =
vp0 (v2
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4 d−2
e [v2
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α =
3 (v2
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s sin2 ϕ0) + (v2

p0 − sin2 ϕ0)[c2
s + Γ2 (Pe0 + Pi0)]

4 vp0 [v2
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v2
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√

(1 + c2
s)

2 − 4 c2
s sin2 ϕ0

]
. (D.4)

Table D.1 shows the parameters of the solitons used in the simulations performed in order to
test the numerical stability of the above solutions (set of eqs. (D.1)): the equilibrium pressure
P0i,e, the angle Θ, the sound speed cs, the amplitude A, the characteristic soliton width `, the
phase speed vp0 of the MHD slow wave, the inferred propagation speed V and the theoretical
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propagation speed Vtheo (which is vp0 + A/3). The density maximum nmax and the magnetic
field minimum By,min are also listed. In Fig. D.1, solitons corresponding to Simulations 2, 6
and 10 (see Table D.1) are shown in left, middle and right panels, respectively, at three different
times. Red and black lines represent the density and the magnetic field perturbation parallel to
the background magnetic field, respectively.
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Figure D.1: Simulations 2 (left panel), 6 (middle panel) and 10 (right panel) in Table D.1. The red
lines represent the density and the black line the magnetic field perturbation parallel to the background
magnetic field.

P0i,e Θ cs A ` vp0 V Vtheo By,min nmax

Sim 1 1 1.4 1.73 0.01 40 0.15 0.15 0.15 0.83 1.05
Sim 2 0.5 1.4 1.22 0.01 30 0.13 0.14 0.13 0.89 1.06
Sim 3 0.1 1.4 0.55 0.01 15 0.08 0.08 0.08 0.95 1.12
Sim 4 0.01 1.4 0.17 0.01 2 0.03 0.03 0.03 0.97 1.4
Sim 5 1 1.4 1.73 0.05 30 0.15 0.16 0.16 0.22 1.25
Sim 6 0.5 1.4 1.22 0.05 15 0.13 0.15 0.15 0.52 1.31
Sim 7 0.1 1.4 0.55 0.05 6 0.08 0.09 0.10 0.80 1.62
Sim 8 0.01 1.4 0.17 0.05 0.5 0.03 0.05 0.04 0.92 3
Sim 9 1 1 1.73 0.01 75 0.48 0.49 0.48 0.06 0.02
Sim 10 0.5 1 1.22 0.01 55 0.43 0.43 0.44 0.03 0.02
Sim 11 0.1 1 0.55 0.01 20 0.27 0.27 0.27 0.01 0.04
Sim 12 0.01 1 0.17 0.01 3 0.09 0.10 0.10 0.004 0.13

Table D.1: Soliton parameters used in the simulations performed to test the stability of KdV slow
solitons.
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Appendix E

STAFF-SA spectra

The Spectrum Analyser (STAFF-SA) calculates in real time the cross-spectral matrix in the
frequency range 60Hz 6 f 6 4 kHz of magnetic and electric field fluctuations. In the next pages
spectra are shown from nearly 16:30 to 17:10 Universal Time (source: http://lesia.obspm.fr/cluster).
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Appendix F

Data Reduction

F.1 Electric field

The electric field is measured by the EFW instrument [52]. The latter is made of two couples
of probes on wire booms each with a probe-to-probe separation of 88m turning in the spacecraft
spin plane, allowing measurements of the electric field components in this plane. In order to
have three dimensional data of the electric field E, the third component Ez is calculated by
assuming E ·B = 0, provided the magnetic field does not lie in the spin plane and Bz > 2nT
(otherwise the error in the third electric field component becomes too large). The elevation
angle θelev = arctan

(
Bz/

√
B2
x +B2

y

)
is used as controlling parameter for the applicability of

the present method and only data with θelev > 15◦ are retained (reference: EFW user guide CAA-
EST-UG-EFW). During the time interval analyzed in the present work, the elevation angle is
often less than the standard limiting value. For this reason, in order to gain more electric
field data, the three dimensional electric field has been obtained by assuming that the ISR2
coordinate system is equal to the GSE one and by shifting the limiting value of the elevation
angle to θelev = 10◦.

F.2 Spacecraft potential

The probe-to-spacecraft potential V of the EFW instrument provides a proxy for electron
density fluctuations (see for instance Pedersen et al., Ann. Geophys. (2001) [55]).

A conducting object, e.g., the spacecraft, embedded in a plasma such as the magnetosphere
achieves a potential which is determined by the balance between the electron current resulting
from collected electrons of the ambient plasma, Ie, and the current of photoelectrons, Iph, emit-
ted when photons from the sun light strike the satellite. The contribution of the ion current
can be neglected as ions are much slower than electrons. Escaping photoelectrons cause the
satellite to charge positively while the collected electrons cause the satellite to charge negatively.
The functional dependence of Iph(V ) of an object can be determined empirically by charging
negatively the conductor and inferring the I − V curve while, assuming a Maxwellian plasma
and that the spacecraft size is smaller than the Debye length, Ie(V ) ∝ ne(1 + V/Te) [55]. The
floating potential is determined by the balance between this two currents, Iph(V ) = Ie(V ), which
allows an estimation of the electron density.
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F.3 STAFF-SC

The STAFF-SC instrument is made of three mutually orthogonal search coils, which consist
of a high permeability core embedded into two solenoids [51]. Search coils provide measurements
of magnetic field fluctuations at 25Hz and 450Hz sampling rate, in normal and high telemetry
mode (or High Bit Rate), respectively. The output signal f of search coils is first converted
from telemetry counts (bits) in Volts. Then the large amplitude sinusoidal variation of the DC
magnetic field at the spin frequency is removed (despinning of the signal). The calibration of the
despun output raw signal from Volts to nano Tesla is made by means of the transfer function T .
The latter is a characteristic function of the search coils which relates input (nano Tesla) and
output (Volts) signal in Fourier space:

f̃ω(nT ) = f̃ω(V )/T (ω) (F.1)

The calibration of a time series of a signal works in Fourier space by dividing the whole time
series in consecutive data windows (discrete calibration). The number of points N defining the
time length of each window must be taken N = 2m, with m integer, as a Fast Fourier Transform
(FFT) is used in order to calibrate a waveform in one data window. For each window, the steps
required for calibration are the following:

(1) f(V ) → despinn. → (2) FFT[f(V )] → (3) f̃ω(nT ) = f̃ω(V )/T (ω) → (4) FFT−1
[
f̃ω(nT )

]
.

In step (3) a cut-off at low frequency is necessary since T (ω) is zero for ω = 0. The parameters
used to calibrate data are: number of windows=5; N = 65536; frequency cut-off=0.1; detrend
frequency=0.5, where the latter is an additional filtering of slow variations of input signal. Data
are in High Bit Rate, with sampled frequency 450 Hz (time resolution 2.22 ms). No additional
filtering has been applied in the calibration procedure.

F.4 Current density calculation

The current density J can be inferred from the magnetic field data measured by FGM by means
of the curlometer technique, see for instance “Spatial Interpolation for four Spacecraft: Theory”
by Chanteur [64]. The curlometer technique basically calculates the curl of the magnetic field
∇×B ∝ J after linear interpolation of the four point magnetic field measurements by spacecraft.
The idea is to extract a functionB(r) in the vicinity of spacecraft starting from the discrete values
Bα, α = 1 . . . 4, which are measured by spacecraft at each vertex of the tetrahedron, located at
rα. A linear interpolation of the magnetic field L[B](r) can be written as

L[B](r) =
∑
α

Bαµα(r), (F.2)

where the function µα is defined as µα = να+kα ·r. Under the constraint µα(rβ) = δαβ one gets

µα(r) = 1 + kα · (r− rα) and kα =
rβγ × rβδ

rβα · (rβγ × rβδ)
, (F.3)

where rαβ = rβ − rα. From the second equation above it turns out the kα are the reciprocal
vectors of the tetrahedron. The derivative with respect to the ri direction of the Bj component
of the linearly interpolated magnetic field can be expressed in the following simple form by using
the reciprocal vectors:

LGij [B] =
∑
α

kα,iBα,j . (F.4)
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The diagonal terms of Gij give the divergence, L[∇ ·B] =
∑

α kα · Bα. Combination of the
non-diagonal terms of Gij gives the curl, L[∇×B] =

∑
α kα ×Bα.
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Appendix G

Analysis methods for spacecraft data

G.1 Polarization analysis for whistler waves

Means’ method is used to analyze the polarization of a time dependent electromagnetic signal.
In particular, this methods is suitable for elliptically polarized plane waves. Consider a three
dimensional electromagnetic signal with complex Fourier spectrum b(ω) in the reference frame
with the z axis parallel to the background magnetic field B (MFA system), and consider the
associated spectral matrix Jij = bi(ω)b∗j (ω). From the elements of the spectral matrix Jij it is
possible to infer the angle between the wave vector direction k̂ and the magnetic field and the
ellipticity which is defined as the minor to major axis ratio of the ellipse transcribed by field
variations transverse to B. The sense of rotation with respect to B is given by k̂ · B. Details
can be found in Means, JGR (1972) [62] (see also Samson and Olson, Geophys. J. R. Astr.
Soc., 61, 115–129, 1980) [63]. Basically this method relies on the fact that the spectral matrix
has a simple form in a reference frame, which we label by a prime, in which the wave fields
rotate counterclockwise with respect to k̂, and the wave vector is along the z′ axis. The matrices
J ′ij , known under the hypothesis of an elliptically polarized plane wave, and Jij , built up from
measurements, can be related through a rotation which involves the angle between k̂ and the
background magnetic field B. In particular, defining a and b the two transverse components of
the signal, it can be shown that

=J2
xy + =J2

xz + =J2
yz = a2b2, Jxx + Jyy + Jzz = a2 + b2 (G.1a)

k̂x = =Jyz/ab, k̂y = −=Jxz/ab, k̂z = =Jxy/ab. (G.1b)

The validity of the result can be quantified by means the degree of polarization defined as P =
[3trac(J2

ij)− (trac Jij)
2]/[2(trac Jij)

2]: 1 stands for a pure elliptically polarized mode. Reliable
results correspond to P > 0.7.

G.2 Minimum Variance Analysis

The Minimum Variance Analysis allows the determination, from single spacecraft time series
of magnetic field data, of the direction of a magnetic discontinuity n in the hypothesis of a one
dimensional, stationary layer which crosses spacecraft (see for instance “Minimum and Maximum
Variance Analysis” by Sonnerup and Scheible [80]). If the latter conditions are satisfied, then
there exists a direction, n, along which the magnetic field B is constant in time. Now, since
the ideal conditions are hardly encountered during real measurements, the determination of n
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reduces to the minimization of the variance σ2 of the magnetic field time series Bm, m = 0, . . .M ,
along n:

σ2 =
1

M

M∑
m=1

[(Bm− < B >) · n]2, (G.2)

where brackets < B > indicate the average value of the magnetic field. The minimization of σ2

under the constraint |n2| = 1 yields the following set of equations, where λ are the Lagrange
multipliers and j = x, y, z represents a given cartesian component:

∂

∂j

[
σ2 − λ(n2 − 1)

]
= 0, (G.3)

which can be arranged as to obtain the following eigenvalue problem in λ∑
j

(< BiBj > − < Bi >< Bj >)nj = λni. (G.4)

The three eigenvectors represent the directions of maximum, intermediate and minimum variance
of the magnetic field and the corresponding values λ are the variances of each component.

G.3 Multi spacecraft analysis of magnetic discontinuities

Thanks to multipoint measurements, it is possible to infer the propagation direction n and
speed V of a one dimensional stationary discontinuity passing past spacecraft. While the Min-
imum Variance Analysis can be used to determine the direction of the discontinuity n, this
multi-spacecraft method in addition enables the propagation velocity of the discontinuity to be
determined from the spacecraft position and the relative delay in the detection of the structure
itself (see also “Spatial Interpolation for Four Spacecraft: Theory” by Chanteur [64], §14.5.2). Let
us define rα the position of spacecraft α (α = 1, 2, 3, 4) which detects the magnetic structure
at time tα in correspondence of a point on the discontinuity surface, and r0

α the position of the
latter at time t0. The velocity V and the position r0

α are related by the following equation:

rα(tα) = r0
α + V(tα − t0), (G.5)

and multiplication by n yields

n · rα(tα) = n · r0
α + n ·V(tα − t0). (G.6)

The positions rα represent a fictitious tetrahedron. As a consequence, it is possible to define the
reciprocal vectors kα

kα =
rβγ × rβδ

rβα · (rβγ × rβδ)
, (G.7)

where rαβ = rβ − rα. Each reciprocal vector kα is normal to the face of the tetrahedron which is
opposite to the vertex defined by spacecraft α. The set of reciprocal vectors satisfy

∑
α kα = 0

and
∑

α kα(rα ·A) = A (see also §14.2.1 of [64]). The hypothesis of planarity assures that n · r0
α

is equal for all spacecraft. By multiplying eq. (G.7) by kα and summing over spacecraft, one gets∑
α

kαn · rα(tα) = n ·V
∑
α

tαkα. (G.8)
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Let us define Vn = V · n the propagation velocity along the normal. From eq. (G.8), keeping in
mind that n · n = 1, the normal and propagation speed of the discontinuity can be expressed in
terms of the crossing time and position of spacecraft:

n = Vn
∑
α

tαkα, (G.9a)

Vn =

[(∑
α

tαkα

)(∑
α

tαkα

)]−1/2

. (G.9b)
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Appendix H

Acronyms

The acronyms used throughout the text are listed below:

FGM: Fluxgate Magnetometer.

STAFF: Spatio-Temporal Analysis of Field Fluctuations.

SC: Search Coils; SA: Spectral Analyser.

CIS-CODIF: Cluster Ion Spectrometry-COmposition and DIstribution Function analyser.

PEACE: Plasma Electron And Current Experiment.

HEEA: High Energy Electron Analyzer.

EFW: Electric Fields and Waves.

PAD: Pitch Angle Distribution.

CAA: Cluster Active Archives.

GSE: Geocentric Solar Ecliptic system.

GSM: Geocentric Solar Magnetospheric system.

ISR2: Inverted Spin Reference #2.

MFA: Magnetic Field Aligned system.

MVA: Minimum Variance Analysis.
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