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Kinetic Monte Carlo in Reactive Processes
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Kinetic Monte Carlo (kMC) Algorithm
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Update of the number of molecules
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Binary trees
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Sampling based on mass fraction

Monomer units

Random sampling base 
on mass fraction

𝑅𝐻 = 𝑘𝐻𝑛𝐶𝑃𝑛𝐶𝑅𝑖𝑛
•

𝑚𝑃𝑛 = 𝑛𝐶𝑃𝑛
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Description of complex architectures

It is possible to track average properties 

of the reactive system, as 

average grafting “from” density, 

average grafting “to” density,

average crosslinking density, etc.,

but the information for the 

distribution of this properties is mixed and

difficult to track.

It is not possible to calculate the 

chain length of every graft or 

the chain length of the vinyl

segments between 

crosslinking points

Complex architecture: 

Several grafted chains and 

several crosslinking points per 

macromolecule
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kMC simulation: Module A and B
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Arrays in Module B
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Results obtained with Module A
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Results obtained with Module A

CLD of homopolymer

CLD of polyolefin
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Results obtained with Module B

CLD of grafts
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Results obtained with Module B
Bivariate distribution: Copolymer composition-CLD

Initial CLD of 
polyolefin
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Results obtained with Module B

Reaction event distribution

Initial CLD of 
polyolefin
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Diffusional effects

21/25



Extended model

Assumptions:
• Batch reaction

• Homogeneous phase

• Isothermal conditions

Control volume, Vc

ic
i R

dt

dC


C=C(t)

Extended model currently accounts for phase 

segregation and multiple injections.
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Control volume, Vc
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dt
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Semibatch

process
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Control volume, Vc
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i
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Phase segregation
(accounting for mass transfer)
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𝑜𝑣

Present study focused on the kinetics.



Concluding remarks

̶ Comprehensive model for the description of microstructural 

properties of individual chains with complex topology was 

developed.

̶ A mass-weighted CLD needs to be considered to properly account 

for the chain length dependence of the hydrogen abstraction 

reactivity. 

̶ Diffusional limitations need to be accounted for to accurately 

represent the grafting kinetics.
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