An advanced kinetic modeling for reactive polymer processing

Julio César Hernández Ortiz,¹ Paul H. M. Van Steenberge,¹ Jan N. E. Duchateau², Carolina Toloza², Fons Schreurs², Marie-Francoise Reyniers¹, Guy B. Marin¹, Dagmar R. D'hooge^{1,3}

¹ Laboratory for Chemical Technology, Ghent University ² SABIC, PO Box 319 / 6160 AH Geleen, The Netherlands ³ Department of Textiles, Ghent University

Outline

- Functional polymers
- Modeling by kMC
- Model development: Module A and Module B
- Results (Module A and Module B)
- Effect of diffusional limitations
- Conclusions

Functional polymers

3/25

Mechanism of freeradical induced grafting

GHENT

UNIVERSITY

Mechanism of freeradical induced grafting

GHENT

UNIVERSITY

Mechanism of freeradical induced grafting

Kinetic Monte Carlo in Reactive Processes

Kinetic Monte Carlo (*k*MC)

Assumptions:

- Batch reaction
- Homogeneous phase
- Isothermal conditions

Kinetic Monte Carlo (kMC) Algorithm

GHENT

Kinetic Monte Carlo (kMC) Algorithm

GHENT

Update of the number of molecules

$$\begin{vmatrix} X_{R_{in}^*} = X_{R_{in}^*} \\ X_{R_{in}^*} = X_{R_{in}^*} \end{vmatrix}$$

This increment of +2 will be executed only with a probability f every time this reaction event is sampled

Usually, N→∞

Binary trees

Updated state for the chain-length binary tree of macroradicals, considering the consumption of one macromolecule of the randomly selected chain length "n" and formation of one macroradical with chain length "n+1".

Product formation n=5

Sampling based on mass fraction

Description of complex architectures

Complex architecture: Several **grafted chains** and several **crosslinking points** per macromolecule

It is possible to track average properties of the reactive system, as *average grafting "from" density*, *average grafting "to" density, average crosslinking density*, etc., but the information for the *distribution* of this properties is mixed and difficult to track.

GHENT UNIVERSITY

It is not possible to calculate the *chain length* of *every graft* or the *chain length* of the *vinyl segments between crosslinking points*

kMC simulation: Module A and B

Reaction rate, grafting selectivity and grafting yield full CLD of the macromolecular species average grafting "from" density, average grafting "to" density, average chain length of grafts, etc. (approximate), no distribution of the properties of the grafted chains Number of grafted chains in each macromolecule of polyolefin Number of crosslinking points in every macromolecule Chain length of every graft in every functionalized polyolefin Chain length of every vinyl segment comprised between crosslinking points Total CLD of grafted chains

Arrays in Module B

	Chain len	 Chain lence Chain lence 	Chain L	Detween crosslinkinge	Chain lenses	cuween crosslinking points
	0	0	0		0	
	0	0	0		0	
	0	0	0		0	
	0	0	0	111	0	
Î	0	0	0		0	
	0	0	0		0	
	:	:		:	:	
	0	0	0		0	
	0	0	0	222	0	
	0	0	0	• • •	0	
	1	:	:	:	3	
	0	0	0		0	

Results obtained with Module A

GHENT

Results obtained with Module A

GHENT

UNIVERSITY

DRIVING CHEMICAL TECHNOLOGY

Results obtained with Module B

CLD of grafts

Results obtained with Module B

Bivariate distribution: Copolymer composition-CLD

Initial CLD of polyolefin

Results obtained with Module B

Reaction event distribution

Initial CLD of polyolefin

Diffusional effects

21/25

Extended model

Concluding remarks

- Comprehensive model for the description of microstructural properties of individual chains with complex topology was developed.
- A mass-weighted CLD needs to be considered to properly account for the chain length dependence of the hydrogen abstraction reactivity.
- Diffusional limitations need to be accounted for to accurately represent the grafting kinetics.

Acknowledgments

- Long Term Structural Methusalem Funding by the Flemish Government
- Fund for Scientific Research Flanders (FWO)
- SABIC, Geleen, The Netherlands

24/25

LABORATORY FOR CHEMICAL TECHNOLOGY

Technologiepark 914, 9052 Ghent, Belgium

- E info.lct@ugent.be
- T 003293311757

https://www.lct.ugent.be

