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Introduction

In this thesis we shall present the results of a photoluminescence (PL) investigation of
coupled electron bilayers confined in GaAs/AlGaAs double quantum wells in the Quantum
Hall (QH) regime. The studies presented here provide evidence for the manifestation of
the impact of inter-layer Coulomb interactions in magneto-PL spectra.

The rich physics of two-dimensional electron gases (2DEGs) under quantizing perpen-
dicular magnetic fields manifests in the integer [1] and fractional [2] QH effect (QHE),
discovered in 1980 and 1982, respectively. The QHEs consist in the precise quantization
of the Hall resistivity of a cold (T< 4 K) 2DEG around magic values of the magnetic
field. The QHE is now understood as a macroscopic manifestation of the combined effect
of quantum mechanical energy gaps and disorder. The energy gaps responsible for the
integer QHE are due to Landau quantization and spin splitting, while the fractional QHE
follows from an arrangement of electrons into highly-correlated states, which minimize the
Coulomb energy [3]. Hence 2DEGs in the fractional QH regime have emerged as a lab-
oratory where to explore the effects of Coulomb interactions and the emergence of novel
quantum fluids of correlated electrons.

When two parallel 2DEGs are brought sufficiently close together, forming the elec-
tron bilayer, the physics is enriched by the interplay between inter-layer and intra-layer
Coulomb interactions and by the presence of a new energy gap ∆SAS associated to tun-
neling between the layers. Electron bilayers in semiconductor heterostructures have been
the focus of intense theoretical and experimental work in the last twenty years. Initial
numerical studies in 1987 suggested the existence of QH states at filling factors (the ratio
of electrons to magnetic flux quanta) ν = 1/2 [4] and ν = 1 [5] in bilayers with ∆SAS = 0,
which have no analogue in single layers. These states were later observed in transport
experiments [6, 7], which provided evidence for the central role of the inter-layer correla-
tions. In addition, in [7] an intriguing phase diagram for the QHE at ν = 1 was found that
resulted from the interplay between single particle tunneling and many-body inter-layer
interactions. Subsequent theoretical works [8–11] showed that the ν = 1 QH state at
∆SAS = 0 exhibits spontaneous U(1) symmetry breaking and can be viewed as a pseu-
dospin ferromagnet or equivalently as a BCS condensate of inter-layer excitons. This phase
displays remarkable properties, such as the existence of a Goldstone mode and excitonic
superfluidity. Transport experiments [12–16] have provided compelling evidence of these
properties.

Optical techniques such as magneto-absorption spectroscopy [17] and inelastic light
scattering [18–21] have been successfully applied to the study of QH bilayers but only
around ν = 1. However, PL spectroscopy, which can be considered as the most straightfor-
ward optical technique and provides complementary information to transport experiments
or other optical techniques, was only marginally employed in the study of QH bilayers.
Indeed, as demonstrated by many studies in single layers [22–25], by exploring the recom-
bination of the electrons in the conduction-band Landau levels with photo-excited holes
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in the valence band, PL can offer unique insights in the ground-state properties of the
2DEGs.

With this thesis work we fill the above-mentioned experimental gap and report the
magneto-PL behavior of two bilayer samples with zero and finite tunneling gap in a wide
range of magnetic fields and at temperatures down to 50mK. We exploit the polarization
properties of the emitted light to identify contributions from electrons with opposite spin.
The results presented in this thesis demonstrate that the PL is a sensitive probe of inter-
layer correlation in coupled electrons bilayers. In particular we show how the PL spectra
are affected by the occurrence of the inter-layer correlated QH states such as the ones at
ν = 1/2 and 1.

The thesis is organized as follows :
Chapter 1 introduces the fundamentals of the QHE in 2DEGs, with emphasis on

bilayers. It starts with the description of the techniques (modulation doping and MBE
growth) that have made possible to realize nearly ideal 2DEGs confined in GaAs/AlGaAs
quantum wells. Then it presents the basic physics underlying the integer and fractional
QHE in single layers. The rest of the chapter focuses on the properties of bilayer systems
in the QH regime and offer a review of the transport experiments that provide evidence
for the main novelties brought about by bilayers : the QHE at ν = 1/2, the phase
diagram for the QHE at ν = 1, and the spontaneous symmetry breaking at ν = 1 with its
remarkable consequences such as the existence of a Goldstone mode and excitonic counter-
flow supercurrents. Finally, in the conclusions we motivate the investigation of the above
phenomena through PL spectroscopy.

The basic facts of PL spectroscopy are described in chapter 2, together with a brief
review of PL studies of 2DEGs in the QH regime. We illustrate, in particular, some well-
established experimental results on the PL of single layers, e.g. the role of polarization
analysis of the optical emission, the signatures of the QH states in the luminescence
spectra, and the role of the hidden symmetry that results from a peculiar cancellation
of the electron-electron and electron - (photo-generated) hole interactions. This chapter
contains also a technical description of the cryogenic equipment and optical setup used
in this thesis for the PL measurements at very low temperatures, and the setup for the
auxiliary transport measurements.

Chapter 3 is dedicated to the presentation and analysis of the PL data from the
sample with a finite tunneling gap while the data from the sample without tunneling
gap are presented in chapter 4. In both chapters we present the PL spectra, and the
resulting intensities and energies of the PL peaks versus magnetic field as extracted from
the spectra. By comparing the data with transport experiments performed on the same
samples we identify the QH states and the impact of inter-layer interactions on the PL
evolution.

The results of our experiments are resumed in the conclusions, together with some
possible future extensions of the present work.



Chapter 1

The Quantum Hall Effect

1.1 Experimental Realization of Two-Dimensional Electron
Gases (2DEGs)

A system of electrons whose motion is confined in one spatial direction, but free to move
in the perpendicular plane, constitutes a Two-Dimensional Electron Gas (2DEG).

Here we deal with the case in which confinement is produced by a quantum well (QW)
potential. Let’s consider a one-dimensional particle with mass m trapped in an infinite
square well potential with width L. It can only occupy discrete energy levels of the form :

En =
~2

2mL2
n2, where n = 1, 2, . . .

If we cool down the system to a temperature kBT � E2 − E1, then the particle can only
”reside” in the ground (n = 1) state, so we have effectively blocked the dynamics of the
particle in the well direction.

How can we create such a confining potential with semiconductor materials ? It turns
out that in bulk GaAs electron states near the edge of the conduction band (CB) can
be well described as freely moving particles with an effective mass m∗ = 0.067me. In
the presence of an AlGaAs/GaAs interface, these electrons ”feel” an effective potential
described by the spatial profile of the band edge. A rigorous motivation for this fact lies
in the envelope function formalism [26].

The ternary compound crystal Ga1−xAlxAs has a bandgap between those of GaAs
(Egap = 1.43 eV) and AlAs (Egap = 2.1 eV)1 which increases with x. The total dis-
continuity at the interface with GaAs is taken up mostly by the conduction band edge
∆Ec ≈ 0.65∆Egap and the remaining is left to the valence band ∆Ev ≈ 0.35∆Egap, so
both electrons and holes in the GaAs side ”see” a barrier.

If we combine AlGaAs and GaAs materials, we can realize a QW. In Fig. 1.1(a) we
can get a better idea of the composition of a realistic QW sample. In ordinary structures
the CB offset is ∆Ec ∼ 100 meV and the QW width is d ∼ 10 nm, so this well can host at
least 2 confined states with a typical separation E2 −E1 ∼ 10− 100 meV. Liquid Helium
temperature (T ≈ 4 K) will be sufficient for keeping electrons in the lowest energy level.

It’s worth noting that since we have only modified the structure in one direction,
electrons will be free to move in the other two - the plane perpendicular to the well. The
in-plane Bloch wavevector k|| remains a good quantum number and each confined level

1The values given here are the measured bandgaps at room temperature. The bandgap of semiconduc-
tors tends to increase as the temperature is decreased.
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Figure 1.1: Realization of a 2DEG confined in a semiconductor heterostructure. (a) Schematic
illustration of the layered structure of a GaAs/AlGaAs modulation-doped QW; the black curve is
the spatial profile of the bottom of the CB through the sample. In the left part of (b) we show the
CB potential well together with its lowest two confined energy states (E1, E2) and the corresponding
envelope wavefunction profiles along the growth direction. In the right part we display the subbands
associated with each of the levels. Here the Fermi level EF (dashed horizontal line) lies in the lowest
subband. After Ref. [28].

gives rise to a subband with in-plane dispersion :

En(k||) = En +
~2k||

2m∗
,

as illustrated in Fig. 1.1(b). Electrons will occupy the double degenerate states (ow-
ing to the spin degree of freedom) in the lowest subband according to their density and
temperature.

Finally, how do we get the electron gas ? Pure semiconductors at T ≈ 0 K are
insulating, so we need to dope the well with donors, in order to get electrons in the CB.
Silicon impurities are commonly used as donors in GaAs crystals. In appropriate conditions
they replace the Ga atoms and since they have an additional outer-shell electron, they can
easily ”donate” it to the crystal. However, we have to keep the temperature above the
donor binding energies, otherwise electrons get caught by the donors (carrier freeze-out).
Furthermore ionized donors produce considerable potential fluctuations in space, which
scatter electrons.

The modulation-doping technique, introduced at the end of the 70’ [27], has been very
successful in avoiding these problems. It consists in placing the doping layer not in the
well, but in the barrier (AlGaAs layer) (see Fig. 1.1(a)). The doping sheet should be close
to the interface to allow the donors to transfer their extra electrons in the QW, but not
too near so as to suppress the Coulomb scattering of the mobile electrons from the ionized
donors. In practice the Si doping layer is placed at a typical distance of 0.1 - 0.5 µm from
the well. In this way electron mobilities of 107 cm2/Vs or above can be achieved at low
temperatures, leading to long mean free paths of the order of 1 mm.

The successful fabrication of these samples relies on the Molecular Beam Epitaxy
(MBE) growth technique. Figure 1.2 shows the schematics of a typical MBE system.
Basically the MBE machine is a high vacuum chamber, inside which there are several cells
containing the source materials. These materials are heated until vaporization and leave
the cells through small effusion orifices, under the form of highly collimated molecular
beams, whose flux rate can be controlled by shutters placed in front of each furnace.
Various molecular beams containing the Ga, As, Al and Si elements are aimed at a GaAs
substrate where the film grows epitaxially. The composition and quality of the film can be
probed real-time during the growth, using well established surface spectroscopy techniques.
With MBE one can grow samples with atomic layer precision.
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Figure 1.2: A schematic of the MBE growth system. Note the electron gun and fluorescent screen
that continuously record the diffraction pattern of high energy electrons from the sample, to monitor
the geometry and morphology of its surface. The growth chamber walls are cooled by liquid N2 which
ensures high vacuum by cryopumping atoms and molecules on the walls. The mechanical rotator
connected to the sample holder guarantees a more uniform beam deposition on the substrate.

So far we have discussed about the realization of a single 2DEG (single layer) confined
in a QW. With the same methods one can also fabricate double QWs, which correspond
to bilayers of 2DEG when doped on each side. As we will see, interesting phenomena are
observed if the densities of the two layers are equal.

Important parameters in bilayers are : the distance d between the layers (defined as
the distance between the centers of the two QWs), which controls the degree of inter-layer
Coulomb interaction among electrons, and the height of the barrier in-between the wells,
which together with d controls the capability of single electrons to tunnel from one well
to the adjacent one.

The rich physics of electron bilayers in double quantum wells lies in the ability to
tune this two important physical parameters independently during the growth. In fact the
distance is controlled by the thickness of the AlGaAs barrier, while the height (which is
directly related to the AlGaAs bandgap) can be varied by changing the Al concentration.
For example if one needs to suppress the single particle tunneling between the layers,
without changing their mutual interaction, it is sufficient to increase the Al concentration
in the barrier. In order to decrease the Coulomb coupling between the layers, without
changing the tunneling properties, one has to make a thicker barrier with less Al.

1.2 Two-Dimensional Electron States in a Magnetic Field

Let’s consider a single two-dimensional electron, in a rectangular box of dimensions Lx
and Ly of the xy plane, in the presence of a perpendicular uniform and constant magnetic
field B = Bẑ. The dynamics of the electron is described by the Hamiltonian :

H =
1

2mc

(
p +

e

c
A
)2
− gµBB

S

~
,

where mc is the electron effective mass (0.067me in GaAs), µB = e~/2mec is the Bohr
magneton and g is the effective gyromagnetic ratio. Free electrons have g ≈ 2, but because
of the spin-orbit coupling, it renormalizes to g ≈ 0.4 in GaAs.
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In the Landau gauge A = B(−y, 0, 0), the stationary states and corresponding energies
are :

ψn,k,sz(r) ∝ eikx HOn
(
y − yk
`

)
|sz〉

En,k,sz = ~ωc
(
n+

1

2

)
+ gµBBsz, (1.1)

where HOn is the n-th dimensionless wavefunction of the Harmonic Oscillator (HO), ωc =
eB
m∗c the cyclotron frequency, ` =

√
~c
eB is the magnetic length, yk = −k`2, and sz = ±1

2 is

the z component of the electron’s spin.

The following relations are useful for estimating typical energy scales in GaAs het-
erostructures :

~ωc ≈ 19.2B, EZ ≈ 0.27B, e2/ε` ≈ 50
√
B, (1.2)

where B is measured in Tesla and the energies in Kelvin.
The wavefunction describes a plane wave in the x direction, while in the y direction

it represents a HO displaced by an amount proportional to the x momentum, localized
around yk to within

√
n`. This HO states are reminiscent of the classical isochronous

circular motion of electrons in a magnetic field, with the cyclotron frequency ωc. The set
of wavefunctions with the same n defines a Landau level (LL).

The energy levels are independent of the x momentum, so their degeneracy coincides
with the number of allowed values for k. Assuming periodic boundary conditions ψ(0, y) =
ψ(Lx, y) and requiring that the particle lies within the box in the y direction 0 < yk < Ly,
we get a degeneracy of :

Ly/`
2

2π/Lx
=

Area

2π`2
=
B ·Area

hc
e

for each Landau level. The flux quantum Φ0 ≡ hc/e ≈ 4.14 × 10−7gauss/cm2 so if we
apply for example B = 1 T, we get ∼ 1010 states/cm2 in each Landau level. For a 2DEG
with density n, we can define the filling factor ν = n

B/Φ0
, which tells us how many levels

will be occupied at T = 0 K. Ordinary samples have densities in the range 109 − 1012

cm−2.

In the following we will also need the representation of the electron states in the

symmetrical gauge A =
(
−By

2 ,−
Bx
2 , 0

)
. Given the axial symmetry of the problem, the

states inside the same LL will be distinguished by their angular momentum Lz. In the
lowest LL, the orbital wavefunctions have the form :

|m,n = 0〉 =
zm√

2π2mm!
exp

(
−zz

∗

2

)
m ≥ 0.

Here we are using complex dimensionless coordinates in the plane z = (x+ iy)/`. Writing
in polar coordinates z = ρeiφ, the wavefunctions |m, 0〉 ∝ exp(imφ) are eigenstates of
Lz with eigenvalue m~ ≥ 0, in other words they can only rotate counter-clockwise. The
handedness of motion is due to the time invariance breaking brought by the magnetic
field. In terms of charge distribution, these new states describe concentric rings of width
∼ `, and radius

√
〈m, 0|zz∗|m,n = 0〉 =

√
2(m+ 1)`.

In conclusion, perpendicular quantizing magnetic fields bring two main novelties : the
kinetic energy discretizes in Landau levels and each level has a macroscopic degeneracy.
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Figure 1.3: Longitudinal and Hall resistivity as a function of magnetic field for a modulation-doped
GaAs/AlGaAs heterojunction at 85 mK. The electron gas has a density of ∼ 3 × 1011 cm−2 and a
mobility of ∼ 106 cm2/Vs. A large number of plateaus in the Hall resistivity (RH) and zeros in the
longitudinal resistivity (R) are identified. After Ref. [30].

1.3 Quantum Hall Effect in Single Layers

An ideal 2DEG is invariant under translations in the plane. In a real sample, this condition
is approached when T ≈ 0 K and disorder is negligible. By disorder we mean any random
potential, which couples with electrons e.g. defects, impurities, Coulomb potentials from
the ionized donors etc.

This symmetry alone determines the transport properties of the system [29]. In fact,
suppose we have a 2DEG with surface density n in a transverse B field and we turn on a
small in-plane electric field E. Because of translation invariance, we can view the system
from any other frame S’ moving with a velocity v with respect to the rest frame. Now
if we choose v ⊥ E, such that E + v × B/c = 0, then E′ = 0 in S’. In the absence of
the electric field, only uniform and constant currents are allowed, which would introduce
some privileged direction in S’. Hence

j′ = 0 =⇒ j = −nev.

The above conditions are fulfilled by choosing v = cE ×B/B2, which allows us to write
the resistivity tensor of the gas :

E = ρ j, where ρ =
h

νe2

(
0 1
−1 0

)
. (1.3)

The system may seem perfectly conducting, since ρxx = 0, but it is not since also
σxx = 0. If we inject a current in the sample and measure the voltage drop across
the current, we should find that the transverse resistivity rises linearly with the field
(B ∝ ν−1), with a slope depending only on the gas density.

In Fig. 1.3 we show transport data taken from a high mobility 2DEG at very low
temperatures. As it can be seen, there are spectacular deviations from the predicted
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Figure 1.4: Density of states for spinless non-interacting 2D electrons at high magnetic fields in
(a) an ideal sample with translational invariance (b) a weakly disordered sample, where Landau
levels broaden into bands constituted by extended(light gray) and localized(dark grey) states. After
Ref. [31].

simple behaviour: at certain magnetic field intervals, the transverse resistivity develops
plateaus of universal values h

νe2
with ν being an integer or odd denominator fraction.

Also the system becomes dissipationless, i.e. the longitudinal resistivity is zero. These
facts are verified regardless of the microscopic details of the sample: the exact choice
of semiconductor material, the sample geometry, the presence of impurities, the precise
value of the electron density etc. In addition the measured accuracy of quantization of the
integer plateaus is ∼ 10−8. The appearance of plateaus with integral/fractional values of
ν is the essential manifestation of the Integral/Fractional Quantum Hall Effect (QHE).

The Integral QHE bears an explanation in a picture of independent spinless electrons,
when the effect of disorder is properly taken into account [31]. In fact the density of states
for spinless electrons in a magnetic field is a comb of equally-spaced deltas and the Fermi
level (EF ) can only jump between them (Fig. 1.4(a)). Suppose that the system is weakly
disordered, which means that the energy scale of the disorder potential Vdis � ~ωc. The
rigorous treatment of this system is a difficult task, so we only quote the result. Disorder
removes the degeneracy and broadens the sharp Landau levels into bands. A small fraction
of states with E ≈ ~ωc(n + 1/2) remain extended and can thus carry current, while the
majority become localized (see also Fig. 1.4(b)).

Let’s now suppose that we sweep the Fermi level, e.g. by changing the magnetic
field. When EF lies in a region of localized states, then the population of the conduct-
ing(extended) states is not changing and neither are the transport properties. This ex-
plains the constancy of both ρxx and ρxy within the plateau region. Transitions between
the plateaus correspond to the Fermi level lying near the band peaks or equivalently to
variations in the population of extended states.

Obviously this argument is not modified by taking into account the spin, since opposite
spin Landau levels are still separated by a gap. Anyway since the cyclotron gap is almost
60 times larger than the spin one, we expect even integer plateaus to be more robust.
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Let’s concentrate now on the Fractional QHE. The existence of this effect is really
puzzling : on one hand the charged excitations are gapped, because the system is dissi-
pationless (ρxx = 0); on the other hand ν is fractional so the highest occupied LL is only
partially filled and therefore there should be no gap. The key fact is that, in the partially
filled LL, Coulomb interactions can give rise to an energy gap.

To account for the QHE at ν = 1/m, R.B.Laughlin introduced a class of variational
ground-state wavefunctions, which are conveniently expressed in the symmetric gauge as
:

Ψ1/m ∝
∏
i<j

(zi − zj)m exp

−1

4

∑
j

|zj |2
 . (1.4)

Ψ1/m describes fully spin-polarized electrons, so in order to satisfy the antisymmetry re-
quirement, m must be odd. It can be noted, in particular, that |Ψ1/m|2 vanishes as
|ri− rj |2m when any two particles i and j approach each other. Thus Ψ1/m builds in good
correlations by having electrons avoid each other and therefore lowering the Coulomb
energy. The origin of the gap responsible for the fractional QHE lies in the special corre-
lations contained in Ψ1/m [29]. Exact diagonalization and numerical simulations for few
particle systems [3] confirm the fact that Ψ1/m has a good overlap with the true ground
state for m < 7.

At filling factor exactly equal to 1/m (for example ν = 1/3) the electron system
can carry current without dissipation, because of the gap, leading to a longitudinal and
Hall conductivity of 0 and e2/mh, respectively . When ν deviates slightly from 1/m,
charged excitations are created which get caught in the disorder potential and give no
contribution to the transport. Moving further away from ν = 1/m such charged excitations
get delocalized and the system jumps from one QH state to another.

The understanding of the Laughlin fractions can be extended through different mecha-
nisms to other filling factors that exhibit QHE. We cite Jain’s composite fermion pic-
ture [32], which has the praise of connecting integer QH states n, to fractional ones
ν = n/(2nk ± 1), with k integer. Candidate states with full spin polarization for ν =
2/3, 2/5, 3/5, 3/7 . . . can be constructed in this way. Note that this picture doesn’t modify
the odd denominator rule.

Finally we consider how the spin modifies the picture discussed so far. QH states with
ν = 1/m behave as ferromagnets with full spin alignment. At B = 10T , from (1.2) we
have that EZ ≈ 2.7 K , so one might naively think that charged excitations across the
Zeeman gap would destroy the ν = 1/m QH state at T ∼ 1 K . Such an excitation can be
constructed by flipping the spin of one electron and separating it from the hole left behind
in the spin up level by a distance � `. Thus the electron-hole attraction is negligible, but
since the orbital wavefunction is no more exchange antisymmetric there is an energy cost
∼ e2/ε` ≈ 160K. Therefore such charged excitations have an energy of EZ + e2

ε` � EZ .
We deduce that Coulomb interactions strongly stabilize the ferromagnetic states, even in
the limit EZ −→ 0.

While this picture holds at ν = 1/3, at other filling factors (2/3, 2/5 . . .) unpolarized
QH states compete in energy with the ferromagnetic ones and there could even be phase
transitions between the two if, for example, we increase the electron density. Thus the
degree of freedom related to spin plays a significant role in the QHE.

This work focuses on the new phenomena brought by another degree of freedom, related
to layer occupation in electron bilayers, that we will discuss in the next section.
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Figure 1.5: Potential energy profile for conduction band electrons along the growth axis of a double
quantum well structure with tunneling. The electron wavefunction along the growth axis for the
symmetric/antisymmetric state is shown in the red/blue curve. The two states are separated by a
finite gap ∆SAS . Tx is the pseudospin quantum number. After Ref. [28].

1.4 Quantum Hall Effect in Double Layers

A double layer is a system composed of two parallel 2DEGs and it can be realized in
a modulation doped double QW (see Fig. 1.5). This system is characterized by a new
degree of freedom associated with electron occupation in one of the two layers. This
degree of freedom can be formally described in complete analogy to spin, by introducing
the pseudospin operators τ .

Let’s call |B〉/|T 〉 the state in which an electron is in the bottom/top layer. We define
the operators τ by imposing that in the basis state |T 〉, |B〉 they are represented by the
Pauli matrices σ.

When the electron is localized in the top / bottom layer, we say that it has pseudospin
up / down, which means that pseudospin points in the z direction with eigenvalue +1/−1.
These states are degenerate for two independent layers not coupled by any mechanism.
Actually the parallelism between spin and pseudospin is not limited to the case when
〈τ〉 ‖ ẑ. Any other orientation of pseudospin has a physical meaning and it is physically
realizable in a bilayer system. For an arbitrary state |ψ〉 = α|T 〉+ β|B〉, the z component
〈τ z〉 = |α|2 − |β|2 measures the charge difference between the layers.

We will show in the following that the τx eigenstates are useful when tunneling be-
tween the layers becomes possible. To understand this, let’s imagine two independent
empty layers, put an electron in one of the layers and start pushing them closer. Now as
the wells get closer, the barrier between the two gets thinner and the electron can tun-
nel to the adjacent empty well. The latter corresponds to a perturbing potential which
depends only on z, consequently the tunneling process conserves both the spin and the
in-plane momentum. Remembering that B and T represent some fixed spin and in-plane
momentum, the energies and stationary states in the presence of tunneling become

|S〉 =
1√
2

(|T 〉+ |B〉) ES = −t

|AS〉 =
1√
2

(|T 〉 − |B〉) EAS = t, (1.5)

where t is a positive real number determined by the parameters of the double well potential.
The states |S〉 and |AS〉 are eigenstates of τx and their wavefunctions are shown in Fig.
1.5. Hence, tunneling aligns the pseudospins along the positive x direction and opens a
gap ∆SAS ≡ 2t, not present in single layers. In the spirit of the spin analogy, we may say
that tunneling behaves as a pseudomagnetic field and opens a pseudo-Zeeman gap.
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So far we have used a single-particle picture. Let’s now discuss the role of Coulomb
interactions. To this end let’s imagine to increase the height of the barrier, so that tun-
neling becomes negligible, and add another electron. We have two possibilities : have
the two electrons in the same layer or in opposite layers. The electrons feel their mutual
Coulomb repulsion and can distinguish between the two possibilities. In fact if their spin
and orbital quantum numbers are fixed, the repulsion will be weaker in the opposite layer
configuration, because of the spatial separation due to the finite width of the barrier. If
we call VA/VE the intra-layer/inter-layer Coulomb interaction potential we have :

VA(r) =
e2

r
VE(r) =

e2

√
r2 + d2

,

where d is the inter-layer distance, that in real samples is taken as the distance between
the centers of the wells. We can thus see that the interaction between electrons depends
on their relative pseudospin orientation. The intra- and inter-layer configurations for two
particles (i, j) can be distinguished by the product τ zi τ

z
j which assumes respectively the

values +1 and −1. So the total electron-electron interaction Hamiltonian can be written
as :

Hee =
∑
i<j

1 + τ zi τ
z
j

2
VA(rij) +

1− τ zi τ zj
2

VE(rij)

=
∑
i<j

V0(rij) + τ zi τ
z
j Vz(rij)︸ ︷︷ ︸
Vps

, (1.6)

where we have defined

V0 ≡
VA + VE

2
and Vz ≡

VA − VE
2

> 0.

Anyway the interaction depends only on τ z, so it will be invariant under rotation of
pseudospin around the z axis. Therefore in the absence of tunneling the bilayer system
doesn’t have the full SU(2) symmetry (as the spin), but only U(1) symmetry associated
with the conservation of the charge difference between the layers.

The typical energy scales in the presence of a magnetic field for intra-layer and inter-
layer interactions are e2/ε` and e2/εd respectively. Their relative importance can be
conveniently parametrized by the ratio d/`. The system can be found in one of the
three regimes : a) Independent Layers d/` � 1, in which repulsion between the layers
can be safely neglected b) Single Layer d/` � 1, in which layers are so close that the
difference between intra-layer and inter-layer interaction vanishes and we recover the SU(2)
symmetry. c) Intermediate Regime d/` ∼ 1, in which there is competition between intra-
layer and inter-layer interactions. The samples studied in this thesis belong to this regime.

Additionally, we can define a filling factor for each individual layer:

ν↑(↓) =
N↑(↓)

2π`2
,

where ↑ (↓) stands for the top (bottom) layer, and the total filling factor is:

ν =
N↑ +N↓

2π`2
.

In this thesis we will be concerned with symmetric (balanced) samples with ν↑ = ν↓ and
ν = 2ν↑(↓)
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Figure 1.6: (a) Longitudinal and Hall resistivity vs magnetic field at 150 mK for Sample A, which
is a GaAs/AlGaAs double quantum well with 18 nm wide wells separated by a 3.1 nm AlAs barrier
and total electron density of 1.04× 1011 cm−2. Dashed curves are fragments of the ρxx curve around
ν = 1/2 at 200 and 400 mK. (b) Comparison of the longitudinal resistivity data for the four samples
at T = 300mK. Note the weakening of the QHE signature with increasing d/`. After Ref. [6].

1.4.1 The ν = 1/2 QH state

In single layers, only fractional QH states with odd denominators are observed for ν < 2.
In bilayers, as a consequence of inter-layer Coulomb interactions, new QH states become
possible, which have no analogue in single layers. A remarkable example is the ν = 1/2
state, which clearly violates the odd denominator rule. It cannot be understood in terms
of single layer energy gaps, because ν↑(↓) = 1/4. So the existence of this state is a pure
manifestation of inter-layer interactions.

Experimental evidence for the 1/2 state was first reported by Eisenstein et.al. [6]. They
studied the transport properties of four bilayer samples, named A, B, C and D, designed
to have minimal tunneling (∆SAS < 0.9K), but yet be coupled by Coulomb interactions.

The transport data at low temperatures for sample A are shown in Fig. 1.6(a). QHE
signatures are observed at ν = 2, 1, 2/3 and most importantly at ν = 1/2. The deep
minimum in ρxx at ν = 1/2 becomes less sharp with increasing temperature, indicating
the weakening of the QHE, as it should be.

In order to clarify the role of the inter-layer correlations in the formation of the 1/2
state, three other samples (Samples B, C and D) with increasing values of d/` were studied.
In Fig. 1.6(b) we can see a comparison of the longitudinal resistivity data at 300 mK for
all four samples. First we focus on samples A, B and C that are structurally identical,
but differ in their densities. While the ν = 2/3 ρxx minima are almost similar for the
three, the ν = 1/2 feature weakens monotonically with increasing density. If the 1/2
state was of single layer origin, we would expect the opposite behaviour. In fact when
density increases, we need a higher magnetic field to reach the same filling factor and
since the Coulomb energy e2/` ∝

√
B, the energy gap increases and there should be a

stronger transport feature. Actually for bilayers the relative magnitude of intra-layer and
inter-layer interactions plays a crucial role. We note that the increase in d/` when going
from Sample A to C, and hence the decrease of the relative importance of inter-layer
interactions is concomitant to the weakening of the QH feature. Now we consider Sample
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D, which has a nearly equal density to Sample B, but a thicker barrier and consequently
a higher d/` ratio. Again it exhibits a 2/3 QHE similar to the other samples, but the 1/2
feature is absent.

All these data show that the ν = 1/2 QHE collapses as d/` increases and provide com-
pelling evidence that this new QHE derives from inter-layer correlations. This experiment
also establishes an approximate critical value for the ratio (d/`)cr ≈ 3.1 above which the
1/2 state is destroyed.

1.4.2 The ν = 1 Phase Diagram

The ν = 1 state may seem less interesting at first thought. Although it has no counterpart
in single layers (ν↑(↓) = 1/2), its gap can be of single particle origin. Indeed in the presence
of tunneling, the lowest symmetric spin up LL is separated from higher levels by spin and
pseudospin gaps, which can give rise to a QHE. Quite surprisingly the ν = 1 state can
also occur in the absence of tunneling if the layers are placed close enough. This indicates
again the crucial role of inter-layer Coulomb interactions.

The first experiment emphasizing the impact of inter-layer correlations in the bilayer
ν = 1 QHE was conducted by Boebinger et.al. in 1990 [35], where bilayers with finite
tunneling gaps were studied. However the first systematic study of the ν = 1 QHE in
bilayers was carried out in 1994 by Murphy et.al. [7].

In the experiment of Murphy et.al. 15 samples were studied and most of them consisted
of two 18 nm wide GaAs wells separated by a 3.1 nm AlxGa1−xAs barrier. By changing
the Al concentration in the barrier (0.3 < x < 1.0), the tunneling gap was varied between
0.5 and 8.5 K , while the total carrier concentration ranged from 0.8× 1011 to 3.2× 1011

cm−2, with low temperature mobilities of ∼ 106 cm2/Vs. The samples are represented
in Fig. 1.7(a) as a function of the tunneling gap ∆SAS , normalized to the intra-layer
Coulomb energy e2/ε` and of d/` at ν = 1.

Transport data as a function of magnetic field were taken for all samples at T = 300
mK. In Fig. 1.7(b) we show the magnetic field dependence of ρxx for the samples indicated
by numbers 1 and 2 in Fig. 1.7(a). While both display QHE at ν = 2, 4/5 and 2/3, they
differ dramatically at ν = 1. Sample 1 displays a strong QHE at ν = 1, while in sample 2
there is no such effect. Similar analysis was performed on the other samples.

Two important qualitative conclusions can be drawn from the data: 1) there exists
a well-defined boundary separating the QHE from the non-QHE phase; 2) the phase
boundary intercepts the vertical axis at a non-zero value of d/` (≈ 2). In fact the samples
enclosed by the dashed curve in Fig. 1.7(a) have negligible tunneling (∆SAS < 1K),
but still they display a well-defined ν = 1 QHE. We deduce that QH states exist in
the limit of zero tunneling where they can only derive from inter-layer correlations. The
phase transition that we see when moving from sample 1 to 2 cannot be accounted for
by the competition between tunneling and interaction effects, because of the negligible
value of the tunneling gap. It should be driven entirely by Coulomb effects. As the layers
distance exceeds a critical value, the correlations between the two layers vanish and the
system evolves into an uncorrelated gapless state, composed by two independent layers at
ν↑(↓) = 1/2.

Finally the distribution of points in the phase diagram suggests that the QHE evolves
continuously from a state dominated by single-particle tunneling (rightmost samples) to
an intrinsically many-body state at ∆SAS/(e

2/ε`) −→ 0.
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Figure 1.7: (a) 15 bilayer samples plotted according to their values of the tunneling gap and the
inter-layer distance. Samples that exhibit QH signatures at ν = 1 are presented by solid symbols
in the diagram, while those that do not show the ν = 1 QHE by open symbols. The dashed line
estimates the location of the phase boundary. (b) Longitudinal resistivity data taken at 0.3 K for
samples indicated in (a) by 1 (solid trace) and 2 (dashed trace). After Ref. [7].

1.4.3 Two-Component Wavefunctions

We have encountered two examples of two-component degrees of freedom : the spin and
the layer, where the latter can be described in complete formal analogy to spin. We now
explicitly write the two-component wavefunctions for QH bilayer states and discuss their
properties. Being interested only in the pseudospin physics, we will assume the spin to be
fully aligned and frozen.

In order to deal with QH spin systems, Halperin generalized the Laughlin orbital
wavefunctions as :

Φm,m′,n[z] =
∏

i<j≤N↑

(zi − zj)m
∏

k<l≤N↓

(z[k] − z[l])
m′

N↑∏
a=1

N↓∏
b=1

(za − z[b])
n
N∏
s=1

exp

(
−|zs|2

4

)
,

(1.7)
which are also suitable for treating pseudospin systems. In (1.7), N↑, N↓ represent the
number of electrons in the top, bottom layer respectively, and the index [i] ≡ N↑ + i.
The total wavefunction is obtained by properly antisymmetrizing the orbital part given in
1.4.3.

In (1.7) electrons in the two wells are treated as distinguishable particles. While m
and m′ are forced to be odd integers by the Pauli principle, n can take on any value
: odd, even or zero. The distinguishability picture breaks down if tunneling becomes
relevant, because the pseudospin states of single electrons hybridize into symmetric and
antisymmetric combinations of |T 〉 and |B〉, so the Φm,m′,n are strictly useful only in the
limit ∆SAS → 0.

The exponents (m,m′) and n describe the intra-layer and inter-layer correlations re-
spectively. In fact Φm,m′,n excludes relative angular momenta less then m in the upper
layer, less than m′ in the bottom layer and less then n for electrons in opposite layers.
Hence the electron organization described by Φm,m′,n lowers the Coulomb energy by forc-
ing electrons, either inside the single layers or in opposite ones (n 6= 0), to avoid each
other.

Halperin wavefunctions are good approximations to the true ground state and they
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Table 1.1: Some balanced Halperin states (m,m, n). τ is the total pseudospin and asterisks denote
states that are not eigenstates of τ2. Partial filling factors ν↑(↓) are shown in parenthesis for the states
with m = n, because they are not uniquely defined.

m n ν↑(↓) ν τ

1 0 1 2 0
1 1 (1/2) 1 N/2
3 0 1/3 2/3 *
3 1 1/4 1/2 *
3 2 1/5 2/5 0
3 3 (1/6) 1/3 N/2
5 0 1/5 2/5 *
5 1 1/6 1/3 *

display a charged excitation gap [37]. The presence of the charge-gap is important for two
reasons : it guarantees that the system displays the QHE; it ensures that the presence of
a small amount of tunneling between the layers doesn’t invalidate this correlation picture.

The Halperin wavefunctions are explicitly constructed to be entirely in the lowest
Landau level, so they are useful for QH states with ν ≤ 2. The individual layer filling
factors can be read by counting the powers of z1 and z[1] in Φm,m′,n, yielding:

ν↑ =
m′ − n

mm′ − n2
and ν↓ =

m− n
mm′ − n2

. (1.8)

The majority of experimental situations deal with balanced bilayers i.e. bilayer samples
in which the two layers are equally occupied (N↑ = N↓). These systems can be well
described by Halperin states with m = m′. In Table 1.1 the partial and total filling factors
are shown for some balanced Halperin states.

For ν = 1/2 the only candidate is the (3, 3, 1) state. Its intra-layer correlations are the
same as for the Laughlin 1/3 state. We can crudely describe this state as two Laughlin 1/3
states locked with respect to each other such that electrons in one layer face correlation
holes in the opposite one. The validity of this wavefunction is supported by numerical
simulations [36,37] .

At ν = 2/5 there are two available candidate Halperin states. Numerical simulations
[36] suggest that the QHE appears for all values of d/`, but for d/` < 2 the (3, 3, 2)
wavefunction provides a better description of the system, while for d/` > 2.5 the (5, 5, 0)
state is more adequate. The idea is that for small separations inter-layer correlations are
preferred, while at large separations the system evolves into two independent layers (n = 0)
with ν = 1/5. At intermediate values of d/` we could have a phase transition between the
two states, which should manifest itself in a significant change of the charged excitation
gap, probably due to the different nature of charged excitations in the two states.

The ν = 2/3 behaves similarly, in the sense that it should display a QHE at all values
of d/`, but in both single and independent layer regimes it is of single layer origin. In fact
for d� ` the system is well described by a Laughlin 2/3 orbital wavefunction and a fully
symmetric pseudospin (if ∆SAS 6= 0, all pseudospins align along the +x direction). In the
opposite limit, the (3, 3, 0) is more appropriate, because it lacks inter-layer correlations
(n = 0).

For ν = 1/3 the Halperin (3, 3, 3) is realized in the single layer limit, while the less
correlated (5, 5, 1) at intermediate d/` values. Despite these results, the bilayer ν = 1/3
QHE has never been reported experimentally to our knowledge.



20 The Quantum Hall Effect

Finally for ν = 1, the (1, 1, 1) state has a good overlap with the numerically exact
ground state at small d/`.

1.4.4 Spontaneous Symmetry Breaking

Let’s inspect more carefully the Halperin (m,m,m) states. The orbital wavefunction
is equivalent to the Laughlin function at ν = 1/m and it is completely antisymmetric,
yielding a fully symmetric pseudospin function. This tells us that we have a fully aligned
pseudoferromagnetic state with total pseudospin τ = N/2. At the same time the partial
filling factors in (1.8) are ill-defined, because of the vanishing denominator mm′−n2. The
anomaly follows naturally from the fact that corresponding to maximal total pseudospin,
there are 2τ + 1 = N + 1 orthogonal states differing only by their τ z quantum number.

In the single layer limit, the states of the τ = N/2 multiplet are all degenerate. At
finite layer separation, interactions become pseudospin dependent and the degeneracy is
lifted. In fact Vps

2 is a positive-definite operator, so it favours the states with 〈τ z〉 = 0, for
which pseudospin lies in the xy plane. Since τ z measures the charge difference between
the layers, the detachment of pseudospin from the xy plane can be viewed as a charging
of the capacitor formed by the two layers and this explains why states with 〈τ z〉 6= 0 have
a higher energy.

A state with full pseudospin polarization in the xy plane is referred to as easy-plane
pseudospin ferromagnet and its wavefunction has a generic form given by :

|Ψφ〉 =
∏
X

1√
2

[
c†X,T + eiφc†X,B

]
|0〉, (1.9)

where |0〉 is the electron vacuum, c†Q/cQ is an operator that creates/destroys an electron
with quantum numbers Q, and X is an index running through the orbitals of the lowest
LL in the top and bottom layers. The global phase φ determines the orientation of the
total pseudospin in the xy plane

〈Ψφ|τ |Ψφ〉 =
N

2
(x̂ cosφ+ ŷ sinφ) .

All these states have the same lowest energy, so the ground state of the system is
highly degenerate. These states are transformed into one another for rotations of the total
pseudospin around the z axis, which is an expression of the U(1) symmetry of the Coulomb
interactions in bilayers (see end of section 1.4). However the system chooses a particular
pseudospin orientation φ and it spontaneously breaks the U(1) symmetry. In fact |Ψφ〉
is a coherent superposition of all τ z eigenstates, so that the layer charge difference is
uncertain. The phenomenon is analogous to a BCS state that has an uncertain number
of Cooper pairs, or to superfluid He. We say that the system has spontaneous inter-layer
phase coherence.

At non-zero tunneling (∆SAS 6= 0), pseudospins ”prefer” to align along the +x direc-
tion, so that the state of the system can be well approximated by |Ψφ=0〉. In this case the
symmetry is explicitely broken and the system lacks many of the interesting properties
found in the case of ∆SAS = 0.

There is another suggestive way of viewing the states in (1.9). If we start with a
vacuum state |0′〉 with no electrons in the bottom layer and no holes in the top layer (i.e.
the top layer contains a fully filled LL), then the above wavefunctions can be rewritten as

2the pseudospin dependent part of the electron interaction, defined in (1.6)
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|Ψφ〉 =
∏
X

1√
2

[
1 + eiφc†X,T cX,B

]
|0′〉. (1.10)

The combination c†X,T cX,B creates an inter-layer electron-hole pair, or equivalently an
inter-layer exciton. In this formulation the ν = 1 many-body wavefunction takes the
same form of the BCS state for conventional superconductors, in which Cooper pairs are
replaced by excitons.

Conventional excitonic states in insulators or semiconductors differ substantially from
the ones introduced above [38]. In fact they are usually created by shining light on the
crystal, which produces equal numbers of electrons in the conduction band and holes in
the valence band that form bound states after relaxing into the extrema of the respective
bands. However they represent highly excited states (with energy close to the bandgap)
and spontaneously decay into the crystal ground state, usually by emitting photons. Their
lifetime varies from ms to ns depending on the material. In contrast bilayer excitons at
ν = 1 are already present at equilibrium. The whole electron gas contributes to the
formation of excitons and not just the few photoexcited particles. Furthermore they
are perfectly stable particles with infinite lifetime. Bilayers of 2DEGs then host all the
appropriate conditions for realizing the Bose-Einstein condensation of excitons.

We now address two important consequences of spontaneously broken symmetry in
bilayers at ν = 1, a rigorous derivation of which can be found in [11, 34]. The first
concerns the low lying excitations of the system. Those are neutral pseudospin waves with
linear dispersion ω ∝ |q| at long wavelengths and zero energy at q = 0. They represent
the Goldstone mode associated with the broken symmetry.

The second is related to the existence of dissipationless excitonic currents, analogous
to the supercurrents observed in superconductors. If φ(r) is the spatial profile of the inter-
layer phase associated with the excited state wavefunction, it can be demonstrated [11,34]
that such excitonic currents can be expressed as :

J =
2ρs
~
∇φ,

where ρs is a pseudospin stiffness coefficient, related to the exchange energy cost of spatial
variations of the pseudospin. Since excitons are composed of bound electrons and holes
belonging to opposite layers, their uniform flow is equivalent to ordinary electrical currents
flowing in opposite directions in the two layers. Therefore exciton supercurrents can be
probed in a counterflow geometry, i.e. by applying electrical fields of opposite signs in the
two layers.

1.4.5 Evidence of Spontaneous Inter-layer Phase Coherence

The observation of QHE at ν = 1 in bilayers with ∆SAS ≈ 0 indicates the paramount
importance of inter-layer Coulomb correlation, but it does not reveal the existence of an
exciton condensate.

Evidence for a broken symmetry phase comes from tunneling spectroscopy measure-
ments, performed by Spielman et.al. [12] in a GaAs/AlGaAs double QW, where the layer
densities can be varied by using top and bottom gates. In this way the various regimes of
d/` can be explored in a single sample. By contacting independently the two layers [39],
the authors were able to apply a voltage difference V between the layers and measure the
tunneling current I.
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Figure 1.8: (a) Tunneling conductance dI/dV vs inter-layer voltage at ν = 1 and T = 40mK in
balanced bilayers with ∆SAS ≈ 0. Each trace corresponds to a different total density (or effective
layer separation d/`) (b) Temperature dependence of the zero bias tunneling conductance at ν = 1
for low and high effective layer separation. The latter data has been magnified by a factor of 200.
After Ref. [12].

The tunneling conductance (dI/dV − V ) was measured at 40 mK and ν = 1, for
various values of d/`. The central result is displayed in Fig. 1.8(a). At the largest d/`,
the zero bias tunneling is strongly suppressed. Then at d/` = 1.77 a small sharp peak
appears at V = 0, which becomes the dominant feature of the spectrum at d/` = 1.63.
The qualitative picture behind this data is the following :

For d/` > 2 there is no QHE and the layers are decoupled. Each layer behaves as
a strongly correlated 2DEG with ν = 1/2 described as a composite fermion metal [32].
Tunneling of one electron from one layer to the other costs an amount of energy ∆E ∼
e2/ε`, so the process becomes possible only at high voltages eV = ∆E. In conclusion, the
tunneling spectra display a Coulomb gap at zero bias.

At d/` ≈ 1.6 the system displays the QHE and it is characterized by strong inter-layer
correlations. Indeed in the (1, 1, 1) state, electrons in one layer are opposite to holes in
the other layer, so it seems plausible to get an enhancement of tunneling. Anyway this
simple view cannot address the sharp resonant peak at V ≈ 0. Such a feature suggests the
existence of a gapless long-lived excitation of the system, which is capable of transferring
charge between the layers. This is exactly what the pseudospin Goldstone mode does. In
fact it involves oscillation of pseudospins in the z direction.

The collective nature of the tunneling process is supported by the temperature de-
pendence of the conductance peak (see Fig. 1.8(b)). In fact in the non-correlated phase
there is a monotonic increase, consistent with a thermally-activated excitation across the
Coulomb gap. On the contrary, in the QH phase the peak decreases sharply for T > 300
mK, which reflects the thermal destruction of inter-layer correlations.

While suggesting the existence of a gapless Goldstone mode, fingerprint of a broken
symmetry states, this result is not sufficient to demonstrate the exciton condensation.
Evidences of exciton condensation were reported by Kellogg et al. [14] in a sample similar
to the previous one.

By making independent electrical connections to the individual layers, they could inject
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Figure 1.9: Hall and longitudinal resistances (solid and dotted traces respectively) for balanced bi-
layer at 50 mK for currents in parallel in the two layers (upper panel) and in counterflow configuration
(lower panel). After Ref. [14].

currents in the layers in the same direction (parallel transport) or in opposite directions
(counterflow transport) and measure the longitudinal and Hall voltage drops in the upper
layer. At ν = 1 and d/` = 1.58 (well within the QH phase, see Fig. 1.7) the longitudinal
and Hall resistances at 50 mK are shown in Fig. 1.9(a).

In the case of parallel transport, the usual QHE signatures are seen around ν = 1. The
Hall plateau occurs at 2h/e2, because only half of the total current is measured. However in
the counterflow configuration, there is a dramatic difference : the Hall resistance exhibits
a deep local minimum. The idea is that dissipationless transport, associated with the
exciton condensate, has infinite longitudinal conductivity, so both the longitudinal and
Hall counterflow resistances should vanish. An even simpler picture is that excitons are
neutral entities and do not experience the Lorentz force, so the Hall voltage must vanish.

Similar transport evidences were found almost simultaneously by Tutuc et.al. [15] and
later by Tiemann et.al. [16] in a different sample geometry.

1.5 Conclusions

In this chapter we have examined some of the most remarkable phenomena that occur in
cold 2DEGs in semiconductor heterostructures subjected to quantizing magnetic fields. In
single layers, the combined effect of gaps in the electronic density of states and disorder
leads to spectacular deviations from the classical transport behaviour, where the Hall
resistivity instead of rising linearly with magnetic field, exhibits plateaus at values h/(νe2)
with ν integer or odd-denominator fractions. For integer plateaus the gap is due to Landau
quantization of the single particle kinetic energy. At fractional plateaus the electrons
reorganize into correlated states with a gap dictated by the Coulomb interaction.

Bilayer systems enrich the scenario by bringing two new energy scales : the single
particle tunneling gap and the Coulomb interaction between electrons in different layers.
In concert they can either enhance or destroy the QHE, giving rise to phase diagrams
for certain filling factors. Of particular interest is the case of bilayers coupled only by
Coulomb interaction: they can exhibit QH states that have no analogue in single layers
(at ν = 1 and 1/2) and they undergo quantum phase transitions with increasing layer
separation. The ν = 1 state involves a spontaneous symmetry breaking and it can be
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pictured either as an easy-plane pseudospin ferromagnet or as a BCS like condensate of
inter-layer excitons. Astonishing phenomena have been observed in this state, such as
resonant enhancement of inter-layer tunneling at zero bias voltage and vanishing Hall
resistance indicating dissipationless counterflow transport of inter-layer excitons.

The experiments discussed in this chapter were based on transport measurements.
However there are at least two other classes of experimental tools that can be successfully
employed for studying bilayers, namely nuclear magnetic resonance [40, 41] and optical
spectroscopy, particularly inelastic light scattering [18–21]. In this thesis work we have
decided to use photoluminescence(PL) spectroscopy with the target of highlighting the
impact of inter-layer correlations and exploring new experimental evidences of bilayer QH
states. There are several reasons for this experimental choice:

1) GaAs/AlGaAs heterostructures have enhanced optical properties, both because of
intrinsic properties of GaAs and of the increasing precision of modern growth techniques.
So these samples produce good quality optical signals, when optically probed.

2) Optical spectroscopy provides information complementary to transport experiments.
In particular PL probes individually electrons in different spin/pseudospin states and can
thus give information on the energies of these states and the distribution of electrons
among them. This motivates our expectation of observing new properties of QH states,
not seen in transport data.

3) In the last 25 years PL has been successfully employed for investigating single layers
in the QH regime. Signatures of QH states and associated quasiparticle excitations have
been found. Many important aspects of the experimental data are now theoretically well-
understood. These results provide a useful and reassuring guideline, when dealing with
bilayers.

4) The topic of photoluminescence in QH bilayers still represents an unexplored area.
There have been very few experimental [42, 43] and almost no theoretical work on the
argument. To this respect, the present work represents the first attempt to explore QH
bilayers with the hope of opening a new route for the studies of this rich class of phenomena.



Chapter 2

Photoluminescence Spectroscopy
and Experimental Setup

The modulation doping technique, able to suppress the scattering of electrons from the
ionized donors, makes it possible to realize ”clean” high mobility 2DEGs. In GaAs/AlGaAs
heterostructures grown by MBE such systems display remarkable optical properties. In
the following we briefly review the most relevant optical techniques exploited so far in the
investigation of 2DEGs, with emphasis on bilayer samples.

Magneto-absorption spectroscopy relies on the ability to discriminate between occupied
and unoccupied states around the Fermi level. In fact absorption can only occur into
unoccupied states, so monitoring the absorption level while sweeping the Fermi energy
can shed some light into the spin and pseudospin polarization of the various QH states.
However these experiments are difficult to conduct. In particular the samples need further
processing in order to remove the substrate which would otherwise absorb most of the
light. In order to increase the absorption, typical samples include several replica of the
QW. In this way, however, some disorder is introduced. In the experiments on bilayers,
this would be detrimental, since it is difficult to realize identical copies of coupled bilayers.
Indeed very few experiments have been reported on bilayers. We mention, in particular,
the work by Manfra et.al. [17] on a coupled double layer at ν ≈ 1. They observed a loss
of pseudospin polarization, which suggests an interplay between single-particle tunneling
and inter-layer Coulomb effects.

Inelastic light scattering has been successfully employed in the study of QH bilayers.
It provides access to the collective neutral excitations of the system. In particular the low
lying spin excitations (spin-flips and spin waves) have proven very useful in probing the
properties of QH bilayers at ν ≈ 1. For instance, it has been shown that the pseudospin
polarization of the ground state can be deduced from the energies of these spin excitations,
and a loss of pseudospin polarization was found in a coupled bilayer with a non-zero
tunneling gap [19]. Phase transitions at ν = 1 have been observed both in zero [20] and
finite tunneling gap samples [21], which are signalled by dramatic changes in the nature
of the spin-flip excitations seen in the light scattering spectra.

Finally, photoluminescence (PL) spectroscopy can be considered as the most straight-
forward optical technique. It consists in optically injecting an electron-hole pair into the
sample, which probes the electron gas. The energies and intensities of the interband
recombination channels of the 2DEG electrons with the photo-generated hole provide in-
formation on the ground state configuration of the 2DEG.

Magneto-PL has been extensively employed in the study of single layer 2DEGs. Inten-
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sity modulations, energy non-linearities and line splittings in the optical spectra provide
evidence for various integer [22] and fractional QH states [23–25]. These features have
been linked to changes in the screening behaviour of the electron gas in the QH state.
In addition, PL has proven to be a useful tool in studying the spin polarization of the
2DEG [23,44] also in the fractional QH regime.

Considering the success of PL spectroscopy with single electron layers, there is little
doubt that it can also be profitably used for studying electron bilayers. However, to our
knowledge, there have been very few PL investigations of bilayer samples.

In the first part of this chapter we introduce the basics of PL spectroscopy and illustrate
its application in the study of 2DEGs in the QH regime. The knowledge of the energy level
structure of GaAs/AlGaAs QWs, with which we deal throughout this work, is essential for
understanding their emission spectra, so we briefly describe the most relevant valence and
conduction band levels of these samples. To illustrate the application of PL spectroscopy
and its potentiality, we present some well-established experimental results on single layers,
such as the polarization analysis of the PL spectra, optical signatures of the QH states and
the role of the Hidden Symmetry in the optical emission. These results are also important
for the understanding of the data from bilayer samples.

The second part of the chapter is dedicated to the description of the experimental
equipment used in this work. Particular emphasis is placed on the cryogenic systems,
that allow the achievement of mK temperatures, and on the optical setup used for the
magneto-PL measurements.

2.1 Introduction to PL Spectroscopy

2.1.1 Energy Level Structure of GaAs/AlGaAs QWs

The understanding of the PL data is almost impossible without an apriori knowledge of
the energy levels of the sample. In Chapter 1 we saw that the energy structure of the
2DEGs is driven by strong electron correlations, so we expect the electron states to be of
collective nature. Anyway our knowledge of these correlated states is limited to particular
filling factors, while we know almost exactly the evolution of the single particle levels. For
this reason, in the following we will mainly refer to the single particle picture and include
correlations effects only when needed.

The Landau level structure in the conduction band (CB) was discussed in the previous
chapter. To understand optical spectroscopy, one needs to know the valence band (VB)
energy structure as well. Figure 2.1 shows the evolution of the relevant VB and CB states
from bulk GaAs to QWs at B = 0 and to QWs at finite magnetic fields.

In bulk GaAs the VB structure is composed of three bands (Fig. 2.1(a)) : the heavy
hole(HH), light hole(LH) and split-off(SO) bands. Since ESO ≈ 0.34 eV, we can neglect
the SO band in the description of the optical spectra. HH and LH bands have coincident
(degenerate) maxima at the Γ point and dispersion around Γ is approximately parabolic
with effective masses : mHH ≈ 0.4 me and mLH ≈ 0.1 me. HH and LH differ by their
angular momentum : HHs have J = 3/2, Jz = ±3/21, while for LHs J = 3/2, Jz = ±1/2.
Each band is doubly degenerate in Jz. For the electron states in the CB, J and spin(S)
coincide and we have S = 1/2, Sz = ±1/2.

The QW confinement brings important changes [26]. Electrons, HHs and LHs can still
be described as freely moving particles in the QW plane, but the confinement in the well

1In bulk GaAs we choose ẑ ‖ k, while in QWs it is convenient to choose ẑ along the growth direction.
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Figure 2.1: (a) Band structure of bulk GaAs (b) Calculated valence subband structure of a GaAs
QW at B = 0, obtained by neglecting the coupling to the conduction band and assuming crystal
inversion symmetry. Strong subband non-parabolicities can be noted. After Ref. [26]. (c) Lowest
Landau levels originating from the lowest electron subband in the CB and HH1 subband in the
VB. Optical transitions between the LLs connected by arrows, generate left(LCP) and right(RCP)
circularly polarized photons. EZ(Z′) are the Zeeman energies in the conduction (valence) band.

direction gives rise to energy subbands. Only the first subbands (n=0) for each type of
hole will be considered, since the successive ones (n≥ 1) are usually tens of meV lower in
energy and do not contribute to the optical emission. If the heterostructure has inversion
symmetry in the well direction, each subband remains doubly degenerate.

Since the confinement energy goes as 1/m∗, then the Γ point degeneracy in the VB
is lifted and the LH subband becomes lower in energy than the HH subband (see Fig.
2.1(b)). In magneto-PL experiments only the lowest energy emissions are studied, so
recombination processes involving the HH only are typically considered.

The new hole states with in-plane momentum k‖ 6= 0 do not have a well-defined
angular momentum, because the HH and LH states mix. Nevertheless, the amount of
angular momentum mixing is generally quite small. For this reason we continue to label
HH states with Jz = ±3/2 and LHs with Jz = ±1/2.

Summarizing, magneto-PL spectra in GaAs QWs can be understood in terms of HHs
in the VB and electron states with mass mc and S = 1/2 and Sz = ±1/2 in the CB. HHs
can be considered approximately as free particles with an effective mass mv and angular
momentum ±3/2.

Finally, in a magnetic field the energy levels for the electrons and HHs take the form :

En,sz = ~ωc,c(n+
1

2
) + geµBBSz, where ωc,c =

eB

mcc
, and

Em,Jz = −~ωc,v(m+
1

2
) + ghµBBJz where ωc,v =

eB

mvc
. (2.1)

Since mv ≈ 6mc, the Landau level energy spacing will be much lower in the VB than in
the CB, so we expect Landau level mixing to be much more important for holes than for
electrons.
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Figure 2.2: Schematic description of a PL process at ν = 1: (a) Absorption of incident photons and
generation of an electron-hole pair (b) Relaxation of the photogenerated particles. Both spin states
of the m = 0 LL are possible for the hole (depicted in the middle of the spin up/down levels). The
dashed closed loop represents the formation of a bound state between the encapsulated particles, while
the full spin up LL acts as an inert background (c) Two possible recombination channels, yielding
photons with orthogonal circular polarizations. In LCP emission a spin wave is left in the final state,
which consists of a bound state between the reversed spin electron and the spin hole in the otherwise
full Landau level.

2.1.2 Fundamentals of PL Spectroscopy

PL involves three consecutive processes : excitation, relaxation and spontaneous emission.
Initially the system contains an unperturbed 2DEG. In Fig. 2.2 we illustrate the case of
a 2DEG at ν = 1, in which all the electrons occupy the lowest LL with spin up.

Let’s assume that we excite the system by some external light source (laser), which
pumps electrons from the valence to the conduction band, thus generating electron(e)-
hole(h) pairs. Usually laser powers are kept very low, so that the number of pairs is
much lower than that of electrons in the 2DEG. In this way the photo-generated electrons
perturb very weakly the 2DEG and also the photo-generated holes are very diluted so
we can safely neglect the interaction between them. In this picture, we only need to
consider the evolution of the electron gas + one hole system. The effect of the hole on the
surrounding gas is far from being trivial. In fact the e−h and e− e Coulomb interactions
are of equal strength and should, therefore, be considered on equal footing. Some issues
regarding the current understanding of the PL in single layers will be addressed in the
following.

Soon after excitation, the 2DEG + h system is in a highly excited state, since the
photogenerated e and h occupy higher-energy Landau levels. Because of the coupling
with lattice vibrations or scattering with electrons of the gas these particles loose energy
and rapidly (∼ps) relax non-radiatively towards the lowest available unoccupied states.
In the situation depicted in Fig. 2.2(b), the photo-electron will relax to the spin down
lowest LL (n = 0) in the CB and the hole to one of the spin resolved states of the ”lowest”
hole LL (m = 0) in the VB. Usually relaxation times are much faster than the e − h
recombination times (∼ns), so the system will be found either in its ground state |ig〉 or
in one of its lowest excited states |ie〉. With increasing temperature the |ie〉 become more
populated and are expected to contribute more to the PL emission.

Finally the e − h interband recombination leads to emission of a photon. PL spec-
troscopy is concerned with the collection and analysis of the emitted photons in order
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to get information about the state of the 2DEG. The form of the PL spectrum can be
expressed as :

I(E) =
∑
i,f

Pi|〈f |L|i〉|2δ(Ef − Ei − E), (2.2)

where I(E) represents the intensity of emission at energy E, |i〉 and |f〉 represent the states
immediately before and after recombination, respectively, Pi is the occupation probability
of state |i〉 before recombination and L is the dipole transition operator.

The first type of information that can be read from the spectra, is the energy of
the emission peaks. It corresponds to the energy difference between the initial and final
states involved in the emission. From the energy value and in particular its variation with
magnetic field, we can infer about the nature of the initial state. If energy varies linearly,
emission is expected to be of single particle origin, while deviations from this behaviour
could be a signature of many-body effects, including excitonic effects.

Most importantly, the recombination of electrons from different spin-resolved Landau
levels occurs at different energies, so in the PL spectrum we get a separate signature
for each level, in contrast to transport measurements, where only the average response
of the electron gas can be read from the data. Usually the Zeeman splitting is of the
same magnitude as the emission linewidth and the spin states are typically not resolved
in the spectra, except at very high magnetic fields. However the emissions from the two
spin levels have orthogonal circular polarizations, as it can be seen in Fig. 2.1(c), so by
detecting only certain polarization components we can probe separately the spin levels.
The technique is called polarization-resolved PL spectroscopy and it provides information
on the spin polarization of the system.

Another valuable information contained in the spectra is the emission intensity of the
various peaks. Intuitively one could relate the intensity variation of a peak to a variation in
the population of the corresponding electron level. Actually, from (2.2) we learn that the
intensity of the peaks is determined by the simultaneous action of three physical variables
: the stationary population Pi of the initial luminescence states, that is also influenced by
the absorption cross section of the exciting radiation, and it also depends on the various
relaxation and decay times ; the optical transition matrix element, which is governed
by the overlap integral of the e and h wavefunctions, and varies under the influence of
localization in the disorder potential; the density of states, in which gaps are opened in
correspondence to QH plateaus. Therefore one has to be cautious when interpreting the
intensity behaviour and complementary evidence is often required to support the assigned
interpretation.

2.2 PL in the QH Regime

2.2.1 PL in Single Layers

We review here some representative magneto-PL data obtained in single layers. In partic-
ular we start by illustrating the main ideas and potentialities of the polarization-resolved
PL, which we have also adopted in our study of bilayers. Next we present the features
of the optical spectra that signal the formation of QH states in single layers, and their
physical meaning. The QHE in single layers is usually associated with minima in the emis-
sion intensity, which are also observed in our PL spectra of bilayers at particular filling
factor values. We also explain that two-dimensional e + h systems under high magnetic
fields manifest an internal symmetry, called Hidden Symmetry (HS), due to the equality of
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Figure 2.3: Emission spectra of a 25 nm wide QW at 0.56 K, hosting a 2DEG with density 1.83×1011

cm−2. Solid/dotted lines correspond to left/right circularly polarized emission spectra at two different
filling factors (indicated in the figure). After Ref. [23].

strength of e− e, e−h and h−h interactions. In the last part of this section we introduce
the HS, its consequences and limits of validity.

Polarization resolved PL

Polarization analysis of the optical emission from a 2DEG discriminates the separate
contributions of the spin-split states of the lowest LL. This follows from the fact that
electrons in the two spin states recombine with HHs by emitting photons of opposite
circular polarizations, as shown in Fig. 2.1.

Polarization-resolved luminescence spectroscopy was initially exploited by Goldberg
et.al. [23] to probe 2DEGs in GaAs/AlGaAs QWs at high magnetic fields. Figure 2.3
displays representative examples of two circularly polarized emission spectra. The de-
population of the upper spin state for ν < 1 causes the RCP emission to be strongly
suppressed. In addition, by comparing the anomalies in the LCP and RCP emission ener-
gies at ν = 1, Goldberg et.al. could determine the relative impact of many-body effects2,
that depend differently on the initial occupancy of the spin states.

Measurement of the polarized emission offers the possibility to determine directly the
spin polarization of the 2DEG. This was demonstrated by Kukushkin et.al. [44] in a
GaAs/AlGaAs heterojunction, hosting a 2DEG. By analysing the intensities of the LCP
and RCP emissions, they could quantitatively estimate the variation of the 2DEG spin
polarization around ν = 1.

QHE in the PL spectra

In transport measurements, the QHE appears as plateaus in the Hall resistivity and deep
minima in the longitudinal resistivity. Signatures in the PL spectra that have been ob-
served, are : plateaus in the recombination energy, peak shifts, minima in the emission
intensity and line splittings.

PL signatures of the QHE at ν = 1, 2/3 and 2/5 were observed by Goldberg et.al. [24].
They measured simultaneously the transport resistivity components and the PL spectra of
a high-mobility 2DEG, hosted in a GaAs/AlGaAs QW, at different temperatures. Figure
2.4 shows the experimental data around ν = 1, where plateaus in the emission energy and
intensity minima can be noticed. The extent of the Rxy plateau delimits the magnetic
field interval over which the Fermi energy EF lies in a region of localized states. As the

2such as the screening of the hole potential, the e − h Coulomb binding and the e − e Coulomb and
exchange interactions
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Figure 2.4: Transition energy (circled dots), peak intensity (solid dots) and Hall resistance Rxy

(solid lines) around ν = 1 at T = 2.5, 1.3, 0.6, and 0.41 K, for a sample nominally identical to the
one in Fig. 2.3. The energy curves are offset by 0.5 meV each, and the intensity and Rxy curves by
arbitrary constant values, for better visibility. After Ref. [24].

temperature is reduced, fewer extended states lie within kBT from EF , causing the Hall
plateau width to increase. The similar behaviour of the transport Hall plateau and the
optical intensity minimum and energy plateau, upon cooling of the 2DEG, indicates their
common physical origin i.e. the position of EF inside the localized states region. A similar
correspondence between optical and transport features was also observed at ν = 2/3 (not
shown here).

While only specific fractional QH states are usually seen in the PL spectra of 2DEGs,
the work of Byszewski et.al. [25] reported signatures of a whole set of fractional QH states,
which are symmetric around ν = 1/2. In particular energy blue shifts and line splittings
were observed at filling factors ν = 1, 2/3, 3/5, 3/7, 2/5 and 1/3. The jumps in energy
were seen in correspondence to the edges of Hall plateaus and they gradually disappeared
with increasing temperature.

The quenching of the lowest energy emission at ν = 1 and 2/3 [23, 24] is currently
understood as a consequence of the localization of e and h in the disorder potential of the
2DEG. We recall, in fact, that the charged excitations of a 2DEG in a QH state are gapped,
so that electrons are unable to screen external potentials. Thus the residual potential
fluctuations that originate from the ionized donors and the well-width fluctuations can
localize e and h quasiparticles. Because of their opposite charge, e and h are confined
in different regions of space. Hence their wavefunction overlap and the optical matrix
element is reduced, leading to a suppression of the optical emission. This interpretation
is supported by time-resolved PL investigations of doped QWs, which revealed a large
increase in the radiative recombination time at ν = 1 [45].

The changes in the screening response of the 2DEG are also thought to be responsible of
the upward cusps (or energy blue shifts) observed in the PL peak energy evolutions [23–25].
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Figure 2.5: Luminescence peak energies as a function of magnetic field for a 20 nm wide symmetric
QW, containing 1.2 × 1011 electrons/cm2 at 4.2 K. The solid line is the best linear fit to the lowest
emission energy at low fields, while the dotted line represents the peak energy at low electron density.
Filling factors are shown in the upper axis, while the position of ν = 2 is also indicated by the dashed
vertical line. After Ref. [46].

Hidden symmetry

The magneto-luminescence spectra of symmetric quantum wells containing a high density
(& 1011 cm−2) electron gas show an abrupt changeover from Landau-level behaviour (i.e.
linear shift of energy with magnetic field) to approximately quadratic behaviour (exciton-
like), at electron filling factor ν = 2. Figure 2.5 illustrates the phenomenon (at the dashed
vertical line). The data have been published by Yoon et.al. [46]. At ν < 2, the emission
energy follows the transition energy observed in the same sample at low electron density
to less than 0.5 meV, so the energy depends weakly on the gas density. The changeover
is not observed in wide (width > 25 nm) asymmetric QWs.

Based on these observations, Rashba and Struge [47] argued that the changeover is a
consequence of the Hidden Symmetry (HS), inherent in 2DEGs in strong magnetic fields.
If we mapped the e − h system into a spin-1/2 electron system, then HS would simply
correspond to the invariance of Coulomb interactions under spin rotation [48]. The validity
of the HS requires that Coulomb interactions are charge-symmetric Vee = Vhh = −Veh
and that e and h have identical wavefunctions. These conditions are realized if : a)
particles(e, h) have the same wavefunction in the growth direction b) B is sufficiently
large, that we can neglect the LL mixing c) all carriers are in the lowest LL.

In an ideal system, where a) and b) are satisfied, condition c) is equivalent to ν < 2.
Let’s consider an ideal gas of N electrons with ν < 2 in the presence of a photogenerated
electron-hole pair. The ground state of the system is a product of the wavefunction of
a neutral magneto-exciton (ME) and the wavefunction of the background gas of the N
electrons. Because of the HS, both the ME wavefunction and the energy of the system
are the same as if the well was empty (N = 0) [47]. In other words, the energy doesn’t
change if we add or remove an electron from the background gas.

This picture explains coherently the above mentioned experimental observations : the
emission energy varies quadratically, because it originates from an exciton and it doesn’t
depend on the gas density because of the HS. The changeover occurs at ν = 2, in corre-
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spondence to the onset of the HS. Finally, in wide asymmetric QWs e and h can lie in
different places along the QW growth axis. Hence condition a) and the HS are not valid,
which explains the fact that the changeover is not observed.

The ideal picture implies also that the PL spectra contain a single line for ν < 2,
resulting from the radiative decay of a ME, and give no information about e−e correlations
in the 2DEG. The behaviour of real samples, however, deviates from the ideal model,
because of the violation of the HS. In the following, we present two mechanisms through
which the HS is violated and their consequences on the 2DEG luminescence.

1) The magnetic field is finite in realistic conditions, so condition b) is never fully
satisfied. In real samples condition b) quantifies in:

γ ≡ ~ωc/Ry � 1,

where Ry = m∗e4

2~2c2ε2 ≈ 4.8 meV is the effective Rydberg energy for excitons in bulk GaAs,
and m∗−1 = m−1

c +m−1
v is the reduced electron-HH mass. Actually the manifestation of

the HS at ν = 2 is so robust that it has been observed for γ as low as 0.5 [46].

At finite magnetic fields, the ME can bind an additional e and form negatively charged
excitons X−, which interact weakly with the surrounding 2DEG. The possible states of
X− are classified according to its spin and angular momentum : X−S , X

−
TB, X

−
TD and X−SD,

called singlet, bright triplet, dark triplet and dark singlet respectively. Charged excitons
dominate the luminescence spectrum of 2DEGs at low and intermediate gas densities
(< 1011 cm−2) and have been extensively studied theoretically [49] and experimentally
[50–52].

2) The ideal model does not take into account the disorder potential and the carrier
localization. As we have seen before, localization becomes important in the QH phase and
gives rise to specific optical anomalies, such as intensity minima and energy jumps.

2.2.2 PL in QH bilayers

Little work has been done on the PL of double layers in the QH regime.

One of the first reports by Pellegrini et.al. [42] on the polarized inter-band recombi-
nation in single and symmetric double layers hosted in GaAs/AlGaAs QWs, showed the
appearance of a new peak in the spectra of the double QW, whose intensity was enhanced
for ν ≈ 1. This peak was interpreted as a signature of the pseudospin degree of freedom
and its behaviour suggested a loss of pseudospin polarization for ν ≈ 1. We will see later
that our studies corroborate this interpretation.

A recently published work [43] focused on the physics of a symmetric GaAs/AlGaAs
double layer with tunneling gap at integer filling factors ν & 2. The authors observed
anomalies in the polarization-resolved PL spectra, which were tentatively attributed to
the many-body induced formation of a charge density wave at ν = 3.

Other PL experiments were carried-out in doped asymmetric double QWs [53, 54],
which are however less interesting for our purposes, since this samples lack many of the
interesting properties discussed in Chapter 1.

This brief review reveals the lack of PL investigations in QH bilayers with ∆SAS = 0
and in bilayers with ∆SAS 6= 0 in the fractional QH regime (ν < 1).
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2.3 Experimental Setup

2.3.1 Low Temperature Systems

Transport experiments on bilayers suggest that the remarkable inter-layer correlated phases
in the QH regime require temperatures below 1 K. In our work we achieved temperatures
in this range by using two different fridges : a 3He fridge for the transport measurements
and a dilution fridge for the magneto-luminescence experiments. In the following we in-
troduce the basic features that are common to both fridges and then describe the most
important details of each of them.

The central unit of most fridges is a low boiling point liquid (the refrigerant) and their
ability to cool is related to the phenomenon of evaporative cooling. Basically only the most
energetic molecules are able to leave the liquid surface, so during evaporation the liquid
looses energy. This is described by the latent heat of vaporization per atom l. Without
external action, an equilibrium is established between the liquid and its vapour, in which
the system temperature and the vapour pressure remain constant. The relation between
the two quantities is well approximated by the Clausius-Clapeyron relation:

P = P0 exp

(
− l

kT

)
, (2.3)

where P is the vapour pressure at temperature T and P0 is a material dependent constant.
This formula tells us that we should reduce the vapour pressure in order to lower the
temperature. In fact the fridges that we will consider are supplied with pumps, that
continuously remove the evaporated fluid. A natural low temperature limit for all fridges is
the freezing point of its refrigerant. The only elements that we know to remain liquid even
at absolute zero are 3He and 4He. But there is another important limitation that stems
from (2.3). In fact a good pump is able to remove a constant volume of gas per unit time.
But with decreasing pressure, the same volume corresponds to a smaller number of removed
molecules, which at steady conditions means a smaller number of molecules evaporating
from the liquid. Then (2.3) says that the evaporating rate decreases exponentially with the
lowering of temperature and so will the cooling power of the pump. This will ultimately
limit the system from going to absolute zero.

In fact with a 4He refrigerant, we cannot go lower than 1 K. In practice 4He fridges
are used to cool down to 2.2 K (lambda point fridge), because at lower temperatures a
large amount of 4He (> 30%) will need to be evaporated to cool the remaining liquid.
Anyway a small 4He recipient cooled at 1K is often used in other fridges to condense the
refrigerant. The unit is called ”1K Pot”. It needs to be continuously fed with 4He from a
reservoir and the input rate is controlled by a needle valve.

3He has a lower normal boiling point (3.2 K) then 4He (4.2 K) so it can reach a lower
base temperature of T . 0.3 K .

In order to decrease further the base temperature, we need to overcome the limit
posed by (2.3). This can be achieved by using a mixture of 3He/4He. The properties of
the mixture as a function of temperature and 3He concentration were studied intensively
in the period 1950-70 and an interesting phase diagram, shown in Fig. 2.6, was found.
When the temperature decreases below 0.86 K, the mixture can separate into two distinct
phases : the 3He rich phase (aka concentrated phase) which floats above the heavier 4He
rich phase (aka dilute phase). The properties of the two liquids are governed by quantum
mechanics, but for our purposes the concentrated phase may be considered as liquid 3He
and the dilute one as 3He gas. The picture is valid if the 3He concentration of the mixture
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Figure 2.6: Phase diagram of 3He/4He mixtures.

is below 20%. 3He has a lower entropy in the concentrated phase, so when it ’evaporates’
from the concentrated to the dilute phase, heat is subtracted from the system. If we
keep the system inside the mixture phase (light gray area in Fig. 2.6), then even at
absolute zero the ’gas’ concentration doesn’t decrease below 6.6% (see the left intercept
of the coexistence curve at T = 0 K in Fig. 2.6). Thus cooling will continue at the
lowest temperatures without loss of efficiency. The base temperature for dilution fridges
is typically 5− 30 mK and it is limited only by imperfections in the fridge design.

Such low temperatures would be impossible to obtain in the presence of the large heat
load coming from the environment. That’s why both the fridges used in our experiments
are hosted in big bath cryostats, that act as an efficient thermal shield. Figure 2.9 illus-
trates the schematic design of a bath cryostat, used in our experiment. We can distinguish
three successive cooling steps. Clearly the outermost surface is in thermal contact to the
environment at T ≈ 300K. Going inside the cryostat we encounter a nitrogen jacket, filled
with liquid nitrogen (LN2) at 77 K and covers almost the entire surface of the inner part of
the cryostat. Further in, we find the main bath which is basically a reservoir of liquid He-
lium (LHe) at 4.2 K. The three steps are separated from each other by vacuum chambers.
The removal of matter drastically reduces the conduction and convection heat exchange
between the various steps. Most importantly, the cold surfaces of the cryogen reservoirs
reduce the amount of radiation heat load, which goes as the fourth power of the surface
temperature (Stefan-Boltzmann law). Finally the innermost part of the cryostat contains
the fridge insert, which can be removed to change the samples, and it is separated by a
vacuum chamber from the main bath.

For measurements in the QH regime, it is fundamental to have a stable and homoge-
neous high magnetic field source. To this end, our cryostats are fitted with superconduct-
ing magnets. In our case the magnet is a solenoid formed by the winding of kilometres of
superconducting wires made of both NbTi and Nb3Sn. The solenoid is immersed in the
LHe of the main bath at the height of the sample (see Fig. 2.9). At 4.2 K it can provide
magnetic fields up to 12 T. The peculiarity of superconducting magnets is their ability
to operate in persistent mode : once the current in the solenoid has been raised to the
desired value, the superconducting circuit is closed to form a continuous loop. Because of
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Figure 2.7: Schematic diagram illustrating the principle of operation of the 3He fridge during
condensation of the refrigerant and at base temperature. After Ref. [55].

the negligible resistance, the current decays slowly with a relative rate of 0.01% per hour.
Therefore the only consumption comes from the LHe required for cooling the solenoid.
The magnet can provide a relative field homogeneity of 0.1% in a spherical volume of 1
cm diameter around the sample.

We now briefly describe the specific working principles of the two fridges used in this
work.

3He Refrigerator

For transport measurements a temperature of 200 - 300 mK is sufficient. To this end we
have used an Oxford HelioxTMTL system. It is designed for routine operation in the range
0.3 to 1.2 K by using 3He as refrigerant.

The fridge consists of an insert (see Fig. 2.7), inside a LHe cryostat, that contains a
sorption pump, a 1K pot and the 3He pot filled with refrigerant. The sorption pump(sorb)
is a vacuum pump, that works by adsorbing gas and it can be controlled by changing its
temperature. When it is warmed up, it releases the gas while, when cooled, it pumps the
gas to a pressure that depends on the temperature. The pump is fitted with a heater and
it can also exchange heat with the main bath. With this combination, temperature can be
varied in the range 4.2 to 40 K. What makes this fridge special is the top loading probe,
which can be inserted or removed quickly (for changing the sample) through the central
access of the insert while this last one remains cold. The sample is mounted on the probe,
which is then loaded directly onto the 3He pot. The probe permits also an easy wiring
connection to the sample.

During condensation, the sorb is warmed above 40 K, so it desorbs all the gas. 3He
condenses on the 1K pot assembly and runs down to cool the sample and the 3He pot. At
the end of this stage the 3He pot is full of liquid at 1.2 K. The sorb is then cooled and
it begins to reduce the 3He vapour pressure, so the liquid is cooled and with it also the
sample. With the sorb cooled at 4.2 K, the fridge can reach a base temperature of 260
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Figure 2.8: Schematic design of a dilution fridge. After Ref. [55].

mK. Any other temperature in between 260 mK and 1.2 K can be adjusted, by controlling
the sorb temperature. The fridge works in a ’single shot’ mode, which means that the
evaporated refrigerant is not replaced, so operation will continue until the small initial
amount of refrigerant has been completely pumped. Ideally it can provide an operation
time at base temperature of nearly 50 hours.

Dilution Fridge

In order to fully appreciate the optical properties of the correlated states in bilayers,
temperatures well below 0.3 K are desirable. For this purpose, we used an Oxford Kelvinox
400 HA system for our magneto-luminescence experiments. This is a dilution fridge,
designed to operate stably in the range 0.05 to 1 K and equipped with optical windows
for direct access to the sample. A schematic design is shown in Fig. 2.8. We describe its
operation at base temperature (≈ 50 mK).

The unit of the fridge where the lowest temperatures are realized, is the mixing chamber
(M/C). It contains the 3He/4He mixture, separated into two phases with the concentrated
phase floating above the heavier dilute one. There are two lines starting from this unit,
that allow the continuous flow of the mixture.

The pumping line originates from the dilute phase. The liquid in this phase goes up
to the still and during the process its temperature is raised to 0.6 - 0.7 K. At this tem-
perature the 3He vapour pressure is 1000 times larger than that of 4He, so 3He evaporates
preferentially. The vapour is pumped away from the surface of the still. It follows that
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the 3He concentration in the remaining liquid becomes lower and the osmotic pressure dif-
ference drives a flow of 3He from the M/C. This mechanism guarantees that in stationary
conditions 3He atoms will continuously cross the phase boundary (in the M/C) and hence
supply a continuous cooling power.

Now the pumped mixture will have to return to the concentrated phase to close the
cycle. Before doing so, it is passed through a series of filters and cold traps which remove
the impurities, returned to the cryostat, where it is precooled in the main bath, and finally
it enters the condenser line. The 1K pot liquefies the mixture and cools it to 1.2 K. During
its way to the M/C, the mixture is further cooled down by the still and the dilute liquid
flowing upwards to the still. It is important for the fridge operation to choose the mixture
(its volume and 3He concentration) in such a way that the phase separation occurs inside
the M/C and the liquid surface is in the still.

The M/C can reach temperatures as low as 6-7 mK. Anyway the sample is not directly
attached to it, but it is mounted on a sample holder, connected to the M/C by a copper
rod. Copper is a good but not perfect conductor, so there will be a natural temperature
rise from its M/C extremum to the sample holder.

Another limitation is related to the fact that our fridge is designed for optical spec-
troscopy. Therefore it is provided with a series of windows at the bottom of the cryostat
as illustrated in Fig. 2.9, which allow optical access to the sample. The windows are
made of a synthetic silica (Spectrosil) with high transmission in the visible range3, which
effectively cuts out the unwanted thermal radiation in the near-mid infrared. The out-
ermost window isolates the cryostat from the environment and must be vacuum tight.
Being at room temperature, it would introduce considerable radiation heat load at the
sample. The latter is reduced in a stepwise fashion, by placing three other windows, each
of which is thermally anchored to a cryostat cooling unit (LN2 jacket, LHe main bath
and the still shield). Finally the windows do not affect the light polarization, so they are
suitable for polarization-resolved spectroscopy. The laser exciting radiation and also the
residual thermal radiation transmitted from the cryostat windows will inevitably heat the
sample. The working temperature on the sample is typically around 50 mK.

2.3.2 Optical Setup

The experimental setup for PL measurements is fairly simple. Figure 2.9 gives a schematic
picture of the setup arrangement.

The excitation light is generated by a Ti:sapphire laser (Coherent, MBR-110), optically
pumped by a 5W solid state (Nd:YV04 crystal) green laser (Coherent, Verdi 5, 532). The
laser works in single mode, with a narrow linewidth < µeV and it is tunable in the
range 780 - 870 nm, with a peak emission power of 350 mW. The single mode operation
is achieved by forcing the unidirectional operation inside the ring cavity and also by a
servo-locked intra-cavity thin etalon.

A polarization rotator, placed immediately after the laser output head, transforms the
laser light polarization from horizontal to vertical. In this way, reflections of the laser light
that eventually reach the spectrometer, would be rejected, since the spectrometer only
”accepts” linear horizontal polarizations. Otherwise the intense laser reflections would
cause excess noise in the detector.

The excitation power is controlled by a series of filters : the first ones have transmis-
sions of 10−2, 10−1, 10−0.5 and realize a coarse adjustment of the power, while the circular

3including the spectral interval 790 - 820 nm of interest in our measurements.
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Figure 2.9: Schematic of the optical setup, showing also the relevant constituents of the LHe cryostat.
The delivery line can be seen on the left of the cryostat, while the collection line on the right

variable filter allows a fine control. The power fluctuations are continuously monitored
by drawing some of the radiation from the delivery line (through a 50:50 beam splitter)
and sending it to a Si powermeter. The estimated power at the sample is 0.1 µW and the
relative fluctuations are kept below 1%.

The spectrometer entrance slits have a rectangular shape, so an efficient coupling with
the emitted light requires the illuminated area on the sample to have a similar shape. To
this end, the laser beam is passed through a cylindrical lens that transforms the initial
circular spot into an ellipse.

A biconvex lens focuses the beam to a 1 mm × 0.1 mm spot and its position is
calculated so that the laser beam has its focal spot at the sample. The estimated incident
intensity is ∼ 10−4 W/cm2, a value that represents a compromise between the intensity of
the emitted signal and the heating of the electron gas. Finally a 1.5 cm diameter mirror
sends the beam up to the sample. The mirror dimension is chosen in such a way that
it can efficiently block the reflections of the laser beam (from the optical windows, the
metallic sample holder, the sample itself) which are undesirable in the detector, but at
the same time it only blocks a small portion of the PL signal.

The collection line starts immediately under the delivery mirror and consists of a lens-
mirror-lens. Each of these elements has a large diameter (9-10 cm) in order to collect the
largest possible amount of signal which is focused by the last lens into the entrance slits
of the spectrometer.

We employ a Jobin-Yvon T64000, which is basically a triple Czerny-Turner spectrom-
eter, containing three master diffraction gratings with 1800 grooves/mm. The grooves are
horizontally oriented, which brings two important implications : the spectrometer can de-
tect horizontally polarized light only, and the size of the image on the sensor and thus the
wavelength resolution is determined by the horizontal slit, while the vertical one simply
influences the intensity. We use openings of 40× 100µm. The spectrometer can be oper-
ated either in additive or subtractive mode. In the first case, which is the one we adopt
in our experiments, all the three gratings are used, maximizing the instrument’s spectral
resolution, but minimizing the spectral window (4 nm in our case). In the subtractive
mode only two gratings are used to diffract the light, so it provides less resolution in a
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Figure 2.10: Working principle of the setup used for polarization-resolved PL. The quarter wave-
plate transforms the polarization of the emitted light from circular to linear, while the internal gratings
of the spectrometer ”accept” horizontally polarized signals only.

larger spectral window (≈ 12 nm).

After the spectral components of the signal are spatially separated, light is directed into
a Charge-Coupled Device (CCD) sensor. It consists of a 2D array of Si MOS capacitors
(pixels). Different spectral components will hit into different pixels, that accumulate a
charge proportional to the impinging light intensity. The electronics reads out the pixel
matrix and in the end it produces the desired intensity vs wavelength spectrum. In order to
reduce the electronic thermal noise, the CCD is cooled with LN2. The combined resolution
of the detecting system, at 40 µm of slit opening, is of the order of 10−5 eV.

Polarization-resolved spectroscopy can be carried-out by simply placing a quarter wave-
plate in front of the detecting system. If the fast-axis is oriented at 45◦ with respect to
the horizontal direction as in Fig. 2.10, then the left/right circular polarization will be
transformed into horizontal/vertical linear polarization, thus only the left component will
be detected. Similarly, at 135◦ we can probe the right circularly polarized emission.

2.3.3 Transport Measurements

For the electrical characterization of the samples, we used a Van der Pauw geometry,
shown in Fig. 2.11. It consists in placing four metallic electrodes (Ohmic contacts) at
the perimeter of the sample (of arbitrary shape) and it is much easier to realize than the
standard Hall bar geometry. The correct usage of this geometry requires five conditions
to be satisfied : 1) The sample should have a flat area of uniform thickness 2) It shouldn’t
contain isolated holes 3) It should be homogeneous and isotropic 4) All four contacts
should be placed at the edges of the sample 5) The average diameter of each contact
should be much smaller than the distance between the contacts.

In our case samples were cut into rectangular pieces and the Ohmic contacts were
placed at the corners. The mm2 area of the contacts was defined lithographically, Au/Ge/Ni
alloy was evaporated on this area and then thermally diffused to contact the 2DEGs.

The sample was mounted on the top loading probe of a 3He fridge, equipped with a 12
T superconducting magnet. The four contacts, labeled 1,2,3 and 4 as in Fig. 2.11, were
connected to a Lock-in Amplifier. The internal oscillator of the Lock-in Amplifier generates
a 17 Hz current, which is injected through contacts 1 and 2 (I12). Small currents ∼ µA
are preferred to avoid strong perturbations of the 2DEG and we work with AC signals in
order to reduce the flicker noise. The lock-in amplifier measures the voltage across the
contacts 3 and 4 (V34), basically by combining homodyne detection with an extremely low
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Figure 2.11: Schematics of the Van der Pauw geometry used for transport measurements. The wide
arrow represents the applied magnetic field.

pass filter. In [56] it was shown that the ratio V34/I12 is proportional to the longitudinal
resistance Rs ≡ ρ/d, with a proportionality constant that depends on the shape of the
sample and the relative position of the contacts.

Once we reach the desired temperature, the magnetic field is swept in the interval 0 -
10 T with a 2 mT step and for each value of the field the ratio V34/I12 is measured. In
this way we can analyse the behaviour of the longitudinal resistance with magnetic field
and locate the position of the QH states (vanishing Rs).

Acquisitions were done with the sample both in dark or under illumination. In dark
conditions we analysed the QHE of the unperturbed sample. Anyway during optical
measurements the laser generates electron-hole pairs, which can modify the conductivity
of the sample. The purpose of illuminating the sample is to simulate the experimental
conditions during optical measurements. To this end we used a GaAs LED, driven by a
10 mA current. When the sample is at 4 K, the LED is turned on for 2-3 minutes. The
time is sufficient for the sample to reach the persistent photo-conductivity mode. This is a
particular regime, when the photogenerated carriers exist for a long time after excitation.
In III-V semiconductor structures relaxation times of hours have been reported, which
cover our entire measuring time. So there is no need to keep the sample illuminated
during the magnetic field scanning and the LED is switched-off.
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Photoluminescence from the
Sample with Tunneling Gap
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Figure 3.1: (a) Conduction(CB) and valence(VB) band-edge profiles along the growth axis, for the
sample with tunneling gap. On the top, the widths of the wells and the intermediate barrier are given
in nm. The single particle symmetric (S) and antisymmetric (AS) levels of the lowest Landau level
are shown. EZ and ∆SAS stand for the Zeeman and tunneling gap energy, respectively. Small arrows
represent the orientation of the spins with respect to the magnetic field, while dashed arrows indicate
the relevant interband recombinations. (b) Phase diagram for the ν = 1 QHE in bilayers, as obtained
from [7]. The filled circle indicates the position of our sample in the phase diagram.

This chapter deals with the presentation and analysis of the experimental data from
the bilayer sample with a finite tunneling gap. The choice of starting from this sample is
due to the fact that its optical spectra are better understood and they provide a useful
guideline for discussing the data from the other sample with zero tunneling gap.

A schematic illustration of the sample and its relevant energy levels is given in Fig.
3.1(a). It is a modulation doped GaAs/Al0.1Ga0.9As symmetric double quantum well,
grown by molecular beam epitaxy. Both the side and central barriers are made of
Al0.1Ga0.9As. The low Al concentration allows to minimize alloy-disorder and thus leads
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Figure 3.2: Left circularly polarized optical spectra in the magnetic field range from 0 to 10.4 T,
taken at T = 50 mK with an excitation wavelength of 795 nm. Coloured lines are guides to the eye
that follow the evolution of the various peaks. The spectra are vertically shifted for clarity.

to sharp optical emission lines. The electron gas has a total density of 1.1 × 1011 cm−2,
divided equally between the wells, and electron mobility above 106 cm2/Vs. Measurements
of the CB tunneling gap at zero magnetic field give ∆SAS = 0.36 meV [19]. For B < 15 T,
the Zeeman splitting remains lower than 0.36 meV, so the proposed ordering of the single
particle CB levels is appropriate.

At ν = 1, we have d/` ≈ 2.18 and ∆SAS/(e
2/ε`) ≈ 0.038, where d = 7.5 + 18 = 25.5

nm is the inter-layer distance. The sample’s position in the phase diagram of the QHE at
ν = 1 is shown in Fig. 3.1(b). The sample is situated below the boundary, so it should
exhibit the QHE at ν = 1 at sufficiently low temperatures.

3.1 Introduction to the Data and Peaks Identification

We measure the PL spectra in the magnetic field range 0 - 10.4 T, with a 0.1 T step,
while keeping the sample at 50 mK and the laser excitation line at λ = 795 nm. The
estimated incident power density on the sample is ∼ 10−4 W/cm2, which allows us to get
good optical signals with 300 seconds of integration time per acquisition, while keeping
the electron gas temperature as close as possible to the lowest accessible value. A stack
plot of all the PL spectra in LCP polarization is shown in Fig. 3.2.

The spectrum at B = 0 T is shown in Fig. 3.3(a). It consists of a single wide asymmet-
ric line, characteristic of emission from the 2DEG. To understand this point, we should
consider that in the absence of external fields electrons in the CB fill the (spin degener-
ate) symmetric and antisymmetric subbands up to the Fermi energy EF , as shown in Fig.
3.3(b). The photo-excited holes have k‖ 6= 0, so before relaxing to the top of the VB,
they can recombine with all electrons in the CB. Therefore we expect an emission width
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Figure 3.3: (a) Plot of the 0 T spectrum, taken in the same conditions as in Fig. 3.2 (b) Schematic
of the energy level diagram of the sample at B = 0 T. The relaxation transitions of the photoexcited
HH in the VB are labelled with short dashed curves. The curved arrows represent the interband
recombinations of minimum (E0) and maximum (E1) energy.

of E1 − E0 = EF
mc
m∗ , where mc is the effective electron mass in the CB and m∗ is the

reduced electron-HH mass i.e. m∗−1 = m−1
c +m−1

v .

Using the nominal electron gas density n, we can derive the Fermi energy from :

D∆SAS + 2D(EF −∆SAS) = n,

where D = mc/π~2 is the areal density of states in the CB. We find EF = 2.2 meV, which
confirms the occupation of both S and AS subbands, and gives an emission width of ≈
2.5 meV. The value measured in the spectrum of Fig. 3.3(a) is 2.4 ± 0.1 meV, compatible
with that derived from the nominal density value.

When we increase the magnetic field, the initial PL line starts to split into different
lines. For B < 1.6 T, three peaks can be noted, whose energies shift almost linearly with
the magnetic field. The higher the energy of the peaks, the lower the magnetic field at
which they disappear. We attribute these emissions to the recombination of electrons
and/or holes from higher Landau levels, which are occupied at such low fields.

The remaining lowest-energy peak evolves continuously until 5.5 T, where it splits into
two lines, whose energy difference monotonically increases with B. A new emission peak
at higher energy appears at 4 T.

To identify the origin of the emission lines, it is useful to plot their peak energies versus
magnetic field. In a significant fraction of the spectra, however, the emission lines have an
energy separation comparable to their linewidth. It is therefore impossible to determine
the energies, intensities and linewidths of the peaks by reading directly the raw spectra.
This analysis requires a fitting procedure.

Figure 3.4 illustrates a representative fit performed on the spectrum at 6 T. Clearly
Gaussian peaks reproduce the spectrum better than Lorentzians, so they have been used
to fit all the other spectra. The procedure produces also the standard errors associated
with the energies and amplitudes of the peaks. However, the fitting errors of the peak
energies are always below 30 µeV, lower than the instrumental spectral resolution of 70
µeV. In the following energy plots a fixed error bar of 70 µeV should be associated to all
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Figure 3.4: Best fit of the 6 T spectrum in Fig. 3.2 with four Gaussian (a) and three Lorentzian
(b) lines. The colors refer to the peaks in Fig. 3.2. Gaussian lines fit the whole spectrum quite well,
while Lorentzians fail to reproduce the high energy part. Note also that the additional gray peak in
(a) is necessary for reproducing the low energy tail of the spectrum, while in (b) the tail is marginally
reproduced by the high intensity wings of the Lorentzians and an additional peak would deteriorate
further the quality of the fit.
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Figure 3.5: Peak energies (a) and integrated intensities (b) for the three emission lines at low
magnetic fields B < 4 T, obtained from the Gaussian fits of the spectra in Fig. 3.2. In the legend,
(n,m) indicates a line resulting from recombination of electrons and HHs that reside in the n-th and
m-th LL, respectively. In (a) dashed lines are linear fits to the energy curves. The vertical strip in (a)
indicates the position and magnetic field width of the ν = 4 QH state as obtained from the transport
measurements.
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points, so we have omitted it. For the amplitude data, we have verified that the relative
errors are of the order of 0.1 %, therefore cannot be represented in the intensity plots.

3.1.1 Low Magnetic Field Sector

Figure 3.5 displays the magnetic field dependence of the peak energies and intensities of
the three peaks observed at low fields. The energy plot confirms the linear dependence on
B and linear fits have been performed to obtain the slopes, leading to 1.00± 0.02, 1.60±
0.06 and 2.65±0.03 meV/T for the magenta, green and black peaks, respectively (see Figs.
3.2 and 3.5).

We recall that if an electron from the n-th LL recombines with a hole from the m-th
LL, the emission energy in the single particle picture, neglecting spin effects, is :

E(n,m) = E0 + 2µBB

[
me

mc

(
n+

1

2

)
+
me

mv

(
m+

1

2

)]
, (3.1)

where E0 is the emission energy at B = 0 and me is the electron mass in vacuum. In the
following we will use the notation (n,m) for these transitions. Ideally (n,m6=n) transitions
are forbidden, but in the presence of impurities and/or interface roughness of the QW
they could be observed.

We assume that the lowest emission originates from the recombination of electrons and
holes both in the lowest LL (0,0). Then from (3.1), using mc = 0.067 me and the slope
value of 1 meV/T, we get mv ≈ 0.38me, consistent with reported values for the HH mass
in GaAs/AlGaAs QWs, that vary in the interval 0.3 - 0.4 me [26].

We can now analyse the remaining peaks : the slopes of the green and black peaks are
compatible with the transitions (0,2) and (1,1) respectively. In Fig. 3.5(b) we note that
the intensities of these two lines vanish above a certain magnetic field. This is because they
both involve electrons and/or holes from higher LLs, which are depopulated at sufficiently
high fields.

A peculiar aspect of the energy data in Fig. 3.5(a) is the abrupt change in the B depen-
dence of the (0,0) line1 from linear to quadratic around ν = 4. The natural interpretation
is that for ν > 4 the emission results from the recombination of non-interacting e − h
pairs, while for ν < 4 the sample enters a regime in which bound complexes (excitons) are
formed, whose energy depends quadratically on B.

A widely accepted mechanism that governs the transition between the two regimes is
the hidden symmetry (HS) explained in the previous chapter. Emission becomes excitonic
when the HS is valid and changes to single-particle like when it is broken. The validity
of the HS requires the charge symmetry of Coulomb interactions. We argue that this
condition is satisfied in our sample. In fact, the sample is completely symmetric, with
the two wells being nominally identical in the geometric parameters, electron density and
distance from the donors. In addition the wells are moderately narrow (18 nm). These
facts guarantee that in each well electrons and holes have similar wavefunction profiles in
the QW growth direction, so that Coulomb interactions are charge-symmetric.

Surprisingly, the filling factor where the transition occurs is doubled with respect to
single-layer samples. The effect has never been observed before and we argue that it is
a consequence of the pseudospin degree of freedom. In fact the validity of HS requires
both e and h to be in the lowest LL, so that their in-plane wavefunctions are identical.
In single 2DEGs each LL consists of two opposite spin sublevels, while in bilayer systems

1the (0,2) line displays similar behaviour, but the evidence is less convincing because of the absence of
points for B ≤ 1.8 T
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four sublevels are present because of the additional pseudospin degree of freedom. So the
condition of being in the lowest LL translates into ν ≤ 4 in bilayers.

Actually one needs to be cautious when dealing with pseudospin, because Coulomb
interactions are pseudospin dependent. A priori it is not obvious that the HS argument,
derived for single component electron gases, can be straightforwardly generalised for two-
component gases. Further theoretical investigation is needed to clarify the issue. However
our data suggest the validity of the HS argument. In fact it is difficult to imagine other
mechanisms that produce such a changeover in the energy dependence exactly at ν = 4.

3.1.2 High Magnetic Field Sector

Let’s now concentrate on the high-field region B ≥ 5.5 T, where we expect only the
m=0, n=0 levels to be populated. In this region, three main emission peaks are observed,
indicated in magenta, blue, and red lines in Figs. 3.2 and 3.4.

A crucial tool for understanding the physical origin of the observed peaks is the po-
larization analysis. As Fig. 3.6(a) makes clear, the recombination of spin-up electrons (sz
= +1/2), either from the symmetric or the antisymmetric level, results in the emission
of photons with LCP polarization. Similarly, spin-down electrons recombine by emitting
RCP polarized photons. In this picture, polarized spectra should consist of two lines at
most, whose energies change by EZ = geffµBB from the LCP to the RCP spectra.

Spectra at 6 T, in both polarizations, are shown in Fig. 3.6(b). We find the same
number of peaks, at the same energy positions, with different relative intensities. At this
field, the Zeeman splitting with geff ≈ 1 is EZ ≈ 1 ∗ 0.058 ∗ 6 = 0.35 meV and it should
be resolvable in the spectra. Thus if there was a shift of the peaks from the LCP to the
RCP spectra, it would be clearly visible.

These observations, on the contrary, suggest that the interband transitions do not
produce 100 % circularly polarized photons, as they should according to Fig. 3.6(a). We
believe that this behaviour derives from the HH-LH mixing effects in the VB. For instance,
if a HH in the state α|+ 3/2〉+ β|+ 1/2〉 recombines with an electron having sz = +1/2,
both LCP and linearly polarized photons will be emitted, with the same energies. Since
we assume that HHs are involved in all the observed emission lines, the mixing mechanism
explains also the observation of partial polarization in the whole explored magnetic field
range.

We notice that the intensities of all the lines change significantly (by at least a factor of
two) from the LCP to the RCP spectra. This means that, despite the mixing, the optical
emissions preserve some dominant polarization character. The latter should be the same
as in the absence of mixing and can still be understood from the simplified energy level
diagram of Fig. 3.6(a).

One strategy for obtaining the dominant polarization is to consider the difference
spectra Idiff ≡ ILCP − IRCP vs E. Idiff at 6 T is shown in Fig. 3.6(b). As we can see,
two of the peaks have mainly LCP character, while the intermediate energy one is of RCP
character. The natural implication, considering also the energy ordering, is to link the
three peaks with the recombination of electrons from the S↑, S↓ and A↑ levels, as shown in
Fig. 3.6(a). The three peaks, in increasing energy order, will be called IS↑, IS↓ and IA↑.

Ideally, the A↑ level should be empty for ν < 2, so it should not be involved in the
optical emission. Anyway some photo-electrons could relax to A↑, giving rise to the weak
emission observed for B > 4 T. Other measurements, as discussed in the following, can
contribute to the IA↑ emission.
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Figure 3.6: (a) Schematic of interband recombinations, resulting in the emission of left (LCP) and
right (RCP) circularly polarized photons, represented by dashed and solid lines respectively. The
z component of the total angular momentum is reported for each level. (b) Circular polarization
components of the optical emission at B = 6 T, in the same experimental conditions as in Fig. 3.2.
(c) Spectrum resulting from the difference of the LCP and the RCP spectra shown in (b). The colors
refer to the three peaks identified in Fig. 3.4.
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(circles) and IA↑, IS↑ (triangles). The straight line is the best linear fit to the energy difference curve
for the IS↓, IS↑ couple.
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Further evidence in support of this assignment comes from the analysis of the energy
differences between the three observed peaks. The difference between IS↓ and IS↑ is plotted
in Fig. 3.7, showing a linear dependence on the magnetic field. Fitting the curve with a
straight line, we get for the slope a value of 0.081 ± 0.002 meV/T and for the intercept
(at B=0) -0.17 ± 0.01 meV. In the single particle picture, the difference corresponds to
the Zeeman splitting EZ = geffµBB, so the estimated effective Landé factor is geff ≈ 1.4.
The value is in good agreement with the one obtained in [50] for a 15 nm wide single
GaAs/AlGaAs QW. Since geff = ge + gh and ge ≈ 0.4, we obtain gh ≈ 1.0.

However, there are also a few anomalies. Firstly a deviation from the linear behaviour
is observed for 5.5T < B < 6.5T. Additionally the negative value of the intercept implies
a finite splitting of the two peaks at B=0 and a crossing at B≈ 2T.

A trivial explanation of the first anomaly stems from the fact that for B < 6.5T
the peaks are not well-resolved 2, yielding some uncertainty in the fitting analysis. In
fact, starting from different initial peak parameters, slightly different fitting results can
be obtained. We note also that in [57] a highly non-linear dependence of gh on B was
predicted for high magnetic fields, due to a field induced admixture between HH and LH
states. However it is unlikely that such a mechanism is active only in a narrow magnetic
field range.

Another more interesting possibility that can be invoked to explain both anomalies,
considers the role of many-body interactions. In fact it was shown in [58] that, because
of the different exchange interactions in the final luminescence states of the RCP and
LCP recombinations, there can be deviations from the linear B-dependence of the Zeeman
splitting, which can be expressed as :

EZ = geffµBB + ∆Σ(B).

In our case, if ∆Σ(B) contains a constant negative term, this would explain the non-zero
intercept, while B-dependent terms could account for anomalies in the 5.5 - 6.5 interval.
Actually many-body corrections become relevant in proximity of QH states [58]. Further
analysis and theoretical efforts are needed to clarify this issue.

The energy difference for the other couple of peaks IS↑, IA↑ is reported in Fig 3.7 with

filled triangles. In the single particle picture, the splitting should be constant ∆eff
SAS =

∆SAS + ∆V B
SAS . In fact, for B > 6 T we do not see significant variations : the splitting is

always higher than 0.9 meV and varies maximally by 0.2 meV in the whole field range.

Inelastic light scattering measurements give ∆SAS = 0.36 meV at zero magnetic field
[19]. Since mHH ≈ 6mc, the tunneling gap in the VB should be smaller, and ∆eff

SAS < 0.72
meV, less than what is seen experimentally. Together with the unusual increase for B < 6
T, these anomalies are analogous to those previously encountered and the same arguments
can be invoked to account for them.

Finally, we discuss some additional aspects of the data :

1) All spectra present a low energy tail, as can be seen from the plot in Fig. 3.2 or
from the fit in Fig. 3.4 (gray peak). The tail never splits into a separate peak; instead
its energy follows the lowest emission line almost in parallel in the whole field range.
Difference spectra show that it does not have a well-defined polarization character. As for
its amplitude, it varies in proportion to that of the lowest line. This structure does not
provide much information and its origin remains unclear.

2) In the range 1.5 - 3.5 T, the (0,0) line seems to have an internal structure, due to
the overlap of two subpeaks. When fitting it with two Gaussians, we discovered that the

2IS↑ appears as a shoulder on the low energy side of IS↓.
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energy difference between the subpeaks remains almost constant and both their intensities
increase slightly when we switch from the LCP to the RCP configuration. We attribute
one of the peaks to a direct interband electronic transition, while the other to a disorder
replica of the first. In the plots of Figs. 3.5 and 3.8, the energy of the (0,0) line represents
the intensity weighted average of the energies of the two subpeaks, and its intensity is the
integrated area of the structure. The double structure of the IS↓ in the range 5.5 - 7.5 T
behaves in the same way and an analogous interpretation can be given.

It must be noted that similar anomalies have been observed in other PL experiments
and related to QH states. For example, in [59] a low energy tail appears in LCP emission
in the vicinity of ν = 1, which is linked to the shake-up of a spin-wave left in the CB
after the e − h recombination. It has been also demonstrated (see [25] for example) that
the emission lines develop an internal structure in the vicinity of fractional QH states
(ν = 3/7, 2/5, 1/3), due to the formation of excitonic complexes involving quasiparticle
excitations of the QH phase. However the anomalies seen in our experiment cannot be
related to particular QH states, mainly because they are seen in a large range of magnetic
fields, much wider than any QH plateau.

3) As it will be seen in Fig. 3.8 in the next section, there is a discontinuity in the energy
and intensity plots at 5.5 T, where the (0,0) line is interrupted and a new line appears.
This corresponds to the Zeeman splitting of the lowest emission line, which becomes visible
for the first time at this value of B. In other words the (0,0) line represents an unresolved
sum of IS↑ and IS↓.

3.2 Evidence of QH states

3.2.1 Transport Measurements

In order to unambiguously identify the QH states we have performed magneto-transport
measurements. To this end we used a van der Pauw geometry to measure the longitudinal
resistivity(ρxx) of the sample at 260 mK, in the range 0 - 10 T, under both dark and
illuminated conditions.

The ρxx vs B curve, under illuminated conditions, is shown in Fig. 3.8(a). Charac-
teristic dips in ρxx can be seen, which indicate the formation of QH states. Given the
nominal density value of 1.1×1011 cm−2, we expect the ν = 1 state at 4.8 T. In fact a dip
is present at 4.9 ± 0.1 T. The magnetic field values of the dips on its left are compatible
with ν = 2, 3, 4 and 5, while the one on the right with ν = 2/3.

An unpleasant aspect of the data is that the integer QH signatures appear as very
small dips on a high background resistivity, in contrast to the sharp clean features seen
in Fig. 1.3, Chapter 1. The background resistivity could be of extrinsic origin. In fact, a
high concentration of almost free electrons is formed in the vicinity of the doped layers,
because of their high Si content and low Al concentration in the barrier. The electrons
in the doped layer cause a strong conduction in parallel to the main channel given by
the 2DEG, so they affect the 2DEG resistivity measurements. Indeed this sample with
low Al concentration has been designed for optical studies and it is not optimized for
transport measurements. Low Al content minimizes alloy fluctuations yielding sharper
optical emission lines.

Additionally, QH states in bilayers are destroyed at lower temperatures than their
cousins in single layers. We recall from Chapter 1 that for bilayers with no tunneling gap
the ν = 1 state is destroyed at 300 mK and the dip in the ν = 1/2 state smears at 400
mK (Fig. 1.6(a), Chapter 1). Thermally induced dissipation makes the dips in ρxx less



52 Photoluminescence from the Sample with Tunneling Gap

0 1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

120

140

160

180

200

220

 

 

 

 

 

In
te

n
s

it
y

 (
a

rb
. 
u

n
it

s
)

Magnetic field (Tesla)

2/3123
 

4

0 1 2 3 4 5 6 7 8 9 10

3 1 2/32


x
x
 (

a
rb

. 
u

n
it

s
)

Magnetic field (Tesla)

4



SI



SI



AI

(0,0) 

(0,0) 



SI


SI


AI

(a) 

(c) 

(b) 

0 1 2 3 4 5 6 7 8 9 10

1523

1524

1525

1526

1527

1528

1529

 

 

 

 

2/3123

E
n

e
rg

y
 (

m
e

V
)

Magnetic field (Tesla)

4

Figure 3.8: (a) Longitudinal resistivity vs magnetic field in the range 0 - 10 T, measured in a van
der Pauw geometry at T = 260 mK. Numbers above the upper axis indicate the filling factor. (b)
The peak energies and (c) integrated intensities for the (0,0), IS↑, IS↓ and IA↑ peaks, as obtained
from Gaussian fits to the spectra in Fig. 3.2 at 50 mK.
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pronounced and we believe that clearer signatures would have been obtained at T < 260
mK. However this temperature is sufficient for uncovering the QH states.

Transport data taken in dark conditions show the same signatures, but at slightly
smaller B values. The fact supports the hypothesis that the laser illumination used for
PL measurements does not destroy the QH states, but merely modifies the carrier density,
changing the magnetic field positions at which these states appear.

3.2.2 PL Signatures of QH States

Having identified the physical origin of the luminescence peaks, and the QH states that are
realized in our sample, we can finally link the features seen in the magneto-luminescence
spectra to the QH states. Figures 3.8(b),(c) resume the energy and intensity plots for the
peaks (0,0), IS↑, IS↓ and IA↑.

Apart from the abrupt change around ν = 4, the energy curves in Fig. 3.8(b) do
not show other features that can be linked to the impact of inter-layer interactions. We
believe the HS to be responsible for this behaviour. In fact, when the HS is valid, the
emission energies are independent of the 2DEG density and do not provide information
on electron correlations [47]. The role of the HS in our sample is demonstrated by the
energy changeover around ν = 4.

On the contrary, the intensity curves are quite rich in oscillations. The (0,0) line shows
minima at 2.6, 3.2, 3.9 and 4.8 T. Two of these minima at 2.6 T and 4.8 T coincide with
integer QH states at ν = 2 and 1, respectively. A minimum is seen also at ν = 2/3 (7.2T)
in the lowest energy line IS↑. Similar minima at ν = 1 and 2/3 were observed already in
the initial PL investigations of the QHE in single layers [22,24].

In order to understand these features, we can invoke the screening response of the
electron gas. Since the electron gas becomes charge-gapped when it enters in the QH
state, it fails to screen the disorder potential produced by the ionized donors. Localization
of electrons and holes in the external potential leads to a reduction of the overlap of their
wavefunctions in the plane of the well, suppressing the optical recombination.

This mechanism is sufficient for explaining the observed minimum at ν = 2. We note,
however, that at ν = 1 and 2/3 in concomitance to the minimum of the lowest energy line,
IA↑ shows an intensity maximum. We argue below that this effect reflects the reduction
of pseudospin polarization at these QH states.

The ν = 1 QH state

We start by considering the luminescence features around ν = 1. The correspondence
between the minimum in (0,0) and the maximum in IA↑ and their comparable magnetic
field widths, suggest that at ν = 1 a fraction of electrons leaves the spin up symmetric
level and occupies the spin-up antisymmetric level. This phenomenon implies a loss of
pseudospin polarization and we believe that it is induced by intrinsic many-body effects
in the electron gas.

To illustrate the idea, we consider a bilayer containing only two non-interacting elec-
trons. Because of the tunneling gap, electrons will occupy the lowest symmetric Landau
level. Now we turn on the interaction. The Coulomb repulsion prefers to keep electrons in
opposite layers, since this increases their net separation. This, however, would bring elec-
trons in a superposition of S and AS states, so it would cost tunneling energy. Therefore
there is a competition between tunneling and Coulomb interactions.

As a result of this competition, the ground state of the bilayer 2DEG at ν = 1 is not a
pseudospin ferromagnet, with a completely filled S ↑ level. Some electrons will be excited
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to the AS level, in order to optimize the inter-layer correlations. This state, however,
exhibits the characteristic transport signatures of the QHE, so it doesn’t significantly
modify the electrical conduction in the ν = 1 QH state. It is therefore tempting to
imagine that electrons in the AS level and the holes they leave behind in the S state form
bound pairs [28].

This picture is supported by previous inelastic light scattering measurements [19],
performed on the same sample. These experiments allowed to determine the energies of
two long-wavelength spin excitations3. From these energies the order parameter 〈τx〉,
defined as the average pseudospin polarization along x, could be measured. If nS and nAS
are the population densities of the symmetric and antisymmetric states respectively, then
we have:

〈τx〉 =
nS − nAS
nS + nAS

.

It was found that 〈τx〉 ≈ 0.36, showing that 32% of electrons in the ground state reside
in the antisymmetric level. It is not straightforward to evaluate 〈τx〉 from the PL data.
However, intuitively one expects that a decrease of 〈τx〉 leads to a more intense emission
from A↑, which is what is seen in Fig. 3.8(c).

The ν = 2/3 QH state

IA↑ shows an enhanced emission also in the range 6.7 - 8 T, in correspondence to the
intensity minimum of IS↑ and the ρxx minimum around ν = 2/3. Again we attribute the
excess emission to the loss of pseudospin polarization in the ν = 2/3 QH state.

This state has been observed before (see [6, 35]) in the transport experiments on bi-
layers, but these transport data did not provide much insight into its physical properties.
In our case, the comparison of the PL data at ν = 1 and ν = 2/3 is very instructive. In
fact, at ν = 1 the IA↑ line has an intensity of ≈20 units and nearly 30 % of the electrons
populate the antisymmetric level. Here the intensity has doubled (≈40 units) and has
become nearly half of the intensity of the IS↑ line. We conclude that at ν = 2/3 there is a
complete loss of pseudospin polarization, in other words nS = nAS . This is an unexpected
result never reported so far, to our knowledge.

In Section 1.4.3, two wavefunctions were proposed for the 2/3 state. The first candidate
wavefunction is a pseudospin ferromagnet with an orbital wavefunction identical to that
of single layers at ν = 2/3. However, in the pseudo-ferromagnetic state all the electrons
occupy the symmetric level, which is not our case.

The other candidate is the Halperin (3,3,0) wavefunction, which basically describes
the 2/3 state in terms of two uncorrelated layers, each of them corresponding to a 1/3 QH
state. It is straightforward to show that

〈330|τx|330〉 = 0,

hence the (3,3,0) state is pseudospin depolarized and thus compatible with the results of
our analysis. In addition, this picture explains the unusually broad ρxx minimum observed
in our transport data. In fact the 1/3 state in single layers has the widest minimum (and
plateau) of all QH states (see for example Fig. 1.3).

Finally, we note that these candidate wavefunctions were proposed for bilayers with
full spin polarization. However, from Fig. 3.8(c) we can see that the emissions from the
S↓ and S↑ levels have comparable intensities, suggesting that the ν = 2/3 QH state is not

3namely the spin-wave, built across the Zeeman gap of the spin-split symmetric levels and the spin-flip,
built with transitions across ∆SAS with simultaneous change in spin orientation.
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spin polarized in our sample. Therefore a more realistic wavefunction for the QH state at
ν = 2/3 should be both spin and pseudospin unpolarized.

3.3 Summary

The magneto-PL spectra of the sample with finite tunneling gap offer evidence of the
formation of several QH states (at ν = 2, 1, 2/3), which were observed already in the
first transport experiments on bilayers [35]. In particular, the occurrence of QH states is
signalled by minima in the emission intensities.

Additionally, the emission intensities are sensitive to inter-layer correlations. In fact,
the concomitance of intensity minima and maxima of different emission lines at ν = 1 and
2/3 suggests a loss of pseudospin polarization at these QH states, which is a fingerprint
of the impact of inter-layer Coulomb interactions. This effect was observed previously
through inelastic light scattering spectroscopy at ν = 1 [19], while at ν = 2/3 it was not
seen before.

Finally, since the QWs of our sample are moderately narrow, the electron-photo-
generated hole and electron-electron interactions have equal strength, giving rise to a
peculiar cancellation of their effects, known as the Hidden Symmetry (HS). The HS hides
the effects of electron correlations in the emission energies for ν < 4. The onset of the HS
at a filling factor twice of that seen in single layers emphasises once again the impact of
the pseudospin degree of freedom.





Chapter 4

Photoluminescence from the
Sample without Tunneling Gap

The key part of the experimental work carried out in this thesis, was dedicated to the study
of the sample with zero tunneling gap, because of the remarkable phenomena predicted
and partly observed in these systems at ν = 1. We present in this chapter the most
relevant optical data. The presentation and analysis of the data will follow nearly the
same lines of the previous chapter.

The sample consists of two nominally symmetric modulation-doped GaAs/Al0.1Ga0.9As
quantum wells, separated by 7 nm of pure AlAs barrier to ensure a negligible tunneling
between the wells. A schematic of the sample’s relevant energy levels is displayed in Fig.
4.1. Note that each spin level in the figure has a double pseudospin degeneracy. The
electron gas has a total density of 6.9× 1010 cm−2, equally divided between the two wells,
and a mobility above 106 cm2/Vs. Since the inter-layer distance is d = 9 + 9 + 7 = 25 nm,
we estimate that d/` = 1.65 at ν = 1, which guarantees that a bilayer QH state will form
at low temperatures at ν = 1, as shown in Fig. 4.1(b).

4.1 PL Data and Analysis of the Peaks

We focus here on the LCP luminescence spectra taken in the magnetic field range 0 - 10
T, with 0.1 T step. Data were acquired in three different conditions : at 50 mK with 795
and 805 nm excitation lines (to rule out effects due to particular resonant conditions),
and at 1 K with the laser at 795 nm. The incident power density on the sample was kept
constant at ≈ 10−4 W/cm2, and an integration time of 300 seconds per acquisition was
sufficient for obtaining a good optical signal. We start with the PL data at 50 mK and
795 nm, shown in Fig. 4.2.

At B = 0 T the emission spectrum contains a single wide line, shown in Fig. 4.3(a).
This line results from the recombination of photo-excited heavy holes (HH) with electrons
in the Fermi sea as discussed in Section 3.1. The processes are illustrated schematically
in Fig. 4.3(b). Thus all emission energies in the range E0 - (E0 + EF

mc
m∗ ) are observed

in the spectrum, where again mc is the effective mass in the CB, and m∗ is the reduced
electron-HH mass. The Fermi energy EF can be calculated from:

2D EF = n,

where D = mc/π~2 is the areal density of states, n is the gas density and the factor of 2
follows from the pseudospin degeneracy of the energy levels. We obtain EF = 1.23 meV,
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Figure 4.1: (a) Single particle energy levels in the lowest Landau level in the conduction(CB)
and valence(VB) band, together with the band edge profiles in the growth direction for the sample
with zero tunneling gap. The z-component of the total angular momentum for each level is shown
in brackets and its orientation with respect to the magnetic field is represented by black arrows.
Interband recombinations, indicated by dashed arrows, lead to the emission of left (LCP) and right
(RCP) circularly polarized photons. The widths of the wells and the central barrier are given in nm
at the bottom of the figure. (b) Position of the sample in the phase diagram of the QHE at ν = 1, as
obtained from [7].

which yields an optical width of EF
mc
m∗ = 1.45 meV. From the 0 T spectrum in Fig. 4.3(a)

we evaluate an emission width of 1.3 ± 0.1 meV, compatible with the value obtained from
the nominal density value.

The initial line splits into two bands (magenta and red curves in Fig. 4.2) upon
application of a perpendicular magnetic field. The lower-energy band has an internal
structure and displays various amplitude oscillations. At B ≈ 5 T a new line appears (blue
curve) that splits from the magenta peak above 6 T. The higher band gains intensity for
B > 3 T and above 4 T it also splits into two peaks (red and green). The lower peak has
a particular behaviour : it approaches the higher energy peak of the other band and at
the same time it progressively looses intensity, until it dies out at 8.5 T. At B > 6 T, a
new peak (grey) appears on the high-energy side of the spectrum. The five peaks seen in

the range 6 - 8.5 T will be labelled I↑0 , I↓0 , I↑1 , I↑2 and I↑3 , in increasing order of energy.

In the range 9.5 - 10 T the whole spectrum becomes more intense. We attribute this
behaviour to a resonant absorption of the exciting light. In fact the enhancement occurs
in a different interval (9.0 - 9.5 T) when we excite the sample with the 805 nm line (data
not shown here).

The fitting procedure is necessary for obtaining quantitative information on the ener-
gies and intensities of the peaks, because the peaks are not resolved in a significant part
of the spectra. In Fig. 4.4 we illustrate a representative fit, performed on a spectrum
taken at 7 T. Gaussian lines have been preferred to Lorentzians, because they fit better
the spectra, as for the sample with a finite tunneling gap (see Chapter 3).

The fitting errors for the peak energies are below the instrumental resolution (70 µeV),
while for the peak intensities the relative error remains smaller than 10−3. Therefore
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Figure 4.2: Left circularly polarized optical spectra in the magnetic field range 0 - 10 T, taken
at T = 50 mK with an excitation wavelength of 795 nm. The coloured lines are guides to the eye
that follow the evolution of the various peaks. In all following figures we will use the same colour
representation for the peaks. Spectra are vertically shifted for clarity.
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Figure 4.4: Best fit to the 7 T spectrum in Fig. 4.2 with five Gaussian (a) and four Lorentzian
(b) lines. Clearly the Gaussian fit outperforms the Lorentzian, which fails to reproduce the lower
and higher energy parts of the spectrum, because of the high intensity tails of the Lorentzian lines.
Note that an additional (fifth) peak on the high energy side of the spectrum in (b) would further
deteriorate the quality of the fit.
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the fitting errors have been omitted from the energy or intensity plots presented in the
following.
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Figure 4.5: (a) Peak energies vs magnetic field as obtained from the Gaussian fits to the data shown
in Fig. 4.2. The positions of the QH states, as derived from the magneto-transport analysis discussed
in the following section, are also shown in the upper axis. (b) Magnified view of the peak energy
evolutions for filling factors ν > 1. The vertical strips indicate the position and magnetic field width
of the QH states at ν = 4 and 2.

4.1.1 Low Magnetic Field Sector

The evolution of the peak energies with magnetic field is shown in Fig. 4.5. We focus here
on the field range 0 - 2.5 T (filling factor ν > 1.). The peak energies in this range are
reported in Fig. 4.5(b).

For B < 1.4 T the I↑1 energy goes linear with B. The linear fit gives a slope of 1.30±0.04
meV/T1. This line results from the recombination of an electron in the n = 0 LL with a
HH in the m = 1 LL, or (0,1) recombination in the notation of Chapter 3. In fact, using
the above value for the slope and mc = 0.067me, we obtain a hole mass of mv ≈ 0.38me,
consistent with previously reported values [26].

1The slopes found in the other two scans are compatible with this value. In particular, we obtain
1.28± 0.03 meV/T for the scan at 805 nm and 1.27± 0.05 meV/T for the scan at 1 K.
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Figure 4.6: (a) Circular polarization components of the optical emission at B = 7 T, in the same
experimental conditions as in Fig. 4.2. (b) Spectrum resulting from the difference of the RCP to the
LCP spectrum in (a). The coloured segmentations represent the five peaks seen at B > 6 T.

Since the I↑0 peak has a lower energy, it should originate from a (0,0) recombination.
As illustrated in Fig. 4.5(b), the emission energy for ν > 4 is well-described by a linear
function with slope 1.01±0.03 meV/T, compatible indeed with the above value of the HH
mass. At higher fields the energy variation becomes quadratic and the curve deviates on
the low-energy side of the fitting line.

This behaviour is analogous to the one encountered in the sample with tunneling gap.
The changeover of the ground emission energy from linear to quadratic at ν ≈ 4, suggests
the onset of the Hidden Symmetry (HS) and the impact of the pseudospin degree of
freedom. The validity of the HS requires charge-symmetric interactions and occupation
of the lowest LL only for both e and h. The charge symmetry condition is satisfied in the
present sample, because the wells are narrow (18 nm) and the physical properties of the
sample are symmetric in the growth direction, so that e and h cannot separate in different
planes inside the single wells. The occupation of the lowest LL translates into ν < 4,
because each LL contains four sublevels i.e. two spin states, which are doubly pseudospin
degenerate.

The manifestation of the HS in both samples demonstrates that this symmetry does
not depend on the energy difference (tunneling gap) between the pseudospin levels. More
generally the HS should remain valid for any arrangement of the energies of the four states
inside the lowest LL, provided that ∆SAS � ~ωc.

Finally we note that the linear to quadratic change at ν = 4 is only observed for the
lowest energy line, whereas the I↑1 energy is linear until ν ≈ 2 (1.4 T). This behaviour is
in contrast with that of the sample with ∆SAS 6= 0, where both emission lines display the
changeover at ν = 4.

4.1.2 High Magnetic Field Sector

For B > 6 T the polarized PL spectra are composed of five peaks. In the single particle
picture shown in Fig. 4.1, only two optical recombinations are possible and they have
opposite circular polarizations. Hence we expect to see only one peak in the polarized
spectra. The discrepancy emphasises the impact of many-body effects in the optical emis-
sion. The quadratic B-dependence of the emission energies brings further evidence of the
role of Coulomb interactions.

When the 2DEG density is below 2 × 1011 cm−2, e and h can form bound complexes
such as neutral or charged excitons [49–51]. The fact that we see five peaks means that
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Figure 4.7: Energy difference of peaks I↓0 and I↑0 as a function of magnetic field, as obtained from
Gaussian fits to the data in Fig. 4.2. The straight line represents the best linear fit to the energy
curve.

different types of e− h complexes are formed in our sample at high magnetic fields.

Regardless of the microscopic origin of the emission peaks, the polarization analysis is
useful for identifying the spin state of the electrons involved in the optical recombination.
As shown in Fig. 4.1, spin-up and spin-down electrons recombine by emitting LCP and
RCP polarized photons, respectively.

Figure 4.6(a) illustrates representative spectra, with opposite circular polarizations,
taken at 7 T. Both spectra contain five peaks, that appear at the same energies but
with different intensities. In analogy with the tunneling gap sample, we attribute this
behaviour to HH-LH mixing effects in the valence band. Similarly, we use the difference
of the polarized spectra, to obtain the dominant polarization character of each peak. The
difference spectrum Idiff ≡ ILCP−IRCP at 7 T is shown in Fig. 4.6(b). We see that I↑0 , I↑1 ,

and I↑2 have a predominant LCP polarization, so that they all involve the recombination of

spin-up electrons. Given the low intensity of I↑3 , it is difficult to establish its polarization.
Anyway the polarized spectra at B > 8 T (not shown here) demonstrate that it is also

LCP polarized. I↓0 is the only RCP polarized peak, and it results from the recombination
of spin-down electrons.

The opposite polarization characters of I↑0 and I↓0 , and their monotonically increasing
energy separation (Fig. 4.5(a)) suggest that they correspond to the Zeeman components
of the same initial luminescence state. The plot of the energy difference between the
two peaks, shown as black squares in Fig. 4.7, confirms this interpretation. In fact, the
dots in Fig. 4.7 are well-described by a linear function with slope 0.071±0.003 meV/T
and intercept -0.09±0.01 meV. Since Zeeman counterparts have an energy separation of
EZ = geffµBB, we can estimate the effective Landé factor geff = 1.22±0.05, which agrees
with previously reported values [50,60].

Our data do not provide direct information on the microscopic origin of the emission
peaks. This issue needs further theoretical and experimental investigation. The theoretical
understanding of the magneto-luminescence of bilayers could reveal other aspects of the
PL data that highlight the role of e−e correlations and the pseudospin degree of freedom.
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On the experimental side, the study of the evolution of the PL spectra with the electron
density could clarify the nature of the many-body e − h complexes that give rise to the
observed peaks, in analogy to what performed in single layers [51].

4.2 Evidence of QH States

4.2.1 Transport Measurements

QH states are easily identified in magneto-resistivity measurements as zeros in the longi-
tudinal resistivity and quantized plateaus in the Hall resistivity. To this end, we measured
the magnetic field dependence of the longitudinal resistivity in a Van der Pauw geometry,
after LED illumination, at 260 mK and at 1 K. The results are shown in Fig. 4.8.

Dips in the resistivity at 260 mK are found at 0.7, 1.4, 2.7, 3.8 and 5.4 T, that signal
the formation of QH states with ν = 4, 2, 1, 2/3 and 1/2, respectively. At 1 K, we still
see a dip at ν = 4, although smaller than the one at lower temperature; some anomaly
remains near ν = 2, while the signatures of the QH states with ν ≤ 1 almost disappear.
We remark that the states at ν = 1 and 1/2 are genuinely linked to the impact of inter-
layer correlations. In particular the ν = 1/2 state has no counterpart in single layer -
single component systems.

The measurements taken in dark conditions show the same signatures, but at slightly
different magnetic fields (±0.1 T). This demonstrates the marginal influence of laser illu-
mination on the QH states in this sample.

4.2.2 PL Signatures of QH States at 50 mK

Having identified the QH states in magneto-transport, we now consider how these QH
states appear in our PL data. The magnetic field dependence of the peak intensities, for
all three scans, is shown in Fig. 4.9. In the following we show that the intensity curves
provide evidence of the formation of QH states.
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At 50 mK the intensity of I↑0 shows several oscillations. The minima of the oscillations
occur at B = 1.4, 2.6, 3.7 and 5.3 T, which coincide (to within 0.1 T) with the minima in
ρxx. We link these intensity minima with the formation of QH states with ν = 2, 1, 2/3,
and 1/2. The fact that the oscillations are not modified when the excitation wavelength
is changed from 795 to 805 nm, rules out the possibility that they are related to changes
in the absorption.

Additional optical anomalies around 1.4 T suggest the existence of a QH state at
ν = 2. In particular we observe a maximum in the I↑1 intensity and a dip in its energy
curve (see red triangles in Figs. 4.9 and 4.5(a)). Similar anomalies in the PL energies, in
correspondence to the onset of QH states, were also reported in previous works on single
layers [23,24].

Further experimental work is needed in order to clarify the connection between the
suppression of the ground emission intensity and the onset of the QH phases. There are
two possibilities : a decrease of the optical transition matrix element, or a many-body
induced depopulation of the lowest spin-split LL .

The decrease in the optical matrix element can derive from the reduced overlap of
the e and h wavefunction, due to the localization of carriers in the disorder potential.
The latter becomes important in the QH phase, because of the inability of the electron
gas to screen external potentials, due to the presence of a gap in the charged excitations
spectrum. This hypothesis can be further checked by measuring the variations of the
radiative recombination times, through time-resolved PL.

We exclude the depopulation of the spin up electron state as the cause of the observed
minima, since it would lead to intensity minima in the other LCP polarized peaks (I↑1 , I↑2
and I↑3 ), which are not observed in our data.

In the end, we note that apart from the anomalies at ν = 2, the luminescence energies
do not provide much evidence for the QH states. We believe that this phenomenon is a
consequence of the HS, that we observe in our sample. In fact when the HS is valid, the
PL energy is expected to be independent of the number of electrons in the 2DEG , thus
offering no information on e− e correlations.

To highlight the impact of e − e correlations in the PL energies, we should break the
HS. One way of breaking the HS is to create a charge imbalance between the layers, which
can be controlled by applying suitable gate voltages.

It might be argued that the charge imbalance could destroy or modify the properties of
the QH states. Actually, it has been predicted theoretically [61] and observed experimen-
tally [62, 63] that the coherent ν = 1 phase is robust against density imbalance, whereas
the ν = 1/2 state is destroyed with small perturbations. Therefore a small charge imbal-
ance could be a useful tool for obtaining information on the properties of the ν = 1 QH
phase from the PL emission energies. Anyway this technique cannot be applied to the
study of the QH state at ν = 1/2, and its suitability to the study of the other bilayer QH
states is uncertain.

4.2.3 Temperature Evolution of the QHE Signatures

Finally, let’s consider the PL data at 1 K (Fig. 4.9(c)), to verify the temperature evolution
of the QH signatures. In order to quantify the intensity minima in Figs. 4.9(a) and (c),
we evaluate the fractional depth, defined as the ratio between the depth of the minimum,
measured from the lowest maximum surrounding it, and the height of such maximum.

When the temperature increases from 50 mK to 1K, the fractional depth of the ν = 2
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minimum (in the I↑0 curve) decreases from 0.27 to 0.09, and the I↑1 maximum disappears.
Thus the temperature behaviour of the optical and transport signatures of the ν = 2
QH state agree : in both measurements the signatures appear at 50 mK, but they are
significantly weakened at 1 K. We conclude that the QH phase is not destroyed at 1 K,
but it is weakened by the thermal excitation of quasiparticles.

On the contrary, we observe that the temperature evolution of the optical signatures
of the ν = 1 and 2/3 QH states is not so pronounced. In fact, with increasing temperature
the fractional depth of the ν = 1 minimum undergoes just a slight decrease (from 0.15 to
0.11), while the depth of the ν = 2/3 minimum remains unchanged (≈ 0.17). In sharp
contrast, the resistivity minima around ν = 1 and 2/3 disappear almost completely at 1 K.
We argue that the ν = 1 and 2/3 QH states are not completely destroyed at 1 K, but there
is a significant difference in the way they manifest in optical and transport measurements.

At ν = 1 the disagreement between the temperature behaviour of the transport and
optical data is not a novelty. In fact, while transport experiments [12,14] report an abrupt
variation of the QH signatures for T > 300 mK, a previous inelastic light scattering
experiment on the sample studied here [20] indicates a continuous temperature evolution
of the QH signature up to 1 K.

This was attributed to the role of disorder, which leads to a breakdown of the sample
into domains (puddles) containing correlated and uncorrelated electron fluids [20]. Above
300 mK, the puddles with the correlated fluid become localized, so that the transport
signatures of the QH state are destroyed. However they continue to contribute to the
optical properties, which can explain why the intensity minimum in the PL data persists
at 1 K. As the temperature further increases, the domains containing the correlated fluid
should decrease both in number and dimensions. Therefore, in order to test this picture
we should measure the luminescence spectra at even higher temperatures T > 1 K. The
minimum at ν = 1 should wash out as the temperature increases above 1 K.

Regarding the QH state at ν = 1/2, we note that when the temperature increases,

the wide minimum around 5.3 T in the I↑0 curve is replaced by a monotonically increasing
profile. Hence both the transport and optical data suggest that the ν = 1/2 QH state is
destroyed at 1 K.

4.3 Summary

The magneto-PL spectra of the sample with zero tunneling gap offer evidence of the
formation of QH states at ν = 2, 1, 2/3, and 1/2, which appear as intensity minima.
Inter-layer Coulomb interactions are of paramount importance for the occurrence of QH
states at ν = 1 and 1/2, although the PL spectra do not offer more insights with respect
to the transport data.

The temperature evolution of the PL spectra emphasises the peculiar behaviour of the
states at ν = 1 and 2/3, which are not destroyed completely at 1 K, even though they
lack the characteristic transport signatures of QH states. The fact could be related to the
role of disorder in the finite temperature phase transition of these states.

Again the emission energies highlight the role of the Hidden Symmetry and of the
pseudospin degree of freedom. While the PL energies do not provide information on
electron correlations, the occurrence of the HS at ν = 4 brings further evidence of the role
of the pseudospin in this bilayer sample.

Finally, we note that our data do not show evidence of the Bose-Einstein condensation
of inter-layer excitons at ν = 1. The lack of such evidence in the PL energies could be due



to the impact of the HS. To this respect, the study of unbalanced bilayers, which break the
HS and thus could provide access to the manifestation of inter-layer correlations, seems
to be a promising direction for further research.



Conclusions

In this work we have reported the photoluminescence (PL) investigation of coupled electron
double layers, confined in GaAs/AlGaAs double quantum wells, in the quantum Hall (QH)
regime. Our main result is the identification, in the PL spectra, of several QH states
dictated by inter-layer interactions. In addition, we have found evidence of inter-layer
coupling in the intensity variation of the observed PL lines and in the PL energy evolution
at low magnetic fields.

In particular, we studied two bilayer samples with zero and finite tunneling gap at
temperatures down to 50 mK. In both samples the emission intensities are sensitive to
the formation of QH states. In fact intensity minima appear in correspondence to the QH
states with ν = 2, 1, and 2/3.

Additionally, in the sample with finite tunneling gap our data suggest a loss of pseu-
dospin polarization for the states with ν = 1 and 2/3. This phenomenon, which is a
fingerprint of the role of inter-layer correlations, was reported also in previous inelastic
light scattering experiments for the ν = 1 QH state, while at ν = 2/3 it was not observed
before.

In the sample with zero tunneling gap we obtained evidence of the QH state at ν =
1/2. This state has no analogue in single-layer single-component systems and it is a
genuine consequence of inter-layer Coulomb interactions. Furthermore we have studied
the temperature evolution of the QH states up to 1 K. The retention of the luminescence
signatures of the ν = 1 and 2/3 states at 1 K leads to the conclusion that these QH
states are not completely destroyed at this temperature, contrary to what suggested by
the transport measurements. This behaviour could reflect the role of disorder in the
finite temperature phase transition of the ν = 1 and 2/3 QH states. To this respect the
measurement of the luminescence at temperatures above 1 K could shed new light on the
mechanism of this phase transition.

In both samples the emission energies reveal the central role of the Hidden Symmetry
(HS). This symmetry results from a peculiar cancellation of the electron-electron and
electron - photo-generated hole interactions and it hides the effects of Coulomb interactions
above a certain magnetic field related to the occupation of the lowest Landau level. The
HS manifests as an abrupt change from linear to quadratic dependence of the emission
energy versus magnetic field at ν = 4. The observation of this effect at a filling factor twice
as high as in single layers in both bilayer samples reflects the impact of the pseudospin
degree of freedom. For ν < 4 the PL energies vary smoothly with magnetic field and they
do not provide information on electron correlations.

In order to highlight the impact of e−e correlations in the PL energies at ν < 4, future
studies should focus on bilayer samples with different electron densities in the two layers,
aka unbalanced bilayers. The charge imbalance, which can be tuned by applying suitable
gate voltages, should break the HS and make the PL energies sensible to the electron
correlations in the QH states. This technique can be successfully applied to the study of



the properties of the ν = 1 state and in particular to the exploration of the physics related
to the Bose-Einstein condensation of inter-layer excitons. Indeed the ν = 1 state has been
shown to be stable against small charge imbalances [63].

There are also some unclear aspects of our data, that call for further investigation. In
particular, in the sample with zero tunneling gap we observe five emission lines, whose
origin is not fully understood. We believe that the theoretical study of electron double
layers in the presence of valence band holes could help to clarify the nature of the many-
body states that lead to the observed optical emissions and it could enable us to extract
more information from the PL data. The understanding of this issue could benefit from
the experimental study of samples with tunable electron density, in analogy to what has
been done in single layers [51].

In conclusion, this work demonstrates that PL spectroscopy is a sensitive probe of
inter-layer correlations and thus opens a new route to the study of QH bilayers [64]. We
hope that in the near future this technique will lead to new insights into the remarkable
properties of these systems.
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