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Introduction

The CP violation has played a central role in particle physics since 1964, year
of its discovery in the kaon system. The large asymmetries predicted, and later
observed, in the B meson system have confirmed the Cabibbo–Kobayashi–Maskawa
(CKM) picture, but opened further questions and stimulated an increase of precision
of the measurements in the search for new physics sources of CP violation. While
the CKM scheme can accommodate a certain amount of CP violation, it does not
require it, nor it provides any fundamental motivation for its existence. In fact,
the “cosmological question” of the dominance of matter over antimatter in our
universe is a strong hint for the presence of CP-violating effects of a much larger
strength than the standard CKM mechanism. Experimental measurements allow
to determine the angles and the sides of the so-called “unitarity triangle”, formed
by CKM matrix parameters, using a variety of neutral and charged B decays, with
and without mixing. Today a good level of precision has been reached for two of
the angles, but the resolution on the third one (angle γ) is still rather poor, and
limited by the size of the available data samples. Therefore a precise measurement
of γ using “theoretically clean” decays, where it appears at tree-level (most notably
the family of B → DK decay modes), is important not only as a measurement of a
fundamental parameter of the theory, but also as a reference point for decays where
the presence of significant loop contribution may exhibit additional CP-violating
effects due to processes beyond the Standard Model.

One of the most important decay to probe such a field is the Cabibbo-suppressed
mode B0

s → D±s K
∓, which can have a large CP-violating interference via B0

s − B̄0
s

mixing. This decay is still unexplored, because it cannot be studied in e+e−

B-factories. In fact, it would be the first B0
s decay where CP violation is mea-

sured. Therefore isolating a clean sample of such decays is a crucial step toward a
precise measurement of γ and this thesis deals this experimental challenge. Se-
lecting a enriched sample of B0

s → D±s K
∓ decays, keeping high the signal ef-

ficiency and rejecting the huge amount background, which overwhelms the sig-
nal of interest by several order of magnitude, is crucial ingredient. It is also
essential to disentangle B0

s → D±s K
∓ decays from kinematically similar decays

(B0
s → D−s π

+, B0 → D
(?)+
s π−, B0

s → D?±
s K∓, B0 → D

(?)−
s K+, B0 → D−π+, etc.)

which lay down in the same mass region of the signal.
In particular the thesis describes the analysis of the B0

s → D±s K
∓ decays col-

lected by the CDF II experiment at the Tevatron collider, using a specialized trigger
on displaced tracks. These modes have been measured for the first time by the CDF
collaboration with 1.2 fb−1, we update the measurement of the ratio of branching
fractions B(B0

s → D±s K
∓)/B(B0

s → D−s π
+) to the full data sample corresponding
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Introduction

to about 10 fb−1 of integrated luminosity. This quantity, besides being an overall
test of the analysis procedure, also provides useful information in the determination
of γ itself.

To improve the signal to background ratio the selection of the B0
s → D±s K

∓

decays is optimized using an Artificial Neural Network, allowing an optimal use of
the multidimensional information contained in the input variables. These are chosen
with the aim to maximize the available information and to reduce their correlation.
As far as the presence of similar and larger physics backgrounds, which are more
favored than the signal decays, a careful determination of the backgrounds features
and a precision calibration of the particle identification observables is done. For
physics backgrounds we used the detailed CDF simulation, while for energy losses in
the drift chamber we used real data. Thus all information, coming from kinematics
and particle identification of the final state particles, is combined in an unbinned
maximum likelihood fit to disentangle relative fractions of all contributions.

As a result, we measure the branching ratio of the Cabibbo-suppressed B0
s →

D±s K
∓ decay. With respect to the first iteration of this analysis by CDF the

resolution on the branching fraction is improved by a factor 1.4, because of analysis
techniques developed in this thesis. Considering also the increasing of the statistics
our final measurement is better than previous one by a factor 2.3.

2



1 Theory and motivations

In this chapter we focus our attention on the theoretical frame. In particular
we discuss the connections between CP violation in the Standard Model and the
B0
s → D±s K

∓ decay, which is a golden mode to extract the CKM angle γ, and
consequently for searching New Physics.

1.1 CP violation in the Standard Model
The model of elementary particles and their interactions is defined by the sym-

metries of the Lagrangian and the representation of fermions and scalar with respect
to the group of symmetry. The group of symmetry of the Standard Model (SM) is

GSM = SU(3)C ⊗ SU(2)L ⊗ U(1)Y, (1.1)

where SU(3)C is the group of symmetry of the strong interaction, while SU(2)L ⊗
U(1)Y is the electroweak interaction group of symmetry as introduced by the theory
of Glashow-Weinberg-Salam. There are three fermion generations, each consisting
of following five representations of GSM:

QILi(3, 2)+1/6, uIRi(3, 1)+2/3, dIRi(3, 1)−1/3, LILi(1, 2)−1/2, `IRi(1, 1)−1, (1.2)

where the notation mean that, for example, left-handed quarks QILi are triplets of
SU(3)C, doublets of SU(2)L and carry hypercharge Y = +1/6. The super-index I
denotes interaction eigenstates. The sub-index i = 1, 2, 3 is the flavor (or generation)
index. There is a single scalar representation,

φ(1, 2)+1/2, (1.3)

which assumes a vacuum expectation value,

〈φ〉 =
(

0
v/
√

2

)
,

so that the gauge group is spontaneously broken,

GSM → SU(3)C ⊗ U(1)Y.

The Standard Model Lagrangian, LSM, is the most general renormalizable La-
grangian that is consistent with the gauge symmetry of equation (1.1) and the
particle content of eqs. (1.2) and (1.3). It can be divided into three parts:

LSM = Lkinetic + LHiggs + LYukawa.

3



1 Theory and motivations

As concerns the kinetic terms, to maintain gauge invariance, one has to replace
the derivative with a covariant derivative:

Dµ = ∂µ + igsG
µ
aLa + igWµ

b Tb + ig′BµY. (1.4)

Here Gµa are the eight gluon fields, Wµ
b the three weak interaction bosons and Bµ

the single hypercharge boson. The La’s are SU(3)C generators (the 3×3 Gell-Mann
matrices λa/2 for triplets, 0 for singlets), the Tb’s are SU(2)L generators (the 2× 2
Pauli matrices τb/2 for doublets, 0 for singlets), and the Y ’s are the U(1)Y charges.
For example, for the left-handed quarks QIL, we have

Lkinetic(QIL) = iQ
I
Li γµ

(
∂µ + i

2gsG
µ
aλa + i

2gW
µ
b τb + i

6g
′Bµ

)
QILi, (1.5)

while for the left-handed leptons LIL, we have

Lkinetic(LIL) = iL
I
Li γµ

(
∂µ + i

2gW
µ
b τb −

i

2g
′Bµ

)
LILi,

The Lkinetic part is always CP conserving.
The Higgs potential, which describes the scalar self interactions, is given by:

LHiggs = µ2φ†φ− λ(φ†φ)2.

This part of the Lagrangian is also CP conserving.
The quark Yukawa interactions are given by

− LYukawa = Y d
ijQ

I
Liφd

I
Rj + Y u

ijQ
I
Liφ̃u

I
Rj + Y l

ijL
I
Liφ`

I
Rj + h.c., (1.6)

where φ̃ = iτ2φ
†. This part of the Lagrangian is, in general, CP violating as we are

going to explain now.
After the breaking of symmetry, with the replacement Re(φ0)→ (v +H0)/

√
2,

the Yukawa interactions (equation (1.6)) give rise to mass terms:

−LM = (Md)ijd
I
Lid

I
Rj + (Mu)ijuILiuIRj + (M`)ij`

I
Li`

I
Rj + h.c.,

where Mq,` = vY q,`/
√

2 (q = u, d) and the SU(2)L doublets was decomposed into
their components:

QILi =

uILi
dILi

 LILi =

νILi
`ILi

 .
The mass basis corresponds, by definition, to diagonal mass matrices. We can
always find unitary matrices VqL and VqR such that

VqLMq V
†
qR = Mdiag

q (q = u, d),

with Mdiag
q diagonal and real. The quark mass eigenstates are identified as

qLi = (VqL)ij qILj , qRi = (VqR)ij qIRj (q = u, d). (1.7)

4



1 Theory and motivations

The charged current interactions for quarks (that is the interactions of the charged
SU(2)L gauge bosons W±µ = (W 1

µ ∓ iW 2
µ)/
√

2), which in interaction basis are de-
scribed by eq. (1.5), have a complicated form in the mass basis:

−LqW± = g√
2
uLiγ

µ (VuLV
†
dL)ij dLjW+

µ + h.c..

The unitary 3× 3 matrix,

VCKM = VuLV
†
dL =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 , (1.8)

is the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix for quarks. A n × n
unitary matrix contains n2 independent real parameters, 2n − 1 of these can be
eliminated redefining the phases of the n up-quarks and n down-quarks (an overall
phase is irrelevant, if all quark phases are changed in the same way VCKM is unaf-
fected); hence there are (n−1)2 parameters left. A unitary matrix is also orthogonal,
and as such it contains n(n − 1)/2 parameters corresponding to the independent
rotation angles between the n basis vectors; thus the remaining (n − 1)(n − 2)/2
parameters must be the complex phases. In the case of n = 3, we have four phys-
ical parameters: three rotation angles (corresponding to the Euler angles) and one
complex phase. The latter is the CKM phase, which is the single source of CP vio-
lation in the quark sector of the Standard Model. As result of the fact that VCKM is
not diagonal, the W± gauge bosons couple to quark (mass eigenstates) of different
generations. Within the Standard Model, this is the only source of flavor changing
interactions.

The fact that there are only three real and one imaginary physical parameters in
VCKM, can be made manifest by choosing an explicit parametrization. For example,
the standard parametrization, used by the Particle Data Group (PDG) [18], is given
by

VCKM =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

 ,
where cij ≡ cos θij and sij ≡ sin θij . The three sin θij are the three real mixing
parameters while δ is the CKM phase. Another parametrization is the Wolfen-
stein parametrization, where the four mixing parameters are (λ,A, ρ, η), with λ =
|Vus| ≈ 0.22 (the Cabibbo angle) playing the role of an expansion parameter and η
representing the CP violating phase. Up to O(λ3) the parametrization is given by

VCKM =

 1− 1
2λ

2 λ Aλ3(ρ− iη)
−λ 1− 1

2λ
2 Aλ2

Aλ3[1− (ρ+ iη)] −Aλ2 1

+O(λ4).

The CKM matrix is very close to a unit matrix with off diagonal terms that are
small. The order of magnitude of each element can be read from the power of λ in
the Wolfenstein parametrization.

5
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VtdVtb*

VcdVcb*

α=ϕ2
β=ϕ1

γ=ϕ3

VudVub*

Figure 1.1 Graphical representation of the unitarity constraint VudV ∗
ub+VcdV

∗
cb+VtdV

∗
tb = 0

as a triangle in the complex plane.

The current knowledge of the CKM matrix elements moduli, as obtained from
ref. [21], is the following

|VCKM| =


0.97425+0.00022

−0.00014 0.22543+0.00059
−0.00095 0.00355+0.00015

−0.00012

0.22529+0.00060
−0.00094 0.97342+0.00022

−0.00015 0.04126+0.00060
−0.00104

0.00857+0.00033
−0.00030 0.04051+0.00060

−0.00104 0.999142+0.000043
−0.000025

 (1.9)

1.2 The unitarity triangles

The unitarity of the CKM matrix (VCKMV
†
CKM = 1) leads to various relations

among the matrix elements, i. e.∑
k∈{u,c,t}

VkiV
∗
kj = δij (i, j ∈ {d, s, b}).

There are six of these relations that require the sum of three complex quantities to
vanish. Therefore, they can be geometrically represented in the complex plane as
a triangle and they are called unitarity triangles. One of these triangles has sides
roughly the same length and it corresponds to the relation

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0; (1.10)

for these reasons, the term “the unitarity triangle” is reserved for the equation (1.10).
The unitarity triangle is depicted in the figure 1.1. We further define the rescaled
unitarity triangle. It is derived from (1.10) by choosing a phase convention such
that (VcdV ∗cb) is real and dividing the lengths of all sides by |VcdV ∗cb|. The rescaled
unitarity triangle is similar to the unitarity triangle. Two vertices of the rescaled
unitarity triangle are fixed at (0, 0) and (1, 0). The coordinates of the remaining
vertex correspond to the Wolfenstein parameters (ρ, η).

The three angles of the unitarity triangle are defined as follows:

α ≡ arg
[
− VtdV

∗
tb

VudV
∗
ub

]
, β ≡ arg

[
− VcdV

∗
cb

VtdV
∗
tb

]
, γ ≡ arg

[
− VudV

∗
ub

VcdV
∗
cb

]
. (1.11)
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Figure 1.2 Current knowledge of the unitarity triangle parameters from the CKM-Fitter
global fit [21].

All the measurements sensitive to the unitarity triangle are regularly collected and
compiled into a global fit [20, 21]. The current knowledge of the unitarity triangle
is reported in the figure 1.2, from [21]. From the figure, we can see that the γ angle
is determined with the worse precision than all the other sides and angles.

1.3 Bs mixing
The phenomenology of CP violation in neutral flavored meson decays is enriched

by the possibility to have B0
s ↔ B̄0

s transitions, also known as flavor mixing or
oscillations. Here we describe the B0

s−B̄0
s system and the phenomenology of mixing.

The phenomenology of the flavor mixing is superficially different in K,D,B and Bs
decays. However, as a matter of practical convenience, we will refer specially to the
Bs. Our treatment will follow very closely the one presented in ref. [37].

We define decay amplitudes of a Bs meson and its CP conjugate B̄s to a multi-
particle final state f and its CP conjugate f̄ as

Af = 〈f |H |Bs〉 , Āf = 〈f |H |B̄s〉 , Af̄ = 〈f̄ |H |Bs〉 , Āf̄ = 〈f̄ |H |B̄s〉 ,

where H is the decay Hamiltonian. The particle-antiparticle mixing phenomenon
causes an initial (at time t = 0), pure B0

s meson state to evolve in time to a linear
combination of B0

s and B̄0
s states. If the times t, in which we are interested, are

much larger than the typical strong interaction scale, then the time evolution can
be described by an effective Hamiltonian and the time evolution equation can be
described as follow

i
d

dt

(
B0
s (t)

B̄0
s (t)

)
=
[
M − i

2Γ
](B0

s (t)
B̄0
s (t)

)
,

7



1 Theory and motivations

where M and Γ are 2× 2 Hermitian matrices,

M =
(
M11 M12
M∗12 M22

)
and Γ =

(
Γ11 Γ12
Γ∗12 Γ22

)
.

Diagonal elements of the M and Γ are associated with the flavor-conserving tran-
sitions, B0

s → B0
s and B̄0

s → B̄0
s , while off-diagonal elements are associated with

flavor-changing transitions B0
s ↔ B̄0

s . Since Heff is not diagonal, B0
s and B̄0

s are not
mass eigenstates, and thus do not have well defined masses and widths. We denote
the light and heavy eigenstates as BL

s and BH
s respectively, with mH > mL. The

matrix element of M and Γ must satisfy M11 = M22 and Γ11 = Γ22 in order to be
consistent with the CPT invariance.

The eigenstates of the effective Hamiltonian are

|BL,H
s 〉 = p |B0

s 〉 ± q |B̄0
s 〉 ,

with the p and q complex coefficients, satisfying |p|2 + |q|2 = 1, and

q

p
=
√
M∗12 − iΓ∗12/2
M12 − iΓ12/2

.

The real and imaginary parts of the eigenvalues of Heff corresponding to |BL,H
s 〉

represent their masses and decay-widths, respectively.
The time evolution of a state |B0

s (t)〉 (|B̄0
s (t)〉), which is a pure |B0

s 〉 (|B̄0
s 〉) state

at the time t = 0, is the given by

|B0
s (t)〉 = g+(t) |B0

s 〉+ q

p
g−(t) |B̄0

s 〉 ,

|B̄0
s (t)〉 = p

q
g−(t) |B0

s 〉+ g+(t) |B̄0
s 〉 ,

where
g±(t) ≡ 1

2

(
exp

(
− imHt−

ΓH
2 t
)
± exp

(
− imLt−

ΓL
2 t
))
.

Defining the dimensionless mixing parameter

xs = ∆ms

Γs
, ys = ∆Γs

2Γs
,

with Γs ≡ (ΓL + ΓH)/2 = 1/τs, the time-dependent decay rate for an initial pure
B0
s state is then

dΓ
dt

(B0
s (t)→ f) ∝ |Af |2

[
(1− |λf |2) cos(xst/τs) + (1 + |λf |2) cosh(yst/τs)

− 2=m(λf ) sin(xst/τs) + 2<e(λf ) sinh(yst/τs)
]
,

(1.12)

with
λf = q

p

Āf
Af

,

8



1 Theory and motivations

while the time-dependent decay rates for an initial pure B̄0
s state, is similar:

dΓ
dt

(B̄0
s (t)→ f) ∝ |Āf |2

[
(1− |λ−1

f |
2) cos(xst/τs) + (1 + |λ−1

f |
2) cosh(yst/τs)

− 2=m(λ−1
f ) sin(xst/τs) + 2<e(λ−1

f ) sinh(yst/τs)
]
.

(1.13)
Decay rates to the CP-conjugate final state f̄ are obtained analogously, with the
substitutions Af → Af̄ and Āf → Āf̄ in eqs. (1.12)-(1.13). Terms proportional
to |Af |2 or |Āf |2 are associated with decays that occur without any net B0

s ↔
B̄0
s oscillation, while terms proportional to |(q/p)Āf |2 or |(p/q)Af |2 are associated

with decays following a net oscillation. The sinh(yst/τs) and sin(xst/τs) terms of
eqs. (1.12)-(1.13) are associated with the interference between these two cases.

The B0
s − B̄0

s oscillation was observed by CDF II [8], and the value of ∆ms

and ∆Γs were measured [7]. The current values of these quantities as reported in
ref. [18] are:

∆ms = (17.69± 0.08)× 1012 ~ s−1,

∆Γs = (0.100± 0.013)× 1012 s−1.

1.4 γ measurement from B0
s → D±s K∓ decays

A good knowledge of the γ angle allows both testing the Standard Model and
probing New Physics (NP) scenarios. While α and β have been determined to a
good level of precision, the resolution on γ is still rather poor. The method to
extract γ from the B0

s → D±s K
∓ decay modes uses interference from Bs mixing:

a B0
s can reach the final state D+

s K
− through the decay B0

s → D+
s K

−, or it can
become a B̄0

s , by the B0
s − B̄0

s mixing, and then decay through B̄0
s → D+

s K
−

channel. The interfering diagrams lead to an observable effect related to γ through
the time-dependent evolution of the following decay rates:

dΓ
dt

(B0
s → D−s K

+) = |Af |
2e−Γst

2 (1 + |λf |2)
[

cosh(yst/τs) + Cf cos(xst/τs)

+Df sinh(yst/τs)− Sf sin(xst/τs)
]
,

dΓ
dt

(B̄0
s → D−s K

+) =
∣∣∣∣pq
∣∣∣∣2 |Af |2e−Γst

2 (1 + |λf |2)
[

cosh(yst/τs)− Cf cos(xst/τs)

+Df sinh(yst/τs) + Sf sin(xst/τs)
]
,

dΓ
dt

(B̄0
s → D+

s K
−) =

|Af̄ |2e−Γst

2 (1 + |λf |2)
[

cosh(yst/τs) + Cf cos(xst/τs)

+Df̄ sinh(yst/τs)− Sf̄ sin(xst/τs)
]
,

dΓ
dt

(B0
s → D+

s K
−) =

∣∣∣∣qp
∣∣∣∣2 |Af̄ |2e−Γst

2 (1 + |λf |2)
[

cosh(yst/τs)− Cf cos(xst/τs)

+Df̄ sinh(yst/τs) + Sf̄ sin(xst/τs)
]
,

(1.14)
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1 Theory and motivations

where we abbreviated f with D−s K+ and f̄ with D+
s K

−, and

Cf =1− |λf |2

1 + |λf |2
,

Df(f̄) = 2|λf |
1 + |λf |2

cos(δ ∓ (γ − 2βs)),

Sf(f̄) = 2|λf |
1 + |λf |2

sin(δ ∓ (γ − 2βs)).

(1.15)

γ and δ are the weak and strong phases1, respectively, and βs is the mixing phase on
the B0

s − B̄0
s system. The five observables in equation (1.15) are related to the three

physics parameters λf , δ, γ − 2βs. Therefore with a simultaneous fit the relation
in (1.14) can be extracted the value of γ−2βs, and using the value of βs from other
measurement2 can be extracted the value of γ.

1.5 State of art

The current measurement of γ uses the interference of the B− → D0K− →
[f ]K− and B− → D̄0K− → [f ]K− decays, using the method called ADS [15] if
f = K+π−, and called GLW [27, 26] if f = π+π− of f = K+K−. As an example,
figure 1.3 reports the combination of the current results, where the value estimated
for γ is: {

γ = (67.1± 4.3)◦ CKMFitter [21],
γ = (68.5± 3.1)◦ UTFit [20].

However these measurements are not model independent. In fact they result from
a global fit of the all available experimental information, in which several Standard
Model assumptions are used, that, in principle, one may want to independently
verify. On the other hand a model-independent measurement was done only very
recently [25]. The decay B0

s → K+K− is related to the B0 → π+π− channel through
the U -spin flavor symmetry of strong interactions, and allows a determination of
the angle γ:

γ = (68± 7)◦ [25].

However the B0
s → K+K− decay mode is governed by QCD penguin topologies

and has a doubly Cabibbo-suppressed tree contribution in the Standard Model,
therefore this measurement may include contributions from new particles.

Therefore a precise direct measurement of γ, free from penguin pollution, is
needed to clarify our knowledge of the theory, and the B0

s → D±s K
∓ decay mode is

a golden channel to achieve this result. Collecting a sizeable data sample of these
decays is then the first and most important step toward such a measurement. Thus
the main goal of this thesis is focused on how to select and disentangle the largest
as possible data sample of B0

s → D±s K
∓ decays in an hadronic environment. This

1The origin of the strong phase is the possible contribution from intermediate on-shell states in
the decay process, that is an absorptive part of an amplitudes that has contributions from coupled
channels.

2The SM prediction for βs is very small with respect to γ.
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Figure 1.3 Combination of the current results on γ, (a) from the CKMFitter Collabora-
tion [21], (b) form UTFit Collaboration [20].

is a real challenge, since they are overwhelmed from a huge amount of physics and
combinatorial backgrounds.

The B0
s → D±s K

∓ was observed for the first time at CDF II in 2008, and
later from Belle and LHCb. The LHCb measurement is the world’s best and it
was performed very recently this year. The current available measurements of its
relative branching fraction are:

B(B0
s → D±s K

∓)
B(B0

s → D−s π+)
=


0.097± 0.018 (stat)± 0.009 (sys) CDF (2008) [2],
0.065+0.035

−0.029 (stat) Belle (2008) [31],
0.0646± 0.0043 (stat)± 0.0025 (sys) LHCb (2012) [1].
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2 CDF II detector at Tevatron Collider

This chapter briefly describes the Tevatron collider accelerator and CDF II de-
tector, focusing on the subsystems most important for the analysis presented, such
as the trigger and tracking systems. For a detailed description refer to Ref. [19].

2.1 The Tevatron Collider
The Tevatron is a proton synchrotron of 1 km in radius located at Fermi National

Accelerator Laboratory (a.k.a FNAL or Fermilab), about 50 km at West of Chicago
(IL) in the US. The Tevatron was shut-down in 30 September 2011 after about 25
years of activity. In its period of activity the Tevatron accumulate about 10 fb−1 of
integrated luminosity. The physics results of this 25 years of research cover different
kind of very important measurements, from the discovery of the quark top to the
world’s best measurement of W boson mass, through the first observation of the B0

s

mixing [6, 5, 8].
In the Tevatron circulating “bunches”1 of protons and antiprotons both at energy

of 980 GeV. The available energy in the center-of-mass is
√
s = 1.96 TeV.

The performance of a collider are evaluated by two key parameters: the energy
of the center-of-mass,

√
s, and the luminosity, L. The former defines accessible

phase-space for the production of resonances in the final states. The latter is the
proportional coefficient between the rate, R, of the events of a given process and
its cross section, σ:

R [events s−1] = L [cm−2 s−1] · σ [cm2].

The time-integral of luminosity (integrated luminosity) is therefore a measure of
the expected number of events, n, produced in a time T :

n(T ) =
∫ T

0
Lσ dt.

Assuming an ideal head-on pp̄ collision the instantaneous luminosity is defined as

L = 10−5 NpNp̄Bfβγ

2πβ?
√

(εp + εp̄)x(εp + εp̄)y
H(σz/β?) [10−30 cm−2 s−1]. (2.1)

The luminosity depends on the following Tevatron parameters: the number of
circulating bunches in the ring (B = 36), the revolution frequency (f = 47.713 Hz),

1A bunch is a collection of particles with the same energy.
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2 CDF II detector at Tevatron Collider

Figure 2.1 Illustration of the Fermilab Tevatron collider.

the Lorentz relativistic factor (βγ = 1045.8 at 980 GeV), the average number of
protons (Np ≈ 250× 109) and antiprotons (Np̄ ≈ 25× 109) in a bunch, an empirical
factor (H = 0.6 ÷ 0.7), which is function of the ratio between the longitudinal
r.m.s. width of the bunch (σz ≈ 60 cm) and the “beta function” calculated in the
interaction point (β? ≈ 31 cm), and the 95% normalized emittances of the beam
(εp ≈ 18 mm mrad and εp̄ ≈ 13 mm mrad after injection).2

At the Tevatron the dominant limiting factor of the luminosity is the availability
of antiprotons because it is difficult to produce and compact them into bunches and
to transfer them efficiently through the subsequent accelerator stages.

The Tevatron provides beams for experiments in different modes (fixed-target,
collider, etc.). For the purpose of the present analysis, we will describe the procedure
for obtaining a continuous period of collider operation using the same collection of
protons and antiprotons, called store.

2.1.1 Proton beam
The process of production of the protons starts with the H− ions produced by

ionization of gaseous hydrogen. The H− ions are boosted to 750 keV by a commercial
Cockroft-Walton accelerator, then they are injected in linear accelerator (Linac, see
fig. 2.1) which increases their energy to 400 MeV. A carbon foil is used to strip the
electrons from the H−. The resulting protons are injected to the Booster (see fig. 2.1)
a synchrotron of 75.5 m in radius that accelerates protons up to 8 GeV and compacts

2The empirical factor H is a parametrization of the longitudinal profile of the beams in the
collision region, which assumes the shape of an horizontal “hourglass” in the central region. The
beta function is a parameter convenient for solving the equation of motion of a particle through
an arbitrary beam transport system. The emittance ε measures the phase-space occupied by the
particles of the beam. The quantity

√
βε is proportional to the r.m.s. width of the beam in the

corresponding phase plane.
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2 CDF II detector at Tevatron Collider

them into bunches. The protons are then transferred to a synchrotron, called the
Main Injector, which brings their energy to 150 GeV. The last stage of the process
is the transfer to the Tevatron, a circular synchrotron with 5.7 T superconductive
magnets, that accelerates the protons to their final energy of 980 GeV.

2.1.2 Antiproton beam
While the energy of the protons bunches circulating in the Main Injector reaches

120 GeV they are slammed to a 7 cm thick nickel or copper target. Spatially wide-
spread antiprotons are produced and focused into a beam via a cylindrical lithium
lens which separates p̄ from other charged interaction products. The emerging
antiprotons are stored in a Debuncher (see fig. 2.1). It is a storage ring where the
momentum spread of the p̄ is reduced while maintaining a constant energy of 8 GeV,
via stochastic cooling stations. Many cycles of Debuncher cause the destruction of
the bunch structure which results in a continuous beam of antiprotons. At the end
of the process the monochromatic antiprotons are stored in the Accumulator where
they are further cooled. When a current sufficient to create 36 bunches with the
required density is available, the p̄ are injected into the Main Injector where they
are accelerates up to 150 GeV. Then they are transferred to the Tevatron.

2.1.3 The collision
When 36 bunches of both protons and antiprotons are circulating in the Teva-

tron, the energy of the machine is increased in about 10 seconds from 150 to 980 GeV
and the collisions begin at the two interaction points: DØ (where the homonym de-
tector is located) and BØ (home of CDF II). Special quadrupole magnets located
at both extremities of the detectors along the beam pipe “squeeze” the beam to
maximize luminosity inside the detectors. A roughly Gaussian distribution of the
interaction region along the beam axis (σz ≈ 28 cm) and also in transverse plane
(σT ≈ 30 µm) is achieved.

Next the injection take place a procedure called “scraping”, which shapes the
beam transverse profile in order to avoid detector damages due to the tails of the
p(p̄) distributions entering the active volumes. The scraping is done by moving iron
plates which act as collimators in the transverse plane.

When the beam profile is narrow enough and the conditions are safely stable
the detectors are powered and the data taking starts.

The inter-bunch crossing is 396 ns and this defines an overall time constant which
influences the whole detector design: on this parameter depends the choice of the
active parts, the design of the readout electronics, the structure of the trigger etc..
The number of overlapping interactions N for each bunch crossing is a Poisson-
distributed variable dependent on instantaneous luminosity and on the number of
colliding bunches. At Tevatron peak luminosities of L ≈ 1× 10−32 cm−2 s−1 N is
approximately 2.
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2.2 CDF II Detector
The CDF II detector is a large multi-purpose solenoidal magnetic spectrome-

ter surrounded by projective calorimeters and fine-grained muon detectors. It is
installed at the BØ interaction point of the Tevatron (see fig. 2.1) to determine en-
ergy, momentum and, whenever possible, the identity of a broad range of particles
produced in 1.96 TeV pp̄ collisions. After its construction (1985) several upgrades
modified original design. The most extensive upgrade (starts in 1995) led to the
current detector whose operation is generally referred to as Run II.

CDF II is approximately a 5000-ton cylinder assembly of sub-detectors, ≈ 15 m
in length, ≈ 15 m in diameter. The innermost part of the detector is the tracking
system, consisting of three silicon subdetectors and a large outer drift-chamber, all
containing in a superconducting solenoid, 1.5 m in radius and 4.8 m in length, which
generated a 1.4 T magnetic field along the beam axis. The tracking system allows to
measure the momentum and the track of the charged particles and allows to recon-
struct both the primary vertex of the pp̄ collision and the secondary decay vertex of
the long-live particles. This system is surrounded by a time of flight detector which
identified particles of low momentum. A system of projective tower calorimetry
measure the energy of hadrons, photons and electrons, outside the solenoid. At last
a system of proportional chamber and scintillator counter reveals the muons.

2.2.1 Coordinates and notation
CDF II employs a right-handed Cartesian coordinates system with the origin in

the BØ interaction point, assumed coincident with the center of the drift chamber.
The positive z-axis lies along the nominal beam-line pointing toward the proton
direction (east). The (x, y) plan is therefore perpendicular to either beams, with
positive y-axis pointing vertically upward and positive x-axis in the horizontal plane
of the Tevatron, pointing radially outward with respect to the center of the ring.

Since the colliding beams of the Tevatron are unpolarized, the resulting physical
observations are invariant under rotations around the beam line axis. Thus, a cylin-
drical (r, φ, z) coordinates system is particular convenient to describe the detector
geometry. From now on, longitudinal means parallel to the proton beam direction
(i.e., to the z-axis), and transverse means perpendicular to the protons direction,
i.e., in the (x, y) ≡ (r, φ) plane.

Since protons and antiprotons are composite particles, the actual interaction oc-
curs between the individuals partons (valence or sea quarks and gluons) contained
within them. Each parton carries an unknown fraction of the (anti)proton momen-
tum. As a consequence of the possible imbalance in the longitudinal components of
the momenta of interacting partons, possible large velocities along ẑ for the center-
of-mass of the interacting partons may occur. Thus, an invariant under ẑ boosts
variable is used instead of the polar angle θ. This variable is the rapidity defined as

Y = 1
2 ln

[
E + p cos(θ)
E − p cos(θ)

]
,

where (E, ~p) is the energy-momentum four-vector of the particle. A measurement
of rapidity still requires a detector with accurate identification capabilities because
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of the mass term entering E. Thus, for practical reasons, it is often preferred
to substitute Y with its approximate expression η in the ultra-relativistic limit
(p� m):

Y → η +O(m2/p2),

where the pseudo-rapidity η ≡ − ln[tan(θ/2)] is only function of the momenta.
As the event-by-event longitudinal position of the actual interaction is distributed
around the nominal interaction point with 30 cm r.m.s. width, it is useful to distin-
guish the detector pseudo-rapidity, ηdet, respect to the (0, 0, 0) nominal interaction
point, from the particle pseudo-rapidity, η, measured with respect to the z0 position
of the real vertex where the particle originated.

An other convenient variable is the transverse momentum with respect to the
beam axis

pT ≡ (px, py)→ pT ≡ p sin(θ).

Since the magnetic field, the trajectory of charged particles produced with non-
zero initial velocity in the bending plane of the magnet is described by an helix. It
is parametrized using five parameters:

• curvature C, defined as C ≡ sign(Q)/2R, where R is the radius of helix and
Q is the charge of the particle;

• signed impact parameter d0, i.e., the distance of the closest approach to the
z-axis, defined as d0 ≡ Q(

√
x2
c + y2

c − R), where (xc, yc) are the coordinates
of the center-guide;

• cot(θ) ≡ pz/pT , where θ is the polar direction of particle at the point of its
closest approach to the z-axis;

• ϕ azimuthal angle, i.e., ϕ direction of the particle at the point of closest
approach to the z-axis;

• z0, the z coordinate of the point of closest approach to the z-axis.

2.2.2 Tracking system
Three-dimensional charged particle tracking is achieved through an integrated

system consisting of three silicon inner subdetectors and a large outer drift-chamber,
all contained in a superconducting solenoid of 1.41 T.

Layer ØØ (LØØ)

Layer ØØ is the innermost layer of the microvertex silicon detector [28]. It
consist of one layer of microstrip silicon sensors which covers the beryllium beam
pipe along 80 cm longitudinally. The state-of-the-art silicon sensors of LØØ can be
biased to very high (O(500 V)) voltages allowing to maintain a good signal-to-noise
ratio even after high integrated radiation dose (O(5 Mrad)). The radiation hardness
of such sensors allowed their installation at radius of about 1.5 cm to the beam axis.
This feature is a crucial parameter to ensure a good resolution of the decay vertices.
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The LØØ strips are parallel to the beam axis allowing the first sampling of the
track within the r-ϕ plane, the inter-strip pitch is 25 µm and the read-out pitch is
50 µm

The signal of the 13, 824 channels are fed via special optical fiber cables to the
front-end electronic which is placed in a region separated from the sensors and
less exposed to the radiation. The operation temperature of this device is around
0 ◦C maintained by sophisticated cooling system. LØØ contributes to the radial
thickness of about 0.6%X0 for only sensors and increases to 1%X0 where pass the
cooling system.3

Silicon VerteX detector II (SVXII)

The Silicon VerteX detector II [35] is a fine resolution vertex detector which
provides five 3D sampling of a track between about 2.5 and 10 cm of radial distance
from the beam (see fig. 2.2). Its cylindrical geometry coaxial with the beam is
segmented along z into three barrels for a total length of 96 cm which provides
complete geometrical coverage within |ηdet| < 2 (see fig. 2.2a). Each barrel consists
of twelve azimuthal wedges each of which subtends approximately 30◦. One wedge
of a given barrel comprises five concentric layers of silicon sensors installed to a
radial distance from the beam between 2.5 to 10.6 cm as shown in fig 2.2b. Sensors
in a layer are arranged into independent readout units, called ladders. The ladder
components are two double sided strip silicon sensors and a multilayer board where
all front-end electronics, biasing circuits etc. are allocated. There are three different
possible sort of strip orientations in each sensor’s side: r-ϕ (axial) strip oriented
parallel to the beam axis, small angle stereo (SAS) strips whose orientation is tilted
by 1.2◦ with respect to the beam axis and the 90◦ stereo strips which lie in the
transverse plane. All the five layers have axial strips on one side, three of the other
sides have 90◦ stereo and two SAS strips. Resolution into r-z plane is about 70 µm
while r-ϕ resolution is 11 µm. The latter provides an impact parameter resolution
of about 20 µm for tracks with high pT while is only 35 µm for tracks of 2 GeV/c of
transverse momentum.

The read-out electronics are arranged at the end of the SVXII along z-axis.
The average signal-to-noise ratio is S/N ≥ 10, with a single hit efficiency grater
than 99%. To reduce thermal noise and to prevent thermal expansion SVXII is
held roughly constant temperature of 10-15 ◦C. The average material of SVXII
corresponds to 5%X0.

Intermediate Silicon Layer (ISL)

The Intermediate Silicon Layer [11] detector is a silicon tracker placed at inter-
mediate radial distance between the SVXII and the drift chamber (see fig 2.3). The
polar coverage extends to |ηdet| < 2 and the coverage along z-axis is 2 m which gives
a total active surface of about 3.5 m2. In the central region ISL consist of a single
layer of silicon installed over a cylindrical barrel at radius of 22 cm. In the forward
region, two layers of silicon are placed on concentric barrels at radii of 20 and 28 cm.
Each silicon layer is azimuthally divided into a 30◦ wedge structure matching that

3The symbol X0 indicates the radiation length.
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(a) (b)

Figure 2.2 Schematic illustration of three instrumented mechanical barrels of SVXII (a)
and of the cross-section of a SVXII barrel in the (r, ϕ) plane (b).

of SVXII. The basic readout unit is the ISL ladder which is similar to the SVXII
ladder but consists of three, instead od two, sensors wirebonded in series. Average
mass of the detector is 2%X0.

Central Outer Tracker (COT)

The outermost tracking volume of CDF II is a large open cell drift chamber
called the Central Outer Tracker.[12]

The COT has a coaxial bi-cylindrical geometry and extends, within the central
region, from 44 to 132 cm radially from the beam axis. The volume of the COT is
filled with Argon (50%) and Ethane (50%) gas mixture. The chamber consists of 8
superlayers (see fig 2.4a), each of them contains 12 radial layers of 40 µm diameter
gold-plated tungsten sense wires (anode). Four superlayers have their constituent
sense wires oriented parallel to the beam axis in order to measure the hit coordi-
nates in the r-ϕ plane. These are radially interleaved with four stereo superlayers
having wires canted at angle of either +3◦ or −3◦ with respect to the beam-line.
Combined readout of stereo and axial superlayers allows the measurement of the r-z
hit coordinates. Each superlayer is azimuthally segmented into open drift cells. A
drift cell contains a row of 12 sense wires alternating with 13 gold-plated tungsten
potential wires which optimizing the electric field of 2.5 kV/cm. The cathode of the
detection circuit is the field panel which closes the cell along the azimuthal direc-
tion. It is made of gold on a 0.25 mm thick Mylar sheet. Innermost and outermost
radial extremities of a cell are closed both mechanically and electrostatically by the
shaper panels, which are Mylar strips carrying field-shaping wires attached.

Wire planes are azimuthal tilted by 35◦ in order that charges drift approximately
perpendicular to radial direction r̂, as result of the combined effect of crossed electri-
cal and magnetic field. Drift electrons follow approximately azimuthal trajectories
at speed v ≈ 100 µm/ns. The resulting maximum drift time is about 100 ns, well
smaller than the inter-bunch spacing 396 ns, providing the read-out and processing
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Figure 2.3 Schematic illustration of the CDF II tracking system in the (r, z) plane.

of the COT data available for the Level 1 trigger.
The COT efficiency is grater then 99% for tracks of pT > 20 GeV/c with a single

hit resolution σhit ≈ 175 µm and pT resolution σpT /p2
T ∼ 0.15%(GeV/c)−1.

The COT also provides a measurement of charge particles ionization energy loss
(dE/dx). Information about the mass of particle can be obtained combining the
values of dE/dx of the particles and their momentum. From information of dE/dx
a separation of 1.5σ is obtained between π and K with a momentum greater than
2 GeV/c. COT average material corresponds to 1.6%X0.

2.2.3 Other CDF II subdetectors
In this subsection are briefly discussed the subdetectors not used in this analysis.

Time Of Flight detector (TOF)

The Time of Flight detector (TOF) is a cylindrical array made of 216 scintillat-
ing bars and it is located between the external surface of the COT and the cryostat
containing the superconducting solenoid. Bars of 280 cm long and oriented along
the beam axis all around the inner cryostat surface at an average radial distance
of 138 cm. Both longitudinal sides of the bars collect the light pulse into PMT
(photomultiplier) and measure accurately the timing of the two pulses. The time
between the bunch crossing and the scintillation signal in these bars defines the β
of the charged particle while the momentum is provided by the tracking. Informa-
tion about the mass of the particle is available through the combination of TOF
information and tracking measurements.

The separation between charged pions and kaons with pT . 1.5 GeV/c is equiv-
alent to 2σ. Considering the pT selection trigger of this analysis (pT > 2 GeV/c)
the TOF information is irrelevant.

19



2 CDF II detector at Tevatron Collider

(a) (b)

Figure 2.4 A 1/6 section of the COT (a). Sketch of three cells in the second superlayer (b)
.

Calorimeters

Outside the solenoid, scintillator-based calorimetry covers the region |ηdet| ≤ 3.6,
and is devoted to the measurement of the net energy deposition of photons, electrons
and hadrons using the shower sampling technique.

The basic structure consists of alternating layers of passive absorber, which
allows the shower process, and plastic scintillator, which measures the energy of
the shower. The CDF II calorimeters are finely segmented in solid angle around
the nominal collision point, and the angular segmentation is organized in projective
towers in the η-ϕ plane.

The central electromagnetic calorimeter (CEM) [16] consists of twenty four 15◦
wedge in ϕ. A wedge consists of 31 layers of scintillator interleaved with aluminum-
clad lead sheets, divided along ηdet in ten tower (∆ηdet ' 0.1). To maintain a
constant thickness in X0, independent from the polar angle, some lead layers are
replaced with increasing amounts of acrylic as a function of ηdet. Light from each
tower is shifted in wavelength and guided to the PMT, as shown in fig 2.5a. At
a radial depth of about 6X0, which is approximately the depth corresponding to
the peak of shower development, the central strip multi-wire proportional chambers
(CES) measure the transverse shower shape improves the efficiency of separation of
e± and γ from π0 and single hadrons.

The total thickness of the electromagnetic section corresponds to approximately
19X0 and 1λint (absorption length). The relative energy resolution is σE/E =
13.5%/

√
E plus a constant term of 2% due to calorimeter non-uniformities and to

the uncertainty on the calibrations.
Around the electromagnetic calorimeter it is located the central hadronic calorime-

ter (CHA) which consists of alternating layers of plastic scintillator and iron (passive
absorber). The total thickness of the hadron section corresponds to approximately
4.5λint, for an energy resolution of σE/E = 50%/

√
E ⊕ 3%.

The lateral region up to |ηdet| < 3.6 it is covered by the plug calorimeter (see
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(a) (b)

Figure 2.5 Schematic illustration of an azimuthal sector of the central electromagnetic
calorimeter (a). Elevation view of one quarter of the plug calorimeter (b).
.

fig 2.5b). The absorber in the plug electromagnetic calorimeter (PEM) consists
in twenty three 4.5 mm thick lead plates sandwiched between two 0.5 mm thick
stainless-steel sheets. Between the absorber plates are inserted the 4 mm thick
scintillator tiles. The signal of each tile is collected independently by embedded
wavelength-shifter fibers which guide it to the photomultipliers. A preshower de-
tector consist of a thicker (10 mm) amount of scintillator installed in the first layer
of PEM.

The plug hadronic calorimeter (PHA) consists of 23 layers of 5 cm thick iron
absorber alternated with 6 mm scintillator layers. Within each sampling layer the
scintillator is arranged in tiles similar to those used in the PEM.

The total thickness of the electromagnetic section of the plug corresponds to
approximately 21X0, for an energy resolution of σE/E = 16%/

√
E⊕ 1%. The total

thickness of the hadronic section corresponds to approximately 7λint, for an energy
resolution of σE/E = 74%/

√
E ⊕ 4%.

Muon System

CDF II is equipped with scintillating counters and drift tubes installed at various
radial distances from the beam to detect muons and shielded by the iron structure
of the inner detector. Scintillators serve as trigger and vetoes while the drift cham-
bers measure the ϕ and z coordinates. These systems cover the whole range of
pseudorapidity |ηdet| < 2. The shield is constituted by the iron of the calorimeter,
the return yoke and further steel walls intended to filter out the punch-through of
hadrons. The amount of material between the interaction point and the innermost
muons detector corresponds approximately to 5.4λint for orthogonal incident π.

Different muon sub-systems cover different geometrical regions. In the |ηdet| .
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0.6 region moving outward from the beam we encounter the inner CMU chambers
at radial distance of 3.5 m. In the same ηdet region, but separated radially from
the CMU by 60 cm thick wall of steel, lie the CMP chambers. The wall of steel is
useful to recognize and discard high energy hadrons unchecked by the calorimeter.
The muon coverage in the 0.6 . |ηdet| . 1 region is ensured by the CMX chambers,
embedded in scintillator counters and placed at radius of 3.5 m. The IMU detectors
are instead drift tubes covering the pseudorapidity range 1 . |ηdet| . 2

CDF II triggers on muons only emerging at |ηdet| ≤ 1.5, where the muon coverage
is segmented with sufficient granularity to survive high occupancies, and pT &
1.5 GeV/c. The muon emerging at |ηdet| > 1.5 can be used only in offline analysis.

Cherenkov Luminosity Counters

The luminosity (L) is inferred from the average number of inelastic interactions
(N) according to

N · fbc = σinpp̄ · ε · L,

where fbc is the bunch crossing frequency, σinpp̄ = (59.3± 2.3) mb is the inelastic pp̄
cross-section and ε is the efficiency to detect an inelastic scattering.

The number of interactions is measured by the Cherenkov Luminosity Counters
(CLC) [10]. They consist of two separate modules, covering 3.7 . |ηdet| . 4.7
range symmetrically in the forward and backward regions. Each module consists of
48 thin 110–180 cm long, conical, isobutane-filled Cherenkov counters.4 They are
arranged around the beam-pipe in three concentric layers and point to the nominal
interaction region. Cherenkov-light is collected into a 2.5 cm diameter long PMTs.
With a Cherenkov angle θC = 3.4◦, the momentum thresholds for light emission are
9.3 MeV/c for electrons and 2.6 MeV/c for charged pions.

Prompt charged particles from the pp̄ interactions are likely to traverse the
full counter length, thus generating large signals and allowing discrimination from
the smaller signals of particles emitted at the same angle due to the beam halo
or to secondary interactions. In addition, the signal amplitude distribution shows
distinct peaks for different particle multiplicities entering the counters. This allows
a measurement of N with 4.4% relative uncertainty in the luminosity range 1031 .
L . 1032 cm−2 s−1. This accuracy, combined with the 4% relative uncertainty
on the inelastic pp̄ cross-section, results in an instantaneous luminosity measured
with 5.9% relative uncertainty. This uncertainty does not affect the results of this
analysis since ratios of branching fractions, instead of absolute branching fractions,
are measured.

2.3 Trigger system
Since the interaction rate at the Tevatron collider is well beyond the current

maximum storage rate, the task of separating the great majority of background
events from the tiny fraction of interesting events is of crucial importance. This goal
is achieved by the trigger system which evaluates the partial information provided
by the detector in real time and discards the uninteresting events.

4Isobutane guarantees high refraction index and good transparency for ultraviolet photons.
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Figure 2.6 Functional block diagram of the CDF II trigger and data acquisition system.

The Tevatron running at 396 ns of interbunch spacing has a collision rate of
about 2.53 MHz. The writing of events on permanent memories cannot proceed
faster than 100 Hz. For practical reasons the CDF II trigger has been designed
as a multi-stage system in order to reduce the acquisition rate allowing to record
only the events with a physical interest. Its architecture is modular and divided
into three levels, represented in fig 2.6. Each level receives the data event from the
previous one and, provided with more accurate detector information and more time
for processing, chooses to discard it or to send it to the next level. The Level-1 and
Level-2 consist of custom-designed hardware components while the Level-3 consists
of commercial CPU running software algorithms. Level-1 receives the data directly
from the detector front end electronics. Events passing the Level-3 are stored to
permanent memory.

Level 1

In order to avoid deadtime caused by the trigger processing time, the Level-
1 has to sustain the clock of the Tevatron. In a complex detector as CDF II, it
is inconceivable an effective trigger architecture able to process data and make a
decision in less than 396 ns. The impasse is overcome with a fully pipelined front-
end electronics for the whole detector. The signal of each channel is stored, every
396 ns, in a buffer of a 42-cell long pipeline. This means that the Level-1 has
396× 42 ns ' 16 µs to make its decision before the content of the buffer is deleted.
The actual latency of the Level-1 is 5.5 µs.

The Level-1 processes and reconstructs coarse information from the COT (two-
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Figure 2.7 Impact parameter distribution as measured by the SVT.

dimensional tracks in the transverse plane), the calorimeter (total energy and pres-
ence of single towers over threshold) and the muon system (muon stubs in the
chambers).

The eXtremely Fast Tracker (XFT) is a custom processor that identifies two-
dimensional tracks in the (r, ϕ) view of the COT with a momentum greater than
1.5 GeV/c in the time with the Level-1 decision. It uses pattern matching to first
identify short segments of tracks and then to link them into full-length tracks. The
output rate of the Level-1 is 18 kHz.

Level 2

The Level-2 trigger combines the information of the calorimeters, the muons
chambers ed the tracking system to better identify the interesting physical objected
(e, µ, γ, missing transverse energy). Calorimetric information is used to perform
clustering and identification of hadronic jets.

The Silicon Vertex Trigger (SVT)[14, 23] is the principal component of the Level-
2. It is a processor dedicated to the identification of the events with a secondary
vertex, especially that associated to decays of heavy quarks. The SVX combines
XFT track information with the SVXII hits and reconstructs two dimensional tracks
with pT > 2 GeV/c with an impact parameter resolution of about 35 µm. The impact
parameter distribution of the real data is shown in fig 2.7.

The maximum latency of Level-2 is about 20 µs for each event and the output
rate is 300 Hz.

Level 3

This stage of the trigger is implemented by software running in parallel on
commercial processors. Level-3 reconstruct the event provided by Level-2 at full
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detector resolution. Level-3 codes are very similar to the offline reconstruction
codes. The Level-3 decision to write on tape happens after the full reconstruction
of the event is completed and the integrity of its data is checked in less than 10 ms.
Typical size for an event is 150 kB. The available output rate passed from 75 Hz.
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3 Data sample

In this chapter we describe the data sample used in this work and the procedure
to extract the B0

s → D±s h
∓ (where h = π or K) decays (referred to as “signal”)

from other events. We also describe the Monte Carlo simulation, which is a crucial
ingredient of this analysis.

3.1 B0
s → D±s h∓ at CDF II

Data collected at CDF II is organized in acquisition periods called runs; a run
is a period of continuous operation of the CDF II Data Acquisition system. To
ensure the quality of data requested for the physics measurements each run has to
be approved by the on-line and off-line operators and by the detectors experts. The
list of the approved runs is called the GoodRunList.

The analysis described in this thesis uses data collected between December 2004
(run 190697) and September 2011 (run 312510). After the application of the stan-
dard CDF data-quality requirements on triggers and of the GoodRunList the data
sample corresponds to an integrated luminosity of

∫
L dt ' 9.3 fb−1.

To discuss in detail the trigger and the off-line selection, it is useful to define
some relevant quantities used in the analysis. They are calculated in the laboratory
frame, and are illustrated in figure 3.1.

Transverse plane: the plane perpendicular to the proton beam direction, in which
the profile region of the beam is approximately Gaussian with r.m.s. σT ≈
30 µm.

d0

π

π

d0

primaryfake
secondary
vertex

vertex

secondary
vertex

LT < 0

LT(B
0
s
)

LT (Ds)B0
s

KK

Figure 3.1 Schematic illustration of a pp̄ event containing a B0
s → D±

s h
∓ decay. Ellipses

indicate vertices, arrows indicate tracks of charge particle. Nothing are in scale.
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Transverse momentum pT : the projection of the momentum vector onto the
transverse plane.

Primary vertex: the space-point of the reconstructed primary pp̄ interaction,
where b-quark, once produced, quickly hadronizes.

Secondary vertex: the space point in which the decay of a long-lived particle
occurs. The components of its displacement with respect to the primary vertex
in the transverse plane are indicated by the vector xv = βTγct = (pT /m)ct,
for a particle of mass m and momentum p that decays at time t after its
production.

Transverse decay-length (LT or Lxy): the displacement of a secondary vertex
with respect to the primary one, projected onto the transverse momentum
vector of the decaying particle. The transverse displacement of the secondary
vertex (xv) may not be collinear with (pT ) because of the measurement un-
certainties. Thus, the transverse decay-length,

LT ≡
pT · xv
pT

, (3.1)

is usually preferred to xv as an estimator of the transverse decay-length trav-
eled before decay. LT is typically positive for a true long-lived decays, while
it is negative or positive with almost equal probability for decays from fake
vertex or for combinations of prompt tracks.

Transverse decay-length (LT (Ds)B0
s
): is the transverse decay-length for theDs

candidates with respect to the decay vertex of the B0
s candidates.

Pointing angle (αT or αxy): the angle, in the transverse plane, between the mo-
mentum of the B0

s candidate and the displacement vector of the secondary
vertex (xv) with respect to the primary one.

Impact parameter (d0): the component of the distance of the closest approach
between a track and the primary vertex in the transverse plane. This is a
signed quantity defined as

d0 ≡
(pT × xv) · ẑ

pT
. (3.2)

The impact parameter is typically different from zero for products of long-
lived decays, while is comparable with the convolution of its resolution and
the transverse size of the beam for particles produced in the vicinity of the
primary vertex (prompt background).

Azimuthal opening angle (∆ϕ): the opening angle between two outgoing par-
ticles projected in the transverse plane.
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3.2 Online data selection
The data have been collected with the Displaced-Tracks Trigger. The Displaced-

Tracks Trigger is composed by several trigger paths. A “trigger path” is a well de-
fined sequence of Level-1, Level-2 and Level-3 requirements. The CDF standards
require each data sample used for physics analysis to have been selected by a trig-
ger path which is appropriate for that particular analysis. This means that no use
is made of the so-called “volunteers” (potentially valid events randomly picked up
from trigger paths devoted to a different purpose). The specific trigger paths used
for this analysis can be grouped in three main categories having similar kinemat-
ics requirements: B_CHARM, B_CHARM_LOWPT and B_CHARM_HIGHPT. In particular the
B_CHARM_LOWPT and B_CHARM_HIGHPT paths have different thresholds on the trans-
verse momenta with respect to the B_CHARM, lower the first and higher the second.

The purpose of having several paths with different transverse momenta require-
ments is to keep the trigger as efficient as possible at higher instantaneous lumi-
nosities. In fact, during a store the luminosity decreases as a function of the time
approximately as an exponential. Since a set of trigger selections is optimized for
an average reference luminosity, during the store, it can be either too loose, suf-
fering high trigger accept-rates and inducing dead-time in the trigger decision, or
too tight, leaving a fraction of trigger bandwidth unused. Therefore CDF uses
simultaneously different trigger selections (having different pT -thresholds) and self-
adjusting prescale factors (“dynamic prescale”, changing on a scale of milliseconds)
to optimally exploit the available bandwidth in a single store.1

Displaced-Tracks Trigger is a generic trigger for the flavor physics. It selects
a large variety of decays, as B0 → h+h

′−, B0
(s) → D−(s)π

+, D?+ → D0π+, B0 →
D+
s D
−
s , etc., and that is possible because it uses criteria which are common to all

flavored decays, for instance a “long” lifetime. In particular it requires a pair of
tracks satisfying some requirements onto typical variables in flavor physics, as the
impact parameter.

Our data sample B0
s → D±s K

∓ has a four-tracks final state which may have
more than one pair of tracks satisfying the trigger requirements. If we indicate with
1 and 2 the tracks of a trigger-pair, the requirements of the B_CHARM path are:

Level-1 Two XFT tracks having pT (1, 2) > 2 GeV/c and pT (1) + pT (2) > 5 GeV/c
with opposite curvature are required. Also it is required an angular opening
in the transverse plane 0◦ < ∆ϕ < 135◦, to reduce the fraction of events with
light-quark background, which has azimuthally-opposed direction.

Level-2 Trigger requires a pair of oppositely-curved SVT tracks that satisfy a min-
imal linearized fit quality requirement: χ2

SVT < 25 [17]. The requirements of
the first level are confirmed, but the azimuthal opening-angle requirement is
further tightened with respect to the previous trigger stage to 2◦ < ∆ϕ < 90◦.
A lower threshold in impact parameter d0 is required to enrich the sample
in b-hadrons. An upper threshold is dictated by hardware constrains, then

1A trigger prescaled of a factor N (acceptance fraction) will only accept every randomly-chosen
Nth event that satisfies the trigger requirements. This reduces the trigger accept-rate by a factor
N , leaving unchanged the signal-to-background ratio in the sample.
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Table 3.1 Kinematic requirements of B_CHARM path and its variants.

trigger path requirement

B_CHARM_LOWPT
pT (1, 2) > 2 GeV/c

pT (1) + pT (2) > 4 GeV/c

B_CHARM
pT (1, 2) > 2 GeV/c

pT (1) + pT (2) > 5 GeV/c

B_CHARM_HIGHPT
pT (1, 2) > 2.5 GeV/c

pT (1) + pT (2) > 6.5 GeV/c

the trigger requirement is 120 µm < |d0(1, 2)| < 1 mm. The spatial resolu-
tion of SVT (35 µm for tracks with pT > 2 GeV/c) in identifying secondary
vertices is further exploited: positive decay-length of the tracks are required,
LT > 200 µm.

Level-3 The Level-1 and Level-2 criteria are reapplied on Level-3 tracks. In addi-
tion, a requirement on the longitudinal separation between the two tracks at
the point of their minimum distance from the beam is applied: |∆z| < 5 cm.
This significantly reduces the fraction of combinations of two tracks descending
from particles produced in distinct primary vertex. A |η| < 1.2 requirement
on tracks excludes events with particles outside the XFT fiducial acceptance.

The B_CHARM_LOWPT trigger path applies the same requirement of the B_CHARM,
but loosing few of them. At Level-1 charge-opposed tracks are not required. The
threshold on transverse momenta is pT (1, 2) > 2 GeV/c.

The B_CHARM_HIGHPT trigger path requirements are the same of the B_CHARM,
but with higher thresholds on transverse momentum and scalar sum of transverse
momenta, respectively pT (1, 2) > 2.5 GeV/c and pT (1) + pT (2) > 6.5 GeV/c. The
momenta thresholds for the three trigger paths are summarize in the table 3.1.

3.3 Extraction of the B0
s → D±s h∓ signal

The first step of the off-line analysis consists in applying a baseline selection to
the events collected by the B_CHARM, B_CHARM_LOWPT and B_CHARM_HIGHPT trigger
paths. The reconstruction of B0

s → D±s h
∓ candidates is solely based on tracking,

neglecting any particle identification information. The particle identification (PID)
in CDF is made observing the loss of energy of the track in the COT. Since the avail-
able separation is about 1.5σ (for tracks with a momentum greater than 2 GeV/c),
event-by-event separation is not possible.2

For each candidates, the invariant mass of all possible pairs of oppositely-curved
tracks is computed, requiring an invariant mass in the range [1.005, 1.035] GeV/c2

to form the φ meson. A third track is associated to these two tracks to form the
2In fact in this work we follow a statistical approach that combines information from PID and

kinematics into a fit of composition as described in chapter 6.
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Table 3.2 Baseline selection for B0
s → D−

s h
+ data sample.

B0
s → D−s h

+ unit selection
χ2

2D(B0
s ) − < 40

χ2
3D(B0

s ) − < 100
LT (B0

s ) µm > 0
pT (B0

s ) GeV/c > 5
|d0(B0

s )| µm < 100
LT (Ds)B0

s
µm > 0

∆R(Ds, h) − < 2
pT (h) GeV/c > 2
|η| − < 1

m(KK) GeV/c2 [1.012, 1.027]
m(φh) GeV/c2 [1.9485, 1.9885]

Ds candidate in a mass range [1.7, 2.2] GeV/c2. An additional track is associated to
the Ds to reconstruct the B0

s candidates. The invariant mass is calculated in the
Dsπ hypothesis and a mass range of [4.4, 6.6] GeV/c2 is required.

In a hadronic collider, considering the high number of random tracks that acci-
dentally form an invariant mass in the B0

s window, a simple invariant mass selection
is not enough to reject the high amount of events not coming from a B0

s . To reduce
such a background, additional selection requirements are made on the following
B0
s and Ds candidates quantities: transverse impact parameter |d0(B0

s )|, transverse
momentum pT (B0

s ), transverse decay-length LT (B0
s ) and LT (Ds)B0

s
. We, also, re-

quired the D−s −h+ pair to satisfy a two- and three-dimensional fit to the B0
s decay

vertex returning in two parameters measuring the quality of these fits, respectively
χ2

2D(B0
s ) and χ2

3D(B0
s ). In addition we require a pseudo rapidity |η| range for all

four tracks and ∆R(D−s , h+) selection, where ∆R =
√

∆φ2 + ∆η2 is the angular
distance between the D−s candidate and the h− track. Furthermore we choose a
tighter window in the mass region both for the φ and for D−s candidates. The
selection requirements are reported in table 3.2.

The invariant mass distribution in D−s π
+ mass assignment is reported in fig-

ure 3.2. A clear peak at the nominal B0
s mass it observed. At higher masses region

we expected background events due to random tracks combinations (“combinatorial
background”). Instead in the lower mass region we expected also the contribution
of the mis-reconstructed events (“physics background”). To get a rough estimate
of the signal yield a simple χ2-binned fit was performed. A Gaussian shape was
assumed to parameterize the “signal” peak, while an exponential distribution was
used to parameterize the contribution given by combinatorial background. We do
not consider the mis-reconstructed region in this rough fit because it is complex
to parameterize that region. The physics background distributions will be studied
in detail in the chapter 6. We estimate a yield of 5029 ± 278 B0

s → D−s π
+ events

forming a signal peak with a width σ = (19.7± 0.6) MeV/c2.
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Figure 3.2 Invariant mass distribution of the pair D−
s π

+ after the baseline cuts summarized
in the table 3.2.

3.4 Monte Carlo simulation
We used the official CDF II simulation to study the general features of the

B0
s → D±s h

∓ decays and mis-reconstructed decays. The simulation is used in several
parts of this analysis: it is a fundamental tool for the optimization procedure of
selection (chap. 4) and for the extraction of the mass and momentum templates
(chap. 6). In the optimization procedure we use an Artificial Neural Network,
trained with the Monte Carlo of the B0

s → D±s K
∓, then a well tuned simulated

sample is crucial. Here, we summarize only the general features of the standard
CDF II simulation, without technical details.

3.4.1 CDF II simulation
We used the Bgenerator package to generate large samples of b-hadron de-

cays [36]. Bgenerator simulates the production and the decay of b-hadrons only:
no fragmentation products, collision remnants, pile-up3 events or information about
QCD background and fragmentation are present in the simulated data. These in-
formation are superfluous for this work since we used the Monte Carlo simulation
just to study the features of the decays of interest (signal and physics background),
while we extracted the information on background from the data.

The simulation takes into account how the detector and trigger configurations
change during data-taking period: changes of the silicon coverage, of the XFT and
the SVT configurations, as well as of the Displaced-Track Trigger trigger selection.
For convenience the B − B̄ oscillations were inhibited (∆md = ∆ms = 0), and the
lifetime difference in the B0

s system was set to zero (∆Γs/Γs = 0). Figure 3.3 shows
the expected Dsπ-mass distribution of the data sample, resulting from the Monte

3The overlapping interactions for each bunch crossing.
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Figure 3.3 Dsπ-mass distribution of the simulated events (a) (log scale (b)).

Carlo simulation of each mode normalized using the branching fractions derived
from the current experimental knowledge [18]. We generated about 1.6× 107 events
for the signal decays: B0

s → D−s π
+ and B0

s → D±s K
∓. As shown in fig 3.3 we

expected, in the Dsπ mass assignment, a high peak due to the B0
s → D−s π

+ decay
at the B0

s nominal mass, while the B0
s → D±s K

∓ peak is shifted at lower masses,
and it has an asymmetric tail at lower masses. The different contributions of mis-
reconstructed decays can be seen in figure 3.3. We generated about 8× 106 events
for each of the following mis-reconstructed decays :

• B0
s → D?−

s π+ and B0 → D
(?)+
s π−, where the γ/π0 from the D?

s is not recon-
structed;

• B0
s → D

(?)−
s ρ+, where the γ/π0 from the D?

s is not reconstructed, and the
same happens to the π0 from ρ+(→ π+π0);

• B0
s → D

(?)−
s π+π0, similar to the decay described above;

• B0
s → D?±

s K∓ and B0 → D
(?)−
s K+, where the D?−

s is not reconstructed, in
addition the mass assignment is wrong because a K is mistaken for a π;

• B0
s → D

(?)−
s e+νe and B0

s → D
(?)−
s µ+νµ, as above we have a wrong mass

assignment and further νe,µ not reconstructed;

• Λ0
b → D

(?)−
s p, where it has a mis-assigned mass;

• B0 → D−[→ K+2π−]π+, where there is a double-wrong mass assignment.

3.4.2 Monte Carlo validation
In order to evaluate whether the Monte Carlo simulation describes the data

reliably, we performed a comparison between their kinematics distributions. To
extract signal distribution we must accurately subtract background. However this
is not possible with an high accuracy from the sample selected by the our baseline
cuts, since the amount of background in the sample is sizeable (see figure 3.2).
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Figure 3.4 Dsπ-mass distribution after cuts reported in table 3.3.

We then decided to use a tighter selection, inspired to the work done in ref. [2].
Therefore we used different requirement reported in the table 3.3, and the Dsπ-
mass distribution obtained is reported in figure 3.4. The background level is now
acceptable for our purpose.

To remove the effect of the background we applied a procedure called sideband
subtraction: for each quantity, we subtracted the distributions of background can-
didates (red region in figure 3.4) from the distributions of signal plus background
candidates (blue region). The signal plus background candidates are defined as
those found in the invariant-mass range |mDsπ − µ| < 2σ where µ = 5.3663 GeV/c2

and σ = 20 MeV/c2 are respectively the parameters returned from a simple χ2-
binned fit performed on the mass distribution in figure 3.4. For the background
candidates, we assumed that their contribution below the signal peak is dominated
by random tracks satisfying the selection requirements (combinatorial background).
We sampled this component using candidates at higher masses with respect to the
signal peak; we therefore used, as background candidates, those in the mass range
[5.5, 6.5] GeV/c2. Assuming an exponential shape for the combinatorial background,
we rescaled the distribution of background candidates to the number of background
expected below the signal.

Kinematic composition of the sample

The data sample is collected using three different trigger paths: B_CHARM_LOWPT,
B_CHARM, and B_CHARM_HIGHPT. As explained in section 3.2, these trigger paths have
different momentum thresholds, thus our final data sample is composed by a mixture
of different kinematics. Since our trigger system uses dynamical prescales, even the
coefficient of the three kinematics are not trivial to determine. In fact we can
have, for example, some events triggered by B_CHARM_HIGHPT and not by B_CHARM,
although the B_CHARM kinematics includes the B_CHARM_HIGHPT. Therefore, in order
perform a correct comparison between data and Monte Carlo we have to take into
account this effect.

The CDF simulation does not have access to the database trigger dynamical
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Table 3.3 Cuts applied to the data sample to perform the comparison between simulated
and real events.

B0
s → D−s h

+ unit selection
χ2

2D(B0
s ) − < 10

χ2
3D(Ds) − < 15
LT (B0

s ) µm > 300
pT (B0

s ) GeV/c > 5.5
|d0(B0

s )| µm < 60
LT (Ds)B0

s
µm > 0

∆R(Ds, h) − < 1.5
pT (h) GeV/c > 2
|η| − < 1

m(KK) GeV/c2 [1.013, 1.028]
m(φh) GeV/c2 [1.948, 1.988]

Table 3.4 Kinematic composition of the data sample.

sub-sample kinematic fraction

L B_CHARM_LOWPT 27.2%

M B_CHARM 46.5%

H B_CHARM_HIGHPT 26.3%

prescales information, therefore we have to separately generate the different trigger
scenarios, and combine them with the relative fraction observed in data. To extract
these fractions we divided the data sample in three independent sub-samples with
well-defined kinematics. The three sub-samples were defined as follows:

Sample L where events triggered B_CHARM_LOWPT;

Sample M where events triggered B_CHARM, but did not trigger B_CHARM_LOWPT

Sample H where events triggered B_CHARM_HIGHTPT, but triggered neither
B_CHARM nor B_CHARM_LOWPT.

The composition of the sample is reported in table 3.4. The Dsπ mass distribu-
tion is shown in the figure 3.5 for the three different sub-samples.

Primary Vertex

The primary vertex requires a special treatment. In fact, there is a difference
between the calculation of the primary vertex in the data and in the simulation. In
data the spatial position of the primary vertex is measured using algorithms exploit-
ing the global event information, in which the candidate of interest is removed. In
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Figure 3.5 Invariant mass distribution of the pair Dsπ in the three samples described in
the text.

our Monte Carlo, we generate only the B0
s candidates (see section 3.4) so we have no

access to the distributions of the large number of additional tracks in the detector
coming from the pp̄ collision. This means that in the Monte Carlo we cannot use
the same procedure of data. Thus to estimate the simulated primary vertex, we
get the point of the beamline at the minimum distance from the straight line which
has the momentum of the B0

s candidate as direction and passes through its decay
vertex. The figure 3.6 shows the comparison of the distributions of the coordinate
of the primary vertex (PVx, PVy, PVz); the agreement is satisfactory. Incidentally,
this confirms that the offline algorithm does a good job in determining the vertex
from the global event information.

Transverse decay-length error

We notice a discrepancy between data and Monte Carlo for the distribution
of the transverse decay-length error σLT as reported in figure 3.7. Since probing
the sources of this discrepancy requires a large amount of work, which is clearly
out of scope of this work, we decide do not use σLT as variable in any part of
the selection procedure (or a related observable such as the transverse decay-length
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significance LT /σLT ).

pT (B) reweighting of the Monte Carlo

We also observe a very small discrepancy at lower value in the pT (B) distribution
between simulated b-hadrons candidates and real data (see fig. 3.8). This is not
necessarily an indication of a problem in the way our detector simulation emulates
the reconstruction of transverse momentum. Most likely, this is simply due to the
production spectra of B0

s mesons not being exactly in agreement with the nominal
spectrum assumed in Bgenerator.

Therefore, to obtain a better match, we reweight the pT (B) spectrum of the
simulation to the pT (B) spectrum observed in data. This is completely equivalent
to correcting the input generator spectrum, but is simpler to implement in practice.
We parameterize the histogram ratio with the following function F (see fig 3.8b,
3.8d and 3.8f):

F(pT (B); a0, a1, a2, a3) = a0 · erf(a1(pT (B)− a2)) + a3,

where a0, a1, a2, a3 are free parameters in the fit and erf(x) = 2
∫∞
x exp(−t2)dt/

√
π.

We compare the distributions of several observables for the B0
s → D−s π

+ mode, for
which we can easily extract a sizeable and clean signal from data. The comparisons
are shown in the fig 3.9, 3.10 and 3.11, respectively for the sub-samples L, M and H.
The agreement between simulation and data is satisfactory for all the observables.
We expect the same level of agreement to occur for the B0

s → D±s K
∓ mode, which

is kinematically very similar to the B0
s → D−s π

+.
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Figure 3.6 Distribution of the primary vertex coordinate in data (points with error bars)
and in Monte Carlo (filled histogram): x-coordinate (a), y-coordinate (b), z-coordinate (c).
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Figure 3.8 Data-simulation comparison of the pT (B0
s ) distribution in the sub-samples L (a),

M (c) and H (e) (filled histograms are the Monte Carlo, dots with errors are data). Ratio
between data histogram and Monte Carlo histogram for sub-samples L (b), M (d) and H (f).
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Figure 3.9 Comparison of background-subtracted distributions in the B0
s → D−

s π
+ de-

cay and equivalent Monte Carlo distributions for sub-sample L: pT (B0
s ) (a), LT (B0

s ) (b),
d0(B0

s ) (c), χ2
3D(B0

s ) (d), χ2
2D(B0

s ) (e), αT (f), η(B0
s ) (g), ϕ(B0

s ) (h), LT (Ds)B0
s

(i),
cos θ∗(Ds) (j), mφπ (k), mKK (l). Data (points with error bars) are compared with
reweighted Monte Carlo simulation (filled histogram).
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Figure 3.10 Comparison of background-subtracted distributions in the B0
s → D−

s π
+ de-

cay and equivalent Monte Carlo distributions for sub-sample M: pT (B0
s ) (a), LT (B0

s ) (b),
d0(B0

s ) (c), χ2
3D(B0

s ) (d), χ2
2D(B0

s ) (e), αT (f), η(B0
s ) (g), ϕ(B0

s ) (h), LT (Ds)B0
s

(i),
cos θ∗(Ds) (j), mφπ (k), mKK (l). Data (points with error bars) are compared with
reweighted Monte Carlo simulation (filled histogram).
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Figure 3.11 Comparison of background-subtracted distributions in the B0
s → D−

s π
+ de-

cay and equivalent Monte Carlo distributions for sub-sample H: pT (B0
s ) (a), LT (B0

s ) (b),
d0(B0

s ) (c), χ2
3D(B0

s ) (d), χ2
2D(B0

s ) (e), αT (f), η(B0
s ) (g), ϕ(B0

s ) (h), LT (Ds)B0
s

(i),
cos θ∗(Ds) (j), mφπ (k), mKK (l). Data (points with error bars) are compared with
reweighted Monte Carlo simulation (filled histogram).
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tion

I believe that at the end of the
century the use of words and
general educated opinion will
have altered so much that one
will be able to speak of machines
thinking without expecting to be
contradicted.

Alan Turing

In this chapter we describe the procedure used to optimize the selection of the
data sample, which is based on an Artificial Neural Network. The final configuration
is chosen maximizing the score function S/

√
S +B for the B0

s → D±s K
∓ decay.

4.1 Artificial Neural Network

An Artificial Neural Network (NN) [34] is an information processing paradigm
that is inspired by the way biological nervous systems, such as the brain, process
information. The key element of this paradigm is the novel structure of the informa-
tion processing system. It is composed of a large number of highly interconnected
processing elements (neurones) working in unison to solve specific problems. ANNs,
like people, learn by examples. An ANN is configured for a specific application, such
as pattern recognition or data classification, through a learning process. Learning
in biological systems involves adjustments to the synaptic connections that exist
between the neurones. This is true of ANNs as well.

Neural Networks, with their remarkable ability to derive meaning from com-
plicated or imprecise data, can be used to extract patterns and detect trends that
are too complex to be noticed by either humans or other computer techniques. A
trained NN can be thought of as an “expert” in the category of information it has
been given to analyse. This expert can then be used to provide projections given
new situations of interest and answer “what if” questions.

There are three major learning paradigms, each corresponding to a particular
abstract learning task. These are supervised learning, unsupervised learning and
reinforcement learning. Here we do not discuss the unsupervised learning and the
reinforcement learning, we will talk only about the supervised learning, the learning
paradigm used in this work and in the majority of the HEP applications.
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4 Neural Network-based cuts optimization

Figure 4.1 Multilayer perceptron with one hidden layer.

In the supervised learning there is an external teacher, so that each output
unit is told what its desired response to input signals ought to be. During the
learning process global information may be required. An important issue concerning
supervised learning is the problem of error convergence, i.e. the minimization of
error between the desired and computed unit values. The aim is to determine a set
of weights which minimizes the error. The most common algorithm for adjusting
the weights that optimise the classification performance of a neural network is the
so-called back propagation. In the back propagation algorithm the error is backward
propagating to the weights.

4.2 Neural Network implementation

The Neural Network used in this work is implemented in the package TMVA [29],
a toolkit for multivariate analysis. Here, we describe with more details the algorithm
of the NN used in this analysis.

An Artificial Neural Network can be considered as a simulated collection of
interconnected neurons, with each neuron producing a certain response at a given
set of input signals. By applying an external signal to some (input) neurons the
network is put into a defined state that can be measured from the response of one or
several (output) neurons. One can therefore view the neural network as a mapping
from space of input variables x1, . . . , xnvar onto one-dimensional output variable (e.g.
in case of a signal-vs-background discriminant problem). The mapping is nonlinear
if at least one neuron has a nonlinear response to its input.

While in principle a neural network with n neuron can have n2 directional con-
nections, the complexity can be reduced by the organising the neurons in layers
and only allowing direct connections from a given layer to the following layer (see
fig. 4.1). This kind of NN is termed multilayer perceptron. The first layer of a
multilayer perceptron is the input layer, the last one the output layer, and all oth-
ers are hidden layers. The first layer consists of nvar neurons that hold the input
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4 Neural Network-based cuts optimization

values, x1, . . . , xnvar , where nvar is the number of variables for the problem. While
the output layer consists of one neuron that holds the output variable, the NN es-
timator yANN. A weight is associated to each directional connection between the
output of one neuron and the input of another neuron. The output of a NN (here
for simplicity assumed to have a single hidden layer) is given by

yANN = ρ(y(2)
1 , . . . , y(2)

nh |w
(2)
11 , . . . , w

(2)
nh1) =

ρ

(
ρ
(
x1|w(1)

11 , . . . , w
(1)
nvar1

)
, . . . , ρ

(
xnvar |w

(1)
11 , . . . , w

(1)
nvar1

)
|w(2)

11 , . . . , w
(2)
nh1

)
,

(4.1)

where nvar and nh are the number of neurons in the input layer and in the hidden
layer, respectively, w(1)

ij is the weight between input-layer neuron i and hidden-layer
neuron j, and w(2)

j1 is the weight between the hidden-layer neuron j and the output
neuron. The function ρ is the neuron response function (Rn 7→ R). The response
function often it can be separate into a Rn 7→ R synapse function κ, and a R 7→ R
neuron activation function α, so that ρ = α ◦ κ.1

The supervised learning consists of getting as input of the Neural Network N
training events xa = (x1, . . . , xnvar)a, a = 1, . . . , N , where we know the desired
output for every input event. For each training event a the NN output yANN,a is
computed and compare with the desired output ŷa ∈ {1, 0} (1 for signal events and
0 for the background events). An error function E, measuring the agreement of the
network response with the desired one, is defined by

E(x1, . . . ,xN |w) =
N∑
a=1

Ea(xa|w) =
N∑
a=1

1
2(yANN,a − ŷa)2, (4.2)

where w denotes the ensemble of adjustable weights in the Network. The set of
weights that minimises the error function can be found using the method of gradient
descent. Starting form a random set of weights w(ρ) the weights are updated by
moving a small distance in w-space into the direction −∇wE where E decreases
most rapidly

w(ρ+1) = w(ρ) − η∇wE, (4.3)

where the positive number η is the learning rate.

4.3 Cuts optimization
We chose as input of the Neural Network the following variables:

pT (B0
s )− transverse momentum of the B0

s candidates;

LT (B0
s )− transverse decay-length of the B0

s candidates;

χ2
3D(B0

s )− the χ2 of the 3-dimensional fit to the B0
s candidates decay vertex;

d0(B0
s )− impact parameter of the B0

s candidates;
1The synapse function used in this work is the sum of the weights

∑n

i=1 y
(l)
i w

(l)
ij , while the

neuron activation function is tanh(x).
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αT (B0
s )− pointing angle in the transverse plane of the B0

s candidates;

LT (Ds)B0
s
− transverse decay-length for the Ds candidates with respect to the

decay vertex of the B0
s candidates;

cos (θ∗Ds
)− angular distribution of the Ds candidates in the center of mass frame

of the B0
s .

The signal input distributions are taken from the Monte Carlo of the B0
s →

D±s K
∓, as described in chapter 3, while for the background sample we chose the

higher mass sideband, i.e. events with masses in the range [5.5, 6.5] GeV/c2. The
distribution of the training variables, for signal and background, are shown in fig-
ure 4.2. These variables have been chosen because of their discriminant power (see
sec. 4.4) which is satisfactory for the scope of this work. Adding other variables
would not improve greatly the separation power, at the price of an increasing of the
level of complexity of the Neural Network. In fact using too many variables may be
very powerful but also very dangerous. The supervised learning approach is based
on the assumption that the simulation perfectly reproduces real data. Since this is
clearly wrong, a NN which uses a very large numbers of input variables may use
“small” discrepancies between data and Monte Carlo to reject signal events, leading
to a non optimal (maybe biased) selection. Fortunately in our data sample we can
a posteriori verifies that NN works fine looking at the reference B0

s → D−s π
+ peak.

Anyway, the variables of our choice are both expected, and experimentally verified,
to be well-reproduced by our simulations with all their correlations, being of essen-
tially kinematical nature. A separate discussion is worthwhile for the specific case
of the pointing angle (αT (B0

s )).

Pointing angle

As explained in the section 3.4.2, the position of the primary vertex (PV) is
estimated in the Monte Carlo using a different algorithm than data. We used
the information from candidates and the beamline to extract the primary vertex
coordinates. Although the agreement between data and Monte Carlo is satisfactory
(see fig. 3.6) the strategy used introduces an issue in the estimate of the pointing
angle (see fig. 4.3a). In fact the PV position extracted in such a way, is highly
correlated to the direction of the momentum of the B0

s candidates, above all in the
z-coordinate, where we have a large uncertainty. Unfortunately the pT (B0

s ) and the
position of the PV directly enter in the definition of the three-dimensional pointing
angle α3D.

Since the problem affects especially the z-direction (see fig. 4.3b), we decide
to use the projection of the pointing angle onto the transverse plane. To avoid
introducing a bias in the Neural Network, we decided to use own algorithm for
determination the primary vertex both in the simulation and real data, for both the
signal and the background sample, and the agreement is satisfactory (see fig. 4.4
and fig. 4.5).
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Figure 4.2 Input variables to the Neural Network: pT (B0
s ) (a), LT (B0

s ) (b), d0(B0
s ) (c),

χ2
3D(B0

s ) (d), αT (e), LT (Ds)B0
s

(f), cos θ∗(Ds) (g). The signal is the filled histogram (in
blue), while the background is the hatched one (in red). The histograms are normalized to
one.

46



4 Neural Network-based cuts optimization

 [rad]
3D

α
0 0.05 0.1 0.15 0.2

C
a
n
d
id

a
te

s
 p

e
r 

0
.0

0
5
 r

a
d

0

0.05

0.1

0.15

0.2
Data

MC

­1 = 9.30 fbL dt∫CDF Run II Preliminary 

σ/
∆

­40

­20

0

(a)

 [rad]
2D

α
0 0.05 0.1 0.15 0.2

C
a
n
d
id

a
te

s
 p

e
r 

0
.0

0
5
 r

a
d

0

0.05

0.1

0.15

0.2

Data

MC

­1 = 9.30 fbL dt∫CDF Run II Preliminary 

σ/
∆

­2

0

2

(b)

Figure 4.3 Comparison of the pointing angle distribution in data and in the simulation
(where the coordinates of the primary vertex are estimated with the algorithm explained
in the text). (a) The 3-dimensional pointing angle, (b) the transverse pointing angle.
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Figure 4.4 Comparison of the transverse pointing angle distribution in data and in simula-
tion. The pointing angle is calculated for both data and simulation with the primary vertex
estimate with the algorithm used in the simulation.
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Figure 4.5 Comparison of pointing angle distribution, in the combinatorial background mass
region [5.5, 6.5] GeV/c2, calculate with the algorithm introduced in Monte Carlo simulation
for calculation of the primary vertex (points) and with the standard algorithm (hatched
histogram). (a) 3-dimensional pointing angle, (b) transverse pointing angle.
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4.3.1 Isolation of the B0
s candidate

In the previous iteration of this analysis, as described in ref. [2], a requirement
on the isolation of the B0

s candidate was optimized and used in the final selection.
In fact the isolation is one of the most used variables in the B-physics analyses,
since it has a large discriminant power between signal and background. In the most
of cases it provides information orthogonal to the standard kinematic variables.
However we decide to drop it from our analysis. The improvement of the statistical
uncertainty because its use in the final selection would not justify the large increasing
of the level of sophistication of the fit of composition of the data sample. This
would cause a larger systematic uncertainty, that would totally compensate the
statistical improvement. The definition of the isolation and the summary of the
studies performed on this are reported in appendix A.

4.4 Final selection
Finally we trained the Neural Network and we obtain as output the distributions

shown in figure 4.6. Figure 4.6a shows the distribution of the output variable of
the NN for the signal (in blue), peaked at 1, and for the background (in red). The
separation between the two distributions is the equivalent of 3.1 standard deviations
between Gaussians. Figure 4.6 reports the correlation matrix of the variables used
in the NN training, for the signal sample (see fig. 4.6c) and for the background
sample (fig. 4.6d).

The cut on the NN output response is chosen by maximizing the score function

score function = S√
S +B

,

where S is the number of B0
s → D±s K

∓ events estimated by the simulation, while B
is the number of background events taken by fitting, with an exponential function,
the high mass sideband in the data. The score function in (4.4) is a good choice
for a typical “counting experiment” being inversely proportional to the statistical
uncertainty of the measurement of a signal yield. The figure 4.7 shows the score
function for several cuts on the NN variable. We choose as our final selection the
cut NN > 0.9.

The Dsπ-mass distribution is shown in the figure 4.8b. For comparison in the
figure 4.8a is also reported the mass distribution with the baseline selection of
table 3.2. A strong reduction of background is apparent, with little reduction of the
B0
s → D−s π

+ peak height, as expected from the good separation shown in fig. 4.6.
Background reduction is particularly strong in the region above the B0

s → D−s π
+

peak, which is essentially pure combinatorial.

4.5 Procedure validation
To validate the optimization procedure we check that the simulation and real

data have the same response for different NN requirements, using the reference
B0
s → D−s π

+ peak. Table 4.1 reports the efficiency for different NN requirements,
as resulting from simulation and real data. The B0

s → D−s π
+ yield is roughly
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Figure 4.6 Output response of the Neural Network (a); output response of the Neural
Network in logarithmic scale (b). The histograms are normalized to one. Also it is reported
the linear correlation matrix for the signal (c) and for the background (d)
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Figure 4.7 Score function as function of the Neural Network response (a), and its zoom (b).
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Figure 4.8 Invariant mass distribution of the Dsπ pair after the baseline selection (a), and
after the final selection cut (b).

estimated with the same strategy described in section 3.3, through a χ2-binned fit.
Although the efficiency in data is systematically higher than of that observed in the
simulation, the agreement is satisfactory, confirming that the NN gives a similar
response if applied to data or simulation. The observed systematic effect may be
due to the trivial technique used to extract the B0

s → D−s π
+ number of events.

Table 4.1 Comparison between the Monte Carlo efficiency and the efficiency of the B0
s →

D−
s π

+ decay mode.

NN cut εMC εData

0.9 0.796 0.861± 0.078
0.8 0.856 0.905± 0.082
0.7 0.892 0.929± 0.085
0.6 0.914 0.953± 0.087
0.5 0.934 0.972± 0.089
0.4 0.948 0.992± 0.092
0.3 0.961 0.993± 0.093
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5 Particle identification

This chapter is devoted to the description of the Particle Identification observable
used in the fit of composition.

5.1 Particle Identification (PID) at CDF II
Individual hadron identification is difficult with the CDF II detector, since the

detector was designed for high-pT physics measurements. The TOF is the only de-
tector entirely devoted to do this function, but its performance is marginal for par-
ticles of interest for this analysis, having transverse momenta greater than 2 GeV/c.
For charged particles with pT & 2 GeV/c, a reasonably effective separation can be
obtained from the rate of energy loss through ionization (dE/dx) in the gas that
fills the active volume of the drift chamber.

The average total energy-loss per unit length of a particle (heavier than electron)
of charge q, traversing a gas volume with velocity cβ, is approximated by the Bethe-
Bloch formula [18]〈

dE

dx

〉
= 4πNe4

mec2β2 q
2
[

ln
(2mec

2β2γ2

I

)
− β2 − δ(β)

2

]
, (5.1)

where N is the electron density in the medium, me (e) is the electron mass (charge),
I is the mean excitation energy of the medium atoms, and δ(β) is the correction
that accounts for the density effect at high velocities. To a good approximation, the
most probable dE/dx value of a charged particle is a function just of its velocity. If
the momentum of the particle is measured, the mass can also be determined. In the
COT, the signal induced on each sense-wired depends on the amount of ionization
charge produced by the passage of the charged particle near the wire. It is measured
in nanoseconds because it is encoded as the digital pulse-width between the leading
and the trailing-edge time of the hit. Multiple samplings along the trajectory of the
charged particle allow a more reliable estimation of dE/dx. The COT samples a
maximum of 96 dE/dx measurements per track, from which a 80% truncated mean
is calculated to avoid the adverse effect of long positive tails in the estimation of
the average dE/dx.

The empirical equation, that better models the COT average energy-loss as a
function of velocity, is the following variant of Bethe-Bloch curve:〈

dE

dx

〉
= 1
β2

[
c1 ln

(
βγ

b+ βγ

)
+ c0

]
+ a1

(
β − 1

)
+ a2

(
β − 1

)2 + C, (5.2)
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Figure 5.1 Universal curves as a function of particle momentum for positive (a) and negative
(b) particle.

where ai, b, cj and C are parameters extracted from data. The function in the equa-
tion (5.2), has all the features that are present in the Bethe-Bloch curve (eq. (5.1)).
The parameters c0 and c1 represent the intensities of the 1/β2 fall and of the rel-
ativistic rise. The parameter b is associated with the COT gas properties, e.g.,
mean excitation energy of the gas atoms, etc.. The parameters a1 and a2 pro-
vide a further adjustment, especially in the low βγ region. Figure 5.1 shows the
universal curves as a function of the momentum for pions, kaons, protons and
electrons (positive charge 5.1a, negative 5.1b). Muons are indistinguishable from
pions: the ≈ 1.5 ns dE/dx resolution is insufficient to resolve the difference between
their ionization rates, which is inappreciable because of the small mass difference
mπ± −mµ± ' 34 MeV/c. Electron curve is approximately a straight line at about
20 ns as shown in the figure 5.1.

The individual charge collections output by the COT are subject to several
corrections to eliminate a number of detector related conditions as high-voltage
correction, angle and drift distance correction, pressure correction, etc.. In addi-
tion, an accurate calibration of the uniformity of the dE/dx response in time is
required. The dE/dx calibration is based on a large samples of D0 → K−π+ and
Λ → pπ− decays taken with the displaced track trigger. In this work we use the
official CDF dE/dx universal curves and the official templates for the different mass
hypothesis [32].

5.2 dE/dx residual

The dE/dx residual (in mA mass hypothesis) of a charged particle, with mo-
mentum p and observed specific energy-loss dE/dx|obs, is defined as

resA = dE

dx

∣∣∣∣
obs
− dE

dx

∣∣∣∣
A
, (5.3)

where the dE/dx|A is the expected dE/dx, determined from the function (5.2)
evaluated at βγ = p/mA. The official CDF II parameterization of dE/dx residual
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Figure 5.2 Distribution of observed dE/dx residual, for pions (with pion mass hypothesis)
(a, b), for kaons (with kaon mass hypothesis) (c, d) and for protons (with proton mass
hypothesis) (e, f).
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Figure 5.3 Monte Carlo momentum distribution for K from B0
s candidate in the decay

B0
s → D±

s K
∓. The fill region show the section used to make the template of the PID

observable.

distributions with the correct mass hypothesis (see ref. [32]) is made with analytical
functions (convolution of several Gaussian terms), currently available in a stand-
alone C code. Figure 5.2 shows the dE/dx residual distribution observed for pions,
kaons and protons, in the mπ,mK and mp mass hypothesis, respectively, and their
official parameterizations. We will indicate with Pπ+(resπ+) the parameterization
of the positive pion dE/dx residual, and with PK+(resK+), Pp(resp) the parame-
terization of the positive kaon and proton residual, respectively. The anti-particles
have similar notation.

In order to have just one single dE/dx observable, to be used in the fit of com-
position (see section 6), we modified these templates to account for the momentum
dependence, as explained in the next section.

5.3 PID observable
In this analysis we follow a statistical approach that combines information from

PID and kinematics into a fit of composition as we will describe in chapter 6.
We use the PID information on the daughter track of the B0

s candidates, and the
information is summarized in a single observable, the dE/dx residual in the pion
hypothesis:

resπ = dE

dx

∣∣∣∣
obs
− dE

dx

∣∣∣∣
π
. (5.4)

The resπ is a momentum-dependent observable, as it can be seen from figure 5.1, if
the daughter particle of the B0

s candidates is not a pion. We then have to account
for this momentum dependence in the Likelihood terms [33]. Therefore we decide to
integrate over the momentum dependence to avoid a complex momentum-dependent
parametrization of the mis-reconstructed decay modes.

If the daughter particle of the B0
s candidates is a pion, the template is exactly

the Pπ(resπ) function, from ref. [32], as reported in figures 5.2a and 5.2b. Instead if
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Figure 5.4 Comparison of the PID distribution for pions, kaons, protons and electrons. In
(a) positive particles PID-distributions, (b) negative particles.

it is a kaon, a proton or an electron, some adjustments are necessary. For instance
the probability density function (p.d.f.) of the dE/dx residual in the positive pion
mass hypothesis of a generic particle A+ (A+ = K+, p, e+), that we can indicate
with ℘A(resπ+), can be extracted by marginalizing the momentum dependence:

℘π+(resπ+) = Pπ+(resπ+),

℘A+(resπ+) =
∫
PA+(resπ+ + δπ

+A+(p)) fA+(p) dp

'
∑
i

PA+(resπ+ + δπ
+A+(pi)) fA+(pi) ∆pi,

where fA+(p) is the particle momentum distribution and δπ+A+(p) is the difference
between expected dE/dx in π+ and A+ mass hypothesis, according to the universal
curves of fig. 5.1:

δπ
+A+(p) = dE

dx

∣∣∣∣
π+
− dE

dx

∣∣∣∣
A+

.

To simplify calculations, we performed a numerical integration by dividing the mo-
mentum distribution in ten bins, where ∆pi is the width of each bin, as shown in
fig. 5.3. We will assess a systematic uncertainty due to the binning of the momen-
tum in the chapter 7. The p.d.f.s of negatively-charged particles are extracted in
the same way.

The result of the procedure is reported in figure 5.4a, where we compare dE/dx
response for positively-charged pions, kaons (from B0

s → D−s K
+ decay), protons

(from Λ0
b → D−s p decay) and electrons (from B0

s → D−s e
+νe decay). The separation

power between pions and kaons is ≈ 1.4σ, between pions and protons is ≈ 1.6σ, and
between pions and electrons is ≈ 0.9σ. The PID distributions for negatively-charged
particles have similar separation power, and are shown in figure 5.4b. Distributions
of daughter particle of the other decays are similar.
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6 Fit of composition

This chapter describes the fit of composition of the B0
s → D±s h

∓ data sample.

6.1 Discriminating observables
To disentangle all the components of the data sample we decide to perform an

extended unbinned Maximum Likelihood fit. A good choice of the discriminating
observables is crucial to fully exploit the available information. The goal is to
obtain most of the available information using the minimum number of observables.
In addition, the independence of variables simplifies the modeling of the probability
density, since it factorizes the joint probability density.

We represent the kinematic and PID information using two discriminating ob-
servables:

mDsπ− invariant mass of the final state particles with the Dsπ mass assignments;

resπ− dE/dx residual in the pion mass hypothesis.

Particle identification information is summarized with one observable, the residual
resπ, defined as

resπ = dE

dx

∣∣∣∣
obs
− dE

dx

∣∣∣∣
π
, (6.1)

where dE/dx|obs indicates the observed energy-loss, while dE/dx|π indicates the
expected energy-loss in pion mass hypothesis, as discussed in chapter 5.

6.2 Likelihood function
The Likelihood function L is the product of the Likelihoods Li of all events:

L (ν,θ) = νN

N ! e
−ν ·

N∏
i=1

Li(θ|xi) (6.2)

where the index i runs over the events. N is the total number of events passing
the final selection, θ is the vector of parameters that we want to estimate, x is the
vector of the discriminating observables xi = {mDsπ, resπ}i. The Poisson term in
eq. (6.2) takes into account the uncertainty due to the finite size of the total sample,
where ν is the mean number of events.
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6 Fit of composition

The Likelihood of each event is written as the sum of a “decays” term and a
combinatorial background term:

Li = fbkg ·L bkg
i + (1− fbkg) ·L dec

i . (6.3)

The index bkg (dec) labels the part of the function that describes the combinatorial
background (all the decays) term; fbkg is the fraction of combinatorial background
events and 1− fbkg is the fraction of all the decays in the data sample. We conven-
tionally label as ℘m the term that describes the invariant-mass distributions (“mass
term”), and ℘PID the term that models the dE/dx density (“PID term”). The
Likelihood of each individual decay mode is factorized as a product of two p.d.f.s:

L dec =
s∑
j=1

fj · ℘mj (mDsπ) · ℘PIDj (resπ), (6.4)

in which the index j runs over the thirteen expected components: B0
s → D−s π

+,
B0
s → D±s K

∓, B0
s → D?−

s π+, B0
s → D?±

s K∓, B0 → D
(?)+
s π−, B0 → D

(?)−
s K+,

B0
s → D−s ρ

+, B0
s → D−s π

+π0, B0
s → D−s e

+νe, B0
s → D−s µ

+νµ, Λ0
b → D−s p, Λ0

b →
D?−
s p and B0 → D−π+. The parameters fj are their fractions and are determined

by the fit. From the (s − 1) independent fractions resulting by the normalization
condition,

fs =
s−1∑
j=1

fj , (6.5)

we determine the yield of each mode. The fractions fj are the same for a decay
mode and its CP conjugate, therefore the parameter we measure in our fit is the
CP-averaged branching ratio B(B0

s → D±s K
∓) ≡ [B(B0

s → D+
s K

−) + B(B0
s →

D−s K
+) + B(B̄0

s → D+
s K

−) + B(B̄0
s → D−s K

+)]/2.
The Likelihood of the background term factorizes as the decays term:

L bkg = ℘m(mDsπ) · ℘PID(resπ). (6.6)

In equations (6.3)-(6.6) the functional dependence on the vector θ was omitted,
since in the equations we explicitly wrote some terms of this vector as fbkg and fj .

6.3 Mass probability density function

Signal and full reconstructed decays

We extract the p.d.f. mass templates of various decays mode from Monte Carlo
sample of B → DX described in the section 3.4. The mass line shape of the
full reconstructed decay modes, in particular the signal modes B0

s → D±s h
∓ (see

fig. 6.1), is parameterized using the following p.d.f.:

℘m(m;α) =fbulk
[
f1G (m;µ1, σ1) + (1− f1)G (m;µ2, σ2)

]
+ (1− fbulk)T (m; b, c, µ1),

(6.7)

57



6 Fit of composition

]2
c [GeV/πsDm

5.2 5.4 5.6

2
c

C
a
n
d
id

a
te

s
 p

e
r 

6
.8

0
 M

e
V

/

0

1000

2000

3000

4000

CDF Run II Monte Carlo

π s D→ 0
sB

Prob. = 0.296
 = 51.72χ

ndf = 47

CDF Run II Monte Carlo

σ/
∆

­2
­1
0
1

2

(a)

]2
c [GeV/πsDm

5.1 5.2 5.3 5.4 5.5

2
c

C
a
n
d
id

a
te

s
 p

e
r 

6
.8

0
 M

e
V

/

0

1000

2000

CDF Run II Monte Carlo

 Ks D→ 0
sB

Prob. = 0.745
 = 42.12χ

ndf = 49

CDF Run II Monte Carlo

σ/
∆

­2

­1

0

1

(b)

Figure 6.1 Mass p.d.f. for the B0
s → D±

s h
∓ decays. (a) B0

s → D−
s π

+, (b) B0
s → D±

s K
∓.

where
G (m;µ, σ) = 1√

2πσ
exp

(
− 1

2
(m− µ

σ

)2)
,

T (m; b, c, µ) = 1
K

exp
(
b(m− µ)

)
· erfc

(
c(m− µ)

)
,

K =
∫ m2

m1
exp

(
b(m− µ)

)
· erfc

(
c(m− µ)

)
dm,

erfc(x) = 1− erf(x) = 2√
π

∫ +∞

x
e−t

2
dt.

We use a sum of two Gaussians to parameterize the bulk of the distribution, while
the long lower-mass tail is parameterized with the function T (m; b, c, µ). fbulk is
the relative fraction of the double Gaussian bulk with respect to the total (bulk
plus tail), while 1− fbulk is the fraction of the tail term.

Mis-reconstructed

The mDsπ distribution for the mis-reconstructed decay modes is modeled with
the convolution of a resolution function, a Gaussian, and a so-called “Argus func-
tion” [13]:

℘m(m;β) = G (m; 0, σ) ∗A (m;mA, cA),

A (m;mA, cA) =


1
KA

[
m ·

√√√√1−
(
m

mA

)2
· exp

(
− cA

(
m

mA

)2)]
if m < mA,

0 if m ≥ mA,

where the normalization KA is:

KA =
∫ mA

m1
m ·

√√√√1−
(
m

mA

)2
· exp

(
− cA

(
m

mA

)2)
dm (m1 < mA),
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Figure 6.2 Mass template of various fully-reconstructed decay modes: B0 → D
(?)+
s π− (a),

B0 → D
(?)−
s K+ (b), Λ0

b → D−
s p (c), and B0 → D−π+ (d).
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Figure 6.3 Mass template of various mis-reconstructed decay modes: B0
s → D−

s ρ
+ (a),

B0
s → D?−

s π+ (b), B0
s → D?±

s K∓ (c), B0
s → D

(?)−
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s µ
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Figure 6.4 Mass template of the background term. (a) mass distribution of the pair Dsπ in
log-scale. (b) mass distribution of the pair Dsπ in linear-scale, where the background p.d.f.
is extrapolated in the lower mass region.

where mA and cA are the Argus function parameters, while σ is the resolution
parameter. Some mass templates are reported in figure 6.3.

The semi-leptonic decays enter in the category of mis-reconstructed decays, since
the neutrino is not detected. The p.d.f mass templates of those decay modes (see
figures 6.3f (g)) are parameterized with an exponential function:

E (m; a) = 1
K

exp(−am),

K =
∫ m2

m1
exp(−am) dm.

(6.8)

Background mass term

The mass shape of the combinatorial background is extracted from real data,
using the higher mass side-band. The mass region [5.6, 6.5] GeV/c2, excluded from
the central fit, is fitted with an exponential function (see eq. (6.8)), as shown in
Figure 6.4. The value of the slope of the exponential function obtained is abkg =
(0.98± 0.10) (GeV/c2)−1, and it is a fixed parameter in the central fit. A systematic
uncertainty on the level of knowledge of this slope will be assessed, details are
reported in chapter 7.

6.4 PID probability density function

The p.d.f.s of the dE/dx residual for the various components are extracted using
the procedure illustrated in chapter 5. Here we just show p.d.f.s for kaons, protons
and electrons for some decays (see figure 6.5). The p.d.f.s of the other decays are
similar. We assume that the background is mostly composed by pions and kaons.
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Figure 6.5 PID templates of the daughter tracks of some decays. (a, b) kaons from B0
s →

D±
s K

∓, (c, d) protons from Λ0
b → D−

s p, (e, f) electrons from B0
s → D

(?)−
s e+νe.
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Therefore the p.d.f. of the background can be written as:

℘PIDbkg (resπ+) = fπbkg · ℘π+(resπ+) + (1− fπbkg) · ℘K+(resπ+), (6.9)
℘PIDbkg (resπ−) = fπbkg · ℘π−(resπ−) + (1− fπbkg) · ℘K−(resπ−), (6.10)

where ℘π±(resπ±), ℘K±(resπ±) are the p.d.f.s for positively- and negatively-charged
pions and kaons in the pion mass hypothesis, respectively. fπbkg(1 − fπbkg) is the
inclusive charge-averaged fraction of pions(kaons) in the background.

6.5 Fit implementation
The fit of composition is performed on the Dsh data sample. We use only candi-

dates whose discriminating observables satisfy the following conditions: the invari-
ant Dsπ mass within [5.1, 5.6] GeV/c2, and |resπ| < 6. The requirement |resπ| > 6
excludes candidates with unlikely values of observed dE/dx to reduce a small con-
tamination from tracks with corrupted dE/dx information. The total number of
fitted candidates is N = 12453.

6.5.1 Gaussian constrains
Branching fractions of several mis-reconstructed decay modes are known. There-

fore we added a Gaussian constraint to the fit for each known mode to help the
convergence. For each of them the Likelihood function L multiplies a Gaussian
term G (λi;µi, σi), where λi is the parameter to be constrained, µi is the expected
value of such a parameter and σi is its total uncertainty. For instance, if we consider
a generic B → DX decays, and its branching fraction relative to the B0

s → D−s π
+

decay mode is known, the λB→DX parameter can be written as:

λB→DX = fB→DX
fB0

s→D
−
s π+

. (6.11)

fB→DX and fB0
s→D

−
s π+ are the observed relative fraction in our data sample. How-

ever, to translate the information from a ratio of branching fractions to a ratio of
relative fractions we need to account for several different factors, as the reconstruc-
tion efficiency correction ε (see section 6.7 for the definition). In fact we obtain
that

fB→DX
fB0

s→D
−
s π+

= B(B → DX)
B(B0

s → D−s π+)
· fq
fs
· ε(B → DX)
ε(B0

s → D−s π+)
· B(D → Y )
B(Ds → φπ) , (6.12)

where ε(B0
s → D−s π

+) and ε(B → DX) are respectively the reconstruction efficien-
cies for the B0

s → D−s π
+ and for B → DX. Y is the final state of the D decay

and fq (q = d, s) is the probability that a b-quark hadronized in a B meson with a
q-quark. If the B(B → DX) is known, we can easily calculate the value of λB→DX ,
and its uncertainty using the equation (6.12). All input branching fractions, fs,
fq come from PDG [18], while efficiency corrections from CDF simulation. Ta-
ble 6.1 reports the constrained parameters in the fit, the known values of branching
fractions ratios and the applied constraints (third column).
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6 Fit of composition

Table 6.1 Table of the parameter constrained in the fit of composition and their values.

parameter (λi) branching fractions [18] constrain (µi ± σi)
B(B0

s → D−s π
+) = (3.2± 0.4)× 10−3 −

f
B0→D(?)+

s π−

fB0
s→D

−
s π+

B(B0→D(?)+
s π−)

B(B0
s→D

−
s π+) = (2.16± 0.26)× 10−5

(3.2± 0.4)× 10−3 (3.3± 0.5)× 10−2

f
B0→D(?)−

s K+

fB0
s→D

−
s π+

B(B0→D(?)−
s K+)

B(B0
s→D

−
s π+) = (2.2± 0.5)× 10−5

(3.2± 0.4)× 10−3 (2.6± 0.7)× 10−2

fB0
s→D

?−
s π+

fB0
s→D

−
s π+

B(B0
s→D

?−
s π+)

B(B0
s→D

−
s π+) = 0.65+0.15

−0.13 ± 0.07 0.45± 0.11

fB0
s→D

−
s ρ+

fB0
s→D

−
s π+

B(B0
s→D

−
s ρ

+)
B(B0

s→D
−
s π+) = 2.3± 0.4± 0.2 0.31± 0.08

6.5.2 Mass shift and resolution
By the comparison between simulated and real B0

s → D−s π
+ decays we observe

that simulation does not accurately reproduce data. This is a known feature of the
CDF simulation. In particular the simulated invariant mass distribution is shifted
by few MeV with respect to data, and the mass resolution is smaller, about 10%.
Table 6.2 reports the values obtained for data and simulation.

To account for these differences we added to the fit of composition two free
parameters. One is a global mass shift, assumed the same for all the decays, to
allow the mass scale to be determined by the real data. The other one is a mass
resolution scale factor. This was applied only to the B0

s → D−s π
+ decay p.d.f.,

which is reconstructed with a correct mass assignments. In particular σ1, σ2 of
eq. (6.7) are re-defined as σ1 → sσ1 and σ2 → sσ2, where s is a free parameter of
the fit, close to the unit. Instead for all other mis-reconstructed decays, including
also B0

s → D±s K
∓ mode, we did not apply any mass resolution scale factor, because

the shapes of their mass distributions is much wider and mainly determined by the
wrong mass assignment, which dominates over the 10% effect on resolution. We
assess systematic uncertainty due to neglecting the resolution corrections on the
other decays in chapter 7.

Table 6.2 Mass mean values and widths for data and simulation for the B0
s → D−

s π
+ decay.

parameter Data Simulation
µ [GeV/c2] 5.36574± 0.00036 5.37431± 0.00018
σ [GeV/c2] (2.001± 0.036)× 10−2 (1.7861± 0.0015)× 10−2

6.5.3 Simultaneous fit of D−s h+ and D+
s h− samples

The probability density function of the fit of composition we wrote so far, does
not distinguish between D−s h

+ and D+
s h
− final sample. However since the PID

response is separately parameterized for negatively- and positively-charged particles
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6 Fit of composition

(see section 6.4), we must account for that in the fit. Therefore we perform a
simultaneous fit of these two sub-samples and we can write the total Likelihood
function L of all events:

L (θ) =
N+∏
i=1

L +
i (θ|x+

i ) ·
N−∏
i=1

L −
i (θ|x−i )

where the index i runs over the events. N+ is the number of events of the D−s h+

sample, N− is the number of events of D+
s h
− sample, and where N = N+ +N− is

the total number of events. θ is the vector of parameters that we want to estimate,
x+ (x−) is the vector of the discriminating observables x+

i = {mDsπ, resπ+}i (x−i =
{mDsπ, resπ−}i). As in section 6.2 we have to account for the poissonian uncertainty
due to the finite size of the total sample N , plus a term for the binomial uncertainty
due to the fact we splitted the sample in two sub-samples N = N+ + N−. This
means that we have to consider N as a Poisson variable with mean ν and and that
N+ and N− are binomially distributed, with a probability p to have N+, and 1− p
to have N− events, when the sum is constrained to be, in our specific case, equal to
N . Then the new extended Likelihood function can be written as:

L (ν, p,θ) = νN

N ! e
−ν · N !

N+!(N −N+)!p
N+(1−p)N−N+ ·

N+∏
i=1

L +
i (θ|x+

i ) ·
N−∏
i=1

L −
i (θ|x−i ).

All the parameters θ remain unchanged, as described in the previous sections. They
do not double since they are in common (charge averaged) between the two sub-
samples during the minimization.

6.6 Fit results

The fit of composition was performed by minimizing the quantity −2 ln(L ), as
defined in equation (6.3), using the Minuit numerical minimization package [30].
Table 6.3 reports the results, while the corresponding correlation matrix is discussed
in subsection 6.6.1. Table 6.4 reports the yields returned from the fit.

As expected from the current known branching fractions involved, we have a
sizable (≈ 80% of the sample) contribution from the three modes B0

s → D−s π
+,

B0
s → D−s ρ

+ and B0
s → D?−

s π+. All the other decay modes have comparable frac-
tions and share about the 20% of the sample. The global shift and mass resolution
scale factor parameters are in agreement with the simple estimate done in sub-
section 6.5.2 (see table 6.2). The values returned from the fit are consistent with
nominal values of the b-hadrons masses, and are consistent with what we observe in
other similar analyses in CDF [3, 9]. Table 6.3 also reports the uncorrected value
of the ratio of branching fractions f(B0

s → D±s K
∓)/f(B0

s → D−s π
+).

6.6.1 Correlation matrix
The correlation matrix corresponding to the fit of composition is shown in

table 6.5. The correlation coefficients are defined as ρij = Cov(θi, θj)/σθiσθj ,
where Cov(θi, θj) is the off-diagonal element of the estimated covariance matrix
of the fit. The large correlation coefficients, related to the relative fraction of
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Table 6.3 Results of the fit of composition. The last row report the legend to convert the
parameter into physics quantity for interpreting the correlation matrix.
C-conjugate modes are implied.

parameter value parameter #
fbkg 0.1246± 0.0069 1
global shift [GeV/c2] 0.00768± 0.00002 2
scale factor (B0

s → D−s π
+) 1.094± 0.017 3

fB0
s→D

−
s π+ 0.4127± 0.0057 4

fB0
s→D

±
s K∓

0.0307± 0.0031 5
fΛ0

b
→D−s p 0.0104± 0.0026 6

fΛ0
b
→D?−s p fixed to fΛ0

b
→D−s p -

f
B0→D(?)+

s π−
0.0148± 0.0020 7

f
B0→D(?)−

s K+ 0.0096± 0.0025 8
fB0

s→D
−
s ρ+ 0.136± 0.013 9

fB0
s→D

?±
s K∓ 0.0426± 0.0059 10

fB0
s→D

−
s e+νe

0.0375± 0.0051 11
fB0

s→D
−
s µ+νµ

fixed to fB0
s→D

−
s e+νe

/εrel -
fB0

s→D
−
s π+π0 0.0141± 0.0097 12

fB0→D−π+ 0.0157± 0.0037 13
fB0

s→D
?−
s π+ 0.248± 0.015 1−∑s−1

j=1 fj
fπbkg 0.738± 0.041 14
ν 12453± 112 15
p 0.508± 0.004 16
fB0

s→D
±
s K∓

fB0
s→D

−
s π+

0.0744± 0.0076 -

Table 6.4 Yields returned from the fit of composition. C-conjugate modes are implied.

mode number of events
N (B0

s → D−s π
+) 4498± 138

N (B0
s → D±s K

∓) 335± 40
N (Λ0

b → D−s p) +N (Λ0
b → D?−

s p) 114± 31
N (B0 → D+

s π
−) +N (B0 → D?+

s π−) 162± 24
N (B0 → D−s K

+) +N (B0 → D?−
s K+) 104± 29

N (B0
s → D−s ρ

+) 1480± 170
N (B0

s → D?±
s K∓) 464± 71

N (B0
s → D−s e

+νe) 409± 63
N (B0

s → D−s µ
+νµ) 188± 29

N (B0
s → D−s π

+π0) 153± 108
N (B0 → D−π+) 172± 43
N (B0

s → D?−
s π+) 2709± 209
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6 Fit of composition

the B0
s → D−s π

+ and the B0
s → D±s K

∓ decay modes are: ρ6,4 ≈ −50% and
ρ6,5 ≈ −34%, ρ13,4 ≈ −31% and ρ13,5 ≈ −34%. These are due to the limited sepa-
ration power of the fit to disentangle Λ0

b → D
(?)−
s p and B0 → D−π+ decay modes

from signals. In fact they lay down exactly under the B0
s → Dshmodes, and the PID

is not helping too much. In fact the pions of the B0 → D−π+ are not distinguishable
from pions of B0

s → D−s π
+, and protons of Λ0

b → D
(?)−
s p are very similar to kaons of

B0
s → D∓s K

±. Other considerable correlations are ρ12,2 ≈ −57% and ρ6,1 ≈ −48%.
ρ12,2. This can be explained considering that the decay B0

s → D−s π
+π0 is at the

low edge of the fitted mass region and a global shift influence its fraction. Instead,
the amount of background can vary the fraction of the mode Λ0

b → D
(?)−
s p, which

generates ρ6,1.
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6 Fit of composition

6.6.2 Fit projections
In order to test the goodness of our fit, we compare the distributions of data

with the joint p.d.f. corresponding to the Likelihood function with the maximized
set of parameters θ̄. If x = x1, . . . , xn is a generic vector of observables and ℘(x, θ̄)
is the probability density function of the observables x, we can define the projection
onto the observable xi as the following one-dimensional function:

℘(xi, θ̄) =
∫
℘(x, θ̄) dx1 . . . dxi−1dxi+1 . . . dxn, (6.13)

which is the predicted distribution for xi under the assumed values for the fit param-
eters, and can be overlaid to the experimental data. This allows a way of detecting
possible discrepancy between the observed distributions and the model. Distribu-
tions of the discriminating observables with the fit projection overlaid are shown
in figures 6.6-6.7. The distributions of individual components are also shown. To
better visualize the agreement between the PID discriminating observable and the
data we complemented the projection of resπ, with the projection of its mean value
(〈resπ〉) as function of the invariant mass (see fig 6.8). The agreement between data
and fit projections is satisfactory.
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Figure 6.6 mDsπ distribution with the fit projection overlaid: (a) the fit projection with
all the fit components (logarithmic scale (b)), (c) the components are grouped for clarity.
The residual plot at the bottom of the figure (c) shows the number of σ discrepancy (data
minus projection).
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Figure 6.7 resπ distribution with the fit projection overlaid: (a) the fit projection with all
the fit components (logarithmic scale (b)), (c) the components are grouped for clarity. The
residual plot at the bottom of the figure (c) shows the number of σ discrepancy (data minus
projection).
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6 Fit of composition

6.7 Efficiency correction
In order to translate the parameters returned from the fit of composition into a

physics measurement we need to apply the correction for the different reconstruction
efficiency. In general, the efficiency for each mode is defined as the ratio between
the number of events passing the final selection (Npassing) and the number of real
events produced (Nproduced):

ε = Npassing
Nproduced

. (6.14)

This term accounts for all the acceptance effects. It includes the trigger efficiency
and the efficiency of the offline reconstruction and selection. For our measurement
we extract the efficiency from the CDF Monte Carlo simulation. Any geometric
acceptance effect is properly taken into account, since the simulation reproduces
the kinematic distributions of the decays and it includes an accurate description
of the detector geometry. Any possible discrepancy between real data and the
simulation vanishes in the efficiency ratio between two different modes.

Thus for the B0
s → D±s K

∓ we can write

B(B0
s → D±s K

∓)
B(B0

s → D−s π+)
=
fB0

s→D
±
s K∓

fB0
s→D

−
s π+

· ε(B
0
s → D−s π

+)
ε(B0

s → D±s K∓)
, (6.15)

where ε(B0
s → D−s π

+) and ε(B0
s → D±s K

∓) are respectively the reconstruction
efficiencies for the B0

s → D−s π
+ and for B0

s → D±s K
∓. The efficiency correction

extracted from simulation is

ε(B0
s → D−s π

+)
ε(B0

s → D±s K∓)
= 1.044± 0.007, (6.16)

where the uncertainty is due to the finite statistics of the simulated sample. It
corresponds to the Poisson fluctuation of the number of events passing the selection.

6.8 Corrected result
In summary, using the ratio of relative fractions returned from the fit of com-

position
fB0

s→D
±
s K∓

fB0
s→D

−
s π+

= 0.0744± 0.0076 (6.17)

and the efficiency ratio returned from CDF simulation

ε(B0
s → D−s π

+)
ε(B0

s → D±s K∓)
= 1.044± 0.007, (6.18)

we obtain the measurement of the following ratio of branching fractions:

B(B0
s → D±s K

∓)
B(B0

s → D−s π+)
= 0.0777± 0.0079 (stat), (6.19)

where the uncertainty is only statistical.
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7 Systematic uncertainties

This chapter describes the main sources of systematic uncertainty for the mea-
surement of the ratio of branching fractions B(B0

s → D±s K
∓)/B(B0

s → D−s π
+).

7.1 Evaluation of systematic uncertainties
The measurement described in this thesis focuses on a ratio of branching frac-

tions of kinematically similar decay modes. We expect that most systematic effects
related to the individual modes, e.g., the uncertainty on the integrated luminosity
of the sample, will cancel out in the ratio.

To evaluate the systematic uncertainty we used the following method. For each
source of systematic effects, s, we varied the value of s within a range of ±1σs,
where σs is the statistical uncertainty on the parameter s. The resulting systematic
uncertainty associated to s is the largest difference between the results of the analysis
of the samples with alternative configurations, and the results of the sample with
the nominal configuration.

7.2 Uncertainty on the nominal b-hadron masses (nominal
masses)

The B0, B0
s , and Λ0

b masses are external inputs of the Monte Carlo simula-
tion and therefore inputs to our p.d.f.s. To evaluate the systematic uncertainty
associated to our limited experimental knowledge of nominal input masses we re-
peated our fit after shifting independently the B0, B0

s , and Λ0
b input masses within

±1σ uncertainty. We fitted the eight possible combinations of B0, B0
s , and Λ0

b

masses by independently increasing (decreasing) by one statistical standard de-
viation world-average mass values [18]: mB0 = (5279.58± 0.17) MeV/c2, mB0

s
=

(5366.77± 0.24) MeV/c2 and mB0 = (5619.4± 0.7) MeV/c2. The largest discrep-
ancy between the results of the analysis with alternative masses configuration and
the results of the sample with the nominal configuration was taken as the systematic
uncertainty.

Since we added to the fit a global mass shift parameter, as explained in the
subsection 6.5.2, we do not have any systematic uncertainty associated to the global
mass scale uncertainty. The uncertainty of the knowledge of the absolute mass scale
is already included in the statistical error returned from the fit of composition.
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Figure 7.1 Comparison of the invariant mass distribution of the B0
s → D±

s K
∓ before and

after the transformation in eq. (7.1).

7.3 Uncertainty on mass resolution (mass resolution)
As explained in subsection 6.5.2, we added to the fit a scale factor to inflate the

width of the p.d.f. of the B0
s → D−s π

+ extracted from the Monte Carlo, since we
observe a smaller mass resolution in it with respect to data. This has been done
only for the B0

s → D−s π
+ decay, because we assumed negligible the net effect of

the discrepancy between real data and simulation for the mis-reconstructed decays,
since the enlargement is mainly due to the wrong mass assignment. We assess a
systematic uncertainty on these assumptions.

From the central fit we exactly know the size of the scale factor s = 1.094±0.017
of the B0

s → D−s π
+ which is fully reconstructed with the correct mass assignment.

However we cannot use this factor to enlarge the mis-reconstructed modes since their
mass invariant spectrum is sculpted by the fact that we assigned wrong masses to
the particles in the final state, and the final effect is much smaller of what we observe
for the B0

s → D−s π
+ decays.

For instance to estimate the scaling factor of the “mis-reconstructed” B0
s →

D∓s K
± decays (and Λ0

b → D−s p, B0 → D−s K
+) we scaled our simulation event-by-

event with the following transformation:

mi
Dsπ →

mi
Dsπ
− µ(piDs , p

i
π)

s
+ µ(piDs , p

i
π), (7.1)

where µ(piDs , p
i
π) is the expected Dsπ-mass 〈mDsπ〉 given the momenta pDs and pπ,

when we assign the pion mass to the kaon (or to the proton) in the final state, and
s is the scaling factor obtained from the fit of composition for the B0

s → D−s π
+

decay. Figure 7.1 reports the comparison of the invariant mass distribution of the
B0
s → D±s K

∓ before and after the transformation in eq. (7.1). As expected, the
widening of the distribution is small, but not completely negligible. In conclusion to
assess the systematic uncertainty we re-adapted the fit of composition where: 1) the
mass distribution of the B0

s → D±s K
∓, Λ0

b → D−s p and B0 → D−s K
+ is scaled using

the transformation of equation 7.1; 2) the mass distribution of the B0 → D−s π
+ is
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Figure 7.2 Comparison between the pure combinatorial background sample and the data-
background.

scaled as the B0
s → D−s π

+, 3) no scaling is applied to the mass distribution of the
decays in which some particles escape from the detection, as a neutrino, a photon
or a neutral pion, because in this case the mass invariant shape is mainly sculpted
by the wrong mass assignments and by the fact that part of the energy of the decay
is lost; 4) we add a free parameter for the scale of the B0 → D−π+, since we do
not know calculate the scaling factor for this decay mode in a simple way. The
difference between this fit and the central fit is our systematic uncertainty.

7.4 Uncertainty on the combinatorial background mass term
Since our central analysis assume an empirical mass model for the combinatorial

background we assess a systematic uncertainty due to our limited knowledge of the
real distribution. We use an exponential shape, where the slope abkg = (0.98±0.10)
(GeV/c2)−1 is extracted from the higher mass side-band (see section 6.3)). To assess
a systematic uncertainty we repeat the fit of composition varying the slope of the
background distribution within ±1σ range, and the largest difference between these
two fits and the central one is quoted as systematic uncertainty (bkg p.d.f.).

In supporting to our background mass model we generated an alternative “pure”
combinatorial background data sample. This is done by combining a real D−s decay
of the ith event with an independent pion, that is the pion associated to the B0

s

candidate in the (i+1)th event. The resulting invariant mass is reported in figure 7.2
superimposed to the invariant mass distribution of real decays. It confirms that
our background mass model is reasonable. The two backgrounds samples seem
very similar in the higher mass region, however the pure combinatorial background
sample has a lower slope apure comb. = (0.27± 0.05) (GeV/c2)−1, with respect to the
slope extracted from real data. Since this artificial background is very realistic, we
repeat the fit of composition using apure comb. as the slope of the exponential of the
combinatorial p.d.f., and the difference with the central fit is taken as an additional
systematic uncertainty (pure comb. bkg).
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7 Systematic uncertainties

7.5 dE/dx related systematic
Chapter 5 and section 6.4 summarize how the fit of composition exploit the PID

information in separating the different signal modes and backgrounds. The model
used to introduce this information in the Likelihood is sophisticated, need a large
number of parameters (see ref. [32]), extracted using high statistics and very pure
samples of charged pions and kaons (from the decay D0 → K−π+), and protons
and antiprotons (from Λ→ pπ−).

The systematic uncertainty related to the statistical uncertainty on the deter-
mination of PID probability density functions is assessed following a standard CDF
procedure (see ref. [3]), by repeating the fit of composition in which all PID pa-
rameters are randomly varied in a 1σ-radius multidimensional sphere, keeping into
account all the statistical correlations among parameters. In order to statistically
sample a sufficient number of directions in this large dimensions space, we repeat
the analysis for various (500) seed values. For each seed value the PID functions
change in a different way and we can obtain a measurement of the effect of system-
atic uncertainties on the analysis results. The systematic uncertainty on the physics
observables associated to the statistical uncertainty of the templates parameteriza-
tion is given by the 3×r.m.s. of the distribution of the observables returned from
the fits of composition performed with different seeds (dE/dx).

In addition to the systematic uncertainty due to the limited knowledge of PID
templates, we have also to account for the approximated procedure used to marginal-
ize the momentum dependence, as discussed in chapter 5. The associated systematic
uncertainty is assessed by re-binning the momentum distribution by a factor 2 and
by a factor 1/2 and extracting alternative PID templates (binning dE/dx mom.).
We repeat the fit of composition in the two cases and the largest difference between
the values obtained and central value is taken as systematic uncertainty.

7.6 Uncertainty related to the efficiency correction (MC
stat.)

The relative efficiency ratio (see sec. 6.7) used to convert the ratio of event yields
in ratio of branching fractions, is determined with O(0.6%) statistical uncertainty
(see eq. (6.16)). The ratio of branching fractions is reevaluated by using acceptance
correction shifted by one standard deviation in either direction. The largest dif-
ference between the resulting ratios of branching fractions and the central value is
taken as systematic uncertainty.
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7 Systematic uncertainties

Table 7.1 Summary of the systematic uncertainties for the observable measured in this
work.

source B(B0
s → D±s K

∓)
B(B0

s → D−s π+)
nominal masses 0.0002
mass resolution 0.0021
bkg p.d.f. 0.0002
pure comb. bkg 0.0009
dE/dx 0.0005
binning dE/dx mom. 0.0009
MC stat. 0.0005
Total 0.0026

7.7 Total systematic uncertainties
All systematic uncertainties are summarized in the table 7.1. The total system-

atic uncertainty on the measurement is determined as the sum in quadrature of the
individual systematic uncertainties.
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8 Results and conclusions

This chapter presents the final result of this thesis and a discussion of its impact
in the current experimental and theoretical picture.

8.1 Final results
Using the raw fit results and the efficiency correction from chapter 6 and the

systematic uncertainty from chapter 7 we obtain the measurement of branching
fraction of the B0

s → D±s K
∓ decay mode relative to the B0

s → D−s π
+ decay mode at

CDF with 9.3 fb−1 of data. From the observed yields of N(B0
s → D±s K

∓) = 335±40
and N(B0

s → D−s π
+) = 4498 ± 138 we measure the following ratio of branching

fractions:

B(B0
s → D±s K

∓)
B(B0

s → D−s π+)
= 0.0777± 0.0079 (stat)± 0.0026 (sys), (8.1)

where the first uncertainty is statistical and second one is systematic. This result
is compatible with the other existing measurements:

B(B0
s → D±s K

∓)
B(B0

s → D−s π+)
=


0.097± 0.018 (stat)± 0.009 (sys) CDF (2008) [2],
0.065+0.035

−0.029 (stat) Belle (2008) [31],
0.0646± 0.0043 (stat)± 0.0025 (sys) LHCb (2012) [1].

The final statistical uncertainty of our measurement is better than by a factor 2.3
with respect to the previous CDF result published in 2008, it is much better than
Belle result, and it is worse than by a factor 1.8 with respect to the very recent
LHCb measurement which is today the world’s best result1. On the other hand the
systematic uncertainty is at the same level of LHCb measurement and it is better
than previous CDF measurement by a factor 3.5.

Our result is in agreement with a very recent theoretical expectation from
ref. [22]:

B(B0
s → D±s K

∓)
B(B0

s → D−s π+)

∣∣∣∣∣
theory, SU(3)

= 0.0864+0.0087
−0.0072, (8.2)

1LHCb measurement is performed using an inclusive data sample of reconstructed D−s →
K+K−π− decays, including also D−s → φπ− decays, which is the only decay mode used in our
measurement. Therefore a more appropriate comparison between current LHCb and CDF perfor-
mances would require a measurement with the same set of D−s decay modes.
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Figure 8.1 Current knowledge of the ratio of branching fractions B(B0
s → D±

s K
∓)/B(B0

s →
D−
s π

+), including this thesis measurement. The hatched region is the uncertainty of the-
oretical predicted value (central line in the hatched region) assuming the SU(3) flavor
symmetry. Filled region represents the permitted region theoretical predicted.

where the SU(3) flavor symmetry was assumed. Without the SU(3) assumption,
the estimated lower bound on the ratio of branching fractions is [22]

B(B0
s → D±s K

∓)
B(B0

s → D−s π+)

∣∣∣∣∣
theory

≥ 0.080± 0.007, (8.3)

and our result is on the lower bound of the allowed region. A smaller value of the
branching fractions ratio would imply a not real value for the hadronic parameter
xs ∝ RbAf/Āf which quantifies the strength of the interference effects between
the B0

s → D+
s K

− and B̄0
s → D+

s K
− decay processes induced through the B0

s − B̄0
s

mixing; the parameter Rb ∝ |Vub/(λVcb)| measures one side of the unitary triangle.
Figure 8.1 summarize experimental values obtained for the ratio of branching frac-
tions (including our result). Also it reports the allowed region and the theoretical
expectation.

8.1.1 Absolute branching fraction
Using the world average value B(B0

s → D−s π
+) = (3.2± 0.4)× 10−3 from PDG

2012 [18] we can extracted the following absolute branching fraction:

B(B0
s → D±s K

∓) = (2.49± 0.25 (stat)± 0.08 (syst)± 0.31 (br))× 10−4, (8.4)

where the last uncertainty is dominated by the uncertainty on the value of B(B0
s →

D−s π
+). This agrees with the world average B(B0

s → D±s K
∓) = (2.9± 0.6)× 10−4

reported in the PDG 2012 [18]. However LHCb, very recently, measured B(B0
s →

D−s π
+) = (2.95±0.05±0.17+0.18

−0.22)×10−3 [1] (the third uncertainty is the uncertainty
from the fs/fd measurement), which is more precise than PDG 2012 [18]. Thus if we
use the LHCb measurement as input, instead of PDG 2012, we obtain the following
absolute branching fraction

B(B0
s → D±s K

∓) = (2.29± 0.23 (stat)± 0.08 (syst)± 0.21 (br))× 10−4, (8.5)

which agrees with B(B0
s → D±s K

∓) = (1.90±0.12±0.13+0.12
−0.14)×10−4 from LHCb [1].
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8 Results and conclusions

8.2 Final remarks and conclusions

With respect to the previous CDF measurement [2] the improvement of statisti-
cal and systematic uncertainty is remarkable. If we do not consider the increasing of
statistics of the CDF data sample (the data sample analyzed in this thesis is larger
by a factor 3.3 than the previous iteration) we get an improvement of the statisti-
cal resolution of about 40%. This is completely due to the analysis improvements
studied and developed in this thesis:

• the new selection, which plays a key role, it was optimized through an Artifi-
cial Neural Network to optimally use the multidimensional information of the
input variables with the aim to minimize the uncertainty on the measurement
of the branching fraction. Neural Network input variables were chosen to ex-
ploit the largest as possible amount of information from a limited and poor
correlated physics observables, to get a reliable response from the simulation;

• a huge amount of full CDF simulation was produced to accurately study the
features of signal mode and of mis-reconstructed b-hadron decays which lay
down in the same mass region of the B0

s → D±s K
∓. The abundant fully

reconstructed B0
s → D−s π

+ decay mode was used to adjust the observed dis-
crepancies between real data and simulation;

• the PID response for different particles provided by the official CDF tool
was specifically adapted for this analysis to correctly account for the different
momentum dependence of the particles in the final state. For each decay mode
and background a different PID template was extracted;

• all information from invariant mass and PID was combined in a multidimen-
sional extended unbinned likelihood fit to disentangle all components and then
to measure the relative fraction of B0

s → D±s K
∓ decay mode.

As a consequence of a more sophisticated analysis we also drastically reduced the
systematic uncertainty, which is improved by a factor 3.5. This is mainly due to a
deeper knowledge of data gained from the studies performed in this thesis, exploiting
all the experience developed in CDF during the last ten years of data taking, which
has produced several world’s best measurements in this field.

In conclusion, the measurement described in this thesis, in addition to its intrin-
sic value, is a necessary milestone on the road to the measurement of γ angle. In
fact, even a more complex tagged time-dependent analysis requires a powerful and
efficient selection as a starting point, an excellent understanding of the mass spec-
trum and consequently of the backgrounds, an excellent knowledge of PID response
from the experimental apparatus. All these experimental techniques were perfected
in this thesis. Although a full tagged time-depended analysis in CDF seems not
doable because of the limited statistics, the work done has a general worthiness,
and may be very useful in the next generation experiments, as LHCb, with similar
condition as CDF.
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A Isolation cut

One of the most powerful variables to improve the purity in the off-line selection,
in B physics analyses, is the “isolation”. Given the hard fragmentation, b-hadrons
tend to carry a larger fraction of the transverse momentum than the particles pro-
duced in such a process. Thus the “isolation” is an estimator of the fraction of
momentum, available from the b-quark fragmentation, carried by the b-hadron can-
didate:

I|R=1(B) = pT (B)

pT (B) +
R∑

i 6=j:B→j
pT (i)

, (A.1)

where the sum in the right-hand term of the denominator runs over all tracks (other
than those of the b-hadron candidate decay-chain) satisfying standard quality re-
quirements and found in a local region around the flight direction of the candidate.
Such a region is a cone in the (η− φ) space, unitary in radius (R =

√
φ2 + η2 = 1),

whose apex is the primary vertex and the axis is collinear with p(B). Candidates
with large values of the isolation are more likely to be a real b-hadrons than candi-
dates with a low isolation.

However the introduction of the isolation adds further complexity to the anal-
yses: its distribution depends on the mechanism of hadronization of the b-quark,
which is not described by the signal-only simulation discussed in chapter 3. It de-
pends on the multiplicity and on the momenta of the charged-particles not belonging
to the b-hadron decay-chain, and on the transverse momentum of the b-hadron. In
other words it depends on the production mechanism of the b-hadrons, but it is
independent of the decay mode. We therefore expect different isolation distribu-
tions for the B0,B0

s , B+ and Λ0
b hadrons, which are produced through different

fragmentation processes.
From the isolation definition it results that we can heavily affect our analysis,

if a requirement is applied on it. The reconstruction efficiency for the different
signals and physics backgrounds depends on the isolation requirement, therefore all
the Gaussian constraints of the fit of composition on the mis-reconstructed decays
would need an accurate knowledge of this relative efficiency to be correctly applied.
In addition a requirement on the isolation would sculpt the mass line shape of all
mis-reconstrucetd decays, (B0

s → D∓s K
± decays are included in this category) in a

strange way, since the isolation is strongly momentum dependent. All these effects
must be studied using real data, since typical pp̄ collision simulators, as PYTHIA,
cannot reproduce reliably the details of the b-quark fragmentation.

In supporting to our statements above, we studied the effect of a standard
isolation requirement (I > 0.5) to our final data sample. If we define the relative
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A Isolation cut
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Figure A.1 Isolation efficiency as function of the invariant Dsπ-mass. The hatched region
is the distribution of the invariant Dsπ-mass reported for clarity.

efficiency of the isolation requirement as:

ε(I) =
NNN+Isol

passing
NNN

passing
,

where NNN
passing is the number of the events passing the NN requirement (see chap-

ter 4) and NNN+Isol
passing is the number of events passing the NN and the isolation

requirements, we can plot this quantity as a function of the invariant mDsπ-mass,
as reported in figure A.1. Some structures are clearly visible for mass value less
than 5.4 GeV/c2. In particular we have an hole in the B0

s → D∓s K
± region, where

several contributions overlap. Therefore we decided to do not use any isolation
requirement in the final version of the analysis.
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