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Bacteria that inhabit the intestine and skin are generally regarded as stable 

residents that may confer metabolic and/or immune benefits to their hosts 

(Turnbaugh et al., 2009). The host immune system has evolved mechanisms to 

tolerate these commensal organisms while at the same time providing protection of 

the host from pathogens (Moon and Stappenbeck, 2012). Similarly, metagenomic 

studies of microbiota at various tissue sites have revealed that a vast variety of 

bacteriophages (phages) are associated with healthy human tissues (Minot et al., 

2011; Pride et al., 2012; Reyes et al., 2010). In the case of phages, a persistent 

nonpathogenic association seems possible as viral replication occurs in bacterial 

hosts, which can themselves be stable members of the microbiota (Duerkop and 

Hooper, 2013). 

It is known that the oral administration of phages leads to the translocation of the 

phages from the gut to the blood (Duerr et al., 2004; Hamzeh-Mivehroud et al., 2008; 

Weber-Dąbrowska et al., 1987). This suggests that mammals have evolved 

mechanisms for the uptake and delivery of phages that may allow intestinal phages 

to elicit innate and adaptive immune responses. Knowing that phages are present 

everywhere and that we are in constant contact with phages, the question can be 

asked to what extent phages interact with our immune system. More specifically, 

do they have anti-inflammatory properties? Otherwise, how can they work 

systemically without inducing an immune response? 

In order to find an answer to these questions it is not only important to have a 

broader understanding of the human immune response but also to understand the 

need of phage therapy when antibiotic resistant bacteria are becoming an 

increasing problem, and why it is important to investigate the interaction of phages 

with the human immune system.  gives a detailed account of the 

human immune response, which can be divided into two branches: the innate and 

the acquired immune response (Akira et al., 2006). The main function of the innate 

immune response is to provide a direct defense against invading pathogens. These 

defenses are mainly provided by recognizing pathogens by means of pathogen-

associated molecular patterns (PAMPs) (Janeway, 1989). This innate immunity is 

responsible for most of the inflammatory responses and are triggered in first 

instance by macrophages, polymorphonuclear leukocytes and mast cells (Janeway 

and Medzhitov, 2002). The recognition of PAMPs is mediated through pathogen 

recognition receptors (PRRs), such as Toll-like receptors (TLR), which activate 

signal-transduction pathways that induce the expression of a variety of immune-

response genes (Kawai and Akira, 2010; Kumar et al., 2009a; Ozinsky et al., 2000; 

Takeuchi and Akira, 2010). 

The adaptive immunity is activated upon the recognition of a pathogen by antigen 

presenting cells (APCs) (Pulendran et al., 2001). These dendritic cells phagocytose 

the pathogen and subsequently undergo cell maturation. This includes the 

induction of costimulatory activity, antigen processing, increased major 

histocompatibility complex (MHC) molecule expansion, and migration into the 
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lymph nodes (Orsini et al., 2003). The adaptive immune system manifests an 

exquisite specificity for its target antigens, unlike the innate immunity. The so-

called T and B cells play major key roles in the adaptive immune response, through 

the expression of specific receptors (Bonilla and Oettgen, 2010; Chaplin, 2010; 

Schroeder and Cavacini, 2010). 

Regarding the reduction of human morbidity and mortality, the introduction of 

antibiotics was one of the most important medical interventions. Unfortunately, the 

intense (mis)use of antibiotics has led to an increased frequency of antibiotic 

resistant bacteria (Guay, 2008; Lew et al., 2008; Woodford and Livermore, 2009). 

 discusses the mechanisms by which antibiotic resistance might 

occur. By understanding these antibiotic resistance mechanisms, it becomes clear 

why alternative strategies for combating multidrug resistant bacteria such as phage 

therapy are promising new therapies. 

 gives a complete description about the function and biological 

characteristics of lipopolysaccharides. Endotoxins (lipopolysaccharides, LPS) 

produced by Gram-negative bacteria are widely recognized for their immunological 

properties, as they cause septic shock, multiple organ dysfunction and failure 

(Epstein and Parrillo, 1993; Petsch and Anspach, 2000). Therefore, it is important 

to understand their chemical structure and biochemical properties, not only to 

understand the mechanisms by which they are made or interact with the human 

immune system, but also to develop strategies to circumvent their pro-

inflammatory properties or develop protocols for their removal from biological 

samples. The removal of endotoxins from phage preparations becomes important 

when using phages that have Gram-negative bacteria as their host.  

 provides an in-depth description of these bacterial viruses, 

also called phages. The emergence of pathogenic bacteria resistant to most, if not 

all, currently available antibiotics has become a critical problem in modern 

medicine. Prior to the discovery and widespread use of antibiotics (around World 

War II), it had been suggested (around World War I) that bacterial infections could 

be prevented and/or treated by the administration of bacteriophages. 

Bacteriophages are the most abundant entities on Earth with an estimated number 

of 1030 particles (Suttle, 2005). Every bacterial cell can harbor many phages. These 

viruses use bacteria as a mean to replicate, invariably destroying their prokaryotic 

host in the process. Current knowledge states that phages ignore every cell except 

the strain of bacteria they have evolved to infect. This makes them ideal candidates 

to treat bacterial infections, while being harmless to mammalian cells and even non-

target bacteria (Thiel, 2004).  

Additionally, it has been demonstrated that oral uptake of phages by animals 

results in the translocation of phages to systemic tissues (Duerr et al., 2004; 

Hamzeh-Mivehroud et al., 2008). This suggests that mammals have mechanisms 
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for the uptake and delivery of phages. The resulting contact between systemic 

tissues and phages may allow phages to elicit innate and adaptive immune 

responses. One possible uptake route involves dendritic cells, which are known to 

sample intestinal luminal contents and can actively phagocytize phage particles in 

culture (Barfoot et al., 1989; Rescigno et al., 2001). It is also interesting to consider 

whether phages might elicit antiviral innate immune responses. Mammalian cells 

are endowed with the ability to detect eukaryotic viral nucleic acids through several 

pattern-recognition receptors that are positioned to detect viral entry into cells 

(Duerkop and Hooper, 2013). For a global overview of phage-human host 

interactions see  

Finally, in order to answer the question stated above: “do bacteriophages have 

immunological properties”, this dissertation can be subdivided into two main parts: 

The presence of endotoxins in samples, whether they are proteins, pharmaceuticals 

or phages play an important role in the outcome of their observed effects. Therefore, 

it was important to use highly purified, endotoxin-free, phage preparations to 

deduce whether phages are able to induce an immune response. Seven different 

endotoxin removal strategies were evaluated and validated for their endotoxin 

removal efficacy. The results obtained regarding these seven endotoxin removal 

strategies are discussed in  and have been 

published (Van Belleghem et al., 2017a). 

Once highly purified phage preparations were obtained, their potential to induce an 

immune response was evaluated. This was done by stimulating peripheral blood 

mononuclear cells (PBMCs) with these highly purified phage preparations, after 

which the gene expression of twelve immunity-related genes was evaluated. The 

results concerning these immune responses are described in 

, , and 

. 

The combined results of these first two chapters are summarized and published in 

Van Belleghem et al. (2017b).
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Living organisms are constantly threatened by the invasion of microorganisms and 

vertebrates have evolved elaborate systems of immune defense to prevent infection 

and eliminate infective pathogens in the body. The mammalian immune system can 

be divided in two branches: innate immunity, and acquired or adaptive immunity 

(Table 2. 1) (Akira et al., 2006). The innate immune response is the first line of host 

defense against pathogens and is mediated by phagocytes including macrophages 

and dendritic cells (DCs) (Kumar et al., 2011). Acquired or adaptive immunity is 

involved in the elimination of pathogens in the late phase of infection as well as the 

generation of immunological memory. The main cells involved in the acquired or 

adaptive immune response are T and B lymphocytes (Mackay et al., 2000).  

Table 2. 1: Innate and adaptive immunity. Adapted from Janeway and Medzhitov (2002). 

Property Innate immune system Adaptive immune system 

Receptors 
 

Fixed in genome 
Rearrangement is not necessary 

Encoded in gene segments 
Rearrangement is necessary 

Distribution Non-clonal 
All cells of a class identical 

Clonal 
All cells of a class distinct 

Recognition Conserved molecular patterns Detailed molecular structures 
Self-Nonself 
discrimination 

Perfect: selected over 
evolutionary time 

Imperfect: selected in 
individual somatic cells 

Action time Immediate activation of effectors Delayed activation of effectors 
Response Co-stimulatory molecules 

Cytokines 
Chemokines 

Clonal expansion or anergy 
Cytokines 

 

The innate immunity is an evolutionary ancient part of the host defense 

mechanisms, the same molecular modules are found in plants and animals, 

meaning it arose before the split into these two kingdoms (Hoffmann et al., 1999). 

It is believed that the innate immune system predates the adaptive immune 

response on several grounds. First, innate host defenses are found in all 

multicellular organisms, whereas adaptive immunity is found only in vertebrates. 

Second, innate immune recognition distinguishes self from non-self perfectly. Third, 

the innate immune system uses receptors that are ancient in their lineage, whereas 

adaptive immunity appears to use the same effector mechanisms guided by clonally 

specific antibodies and T-cell receptors (TCR) encoded in rearranging genes of the 

Ig gene superfamily (Medzhitov and Janeway, 1997). The virtues of having an 

innate immune system of pathogen recognition lies not only in the delaying tactics 

of inflammation upon infection, but also in the activation of the adaptive immune 

system only when the body is under attack by a specific pathogen (Janeway and 

Medzhitov, 2002). 
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Innate immunity covers many areas of the host defense against pathogenic 

microbes and viruses, including the recognition of pathogen-associated molecular 

patterns (PAMPs) (Janeway, 1989). In vertebrates, which are the only phylum that 

can mount an adaptive immune response, there are also mechanisms to inhibit the 

activation of innate immunity (Janeway and Medzhitov, 2002). Innate immunity 

lies behind most inflammatory responses, and are triggered in first instance by 

macrophages, polymorphonuclear leukocytes and mast cells through their innate 

immune receptors (Janeway and Medzhitov, 2002).  

Invasion of a host by a pathogenic infectious agent triggers a battery of immune 

responses through interactions between a diverse array of pathogen-borne virulence 

factors and the immune surveillance mechanisms of the host. Host-pathogen 

interactions are generally initiated via host recognition of conserved molecular 

structures known as pathogen-associated molecular patterns (PAMPs) that are 

essential for the life cycle of the pathogen (Janeway and Medzhitov, 2002; Kumar 

et al., 2011). However, these PAMPs are either absent or compartmentalized inside 

the host cell, and are sensed by the host’s germline encoded pattern recognition 

receptors (PRRs), which are expressed on innate immune cells such as dentritic 

cells, macrophages and neutrophils (Blasius and Beutler, 2010; Kawai and Akira, 

2010; Medzhitov, 2007; Takeuchi and Akira, 2010). One advantage of these germ-

line-encoded receptors is that they evolved by natural selection to have defined 

specificities for infectious microorganisms (Mackay et al., 2000). The strategy of the 

innate immune response may not be to recognize every possible antigen, but rather 

to focus on a few, highly conserved structures present in large groups of 

microorganisms (Janeway, 1989). Effective sensing of PAMPs rapidly induces host 

immune responses via the activation of complex signaling pathways that culminate 

in the induction of inflammatory responses mediated by various cytokines and 

chemokines, which subsequently facilitate the eradication of the pathogen (Kumar 

et al., 2009a). 

The innate immune system uses a variety of pattern recognition receptors that can 

be expressed on the cell surface, in intracellular compartments, or secreted into the 

bloodstream and tissue fluids (Medzhitov and Janeway, 1997). The principle 

functions of PRRs include opsonization, activation of complement and of coagulation 

cascades, phagocytosis, activation of pro-inflammatory signaling pathways, and 

induction of apoptosis of the infected cells. Functionally, PRRs can be divided into 

three classes: secreted, endocytic and signaling. 

Secreted PRR molecules function as opsonins by binding to microbial components 

and flagging them for recognition to the complement system and phagocytoses 

(Hawlisch and Köhl, 2006; Laarman et al., 2010; Morgan et al., 2005). The best 

characterized receptor of this class is the mannose-binding lectin (MBL), a member 
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of the calcium-dependent lectin family that binds to microbial carbohydrates to 

initiate the lectin pathway of complement activation (Fraser et al., 1998). 

Endocytic pattern-recognition receptors occur on the surface of phagocytes. Upon 

recognition of a PAMP on a microbial cell, these receptors mediate the uptake and 

delivery of the pathogen into lysosomes. Pathogen-derived proteins can then be 

processed, and the resulting peptides can be presented by the major-

histocompatibility-complex (MHC) molecules on the surface of the macrophages 

(Mackay et al., 2000). The macrophage mannose receptor, which is also a member 

of the calcium-dependent lectin family, is an endocytic PRR. It specifically 

recognizes carbohydrates with large numbers of mannoses, which are typical for 

bacteria (Suzuki et al., 1997; Thomas et al., 2000). 

Signaling receptors recognize PAMPs and activate signaling-transduction 

pathways that induce the expression of a variety of immune-response genes, 

including inflammatory cytokines (Kawai and Akira, 2010; Kumar et al., 2009b; 

Ozinsky et al., 2000; Takeuchi and Akira, 2010). Toll-like receptors (TLRs) are the 

most widely studied PRRs and are considered to be the primary sensors of 

pathogens (Kumar et al., 2011). 

Toll-like receptors (TLRs) are evolutionarily conserved from the worm 

Caenorhabditis elegans to mammals (Akira and Takeda, 2004; Beutler, 2004; 

Hoffmann, 2003; Janeway and Medzhitov, 2002). Toll, the founding member of the 

TLR family, was initially identified as a gene product essential for the development 

of embryonic dorsoventral polarity in Drosophila (Belvin and Anderson, 1996; 

Hashimoto et al., 1988). It was later shown to play a critical role in the antifungal 

response of flies (Lemaitre et al., 1996). In humans, ten TLR family members have 

been identified. TLR1 to 9 are conserved in both humans and mice. TLR10 is 

expressed in humans but not in mice, whereas TLR11 is expressed in mice but not 

in humans (Kawai and Akira, 2010). TLRs are type I integral membrane 

glycoproteins characterized by the extracellular domains containing varying 

numbers of leucine-rich-repeat (LRR) motifs and a cytoplasmic signaling domain 

homologous to that of the interleukin-1 receptor (IL1R), termed the Toll/IL1R 

homology (TIR) domain (Bowie and O’Neill, 2000). Based on their primary sequence, 

TLRs can be further divided into several subfamilies, each of which recognizes 

related PAMPs: the subfamilies of TLR1, TLR2 and TLR6 recognize lipids, whereas 

the highly related TLR7, TLR8 and TLR9 recognize nucleic acids (Table 2. 2). 
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Table 2. 2: TLR recognition of bacterial or viral components. Adapted from Akira et 

al. (2006). 

TLR  PAMPs Species Reference 

Bacteria    

TLR4  LPS Gram-negative 
bacteria 

Poltorak et al. (1998) and 
Shimazu et al. (1999) 

TLR6/TLR2  Diacyl lipopeptides Mycoplasma Thoma-Uszynski et al. (2001) 

TLR1/TLR2  Triacyl lipopeptides Bacteria and 
mycobacteria 

Thoma-Uszynski et al. (2001) 

TLR2  Lipoteichoic acid (LTA) Group B 
Streptococcus 

Alexopoulou et al. (2002); 
Ozinsky et al. (2000); Takeuchi 
et al. (2001, 2000) 

TLR2  Peptidoglycan (PG) Gram-positive 
bacteria 

Alexopoulou et al. (2002); 
Ozinsky et al. (2000); Takeuchi 
et al. (2001, 2000) 

TLR2  Porins Neisseria  

TLR2  Lipoarabinomannan Mycobacteria Gilleron et al. (2003) 

TLR5  Flagellin Flagellated bacteria Hayashi et al. (2001) 

TLR9  CpG-DNA Bacteria and 
mycobacteria 

Hemmi et al. (2002) 

Viruses    

TLR9  DNA Viruses Hochrein et al. (2004); Krug et al. 
(2004a, 2004b); Lund et al. (2003); 
Tabeta et al. (2004) 

TLR3  dsRNA Viruses Alexopoulou et al. (2002) 

TLR7 and TLR8  ssRNA RNA viruses Diebold et al. (2004); Heil et al. 
(2004); Hemmi et al. (2002) 

TLR4  Envelope proteins RSV, MMTV Kurt-Jones et al. (2000) 

TLR2  Hemagglutinin protein Measles virus Bieback et al. (2002); Compton 
et al. (2003) 

TLR2  ND HCMV, HSV1 Kurt-Jones et al. (2004) 

Legend: RSV: respiratory syncytial virus; MMTV: mouse mammary tumor virus; HCMV: 

human cytomegalovirus; HSV1: herpes simplex virus 1; ND: not determined. 
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The first indication that mammalian TLRs may function as PRRs came with the 

description of a human homologue of Drosophilla Toll, now known as TLR4 

(Medzhitov R et al., 1997). TLR4 recognizes LPS (Hoshino et al., 1999; Poltorak et 

al., 1998; Qureshi et al., 1999), but is not the sole receptor involved in the LPS 

recognition. Capture and transport of LPS molecules in the serum is mediated by 

LPS-binding protein (LBP)(Ulevitch and Tobias, 1995). At the plasma membrane, 

LBP is thought to transfer LPS monomers to CD14; a glycophosphatidylinositol 

(GPI) linked cell surface protein. It is not clear how CD14 facilitates recognition of 

LPS by TLR4, but its crucial role has been underscored by the LPS-hyporesponsive 

phenotype of CD14-deficient mice (Haziot et al., 1996; Moore et al., 2000). In order 

to complete the LPS recognition complex, MD-2 also plays an important role (da 

Silva Correia et al., 2001; Lien et al., 2000; Poltorak et al., 2000). This protein lacks 

a transmembrane anchor but is associated with the extracellular region of TLR4 

(Shimazu et al., 1999).  

TLR2 recognizes the largest number of ligands among the mammalian TLRs and 

perhaps of all PRRs (Janeway and Medzhitov, 2002). These include peptidoglycans 

(PG)(Schwandner et al., 1999; Takeuchi et al., 1999), bacterial lipoproteins 

(Aliprantis, 1999; Brightbill, 1999; Takeuchi et al., 2000b), a phenol soluble factor 

of Staphylococcus epidermidis (Hajjar et al., 2001), LPS from Porphyromonas 

gingivalis (Hirschfeld et al., 2001) and Leptospira interrogans (which differs in 

structure from the LPS of Gram-negative bacteria)(Werts et al., 2001), 

glycosylphosphatidylinositol lipid from Trypanosoma cruzi (Campos et al., 2001) 

and zymosan, a component of yeast cell walls (Underhill et al., 1999). TLR2 does 

not recognize these PAMPs independently, but functions by forming heterodimers 

with either TLR1 or TLR6 (Ozinsky et al., 2000; Takeuchi et al., 2001). This 

cooperation leads to the increased repertoire of ligand specificities. 

TLR5 recognizes flagellin, the protein subunit that makes up bacterial flagella 

(Hayashi et al., 2001). Flagellin is a protein and does not contain any obvious 

features to flag it as nonself or pathogen-associated, unlike most other PAMPs (e.g. 

LPS or PG) it is very conserved at the N- and C-terminal ends that form its 

hydrophobic core, and therefore it is likely that this conserved region is recognized 

by TLR5 (Janeway and Medzhitov, 2002).  

Unmethylated CpG DNA was long known for its immunostimulatory effects 

(Hartmann and Krieg, 1999; Heeg and Zimmermann, 2000; Lund et al., 2003; 

Tabeta et al., 2004). The logic of this recognition is that most of the mammalian 

genome is methylated at CpG sites, while bacteria lack CpG methylation enzymes 

(Krieg, 2000). Unlike most TLRs, which are expressed on the cell surface, TLR9 

localizes intracellularly (Häcker et al., 1998; Krieg et al., 1995). 
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The engagement of TLRs by microbial components triggers the activation of 

signaling cascades, leading to the induction of genes involved in antimicrobial host 

defense, including inflammatory cytokines and chemokines, antimicrobial peptides, 

costimulatory molecules, MHC molecules, and other effectors necessary against the 

invading pathogen (Janeway and Medzhitov, 2002). After ligand binding, TLRs 

dimerize and undergo conformational changes required for the recruitment of TIR-

domain-containing adapter molecules to the TIR domain of the TLR (Figure 2. 1). 

There are four adaptor molecules, namely MyD88, TIR-associated protein 

(TIRAP)/MyD88-adaptor like (MAL), TIR-domain-containing adaptor protein-

inducing IFN-β (TRIF)/TIR-domain-containing molecule 1 (TICAM1)(Oshiumi et 

al., 2003; Yamamoto et al., 2002), and TRIF-related adaptor molecule 

(TRAM)(Akira et al., 2006). The recruitment of these adaptor molecules activates 

various transcription factors such as NF-κB, IRF3/7, and MAP kinases to induce 

the production of pro-inflammatory cytokines and type I interferons (Kumar et al., 

2011). The signaling pathways activated by TLR are similar to the ones activated 

by the IL1R and identical molecules comprise the two signaling cascades (Kopp and 

Medzhitov, 1999). All TLRs, except TLR3, recruit MyD88 and initiate MyD88-

dependent signaling to activate NF-κB and MAP kinases to induce pro-

inflammatory cytokines in macrophages and conventional DCs (cDCs). In addition 

to MyD88, TLR1, TLR2, TLR4 and TLR6 recruit TIRAP which serves as a linker 

adaptor between the TIR domains of the TLR and MyD88 (Kumar et al., 2009b, 

2011). 

Upon ligation of TLR4, the adaptor MyD88 is recruited to the receptor complex 

(Medzhitov et al., 1998; Muzio et al., 1998). MyD88 has a C-terminal TIR domain 

that mediates its homophilic interaction with the receptor and an N-terminal death 

domain that engages the death domain of its downstream target IRAK (Wesche et 

al., 1997). Upon association with MyD88, IRAK, a serine threonine kinase, 

undergoes autophosphorylation. The RING-finger containing adaptor TRAF6 is also 

part of this activated signaling complex (Cao et al., 1996). It has been suggested 

that TRAF6 functions as an E3 ligase to ubiquitinate an as-yet-unidentified target 

that is necessary for TLR- and IL1R-mediated IκB kinase β (IKK-β) (Deng et al., 

2000). Activated IKK phosphorylates and targets the NF-κB inhibitor IκB for 

degradation, thereby freeing NF-κB to translocate to the nucleus and turn on 

transcription of target genes (Ghosh et al., 1998). 

The RIG-I-like receptor (RLR) family consist of three members, namely RIG-I, 

MDA5 and LGP2. These sensors recognize the RNA from RNA viruses in the 

cytoplasm of infected cells and induce inflammatory cytokines and type I interferons 

(Figure 2. 1). This leads to the recruitment of macrophages and dendritic cells 

(Kumar et al., 2009a; Takeuchi and Akira, 2010; Wilkins and Gale, 2010).  
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Activation of RLR leads to the induction of type I interferons, which consist of 

several structurally related IFN-α proteins and a single IFN-β protein, which can 

bind directly to infected cells in an autocrine or paracrine manner through a 

common receptor and initiate the transcription of several interferon-stimulated 

genes (ISGs). Type I interferons, together with ISGs, induce an antiviral state in all 

infected and healthy cells by altering various cellular processes. This inhibits viral 

replication, induces apoptosis in infected cells, increases the lytic capacity of natural 

killer cells, up-regulates the expression of MHC class I molecules and activates 

various components of the adaptive immune response (Kumar et al., 2011). 

 

 

Figure 2. 1: Pattern recognition receptor (PRR) mediated signaling. Toll-like 

receptor (TLR) signaling| Recognition of PAMPs by plasma membrane-localized TLRs 

such as TLR2 (forms a heterodimer with TLR1 or TLR6 to from a functional receptor 

complex), TLR4, and TLR5 and endosomal-localized TLRs, such as TLR3, TLR7 and TLR9, 

activates TLR signaling pathways. All TLRs, except TLR3, recruit MyD88 and activate 

MyD88-dependent signaling. TLR1, 2, 4 and 6 recruit the additional adaptor molecule, 

TIRAP, for the recruitment of MyD88. TLR3 recruits TRIF and activates TRIF-dependent 

signaling. TLR4 also activates TRIF-dependent signaling through an additional adaptor 

molecule, TRAM. In cDCs, MyD88-dependent signaling is initiated through the recruitment 

and activation of various signaling molecules, such as IRAK family proteins, TRAF6 and 

TAK1 that activate the IKK complex. The IKK complex activates NF-κB subunits (i.e. P50 

and P65) to initiate the transcription of inflammatory cytokine genes. In pDCs, the TLR7 

and TLR9-mediated signaling pathways activate NF-κB via a MyD88-dependent signaling 

pathway in the same manner as for cDCs. cDCs stimulated with TLR3 PAMPs activate the 

TRIF-dependent signaling pathway through recruitment of TRIF to induce transcription of 

inflammatory cytokines and type I interferons through IKK complex and TBK1/IKKi, 

respectively, via the activation of NF-κB and IRF3/IRF7. RIG-I-like receptor (RLR) 

signaling| Recognition of PAMPs by cytosolic sensors, such as RIG-I and Mda5, activates 

signaling through the mitochondria-localized adaptor protein IPS-1 leading to the activation 

of NF-κB and IRF3/IRF7 through the IKK complex and TBK1/IKKi, respectively, which 

results in the production of inflammatory cytokines and type I interferon. LGP2, also a 

member of the RLR family, potentiates the RIG-I- and MDA5-mediated signaling pathway. 

NOD-like receptor (NLR) signaling| Recognition of PAMPs by NOD1 and NOD2 initiates 

the recruitment of RICK, which activates NF-κB via the IKK complex. Another member of 

the NLR family constitutes the inflammasome. The inflammasome is a multi-protein 

complex required for the maturation or activation of pro-IL1 family cytokines to its bioactive 

IL1 family cytokine. Figure adapted from Kumar et al. (2011, 2009a and 2009b) and Takeuchi 

and Akira (2010). 
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NOD-like receptors (NLRs) are a family of PRRs that sense a wide range of ligands 

within the cytoplasm of cells and comprises 23 members in humans (Franchi et al., 

2009; Kumar et al., 2009a; Shaw et al., 2008; Takeuchi and Akira, 2010). Proteins 

in this family possesses LRRs that mediate ligand sensing, a nucleotide binding 

oligomerization domain (NOD) and a domain for the initiation of signaling (e.g. 

CARDs, PYRIN, or baculovirus inhibitor of apoptosis repeat (BIR) domains 

(Inohara et al., 2005; Martinon and Tschopp, 2005). The most well studied NLRs 

are NOD1 and NOD2, which comprise of C-terminal LRRs, a central 

oligomerization domain and an N-terminal domain containing either one (NOD1) 

or two (NOD2) CARDs. These proteins are mainly expressed in the cytosol of various 

cells (Barnich et al., 2005; Kufer et al., 2008). NOD1 and NOD2 detect γ-D-

glutamyl-meso-diaminopimelic acid (iE-DAP) and muramyl dipeptide (MDP), found 

in bacterial PG (Chamaillard et al., 2003; Richardella et al., 2010). Ligand binding 

to NOD1 and NOD2 causes their oligomerization and results in NF-κB activation 

through the recruitment of RIP2/RICK, a serine/threonine kinase, to the NODs via 

their respective CARD domains by hydrophobic interactions (Figure 2. 1)(Akira et 

al., 2006). 

Complement is a major component of the innate immune system, and is involved in 

defending the host against pathogens through complement fragments that 

participate in opsonization, chemotaxis and activation of leukocytes (Rus et al., 

2005). The complement proteins also play an important role in modulating adaptive 

immunity (Carroll, 2000). The complement system is a general term attributed to 

more than 30 soluble plasma and body fluid proteins and to a number of cell 

receptors and control proteins found in blood and tissues. The activation of the 

complement system provides a cascade-like defense barrier against bacteria, 

viruses, virus-infected cells, parasites, and tumor cells (Tegla et al., 2011). The 

complement system can be divided in three pathways, i.e. the classical, the 

alternative, and the lectin pathway (Figure 2. 2). All three pathways converge at 

the point of C3 cleavage and then generate the membrane attack complex C5b-9, 

leading to bacterial cytolysis (Rus et al., 2005). 

Complement plays an important role in humoral immunity by enhancing both co-

receptor signaling on B cells and antigen retention in follicular dendritic cells 

(Fearon, 2000). Particularly C3 plays multiple roles in regulating the B cell response 

to antigen (Morgan et al., 2005). Its activated form (C3b) binds covalently to the 

target (e.g. antigen), thus tagging it for recognition by the host. Bound C3b is 

proteolytically processed to smaller fragments, C3dg and C3d, which serve as 

ligands for CD21 on B cells and follicular dendritic cells (Cherukuri et al., 2004; Rus 

et al., 2005). Moreover, complement retention on the follicular DCs enhances the 

generation of antibody responses and the maintenance of immunologic memory 

(Youd et al., 2002). 
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 is initiated by C1q binding, primarily to antigen-antibody 

complexes (IgG and IgM) but also to viral envelopes, Gram-negative bacterial walls 

and C-reactive protein (CRP). Activation of C1r and C1s, with generation of C1s 

esterase, is followed by cleavage of C4 and C2. This cleavage releases small 

anaphylactic peptides (C4a and C2b) and allows the assembly of the C3 convertase, 

C4bC2a. The C3 convertase then cleaves C3, generating C3b and C3a, and C3b 

binding to C4b generates the C5 convertase, C4b2a3b. C3b and its further cleavage 

products, iC3b and C3dg, can interact with complement receptors type 1 (CR1), 2 

(CR2) and 3 (CR3) (Ahearn and Fearon, 1989; Krych-Goldberg and Atkinson, 2001). 

, C3 is spontaneously activated at low levels, and the 

resulting C3B covalently attaches to both host cells and pathogens. Host cells 

produce a series of proteins, such as factors H and I, that cause C3b cleavage and 

Bb decay (Xu et al., 2001), as such preventing the complement reaction from 

proceeding on their cell surface. Because pathogens lack these proteins, they are 

singled out for destruction (Alberts et al., 2002). The activation of a serine protease, 

factor D, cleaves factor B into Ba and Bb, when factor B is complexed with 

spontaneously hydrolyzed C3b. Bb is a serine protease that generates the C3 

convertase (C3bBb) of the alternative pathway, whose role is to cleave C5 and of 

which the activity is increased by properdin.  

 is initiated by binding of mannose-binding lectin (MBL) and 

ficolins to carbohydrate groups on the surface of bacterial cells (Fujita et al., 2004). 

Mannose-binding lectin is a serum protein that forms clusters of six carbohydrate-

binding heads around a central collagen-like stalk. This assembly binds specifically 

to mannose and fucose residues in bacterial cell walls that have the correct spacing 

and orientation to match up perfectly with the six carbohydrate-binding sites 

(Alberts et al., 2002). 

Mannose-binding lectin and ficolins are the pattern-recognition molecules typical of 

the lectin pathway and serve to attach the MBL-associated serine proteases (MASP) 

1, 2 and 3, thus activating MASP esterase activity. Upon activation, MASPs cleave 

and activate C4 and C2, thus generating the C3 convertase, C4bC2a (Dahl et al., 

2001; Petersen et al., 2000). Activation of the classical or lectin pathways also 

activates the alternative pathway through a positive feedback loop, amplifying their 

effects. 
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Figure 2. 2: Activation pathways of the complement system. The classical pathway 

is initiated by the binding of the C1 complex to antibody already bound to antigen, leading 

to the formation of C4b2a enzyme complex (the C3 convertase). The C1 complex consists of 

C1q and two molecules, each of C1r and C1s. The binding of the recognition subcomponent 

C1q to the Fc portion of immunoglonulins results in the autoactivation of the serine protease 

C1r. C1r then cleaves and activates C1s, which translates the activation of the C1 complex 

into complement activation through the cleavage of C4 and C2 to form a C4bC2a enzyme 

complex. C4bC2a acts as a C3 convertase and cleaves C3. The lectin pathway is activated 

by binding of either mannose binding lectine (MBL) or Ficolin and MAPS1, 2, and 3 to an 

array of carbohydrate groups (mannose) groups on the surface of the bacterial cells. MASP2, 

similar to C1s, is responsible for the activation of C4 and C2, which leads to the generation 

of the same C3 convertase (C4bC2a) as in the classical pathway. MASP1 is able to cleave C3 

directly. The alternative pathway is initiated by the low-grade activation of hydrolyzed C3 

(C3H
2

O) and activated factor B (Bb). The activated C3b binds factor B (B), which is then 

cleaved into Bb by factor D (D) to form the alternative pathway C3 convertase, C3bBb. Once 

C3b is attached to the cell surface, the amplification loop consisting of the alternative-

pathway components is activated, and the C3-convertase enzymes cleaves many molecules 

of C3 to C3b, which bind covalently around the site of complement activation. Generation of 

C3 convertase allows the formation of the C5 convertase, which initiates the formation of the 

C5b9 terminal complement complex, i.e. the membrane attack complex (MAC). Figure 

adapted from Fujita (2002), Rus et al. (2005) and Tegla et al. (2011). 
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Membrane-immobilized C3b molecules, produced by any of the three pathways, 

trigger a further cascade of reactions that leads to the assembly of the late 

components of the complement reaction to form membrane attack complexes. The 

activation of C5 through C9 and the assembly of C5b-9 begins when the C5 

convertase (i.e. C4b2a3b and C3bBb) cleaves C5 to generate C5a and C5b. C5b then 

undergoes a conformational change, exposing a metastable binding site for C6. The 

C5b6 complex can then bind reversibly to the cell membrane. Subsequently, the 

interaction of C7, C8 and C9 with C5b6 complexes leads to the assembly of a 

supramolecular C5b-9 complex, which is able to form transmembrane pores 

(Müller-Eberhard, 1988). This C5b-9 complex, which is effective in inducing cell 

lysis, is also called the membrane attack complex (MAC) (Tegla et al., 2011). 

Adaptive immunity is a relative newcomer on the evolutionary landscape. Because 

the mechanism of generating receptors in the adaptive immune system involves 

great variability and rearrangement of receptor gene segments, the adaptive 

immune system can provide specific recognition of foreign antigens, immunological 

memory of infection, and pathogen-specific adaptor proteins. However, the adaptive 

immune response is also responsible for allergy, autoimmunity and the rejection of 

tissue grafts (Janeway and Medzhitov, 2002). The adaptive immunity adds specific 

recognition of proteins, carbohydrates, lipids, nucleic acids and pathogens to the 

underlying innate immune system. The two systems, i.e. innate and adaptive 

immune system, are linked through the use of the same effector cells (dendritic cells 

or macrophages) (Janeway, 1989). 

Activation of the adaptive immune system occurs upon pathogen recognition by 

antigen presenting cells (APCs), that play a pivotal role at the interface of innate 

and adaptive immunity (Pulendran et al., 2001). Immature dendritic cells reside in 

the peripheral tissues, where they actively sample their environment by endocytosis 

and micropinocytosis. Upon encountering a pathogen, they undergo a 

developmental program called dendritic cell maturation, which includes induction 

of costimulatory activity, antigen processing, increased MHC molecule expression, 

and migration to the lymph nodes, where they can prime naïve antigen-specific T 

cells (Orsini et al., 2003).  

Unlike the innate mechanisms of host defense, the adaptive immune system 

manifests exquisite specificity for its target antigens. Adaptive responses are based 

primarily on the antigen-specific receptors expressed on the surface of T and B 

lymphocytes. The antigen-specific receptors of the adaptive response are encoded 

by genes that are assembled by somatic rearrangement of germline gene elements 

to form intact T-cell receptor (TCR) and immunoglobulin (B-cell antigen receptor) 

genes. This is in contrast to the germline-encoded recognition molecules of the 

innate immune response. The assembly of antigen receptors from a collection of a 

few hundred germline-encoded gene elements permits the formation of millions of 
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different antigen receptors, each with potentially unique specificity for a different 

antigen (Bonilla and Oettgen, 2010; Chaplin, 2010; Schroeder and Cavacini, 2010). 

The adaptive immunity is mediated by immunoglobulins and T cell receptors 

(TCRs), which are generated through the recombination of variable (V), diversity 

(D) and joining (J) gene segments (Tonegawa, 1983). The V(D)J recombination 

process depends on the recognition of recombination signal sequences (RSSs), which 

flank the segmental elements and this creates extensive variation in the receptor 

structure at junctional (joining) interfaces. The V(D)J rearrangement form of 

somatic recombination occurs in the progenitors of B and T cells and is mediated by 

recombination-activating genes 1 (RAG1) and 2 (RAG2), which function in a 

lymphocyte- and site-specific recombinase complex and are supported by ubiquitous 

DNA repair factors (Gellert, 2002).  

A major challenge faced by the immune system is to identify host cells that have 

been infected by microbes that subsequently use the cell to multiply within the host. 

A major role of the T-cell arm of the immune response is to identify and destroy 

infected cells. T cells can also recognize peptide fragments of antigens that have 

been taken up by antigen presenting cells (APCs) through the process of 

phagocytosis or pinocytosis. The immune system permits T cells to recognize 

infected host cells by the recognition of both a self-component and a microbial 

structure. This is mediated through the use of major histocompatibility (MHC) 

molecules. MHC molecules (also called HLA antigens) are cell-surface glycoproteins 

that bind peptide fragments of proteins that either have been synthesized within 

the cell (class I MHC molecules) or that have been ingested by the cell and 

proteolytically processed (class II MHC molecules) (Chaplin, 2010; Davis and 

Bjorkman, 1988; Menéndez-Benito and Neefjes, 2007; Watts, 2004). 

There are three major MHC class I molecules, i.e. HLA-A, HLA-B and HLA-C. The 

class I HLA molecules are cell-surface heterodimers consisting of a polymorphic 

transmembrane α chain associated with the nonpolymorphic β2-microglobulin 

protein (Bjorkman, 1997). It is the α chain that determines whether the class I 

molecule is an HLA-A, HLA-B or HLA-C molecule. The α-chain gene encodes three 

extracellular domains (α1, α2 and α3), a transmembrane domain that anchors the 

protein in the cell membrane and a short intracellular domain. The α1 and α2 

domains associate with each other, forming a groove in which the antigenic peptide 

can bind (Cresswell et al., 1999; Monaco, 1992; Rammensee et al., 1993). 

The antigenic peptides that are found bound in the peptide-binding groove of the 

MHC class I molecules are derived from proteins synthesized within the cell (Figure 

2. 3)(Huston, 1997).  



19 

 

The peptide fragments are generated from cellular proteins through the action of 

the proteasome (Niedermann, 2002). After exiting the proteasome, peptide 

fragments are transported into the endoplasmatic reticulum (ER) by the action of a 

specific multi-subunit transmembrane transporter, the transporter associated with 

antigen presentation (TAP). Once in the ER, the peptides are loaded into the class 

I protein-binding groove under the direction of the ER protein tapasin with the help 

of the calcium-binding chaperone protein calreticulin and the oxidoreductase Erp57 

(Garbi et al., 2006; Momburg and Tan, 2002). Before its interactions with β2-

microglobulin, the class I protein is maintained in a conformation that favors the 

interaction with peptide fragments by association with chaperone protein calnexin. 

Interaction with β2-microglobulin stabilizes the complex, causing dissociation of 

calnexin and permitting transport of the peptide-loaded class I molecule through 

the Golgi complex into exocytic vesicles that release the intact complexes onto the 

cell surface. This pathway is well adapted to delivering viral peptides produced in 

a virus-infected cell to the cell surface bound class I HLA molecules in a form that 

can be recognized by cytotoxic CD8+ T cells (Melief, 2003; Sigal et al., 1999). 

The complex forming the class I MHC molecule and antigenic peptide produces a 

composite structure that is the molecular target of the TCR. The TCR contacts both 

the antigenic peptide and the flanking α-helices of the peptide-binding groove. The 

TCR has no measurable affinity for the antigenic peptide alone and very low affinity 

for MHC molecules (Zinkernagel and Doherty, 1997). A key biological consequence 

of requiring the T cell to recognize antigenic peptides only when they are bound into 

the groove of an MHC molecule is that this permits the T cell to ignore free 

extracellular antigen and to focus rather on cells that contain the antigen. In the 

case of cells that are infected by a pathogenic microbe, this permits the T cells to 

focus their response on the infected cells. The α3 domain of the class I heavy chain 

interacts with the CD8 molecule on cytolytic T cells. The binding of CD8 expressed 

by the T cell to the α3 domain of the class I molecule expressed by the APC 

strengthens the interaction of the T cell with the APC and helps ensure that full 

activation of the T cell occurs (Joshi and Kaech, 2008). 

Like the class I molecules, the class II MHC molecules consist of two polypeptide 

chains, but in this case both are MHC-encoded transmembrane proteins and are 

designated α and β. There are three major class II proteins, i.e. HLA-DR, HLA-DQ 

and HLA-DP. Each chain of the class contains a short cytoplasmatic anchor, a 

transmembrane domain, and two extracellular domains designated for the α chain, 

α1 and α2, and for the β chain,β1 and β2 (Bjorkman, 1997). When the α and β chains 

pair, the α1 and β1 domains combine to form a peptide-binding groove very similar 

in structure to that formed by the association of the α1 and α2 domains of the MHC 

class I proteins. The α2 and β2 domains of the proteins provide support for this 

peptide-binding domain. The β2 domain also interacts with CD4 expressed on the 

TH cells, and enhances the interaction between these T cells and the class II-
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expressing APCs in a fashion similar to the way that CD8 is bound to the MHC 

class I molecule and enhances the cytotoxic T-cell activation (König et al., 1996).  

 

 

Figure 2. 3: The basic MHC class I antigen presentation pathway. The presentation 

of intracellular antigenic peptides by MHC class I molecules is the result of a series of 

reactions. First, antigens are degraded by the proteasome. Then, the resulting peptides are 

translocated via transporter associated with antigen presentation (TAP) into the 

endoplasmic reticulum (ER) lumen and loaded onto the MHC class I molecules. Peptides-

MHC class I complexes are released from the ER and transported via the Golgi to the plasma 

membrane for antigen presentation to CD8+ T cells. β2m, β2-microglobulin; TCR, T cell 

receptor. Figure adapted from Chaplin (2010) and Neefjes et al. (2011). 
 

The class II proteins are expressed constitutively on the B-cells, dendritic cells, 

monocytes and macrophages. All these cells present antigens to CD4+ T cells. 

Expression of MHC class II proteins can also be induced on many additional cell 

types, including epithelial and endothelial cells after stimulation with IFN-γ, 

permitting these cells to present antigens to CD4+ T cells at sites of inflammation 
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(Dengjel et al., 2005; Dongre et al., 2001; Menéndez-Benito and Neefjes, 2007). 

Antigens that are presented by class II proteins are loaded into the class II peptide-

binding groove through the “exogenous” pathway that starts by endocytosis or 

phagocytosis of extracellular proteins (Huston, 1997). The exogenous antigens 

include antigenic proteins of extracellular pathogens, such as most bacteria, 

parasites and virus particles that have been released from infected cells and taken 

up by phagocytosis (Figure 2. 4).  

The ingested antigens are processed to linear peptide fragments by means of 

proteolysis after fusion of lysosomes with the phagocytic vacuoles or endosomes to 

form an acidic compartment (Turley, 2000). The peptide fragments then accumulate 

in the MHC II loading compartment, where they encounter nascent class II 

proteins. The α and β chains of the class II molecules are synthesized in the ER. To 

protect the class II molecule’s peptide-binding groove so that it can later 

accommodate an antigenic peptide, the α and β chains associate with the 

nonpolymorphic invariant chain (Ii), assisted by the chaperone protein calnexin. A 

portion of the Ii chain designated class II-associated invariant chain peptide lies in 

the peptide-binding groove of the class II heterodimer, preventing binding of 

antigenic peptides. Once the class II-Ii complex has formed, it dissociates from 

calnexin and is transported to the class II loading compartment (Van Kaer, 2001). 

In the class II loading compartment, the bulk of the Ii is degraded by acid proteases, 

such as cathepsins, and exchange of the class II-associated invariant-chain peptide 

for an antigenic peptide is catalyzed by the action of the HLA-DM molecule, 

resulting in the formation of a mature class II protein (Sadegh-Nasseri et al., 2008; 

Van Lith et al., 2010). The class II proteins loaded with antigenic peptide are then 

delivered to the cell surface by means of fusion of the class II+ endosome to the 

plasma membrane (Chaplin, 2010). 

V(D)J recombination, i.e. the recombination of variable (V), diversity (D) and joining 

(J) gene segments, is the specialized DNA rearrangement used by cells of the 

immune system to assemble T-cell receptor and immunoglobulin genes from 

preexisting gene segments (Figure 2. 5). Because there is a large choice of segments 

to join, this process accounts for much of the diversity of the immune response. 

V(D)J recombination is initiated by breakage at precisely defined locations in the 

DNA, but is then completed by a repair process related to the repair of DNA breaks 

caused by ionizing radiation or other genotoxic agents (Fugmann et al., 2000; 

Gellert, 1997, 2002; Lewis, 1994a; Sleckman et al., 1996).  
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Figure 2. 4: The basic MHC class II antigen presentation pathway. MHC class II α- 

and β-chains assemble in the endoplasmic reticulum (ER) and form a complex with the 

invariant chain (Ii). The Ii-MHC class II heterotrimer is transported through the Golgi to the 

MHC class II compartment (MIIC), either directly and/or via the plasma membrane. 

Endocytosed proteins (or pathogens) and Ii are degraded by resident proteases in the MIIC. 

The class II associated Ii peptide (CLIP) fragment of Ii remains in the peptide groove of the 

MHC class II dimer and is exchanged for an antigenic peptide with the help of the dedicated 

chaperone HLA-DM. MHC class II molecules are then transported to the plasma membrane 

to present antigenic peptides to CD4+ T cells. APC, antigen-presenting cells; TCR, T cell 

receptor. Figure adapted from Chaplin (2010) and Neefjes et al. (2011). 
 

Two types of nucleotide insertions are found in coding joints, nontemplated and 

templated. Nontemplated tracts up to 15 nucleotides in length (so-called N regions) 

are added by the enzyme called terminal deoxynucleotidyl transferase (TdT). 

Expression of TdT is normally limited to early lymphoid cells where V(D)J 

recombination is active and therefore these insertions are relatively specific to this 

type of recombination. TdT adds deoxynucleotides without a template to the ends of 

DNA chains, but with a preference for G residues that results in N regions being 
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generally GC-rich (Gilfillan et al., 1993; Komori et al., 1993). A templated type of 

nucleotide addition is also found in coding joints. These additions are more 

significant for the basic recombination mechanism. These palindromic nucleotide 

insertions add a few nucleotides complementary to the last bases of the coding end 

next to the RSS. They result from off-center nicking of the hairpin DNA 

intermediates that are formed at coding ends by the action of the RAG proteins 

(Lafaille et al., 1989; Lewis, 1994b). 

The V(D)J recombination has two distinct stages. In the first stage, the RAG1 and 

RAG2 proteins cooperate to recognize the RSSs and to ensure their correct 12/23 

pairing, and to break the DNA between each heptamer and the neighboring coding 

sequence. In the later stage, factors, that are also used in other types of 

nonhomologous end joining, process and link the ends into coding joints and signal 

joints (Gellert, 2002). 

The later steps of V(D)J recombination have many aspects in common with general 

DNA double-strand break repair, and the two processes share a number of factors 

(e.g. DNA-dependent protein kinase (DNA-PK) Ku protein, DNA ligase IV, Xrcc4, 

Artemis, histone H2AX and the Mre11/Rad50/Nbs1 complex) (Jeggo, 1998; Steen et 

al., 1996). V(D)J recombination is regulated in at least two ways, first by the 

expression pattern of RAG1 and RAG2, and secondly by the limited access of the 

recombination machinery to particular DNA sites. RAG1 and RAG2 are normally 

expressed together, and only in early lymphoid cells (Nagaoka et al., 2000). 

Antibody class, or isotype, is determined by the heavy chain constant (CH) region, 

which is important for determining the antibody’s effector function. The CH region 

is bound by cell-surface receptors, e.g., Fc receptors on many cell types, poly Ig 

receptors on mucosal epithelial cells, and by complement. Different CH regions have 

different affinities for these proteins, thus greatly influence antibody function 

(Horikawa et al., 2007; Martin and Goodnow, 2002; Waisman et al., 2007). 

Isotype switching occurs by an intrachromosomal deletional recombination event 

(Figure 2. 5). Class switch recombination (CSR) occurs between switch (S) regions 

located upstream of each of the CH regions except Cδ and results in a change from 

IgM and IgD expression by naïve B cells to expression of one of the downstream 

isotypes. IgD expression occurs by alternative transcription termination/splicing of 

the Cμ – Cδ genes. S regions consist of tandem repeats of short G-rich sequences 

(20 – 80 bp), which differ for each isotype, with an overall length varying from ~1 

kb to 12 kb, and CSR can occur anywhere within or near the S regions (Dunnick et 

al., 1993; Min et al., 2005). Class switch recombination occurs by end-joining type 

of recombination, rather than by homologous recombination (Manis et al., 2002; 

Stavnezer, 1996a). 
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Figure 2. 5: Antigen receptor diversification. A| Schematic of the B-cell receptor (BCR) 

heavy locus. Antigen receptor repertoire diversity is primarily established during 

lymphocyte development, during which V (green), D (brown), and J (blue) gene segments are 

rearranged through the process of V(D)J recombination. (Murphy et al., 2008). During the 

recombination process, nucleotides may be added or deleted at segment junctions (not 

shown), contributing to additional sequence diversity. In class-switch recombination, gene 

segments encoding constant regions (dark green) are rearranged resulting in the production 

of antibodies with different isotypes and corresponding effector functions. BCRs and TCRs 

are similarly organized. The TCRβ locus undergoes similar V(D)J recombination as the BCR, 

with the exception of somatic hypermutation and class-switch recombination. B| BCRs are 

composed of two distinct subunit chains: light chain and heavy chain. The antigen binding 

surface is formed by the variable region of each chain, which is encoded by recombined V, J, 

and D heavy gene segments. Abbreviations: BCR, B cell receptor; TCR, T cell receptor; V, J, 

and D, Variable, Joining, and Diversity gene segments. Adapted from Calis and Rosenberg 

(2014). 
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B cells undergo antibody, or Ig, class switching in vivo after B-cell maturation which 

is driven by immunization or infection, or upon appropriate activation in culture. 

Engagement of the CD40 receptor on B cells by CD40L (CD154) provides crucial 

signaling for CSR (Stavnezer et al., 2008). The process of class-switching is partly 

under cytokine control, e.g. IL4 and IL13 promote switching to IgE and IFN-γ can 

antagonize this effect (Oettgen, 2000). IL10 and TGFβ promote switching to IgA 

(Johansen and Brandtzaeg, 2004). Class switch recombination requires a minimum 

of two complete rounds of cell division for IgG and IgA CSR and perhaps additional 

rounds for IgE CSR (Deenick et al., 1999; Hasbold et al., 1998; Hodgkin et al., 1996; 

Rush et al., 2005). This requirement seems to be at least partially due to the 

requirements for induction of activation-induced cytidine deaminase (AID) 

expression (Rush et al., 2005). Naïve B cells have the potential to switch to any 

isotype, and cytokines secreted by T cells and other cells direct the isotype switching 

(Stavnezer, 1996a, 1996b).  

Class switch recombination and somatic hyper mutation (SHM) are initiated by 

AID, which converts cytosines in S regions and Ig variable regions to uracils (dU) 

by deamination (Chaudhuri et al., 2003; Dickerson et al., 2003; Muramatsu et al., 

2000; Petersen-Mahrt et al., 2002; Pham et al., 2003; Revy et al., 2000). Subsequent 

repair of the dU residues leads to single-stranded DNA breaks (SSBs) within the 

donor Sµ region and within an acceptor Sx region, to initiate the process of 

intrachromosomal DNA recombination. Removal of the dU residues by enzymes 

within the base excision repair (BER) pathway is required to introduce the DNA 

breaks necessary for CSR (Petersen-Mahrt et al., 2002; Rada et al., 2002; Schrader 

et al., 2005). BER consists of highly active ubiquitous DNA repair pathways for 

repairing oxidized and deaminated bases, which are generated more than 104 times 

per cell per day by oxidation, especially during inflammation, and by spontaneous 

hydrolysis (Christmann et al., 2003). There are four mammalian uracil DNA 

glycosylases in the BER pathway, UNG, SMUG1, MBD4 and TDG. It is UNG that 

excises the dU residue created by AID activity (Bardwell et al., 2003; Rada et al., 

2002). 

The BER enzyme that repairs the abasic sites left by UNG activity is 

apurinic/apyrimidinic endonuclease (APE), which incises the phosphate backbone 

of DNA at abasic sites, producing SSBs (Christmann et al., 2003). In the canonical 

BER pathway, the single-nucleotide gap generated by the action of UNG and APE 

is filled in by the DNA polymerase β (Pol β) (Barnes and Lindahl, 2004; Beard and 

Wilson, 2006). A second repair pathway, mismatch repair (MMR), contributes to 

CSR but is not essential. The major role of MMR in all cells is to correct 

misincorporated nucleotides during DNA synthesis (Kunkel and Erie, 2005). The 

most attractive model for the role of MMR during CSR is to convert SSBs that are 

not near each other on the opposite DNA strands to DSBs (Stavnezer and Schrader, 

2006). If the SSBs that are introduced by AID-UNG-APE are near each other on 

opposite DNA strands, they can spontaneously form a DSB, but if not, the SSBs do 
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not destabilize the duplex and are simply repaired. As S regions are large and the 

breaks appear to occur anywhere within S regions (Dunnick et al., 1993; Min et al., 

2005; Schrader et al., 2005), it seems unlikely that the SSBs would be sufficiently 

proximal to form a DSB most of the time. Mismatch repair could convert these distal 

SSBs to DSBs that are required for CSR. After DSB formation, 5’ or 3’ single-

stranded overhangs remain. These tails must be excised or filled in to create blunt, 

or nearly blunt, DSBs appropriate for an end-joining recombination with the other 

S regions (Schrader et al., 2004). MMR normally recruits the processivity factor 

proliferating cell nuclear antigen (PCNA) and replicative DNA polymerase for fill-

in synthesis of 5’ overhangs (Kunkel and Erie, 2005). However, replicative Pol 

cannot replicate past an abasic site, resulting in the recruitment of error-prone 

translation Pols. After formation of the DSBs in the donor and acceptor S regions, 

the S regions are recombined using ubiquitous proteins that perform 

nonhomologous end-joining (NHEJ) in all cell types (Stavnezer et al., 2008).  

The major class of T cells are defined by its surface expression of the αβ T cell 

receptor (TCR). This receptor has evolved primarily to recognize peptide antigens 

presented in complex with class I or class II MHC proteins. αβ T cells differentiate 

into several different subsets, CD8+ T cells act primarily to kill cells infected with 

intracellular microbes, whereas CD4+ T cells regulate the cellular and humoral 

immune response (Bonilla and Oettgen, 2010; Chaplin, 2010).  

Each individual T cell bears antigen receptors of a single specificity. A repertoire of 

T cells that can protect against the vast universe of microbial pathogens must 

therefore include a very large number of cells encoding a huge array of discrete 

TCRs. These receptors are somatically assembled using VDJ recombination 

(Nguyen et al., 2007). 

Selection of cells carrying functional TCR genes occurs in the thymus (Hedrick, 

2008; Huston, 1997; Jenkinson et al., 2006; Miller, 2002; Takahama, 2006). The 

thymus contains three compartments, i.e. the subcapsular zone, the thymic cortex 

and the thymic medulla. The subcapsular zone is where bone marrow-derived 

prothymocytes begin to differentiate, proliferate, and rearrange their TCR β chains. 

The cells then move to the thymic cortex, where the α chain gene elements 

rearrange, potentially forming a functional, mature αβ TCR. In the cortex, the TCR 

are tested for a sufficient affinity for MHC molecules to permit them to ultimately 

recognize antigen-MHC complexes. This involves the interactions between the 

developing lymphocyte and the specialized cortical epithelium (Nitta et al., 2008). 

If the lymphocyte fails this positive selection, it undergoes apoptosis and is cleared 

by the thymic cortical macrophages. In the thymic medulla the thymocytes are 

screened for potential autoreactivity. This screening includes testing for reactivity 

for an extensive array of tissue-specific proteins that are expressed by a population 



27 

 

of thymic medullary epithelial cells under the control of a gene called autoimmune 

regulator (AIRE) (Mathis and Benoist, 2009). Cells that recognize self-peptides 

expressed by these epithelial cells are removed by means of apoptosis, and cells that 

have survived this negative selection are exported to the circulation.  

During their progress through the thymus, αβ T cells differentiate into discrete 

subpopulations, each with defined repertoires of effector functions. The major 

subsets are defined by their selective surface expression of CD4 and CD8. In the 

thymus, most developing T cells follow a developmental program in which they first 

express neither CD4 nor CD8 (double negative) and then express both CD4 and CD8 

(double positive), in the cortex (von Boehmer et al., 1989). Double-positive cells are 

tested by means of positive selection in the thymic cortex, and those that are 

selected on class I MHC molecules become CD4-CD8+ and those selected on class II 

MHC molecules become CD4+CD8-. CD4+ T cells are generally designated helper 

cells and activate both humoral immune responses (B-cell help) and cellular 

responses (delayed-type hypersensitivity responses). CD8+ cells show a major 

cytotoxic activity against cells infected with intracellular microbes and against 

tumor cells but also contain regulatory cells that down-regulates immune responses 

(suppressor cells) (Chaplin, 2010).  

Less than 5 % of the developing T cells survive positive and negative selection. 

Approximately 90 to 95 % of the circulating T cells use the αβ TCR, the other 5 to 

10 % use an alternate heterodimeric TCR composed of γ and δ chains. The γ and δ 

chains also assemble by means of RAG1/RAG2-mediated rearrangement of V, D (for 

the δ chain only) and J elements. A portion of the γδ T cells are generated in the 

thymus, but a major fraction appears to be generated in an extra thymic 

compartment, resulting in cells that largely populate the gastrointestinal tract 

(Ishikawa et al., 2007). 

The antigen-specific α and β chains of the TCR associate with invariant accessory 

chains that serve to transduce signals when the TCR binds to antigen-MHC 

complexes (Salmond et al., 2009). These accessory chains make up the CD3 complex, 

consisting of the transmembrane CD3γ, CD3δ and CD3ε chains plus a largely 

intracytoplasmic homodimer of two CD3ξ chains. Interaction of the TCR/CD3 

complex with antigenic peptide presented in an HLA molecule provides only a 

partial signal for cell activation.  

Although the basic principles of thymic development and the mechanisms of 

activation are shared by all T cells, there is a remarkable diversity of effector 

functions that are elicited in response to activation. T cells can play direct roles in 

elimination of pathogens by killing infected target cells. Moreover, they can also 

function as helper cells, providing cognate (involving direct cellular contact) or 

cytokine signals to enhance both B- and T-cell responses, as well as causing 

activation of mononuclear phagocytes. Finally, T-cells regulate the immune 

responses, limiting tissue damage incurred by means of autoreactive or overly 
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inflammatory immune responses (Bonilla and Oettgen, 2010). Both CD4+ and CD8+ 

T cells differentiate into functionally distinct subsets after exposure to antigen.  

Mature T-cells are activated on interaction of their TCRs with antigenic peptides 

complexed with MHC molecules. CD8+ T cells can interact with peptides on almost 

any cell expressing MHC class I (Melief, 2003; Sigal et al., 1999), whereas the TCRs 

of CD4+ T cells engage peptides bearing MHC class II (König et al., 1996). The T-

cell activation is initiated when the TCR and associated proteins recognize a 

peptide/MHC complex on an APC, leading to rapid clustering of TCR-associated 

molecules at the physical interface between T cells and APCs and the formation of 

a so-called immunologic synapse (Dustin, 2009). The T-cell side of the synapse is 

focused around a central cluster of CD3 (γ, δ, ε and ξ) and TCR (α and β), which bind 

specifically to the peptide/MHC complex, as well as CD4/CD8 molecules, which 

stabilize this interaction by binding to nonpolymorphic regions of MHC class I or 

MHC class II, respectively. Adhesion molecules known as integrins stabilize the 

synapse. The aggregation of these molecules in the synapse facilitates the early 

events in TCR signaling (Bonilla and Oettgen, 2010; Nurieva et al., 2009).  

Simultaneous binding to MHC/peptide on the APCs by TCRs and CD4/CD8 in the 

synapse brings the cytosolic domains of these molecules into proximity. As a result, 

the CD4- and CD8-associated Src family protein tyrosine kinase Lck is able to 

phosphorylate tyrosine residues contained in cytoplasmic immunoreceptor tyrosine-

based activation motifs of the TCR-associated CD3 chains. This results in the 

recruitment of the critical adaptor molecule, ξ-associated protein, 70 kd (ZAP-70), 

which binds to immunoreceptor tyrosine-based activation motif phosphotyrosines 

and phosphorylates a number of cytosolic proteins. This subsequently triggers the 

assembly of an intracellular complex of scaffolding and activated signaling proteins, 

including linker of activated T cells (LAT) and SH2-containing leukocyte protein, 

76 kd (Bonilla and Oettgen, 2010; Dustin, 2009). 

B-cells constitute around 15 % of peripheral blood leukocytes and are defined by 

their production of immunoglobulin (Chaplin, 2010). An important function of B 

cells during an immune response is to produce high affinity antigen-specific (Ag-

specific) immunoglobulins (Ig) which facilitate the eradication by phagocytosis of 

infectious pathogens through efficient opsonisation. Following antigenic 

stimulation, IgM+ IgD+ naïve B cells can undergo isotype switching to produce IgG, 

IgA or IgE antibodies while retaining their antigen specificity (Snapper et al., 1997). 

B cells obtain help from T cells by acting as antigen-specific APCs. Antigen 

recognition is sequential rather than simultaneous: first, the B-cell binds antigen 

with its antigen receptor membrane Ig and internalizes and degrades the antigen. 

Subsequently it presents peptides from the antigen on the cell surface bound class 
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II MHC molecules. Finally the T cell recognizes the processed antigen on the B cell 

surface and mutual activation results (Parker, 1993). Each Ig has two identical 

antigen-binding sites. The carboxyl terminal portions of the heavy and light chains 

are constant in each subclass of antibody. The heavy chain constant regions pair to 

form the Fc domain of the molecule that is responsible for most of the effector 

functions of the Ig molecule, including the binding of Fc receptors on macrophages 

and the activation of the complement system (Hoebe et al., 2004). 

Mature B cells recirculate through secondary lymphoid organs, including lymph 

nodes, the spleen and mucosal-associated lymphoid tissues. In the lymph nodes, B 

cells are concentrated in the cortex in primary follicles in contact with follicular 

dendritic cells. T cells are in the paracortical areas. Low-molecular-weight antigens 

might diffuse directly into B-cell areas in secondary lymphoid tissues (Batista and 

Harwood, 2009). Antigens complexed to varying degrees with IgM, IgG, and 

complement might be carried on the surfaces of specialized macrophages, follicular 

dendritic cells, or even B-cells themselves, all of which have receptors for IgG Fc 

and complement fragments. Antigen presented on these surfaces can stimulate B 

cells through Ig receptor cross-linking, expression of other interacting surface 

molecules, and cytokine secretion. B cells require two principle types of signals to 

become activated.  

B-cells are activated as APCs and express peptides along with MHC class II on their 

surface (Pulendran et al., 2001). These peptides can arise from processed antigen 

that was internalized after binging on to the B-cell surface immunoglobulin 

receptor. When the B-cell contacts a CD4+ T cell specific for the combination of such 

a peptide with self-MHC class II and that has been previously activated by an APC, 

the CD4+ T cell is able to provide cognate help and activate the B cell for further 

differentiation into memory cells or plasma cells (König et al., 1996). The activated 

B cells enters one of two pathways, i.e. they either immediately become short-lived 

plasma cells secreting low-affinity antibodies without somatic mutation, or they 

enter a follicle to establish a germinal center (Allen et al., 2007). In the germinal 

center, B cells undergo class-switching (Stavnezer et al., 2008). 

At the same time that class-switching is occurring, a mechanism of nucleotide 

substitution is activated, leading to the accumulation of point mutations in the 

immunoglobulin heavy and light chains of the variable regions, in a process known 

as SHM (Peled et al., 2008; Steele, 2009). Also here, the enzymes AID and UNG are 

important for the DNA cutting and splicing event of class-switching, as well as for 

the nucleotide substitutions leading to SHM (Peled et al., 2008). 

The immune response to the first exposure to an antigen is called the primary 

response. It is relatively slow, taking a few weeks to develop fully, and leads to 

production of predominantly IgM antibody of relatively low affinity. Other isotypes, 
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such as IgG, IgA or IgE, appear relatively late (often more than two weeks) and 

show higher affinity (affinity maturation). During the primary response, memory T 

cells and B cells are generated. In a subsequent exposure to the same antigens, 

these cells are activated more quickly in comparison with a primary response, so 

that production of high-affinity IgG (or IgA or IgE) is established within one week. 

This is called a secondary response (Bonilla and Oettgen, 2010; Murphy et al., 2008).  

Cells of the immune system require communication networks that can, as required, 

act locally or at a distance, specifically or globally, and transiently or in a sustained 

manner. This immune cell communication is conducted mainly by cytokines and 

chemokines. The term cytokine defines a large group of non-enzymatic proteins 

whose actions are both diverse and overlapping and which affect diverse and 

overlapping target cell populations (Kelso, 1998; Opals and DePalo, 2000). 

Chemokines on the other hand are essential for the trafficking of immune effector 

cells to sites of infection. Moreover, their function is necessary to translate an innate 

immune response into an adaptive response. Innate immune stimuli, through 

activation of TLR, set in motion a genetic program that induces the expression of a 

subset of chemokines from resident tissue macrophages and dendritic cells, and 

modulates the expression of chemokine receptors on dendritic cells (Luster, 2002; 

Nomiyama et al., 2010). 

Chemokines are small heparine-binding proteins that form a family of chemotactic 

cytokines that regulate migration and tissue localization of various kinds of cells in 

the body (Charo and Ransohoff, 2006; Moser et al., 2004; Zlotnik and Yoshie, 2000). 

In particular, they participate in inflammatory leukocyte recruitment, in 

lymphocyte recirculation and homing, and even in cancer metastasis (Ben-Baruch, 

2008; Gerard and Rollins, 2001). Chemokines have a well conserved region of four 

cysteines and are grouped into five subfamilies, CXC, CC, XC, CX3C and CX, based 

on the arrangement of the two N-terminal cysteine residues (Table 2. 3) (Nomiyama 

et al., 2010). A single chemokine can bind to several chemokine receptors, whereas 

a single chemokine receptor can have multiple chemokine ligands (Zlotnik and 

Yoshie, 2012). The recognition of chemokine-encoded messages is mediated by 

specific cell-surface G-protein-coupled receptors (GPCRs) with seven 

transmembrane domains (Murphy, 2002). 

Infectious microorganisms can directly stimulate chemokine production by tissue 

dendritic cells (DCs) and macrophages as well as by many parenchymal and stromal 

cells. Conserved microbial PAMPs induce chemokines through pattern recognition 

receptors, such as TLRs, or NOD1 and NOD2 (Girardin et al., 2003; Janeway and 

Medzhitov, 2002). Classically the major inflammatory and immunomodulatory 

cytokines such as IL1, TNFα, IFNγ, IL4, IL5, IL6, IL13, and IL17, induced in injury 
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or infection, stimulate through their respective receptors the production of many 

different chemokines (Baggiolini et al., 1997; Luster, 1998; Rollins, 1997). 

Cytokines are local mediators produced by cells of the lymphoid and macrophage 

lineage as well as by epithelial and mesenchymal cells. Cytokines are involved in a 

variety of biological processes, including cell activation, growth, and differentiation, 

and they are central to the development of inflammation and immunity (Elson, 

1996; Sartor, 1994). Cells of the innate immune system, such as macrophages and 

monocytes, are able to mount a rapid response to a danger signal, e.g. an infectious 

agent, by secreting several pro-inflammatory cytokines such as interleukin (IL)1, 

IL6, IL12, and tumor necrosis factor (TNF)-α. The cytokine milieu subsequently 

directs the development of adaptive immunity mediated by T and B lymphocytes 

(Papadakis and Targan, 2000). The typical cytokine is a glycosylated monomeric 

peptide of about 150 amino acids (Kelso, 1998). The cytokines are not, however, 

members of a single gene superfamily. Remarkably few similarities have been noted 

in their primary nucleotide or amino acid sequences and their genes are, for the 

most part, scattered throughout the genome (Dinarello, 2000). Currently, there are 

18 cytokines with the name interleukin (IL) (Cannon, 2000). Some cytokines clearly 

promote inflammation and are called pro-inflammatory cytokines, whereas other 

cytokines suppress the activity of pro-inflammatory cytokines and are called anti-

inflammatory cytokines (Dinarello, 2000).  

The concept that some cytokines function primarily to induce inflammation while 

others suppress inflammation is fundamental to cytokine biology and also to clinical 

medicine (Dinarello, 2000; Opals and DePalo, 2000). A dynamic and ever-shifting 

balance exists between pro-inflammatory cytokines and anti-inflammatory 

components of the human immune system. The regulation of inflammation by these 

cytokines and cytokine inhibitors is complicated by the fact that the immune system 

has redundant pathways with multiple elements having similar physiologic effects 

(Kasai et al., 1997; Munoz et al., 1991). The net effect of any cytokine is dependent 

on the timing of cytokine release, the local milieu in which it acts, the presence of 

competing or synergistic elements, cytokine receptor density, and tissue 

responsiveness to each cytokine (Cannon, 2000; Dinarello, 1998). Different 

immunogens induce the synthesis of different cytokines, which in turn activate 

different immune effector mechanisms. Although every nucleated cell type can 

produce cytokines, most lineages express only a subset of cytokine genes (Cannon, 

2000; Kelso, 1998). 

Within a given lineage, there are several critical levels of control of cytokine 

synthesis. One is the inducing signal. Cytokines are generally not produced 

constitutively but the nature of the stimuli that can trigger synthesis varies with 

the cell type and its differentiation or activation state, and determines which 

cytokines are produced by that cell. Among the most important stimuli are signals 
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recognizing either specifically or non-specifically as non self: antigen or antigen-

MHC complexes acting via clonotypic receptors on B or T cells; antigen-antibody 

complexes acting via FC and complement receptors on various lymphoid and 

inflammatory cell types; superantigens (such as bacterial endotoxins) acting via 

non-polymorphic regions of certain TCR Vβ chains; and other constituents of micro-

organisms (Kelso, 1998; Thomson and Lotze, 2003). Once cytokine genes become 

amenable to transcriptional activation, there are two major levels at which 

synthesis of cytokines is regulated: transcription rate and mRNA turnover. This has 

the practical consequence that cytokine mRNA levels are a valid guide to protein 

production levels in many situations (Akira and Kishimoto, 1997; Jain et al., 1995; 

Rao et al., 1997; Smale, 2014). Most cytokines are synthesized with a conventional 

signal sequence that results in their translocation into the Golgi apparatus and 

rapid secretion from the cell. There are, however, several translational and post-

translational levels at which production and release of some cytokines are 

regulated. 

Cytokines deliver signals to target cells via membrane-spanning receptors 

(Dinarello, 1994; Nicola and Metcalf, 1988). Most cytokine receptors comprise two 

or more ligand-binding polypeptide chains and, in many cases, one or more of these 

chains is shared with the receptor for another cytokine. A consequence of this 

multimeric structure is that most cytokine receptors can exist in two or more 

affinity states, depending on the availability of individual receptor chains to join the 

complex (Karnitz and Abraham, 1996; Sugamura et al., 1996). Ligand-induced 

cross-linking of cytokine receptor chains causes interaction of their associated 

Janus kinases (JAKs). It is thought that the Jaks first phosphorylate each other 

and thereafter phosphorylate sites in the cytoplasmic receptor domains (Yamaoka 

et al., 2004). The latter events enable Signal Transducer and Activator of 

Transcription (STAT) binding and phosphorylation, as well as triggering the 

Ras/MAP kinase and phosphatidylinositol cascades (Karnitz and Abraham, 1996). 

Activation of the bound STAT molecules causes homo- or heterodimerization to 

another STAT molecule. These STAT dimers then translocate to the nucleus where 

they bind to the regulatory regions of the relevant cytokine-responsive genes to 

initiate transcription (Kelso, 1998). In general, specificity in cytokine receptor 

signaling appears to be achieved through the association between the receptor itself 

and a particular STAT, rather than via the JAKs (Kaplan et al., 1996a, 1996b; Kopf 

et al., 1993; Kuhn et al., 1991).  

Here we will discuss some, i.e., IL1, IL2, IL6, IL10 and TGFβ, but not all 

interleukins. The IL1 cytokine family comprises four main members IL1α, ILβ, IL1 

receptor antagonist (IL1ra/IL1RN) and IL18 (Girn et al., 2007). The IL1 family is 

primarily considered to be pro-inflammatory, as it can up-regulate host defenses 

and act as an immunoadjuvant (Dinarello, 1997a). IL1β plays a significant role in 

inflammation, as it has been implicated in enhancing expression of cell adhesion 

molecules on the endothelial surface and has consequently been deemed to be pro-
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atherogenic (Dinarello, 1999). The only member of this family with paradoxical 

properties is IL1RN, a naturally occurring cytokine antagonist, which plays an anti-

inflammatory role in regulating IL1 function (Dinarello and Thompson, 1991; 

Perrier et al., 2006). IL1RN blocks the action of IL1α and IL1β functional ligands 

by competitive inhibition at the IL1 receptor level (Dinarello, 1997b; Sims et al., 

1993). After attachment of IL1 to its receptor, intracellular signaling occurs after a 

heterodimeric complex is formed between the IL1 receptor and an essential second 

protein known as IL1 receptor-accessory protein (Greenfeder et al., 1995). IL1RN 

will bind with high affinity to the IL1 receptor but fails to engage the IL1 receptor 

accessory protein. This occupies the membrane-bound IL1 receptor binding site and 

prevents cellular activation by IL1α or IL1β by steric inhibition (Schreuder et al., 

1997). The anti-inflammatory cytokines IL4, IL6, IL10 and IL13 inhibit the 

synthesis of IL1β and stimulate the synthesis of IL1RN (Dinarello, 1997b).  

The IL2 family comprises four representative members: IL2, IL4, IL5 and 

granulocyte-monocyte colony stimulating factor (GM-CSF). The most noteworthy 

action of IL2 relates to its mitogenic effects on T lymphocytes in response to 

antigenic stimulation, including the generation of both cytotoxic and suppressor T 

cells (Girn et al., 2007). IL4 is a highly pleiotropic cytokine that is able to influence 

TH cell differentiation. Early secretion of IL4 leads to polarization of TH cell 

differentiation towards TH2-like cells (Mosmann et al., 1986), which secrete their 

own IL4, and subsequently autocrine production of IL4 supports cell proliferation. 

The TH2 cell secretion of IL4 and IL10 leads to the suppression of TH1 responses by 

down-regulating the production of macrophage-derived IL12 and inhibiting the 

differentiation of TH1-type cells (Brown and Hural, 1997; Kelso, 1995; Mosmann et 

al., 1986). IL4 drives TH2 responses, mediates the recruitment and activation of 

mast cells, and stimulates the production of IgE antibodies via the differentiation 

of B cells into IgE-secreting cells (Brown and Hural, 1997; Wang et al., 1995). IL4 

has marked inhibitory effects on the expression and release of the pro-inflammatory 

cytokines. It is able to block or suppress the monocyte-derived cytokines including 

IL1, TNFα, IL6, IL8 and macrophage inflammatory protein (MIP)-1α (Brown and 

Hural, 1997; Paul, 1991; te Velde et al., 1990; Wang et al., 1995). It has also been 

shown to suppress macrophage cytotoxic activity, parasite killing and macrophage-

derived nitric oxide production (Vannier et al., 1992). In addition to its inhibitory 

effects on the production of pro-inflammatory cytokines, it stimulates the synthesis 

of the cytokine inhibitor IL1RN (Dinarello, 1997b; Hart et al., 1989). 

IL6 has long been regarded as a pro-inflammatory cytokine induced by LPS along 

with TNFα and IL1. It is often used as a marker for systemic activation of pro-

inflammatory cytokines (Barton and Medzhitov, 2002). Like many other cytokines, 

IL6 has both pro- and anti-inflammatory properties. Although IL6 is a potent 

inducer of the acute-phase protein response, it has anti-inflammatory properties as 

well (Barton et al., 1996). After binding to its specific α receptor, IL6 complexes with 

the ubiquitous gp130 signal transducing unit. IL6 belongs to a family of gp130 
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receptor ligands that includes IL11, leukemia inhibitory factor, ciliary neurotrophic 

factor, oncostatin M, and cardiotrophin-1. IL6 down-regulates the synthesis of IL1 

and TNFα (Libert et al., 1994; McGeough et al., 2012). IL6 attenuates the synthesis 

of the pro-inflammatory cytokines while having little effect on the synthesis of anti-

inflammatory cytokines such as IL10 and transforming growth factor β (TGFβ). IL6 

induces the synthesis of glucocorticoids and promotes the synthesis of IL1RN and 

soluble TNF receptor release in human volunteers (Ruzek et al., 1997; Tilg et al., 

1994). At the same time, IL6 inhibits the production of pro-inflammatory cytokines 

such as GM-CSF, IFNγ and MIP-2 (Barton, 1997). 

IL10 is the most important anti-inflammatory cytokine produced by a variety of 

cells, including T and B lymphocytes, thymocytes, macrophages, mast cells, 

keratinocytes and intestinal epithelial cells (Opals and DePalo, 2000). It is a potent 

inhibitor of TH1 cytokines, including both IL2 and IFNγ, but also of IL1, IL6 and 

TNFα (Hagenbaugh et al., 1997; Howard and O’Garra, 1992; Lalani et al., 1997; 

Opal et al., 1998). IL10 is also a potent deactivator of monocyte/macrophage pro-

inflammatory cytokine synthesis (Brandtzaeg et al., 1996; Clarke et al., 1998). It 

also inhibits cell surface expression of MHC class II molecules and the LPS 

recognition and signaling molecule CD14 (Opal et al., 1998).  

TGFβ is synthesized as an inactive precursor and requires activation before 

exerting its effects (Nørgaard et al., 1995). It is an important regulator of cell 

proliferation, differentiation, and formulation of the extracellular matrix (Letterio 

and Roberts, 1997). Like many cytokines (e.g. IL6), TGFβ has both pro- and anti-

inflammatory effects. It functions as a biological switch, antagonizing or modifying 

the action of other cytokines and growth factors. The presence of other cytokines 

may modulate the cellular responses of TGFβ, and the effect may differ depending 

on the activation state of the cell (Kingsley, 1994). TGFβ is capable of converting an 

active site of inflammation into one dominated by resolution and repair (Letterio 

and Roberts, 1997).  

The cytokine induced immune responses can be further regulated by suppressors of 

cytokine signaling (SOCS) and the cytokine-inducible SH2 protein (CIS) family of 

intracellular proteins (Alexander, 2002; Greenhalgh et al., 2002; Yasukawa et al., 

2000). In total there are eight SOCS proteins (i.e. SOCS1, SOCS2, SOCS3, SOCS4, 

SOCS5, SOCS6, SOCS7 and CIS), each of which has a central SH2 domain, an 

amino-terminal domain of variable length and divergent sequence, and a carboxy-

terminal 40-amino-acid module that is known as the SOCS box (Illson et al., 1998). 

The function of the SOCS box is the recruitment of the ubiquitin-transferase 

system. The SOCS box interacts with elongins B and C, cullins, Rbx-1 and E2 

(Kamura et al., 1998; Zhang et al., 1999b). Thus, CIS and SOCS family proteins, as 

well as other SOCS box-containing molecules, probably function as an E3 ubiquitin 

ligase and mediate the degradation of proteins associated through their N-terminal 

regions. However, the SOCS box is also important for the stabilization and/or 

degradation of the SOCS1 and SOCS3 proteins themselves (Kamura et al., 1998). 
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Interaction of the SOCS box with elongin C stabilizes SOCS3 protein expression, 

whereas phosphorylation of SOCS box tyrosine residues disrupts the complex and 

enhances proteasome-mediated degradation of SOCS3 (Haan et al., 2003). 

The best characterized SOCS-family members, SOCS1, SOCS2, SOCS3 and CIS 

(Table 2. 4), seem to act in a classical negative-feedback loop to inhibit cytokine 

signal transduction (Alexander, 2002). CIS and SOCS2 bind to phosphorylated 

tyrosine residues on activated (phosphorylated) cytokine receptors. They also 

compete with STATs or can sterically hinder the STAT binding sites of receptors, 

inhibiting STAT activation, as in the case of STAT5 (Ram and Waxman, 1999; 

Yoshimura et al., 2007). CIS is induced by cytokines that activate STAT5, such as 

erythropoietin, IL2, IL3, prolactin and growth hormone (Yoshimura et al., 1995).  

SOCS1 has an important regulatory function in macrophages and dendritic cells. 

The inhibitory activity of SOCS2 is not as strong as that of CIS, and SOCS2 seems 

to be a relatively specific negative regulator of the growth hormone-STAT5 pathway 

(Metcalf et al., 2000). Both SOCS1 and SOCS3 can inhibit JAK tyrosine kinase 

activity. They have a kinase inhibitory region in their N-terminal domain, which 

probably functions as a pseudosubstrate (Yasukawa et al., 1999). SOCS1 uses its 

SH2 domain to directly bind the activation loop of JAKs and binds the catalytic 

pocket of JAKs through its kinase inhibitory region (Giordanetto and Kroemer, 

2003).  

The mechanism of SOCS3-mediated inhibition of signaling involves both the 

cytokine receptors and JAKs (Hansen et al., 1999; Nicholson et al., 2000; Sasaki et 

al., 2000). SOCS3 binds activated receptors but does not seem to interfere with 

STAT recruitment (Bjørbaek et al., 1998; Cohney et al., 1999; Hansen et al., 1999; 

Nicholson et al., 2000; Sasaki et al., 2000). Rather, SOCS3 inhibits JAKs catalytic 

activity in a manner that is analogous to SOCS1, but SOCS3 relies on receptor 

binding, rather than a direct interaction with JAKs, to gain access to the JAK 

activation loop. Moreover, SOCS3 binds the GP130 receptor at a specific 

phosphorylated receptor tyrosine that is the same as that used by the signaling 

molecule SH2-domain-containing protein tyrosine phosphatase 2 (SHP2) for 

receptor interaction (Nicholson et al., 2000; Schmitz et al., 2000). As SH2P can 

promote GP130 signaling through the activation of mitogen-activated protein 

kinases, it is possible that SOCS3 will suppress aspects of GP130 signaling also by 

competing with SHP2 for receptor binding. Thus SOCS3 selectively blocks IL6 

signaling, interfering with the ability of the latter to inhibit LPS signaling (Kubo et 

al., 2003).  
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The introduction of antibiotics is one of the most important medical interventions 

with regard to reducing human morbidity and mortality. However, the intensive 

use of antibiotics has dramatically increased the frequency of resistance among 

human pathogens and threatens a loss of therapeutic options and a post-antibiotic 

era in which the medical advances are no longer effective (Guay, 2008; Lew et al., 

2008; Woodford and Livermore, 2009). The clinical use of antibiotics, and therefore 

the effective treatment of bacterial infections, is under considerable threat due to 

the emergence of bacteria that are resistant to many classes of commonly used 

antibiotics. In the traditional sense, antibiotic resistance is often considered to be a 

trait acquired by previously susceptible bacteria, the basis of which can be 

attributed to the horizontal acquisition of new genes, or the occurrence of 

spontaneous mutations within chromosomally located genes that are subsequently 

transmitted vertically as the bacteria replicate (Davies, 2007; Martinez and 

Baquero, 2000). In addition to the ability of bacteria to ‘acquire’ resistance, different 

bacterial species are also intrinsically resistant to different classes of antibiotics 

(Cox and Wright, 2013). 

The accumulation of antibiotic resistance in bacteria provides the most drastic 

demonstration of Darwinian selection available to us, and one with serious practical 

consequences (Livermore, 2007). Antibiotics select for those bacteria that are 

inherently resistant or that have acquired resistance via mutation or DNA transfer. 

Upon the introduction of antibiotics, it was assumed that the development of 

antibiotic resistance was unlikely, although addressed by Alexander Flemming in 

his nobel prize acceptance speech (Fleming, 1945). This was based on the 

assumption that the frequency of mutations generating resistant bacteria was 

neglectable (Davies, 1994). Bacterial mutation rates in the laboratory are usually < 

10-7 and are often ≤ 10-9, whilst plasmid transfer rates are generally < 10-5 per donor 

cell, but these apparently low rates must be multiplied by the huge numbers of 

bacteria exposed. The human gut is estimated to contain 1013 – 1014 bacteria, tenfold 

more than the total amount of human cells in the body, and these are exposed to 

selection pressure whenever antibiotics are used (Guarner and Malagelada, 2003). 

Moreover, antibiotics are not only used in human medicine but have also been 

applied for treatment, mass prophylaxis and growth promotion in animals, with 

resistant bacteria passed to humans via the food chain (Livermore, 2007). 

To understand how antibiotics work, and subsequently how antibiotic resistance 

can develop, insights regarding the targets of the main classes of these antibacterial 

drugs is required: bacterial cell-wall biosynthesis, bacterial protein synthesis and 

bacterial DNA replication and repair (Table 3. 1) (Walsh, 2000).  

Bacterial resistance to antibiotics can be intrinsic or innate, which is characteristic 

for a particular bacterium and depends on the biology of the microorganism, or can 

be acquired (Alanis, 2005; Giedraitienė et al., 2011). Resistance of Mollicutes (best 
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known genus is Mycoplasma) to β-lactam antibiotics is an example of intrinsic 

resistance, explained by the lack of a cell wall in this class of bacteria (Bébéar and 

Pereyre, 2005). Acquired resistance occurs from acquisition of exogenous genes by 

uptake of free DNA (transformation) plasmids (conjugation), transposons 

(conjugation), integrons and bacteriophages (transduction), mutation or a 

combination of these mechanisms (Hawkey, 1998). The main types of biochemical 

mechanisms that bacteria use for defense against antibiotics are enzymatic 

inactivation or modification, decreased uptake or efflux, and alteration or 

overproduction of the target (Chen et al., 2011; Wright, 2005). 

Pseudomonas aeruginosa is an important bacterial pathogen, particularly as cause 

of infections in hospitalized patients and immunocompromised hosts such as burn 

wound patients and patients witsh cystic fibrosis. P. aeruginosa is a Gram-negative 

aerobic opportunistic bacterium that normally inhabits the soil and surfaces in 

aqueous environments (Gellatly and Hancock, 2013). It is an important cause of 

both community- and hospital-acquired infections. Community-acquired infections 

include, but are not limited to, ulcerative keratitis (usually associated with contact 

lens use), otitis externa (typically in immunocompromised hosts such as those with 

diabetes mellitus), and skin and soft tissue infections (including diabetic foot 

infections and infections of burn wounds) (Driscoll et al., 2007). Hospitalized 

patients may be colonized with P. aeruginosa or may acquire it during their hospital 

stay. P. aeruginosa can be isolated from nearly any conceivable source within 

hospitals (Bonten et al., 1999; Pirnay et al., 2003). Nosocomial infections caused by 

P. aeruginosa include pneumonias, urinary tract infections, bloodstream infections, 

surgical site infections and skin infections in the setting of burn injuries. Infections 

with P. aeruginosa are not only common, they also have been associated with high 

morbidity and mortality when compared with other bacterial pathogens (Harbarth 

et al., 2002; Kollef et al., 2005; Osmon et al., 2004; Rello et al., 2002). 

P. aeruginosa has been identified as the second most common cause of hospital-

acquired pneumonia (HAP), healthcare-associated pneumonia (HCAP) and 

ventilator-associated pneumonia (VAP), exceeded in frequency only by 

Staphylococcus aureus (Gaynes et al., 2005; Kollef et al., 2005). P. aeruginosa is 

often identified as the most frequent infectious isolate in burn units, and accounts 

for a large percentage of documented wound infections, bacteremia and VAP in 

these units (Lari and Alaghehbandan, 2000; Sewunet et al., 2013; Song et al., 2001). 

P. aeruginosa also plays an important role in patients with cystic fibrosis (CF), in 

whom chronic and recurrent infections of the sinopulmonary tract by P. aeruginosa 

are common. 
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P. aeruginosa possesses a single flagellum that enables motility and that may 

mediate initial surface interactions (O’Toole and Kolter, 1998). P. aeruginosa also 

has multiple cell surface pili (type IV) that are responsible for adherence to cell 

membranes and other surfaces (Kipnis et al., 2006; Lau et al., 2005). During an 

infection, the bacterium can adhere to host epithelial cells through the binding of 

its flagellum to the asialyated glycolipid asialoGM1 and can elicit a strong NF-κB-

mediated inflammatory response via signaling through TLR5 and a caspase-1-

mediated response through the NLR Ipaf (Miao et al., 2007). Type IV pili are the 

most important adhesion molecules of P. aeruginosa and are also involved in 

twitching motility and the formation of biofilms (Kipnis et al., 2006). Pili can also 

lead to aggregation, causing the bacteria to form microcolonies on target tissues, 

effectively concentrating the bacteria in one location and potentially offering 

protection from the host immune system and from antibiotics (Craig et al., 2004; 

Sriramulu et al., 2005). Some isolates of P. aeruginosa overproduce the extracellular 

polysaccharide alginate (a condition called mucoidy), with associated mucoid 

morphology apparent on culture (Lau et al., 2005). Alginate has been noted to have 

a number of effects that may impede bacterial clearance by the infected host, 

including scavenging of free radicals released by macrophages, providing a physical 

barrier that impairs phagocytosis, and inhibiting neutrophil chemotaxis and 

complement activation (Ramsey and Wozniak, 2005). 

Many pathogenic Gram-negative bacteria, such as Yersinia, Salmonella, Shigella 

and Pseudomonas species share a type three secretion system (T3SS) as a means of 

injecting toxins directly into host cells (Kipnis et al., 2006). As such, the P. 

aeruginosa T3SS is a major determinant of virulence, and its expression is 

frequently associated with acute invasive infections and has been linked to 

increased mortality in infected patients (Hauser, 2009; Sadikot et al., 2005). The 

needle-like appendage of the T3SS, evolutionarily related to flagella, permits the 

translocation of effector proteins from the bacterium into the host cell through a 

pore formed in the host cell membrane (Hauser, 2009). There are four known toxins, 

variably expressed in different strains and isolates, injected into host cells by P. 

aeruginosa through the T3SS: ExoS, ExoT, ExoY and ExoU (Gellatly and Hancock, 

2013; Kipnis et al., 2006). 

ExoS is a bifunctional cytotoxin with two active domains, a C-terminal ADP-

ribosyltransferase domain and an N-terminal Rho GTPase-activating protein (GAP) 

domain (Fu et al., 1993). The pathogenic role of ExoS is mainly attributable to the 

ADP-ribosyltransferase activity leading to disruption of normal cytoskeletal 

organization (Maresso et al., 2004; Shaver and Hauser, 2004). The C-terminal 

domain binds to TLR2 and the N-terminal domain binds to TLR4, showing that 

ExoS may also modulate the host immune and inflammatory response (Epelman et 

al., 2004). ExoT is similar to ExoS, with dual ADP-ribosyltransferase and GAP 

activities, although the ExoT ADP-ribosyltransferase targets different pathways 

(Aktories and Barbieri, 2005; Henriksson et al., 2002). ExoY is an adenylate cyclase 

injected directly into the host cytosol by the T3SS and increases cytosolic cyclic AMP 



43 

 

(cAMP), enhanced by a eukaryotic cofactor (Yahr et al., 1998). This increased 

cytosolic cAMP leads to increased pulmonary microvascular intercellular gap 

formation and increased lung permeability (Sayner et al., 2004). ExoU was recently 

found to have a phospholipase/lysophospholipase activity disrupting eukaryotic cell 

membranes after translocation into the cell by the T3SS and activation by a yet 

unknown eukaryotic cofactor (Pankhaniya et al., 2004; Sato et al., 2003; Tamura et 

al., 2004). 

Besides these four toxins, P. aeruginosa is able to secrete additional virulence 

factors, such as pyocyanin and pyoverdine, proteases, phospholipase C and exotoxin 

A (ExoA). Pyocyanin is a blue pigment metabolite of P. aeruginosa that has been 

shown to have numerous pathogenic effects such as an increase in IL8, depression 

of host-response, and induction of apoptosis in neutrophils (Allen et al., 2005; 

Denning et al., 1998; Leidal et al., 2001). Pyoverdine is a siderophore, a small 

molecule chelating iron from the environment for use in P. aeruginosa metabolism 

(Meyer et al., 1996; Takase et al., 2000). Phospholipase C, more specifically 

hemolytic phospholipase C, is a phospholipase secreted by P. aeruginosa into the 

extracellular space through a type two secretion system (T2SS). It targets 

eukaryotic membrane phospholipids (König et al., 1997; Wiener-Kronish et al., 

1993). ExoA, secreted into the extracellular space through a T2SS, is an ADP-

ribosyltransferase inhibiting elongation factor-2 (EF-2), thereby inhibiting protein 

synthesis and leading to cell death (Pavlovskis et al., 1978; Wick et al., 1990). 

Another major virulence factor of P. aeruginosa are its lipopolysaccharides. 

Lipopolysaccharide is a complex glycolipid that forms the outer leaflet of the outer 

membrane of Gram-negative bacteria and has roles in antigenicity, the 

inflammatory response, exclusion of external molecules, and in mediating 

interactions with antibiotics (King et al., 2009). P. aeruginosa produces a three-

domain lipopolysaccharide consisting of a membrane-anchored lipid A, a 

polysaccharide core region, and a highly variable O-specific polysaccharide (Gellatly 

and Hancock, 2013). The production, function and virulence of lipopolysaccharides 

are discussed more thoroughly in . 

Surveillance of P. aeruginosa isolated from hospitalized patients has revealed 

alarming antimicrobial resistance increase (Driscoll et al., 2007; Solomon et al., 

2002). Infections by P. aeruginosa are notoriously difficult to treat due to its 

intrinsic ability to acquire resistance. All known mechanisms of antibiotic 

resistance can be displayed by this bacterium (Moore and Flaws, 2011). In the case 

of P. aeruginosa, intrinsic resistance is due to the low permeability of its outer 

membrane, the constitutive expression of membrane efflux pumps, and the natural 

occurrence of an inducible β-lactamase, AmpC (Strateva and Yordanov, 2009). 
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The outer membrane of Gram-negative bacteria acts as a selective barrier for 

uptake of antibiotics (Nicas and Hancock, 1983). P. aeruginosa has a large exclusion 

limit owing to the limited number of large channels of its major porin OprF, and the 

small size of the channels of other porins that mediate the passage of other 

molecules of the size of antibiotics, including OprD and OprB (Breidenstein et al., 

2011). Members of the RND family of efflux pumps appear to be the most significant 

contributors to antimicrobial resistance of P. aeruginosa (Poole, 2007).  

P. aeruginosa also has an intrinsic resistance against β-lactams through the 

expression of AmpC and PoxB (Girlich et al., 2004; Kong et al., 2005; Lodge et al., 

1990). While the original β-lactamases were plasmid-encoded restricted-spectrum 

class A enzymes that only hydrolyzed penicillins and older, narrow-spectrum 

cephalosporins, more recently described acquired β-lactamases in P. aeruginosa 

include the extended-spectrum β-lactamase (ESBL) enzymes able to hydrolyze a 

wider range of β-lactams, including the carbapenems (Zhao and Hu, 2010). 

Multidrug resistant strains of P. aeruginosa typically exhibit several resistance 

mechanisms simultaneously, whereby resistance to specific antibacterials may be 

mediated by different combinations of these mechanisms (Deplano et al., 2005; 

Dubois et al., 2001). 

Staphylococcus aureus is both a commensal organism and a pathogen. The anterior 

nares are the main ecological niche for S. aureus. Approximately 20 % of individuals 

have nares persistently colonized with S. aureus, and 30 % are intermittently 

colonized. However, numerous other sites may be colonized, including the axillae, 

groin, and gastrointestinal tract (Gordon and Lowy, 2008). Colonization increases 

the risk for subsequent infection (Kluytmans et al., 1997; Wertheim et al., 2005). 

Those with S. aureus infections are generally infected with their colonizing strain 

(Williams et al., 1959). Colonization also allows S. aureus to be transmitted among 

individuals in both health care and community settings. The primary mode of 

transmission of S. aureus is by direct contact, usually skin-to-skin contact with a 

colonized or infected individual, although contact with contaminated objects and 

surfaces might also have a role (Kazakova et al., 2005; L and K, 2006; Miller and 

Diep, 2008; Muto et al., 2003).  

S. aureus produces a wide variety of exoproteins that contribute to its ability to 

colonize and to cause disease in mammalian hosts. Nearly all strains secrete a group 

of enzymes and cytotoxins, which includes four hemolysins (alpha, beta, gamma, 

and delta), nucleases, proteases, lipases, hyaluronidase, and collagenase. The main 

function of these proteins may be to convert local host tissues into nutrients 

required for bacterial growth. Some strains produce one or more additional 

exoproteins, which include toxic shock syndrome toxin-1 (TSST-1), the 

staphylococcal enterotoxins (SEA, SEB SEC, SED, SEE, SEG, SEH, and SEI), the 
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exfoliative toxins (ETA and ETB), and leucocidin (Dinges et al., 2000). Toxic shock 

syndrome toxin-1 and the staphylococcal enterotoxins are also known as pyrogenic 

toxin superantigens (PTSAgs) and are secreted by either S. aureus or Streptococcus 

pyogenes (Bohach et al., 1990). Each of these exotoxins exhibits at least three 

biological properties: pyrogenicity, superantigenicity, and the capacity to enhance 

the lethality of endotoxin in rabbits up to 100,000 fold (Bohach et al., 1990; Marrack 

and Kappler, 1990). TSST-1 is unique in its ability to cross mucosal surfaces and is 

the only PTSAg known to reactivate bacterial cell wall-induced arthritis (Hamad et 

al., 1997; Schwab et al., 1993). The best characterized property of the PTSAgs is 

superantigenicity, which refers to the ability of these exotoxins to stimulate 

proliferation of T lymphocytes without regard for the antigen specificity of these 

cells by linking the TCR and the MHC class II molecule (Fleischer and 

Schrezenmeier, 1988; Marrack and Kappler, 1990; Rödström et al., 2014; White et 

al., 1989).  

In addition to their functional similarities, the staphylococcal PTSAgs share a 

number of genetic and biochemical characteristics. Like most proteins secreted by 

S. aureus, they are produced primarily in the postexponential phase of growth 

(Dinges et al., 2000). Comparison of the three-dimensional structure of TSST-1 to 

those of SEA, SEB and SEC, it was demonstrated that each of these proteins is 

folded into a highly prototypical structure. This high level of structural homology is 

not surprising in view of their functional relatedness. Of considerable interest are 

the molecular structures of PTSAgs in complex with MHC class II molecules or the 

β-chain of the TCR (Hoffmann et al., 1994; Papageorgiou et al., 1999; Prasad et al., 

1997; Schad et al., 1995; Swaminathan et al., 1992). 

In establishing an infection, S. aureus has numerous surface proteins, called 

microbial surface components recognizing adhesive matrix molecules 

(MSCRAMMs) that mediate adherence to host tissues. MSCRAMMs bind molecules 

such as collagen, fibronectin, and fibrinogen, and different MSCRAMMs may 

adhere to the same host-tissue component (Foster and Höök, 1998; Menzies, 2003; 

Patti et al., 1994; Tung et al., 2000). Once S. aureus adheres to the host tissue or 

prosthetic materials, it is able to grow and persist in various ways. S. aureus can 

form biofilms on host and prosthetic surfaces, enabling it to persist by evading host 

defenses and antimicrobials (Donlan and Costerton, 2002). In vitro, S. aureus can 

also invade and survive inside epithelial cells, including endothelial cells, which 

theoretically may also allow it to escape host defenses, particularly in endocarditis 

(Gordon and Lowy, 2008; Hamill et al., 1986; Moreillon et al., 2002; Ogawa et al., 

1985). S. aureus may also secrete chemotaxis inhibitory protein of staphylococci or 

the extracellular adherence protein, which interfere with neutrophil extravasation 

and chemotaxis to the site of infection (Foster, 2005). The mortality of S. aureus 

bacteremia remains approximately 10 – 30 % despite the availability of effective 

antimicrobials (van Hal et al., 2012). S. aureus is now the leading overall cause of 

nosocomial infections and, as more patients are treated outside the hospital setting, 
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is an increasing concern in the community (Diekema et al., 2001; Solomon et al., 

2002). 

S. aureus is naturally susceptible to virtually every antibiotic that has ever been 

developed. Resistance to antibiotics is often acquired by the horizontal transfer of 

genes from outside sources, although chromosomal mutation is also important 

(Chambers and Deleo, 2009). As rapidly as new antibiotics have been introduced, 

staphylococci have developed efficient mechanisms to neutralize them (Table 3. 2). 

Staphylococcal resistance to penicillin is mediated by blaZ, the gene that encodes β-

lactamase. This predominantly extracellular enzyme, synthesized when 

staphylococci are exposed to β-lactam antibiotics, hydrolyzes the β-lactam ring, 

rendering the β-lactam inactive (Wilke et al., 2005). Methicillin resistance requires 

the presence of the chromosomally localized mecA gene (Chambers, 1997; Wilke et 

al., 2005). The mecA gene is responsible for synthesis of penicillin-binding protein 

2a (PBP2a), an alternative transpeptidase with reduced affinity for β-lactam 

antibiotics (Ghuysen, 1994; Hartman and Tomasz, 1984). Thus, resistance to 

methicillin confers resistance to all β-lactam agents. PBP2a also differs from other 

PBPs in that its active site blocks binding of all β-lactams but allows the 

transpeptidation reaction to proceed (Lim and Strynadka, 2002). Additional series 

of genes, the fem genes (factor essential for resistance to methicillin resistance) play 

a role in cross-linking peptidoglycan strands and also contribute to the 

heterogeneity of expression of methicillin resistance (Berger-Bächi, 1994). 

Staphylococcal resistance to vancomycin in clinical isolates was first reported in a 

strain of S. haemolyticus (Schwalbe et al., 1987). Currently two forms of S. aureus 

resistance to vancomycin have been identified (Walsh and Howe, 2002). The reduced 

susceptibility to vancomycin appears to result from changes in peptidoglycan 

biosynthesis. The vancomycin intermediate-resistant S. aureus (VISA) strains are 

notable for the additional quantities of synthesized peptidoglycan that can result in 

irregularly shaped, thickened cell walls. There is also decreased cross-linking of 

peptidoglycan strands, which leads to the exposure of more D-Ala-D-Ala residues 

(Hanaki et al., 1998a, 1998b). The altered cross-linking results from reduced 

amounts of L-glutamine that are available for amidation of D-glutamate in the 

pentapeptide bridge (Walsh and Howe, 2002). The second form of vancomycin 

resistance has resulted from the probable conjugal transfer of the vanA operon from 

a vancomycin-resistant Enterococcus faecalis (Showsh et al., 2001). Resistance in 

these strains is caused by alteration of the terminal amino acids D-Ala-D-Ala to D-

Ala-D-Lac. Synthesis of D-Ala-D-Lac occurs only with exposure to low 

concentrations of vancomycin. 

Fluoroquinolones were initially introduced for the treatment of Gram-negative 

bacterial infections in the 1980s. Because of their Gram-positive bacterial spectrum, 

they have also been used to treat bacterial infections caused by pneumococci and 

staphylococci. Quinolone resistance among S. aureus emerged quickly, more 
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prominently among the methicillin-resistant strains. As a result, the ability to use 

fluoroquinolones as antistaphylococcal agents was dramatically reduced. 

Fluoroquinolone resistance develops as a result of spontaneous stepwise 

chromosomal mutations in the target of the antibiotic, topoisomerase IV or DNA 

gyrase, or by the induction of a multidrug efflux pump (Hooper, 2002). 

The confluence of high bacterial density, the likely preexistence of resistant 

subpopulations, and the sometimes limited quinolone concentrations achieved at 

sites of staphylococcal infections creates conditions that fosters selection of resistant 

mutants (Hooper, 2002). Amino acid changes in critical regions of the enzyme-DNA 

complex (quinolone resistance-determining region (QRDR)) reduce quinolone 

affinity for both of its targets. The ParC subunit (GrlA in S. aureus) of 

topoisomerase IV is the most common site of resistance mutations. Topoisomerase 

IV mutations are the most critical, since they are the primary drug targets in 

staphylococci (Ng et al., 1996). An additional mechanism of resistance in S. aureus 

is induction of the NorA multidrug resistance efflux pump. Increased expression of 

this pump in S. aureus can result in low-level quinolone resistance (Ng et al., 1994). 
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Both Gram-positive and Gram-negative bacteria possess a cytoplasmic membrane 

surrounding the cytosol, a double phospholipid layer which constitutes a physical 

semi-permeable barrier that regulates the flux of endogenous and exogenous 

substances in and out of the cell. Gram-negative bacteria possess an additional 

asymmetric outer membrane (OM) which surrounds a thin layer of peptidoglycan. 

The outer membrane is composed of an asymmetric phospholipid bilayer, whose 

inner leaflet is made of glycerophospholipids while the external leaflet is formed by 

lipopolysaccharides (LPS) (Silipo and Molinaro, 2010).  

Lipopolysaccharides constitute a physical barrier protecting the bacterium from 

host defenses, mediate direct interactions with host cell receptors and antibiotics, 

and are potent signaling molecules which initiate some of the events leading to host 

tissue damage and much of the pathology associated with bacteremia (King et al., 

2009; Moskowitz and Ernst, 2010; Raetz, 1990). They are heat-stable complex 

amphiphilic macromolecules indispensable for the bacterial growth, viability and 

for the correct assembly of the outer membrane (Alexander and Rietschel, 2001; 

Raetz and Whitfield, 2002; Raetz et al., 2007). Lipopolysaccharides typically consist 

of a hydrophobic domain known as lipid A (or endotoxin), a non-repeating core 

oligosaccharide, and a distal polysaccharide (or O-antigen) (Raetz and Whitfield, 

2002). The biosynthetic pathway and export mechanism of LPS has been well 

characterized in E. coli and is shared by most Gram-negative bacteria, but the exact 

structures of LPS differ in different bacteria (Wang and Quinn, 2010). 

Lipopolysaccharides can bind to the PRR TLR4 (Akira et al., 2006; Poltorak et al., 

1998).  

Lipopolysaccharides can cause symptoms such as septic shock, multiple organ 

dysfunction and failure. Understanding the biochemistry of LPS modifications and 

their impact on pathogenesis could lead to novel treatment options for these 

diseases as well as lead to strategies for the removal of LPS from different sample 

types (Epstein and Parrillo, 1993; Petsch and Anspach, 2000). 

The biosynthesis of LPS is initiated from a small molecule, UDP-N-

acetylglucosamine (UDP-GlcNAc), which is also one of the two major building blocks 

of the peptidoglycan layer. Multiple enzymes sequentially function to convert UDP-

GlcNAc into core-lipid A, and to synthesize LPS. Among the three parts of LPS, the 

structure of lipid A is more widely conserved in different bacteria than that of core 

sugars or O-antigen and so are the enzymes involved in the biosynthesis of lipid A. 

The first stage of LPS biosynthesis is to synthesize Kdo2-lipid A (Figure 4. 1; 

Doerrler, 2006; Raetz and Whitfield, 2002).  

The core oligosaccharides are sequentially assembled on lipid A at the cytoplasmic 

surface of the inner membrane in a process that involves a number of membrane-
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associated glycosyltransferases, using nucleotide sugars as donors. The 

biosynthesis of core oligosaccharides is rapid and efficient, suggesting that the 

glycosyltransferases function as a coordinated complex. Core oligosaccharides can 

be divided into two structurally distinct regions: the inner core, which connects to 

lipid A, and the outer core that connects to the O-antigen. The inner core 

oligosaccharides typically contain residues of Kdo and L-glycero-D-manno-heptose 

(Hep). The Kdo residue is the most conserved component found in the core region of 

LPS. The outer core oligosaccharides show more structural diversity than those of 

the inner core. The sugars found in the outer core oligosaccharides are Kdo, Hep, D-

glucose and D-galactose (Wang and Quinn, 2010). 

Similar to the core oligosaccharides, O-antigen is synthesized at the cytoplasmic 

surface of the inner membrane. Using the sugar nucleotides as donors, the units of 

O-antigen are assembled by glycosyltransferase enzymes on the membrane-bound 

carrier, undecaprenyl phosphate which is also used for synthesis of peptidoglycan 

and capsular polysaccharides (Raetz and Whitfield, 2002). The O-antigens of LPS 

exhibit considerable diversity. The connection of units in O-antigen may be linear 

or branched. The O-antigen repeats can be homopolymers or heteropolymers (Wang 

and Quinn, 2010). 

Nascent LPS molecules are synthesized in the periplasm and shuttled to the inner 

surface of the outer membrane by proteins LptA, LptB, LptC, LptF and LptG. The 

ABC transporter LptBFG, functioning with LptC and LptA, translocates LPS to the 

inner leaflet of the outer membrane (Sperandeo et al., 2007, 2008). Thereafter, the 

protein complex LptD/LptE assembles LPS into the outer surface of the outer 

membrane (Ruiz et al., 2008; Sperandeo et al., 2007, 2008).  

After synthetization, the LPS structure can be modified. The most conserved part 

of lipid A is its backbone, the disaccharide of glucosamine, but the groups connecting 

to this backbone can be modified (Table 4. 2). The modification of LPS cannot only 

occur in the hydrophobic acyl chain (lipid A) but also in the hydrophilic 

polysaccharide (O-antigen). Modifications of LPS usually occur at the periplasmic 

face of the inner membrane or in the outer membrane. These structural 

modifications of LPS might help bacteria to resist the cationic antimicrobial 

peptides (CAMPS) released by the host immune system, or evade recognition by the 

innate immune receptor TLR4 (Wang and Quinn, 2010). 
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Figure 4. 1: Structure and biosynthetic pathway of Kdo2-lipid A in Escherichia coli. 

This involves nine enzymes (Table 4. 1), takes place in the cytoplasm at first and ends up on 

the cytoplasmic surface of the inner membrane. The first three reactions of the Kdo2-lipid A 

biosynthesis are catalyzed by soluble enzymes LpxA, LpxC and LpxD, resulting in the 

addition of two 3-OH fatty chains to the 2- and 3- positions of the UDP-GLCNAc to form 

UDP-diacyl-GlcN. Both LpxA and LpxD are acyltransferases and their active forms are 

homotrimers. LpxC is a Zn2+-dependent deacetylase which has no sequence homology with 

other deacetylases (Barb et al., 2007). UDP-diacyl-GlcN is subsequently hydrolyzed by LpxH 

to form lipid X, which is further condensed with its precursor UDP-diacyl-GlcN by LpxB to 

form disaccharide-1-P (Babinski et al., 2002a, 2002b, Crowell et al., 1986, 1987; Metzger IV 

and Raetz, 2009). In the final steps, LpxK phosphorylates the 4’-position of the disaccharide-

1-P to form lipid IV A (Garrett et al., 1998). KdtA incorporates two 3-deoxy-D-manno-

octulosonic acid (Kdo, depicted as an R-group) residues at the 6’-position of the lipid IV A, 

using a sugar nucleotide CMP-Kdo as the donor (not depicted in the figure). The resulting 

Kdo2-lipid IV A undergoes further reactions catalyzed by LpxL and LpxM to form Kdo2-lipid 

A. LpxL adds a secondary lauroyl residue and LpxM a myristoyl residue to the distal 

glucosamine unit. Figure adapted from Wang and Quinn (2010). 
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Table 4. 1: Information on nine enzymes required for the biosynthesis of Kdo2-lipid 

A in Escherichia coli. Adapted from Wang and Quinn (2010). 

Enzyme Function Substrate Donor Reference 

LpxA Acyltransferase UDP-GlcNac R-3-

hydroxymyristoyl 

ACP 

Williams 

and Raetz 

(2007) 

LpxC Deacetylase UDP-3-O-(acyl) 

GlcNac 

None Barb et al. 

(2007) 

LpxD Acyltransferase UDP-3-O-(acyl)-

GlcN 

R-3-

hydroxymyristoyl 

ACP 

Buetow et al. 

(2007) 

LpxH Pyrophosphatase UDP-2,3-diacyl-

GlcN 

None Babinski et 

al. (2002) 

LpxB Disaccharide 

synthase 

UDP-2,3-diacyl-

GlcN; Lipid X 

None Crowell et 

al. (1987; 

1986) 

LpxK 4’-kinase Disaccharide  

1-phosphate 

None Garrett et al. 

(1998; 1997) 

KdtA Kdo transferase Lipid IVA CMP-Kdo Brozek et al. 

(1989) 

LpxL Acyltransferase Kdo2-lipid IVA Lauroyl ACP Brozek and 

Raetz (1990) 

LpxM Acyltransferase Kdo2-penta-lipid A Myristoyl ACP Brozek and 

Raetz (1990) 

 

Membrane proteins PgaP, PagL, LpxR and LpxO have been reported to modify the 

fatty acyl chain region of LPS. PagP is a palmitoyl transferase which locates in the 

outer membrane and transfers a palmitate from glycerophospholipids to the β2-

position of lipid A resulting in a hepta-acylated structure (Ahn et al., 2004). PagL is 

a lipase that removes the 3-O-linked acyl chain of lipid A but plays no role in 

antimicrobial peptide resistance (Kawasaki et al., 2004). The negative charge of 

Lipid A allows the binding of positively charged cAMPs produced by the immune 

system. To evade the attack by the immune system some bacterial pathogens have 

evolved less negatively charged variations of lipid A by removing or decorating the 

phosphate groups at the 1- and 4’-positions. The decoration includes the addition of 

amine-containing residues such as α-L-Ara4N and phosphoethanolamine. The 

modifications result in resistance to cAMPs and are controlled by the PmrA-PmrB 

two-components system (Wang and Quinn, 2010; Wang et al., 2004). Another 

strategy that bacteria employ to decrease the surface negative charge is the addition 

of amino groups at 1- and 4’-phosphate of lipid A. EptA is necessary for addition of 

phosphoethanolamine to the 1-phosphate of lipid A (Lee et al., 2004). 
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Table 4. 2: Enzymes involved in the structural modification of LPS in Gram-

negative bacteria. Adapted from Wang and Quinn (2010). 

Enzyme Function Reference 

LpxE Remove the phosphate group from the 1-

position of lipid A 

Wang et al. (2004) 

LpxF Remove the phosphate group from the 4’-

position of lipid A 

Wang et al. (2006) 

LpxO Add an OH group to the αβ3’-position of lipid 

A 

Gibbons et al. (2008; 

2000) 

Arnt Transfer the L-Ara4N unit to lipid A Trent et al. (2001) 

LpxR Remove the 3’-acyloxyacyl moiety of lipid A Reynolds et al. (2006) 

PagL Remove the 3-O-linked acyl chain of lipid A Rutten et al. (2006) 

PagP Transfer a palmitate to the β2-position of 

lipid A 

Bishop (2008); Hwang 

et al. (2004) 

LpxXL Add a very long fatty acid chain to the β2’-

position of lipid A 

Haag et al. (2009) 

LpxT Transfer a phosphate group to the 1-

phosphate of lipid A 

Touzé et al. (2008) 

LpxQ Oxidize the proximal glucosamine of lipid A 

to form an aminogluconate unit 

Que-Gewirth et al. 

(2003) 

LmtA Catalyze the methylation of 1-phosphate of 

lipid A 

Boon Hinckley et al. 

(2005) 

RgtA Add a GalA moiety to the distal unit of Kdo Kanjilal-Kolar et al. 

(2006) 

RgtB Add a GalA moiety to the distal unit of Kdo Kanjilal-Kolar et al. 

(2006) 

RgtC Add a GalA moiety to the mannose residue of 

the core oligosaccharide of LPS 

Kanjilal-Kolar et al. 

(2006)  

EptA Add a phosphoethanolamine to 1-position of 

lipid A 

Lee et al. (2004) 

EptB Add a pEtN moiety to the distal unit of Kdo  Reynolds et al. (2005) 

Lipopolysaccharides have been shown to be among the most powerful classes of 

immunostimulators known to physiologically function as specific indicators for 

infection by Gram-negative bacteria of diverse eukaryotes ranging from man to 

insect. In general, the lipid A region represents the primary immunoreactive center 

of LPS due to the specific and often highly sensitive recognition of this bacterial 

lipid structure by numerous cellular and humoral components of innate immunity 

(Hoffmann et al., 1999; Janeway and Medzhitov, 2002; Mackay et al., 2000). 

Lipopolysaccharides commonly induce a broad spectrum of biological effects in 
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various eukaryotic organisms. The primary target cells of LPS in mammalian 

species are the professional phagocytes of innate or natural immunity, i.e. 

peripheral monocytes, tissue macrophages and neutrophils, which constitutively 

express the membrane-bound form of the CD14 antigen as well as TLR4 (Haziot et 

al., 1988; Kitchens, 2000; Muzio et al., 1998, 2000; Zhang et al., 1999a). 

Lipopolysaccharide stimulation of mammalian cells occurs through a series of 

interactions with several proteins including the LPS binding protein (LBP), CD14, 

MD-2 and TLR4 (Figure 4. 1)(Gioannini and Weiss, 2007; Miyake, 2007). LBP is a 

soluble shuttle protein which directly binds to LPS and facilitates the association 

between LPS and CD14 (Tobias et al., 1986; Wright et al., 1989). CD14 is a 

glycosylphosphatidylinositol-anchored protein, which also exists in a soluble form. 

CD14 facilitates the transfer of LPS to the TLR4/MD-2 receptor complex and 

modulates LPS recognition (Wright et al., 1990). MD-2 is a soluble protein that non-

covalently associates with TLR4 but that can directly form a complex with LPS in 

the absence of TLR4 (Gioannini and Weiss, 2007; Nagai et al., 2002; Shimazu et al., 

1999). 

Upon LPS recognition, TLR4 undergoes oligomerization and recruits its 

downstream adaptors through interactions with the TIR domains. TIR domains 

contain three highly conserved regions, which mediate protein-protein interactions 

between the TLRs and signal transduction adaptor proteins. The TIR domain of 

TLR4 is critical for signal transduction, because a single point mutation in the TIR 

domain can abolish the response to LPS (Poltorak et al., 1998). In total, there are 

five TIR domain-containing adaptor proteins: MyD88, TIRAP, TRIF, TRAM and 

SARM (O’Neill and Bowie, 2007). TLR4 signaling has been divided into MyD88-

dependent and MyD88-independent (TRIF-dependent) pathways (Figure 4. 2A and 

B). The MyD88-dependent pathway was shown to be responsible for pro-

inflammatory cytokine expression, while the MyD88-independent pathway 

mediates the induction of type I interferons and interferon-inducible genes (Lu et 

al., 2008).  

In addition to the TIR domain, MyD88 also contains a death domain (DD), which 

can recruit other DD-containing molecules through homotypic interactions. Upon 

LPS stimulation, MyD88 recruits and activates a DD-containing kinase, IL1 

receptor associated kinase-4 (IRAK-4) (Suzuki et al., 2002). IRAK-4 also plays a role 

in the mRNA stability of certain cytokines and chemokines, such as TNFα (Kim et 

al., 2007). 

Another adaptor protein TRAF6 (TNF receptor-associated factor 6), is critical for 

the MyD88-dependent pathway downstream of IRAK4 and IRAK1 (Figure 4. 2A). 

TRAF6 forms a complex with UBC13 (ubiquitin-conjugating enzyme 13) and 

UEV1A (ubiquitin-conjugating enzyme E2 variant 1 isoform A), and activates TAK1 

(transforming growth factor-β-activated kinase) (Gohda et al., 2004; Lomaga et al., 
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1999). TAK1 then activates downstream IKK (IκB kinase) and MAPK (mitogen-

activated protein kinase) pathways (Sato et al., 2005). IKKα, IKKβ and IKKγ form 

a complex and phosphorylate IκB proteins. This phosphorylation leads to the 

degradation of IκB proteins and the subsequent translocation of NF-κB, which 

controls the expression of pro-inflammatory cytokines, in addition to other immune 

related genes (Lu et al., 2008).  

Figure 4. 2: Overview of LPS/TLR4 signaling. LPS recognition is facilitated by LBP and 

CD14, and is mediated by TLR4/MD-2 receptor complex. LPS/TLR4 signaling can be 

separated into (A) MyD88-dependent and (B) MyD88-independent pathways. A| MyD88-

dependent pathway. MyD88 activates IRAKs/TRAF6 as well as the transcription factors 

NF-κB and AP-1. These transcription factors induce expression of pro-inflammatory 

cytokines. B| MyD88-independent pathway. TRIF signals the induction of Type I 

interferons by recruiting TRAF3 and RIP1 to activate transcription factor IRF3, as well as 

NF-κB and AP-1. Figure adapted from Lu et al. (2008). 
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TRIF is an important TIR-containing adaptor protein that mediated MyD88-

independent signaling (Figure 4. 2B). The C-terminal region of TRIF, which 

contains a Rip homotypic interaction motif (RHIM), mediates the interaction with 

RIP1 (receptor-interacting protein 1). As a serine/threonine kinase, RIP1 was 

initially identified as an important component of TNFα-mediated NF-κB activation 

(Meylan et al., 2004). TRIF recruits TRAF3 to activate IRF3. TRAF3 can associate 

with TANK (TRAF family member-associated NF-κB activator), TBK1 (TANK 

binding kinase 1) and IKKi to mediate downstream signaling (Guo and Cheng, 

2007; Oganesyan et al., 2006). TBK1 and IKKi are important for the dimerization 

and translocation of IRF3 (Fitzgerald et al., 2003; Hemmi et al., 2004). IRF3, 

together with NF-κB, activates the transcription of target genes, such as type I 

interferons (Honda and Taniguchi, 2006; Moynagh, 2005). The induction of type I 

interferons and interferon-inducible genes are important for anti-viral and anti-

bacterial responses (Bowie and Haga, 2005; Perry et al., 2005). 

Endotoxins liberated by Gram-negative bacteria are frequent contaminants of 

protein solutions derived from bioprocesses. Due to their toxicity in vivo and in vitro, 

their removal is essential for safe parenteral administration (Petsch and Anspach, 

2000). The threshold level of endotoxins for intravenous applications is set to five 

endotoxin units (EU) per kg body weight per hour by all pharmacopoeias (Council 

of Europe., 1997). The term EU describes the biological activity of an endotoxin. As 

a rule of thumb, one EU corresponds to 100 pg of endotoxins; the amount present in 

105 bacteria. Meeting this threshold level, knowing that a single E. coli contains 

about two million LPS molecules per cell, has always been a challenge in biological 

research and pharmaceutical industry (Berthold and Walter, 1994; de Oliveira 

Magalhães et al., 2007). 

Common purification strategies that include several chromatographic steps, such 

as ion exchange, hydrophobic interaction chromatography and gel filtration, may 

provide sufficient endotoxin clearance. Generally, high endotoxin concentrations 

can be reduced to about 100 EU/ml without special treatment (Petsch and Anspach, 

2000). The most secure way to avoid any microbial contamination and with it the 

release of endotoxins is absolute sterility during the production and downstream 

processes. Yet, if a decontamination method is used, it must ensure a high recovery 

of the target product. At present, three endotoxin removal strategies are available 

for the removal of LPS from protein samples, i.e., ultrafiltration, two-phase 

extraction, and adsorption (such as anion-exchange chromatography and affinity 

adsorption) (Petsch and Anspach, 2000). 

. Gel filtration chromatography reveals that more than 80 % of the 

endotoxin activity of a protein-free solution elutes as aggregates with the void 

volume (Morrison and Leive, 1975). Ultrafiltration can also be used to remove 
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endotoxins from product solutions if the products are low of molecular weight 

(Petsch and Anspach, 2000). 

. Through addition of detergents, an improvement of 

chromatographic protocols is possible (Karplus et al., 1987). Above the critical 

micellar concentration (CMC) of detergents, endotoxins are accommodated in the 

micellar structure by non-polar interactions of the alkyl chains of lipid A and the 

detergent and are consequently separated from the water phase (Brandenburg and 

Wiese, 2004; Israelachvili, 2011). Detergents of the Triton series show a miscibility 

gap in aqueous solutions. Above a critical temperature, the so-called cloud point, 

micelles aggregate to droplets with very low water content, as such forming a new 

phase. Endotoxins remain in the detergent-rich phase. Through centrifugation or 

further increase in temperature the two phases separate with the detergent-rich 

phase being the bottom phase (Aida and Pabst, 1990; Bordier, 1981). If necessary, 

this process is repeated until the remaining endotoxin concentration is below the 

threshold limit. The cloud point of Triton X-114 is at 22 °C, which is advantageous 

when purifying proteins. It requires mixing of the endotoxin-containing protein 

solution in the cold (usually at 4 °C) and allows separation of the two phases at T > 

22 °C. In contrast, the cloud point for Triton X-100 is at 75°C, which is not 

acceptable for most proteins (Petsch and Anspach, 2000). 

Most frequently, adsorption techniques are employed for the 

removal of endotoxins from protein solutions. In principle, non-selective adsorption 

on activated carbon or other adsorber materials is possible (Nagaki et al., 1991). 

Since endotoxins are negatively charged, anion exchangers are employed for their 

adsorption from protein-free solutions, such as DEAE chromatographic matrices or 

DEAE membranes or matrices functionalized with quaternary amino groups (Gerba 

and Hou, 1985; Hou and Zaniewski, 1990a, 1990b; Neidhardt et al., 1992). 

Clearance factors of more than five orders of magnitude can be obtained. According 

to the concept of affinity interactions, clearance by an endotoxin-selective affinity 

sorbent should be possible and should guarantee a protein recovery of almost 100% 

(Petsch and Anspach, 2000). 

Most types of lipid A molecules are detected at picomolar levels by an ancient 

receptor of the innate immune system present on macrophages and endothelial cells 

of animals (Raetz and Whitfield, 2002). Indeed, cells which are highly sensitive to 

LPS or lipid A have been detected in the hemolymph system of the American 

horseshoe crab Limulus polyphemus, and its Asian variant Tvoluit tridendatus, 

which have existed more than 400 million years.  

The horseshoe crab hemolymph contains mainly one type of blood cells called 

amoebocytes, which are extremely sensitive to LPS. During a Gram-negative 

infection, the amoebocytes release granular components into the plasma to 

participate in self-defense via blood coagulation, which incapacitates the invading 



61 

 

microbe (Iwanaga and Lee, 2005). Lipopolysaccharides from Gram-negative 

bacteria induces the amoebocytes to degranulate, thus initiating the blood 

coagulation cascade (Armstrong and Rickles, 1982). This cascade is based on three 

serine proteases zymogens, Factor C, Factor B, proclotting enzyme and one clottable 

protein, coagulogen (Figure 4. 3) (Muta and Iwanaga, 1996). Factor C, at the first 

step of the coagulation pathway, is sensitive to LPS and is a unique LPS-binding 

protein found only in the horseshoe crab. In the presence of LPS, the Factor C serine 

protease zymogen is automatically activated to an active form, which activates the 

proenzyme Factor B. This in turn activates proclotting to active clotting enzyme. 

Clotting enzyme then converts coagulogen into a coagulin clot, which traps the 

invading bacteria (Ding and Ho, 2010). 

This evolutionary ancient system, originally described by Levin and Bang in 1964 

(Levin and Bang, 1964), provided the basis for the development of the limulus 

amoebocyte lysate (LAL) assay, which today is a standard procedure for the 

detection of LPS or free lipid A in diverse settings (Hurley, 1995; Levin, 1988; Levin 

and Bang, 1964). 

After two to three decades of conventional pyrogen testing using the blood extract 

of the horseshoe crab, and the problems associated with LAL, Factor C was 

recombinantly expressed (Rotundicauda, 1998). This yielded an enzymatically 

active recombinant Factor C (rFC) that is activated by trace levels of LPS, with a 

remarkable sensitivity of 0.001 EU/ml. Furthermore, being capable of binding both 

free and bound LPS/lipid A with high affinity, the rFC has other potential 

applications, such as the removal of LPS from contaminated samples (Ding and Ho, 

1999). rFC is a proenzyme until it encounters trace levels of endotoxin where it 

unequivocally exhibits full enzymatic activity, hence, acting as a very sensitive and 

specific biosensor for endotoxin. The resulting activated rFC acts as a catalyst to 

hydrolyse a synthetic substrate to form a quantifiable, fluorimetric, product, which 

measures the level of endotoxins. A comparison of rFC with commercial LAL, under 

the same assay conditions, showed that rFC has a lower background reading and a 

more sensitive response to endotoxin (Ding and Ho, 2001). 
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Figure 4. 3: The coagulation cascade in the horseshoe crab amoebocyte lysate. In 

the presence of the endotoxin LPS, the Factor C serine protease zymogen is autocatalytically 

activated to an active form, Factor C’, which activates the proenzyme Factor B into Factor 

B’. This in turn activates the proclotting to the active clotting enzyme. The clotting enzyme 

then converts coagulogen into a coagulin gel clot, which traps the invading bacteria. Figure 

adapted from Ding and Ho (2010). 

 

The disadvantage of the LAL assay, even when rFC is used, is that the a part of the 

sample is used as a whole. This means that certain rFC-inhibiting or rFC-activating 

components may be present, which could lead to either a false negative or false 

positive result. For this reason an alternative method has been developed, called 

EndoLISA. This method uses phage-derived receptor proteins, exhibiting high 

affinity and specificity for the conserved core region of LPS, that are immobilized 

on a microplate. This enables, after binding of the sample LPS to the microplate, to 

wash the original sample matrix off, thereby eliminating potentially interfering 

components. Subsequently the LPS is detected by factor C (Grallert et al., 2011).  
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Viruses are a group of biological entities with a genome consisting of either DNA or 

RNA and encapsulated in a protein coat (capsid), and sometimes even with a lipid 

membrane. The species concept has been applied to viruses and a viral species is 

defined as a polythetic class of viruses that constitutes a replicating lineage and 

occupies a particular ecological niche (van Regenmortel, 1992).  

Bacterial viruses were discovered twice, by Twort in 1915 and by d’Herelle in 1917 

(Summers, 2011, 2016). There are constant debates on whether the discovery of 

bacterial viruses should be attributed to Félix d’Herelle or to Frederick William 

Twort (Duckworth, 1976). d’Herelle coined the name ‘bacteriophages’ for these 

infectious agents lysing bacteria, which literally means ‘eaters of bacteria’. As it 

often happens in science, it is not enough to discover something new. It is equally 

important to see the possible applications of a new discovery. Félix d’Herelle clearly 

recognized the viral nature of his agent and devoted the rest of his scientific carreer 

to it. He also pioneered several principle lines of bacteriophage research by 

introducing phage treatment of bacterial infections, and by hinting that 

bacteriophages are suitable for research on the nature of the gene (Summers, 2016). 

It is therefore that he can be seen as the true ‘phage father’. Research on 

(bacterio)phages played a central role in deciphering molecular principles of life 

such as the finding that DNA is the hereditary molecule and led to the development 

of an entirely new science, molecular biology (Duckworth, 1987). Right after their 

discovery, phages were also used in an early form of biotechnology to fight bacterial 

pathogens (Levin and Bull, 1996). In Western Europe and the United states, phage 

therapy was abandoned due to ambiguous results and the discovery of antibiotics 

(Sulakvelidze, 2001). 

Bacteriophages occur everywhere in the biosphere and have colonised even such 

forbidding habitats as volcanic hotsprings. Their main habitats are the oceans and 

topsoils (Ackermann, 2011). Phages have double-stranded (ds) or single-stranded 

(ss)DNA or RNA. Besides tailed phages, also cubic, spindle, lemon-shaped, 

filamentous, pleomorphic and even ‘hairy’ phages have been described (Ackermann 

and DuBow, 1987; Børsheim, 1993; Bradley, 1967; Buttimer et al., 2017; Demuth et 

al., 1993; Frank and Moebus, 1987; Proctor, 1997). 

Tailed phages constitute the order Caudovirales with three families, characterized 

by contractile (Myoviridae), long and noncontractile (Siphoviridae), or short tails 

(Podoviridae). Caudovirales represent over 96 % of known phages (Ackermann, 

2011). A typical Caudovirales phage has a head and a tail, hold together by a 

connector. 

Several steps during the life cycle of a prokaryotic virus can be distinguished that 

are common to all viruses: adsorption, separation of nucleic acids from protein coat, 
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expression and replication of the nucleic acids, virion assembly, release, and 

transmission (Weinbauer, 2004). Phage adsorption occurs in two steps. The first 

step of adsorption to a defined cell surface structure is reversible. During the second 

step, an irreversible binding between a phage structure (e.g. tail fibers) and the 

receptor on the host bacterium is accomplished. After adsorption, the cell wall is 

made penetrable, using tail associated lysins, and the nucleic acid is transported 

into the cell, whereas the capsid remains outside the cell. Following injection, the 

genetic material is either integrated into the host genome or stays in the cytoplasm. 

Phages can show several life cycles, i.e. lytic, lysogenic, chronic infection or 

pseudolysogenic (Figure 5. 1)(Ackermann and DuBow, 1987). 

. In the lytic life cycle, the phage genome exists within the host but 

outside the host genome. Lytic or virulent phages repeat a cycle in which self-

proliferation is synchronous with the destruction of bacteria (i.e. the lytic cycle or 

the virulent infection; Matsuzaki et al., 2005). In this stage, gene expression, 

genome replication and morphogenesis occurs, i.e. the formation of the genomes and 

the capsids (and tails) and the packing of the genomes in the capsids (Ackermann, 

1998).  

. In the lysogenic cycle, the genome of the (temperate or 

lysogenic) phage is integrated in the chromosome of the host (prophage) and 

replicates along with the host (now called a lysogen), until the lytic cycle is induced 

(Ackermann, 1998; Weinbauer, 2004).  

. Chronically infecting phages produce progeny that are constantly 

released from the host cell by budding or extrusion without lysis of the host cell 

(Weinbauer, 2004).

. Pseudolysogeny and carrier-state are widely used as 

synonyms. Pseudolysogeny can be defined as the stage of stalled development of a 

bacteriophage in a host cell without either multiplication of the phage genome (as 

in lytic development) or its replication synchronized with the cell cycle and stable 

maintenance in the cell line (as in lysogenization), which proceeds with no viral 

genome degradation, thus allowing the subsequent restart of virus development 

(Łoś and Węgrzyn, 2012). This phenomenon is usually caused by unfavorable 

growth conditions for the host cell (such as starvation) and is terminated with 

initiation of either true lysogenization or the lytic cycle when growth conditions 

improve (Paul and Jiang, 2001). Pseudolysogeny has been known for tens of years; 

however, its role has often been underestimated. Currently, it is being considered 

more often as an important aspect of phage-host interactions. Pseudolysogeny 

seems to play an important role in phage survival, as bacteria in a natural 

environment are often starved or their growth is very slow. This phenomenon can 

be an important aspect of phage-dependent bacterial mortality and may influence 

the virulence of some bacterial strains (Łoś and Węgrzyn, 2012). 
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Figure 5. 1: Types of phage life cycles. Due to spontaneous mutations bacteria can 

become resistant to the phage infection, which the phage can overcome by slight adaptations 

in its tail fibers. After phage adsorption, phage DNA is injected into the bacterium 

(represented as a coiled molecule). This can become integrated into the host chromosome as 

a prophage in lysogeny. By the process of induction, the prophage is excised, and can go into 

the lytic phage replication. In pseudolysogeny, the host cell can mutate to an adhesion-

impaired or deficient state, whereby collisions result in a low success rate of infection. 

Another type of pseudolysogeny, termed carrier state, can occur when the prophage does not 

integrate but is maintained as a plasmid. Both types of pseudolysogeny result in a high 

abundance of both phages and host cells simultaneously. When phages continuously produce 

progeny phages through budding or extrusion without lysis of the host cell, is a process called 

chronic infection. Adapted from Weinbauer (2004). 

However, the carrier state is more strictly used for bacteria with a plasmid-like 

prophage. Mechanisms for establishing the carrier state include a reduced success 

rate of infection conferred by limited available receptors or by enzymatic loss of 
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receptors or superinfection immunity of a temperate phage (Barksdale and Arden, 

1974).  

Bacterial cells and their viral predators (phages) are locked in a constant battle. In 

order to proliferate in phage-rich environments, bacteria have evolved an 

impressive arsenal of defense mechanisms, and in response, phages have evolved 

counter-strategies to evade these antiviral systems (Samson et al., 2013). Bacterial 

antiphage systems include the inhibition of phage attachment to cell surface 

receptors, cleavage of the invading phage genome and even the induction of an 

altruistic cell suicide to abort phage infection. However, despite this arsenal, a large 

proportion of bacteria succumb to phage infection. Owing to their genomic plasticity 

and rapid multiplication rates, phages have evolved equally diversified strategies 

to thrive in apparently well-protected bacterial cells (Labrie et al., 2010).  

Adsorption of phages to host receptors is the initial step of infection and, perhaps, 

one of the most intricate events, as phages must recognize a particular host-specific 

cell component. 

. To efficiently attach to the surface of its bacterial host, a 

phage targets cell surface receptors. Given that adsorption is often intricately 

coupled to the injection of phage DNA, and that both of these interdependent steps 

must be achieved to enable intracellular phage replication, the specific interaction 

between the phage receptor-binding protein and its bacterial cell surface receptor is 

one of the primary parameters defining phage infection kinetics (Bertin et al., 2011; 

Moldovan et al., 2007). To limit phage propagation, bacteria can adapt the structure 

of their cell surface receptors or their three-dimensional conformation. S. aureus, 

for example, produces a cell-wall-anchored virulence factor, immunoglobulin G-

binding protein A, which binds to the Fc fragment of immunoglobulin G (Foster, 

2005). It has been shown that phage adsorption improves when bacteria produce 

less protein A, indicating that this protein masks the phage receptor (Nordström 

and Forsgren, 1974). On the other hand, tailed phages can evolve to modify their 

receptor-binding proteins to acquire novel receptor tropism (Samson et al., 2013). 

Furthermore, some lysogenic phages, e.g. P. aeruginosa phage D3, is able to alter 

the LPS structure of the P. aeruginosa infected bacteria. This protects the lysogen 

from being infected and lysed by the same phage (Kropinski, 2000). 

. The production of structured extracellular 

polymers can promote bacterial survival in various ecological niches by protecting 

the bacteria against harsh environmental conditions and, in some cases, providing 

a physical barrier between phages and their receptors. Some phages have also 

evolved to specifically recognize these extracellular polymers and even to degrade 

them (Stummeyer et al., 2006; Sutherland, 1995, 1999; Sutherland et al., 2004). 
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Polysaccharide-degrading enzymes can be classified into two groups: the lyases and 

the hydrolases. The lyases cleave the linkage between the monosaccharides and the 

C4 of uronic acid and introduce a double bond between the C4 and C5 of uronic acid 

(Sutherland, 1999). The hydrolases break the glycosyl-oxygen bond in the glycoside 

linkage (Sutherland, 1995). These viral enzymes are found either bound to the 

phage structure (connected to the receptor-binding complex) or as free soluble 

enzymes from lysed bacterial cells (Sutherland, 1995). 

. Molecules that are naturally present in the 

bacterial environment can bind specifically to the phage receptors, rendering these 

receptors unavailable for phages (Labrie et al., 2010). For example, E. coli FhuA is 

an iron transporter, but also a port of entry for phage T1 and T5. The anti-microbial 

molecule microcin J25, produced under conditions of nutrient depletions and plays 

a role in the growth inhibition of phylogenetically related strains, also uses FhuA 

as a receptor and can outcompete phage T5 for binding to FhuA (Destoumieux-

Garzón et al., 2005). 

Superinfection exclusion (Sie) systems are proteins that block the entry of phage 

DNA into the host cells, thereby conferring immunity against specific phages. These 

proteins are predicted to be membrane anchored or associated with membrane 

components. The genes encoding these proteins are often found in prophages, 

suggesting that in many cases Sie systems are important for phage-phage 

competition rather than phage-host interactions.  

Coliphage T4, a well-characterized virulent phage, has two Sie systems encoded by 

imm and sp. These systems cause rapid inhibition of DNA injection into cells, 

preventing subsequent infection by other T-even-like phages. Imm prevents the 

transfer of phage DNA into the bacterial cytoplasm by changing the conformation 

of the injection site. Imm has two non-conventional transmembrane domains and is 

predicted to be localized to the membrane, but Imm alone does not confer complete 

phage immunity and must be associated with another membrane protein to exert 

its function and achieve complete exclusion (Lu et al., 1993). The membrane protein 

Sp inhibits the activity of the T4 lysozyme, thereby preventing the degradation of 

peptidoglycan and the subsequent entry of phage DNA. The T4 lysozyme is found 

at the extremity of the tail and creates holes in the cell wall, facilitating the injection 

of phage DNA into the cell (Lu and Henning, 1994; Moak and Molineux, 2000). 

Many bacterial genera possess restriction-

modification (R-M) systems. Their activities are due to several heterogeneous 

proteins that have been classified into at least four groups (type I – type IV). The 

principal function of the R-M system is thought to be protecting the cell against 

invading DNA, including viruses (Pingoud et al., 2005; Robinson et al., 2001). 
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When unmethylated phage DNA enters a cell harboring a R-M system, it will be 

either recognized by the restriction enzyme and rapidly degraded or, to a lesser 

extent, methylated by a bacterial methylase to avoid restriction, therefore leading 

to the initiation of the phage’s lytic cycle (Krüger and Bickle, 1983). 

. The clustered regulatory interspaced short palindromic 

repeats (CRISPRs) and the CRISPR-associated (cas) genes provide bacteria and 

archaea with adaptive immunity against phages and plasmids. The mechanisms of 

action of CRISPR-Cas systems can be divided in three stages: acquisition, 

expression and maturation, and interference (Amitai and Sorek, 2016). The 

acquisition stage contains the recruitment of new spacers. In this stage the Cas 

proteins identify the target (phage) DNA and acquire a new spacer from their 

targets. This spacer sequence is integrated into the CRISPR array and forms the 

immunological memory, which reflects the chronology of past infections (van der 

Oost et al., 2014). The expression stage contains the transcription of the CRISPR 

array and subsequent processing of the precursor transcript into smaller CRISPR 

RNAs (crRNAs). The crRNA-directed cleavage of invading DNA by Cas nucleases 

forms the interference stage (Amitai and Sorek, 2016; van der Oost et al., 2014; 

Sampson et al., 2013). 

Bacteria carry a wide range of heterologous proteins that provide resistance 

through the abortion of phage infection. These abortive infection (Abi) systems also 

lead to the death of the infected cell, which is not the case for the antiphage systems 

described above. Typically, these Abi systems target a crucial step of phage 

multiplication such as replication, transcription or translation (Labrie et al., 2010). 

Abortive infection results in the destruction of the cell before phages can replicate. 

This suicidal sacrifice protects the cells of the same population from infection by 

phages (Forde and Fitzgerald, 1999; Weinbauer, 2004) 

With the rising prevalence of antibiotic-resistant bacteria and the serious concerns 

raised by the World Health Organization (WHO), new approaches to deal with 

bacterial infections have become an urgent need (Levy and Marshall, 2004). Phage 

therapy is the application of bacteria-specific viruses to combat bacterial infections 

(Summers, 2001).  

The advantages of phage therapy over the use of chemical antibiotics can be framed 

in terms of the phage properties: i.e. the lytic activity of the phages, auto-dosing, 

low inherent toxicity, minimal disruption of normal microflora, narrower potential 

for inducing resistance (and if resistance against a specific phage is observed, new 

phages can be easily isolated), lack of cross-resistance with antibiotics, rapid 

discovery, formulation and application versatility and possibly biofilm clearance 

(Loc-Carrillo and Abedon, 2011). Auto–dosing phages are capable of increasing their 
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number during the bacterial-killing process and disappear after the target is 

cleared. The term auto dosing refers to the fact that phages themselves contribute 

to establishing the phage dose (Carlton, 1999; Chan and Abedon, 2012; Skurnik and 

Strauch, 2006). Finally, phages, like antibiotics, can be versatile in terms of 

formulation development, such as being combined with certain antibiotics (Alisky 

et al., 1998; Kutter et al., 2010). They are also versatile in application form, as 

liquids, creams, impregnated into solids, in addition to being suitable for most 

routes of administration (Carlton, 1999; Kutateladze and Adamia, 2010; Kutter et 

al., 2010). Different phages can be mixed as cocktails to broaden their properties, 

typically resulting in a collectively greater antibacterial spectrum of activity and 

possibly limiting the risk of resistance development(Goodridge, 2010; Merabishvili 

et al., 2009). 

Phages as pharmaceuticals are protein-based, infectious biological agents that can 

potentially interact with the body’s immune system, can actively replicate, and can 

even evolve during manufacture or use, but are far from unique in these regards. 

Many protein-based pharmaceuticals can stimulate the immune system, e.g., 

antibiotics that lyse bacteria will release bacterial toxins in situ (Loc-Carrillo and 

Abedon, 2011). The use of phages as drugs may differ dramatically from 

pharmaceuticals/antibiotics due to differences in the phage pharmacokinetics 

(Payne and Jansen, 2003). Phage therapy is often complicated by additional factors 

and as such possess unique pharmacokinetics and pharmacodynamics that remain 

poorly understood (Cooper et al., 2016). The pharmacokinetics of phages are 

complicated due to the self-replicating nature of phages. The in vitro growth data 

for a phage cannot be directly applied to the in vivo situation, and the in vivo data 

for one phage cannot be transferred to another phage (Skurnik and Strauch, 2006). 

Critical parameters that affect phage therapy are the phage adsorption rate, burst 

size, latent period and initial phage dose, and also density-dependent thresholds 

and associated critical times should be considered (Payne and Jansen, 2001). 

Another parameter is the clearance rate of the phage particles from the body fluids 

by the mononuclear phagocyte system.  

Lytic bacteriophages targeting individual bacterial pathogens have therapeutic 

potential as an alternative or adjunct to antibiotics. Phage therapy has been used 

for decades, but clinical trials in this field are rare, leaving many questions 

unanswered as to its effectiveness for many infectious diseases (Reindel and Fiore, 

2017). As a consequence, phage therapy is not used or accepted in most parts of the 

world (Parracho et al., 2012). The therapeutic use of phages started in Paris in 1919 

when d’Herelle used oral phage preparations to treat bacterial dysentery (Kutter 

and Sulakvelidze, 2004). Patients treated with a single dose of phage preparation 

started to recover within 24 h of treatment (Abedon et al., 2011; Sulakvelidze, 2001). 

Not long after this, Bruynoghe published, together with his student Maisin, on the 

first use of phages in a phage therapeutic context (Lavigne and Robben, 2012). 
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In order to achieve clinical use, rigorous trials to validate safety and efficacy need 

to be established. The regulatory foundation for clinical studies and clinical trials 

in humans is to ethically establish the potential toxicity, efficacy and side effects of 

new drugs and to prioritize the health of the participants over the generation of 

results. It is equally important that sufficient data support the claim of potential 

benefits and that these benefits outweigh anticipated risk. Clinical studies and 

trials should be carried out in a scientifically correct and transparent manner, be 

designed to result in trustworthy data and assess the pharmacological properties of 

the new drug in a stepwise process adapted to available information (Cooper et al., 

2016). Since bacteriophages replicate only in the presence of their host bacteria, 

first-in-human data with phages in healthy participants may not address safety 

concerns that are unique to phage-bacteria interaction in the setting of active 

infection, such as tolerability of therapy, immune response to therapy and endotoxin 

release. Assessment of phage pharmacokinetics and pharmacodynamics in 

otherwise healthy patients who are colonized by target strain(s) may provide some 

insights, such as the impact on the microbiome, but may still not predict what 

happens in the setting of higher bacterial burden associated with infection (Reindel 

and Fiore, 2017). The interpretation of pharmacokinetic data may also be affected 

by immune clearance of the bacteriophage (Dąbrowska et al., 2005; Merril et al., 

1996).  

Animal studies have generally supported the utility and safety of bacteriophage 

therapy against bacterial pathogens, such as P. aeruginosa (McVay et al., 2007; 

Soothill, 1994), S. aureus (Wills et al., 2005), vancomycin-resistant Enterococcus 

faecium (Biswas et al., 2002) and Clostridium difficile (Ramesh et al., 1999). Such 

research has culminated in preclinical and veterinary trials, such as the application 

of a phage cocktail to treat P. aeruginosa otitis in dogs (Hawkins et al., 2010).  

The available phage therapy trials have primarily addressed safety issues. No 

adverse events have been reported so far. Intralytix has performed a clinical trial 

in Texas on 42 patients with chronic venous leg ulcers. These patients were treated 

for twelve weeks with either a saline control or a bacteriophage cocktail against P. 

aeruginosa, S. aureus and E. coli. Although this study was not designed as an 

efficacy trial, no significant differences were determined between the test and 

control groups for frequency of healing, but no adverse events were attributed to the 

study product (Rhoads et al., 2009). 

The use of phages against P. aeruginosa has been examined in other clinical trials 

as well. Wright et al. (2009) reported the efficacy and safety of a therapeutic phage 

preparation (Biophage-PA). The study contained twelve patients with antibiotic-

resistant P. aeruginosa chronic otitis who were treated with a single dose of phage 

preparation and followed up at 7, 21 and 42 days after treatment. The treated 

patients showed significant clinical improvements compared to the placebo group, 

although both groups still had P. aeruginosa at day 42 (Wright et al., 2009). 
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Another clinical trial was conducted in a Belgian Military Hospital on burn wound 

patients. Nine patients with burn wounds infected with multidrug-resistant P. 

aeruginosa or S. aureus were treated with a sterile-filtered cocktail of well-

characterized phages, purified of endotoxin and lacking cytotoxicity (Merabishvili 

et al., 2009). Although only one treatment was carried out and the bacterial load 

remained unchanged in the patients, the authors were able to overcome important 

psychological hurdles to the use of phage therapy. The authors encountered 

numerous pitfalls, such as that the natural phage isolates were required to go 

through safety checks for genetically modified organisms, insurance companies put 

the patients in a higher risk class, and reviewers asked for conventional 

pharmaceutical tests of the phage cocktail, which would have cost millions of euros 

(Rose et al., 2014). The lack of adverse events observed in this pilot trial led to the 

establishment of a dedicated phage therapy center by the Belgian Army. 

Nevertheless, these small scale clinical trials have opened the debate discussing the 

regulatory frame that could fit the re-introduction of bacteriophage therapy without 

losing safety, quality and efficacy aspects (Debarbieux et al., 2016; Verbeken and 

Pirnay, 2015; Verbeken et al., 2014a, 2014b, 2016). 

Although several safety studies have been conducted, not all of them take into 

account or report the removal of endotoxins as a crucial step in the preparation of 

the therapeutic phages. Endotoxin removal strategies used during these trials 

range from the use of specific endotoxin removal kits [e.g. Detoxi-endotoxin removal 

gel (Pierce) and Endotrap Blue (Hyglos)] (McVay et al., 2007; Merabishvili et al., 

2009), CsCl ultracentrifugation (Biswas et al., 2002) or the use of custom made 0.07 

µm filters (Soothill, 1994). 

A large scale clinical trial using burn wound patients was setup to further evaluate 

the efficacy of phage therapy, Phagoburn. Phagoburn is a European Union (EU) 

funded project to explore the use of phage therapy to treat burn wounds infected 

with bacteria. Phagoburn involves institutions and hospitals in Belgium, France 

and Switzerland (Matsuzaki et al., 2014). Pherecydes Pharma is leading this clinical 

trial and developed two topical phage treatments for the trial, aimed at E. coli and 

P. aeruginosa infections. Initially they planned to enroll 220 patients from eleven 

participating hospitals. Half of these would receive phages, and the other half silver 

sulfadiazine, an antibacterial cream routinely used on burn infections. However, in 

the six months after recruitment began in July 2015, Phagoburn found just 15 

eligible patients with P. aeruginosa infections and one with E. coli. Due to the 

difficulties in patient recruitment, the team decided to drop the E. coli study 

altogether, leaving just the intended 110-person P. aeruginosa study (Servick, 

2016). The difficulties that the Phagoburn trial currently is having, shows the long 

way phage therapy trials have to accomplish in order to become a fully implemented 

treatment.  

In order to achieve a therapeutic application and regulatory approval, a deep 

understanding of the phage-host interaction, phage diversity, phage dynamics and 
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genome function is crucial (Pires et al., 2015). Moreover, the interaction of phages 

with the mammalian immune system is understudied, although it might play an 

important role in the outcome of phage therapy. 

The human body is colonized by commensal microorganisms that encompass diverse 

phyla from the three domains of life: Eukarya, Archaea and Bacteria. Most of these 

microorganisms reside at body surfaces that are in direct contact with the 

environment, including the intestine, skin and upper respiratory tract. Research 

efforts over the past two decades have focused primarily on the bacterial component 

of the human microbiota and its associated genes (Duerkop and Hooper, 2013). 

These efforts have yielded a wealth of insight about the composition of human-

associated bacterial communities, how these resident bacteria interact with the 

immune system and how bacteria-immune system interactions are altered in 

disease (Hooper et al., 2012; Lozupone et al., 2012). Recently, it has become 

apparent that the microbiota of healthy humans also include important numbers of 

viruses, termed the virobiota (White et al., 2012). Metagenomic studies have 

revealed that the human microbiome includes many viral genes (the virome) 

(Handley et al., 2012; Minot et al., 2011; Reyes et al., 2010). About 90 % of the gut 

virome consist of phages (Scarpellini et al., 2015). 

Bacteria that inhabit the intestine and skin are generally regarded as stable 

residents that confer metabolic and/or immune benefits to their hosts (Turnbaugh 

et al., 2009). Therefore, it is reasonable to ask whether viruses can also be stably 

associated with healthy human tissues and whether they are able to influence the 

immune response. Phage populations in the intestine diversify as new members of 

the bacterial community are introduced, which suggests that phage diversity and 

bacterial diversity are linked (Breitbart et al., 2008). Although there is minimal 

variation of intestinal phage populations within individuals over time, there is 

substantial variation between individuals, even when those individuals have 

similar bacterial community structures (Minot et al., 2011; Reyes et al., 2010; 

Turnbaugh et al., 2009). It is thus interesting to consider whether phage infection 

of intestinal bacteria could alter community composition in ways that impact 

function of the immune system and influence the spread of pathogenic viruses 

(Duerkop and Hooper, 2013; Ivanov et al., 2008; Mazmanian et al., 2005). Part of 

how the microbial community influences host immunity is by limiting pathogen 

colonization through niche occupation and resource use. These indirect protective 

effects may extend to the viral members of the microbiota, of which there are an 

estimated 109 viruses per gram of faeces. Some of these viruses target mammalian 

cells but phages, which exclusively infect bacteria, make up the majority of this viral 

community (Cadwell, 2015).  
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Although humans are routinely exposed to phages on a daily basis, concerns persists 

over their immunogenicity and overall safety, presenting an additional stumbling 

block for the adoption of phage therapy (Cooper et al., 2016). 

A critical immunological barrier protecting all animals against invading bacterial 

pathogens but also supporting large communities of commensal microorganisms are 

the mucosal surfaces (e.g. human gut and respiratory tract)(Johansson et al., 2008; 

Linden et al., 2008). The mucus is predominantly composed of mucin glycoproteins, 

of which the amino acid backbone incorporates tandem repeats of exposed 

hydrophobic regions alternating with blocks bearing extensive O-linked 

glycosylation (Cone, 2009). By offering both structure and nutrients, mucus layers 

commonly support higher bacterial concentrations than the surrounding 

environments (Martens et al., 2008; Poulsen et al., 1994). Secretions produced by 

the underlying epithelium influence the composition of this microbiota (Hooper et 

al., 1999; Schluter and Foster, 2012; Sonnenburg, 2005). When invaded by 

pathogens, the epithelium may respond by increasing the production of 

antimicrobial agents, hypersecretion of mucin, or alteration of mucin glycosylation 

patterns to subvert microbial attachment (Gill et al., 2013; Jentoft, 1990; Schulz et 

al., 2007). Besides bacteria, phages are also present in these mucus layers. 

Moreover, phage concentrations are elevated in mucus relative to the surrounding 

environment (Barr et al., 2013).  

Phages in the human gut encode a population of hypervariable proteins (Minot et 

al., 2012). Approximately half of these phage proteins possess the C-type lectin fold 

previously found in the major tropism determinant protein at the tip of the 

Bordetella phage BPP-1 tail fibers (Medhekar and Miller, 2007). These Ig-like 

proteins, similar to antibodies and T-cell receptors, can accommodate large 

sequence variation (Halaby and Mornon, 1998). Ig-like domains are also displayed 

in the structural proteins of many phages (Fraser et al., 2006, 2007). That most of 

these displayed Ig-like domains are dispensable for phage growth in the laboratory 

led to the hypothesis that they aid adsorption to their bacterial host under 

environmental conditions (Fraser et al., 2007; McMahon et al., 2005). For phage T4, 

it has been shown that the increased concentration of phage on mucosal surfaces is 

mediated by weak binding interactions between the variable Ig-like domains on the 

T4 phage capsid and mucin-displayed glycans (Figure 5. 2). These Ig-like domains 

are present in approximately one quarter of the sequenced genomes of the 

Caudovirales, and are only found in the virion structural proteins and are typically 

displayed on the virion surface (Fraser et al., 2006). It was thus postulated that they 

play an important role in the binding to bacterial surface carbohydrates during 

infection (Fraser et al., 2006, 2007). The predominant macromolecular constituent 

of mucus, the mucin glycoproteins, display hundreds of variable glycan chains to 

the environment that offer potential sites for binding by phage Ig-like proteins. 
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Furthermore, Barr et al. (2013) speculated that phages use the variability of the Ig-

like protein scaffold to adapt to the host’s ever-changing patterns of mucin 

glycosylation. 

The presence of an Ig-like protein (highly antigenic outer capsid protein, Hoc) 

displayed on the capsid of T4 phage significantly slowed the diffusion of the phage 

on mucin solutions. Although phage particles, being inanimate and small, act as 

colloidal particles, they use subdiffusive motions instead of a Brownian motion. This 

was shown in experiments using phage T4, where the subdiffusive motions of phage 

T4 in mucus increases the frequency of host encounters. Thus, phage Ig-like 

domains that bind effectively to the mucus layer would be under a positive selection. 

These findings lead to the development of the bacteriophage adherence to mucus 

(BAM) model (Figure 5. 2), which provides a non-host-derived antibacterial defense 

(Barr et al., 2013; 2015). 

Figure 5. 2: The bacteriophage adherence to mucus (BAM model). (1) Mucus is 

produced and secreted by the underlying epithelium. (2) Phage bind variable glycan residues 

displayed on mucin glycoproteins via variable capsid proteins (e.g., Ig-like domains). (3) 

Phage adherence creates an antimicrobial layer that reduces bacterial attachment to and 

colonization of the mucus, which in turn lessens epithelial cell death. (4) Mucus-adherent 

phage are more likely to encounter bacterial hosts, thus are under positive selection for 

capsid proteins that enable them to remain in the mucus layer. (5) Continual sloughing of 

the outer mucus provides a dynamic mucosal environment. Figure adopted from Barr et al. 

(2013). 
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Phages interact with non-target tissues to some extent, and at least some phages 

are taken up from the gastrointestinal tract into the blood. Therefore there is reason 

to think that such uptake can be a consequence of specific phage-to-epithelium 

interactions, as also appears to be the case given phage interaction with the 

mononuclear phagocyte system (Duerr et al., 2004; Górski et al., 2006a; Merril, 

2008).  

The passage of indigenous bacteria colonizing the intestine through the mucosa to 

local lymph nodes and internal organs is termed bacterial translocation. It is a 

recurrent event that happens throughout the gut and is not always a critical step 

in the pathology of various disorders (Guarner and Malagelada, 2003; Wiest and 

Garcia-Tsao, 2005). While bacterial translocation is a well-described phenomenon, 

little is known about the translocation of viruses. Studies have shown that the oral 

administration of phages to animals results in the translocation of phages to 

systemic tissues (Duerr et al., 2004; Hamzeh-Mivehroud et al., 2008; Keller and 

Engley, 1958). As such, the oral administration of phages is very effective in the 

treatment of alimentary tract infections in calves, lambs and piglets (Dąbrowska et 

al., 2005). Both the feeding and gastric lavage of animals with phages resulted in 

irregular but consistent recovery of phages from the blood (Keller and Engley, 1958).  

Recent work from the Barr Lab demonstrated that phages can enter the body via 

epithelial transcytosis (Nguyen et al., 2017). This transcytosis preferentially occurs 

in an apical-to-basal direction and is mediated by different cell types (e.g. gut, lung, 

liver, kidney and brain cells). The transcytosis of phages across epithelial cells 

provides a mechanistic explanation for the occurrence of phages within the human 

body in the absence of disease. This work showed that the transcytosis of 

bacteriophages across polarized epithelial cells and into the body is a natural 

occurring and ubiquitous process that adds credence to the use and application of 

phages in a biomedical setting. 

The penetration of phages in higher organisms leads to the direct contact of phages 

with eukaryotic cells. Therefore it is important to know whether these phages are 

able to interact or infect eukaryotic cells. Infection seems unlikely, because 

elements of the phage capsids only binds to specific molecules on the surfaces of 

their target bacteria. Furthermore, it is generally recognized that phages cannot 

infect the cells of organisms more complex than bacteria, because of major 

differences in key intracellular machinery that is essential for replication (Kutter 

and Sulakvelidze, 2004). This was illustrated by Di Giovine et al. (2001) who re-

engineered the filamentous phage M13 to infect mammalian cells. A gene for the 

adenovirus penton base protein was inserted into the phage genome. This protein 

is originally involved in the attachment of adenoviruses to integrin receptors, 

internalization of viral particles, and release of the capsid from the endosome 

(Wickham et al., 1993; 1994). Although subsequently binding and internalization of 
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the re-engineered phage were observed, no multiplication of the phage was detected 

(Di Giovine et al., 2001). 

In 1940, Bloch observed an accumulation of phages in cancer tissue and inhibition 

of tumor growth (Bloch, 1940). Later it was demonstrated that phages bind cancer 

cells in vitro and in vivo and attach to the plasma membrane of lymphocytes 

(Kantoch and Mordarski, 1958; Northrop, 1958; Wenger et al., 1978). Another study 

showed that phage T4 and its substrain HAP1 bind to melanoma cells and 

significantly inhibited the metastasis of murine B16 melanoma cells (Dąbrowska et 

al., 2004). The authors suggested that this interaction occurs through the binding 

of β3 integrins on the target cells with the phage capsid protein gp24 (containing a 

KGD-amino acid motif). Eriksson et al. (2009) reported that genetic modification of 

phage M13 (designated WDC-2) led to the production of a tumor-specific phage that 

was able to bind 93 % of tested tumor cells (Eriksson et al., 2009). Moreover, 

administration of this tumor-specific phage initiated the infiltration of neutrophilic 

granulocytes with subsequent regression of established B16 tumors in mice 

(Eriksson et al., 2007, 2009). The authors observed that the mechanisms of this 

phage-induced tumor regression is TLR-dependent as no signs of tumor destruction 

or neutrophil infiltration were observed in tumors of MyD88-/- mice, whereby TLR 

signaling was abolished. Although the effects observed by these phages are not 

induced by a natural phage, they do indicate the possibility of phages used in 

different therapeutic settings or as a platform for the development of new 

therapeutics. 

The molecular basis of these interactions is based on a Lys-Gly-Asp (KGD) 

tripeptide motif that forms a ligand for the β3 integrins on cells. This mechanism 

was first coined by Gorski in 2003 (Gorski et al., 2003). The tripeptide motif can be 

found in the phage T4 structural protein gp24, which is not directly involved in the 

infection process of the phage. The authors suggested ways in how this hypothesis 

might be tested, e.g. using purified phages and immobilizing the phage on a plastic 

plate and evaluate the cell adhesion by ELISA, or confirming the bind though means 

of electron microscopy, or confirming the binding through the use of agents that 

block the β integrin function. Unfortunately the authors have not tried any of these 

suggestions, leaving this hypothesis still untested. Interestingly, the adenovirus, 

used in the experiments of Di Giovine, binds to this integrin (Ling et al., 2002). 

While the effects of bacteria and viruses on reactive oxygen species (ROS) activity 

have been described, much is not known about the effects of bacteriophages on the 

ROS production. A preliminary study performed by Przerwa et al. (2006) suggested 
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that phage T4 influences the phagocyte system. In vitro experimental models have 

shown that phages can diminish phagocytosis. This phenomenon may be of little 

significance on clinical situations, since the process of eliminating bacteria in phage-

treated patients is predominantly accomplished by both phages and phagocytes 

(Przerwa et al., 2006). Furthermore, phage T4 inhibits the ROS production in 

response to pathogenic bacteria (i.e. Escherichia coli), and this phenomenon appears 

to depend on specific phage-bacterium interactions, as P. aeruginosa phage F-8 did 

not affect the ROS production induced by E. coli on the phagocytic cells. Although 

the authors conclude that the reduction of ROS production is due to the direct effect 

of the phage, the host-specific effect could indicate that the ROS reduction is caused 

by a reduction of bacteria, due to infection and lysis by the phage. This might also 

explain why phage T4 had an effect and not phage F-8 on the reduction of ROS 

induced by E. coli. 

A more comprehensive follow-up study was conducted where polymorphonuclear 

leukocytes (PMN) were stimulated with one of three different R-type E. coli strains 

(i.e. E. coli B and E. coli J5, both susceptible for T4, and E. coli R4, resistant to T4) 

or with LPS derived from these three strains (Miedzybrodzki et al., 2008). The 

authors used these R-type strains as only the R-type LPS was able to activate ROS 

production by the peripheral blood PMNs, as was previously observed by Kapp et 

al. (1987). Through this setup, the authors could observe a reduction in ROS 

production when PMNs were stimulated with either the live bacteria or their LPS 

in the presence of phage T4. Moreover, this reduction was seen not only when T4 

was able to infect the E. coli strains but also for the T4 resistant E. coli strain, 

although the T4 resistant E. coli strain induced a less strong ROS production 

compared to the T4 susceptible strains. Moreover, when only phages were added to 

the phagocytic cells, only a minimal ROS release was observed, indicating that 

phages do not directly have a pro-inflammatory response on phagocytic cells. The 

results provided by the authors indicate that phages can indirectly lower the pro-

inflammatory responses induced by the bacteria by captering the released LPS and 

making it less available to PMNs (Miedzybrodzki et al., 2008).  

Furthermore, when phages were administered together with the host bacteria, one 

recent study showed that, phages were able to stimulate bacterial phagocytosis, and 

this is attributed to opsonization of bacterial cells by phages. In addition, phages 

can remain active and infective when adsorbed onto the bacteria during intake by 

granulocytes (Kaur et al., 2014). Therefore, some authors have suggested that 

during phagocytosis, phages continue lysing the phagocytosed bacteria, helping the 

activity of phagocytic cells (Górski et al., 2012; Jończyk-Matysiak et al., 2015). 
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The innate immune system, particularly by the components of the mononuclear 

phagocyte system (MPS), could be a mechanism for removing phages that are 

circulating in the human body (Górski et al., 2012; Navarro and Muniesa, 2017). 

The MPS was credited for the rapid removal of administered wild-type phage λ from 

the circulatory system in humans (Merril et al., 1973). Moreover Merril et al. (1996) 

were able to identify certain phage λ mutants that were capable of circumventing 

the MPS immune response, whereby these mutants prevailed for longer periods in 

the blood stream than the wild-type phage. These phage λ mutants contained a 

single amino acid change in the λ capsid protein E, whereby a Glu was replaced by 

a Lys leading to a conversion of a negative charge to a positive charge (Merril et al., 

1996). 

Among the mechanisms responsible for the recognition of microbial and viral 

structures are the TLR (Kawai and Akira, 2011). Viral nucleic acids act as PAMPs 

and are recognized by multiple TLRs. It could thus be postulated that phage DNA 

might be recognized by TLR9, which is responsible for the recognition of viral DNA 

(Janeway and Medzhitov, 2002), after phagocytosis of the phage.  

Clear evidence concerning the cooperation of phages with the innate immune 

system was first provided by Tiwari et al. (2011), showing the necessity of a 

neutrophil-phage synergy in the resolution of P. aeruginosa infections. The authors 

showed that neutrophils or phages alone were not sufficient to remove a bacterial 

infection. The cooperation of the innate immune system and phages is necessary as 

the presence of neutrophils removed the phage resistant bacteria, which emerge 

during the phage therapeutic treatment when only a single phage is used. This was 

later repeated by Pincus et al. (2015) and Roach et al. (2017). 

Immunological studies, in vitro as well as in vivo, on the cellular immune response 

induced against phages have been conducted in recent years. For example, analysis 

of the cytokine production of mice treated intraperitoneal for 5.5 h with four phage 

T4 capsid proteins (i.e. gp23*, gp24*, Hoc and Soc) showed that no cytokines were 

induced (Miernikiewicz et al., 2013). The lack of cytokine production can be 

explained by the early time point by which the mice were tested for the presence of 

cytokines or through the rapid removal of the phages from circulation. Another 

immunological study evaluated the cytokine production in mice induced by phage 

T7, after the mice were fed for 10 days with phage T7. A single dose was fed every 

24 h, although an exact concentration was not provided by the authors (Park et al., 

2014). Although this study had its limitations, the authors were able to demonstrate 

that phage T7 induced a minor increase of inflammatory cytokine production in 

mice, but no histological changes were observed in the tissues of the gastrointestinal 

organs. As no caution was taken to the presence of endotoxins, the immune 

responses that were observed could be, partially, due to endotoxin contamination of 

the used phage stock. 
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The effect of phages on the production of TNFα and IL6 in serum has also been 

studied, as well as the ability of blood cells to produce these cytokines in culture. 

The authors of this study used blood derived from 51 patients with long-term 

suppurative infections of various tissues and organs caused by drug-resistant 

strains of bacteria (Weber- Dąbrowska et al., 2000). These patients were treated 

with phages and blood samples were collected and tested for the presence of TNFα 

and IL6. The authors were able to observe a reduction in the production of these 

cytokines after long-term treatment (i.e. 21 days). Unfortunately, the authors were 

not able to show whether the observed immune response was due to the presence of 

the phage or due to the reduction of the bacterial count through their lysis by the 

phage. 

Recent data indicates that Cronobacter sakazakii phage ES2 enhances the 

maturation of dendritic cells and induces the expression of IL12p40 via NF-κB 

signaling (An et al., 2014). This maturation presumably happens after the 

phagocytosis of the phage by the dendritic cells. The maturation of these dendritic 

cells play an important role in generating a cell-mediated immune response and 

subsequently in the production of phage specific antibodies. 

It should be noted that many experiments performed concerning the immune 

response induced by phages have been carried out using phage lysates. This means 

that these preparations could contain remnants of bacteria lysed by the phages (e.g. 

LPS, cytosolic proteins, or membrane particles) or perhaps fragments of the host 

bacterial cell wall adhered to the phage tails. This makes it extremely difficult to 

determine the components truly responsible for the modulation of the immune 

response. Although, more and more studies are undertaken using highly purified 

phages with less than 10 EU/ml. Furthermore, only a limited amount of data is 

useful to assess the immunological effects induced by phages, as most studies do 

not differentiate between an effect induced by the phage and an effect induced by a 

reduction of the bacteria due to lysis by the phage. 

Since phages consist of tightly packed DNA or RNA and a protein coat, and since 

the coat consists of a relatively large number of proteins, it appears obvious that 

neutralizing antibodies should be produced in individuals subjected to phage 

therapy or exposed to naturally occurring phages. In fact, naturally occurring 

bacteriophages are able to induce a humoral immunity. Phage-neutralizing 

antibodies, that were not stimulated by phage treatment, were detected in the sera 

of different species (e.g. human) (Dąbrowska et al., 2005).  

Phage immunogenicity has been employed in medicine as a test for immune 

competence of immunodeficient patients, e.g. HIV patients (Fogelman et al., 2000). 

In fact, immunization with bacteriophage φX174 has been used extensively to 

diagnose and monitor primary and secondary immunodeficiencies since the 1970s, 

without reported adverse events, even in patients in whom prolonged circulation of 
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the phage in the bloodstream was observed. This suggests an intrinsically low 

toxicity of phage φX174, even in patients with a compromised immune system (Ochs 

et al., 1971; Rubinstein et al., 2000; Shearer et al., 2001). 

One of the major effects of using phages as therapeutics is a humoral response to 

the phage (Górski et al., 2012; Kamme, 2009; Smith et al., 1987). Soon after the 

discovery of phages, it was observed that antibodies against phages were produced 

in humans or animals (Jerne, 1952, 1956). It is indeed very easy to generate phage 

antisera by immunization of humans or animals with phages (Bacon et al., 1986; 

Górski et al., 2012; Puig et al., 2001). The humoral response does not follow a simple 

scheme of induction. It depends on the route of administration and on individual 

features of the phage. Moreover, it depends on the dose and application schedule 

(Dąbrowska et al., 2014a; Górski et al., 2006a, 2012; Łusiak-Szelachowska et al., 

2014). The humoral response induced against phages can be devastating on the 

phage activity (Huff et al., 2010), but it has also been reported that the anti-phage 

activity of serum does not exclude a favorable result of phage therapy in humans 

(Łusiak-Szelachowska et al., 2014). 

Initial safety studies of phage T4 performed by Bruttin and Brüssow in 2005 on 

humans revealed no antibody induction in phage-treated volunteers at all (Bruttin 

and Brüssow, 2005). Another study performed by Dąbrowska et al. (2014) evaluated 

the anti-phage antibody production against phage T4 in 50 healthy volunteers who 

had never been subjected to phage therapy or were involved in phage work. Of the 

investigated sera, 82% significantly decreased phage activity. In these positive sera, 

natural IgG antibodies specific to the phage proteins gp23*, gp24*, Hoc and Soc 

were identified. Their results clearly showed that anti-T4 phage antibodies are 

frequent in the human population, but it is not the highly antigenic outer capsid 

(Hoc) protein that induced most of the humoral response, but the antibodies specific 

to the major capsid protein gp23* (Dąbrowska et al., 2014a).  

Recently a study concerning the production of IgG, IgA and IgM in human patients 

undergoing phage therapy was carried out (Zaczek et al., 2016). In this study, 20 

patients were treated, for an undisclosed time, with the MS-1 phage cocktail 

(containing three lytic S. aureus phages, 676/Z, A5/80 and P4/6409) either orally 

and/or locally. For the majority of patients, no antibodies could be detected. For the 

few patients that produced elevated levels of IgG or IgM, the presence of anti-phage 

antibodies did not translate into an unsatisfactory clinical result of the phage 

therapy. The low antibody production against the phage cocktail could be due to the 

small time-scale by which the patients were treated. On the other hand, the 

elevated antibody production in a few patients could be due to a previous encounter 

of one of the phages used in the cocktail and the presence of an immunological 

memory. Unfortunately, the authors did not mention whether the antibodies were 

tested against individual phages or against the phage cocktail as a whole. 



82 

 

Currently it is difficult to make assumptions on the anti-phage antibody production 

in humans, as such studies often have contradictory results. Majewska et al. (2015) 

performed an extensive study on the antibody production against a single phage 

(i.e. E. coli phage T4) in mice over a period of 240 days. Phage T4 was orally given 

to mice for 100 days, followed by 112 days without phage treatment. The treatment 

was then repeated with the same phage up to day 240. It was demonstrated that 

the long term oral treatment of mice with phage T4 led to a humoral response, in 

contrast to previous human trials where no such responses were detected (Bruttin 

and Brüssow, 2005). The authors observed that this response emerged from the 

secretion of IgA in the gut lumen but also as an IgG production in the blood 

(Majewska et al., 2015). The intensity of this response and the time necessary for 

its induction depended on the exposure to phage antigens, which is related to the 

phage dose. The factor limiting phage activity in the gut was the production of 

specific IgA. As long as the secretory levels of IgA were low, phages remained 

present in the feces. When the IgA level, around day 80, increased, there were no 

active phages present in the feces. On the other hand, when secretory IgA decreased 

with time (on day 213, it became similar to its initial levels); phages could be 

detected again, until phage-specific IgA levels increased again. 

According to the same authors, the induction of serum IgG suggested that phages 

could translocate from the gut lumen to the circulation. This observation is further 

strengthened by recent data of transcytosing phages. Furthermore, it was possible 

to isolate phages from murine blood after application of high phage doses (4 x 109 

pfu/ml of drinking water). When lower phage doses were used, it was not possible 

to detect translocation of phages to the circulation, although long-lasting secondary 

immune response could be induced. 

Besides the phage as a whole, it is interesting to evaluate the immune responses 

induced to individual phage proteins. Majewska et al. (2015) demonstrated that 

phage T4 Hoc protein and gp12 strongly stimulated the IgG and IgA antibody 

production in the blood and gut respectively, while gp23*, gp24* and Soc induced 

low responses. 
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Bacterial endotoxins have high immunogenicity. Phage biology studies as well as 

therapeutic phage applications necessitate highly purified phage particles. In this 

study, we compared combinations of seven different endotoxin removal strategies 

and validated their endotoxin removal efficacy for five different phages (i.e. four 

Pseudomonas aeruginosa phages and one Staphylococcus aureus phage). These 

purification strategies included Endotrap HD column purification and/or CsCl 

density centrifugation in combination with Endotrap purification, followed by 

organic solvent (1-octanol), detergent (Triton X-100), enzymatic inactivation of the 

endotoxin using alkaline phosphatase and CIM monolithic anion exchange 

chromatography. We show that CsCl density purification of the P. aeruginosa 

phages, at an initial concentration of 1012 - 1013 pfu/ml, led to the strongest reduction 

of endotoxins, with an endotoxin removal efficacy of up to 99 %, whereas additional 

purification methods did not result in a complete removal of endotoxins from the 

phage preparations and only yielded an additional endotoxin removal efficacy of 23 

to 99 %, sometimes accompanied with strong losses in phage titer. 

The purification of bacteriophage particles is important for two reasons: either to 

investigate the phage particle on its own (i.e. phage biology studies) or for 

therapeutic application of phages, which is currently undergoing a resurgence 

(Adhya et al., 2014; Dąbrowska et al., 2014b; Ly-Chatain, 2014; Międzybrodzki et 

al., 2012; Thiel, 2004; Vandenheuvel et al., 2015). When phages are propagated on 

Gram-negative bacterial hosts, endotoxins or lipopolysaccharides (LPS) have to be 

removed from these preparations. Endotoxins are part of the Gram-negative 

bacterial outer membranes and play an important role in the organization and 

stability of the bacterial cell (Ki et al., 1994). Bacterial endotoxins are well known 

for their immunogenic, pro-inflammatory and pyrogenic effects (Aderem and 

Ulevitch, 2000). In conditions where the body is exposed to endotoxins excessively 

or systemically, a systemic inflammatory reaction can occur, leading to multiple 

pathophysiological effects such as endotoxin shock, tissue injury and death 

(Anspach, 2001; Erridge et al., 2002; Ogikubo et al., 2004). Therefore, when phages 

are prepared for therapeutic purposes, it is crucial that different bacterial 

contaminants are removed which affect the efficacy and safety of the administration 

during phage therapy. The maximal level of endotoxins for intravenous applications 

of pharmaceutical and biological products is set at 5 endotoxin units (EU), i.e. 500 

pg of endotoxins, per kg of body weight per hour (Daneshian et al., 2006). 

Additionally, bacterial endotoxins may also interfere with phage biology studies, 

especially when trying to establish the interaction of phages with the immune 

system. 

Several strategies have been described for the removal of endotoxins from phage 

preparations. Here we compared different endotoxin removal strategies for the 

removal of endotoxins from five phages, i.e. four Gram-negative Pseudomonas 

aeruginosa phages and one Gram-positive Staphylococcus aureus phage (Table 6. 
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1). The S. aureus phage forms a negative control for the endotoxin determination 

assay, as this phage is grown on a Gram-positive host that produces no endotoxins. 

Strategies were compared, taking into account the efficacy in removing endotoxins 

in relation to their effect on the phage titer yield.  
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In this study, we evaluated the endotoxin removal efficacy of seven purification 

strategies (Figure 6. 1). To determine which strategy has the best endotoxin removal 

capacity, in combination with the minimal amount of phage loss, we calculated the 

‘endotoxin removal efficacy’, defined as the ratio of the endotoxin units (EU) per 

plaque forming unit (pfu) multiplied by the phage recovery of the purified sample 

and the original sample subtracted from one (Table 6. 2). The endotoxin 

quantification by Endozyme was validated by endotoxin quantification by means of 

Endosafe-PTS, for a selected number of samples. Both detection methods gave 

similar results within the same order of magnitude. 

 

The endotoxin removal strategies include either (1) Endotrap HD column 

purification alone (Merabishvili et al., 2009) (φET), or (2) CsCl density gradient 

ultracentrifugation alone (Lavigne et al., 2009) (φC) or (3) followed with Endotrap 

HD purification (φCET), and φET or φCET followed by either (4) organic solvent (1-

octanol; Szermer-Olearnik and Boratyński, 2015) treatment (OS), (5) detergent 

(Triton X-100; Marcus and Prusky, 1987; Petsch and Anspach, 2000) treatment 

(TX), (6) enzymatic inactivation of the endotoxin using alkaline phosphatase 

(Bentala et al., 2002) (AP) or (7) anion-exchange chromatography (CIM DEAE disk 

column (CIM); Adriaenssens et al., 2012). We opted for these combined strategies, 

to compare the efficacy of purifying raw phage lysates (φET) versus CsCl-purified 

phages (φCET). As expected, phage ISP preparations from a Gram-positive host did 

not show any detectable endotoxin levels before or after any of the purification 

strategies. The four P. aeruginosa phages contained between 31,020 and 7,465,000 

EU/ml. This concentration was measured after purification of phage lysates with 

Endotrap HD and therefore may initially be higher.  

  

Figure 6. 1: Schematic representation of the different endotoxin strategies used, starting 

from different phage preparations. Phage lysates were obtained by the overlay-agar method. 

Part of this phage lysate was used either for (A) endotoxin removal using Endotrap HD (φET) 

or (B) further purified through CsCl density centrifugation followed by Endotrap HD (φCET). 

These preparations were further treated for the removal of endotoxins through different 

strategies: (OS) Organic solvent: 1-octanol; (TX) detergent treatment: Triton X-100; (AP) 

Enzymatic inactivation of endotoxins: alkaline phosphatase; or (CIM) anion-exchange 

chromatography: CIM DEAE disk column (only performed on two phages). 
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However, it is possible that these values correspond largely to the initial order of 

magnitude of the endotoxins present in the crude phage preparations, because the 

removal efficacy of the Endotrap HD purification, starting from the CsCl purified 

phages, was only between 63.09 – 94.56 % (Table 6. 2). Cooper et al. (2014) showed 

that crude P. aeruginosa phage preparations contained more than 105 EU/ml, which 

was in correspondence with our quantification of preparations that were purified 

only once with Endotrap HD. Dufour et al. (2016) recently described that three to 

five consecutive rounds of Endotrap HD-based endotoxin removal, starting from 

CsCl purified phages, led to a further reduction of the endotoxin concentration to 

below 0.5 EU/ml, but this is a time-consuming strategy with a variable and phage-

dependent outcome. 

The organic solvent extraction was described by Szermer-Olearnik and Boratyński 

(2015) and is based on the principle that endotoxins partition favorably in the 

organic phase, while the molecules of interest (in our case phages) are retained in 

the aqueous phase. Our results show that the organic solvent strategy has an 

endotoxin removal efficacy between 63.83 and 99.98 % for φET and between 23.40 

and 63.36 % for the φCET samples. The only exception is P. aeruginosa phage 

LUZ19 where there was an enrichment of endotoxins after the 1-octanol treatment, 

i.e. an endotoxin removal efficacy of -16.55 %. This enrichment could be explained 

by a potential release of endotoxins bound to the phage particle, which when bound 

are not detectable in the endotoxin detection assay.  

The organic solvent strategy led to the strongest reduction of endotoxins in the P. 

aeruginosa phage PNM φET and phage LUZ19 φET preparations, with an 

endotoxin removal efficacy of 99.98 and 99.68 % respectively. This was only 

accompanied with a reduction of the P. aeruginosa phage PNM with two orders of 

magnitude. For both phages, a strong reduction in phage titer of up to five orders of 

magnitude difference was observed.  

The endotoxin removal strategy using detergents such as Triton X-100 has been 

well-established. According to Petsch and Anspach (2000), endotoxins can be 

removed using a two-phase extraction, employing detergents such as those of the 

Triton series. An endotoxin removal efficacy of up to 93.21 % and 99.96 % could be 

observed for the φET and φCET phage samples, respectively (Table 6. 2). The use 

of activated charcoal for the removal of Triton X-100 led to a reduction in the 

endotoxin concentration after three consecutive rounds. Around 6.29 – 7.14 % 

endotoxins remained for the φET preparations and between 0.31 – 43.6 % 

endotoxins remained for the φCET preparations. However, the activated carbon was 

not able to remove all of the Triton X-100. This became apparent when the samples 

became viscous when stored at 4 °C for prolonged time. The phage recovery for the 

φET was between 0.07 – 17.20 % and for the φCET it was between 1.80 – 52.22 % 
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(Table 6. 3), indicating that the Triton X-100 strategy has an effect on the phage 

activity. 

An alternative method for the removal of endotoxins is enzymatic inactivation of 

endotoxins by the removal of the phosphate group of the lipid A fraction by means 

of alkaline phosphatase (Bentala et al., 2002). Consequently, the treated endotoxin 

becomes immunologically inactive and should not be detected in a classical Limulus 

Amebocyte Lysate (LAL) assay or by recombinant factor C (rFC) assays as used in 

this study. However, the treatment of the φET and φCET phage preparations with 

alkaline phosphatase had very low endotoxin removal efficacies (i.e. lower than 

20 %; Table 6. 2) and did not lead to a reduction in the endotoxin concentration. In 

addition, this method had a negative impact on the number of infectious phage, 

dropping 2 – 4 orders of magnitude (Table 6. 3). 

Although this strategy has been described for the inactivation of purified 

endotoxins, when it was applied on phage samples, there was no reduction in the 

endotoxin concentration. This might indicate that either the phages inhibit the 

enzymatic activity of the alkaline phosphatase or that the phages, through the 

binding of the endotoxins, hide the phosphate groups on the lipid A part. 

Consequently, this can result in the endotoxins not being completely inactivated by 

the enzyme while still being detectable in the endotoxin detection assay. 

The final strategy that was evaluated was the anion-exchange purification using 

CIM DEAE columns. This technique was previously described for its application in 

the purification and concentration of phages (Adriaenssens et al., 2012), but the 

authors did not evaluate the endotoxin removal potential. In this strategy, the 

phages are retained on the column through ionic interactions. This purification 

protocol was only performed for the φET preparations of P. aeruginosa phages PNM 

and LUZ19. Although the two phages that were purified by this method (i.e. P. 

aeruginosa phage PNM and LUZ19) have a high sequence similarity, the endotoxin 

removal efficacy varied between these two phages (i.e. 98.15 and 40.39 %, 

respectively; Table 6. 2). A strong reduction in phage titers from 1013 to 1011 pfu/ml 

for both the P. aeruginosa phages PNM and LUZ19 was observed (Table 6. 3). The 

limited reduction in endotoxin concentration after the anion-exchange purification 

could be explained by the fact that endotoxins also have the ability to interact with 

anion-exchange columns. According to Hou and Zaniewski (1990), the capacity of 

endotoxin removal by anion-exchange matrices through charge interaction depends 

on the number of available positively charged groups existing in the matrices. They 

observed a maximum adsorption of endotoxins at pH 6.8 when DEAE columns were 

used, and at pH 8.0 when QA columns were used. They also found that the 

endotoxin adsorption was found to be unaffected at up to 0.2 M salt concentration 

(Hou and Zaniewski, 1990a). We found that both phages were retained at the 
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column at a pH of 7.5 and eluted at a NaCl concentration above 0.6 M. Therefore, 

the removal of endotoxins without loosening the phages from the column is 

cumbersome. Hence, the endotoxins co-elute with the phages minimizing the ability 

to obtain endotoxin free phage preparations. The reduction in phage titers results 

from the phage binding capacity of the columns, which is phage-dependent. 

Starting from between 2.5 x 1012 and 8 x 1013 pfu/ml of four different P. aeruginosa 

phages (Table 6. 3), contaminated by 31,020 and 7,465,000 EU/ml, we found that 

CsCl density gradient ultracentrifugation established an endotoxin removal efficacy 

between 18.42 and 99.68 % (Table 6. 2) while reducing the number of phages with 

maximum of two orders of magnitude (Table 6. 3). Further endotoxin removal of 

these CsCl preparations with Endotrap, OS, TX, AP or CIM did reduce endotoxins 

further with a maximum endotoxin removal efficacy of 99.9 %, whereas several of 

these additional treatments were detrimental for the phage titer, which was even 

reduced to 0.0004 % for the P. aeruginosa phage PNM φCET OS treated sample. 

From our comparative study, it becomes clear that it is hard to achieve complete 

removal (i.e. ≥ 99.99 %) of endotoxins from a phage sample. For therapeutic 

purposes, only 5 EU/ml/kg/h can be present in the samples for intravenous 

applications (Daneshian et al., 2006). We clearly find that the removal of large 

volumes of endotoxins is easier than the removal of small residual endotoxins, as 

the endotoxin removal efficacy of the different procedures starting from the phage 

lysate (φET) preparation is much higher than those form the CsCl purified (φCET) 

preparations (Table 6. 2). Unfortunately, we were not able to obtain a universal 

strategy that could be used for the removal of endotoxins from any given phage 

preparation. Therefore, each phage needs to be evaluated individually for the 

optimal strategy for the removal of endotoxins, taking into account the potential 

drop in phage titers. The CsCl purification (φC) seems to have the highest efficacy 

in removing endotoxins. Although this technique might not be suitable for all 

applications such as phage therapy where high throughput and up scaling is a must, 

this strategy might be important for phage biology studies in which endotoxin 

contamination may result in confounding effects.  
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Since the phage titers used for phage therapy are usually around 108 pfu/ml 

(Merabishvili et al., 2009), the phage preparations can be further diluted leading to 

a further drop of the endotoxin concentration (ranging from 0.0002 to 316 EU/ml for 

108 pfu/ml phage preparations; Figure 6. 2) and subsequent safe use. Therefore, 

labor-intensive endotoxin removal strategies should not be necessary for 

therapeutic phage preparations, knowing that the dilution of high titer phage 

preparations would be sufficient. Unfortunately, dilution of the phage preparations 

is not always possible when performing phage biology studies such as evaluating 

the immunological properties of phages on the mammalian immune system, where 

high phage titers might be advised (Biswas et al., 2002; Miernikiewicz et al., 2013). 

Although this study has as a limitation that no technical replicates were obtained 

for the different endotoxin removal strategies, our results do indicate that the 

endotoxin removal is phage dependent, and thus needs to be evaluated individually 

for each phage. To obtain a complete removal of endotoxins, a combination of 

strategies could be used, such as treating the phage lysate with Triton X-100 

followed by a purification and concentration of the phages through means of anion-

exchange (i.e. DEAE disks) or by using consecutive rounds of Endotrap HD 

endotoxin removal after CsCl density centrifugation, as suggested by Dufour et al. 

(2016). 
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Figure 6. 2: Final endotoxin concentration (EU/ml) present after different 

purification strategies for four different Pseudomonas aeruginosa phages, 

normalized against a phage therapeutic titer (i.e. 108 pfu/ml). φET: lysates after 

Endotrap HD, φC: CsCl purification, φCET: φC after Endotrap, OS: Organic Solvent, TX: 

Triton X-100, AP: Alkaline Phosphatase, CIM DEAE: Anion Exchange using CIM DEAE 

disks. 
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Bacteriophage stocks (Table 6. 1) were prepared using the double-agar overlay 

method as described in Merabishvili et al. (2009). Briefly, one ml of the phage 

preparation containing 106 plaque forming units (pfu) of bacteriophages was mixed 

with 3 ml of molten (45 °C) Lysogeny Broth (LB) (Becton Dickinson, Erembodegem, 

Belgium) top Bacto agar (0.6 %) (Becton Dickinson) and 100 µl of the host strain 

suspension (end concentration of 107 cfu/ml) in a sterile 14 ml tube (Falcon, Becton 

Dickinson). This mixture was plated onto freshly made 90 mm diameter Petri dishes 

(Plastiques Gosselin, Menen, Belgium), filled with a bottom layer (20 ml) of 1.5 % 

LB agar, and incubated aerobically at 32 °C for 16 h. Subsequently, 200 µl of 

chloroform was added to the lids of the Petri dishes and the inverted plates were 

further incubated at 4 °C for 1 h. The top layer of the double-agar layer was scraped 

off using a sterile Drigalski spatulum and transferred to a sterile 14 ml tube. 

The harvested phages were centrifuged for 20 min at 6,000 x g at 4 °C. The 

supernatant was aspirated using a sterile 10 ml syringe (BD Plastipak, Becton 

Dickinson) with a 30 G sterile needle (BD Microlance 3, Becton Dickinson) and 

passed through a 0.22 µm membrane filter (Sartorius Stedim, Zellik, Belgium). The 

filtrate was subsequently centrifuged at 35,000 x g for one hour. The phage pellet 

was resuspended in 5 ml saline and stored at 4 °C overnight before determining the 

phage titer. Preferably, the titer of the phage lysate should be checked at least one 

day later according to the above described procedures. This will allow phage 

particles that may have clumped together during centrifugation steps to disengage 

(Kutter and Sulakvelidze, 2004). 

The bacteriophage titer was determined by assaying decinormal serial dilutions 

(log(0) to log(-12)) of the bacteriophage suspension with the overlay method 

(Merabishvili et al., 2009). One ml of each dilution was mixed with 3 ml of molten 

(45 °C) LB 0.6 % top Bacto agar and the host strain (end concentration of 107 cfu/ml) 

in a sterile 14 ml tube. This mixture was plated in triplicate onto 90 mm diameter 

Petri dishes, filled with a bottom layer of 1.5 % LB agar, and incubated for 16 h at 

37 °C. To determine the original bacteriophage concentration, plates with one to 

100 distinguishable homogenous plaques were counted. The mean was then 

calculated for the triplicate plates. 

All manipulations were carried out using endotoxin-free reagents. Figure 6. 1 gives 

a schematic representation of the different purification strategies used. 
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Phage lysates particles were further purified and concentrated by means of 

ultracentrifugation (104,000 x g, 4 °C) for 3.5 h in a CsCl (PanReac AppliChem, 

Darmstadt, Germany) gradient with densities of 1.33 to 1.70 g/cm3 in a swigging 

bucket centrifuge as described by Lavigne et al. (2009). The resulting high-titer 

phage suspension (ca. 3 – 4 ml) was dialyzed with a Slide-A-lyzer Mini Dialysis 

device (10,000 MWCO, Thermo Scientific, Hudson, NH) three times for 30 min at 

4 °C against 1 l of saline to remove residual CsCl. The CsCl-purified phage samples 

(φC) were stored at 4 °C and the phage titer was determined on the following day. 

Phage φET and φCET preparations were 

treated with an organic solvent (1-octanol; Sigma-Aldrich, Munich, Germany), as 

described by Szermer-Olearnik and Boratyński (2015). Briefly, 500 µl of the phage 

preparation (either phage lysate (φET) or CsCl purified phages (φCET)) was 

transferred to a 1.7 ml Eppendorf tube. Subsequently, MgCl2 (Sigma-Aldrich) was 

added to a final concentration of 0.02 M. This mixture was incubated for 1 h at 4 °C. 

After incubation, 1-octanol (40 % v/v) was added and mixed overnight by inverting 

in a vertical rotator at room temperature. The mixture was incubated for 1 h at 4 °C 

prior to centrifugation at 4,000 x g for 10 min. The upper 1-octanol phase was 

removed and the lower aqueous phase was transferred to Slide-A-lyzer Mini 

Dialysis device (10,000 MWCO). Dialysis was performed against ethanol (25 %) for 

five subsequent rounds (one overnight incubation and four 2 h incubations). 

Subsequently, the samples were dialyzed against endotoxin-free saline for four 

rounds (one overnight and three incubations of two hours). The purified phage 

solution was stored overnight at 4 °C and the phage titer was determined on the 

following day. 

The Triton X-100 removal of endotoxins is based 

on general protocols for the removal of endotoxins from protein preparations, as 

described by Petsch and Anspach (2000). Above the critical micelle concentration of 

some detergents, endotoxins are trapped in a micellar structure by non-polar 

interactions of the alkyl chains of lipid A and the detergent and are consequently 

separated from the water phase. Detergents of the Triton series show a miscibility 

gap in aqueous solution. Above a critical temperature, the so-called cloud point, 

micelles aggregate to droplets with very low water content, thus forming a new 

phase. Endotoxins remain in the detergent-rich phase. The cloud point of Triton X-

114 is at 22 °C, which is advantageous when purifying proteins. It requires mixing 

of the endotoxin-containing protein solution in the cold (usually at 4 °C) and allows 

separation of the two phages at temperatures of 22 °C or above. In contrast, the 

cloud point for Triton X-100 is at 75 °C, which is not acceptable for most proteins or 

phages, because high temperatures might lead to inactivation. In the classical 

protocols, Triton is removed by centrifugation. This has as downside that it is 

impossible to remove all the Triton present in the sample. Alternatively, Triton can 



97 

 

be removed by using activated charcoal (Marcus and Prusky, 1987), which has as 

an additional advantage that it is not necessary to use a two-phase system, which 

makes it possible to use Triton X-100 (which has, due to its higher cloud point, the 

advantage of being used at room temperature). A total volume of 200 µl of the phage 

solution (i.e. φET or φCET) was transferred to a 1.7 ml Eppendorf tube. To this 

solution, 3 % (v/v) Triton X-100 (Sigma-Aldrich) was added and incubated for 30 

min at room temperature while shaking at 750 rpm. After incubation, 12 % 

activated carbon (Sigma-Aldrich) was added to remove the Triton X-100 (Marcus 

and Prusky, 1987). An additional 30 min of incubation was performed at room 

temperature while shaking at 750 rpm. The solution was centrifuged at maximum 

speed for 1 min, after which it was passed through a 0.45 µm membrane to remove 

residual activated carbon. All steps were repeated for an additional two rounds, i.e. 

a total of three Triton X-100 treatments. The purified phage solution was stored 

overnight at 4 °C and the phage titer was determined on the following day. 

The inactivation of endotoxins through enzymatic degradation by means of alkaline 

phosphatase was described by Bentala et al. (2002). Briefly, alkaline phosphatase 

(rSAP (1,000 U/ml;7.5 U/reaction of 300 µl), New England Biolabs, New England, 

MA) together with the CutSmart buffer (New England Biolabs; as described by the 

manufacturer) was added to the phage sample and incubated for 60 min at 37 °C. 

Subsequently the enzyme was inactivated by heating the solution for 5 min at 65 °C. 

Following endotoxin inactivation, the titer of the phage solution was determined. 

Endotrap HD is an affinity chromatography based strategy using 

bacteriophage-phage derived proteins that are fixed on the column matrix and bind 

endotoxins with a high affinity and specificity. According to the manufacturer, 

Endotrap HD is able to remove endotoxins from protein, peptides, antibodies, 

RNA/DNA, antigens and plant extract samples with an endotoxin removal 

efficiency of 99.99 %. It also is claimed to have a wide pH range (4 – 10) of activity 

and that high salt concentrations do not affect the endotoxin removal capacity. The 

phage lysates (φET) or CsCl purified phage lysates (φCET) were further purified 

from endotoxins using the commercially available kit Endotrap HD (Hyglos, 

Bernried am Starnberger Seen, Germany), according to the instructions of the 

manufacturer. Briefly, 3 ml of the phage preparations were transferred to a sterile 

15 ml Falcon tube (Becton Dickinson) and CaCl2 (Sigma-Aldrich) was added to a 

final concentration of 0.001 M. Prior to the addition of the phages to the columns, 

the columns were activated by the addition of 3 ml regeneration buffer. The columns 

were drained out completely before repeating the addition of the regeneration 

buffer. Subsequently, 3 ml of the equilibration buffer was added and the columns 

were drained out completely before a second wash with the equilibration buffer was 

performed. Finally, the phage samples were added to the column and the eluate was 

collected in a sterile 15 ml Falcon tube (Becton Dickinson). The columns were then 
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regenerated by washing them twice with 3 ml regeneration buffer. The columns 

could then be used for a second purification round or be stored by adding 1 ml of the 

storage buffer supplemented with 0.02 % sodium monoazide (Sigma-Aldrich). 

Following endotoxin removal, the titer of the phage solution was determined. 

Phage 

purification using monolithic anion-exchange chromatography with CIM DEAE 

disk columns (BIA Separations, Ljubljana, Slovenia) was carried out, basically as 

described by Adriaenssens et al. (2012). Briefly, prior to phage purification, the 

complete chromatography set up (Äkta FPLC system (GE Healthcare, Little 

Chalfont, UK with a P900 pump system) was flushed with 1 M NaOH. The loading 

column was washed three times with endotoxin-free water. Next, approximately 10 

ml of one of the high titer phage preparations was loaded onto the chromatography 

set up. Pump A contained Tris-HCl (20 mM, pH 7.5) buffer whereas pump B 

contained Tris-HCl (20 mM, pH 7.5) with NaCl (2 M) buffer. Prior to the elution of 

the phages from the CIM DEAE disk column, the column (containing the phages) 

was washed with the Tris-HCl (20 mM, pH 7.5) buffer. Elution of the phages from 

the CIM DEAE disk columns was achieved by washing with an increasing 

percentage of the Tris-HCl (20 mM, pH 7.5) with NaCl (2 M) buffer relative to the 

Tris-HCl (20 mM, pH 7.5) buffer.  

Quantification of the endotoxin concentrations in the differently treated phage 

preparations was performed using two different commercially available methods. 

Prior to the endotoxin determination, all phage samples were diluted using 

Endotoxin-Free Dulbecco’s PBS (Millipore, Darmstadt, Germany). 

The endotoxin removal efficacy of each purification approach was calculated by first 

determining the amount of endotoxins per plaque forming unit (pfu) by dividing the 

endotoxin concentration by the phage titer for each preparation (1). 

Normalized endotoxin content =
𝐸𝑈/𝑚𝑙

𝑝𝑓𝑢/𝑚𝑙
     (1) 

Subsequently the normalized endotoxin content of each sample was determined by 

multiplying the endotoxins per pfu with the phage recovery (2), i.e. the phage titer 

of the purified preparation divided by original preparation.  

Phage recovery =  
(𝑝𝑓𝑢/𝑚𝑙)𝑝𝑢𝑟𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒

(𝑝𝑓𝑢/𝑚𝑙)𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒
     (2) 

The endotoxin removal efficacy (3) was then calculated by dividing the normalized 

endotoxin concentration of the purified sample by the normalized endotoxin 

concentration of the original sample (i.e. φET or φCET) and subtracting this value 

from 1. 
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Endotoxin removal efficacy = 1 − 
[(

𝐸𝑈/𝑚𝑙
𝑝𝑓𝑢/𝑚𝑙⁄ )×phage recovery]

𝑝𝑢𝑟𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒

[(
𝐸𝑈/𝑚𝑙

𝑝𝑓𝑢/𝑚𝑙⁄ )×phage recovery]
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒

  (3) 

According to the manufacturer, EndoZyme (Hyglos, Bernried am Starnberger See, 

Germany) is an endpoint fluorescent microplate assay intended for in vitro 

quantitative determination of endotoxin (lipopolysaccharides, LPS) in 

pharmaceuticals and biological substances as well as for medical device testing 

using recombinant factor C (rFC). The enzymatically active rFC is activated by 

trace amounts of endotoxins. It is capable of binding both free and bound LPS/lipid 

A (the biologically potent moiety of LPS) with high affinity. Being at the initial step 

of the coagulation cascade, Factor C functions as a very sensitive and specific 

biosensor of endotoxins, capable of detecting pictogram to nanogram levels of 

endotoxins (Ding and Ho, 2010). Endozyme is able to reliably detect endotoxins 

within the range of 0.005 to 50 EU/ml. The phage samples were diluted until their 

endotoxin concentration fell within this range. The assay was performed as 

described by the manufacturer. 

According to the manufacturer, the Endosafe-PTS (Charles River, CA) is a rapid, 

point-of-use test system that provides quantitative LAL results within 15 minutes. 

It is a miniaturized version of the LAL assay using rFC. It is able to detect 

endotoxins within the range of 0.005 to 10 EU/ml. The endotoxin determination was 

performed by the VIB Protein Service Facility (Ghent University) as described by 

the manufacturer. 

Pseudomonas aeruginosa phage GE-vB_Pae-Kakheti25 was kindly provided by Dr. 

Marina Goderdzishvili (Head of Laboratory of General Microbiology at the Eliava 

Institute of Bacteriophage, Tbilisi, Georgia). The authors are supported by the FWO 

Vlaanderen “PhageBiotics” research community. Jonas D Van Belleghem holds a 

predoctoral fellowship of the Institute for innovation through science and 

technology (IWT, Flanders, Belgium). 
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Bacteriophages, the most abundant biological entities on Earth, are well known for 

their therapeutic applicability, but their effect on the human immune system is less 

known. Here we describe an RNA transcriptome analysis of peripheral blood 

mononuclear cells stimulated either with P. aeruginosa phage PNM or its bacterial 

host P. aeruginosa strain 573. P. aeruginosa phage PNM was able to increase the 

production of IL10, IL6, SOCS1, SOCS3, CXCL2, CXCL3, CXCL6 and decrease the 

production of lysozyme, HLA-DMA, HLA-DMB, HLA-DRB1 and HLA-DRB4, 

CCL17, CCR1, CCR2 and CCR5. P. aeruginosa strain 573 on the other hand was 

able to down-regulate the production of CD14, TLR4 and lysozyme. The results 

shown here indicate that bacteriophages might play a bigger role in the immune 

response triggered during phage therapy than previously described and might have 

a broader effect than the clearing of bacterial infections alone, such as the 

suppression of the immune response. 

The use of phage therapy has persisted without interruption in Eastern Europe, 

particularly in centers such as the Eliava Institute of Bacteriophage, Microbiology 

and Virology in Tbilisi, Georgia and the institute of Immunology and Experimental 

Therapy in Wroclaw, Poland (Housby and Mann, 2009; Kutter and Sulakvelidze, 

2004). Phage interactions with animals in general and human beings in particular 

have been comprehensively reviewed (Kutter and Sulakvelidze, 2004), and there 

have been no reports of significant adverse reactions despite their long history of 

administration to humans.  

Viruses and their components are potent activators of signal pathways leading to 

increased cytokine and chemokine production in human and in animals. The effects 

exerted on the immune system are usually mediated by viral proteins, which 

stimulate cytokine and/or reactive oxygen species (ROS) production in immune cells 

(Thannickal and Fanburg, 2000). Efficacy of phage therapy has been confirmed in 

various bacterial infections caused by, e.g. methicillin-resistant Staphylococcus 

aureus (MRSA) (Capparelli et al., 2007; Mann, 2008; Matsuzaki et al., 2003), 

Pseudomonas aeruginosa (Debarbieux et al., 2010; Watanabe et al., 2007) and 

Escherichia coli, in a number of research centers (Bruttin and Brüssow, 2005; 

Międzybrodzki et al., 2012). Complementary to the progress in phage therapy 

practice, advancement of knowledge about the influence of bacteriophages on the 

mammalian immune system is necessary. Previous studies of bacteriophage 

interaction with the immune system indicated that at least some phages may exert 

immunomodulating effects in mammals, such as an important role in 

transplantation tolerance, the reduction of ROS production, or in the controlling of 

invading pathogens by adhering of phages on mucosal surfaces (Barr et al., 2013; 

Górski and Kniotek, 2006; Górski and Weber-Dąbrowska, 2005; Przerwa et al., 

2006). 
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Although some preliminary data on phage-mediated immunobiological activities 

are available, the exact mechanisms of those interactions remain obscure and 

require further studies. For example, a study by Ochs et al. described the use of 

phage to study immunodeficiency’s in normal and patient populations where high 

concentrations of phages were administered intravenously without any toxic effects, 

despite the potent antigenic properties of this particular phage φX174 (Ochs et al., 

1971). Humoral antibody responses can be mounted to phages that have been used 

to immunize animals at high titers (Inchley and Howard, 1969). It has also been 

shown that phages can inhibit the activation and proliferation of human T cells in 

vitro through an unknown mechanism (Górski et al., 2006b). Since antibodies can 

decrease phage viability dramatically resulting in the loss of antibacterial effects 

(Międzybrodzki et al., 2012; Smith et al., 1987), immunogenicity of phages is one of 

the most important issues that may contribute to the success or failure of 

therapeutic use of bacterial viruses (Górski et al., 2012; Sulakvelidze et al., 2001). 

Thus, several studies have shown that phages can trigger a host immune response 

or can modulate host immunity. 

Here we show a transcriptome analysis of human peripheral blood mononuclear 

cells (PBMCs), derived from one individual, which were stimulated with either P. 

aeruginosa or a P. aeruginosa phage PNM lysate, thus containing bacterial proteins 

but no life active bacteria besides the infectious phage particles. The P. aeruginosa 

phage PNM lysate condition most closely reflects the immunological condition 

obtained during phage therapy, when the phage titer is the highest and only 

bacterial fragments remain. These data suggest that certain immunological 

pathways are activated during/after phage therapy. In addition, it could give a 

better insight in the efficacy of phages during phage therapy. 

An average of 47 million reads was obtained for the unstimulated and stimulated 

PBMCs after cleaning and quality checks were carried out. Out of the total number 

of reads, approximately 85 % (Table 7. 1) could be mapped to the human genome 

(UCSC version hg19) using the short oligonucleotide analysis package (SOAP) 

aligner (SOAP2)(Li et al., 2009). The transcriptome analysis from the unstimulated 

PBMCs versus P. aeruginosa strain 573 revealed a total of 996 up-regulated genes 

and 1377 down-regulated genes compared to the 704 up-regulated and 392 down-

regulated genes when the PBMCs were stimulated with P. aeruginosa phage PNM.  

Comparing both data sets, 359 differentially expressed genes could be identified 

which were exclusively present in the phage PNM stimulated dataset that did not 

appear in the P. aeruginosa strain 573 dataset. Of these 359 differentially expressed 

genes, 319 were up-regulated whereas 40 were down-regulated (Addendum -  
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Table A 2). These genes could be seen as uniquely induced by the phage, although 

further research is needed. 

The functional classification based on the biological process revealed that a 

significant percentage of genes were assigned to immune system response (19.8 %), 

defense response (13.2 %), response to stress (23.2 %) and regulation of cytokine 

production (5.3 %). Molecular functions were assigned to, for a high percentage, 

receptor binding (12.3 %), protein binding (38.2 %), cytokine activity (2.1 %) and 

cytokine receptor binding (3.2 %). For the functional class of cellular components, 

many genes were assigned to membrane (56.2 %). 

Among the biological process terms, a significant percentage of the genes were 

assigned to the immune system processes (16.6 %), response to stimulus (34.9 %), 

defense response (10.5 %) and regulation of cytokine production (4.9 %). Molecular 

functions were assigned to, for a high percentage, protein binding (36.5) and 

receptor binding (10.7 %). For the functional class of cellular components, many 

genes were assigned to membrane (55.9 %), membrane part (47.3 %) and intrinsic 

to membrane (41.2 %). This might indicate that many genes that are differentially 

expressed after stimulation with P. aeruginosa play some role in signal 

transduction. 

Antigens presented on Major Histocompability Complex (MHC) class II are 

typically exogenous proteins that are endocytosed by the antigen-presenting cell 

(APC) or endogenous proteins that reside in the secretory system (Schmid et al., 

2007, ). Analysis of peptides eluted from MHC class II 

molecules revealed that a substantial proportion of natural MHC class II ligands 

(up to 20%) are derived from cytosolic and nuclear proteins (Chicz et al., 1993; 

Dengjel et al., 2005; Dongre et al., 2001). 

The major MHC class II genes HLA-DMA, HLA-DMB, HLA-DRB1 and HLA-DRB4 

were significantly down-regulated after P. aeruginosa phage PNM stimulation. 

Human HLA-DM plays an important role in the induction and/or stabilization of 

MHC class II conformation from which weakly bound peptides are able to dissociate. 

In the absence of HLA-DM, the peptide-editing process fails. This leads to the 

appearance of weakly bound peptides and peptide-MHC class II conformations that 

are structurally immature (Watts, 2004). 

In case of PBMCs stimulated with P. aeruginosa strain 573, our results show that 

most of the genes involved in the antigen presentation by MHC I and MHC II are 
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not differentially expressed, with exception of HLA-DRB4 (Log2 fold change of -

1.00) and HLA-L (Log2 fold change of 1.02). Gao et al. (2010), using an array 

approach for porcine PBMCs, reported MHC class II reduction after LPS 

stimulation.  

The CD1c molecule is also significantly down-regulated (P-value = 8.21E-06) in the 

P. aeruginosa phage PNM dataset, the CD1 molecules are MHC-like proteins that 

bind β2 microglobulin but, in contrast to MHC class I, their principal domain of 

action is in the endocytic pathway (Watts, 2004). Two classes of CD1 proteins can 

be distinguished: those that are recognized by conventional αβ T cells (CD1a–CD1c 

and CD1e) and that present lipid antigens such as mycolic acid and lipopeptides 

from mycobacteria, and CD1d, which is the restricting element for the specific 

subset of cells, usually called NKT cells, that express an invariant Vα14 (mouse) or 

Vα24 (human) T cell receptor and are selected on double-positive thymocytes rather 

than thymic epithelial cells (Bendelac et al., 1995; Brigl and Brenner, 2004; Joyce 

and Van Kaer, 2003). By binding to lipid-based molecules, CD1 proteins diversify 

the range of determinants in foreign pathogens that the immune system can 

recognize. 

These and probably other interactions result in continual cycling of CD1 molecules 

through the endocytic system but with steady-state distributions that broadly place 

CD1a and CD1c in early endosomes, and CD1b and CD1d in late endosome and/or 

lysosomes. Lipid ligand selection is probably controlled by a combination of 

differential CD1 trafficking and by intrinsic binding-site differences among 

different CD1 molecules (Gadola et al., 2002; Zajonc et al., 2003). 

Lipopolysaccharide perception through TLR4 plays an important role in the 

immune response against Gram-negative bacteria, such as the bacterial host of 

phage PNM. We observed a down-regulation of TLR4. Normally TLR4 activation 

induces the secretion of pro-inflammatory molecules such as chemokines and 

cytokines which amplify the response to infection (Feezor et al., 2003; Takeuchi et 

al., 1999). 

Both P. aeruginosa strain 573 and P. aeruginosa phage PNM have the ability to 

down-regulate TLR4, i.e. -3.89 Log2 fold reduction and -1.26 Log2 fold reduction, 

respectively. In addition P. aeruginosa strain 573 was able to down-regulate CD14 

(Log2 fold change of -7.96) and lymphocyte antigen 96, encoded by the LY96 gene 

(Log2 fold change of -2.04), also known as MD2. Both genes play an important role 

as co-receptors of TLR4 in the recognition of Gram-negative LPS. 

 

http://en.wikipedia.org/wiki/Gene
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Furthermore, it is interesting to note that lysozyme is strongly down-regulated 

(Log2 fold change of -7.83) after P. aeruginosa strain 573 stimulation. These data 

suggest that P. aeruginosa has evolved a mechanism to circumvent its LPS 

detection. The precise mechanisms by which the bacteria does this are currently 

unknown to us. 

Besides the differential expression in the MHC class II, many cytokines were up- 

and down-regulated. Of the differentially expressed cytokines, the IL10 family 

cytokines (i.e. IL10, IL19, IL20, IL22, IL24, IL26, IL28A and IL28B) are of 

particular interest for their anti-inflammatory properties and tissue protection. On 

the one hand, these cytokines prevent excessive tissue damage caused by bacterial 

and viral infections as well as pro-inflammatory responses. On the other hand, 

uncontrolled tissue repair processes, such as the wound-healing responses triggered 

by IL20 subfamily cytokines, can result in diseases, such as psoriasis (Ouyang et 

al., 2011). 

IL10, known for its interaction with leukocytes and its anti-inflammatory 

properties, had an up-regulation after P. aeruginosa phage PNM stimulation (Log2 

ratio of 4.32), and after P. aeruginosa strain 573 stimulation (Log2 ratio of 4.28). 

IL10, a TH2 cytokine that inhibits innate and adaptive immune activities, blocks 

the expression of pro-inflammatory cytokines, including TNF, IFN-γ, IL1, IL12, and 

CXC and CC chemokines. The suppression of these cytokines is clearly visible in 

our data. It also suppresses MHC class II and co-stimulatory molecules CD80 and 

CD86 on macrophages, and it inhibits the generation of reactive oxygen and 

nitrogen intermediates from macrophages and neutrophils. Our data indicate a 

slight up-regulation of CD80 (Log2 ratio of 1.66 for P. aeruginosa phage PNM and 

Log2 ratio of 1.64 for P. aeruginosa strain 573) and a down-regulation of CD86 (Log2 

ratio of -1.46 for P. aeruginosa phage PNM and Log2 ratio of -1.75 for P. aeruginosa 

strain 573). 

The IL20 subfamily cytokines, composed of IL19, IL20, IL24 and IL26, primarily 

acts on various epithelial cells and protects these cells from invasion by 

extracellular pathogens such as bacteria and yeast. From this group only IL19 (Log2 

ratio of 3.1 for P. aeruginosa phage PNM and Log2 ratio of 2.77 for P. aeruginosa 

strain 573), IL20 (Log2 ratio of 7.10 for P. aeruginosa phage PNM and Log2 ratio of 

5.65 for P. aeruginosa strain 573) and IL24 (Log2 ratio of 3.22 for P. aeruginosa 

phage PNM and Log2 ratio of 1.1 for P. aeruginosa) were differently expressed. In 

addition, IL20 subfamily cytokines enhance tissue remodeling and wound-healing 

activities, which help to maintain tissue integrity and restore homeostasis of 

epithelial layers during infection and inflammatory responses (Ouyang et al., 2011). 



 

108 

 

IL28A and IL28B, belonging to the type III IFN group were not differentially 

expressed. 

Interleukin-6 (IL6; Log2 ratio of 6.55 for P. aeruginosa phage PNM and a Log2 ratio 

of 6.37 for P. aeruginosa strain 573), originally considered to be a pro-inflammatory 

cytokine, has anti-inflammatory properties (Spooren et al., 2011). For instance, IL6 

inhibits neutrophil accumulation after LPS injection and antagonizes the actions of 

interleukin-1β (IL1β) and tumor necrosis factor-α (TNFα) via induction of the 

soluble IL1 receptor antagonist and the soluble TNFα receptor (Ulich et al., 1991). 

Under certain conditions IL6 obtains anti-inflammatory characteristics in 

macrophages (Yasukawa et al., 2003). Finally, IL6 is crucially involved in the 

induction and regulation of a novel type of T cells, the so-called TH17 cells (named 

after the cytokine IL17 which they produce), which are important players in 

autoimmune reactions. TH17 cells are believed to be important in autoimmune 

responses, whereas Treg cells (from T regulatory cells) are suppressors of 

autoimmune responses and protect against tissue injury. IL6 is crucial for the 

induction of TH17 cells (Bettelli et al., 2006; Veldhoen et al., 2006). The inhibitory 

effect of IL6 and TGFβ was suggested to be due to induction of the anti-

inflammatory cytokine IL10 and the failure to up-regulate pro-inflammatory 

chemokines (Spooren et al., 2011). 

Of particular interest was the up-regulation of pro-inflammatory cytokines such as 

tumor necrosis factor alpha (TNFα; Log2 ratio of 1.17 and Log2 ratio of 2.77 for P. 

aeruginosa phage PNM and P. aeruginosa strain 573 respectively), interleukin 1β 

(IL1β; Log2 ratio of 4.44 for P. aeruginosa phage PNM and Log2 fold change of 2.01 

for P. aeruginosa strain 573), and IL6, characteristic for the classically activated 

macrophages (M1 phenotype), as well as the up-regulation of anti-inflammatory 

mediators, such as IL1 decoy receptor (IL1RN) – also known as the IL1 receptor 

antagonist (IL1ra; Log2 ratio of 3.78 for P. aeruginosa phage PNM and Log2 ratio 

of 2.50 for P. aeruginosa strain 573) and IL10, associated with alternative 

macrophage activation (M2 phenotype) (Goldmann et al., 2004; Gordon, 2003; 

Mosser, 2003). 

The migration of dendritic cells to tissues and from tissues to lymph nodes is central 

for immune surveillance, priming and tolerance. Monocytes and “immature” 

dendritic cells exit blood in tissues and scavenge for pathogens. These cells express 

the “inflammatory” chemokine receptors CCR1 (Log2 ratio of -1.41 for P. aeruginosa 

phage PNM and Log2 ratio of -6.25 P. aeruginosa strain 573), CCR2 (Log2 ratio of -

3.51 for P. aeruginosa phage PNM and Log2 ratio of -3.31 for P. aeruginosa strain 

573), CCR5 (Log2 ratio of -1.21 for P. aeruginosa phage PNM and Log2 ratio of -2.42 

for P. aeruginosa strain 573), CXCR2 and CCR6 as well as receptors for classical 

chemo-attractants, formyl peptides and C5a/GPR77 (Log2 ratio of -3.85 for P. 

aeruginosa phage PNM and Log2 ratio of -10.24 for P. aeruginosa strain 573) (Cook 
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et al., 2000; Dieu et al., 1998; Mackay, 2001; Sallusto et al., 1998; Sozzani et al., 

1998). One of the ligands of CCR4, CCL17 (thymus- and activation-regulated 

chemokine, or TARC), is expressed in inflamed skin but not mucosal tissues and is 

down-regulated by P. aeruginosa phage PNM and by P. aeruginosa strain 573 (Log2 

ratio of -3.26 and -3.06, respectively) (Mackay, 2001). 

Chemokines are typically induced in either monocytes/macrophages or in epithelial, 

endothelial or fibroblastic cells by pro-inflammatory cytokines (e.g. IL1 or TNFα) or 

stimuli (LPS) (Rossi and Zlotnik, 2000). This is in fact the most common perceived 

role for chemokines, a pro-inflammatory function, frequently associated with a TH1 

cytokine expression profile (IFN-c, IL2, IL12) and thus with a TH1 cell infiltrate at 

the inflammation site. However, not all chemokines fit this pattern. For example, 

other chemokines (e.g. C10, DC-CK1/AMAC-1/PARC) are specifically induced by 

TH2 cytokines (IL 4, IL10, IL13) in monocytes or other cells (Kodelja et al., 1998; 

Orlofsky et al., 1994; Rossi and Zlotnik, 2000). Several chemokine receptors are 

associated with the TH1 phenotype (including CXCR3 and CCR5), while others are 

associated with the TH2 phenotype (CCR3, CCR4, and CCR8) (O’Garra et al., 1998). 

Adaptive immunity begins in lymphoid organs, where mature dendritic cells or 

macrophages present immunogenic peptides to naive or memory T cells. This 

encounter is governed with remarkable precision by two chemokines, CCL19 (Log2 

ratio of 4.33 for P. aeruginosa phage PNM and Log 2 ratio of 6.61 for P. aeruginosa 

strain 573) and CCL21, and their receptor, CCR7 (Charo and Ransohoff, 2006; 

Cyster, 1999, 2003; Sozzani et al., 2000). Once immature dendritic cells ingest 

antigens and become able to present antigens to T cells, they increase their display 

of CCR7 (Mantovani, 1999). These CCR7+ dendritic cells enter lymph nodes through 

the afferent lymph or the bloodstream, using vessel-bound CCL19 and CCL21 to 

sense their destination. The absence of the up-regulation of CCR7 indicates that P. 

aeruginosa phage PNM is not ingested by the dendritic cell and thus no phage 

antigens are presented to T-cells, further experiments need to be performed to 

validate this observation. 

Macrophage inflammatory protein 1α (MIP-1α )/CCL3 chemo-attracts a variety of 

cells, including lymphocytes, monocytes, basophils, and eosinophils (Koch, 2005; 

Szekanecz et al., 2003). MIP-1α /CCL3, produced by CD44 T cells, is augmented by 

IL15 (Log2 ratio of 1.08 for P. aeruginosa phage PNM and Log2 ratio of 1.16 for P. 

aeruginosa strain 573) stimulation (Wang and Liu, 2003). MIP-3α /CCL20 is a CC 

chemokine that chemo-attracts T cells, B cells, monocytes, and immature dendritic 

cells. 

P. aeruginosa phage PNM but also its bacterial host is able to reduce the production 

of CCR1 (Log2 ratio of -1.41 and -6.25, respectively) and CCR2 (Log2 ratio of -3.51 

and -3.31, respectively). The up-regulation of CCR1 and CCR2 are clinical 

indications of rheumatoid arthritis (Charo and Ransohoff, 2006; Katschke et al., 

2001; Matsui et al., 2001; Szekanecz et al., 2003). Manipulation of the CCR2 
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receptor has produced varied outcomes. Antibody-mediated blockade of CCR2 

during initiation of collagen-induced arthritis (CIA) in mice resulted in markedly 

improved clinical signs of arthritis, while blockade during disease progression 

(therapeutic administration) worsened the clinical and histologic signs of arthritis 

(Brühl et al., 2004). Elevated levels of CC chemokines, particularly CCL2 (Log2 

ratio of -6.57 for P. aeruginosa strain 573) and CCL3 (Log2 ratio of 4.52 for P. 

aeruginosa phage PNM and Log2 ratio of 4.01 for P. aeruginosa strain 573) in the 

joints of patients with rheumatoid arthritis coincide with the recruitment of 

monocytes and T cells into synovial tissues. It appears that targeting CCR1/CCR5 

may be useful in experimental arthritis. This indicates that P. aeruginosa phage 

PNM might reduce symptoms associated with rheumatoid arthritis.  

It is interesting to note that P. aeruginosa phage PNM seems to have the ability to 

up-regulate the production of superoxide dismutase 2 (SOD2; Log2 ratio of 2.21), 

which can play an important role in the reduction of ROS, which could lead to a 

possible explanation of the observation of Miedzybrodzki et al. (2008). 

Suppressors of cytokine signaling (SOCS) proteins are a family of intracellular 

proteins that control cytokine signaling by suppressing cytokine signal transduction 

process. In total there are eight members known, SOCS1 to 7 and cytokine-inducible 

SH2-containing protein (CIS). Studies have shown that SOCS1 and 3 specifically 

participate in regulation of TH1 and TH2 cytokine signaling (Diehl and Rincón, 2002; 

Dong et al., 2009). SOCS1 (Log2 ratio of 1.87 for P. aeruginosa phage PNM and Log2 

ratio of 1.40 for P. aeruginosa strain 573) is a key modulator of interferon-γ (IFN-γ) 

signaling. Mice lacking SOCS1 exhibit deregulated responses to IFN-γ resulting in 

excessive T-cell activation and are hyper-responsive to viral infections (Alexander 

et al., 1999; Marine et al., 1999). SOCS3 (Log2 ratio of 2.02 for P. aeruginosa phage 

PNM, no differential expression for P. aeruginosa strain 573) functions to control 

IL6 induced TH2 associated response via its receptor gp130 (Lang et al., 2003). In 

macrophages, SOCS3 mediates IL10 inhibition of TNFα and nitric oxide production 

(Qasimi et al., 2006). Induction of SOCS3 is regulated via IL6 receptor trans-

signaling. The observation of increased IL10 in SOCS3 over-expressed trophoblast 

after IL6 challenge is in line with the concept of the pro-inflammatory role of IL6 in 

trophoblasts and SOCS3 signaling in regulation with cytokine production 

(Egwuagu et al., 2002). 

Both SOCS1 and 3 can inhibit JAK tryrosine kinase activity and can thus interfere 

with cytokine signaling (Kubo et al., 2003). It has been suggested that SOCS3 

negatively regulates IL6, which regulates macrophage activation, B cell 

development, the production of hepatic acute-phase proteins and the initiation of 

organ repair (Bernad et al., 1994; Croker et al., 2003; Ramsay et al., 1994). 

Expression of SOCS3 is induced by numerous factors including Toll-like receptors 

(TLR) agonists (e.g. LPS or CpG-DNA), IL10, IL6 and other gp130/IL6ST signaling 
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cytokines, leptin and IFN-γ (Cassatella et al., 1999; Lang et al., 2003). The Socs3 

gene has also been shown to be a direct target of STAT3 (Auernhammer et al., 1999). 

These properties suggest that SOCS3 may broadly regulate cytokine signaling and 

might be a chief factor in reducing inflammation, particularly in activated 

macrophages (Lang et al., 2003). 

The IL10-mediated induction of SOCS3 in macrophages has led to the notion that 

SOCS3 is an essential component of the anti-inflammatory effects mediated by IL10 

(Berlato et al., 2002). Recent studies have established strong potential for SOCS 

proteins to regulate M1 and M2 macrophage polarization (Arnold et al., 2014; Qin 

et al., 2012; Whyte et al., 2011; Wilson, 2014). Overall it is proposed that a high 

SOCS1 to SOCS3 ratio could be a potential marker for M2 macrophages while high 

SOCS3 expression is associated with M1 cells (Wilson, 2014). It is clear that SOCS3 

is higher expressed than SOCS1, indicating that the immune response induced by 

P. aeruginosa phage PNM is most likely associated with M1 macrophages. 

However, it is not only macrophages that are affected by SOCS proteins. Other cell 

types up-regulate and react to SOCS proteins to shape cellular functions. Targeting 

SOCS specifically on macrophages is therefore important as an efficient means of 

changing the inflammatory response (Wilson, 2014). 

Our results clearly show that P. aeruginosa phage PNM induces an immune 

response (e.g. the expression of TGFBI, IL1 and IL6 after 20 h stimulation of 

PBMCs), which we further evaluate in using highly purified phages. We 

show that this phage in a phage therapy setting (i.e. in the presence of bacterial 

proteins and membrane fragments) is able to interact with human immune cells 

and induce an immune response (such as the induction of IL6, IL10, SOD2, SOCS1 

and SOCS3).  

The group of Gorski and Dąbrowska have recently shown that the T4 phage head 

surface proteins gp23*, gp24*, Hoc and Soc, both as elements of the phage capsid 

and as isolated agents, do not induce an IL10 response (Dąbrowska et al., 2014a; 

Miernikiewicz et al., 2013). Nor did they detect the presence of pro-inflammatory 

cytokines such as TNFα, IL1 and IL6 in mice, murine dendritic cell cultures or 

human blood. In contrary to what we show, they postulated (based on their findings) 

that bacteriophages do not induce an immune response. This difference in results 

might be explained in two ways, first by the use of different incubation times (where 

we used 20 h as a stimulation time), and second by the use of different detection 

platforms (i.e. gene expression compared to physiological secretion of cytokines). 

Although the up-regulation of certain genes does not necessarily mean the secretion 

of an active protein or the induction of a biological effect, it does indicate the 

potential of phages to interact with the mammalian immune system. 
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On the other hand, they did observe the presence of specific T4-antibodies, 

indicating prior exposure to this phage. This exposure could occur due to the fact 

that phages are present in food, water and as a natural part of the animal and 

human gut microbiome (Letarov and Kulikov, 2009). 

Recently Liu et al. (2014) showed that phage λ has a physical adaptation to the 

environment of E. coli in a human host. The phage λ genome undergoes a solid-to-

fluid-like disordering transition as function of temperature, resulting locally in less 

densely packed DNA, reducing DNA-DNA repulsions. Once phage λ is inside the 

host, the increased temperature induces the necessary mobility of the viral genome, 

facilitating its infection of bacterial cells. This demonstrates an evolutionary 

physical adaptation of viruses to their host environment (Liu et al., 2014). It can 

thus be speculated that phages that infect bacteria present in a mammalian host 

might have numerous adaptations, which leads to their survival and multiplications 

in a mammalian host. 

Although bacteriophages, viruses of bacteria, are mainly known for their 

relationship with bacteria, they are clearly able to interact with a broader range of 

eukaryotic cells. It is clear that although phages are known for almost one hundred 

years, not all is known of these bacterial viruses and further research into this field 

is warranted. 

Pseudomonas aeruginosa strain 573 (received from the Eliava IBMV, Tbilisi, 

Georgia) was grown on a Lysogeny Broth (LB) agar plate (Becton Dickinson, 

Erembodegem, Belgium) and incubated overnight at 37 °C. One colony was 

subsequently used to inoculate a 15 ml tube containing a 4 ml LB agar slant, and 

incubated overnight at 37 °C. Five ml saline was added to yield a suspension with 

a final concentration of 107 cfu/ml, as confirmed by culture of serial hundredfold 

dilutions.  

 Bacteriophage stocks were prepared using the double-agar 

overlay method as described in Merabishvili et al. (2009). Briefly, one ml of phage 

preparation containing 106 plaque forming units (pfu) of bacteriophages was mixed 

with 3 ml of molten (45 °C) LB top Bacto agar (0.6 %) (Becton Dickinson) and 100 

µl of the host strain suspension (end concentration of 107 cfu/ml) in a sterile 14 ml 

tube (Falcon, Becton Dickinson). This mixture was plated onto freshly made 90 mm 

diameter Petri dishes (Plastiques Gosselin, Menen, Belgium), filled with a bottom 

layer (20 ml) of 1.5 % LB agar, and incubated aerobically at 32 °C for 16 h. 

Subsequently, 200 µl of chloroform was added to the lids of the Petri dishes and the 

inverted plates were further incubated at 4 °C for 1 h. The top layer of the double-
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agar layer was scraped off using a sterile Drigalski spatulum and transferred to a 

sterile 50 ml tube. 

The harvested phages were centrifuged for 20 min at 6,000 x g at 4 °C. The 

supernatant was aspirated using a sterile 10 ml syringe (BD Plastipak, Becton 

Dickinson) with a 30 G sterile needle (BD Microlance 3, Becton Dickinson) and 

passed through a 0.22 µm membrane filter (Sartorius Stedim, Zellik, Belgium). The 

filtrate was subsequently centrifuged at 35,000 x g for one hour. The phage pellet 

was resuspended in 5 ml saline and stored at 4 °C overnight before determining the 

phage titer. Preferably, the titer of the phage lysate should be checked at least one 

day later according to the above described procedures. This will allow phage 

particles that may have clumped together during centrifugation steps to disengage 

(Kutter and Sulakvelidze, 2004). 

 The bacteriophage titer was determined by assaying 

decinormal serial dilutions (log(0) to log(-12)) of the bacteriophage suspension with 

the overlay method (Merabishvili et al., 2009). One ml of each dilution was mixed 

with 3 ml of molten (45 °C) LB 0.6 % top Bacto agar and the host strain (end 

concentration of 107 cfu/ml) in a sterile 14 ml tube. This mixture was plated in 

triplicate onto 90 mm diameter Petri dishes, filled with a bottom layer of 1.5 % LB 

agar, and incubated for 16 h at 37 °C. To determine the original bacteriophage 

concentration, plates with one to 100 distinguishable plaques were counted. The 

mean was then calculated for the triplicate plates. 

Peripheral Blood Mononuclear Cells (PBMCs) were isolated from a buffycoat after 

informed consent (Blood Transfusion Centre, Ghent), using a Lymphoprep (Axis-

Shield, Dundee, Scotland) gradient. Fifty ml of the buffycoat was added to 250 ml 

Hank’s Balanced Salt Solution, without Ca2+ and Mg2+ (HBSS) (Invitrogen). Of this 

dilution, eight aliquots of 35 ml were each added to 15 ml Lymphoprep in a 50 ml 

Falcon tube. These mixtures were subsequently centrifuged at 500 x g for 20 min at 

room temperature. The inner whitish ring of PBMCs, present between the 

lymphoprep and the plasma phase, was transferred to 25 ml HBSS and centrifuged 

at 450 x g for 10 min at room temperature. The supernatants was removed and the 

cell pellet was resuspended in 10 ml HBSS. All resuspended cells were pooled into 

a 50 ml Falcon tube and HBSS was added to a total volume of 50 ml. A small fraction 

of this cell solution was used to count the number of cells present, before it was 

centrifuged again at 350 x g for 10 min at room temperature.  

The total number of cells was counted using a Sysmex KX-21 (Sysmex, Norderstedt, 

Germany). The cell pellet was resuspended in heat-inactivated fetal calf serum with 

10 % dimethyl sulfoxide (DMSO) to a concentration of 2 x 107 cells/ml and divided 

in 1 ml aliquots before cryostorage them in liquid nitrogen.  
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Stimulations were performed in 100 µl volumes containing 106 PBMCs. One vial of 

stored PBMCs, containing 2 x 107 cells/ml, was thawed at 37 °C prior to adding 9 

ml HBSS (without Ca2+ and Mg2+). This suspension was subsequently centrifuged 

at 350 x g for 10 min. The obtained cell pellet was resuspended in 5 ml HBSS 

(without Ca2+ and Mg2+) and 80 µl was used for cell counting on a Sysmex KX-21. 

This cell suspension was centrifuged at 350 x g for 10 min. The resulting cell pellet 

was resuspended in RPMI 1640 (supplemented with 2 mM L-glutamic acid, 1X 

MEM non-essential amino acids, 1 mM sodium pyruvate, 60 U of penicillin/ml, 10 

mg/ml streptomycin, 2 mM L-glutamine and 10 % heat inactivated fetal calf serum) 

to a final concentration of 107 cells/ml (Moore et al., 1967). 

The PBMCs (i.e. 106 PBMCs/100 µl) were subsequently stimulated with 10 µl of the 

bacterial host (i.e. P. aeruginosa at a concentration of 107 cfu/ml or 10-1 cfu/PBMC), 

10 µl of the phage suspensions at concentrations between 1011 pfu/ml, i.e., 103 

pfu/PBMC. As a negative control, 10 µl saline was added to the cells. The PBMCs 

were incubated for 20 h at 37 °C in 5 % CO2. All stimulation experiments and 

controls were carried out on PBMCs derived from one anonymous donor in 

triplicate. We confirm that all methods were carried out in accordance to relevant 

guidelines and regulations and that all experimental protocols were approved by 

the ethical committee of Ghent University (EC/2017/0558). 

 After 20 h of PBMC stimulation, the total cell volume 

was transferred to 1 ml Qiazol (Qiagen, Valencia, CA) and stored at -80 °C for at 

least 16 h before extracting the RNA. The total RNA fraction was isolated using a 

semi-automated procedure of NucliSens EasyMag (Biomérieux, Marcy l’Étoile, 

France). Briefly, 900 µl EasyMag lysis buffer was added to the 1.1 ml Qiazol 

solution. This mixture was subsequently transferred to an NucliSens EasyMag 

cartridge. Finally, 100 µl magnetized silica was added and the cartridge was loaded 

on the machine (according to the manufacturer). In a final step, the nucleic acids 

were eluted with 35 µl NucliSens EasyMag elution buffer. 

 DNase digest was performed immediately after nucleic acid extraction 

to remove DNA from the sample. Five µl of the nucleic extract was added to one µl 

of DNase (1 U/µl), one µl 10X DNase reaction buffer (Promega, Mannheim, 

Germany) and three µl of RNase free H2O to make up a total volume of 10 µl. This 

mixture was incubated for 30 min at 37 °C. The DNase digestion was terminated by 

adding 1 µl of DNase Stop Solution and incubating the mixture at 65 °C for 10 min. 

DNase digested RNA samples were stored at -80 °C.  

 cDNA preparation and Illumina HiSeqTM 

sequencing was performed at the Beijing Genome Institute (BGI) as described by 

Ren et al. (2012). The cDNA libraries were prepared according to the manufacturer’s 

instructions (Illumina, San Diego, CA). Beads coated with oligo(dT) were used to 

isolate eukaryotic poly(A) mRNA from the total RNA. Purified mRNA was then 
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fragmented in RNA fragmentation buffer (Ambion, Austin, TX). Using these short 

fragments as templates, random hexamer-primers (Illumina) were used to 

synthesize the first-strand cDNA. The second-strand cDNA was synthesized using 

buffer, dNTPs, RNase H and DNA polymerase I. Short double-stranded cDNA 

fragments were purified with a QIAquick PCR extraction kit (Qiagen) and eluted 

with elution buffer for end repair and the addition of a terminal ‘A’ nucleotide. Next, 

Illumina sequencing adaptors were ligated to the DNA fragments. DNA fragments 

of a selected size were gel-purified and amplified by PCR. The amplified library was 

sequenced on an Illumina HiSeqTM 2000 sequencing machine at BGI, using single-

end sequencing with an expected library size of 160 bp and a read length of 90 nt. 

 The images generated by the sequencer 

were converted into nucleotide sequences by a base-calling pipeline. The raw reads 

were saved in fastq format, and the dirty raw reads were removed prior to analyzing 

the data. Dirty raw reads were removed according to the following criteria: reads 

with sequence adaptors, reads with more than 10 % ‘N’ bases; low quality reads (i.e. 

the percentage of low quality bases is over 50 % in a read, BGI defined the low 

quality base to be the base whose sequencing quality is no more than 10). All 

subsequent analyses were based on clean reads. 

The reference sequences used were human genome and transcriptome sequences 

downloaded from the UCSC website (version hg19). Clean reads were respectively 

aligned to the reference genome and transcriptome using SOAP2 (Li et al., 2009). 

No more than three mismatches were allowed in the alignment for each read. Reads 

that could be uniquely mapped to a gene were used to calculate the expression level. 

The gene expression level was measured by the number of uniquely mapped reads 

per kilobase of exon region per million mappable reads (RPKM) (Mortazavi et al., 

2008).  

 Using ‘The significance of digital gene 

expression profiles’ (Audic and Claverie, 1997), differentially expressed genes 

between P. aeruginosa-stimulated PBMCs and non-stimulated PBMCs were 

identified, based on the following criteria: False Discovery Rate (FDR) ≤ 0.001 and 

an absolute fold change ≥ 2. The data discussed have been deposited in NCBI's Gene 

Expression Omnibus (Edgar et al., 2002) and are accessible through GEO Series 

accession number GSE95573 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= 

GSE95573).  

 Based on the assumption that genes that have 

a similar expression pattern usually have a functional correlation, cluster analysis 

of gene expression patterns was performed using the cluster (Langmead et al., 2009) 

and javaTreeview (Saldanha, 2004) software.  

 The gene ontology analysis of DEGs was performed 

by a GO enrichment analysis, which provides all GO terms that are significantly 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=%20GSE95573
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=%20GSE95573
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enriched in a list of DEGs by comparing to a genome background and subsequent 

filtering the DEGs that correspond to specific biological functions. In this method 

all DEGs are first mapped to GO terms in the GO database 

(http://www.geneontology.org ), calculating gene numbers for every term, then 

using hypergeometic tests to find significantly enriched GO terms in the input list 

of DEGs, based on ‘GE::TermFinder’ (http://smd.stanford.edu/help/GO-

TermFinder/GO_TermFinder_help.shtml). 

 

 

http://smd.stanford.edu/help/GO-TermFinder/GO_TermFinder_help.shtml
http://smd.stanford.edu/help/GO-TermFinder/GO_TermFinder_help.shtml
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The ability of bacteriophages to kill bacteria is well known, as is their potential use as 
alternatives to antibiotics. As such, bacteriophages reach high doses locally through infection 
of their bacterial host in the human body. In this study we assessed the gene expression profile 
of peripheral blood monocytes from six donors for twelve immunity-related genes (i.e. CD14, 
CXCL1, CXCL5, IL1A, IL1B, IL1RN, IL6, IL10, LYZ, SOCS3, TGFBI and TNFA) induced by 
Staphylococcus aureus phage ISP and four Pseudomonas aeruginosa phages (i.e. PNM, LUZ19, 
14-1 and GE-vB_Pae-Kakheti25). The phages were able to induce clear and reproducible 
immune responses. Moreover, the overall immune response was very comparable for all five 
phages: down-regulation of LYZ and TGFBI, and up-regulation of CXCL1, CXCL5, IL1A, IL1B, 
IL1RN, IL6, SOCS3 and TNFA. The observed immune response was shown to be endotoxin-
independent and predominantly anti-inflammatory. Addition of endotoxins to the highly 
purified phages did not cause an immune response comparable to the one induced by the 
(endotoxin containing) phage lysate. In addition, the use of an intermediate level of endotoxins 
tipped the immune response to a more anti-inflammatory response, i.e. up-regulation of IL1RN 
and a strongly reduced expression of CXCL1 and CXCL5. 

We show that bacteriophages are able to induce an (innate) immune response, in 

contrast to some other recent reports. Additionally, we have strong indications that 

the phage-induced response is overall anti-inflammatory, which may contribute to 

the beneficial therapeutic effects of phages during phage therapy. 

Bacteriophages are the most abundant entities on Earth, impacting ecological 

niches ranging from the ocean to the gut microbiome (Focà et al., 2015; Hofer, 2013; 

Mills et al., 2013; Suttle, 2005; Weinbauer, 2004). Furthermore, it is known that 

phages are immensely specific towards a specific bacterial host without infecting 

other bacterial strains. Moreover, there is currently no data available on phages 

infecting eukaryotic cells. This makes them ideal candidates to treat bacterial 

infections, while being harmless to mammalian cells and even non-target bacteria 

(Thiel, 2004).  

Bacteria that inhabit the intestine and skin are generally regarded as stable 

residents that may confer metabolic and/or immune benefits to their hosts 

(Turnbaugh et al., 2009). The host immune system has evolved mechanisms to 

tolerate these commensal organisms while at the same time providing protection 

for the host from pathogens (Moon and Stappenbeck, 2012). Similarly, metagenomic 

studies have revealed that a vast variety of bacteriophages are associated with 

healthy human tissues (Minot et al., 2011; Pride et al., 2012; Reyes et al., 2010). In 
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case of phages, a persistent nonpathogenic association seems possible as viral 

replication occurs only in bacterial hosts, which can themselves be stable members 

of the microbiome (Duerkop and Hooper, 2013).  

It has been demonstrated that oral uptake of phages by animals results in the 

translocation of phages to systemic tissues (Duerr et al., 2004; Hamzeh-Mivehroud 

et al., 2008). This suggests that mammals have mechanisms for the uptake and 

delivery of phages from the gut to the blood. The contact between systemic tissues 

and phages may allow intestinal phages to elicit innate and adaptive immune 

responses. One possible uptake route involves dendritic cells, which are known to 

sample intestinal luminal contents and can actively phagocytize phage particles in 

culture (Barfoot et al., 1989; Rescigno et al., 2001). It is also interesting to consider 

whether phages might elicit antiviral innate immune responses. Mammalian cells 

are endowed with the ability to detect viral nucleic acids through several pattern-

recognition receptors that are positioned to detect viral entry into cells (Duerkop 

and Hooper, 2013). 

A study performed by Weber-Dąbrowska et al. (2000) demonstrated that phage 

therapy can normalize TNFα serum levels and the production of TNFα and IL6 by 

blood cell cultures. Miernikiewicz et al. (2013) performed an extensive study of the 

immunological effects of phage T4 and its head surface proteins. They found that 

phage T4 and its surface proteins gp23*, gp24*, Hoc and Soc did not affect 

production of the inflammatory cytokine and ROS production. Recently Majewska 

et al. (2015) followed the antibody production (i.e. IgM, IgG and secretory IgA) after 

oral application of phage T4 to mice. However, the orally applied phage T4 induced 

anti-phage antibodies only after a combination of long exposure times (i.e. IgG day 

36 and IgA day 79) and high doses.  

The use of phage therapy has persisted without interruption in Eastern Europe, 

particularly in centers such as the Eliava Institute of Bacteriophage, Microbiology 

and Virology in Tbilisi, Georgia and the Institute of Immunology and Experimental 

Therapy in Wroclaw, Poland (Housby and Mann, 2009; Kutter and Sulakvelidze, 

2004). Phage interactions with animals in general and human beings in particular 

have been comprehensively reviewed (Kutter and Sulakvelidze, 2004), and there 

have been no reports of significant adverse reactions despite their long history of 

administration to humans.  

Here, we report on the immune response induced by individual (highly purified) 

phages. It has previously been described that CsCl gradient ultra-centrifuged 

phages are free from residual DNA, RNA and bacterial proteins released during the 

lysis of the bacterial cell (Reddy et al., 1988). Hence, the immune responses observed 

in our study are induced by the phages. We previously conducted a whole 

transcriptome analysis of human peripheral blood mononuclear cells (PBMCs) 

stimulated with either P. aeruginosa or a P. aeruginosa phage PNM lysate (

). The P. aeruginosa phage PNM lysate condition most closely reflects the 

immunological condition obtained during phage therapy, when the phage titer is 
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the highest and predominantly bacterial fragments, from the lysed bacterial cells, 

remain. These data suggest that certain immunological pathways are activated 

during and/or after phage therapy and may contribute to the efficacy of phages 

during phage therapy. Next, to understand to what extent the phage particles 

interact with the human immune system, the immune response induced by two 

different phage purification strategies (i.e. either a phage lysate or a highly purified 

phage) was compared. Using twelve immunity-related genes, the immune response 

induced by five different phages were compared, four infecting P. aeruginosa and 

one S. aureus phage. These five phages represent the three major phage 

morphologies (Table 8. 1). This might give us an idea whether the immune response 

might be phage host specific or phage morphology dependent.  

Stimulation of PBMCs, derived from six donors (each stimulated in triplicate), with 

either an S. aureus phage ISP lysate, the highly purified phage ISP (undiluted and 

100-fold diluted), or the S. aureus host strain showed that the immune response 

within each condition was highly reproducible (Figure 8. 1). Diluting the highly 

purified phage ISP led to an almost complete reduction of the observed immune 

response, with the exception of TNFA and CXCL5 which have the same induction 

as the undiluted phage and IL1B and CXCL1 which are both up-regulated but are 

significantly different from the undiluted phage condition, i.e. up-regulated but 

significantly less strong than the undiluted phage. These clear titration effects 

indicate that sufficiently high phage titers (i.e. ≥ 103 pfu/PBMC) are necessary in 

order to induce an immune response. 

Interestingly, the highly purified phage ISP induced an almost identical response 

as its bacterial host strain (except for CXCL5, IL1RN, IL6 and IL10), whereas the 

phage lysate, still containing bacterial contamination, induced a much weaker 

overall response (except for CXCL1, CXCL5, IL1B, IL1RN and TNFA). The highly 

purified phage ISP significantly (p-value < 0.05) up-regulates the CXCL1, IL1A, 

IL1B, IL1RN, IL6 and TNFA genes and down-regulates CD14, LYZ and TGFBI 

compared to the phage lysate. 

The immune response induced by the phage and its bacterial host (i.e. S. aureus 

strain 6538) also shows a strong down-regulation of the LYZ gene expression, in 

agreement with the transcriptome results (Figure 8. 1). The values between the 

transcriptome analyses and RT-qPCR were consistent (R² = 0.88). 
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To determine whether the observed immune response was induced by the 

bacteriophage rather than by possible endotoxin contamination present in the 

phage lysate or purified phage (Table 8. 1), PBMCs were stimulated with either S. 

aureus phage ISP alone, i.e. completely endotoxin free (Table 8. 1), at concentrations 

of 103 pfu/PBMC, or in combination with different concentrations of a commercial 

endotoxin preparation (i.e. 10-1, 10-3 or 10-7 EU/ PBMC). 

The addition of up to 10-1 EU/PBMC to 103 pfu/PBMC of S. aureus phage ISP did 

not lead to a significant difference in the immune response as induced by the phage 

alone (Figure 8. 2 A - C). However, the immune response induced by phage ISP at 

103 pfu/PBMC (with or without endotoxins) differed significantly (p-value < 0.05) 

from the immune response induced by the endotoxins alone, for CXCL5, LYZ, 

TGFBI and TNFA. The combination of phage with endotoxins led to a stronger up-

regulation of TNFA or stronger down-regulation of LYZ and TGFBI in comparison 

with endotoxins alone, whereas the expression of CXCL5 was reduced compared to 

endotoxin alone when a combination of phage ISP with endotoxins was used. 

Lowering the endotoxin concentration added to phage ISP from 10-1 EU/PBMC to 

10-3 EU/PBMC, resulted in a significant difference (p-value <0.05) in the gene 

expression of CXCL1, CXCL5, IL1RN, LYZ, TNFA and TGFBI, between the phage 

ISP with endotoxins (i.e. 103 pfu and 10-3 EU/PBMC) and endotoxins alone (i.e. 10-3 

EU/PBMC). Of particular interest was the down-regulation of CXCL1 and CXCL5 

when stimulation was carried out with both endotoxin and phage compared to 103 

pfu of phage ISP/PBMC alone or 10-3 of EU/PBMC alone (Figure 8. 2B). Further 

reduction of the endotoxin concentration to 10-7 EU/PBMC did not significantly 

differ from the immune response induced by the phage alone, with the exception of 

CXCL1 and IL1A (Figure 8. 2C), which were less expressed when the PBMCs were 

challenged with 10-7 EU/PMBC added to the phage instead of when stimulated by 

the phage alone. 

Lowering the phage concentration from 103 pfu/PBMC to 10 pfu/PBMC, in 

combination with 10-1, 10-3 or 10-7 EU/PBMC led to an immune response more 

similar to the one induced by the endotoxin alone than the one induced by the phage 

alone (Figure 8. 2D – F). 

Comparable to the observations for S. aureus phage ISP, the immune response 

induced by the P. aeruginosa phage PNM lysate (at 105 pfu/PBMC) differs 

significantly (p-value < 0.05) from the one induced by the highly purified phage (at 

105 pfu/PBMC). However, it was the P. aeruginosa phage PNM lysate-induced 

response that was most consistent with the response to its bacterial host strain (10-

1 cfu/PBMC), except for CD14, CXCL5, LYZ and TNFA. A significant difference in 

the induced immune response between the phage lysate and the purified phage 

could be observed for CXCL1, IL1A, IL1B, IL6, TNFA and TGFBI (Figure 8. 3 ). 
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Because this difference could be due to endotoxin contamination, we compared the 

stimulation of the PBMCs with a highly purified phage PNM preparation with the 

addition of endotoxins (i.e. 10-1 EU/PBMC), in order to equalize the endotoxin 

concentration with that of the phage lysate (3 x 10-1 EU/PBMC, Table 8. 1). 

Nonetheless, this did not bring the observed immune response closer to the one 

induced by the phage lysate and even had the opposite effect for e.g. IL1A, IL6 and 

IL10 (Figure 8. 3). This indicates that the difference in immune response induced 

by the highly purified phage compared to the phage lysate is not due to the presence 

of endotoxins in the phage lysate, but rather due to the presence of bacterial 

contaminants (e.g. bacterial DNA or proteins) in the phage lysate. 

All four P. aeruginosa phages [i.e. PNM (105 pfu/PBMC), LUZ19 (105 – 103 

pfu/PBMC), 14-1 (104 – 103 pfu/PBMC and Ge_vB_Pae-Kakheti25 (104 pfu/PBMC)] 

induced a comparable immune response (Figure 8. 4). For all four phages, there is 

a clear difference in the level of the gene expression induced in the PBMCs by the 

stimulation of the phage lysate or the highly purified phage. For all four phages, 

the phage lysate induces a stronger immune response compared to the highly 

purified phage. 

All four P. aeruginosa phages induce IL6 and the anti-inflammatory genes IL1RN, 

IL10 and SOCS3, as well as the pro-inflammatory genes CXCL1, CXCL5, IL1A and 

IL1B. Only the expression of TNFA is different between the four phages, with phage 

PNM and 14-1 inducing a significant slight up-regulation while phages LUZ19 and 

GE_vB_Pae-Kakheti25 induced a down-regulation (Figure 8. 4). Moreover, the 

phage lysates strongly resembled the immune response induced by their bacterial 

host, i.e. P. aeruginosa strain 573. 

Based on the transcriptome analysis described in 

 we were able to show that P. aeruginosa phage PNM does 

activate immunological pathways. Subsequent in depth analysis of twelve selected 

immunity-related genes (Table 8. 3) by means of RT-qPCR confirmed that five 

different bacteriophages, one with a Gram-positive host and four with a Gram-

negative host (Table 8. 1), were able to induce an immune response. Our study 

addressed only the cytokine gene expression level and not the cytokine protein level, 

for several reasons. First, stimulation times for cytokine protein levels are much 

longer (Kranzer et al., 2004; Zelante and Ricciardi-Castagnoli, 2012) and such 

longer stimulation times are not optimal for freshly isolated PBMCs. Furthermore, 

an early response and fluctuations in the response are more rapidly detected at the 

gene transcription level than at changes in protein concentration. 
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We found that for all five phages, the overall immune response (as determined by 

RT-qPCR) is very comparable (Figure 8. 5), but differs from the immune response 

induced by their bacterial host. The observed immune response is in large 

correspondence with the transcriptome analysis. Moreover, the immune response 

induced by a large number of phages (i.e. 103 pfu/PBMC) seems to be endotoxin 

independent, the addition of endotoxins to the highly purified S. aureus phage ISP 

did not subvert the immune response to the one induced by the S. aureus phage ISP 

lysate. Furthermore, the stimulation of PBMCs with either a P. aeruginosa phage 

PNM lysate or a highly purified P. aeruginosa phage PNM preparation 

supplemented with endotoxins in concentration of 10-1 EU/PBMC (Figure 8. 3) did 

not bring the observed immune response closer to the one induced by the phage 

PNM lysate, indicating that the immune response induced by the phage 

preparations is not due to the presence of endotoxins but more due to presence of 

other bacterial components in the phage lysate preparation. Additionally, it has 

recently been shown that Escherichia coli phage T4 gp12 can decrease the immune 

response induced by endotoxins, through the binding of endotoxins to gp12 

(Miernikiewicz et al., 2016). 

Whether phages induce a highly comparable overall immune response or whether 

only specific parts of the immune response are similar needs to be further evaluated, 

as we specifically looked at twelve immunity-related genes. However, the ability of 

these five phages to induce a, largely, similar immune response might be due to the 

modular nature of phage genomes (Bérard et al., 2016). Based on the modular 

nature of phages genomes, it can be hypothesized that phage capsid proteins might 

have similar folds and subsequently induce similar immune responses. For 

instance, it has been shown that gp23 and gp24 of E. coli phage T4 have a similar 

fold as that of the E. coli phage HK97 capsid protein (Fokine and Rossmann, 2014; 

Fokine et al., 2005). Yet a single point mutation can change the serotype of the 

phage. This might also be the case for P. aeruginosa phage PNM and LUZ19, which 

are homologous, yet slightly differ in the induced immune response. 

 

Figure 8. 2: Gene expression analysis of 12 immunity-related genes, assessed by means of 

RT-qPCR, after 20 h of stimulation of PBMCs with Staphylococcus aureus phage ISP in 

combination with endotoxins (i.e. 10-1, 10-3 or 10-7 EU/ml). (A, B, C) 103 pfu/PBMC in 

combination with (A) 10-1 EU/PBMC, (B) 10-3 EU/PBMC or (C) 10--7 EU/PBMC leads to an 

immune response more similar to the one induced by the phage alone. (D, E, F) Reducing the 

phage titer to 10 pfu/PBMC causes the immune response to tilt in the direction of the 

endotoxin-induced immune response instead of the phage induced immune response. 
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At this point, it is difficult to establish whether the phages are predominantly pro- 

or anti-inflammatory, although the phages have the tendency to induce an anti-

inflammatory response, as assessed based on these twelve immunity-related genes 

and on the premise of a sufficiently high phage concentration (i.e. 103 pfu/PBMC). 

It is on the other hand very clear that they do activate several immunological 

pathways (Figure 8. 6).  

The influence of phages on the cytokine mRNA production, as observed in this 

study, may not be all that unexpected, since there are several indications for other 

interactions of phages with human cells. For example, they may play a significant 

role in transplantation as it was shown that in mice they reduce cellular infiltration 

of allogenic skin allografts (Górski et al., 2006b). Phages might do this by inhibiting 

the adhesion of platelets and, to some extent, of T- cells to fibrinogen, a protein 

which plays an important role in transplant rejection, angiogenesis and metastasis 

(Gorski et al., 2003; Kurzȩpa et al., 2009). A more recent study demonstrated that 

bacteriophages are also able to inhibit the production of reactive oxygen species 

(ROS) as part of the response of granulocytes to the presence of bacteria, which may 

be beneficial because overproduction of ROS leads to tissue damage (Miedzybrodzki 

et al., 2008; Przerwa et al., 2006). Another study proved that phages can aid in the 

killing of phagocytosed S. aureus (Kaur et al., 2014). The authors showed that phage 

particles absorbed to the bacterial surface have an impact on the killing of engulfed 

S. aureus inside phagocytic cells (e.g. macrophages) by 38.7 %. Furthermore, it has 

been indicated that phages are able to interact with human mucosal surfaces and 

from a non-host derived immune barrier (Barr et al., 2013, 2015). 

It was recently shown that the surface proteins gp23*, gp24*, Hoc and Soc of phage 

T4 do not induce an IL10 response, neither as elements of the integral phage capsid 

nor as isolated proteins. This is in accordance to our findings for S. aureus phage 

ISP, but not for the P. aeruginosa phages (Dąbrowska et al., 2014a; Miernikiewicz 

et al., 2013). Nor did these authors detect the presence of pro-inflammatory 

cytokines such as TNFA, IL1 and IL6 in mice, murine dendritic cell cultures or 

human blood. Contrary to what we show here, they postulate (based on their 

findings) that bacteriophages do not induce an immune response. This difference in 

results might be explained by the use of different incubation times, since we used 

20 h as a stimulation time (optimal time frame for the detection of IL10 mRNA) 

instead of 5 – 6 h. Another major difference is that they studied an Escherichia coli 

phage (T4), which might suggest a species/phage specific response. 

The up-regulation of IL1RN by all five phages, as shown in our study, is of 

particular interest. All five phages induce the pro-inflammatory cytokines IL1A and 

IL1B, but the simultaneous induction of the anti-inflammatory IL1 receptor 

antagonist (IL1RN) will interfere with the pro-inflammatory IL1 signal and thus 

dampen the IL1 pro-inflammatory response. 
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Figure 8. 3: Effect of endotoxins in the presence P. aeruginosa phage PNM. A| Gene 

expression analysis of 12 immunity-related genes by means of RT-qPCR after 20 h 

of stimulation of PBMCs. PBMCs were stimulated with P. aeruginosa phage PNM, either 

a phage lysate (105 pfu/PBMC; 0.1 EU/PBMC) or a highly purified phage preparation (105 

pfu/PBMC; 10-5 EU/PBMC) in combination with 0.1 EU/PBMC. The pro-inflammatory 

markers IL1A, IL1B, CXCL1 and CXCL5, and the anti-inflammatory markers SOCS3, IL10, 

IL1RN and IL6 are upregulated The addition of 0.1 EU/PBMC to the highly purified P. 

aeruginosa phage preparation does not revert the observed immune response to that of the 

phage lysate for IL10, IL1A, IL6, TNFA and CXCL1. B| Principal components analysis 

of P. aeruginosa phage PNM with or without the addition of endotoxins. The 

immune response induced by the highly purified phage PNM (▪) differs from the one induced 

by the phage PNM lysate (•), as these two groups are visibly separated. When endotoxins 

are added to a final concentration of 0.1 EU/PBMC to the highly purified phage (▪), the 

immune response is similar to the highly purified phage (▪) and not towards the phage lysate 

(•), indicating that the observed difference is not due to the presence of LPS but due to 

bacterial proteins present in the phage lysate 

 

In a previous study, , we showed the 

difficulty to remove endotoxins from phage preparations (Van Belleghem et al., 

2017a), making it impossible to completely remove all endotoxins from high titer P. 

aeruginosa phage preparations. To exclude that the observed immune response for 

the P. aeruginosa phages were, partially, due to incomplete endotoxin removal, we 

compared the response of S. aureus phage ISP, shown to be completely endotoxin-

free with that of ISP phage in combination with three concentrations of endotoxins 

(10-1, 10-3 or 10-7 EU/PBMC ). Our results strongly indicate that the addition of even 

the highest concentration of endotoxins to a high concentration of S. aureus phage 

ISP (103 pfu/PBMC) has no effect on the induced immune response (Figure 8. 2A). 

Intriguingly, when an intermediate level of endotoxins was added, the immune 

response tipped to a more anti-inflammatory response (i.e. an up-regulation of 

IL1RN and a strongly reduced expression of CXCL1 and CXCL5) and differed from 

that after stimulation with the highly purified phage or with only endotoxin. 

The up-regulation of IL1RN (Interleukin-1 Receptor Antagonist) and SOCS3 

(Suppressor of Cytokine Signaling 3) by all five phages, or the down-regulation of 

CXCL1 and CXCL5 by S. aureus phage ISP in addition of endotoxins, might indicate 

that these phages have evolved anti-inflammatory properties while some pro-

inflammatory properties remain (e.g. up-regulation of IL1A, IL1B and TNFA).  
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Figure 8. 5: Principal component analysis (PCA). Comparison of the immune response 

of PBMCs induced by all five tested phages (Highly purified or phage lysate; magenta) and 

their bacterial host strain (blue). The PCA clearly shows that the bacteria (blue) and phages 

(magenta) for two separate groups, indicating that the immune response induced is different 

between these two types of stimuli. There is no clear distinction between the different phages, 

indicating that these five different phages induced similar responses. Moreover the gene 

expression of IL1RN, IL1B and SOCS3, IL6 and IL1A, TNFA and IL10, and LYZ and TGFBI 

are correlated 
 

It could thus be theoretically postulated that by reducing the immune response, 

phages first reduce the chance to be removed from the human body and be degraded. 

Secondly, these responses might promote the survival of their bacterial host which 

in turn provides the phage with a higher fitness and better opportunities to 

proliferate but also to remove the pathogenic bacteria, in case of bacterial infections. 

This could be further argued from the point of view that when the phage 

concentration reaches a certain threshold this could lead to lysis from without. 

When the phage subsequently reduces the immune response and the bacterial 
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concentration rises, the overall phage to bacterial concentration could drop below 

the lysis from without threshold enabling the phages to once again infect the 

bacteria and propagate. With regard to phage therapy, these anti-inflammatory 

effects of phages might increase the capacity of the phages to suppress bacterial 

numbers and thus infections, with the addition of dampening the negative site of 

the inflammatory response. 

Pseudomonas aeruginosa strain 573 (received from the Eliava IBMV, Tbilisi, 

Georgia) and Staphylococcus aureus strain ATCC 6538 were grown on a Lysogeny 

Broth (LB) agar plates (Becton Dickinson, Erembodegem, Belgium) and incubated 

overnight at 37 °C. One colony was subsequently used to inoculate a 15 ml tube 

containing a 4 ml LB agar slant, and incubated again overnight at 37 °C. Five ml 

saline was added to yield a suspension with a final concentration of 107 cfu/ml, as 

confirmed by culture of serial tenfold dilutions.  

 Bacteriophage stocks (Table 8. 1) were prepared using the double-

agar overlay method as described in Merabishvili et al. (2009). Briefly, one ml of 

phage preparation containing 106 plaque forming units (pfu) of bacteriophages was 

mixed with 3 ml of molten (45 °C) LB top Bacto agar (0.6 %) (Becton Dickinson) and 

100 µl of the host strain suspension (end concentration of 107 cfu/ml) in a sterile 14 

ml tube (Falcon, Becton Dickinson). This mixture was plated onto freshly made 90 

mm diameter Petri dishes (Plastiques Gosselin, Menen, Belgium), filled with a 

bottom layer (20 ml) of 1.5 % LB agar, and incubated aerobically at 32 °C for 16 h. 

Subsequently, 200 µl of chloroform was added to the lids of the Petri dishes and the 

inverted plates were further incubated at 4 °C for 1 h. The top layer of the double-

agar layer was scraped off using a sterile Drigalski spatulum and transferred to a 

sterile 50 ml tube. 

Figure 8. 6: Hypothetical representation of the interaction of bacteriophages with 

mammalian immune cells. Phages potentially interact with (currently unknown) immune 

receptors and induce corresponding immune responses. The immune responses induced by 

the bacteriophages can either be pro- of anti-inflammatory. For instance, the tested phages 

are able to induce the pro-inflammatory cytokines IL1α and IL1β. Through the induction of 

IL1RN by the phage, the phage is able to inhibit the pro-inflammatory responses that are 

otherwise induced by these cytokines. Pro-inflammatory cytokines are marked in red (i.e. 

TNFα, IFN-γ, IL1α, IL1β, IL6, IL17, CXCL1 and CXCL5), anti-inflammatory cytokines are 

depicted in green (i.e. TGFβ, IL4, IL10 and IL1RN). Dark orange depicts proteins that play a 

key role in the removal or perception of bacterial pathogens (i.e. CD14 and LYZ). 
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The harvested phages were centrifuged for 20 min at 6,000 x g at 4 °C. The 

supernatant was aspirated using a sterile 10 ml syringe (BD Plastipak, Becton 

Dickinson) with a 30 G sterile needle (BD Microlance 3, Becton Dickinson) and 

passed through a 0.22 µm membrane filter (Sartorius Stedim, Zellik, Belgium). The 

filtrate was subsequently centrifuged at 35,000 x g for one hour. The phage pellet 

was resuspended in 5 ml saline and stored at 4 °C overnight before determining the 

phage titer. Preferably, the titer of the phage lysate should be checked at least one 

day later according to the above described procedures. This will allow phage 

particles that may have clumped together during centrifugation steps to disengage 

(Kutter and Sulakvelidze, 2004). 

 The bacteriophage titer was determined by assaying 

decinormal serial dilutions (log(0) to log(-12)) of the bacteriophage suspension with 

the overlay method (Merabishvili et al., 2009). One ml of each dilution was mixed 

with 3 ml of molten (45 °C) LB 0.6 % top Bacto agar and the host strain (end 

concentration of 107 cfu/ml) in a sterile 14 ml tube. This mixture was plated in 

triplicate onto 90 mm diameter Petri dishes, filled with a bottom layer of 1.5 % LB 

agar, and incubated for 16 h at 37 °C. To determine the original bacteriophage 

concentration, plates with one to 100 distinguishable plaques were counted. The 

mean was then calculated for the triplicate plates. 

 Endotoxins were removed and quantified as described in Van 

Belleghem et al. (2017). Briefly, phage lysates were further purified using CsCl 

centrifugation. Subsequently, endotoxin concentrations were determined using the 

EndoZyme recombinant Factor C (rFC) Assay (Hyglos, Bernried am Starnberger 

See, Germany). For the P. aeruginosa phages, 10-5 – 10-10 EU/pfu remained after the 

CsCl purification. The S. aureus phage ISP contained no endotoxins (Table 8. 1). 

Peripheral Blood Mononuclear Cells (PBMCs) were isolated from a buffycoat after 

informed consent (Blood Transfusion Centre, Ghent), using a Lymphoprep (Axis-

Shield, Dundee, Scotland) gradient. Fifty ml of the buffycoat was added to 250 ml 

Hank’s Balanced Salt Solution, without Ca2+ and Mg2+ (HBSS) (Invitrogen). Of this 

dilution, eight aliquots of 35 ml were each added to 15 ml Lymphoprep in a 50 ml 

Falcon tube. These mixtures were subsequently centrifuged at 500 x g for 20 min at 

room temperature. The inner whitish ring of PBMCs, present between the 

lymphoprep and the plasma phase, was transferred to 25 ml HBSS and centrifuged 

at 450 x g for 10 min at room temperature. The supernatants was removed and the 

cell pellet was resuspended in 10 ml HBSS. All resuspended cells were pooled into 

a 50 ml Falcon tube and HBSS was added to a total volume of 50 ml. A small fraction 

of this cell solution was used to count the number of cells present, before it was 

centrifuged again at 350 x g for 10 min at room temperature.  

The total number of cells was counted using a Sysmex KX-21 (Sysmex, Norderstedt, 

Germany). The cell pellet was resuspended in heat-inactivated fetal calf serum with 
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10 % dimethyl sulfoxide (DMSO) to a concentration of 2 x 107 cells/ml and divided 

in 1 ml aliquots before cryostorage them in liquid nitrogen.  

Stimulations were performed in 100 µl volumes containing 106 PBMCs. One vial of 

stored PBMCs, containing 2 x 107 cells/ml, was thawed at 37 °C prior to adding 9 

ml HBSS (without Ca2+ and Mg2+). This suspension was subsequently centrifuged 

at 350 x g for 10 min. The obtained cell pellet was resuspended in 5 ml HBSS 

(without Ca2+ and Mg2+) and 80 µl was used for cell counting on a Sysmex KX-21. 

This cell suspension was centrifuged at 350 x g for 10 min. The resulting cell pellet 

was resuspended in RPMI 1640 (supplemented with 2 mM L-glutamic acid, 1X 

MEM non-essential amino acids, 1 mM sodium pyruvate, 60 U of penicillin/ml, 10 

mg/ml streptomycin, 2 mM L-glutamine and 10 % heat inactivated fetal calf serum) 

to a final concentration of 107 cells/ml (Moore et al., 1967). 

The PBMCs (i.e. 106 PBMCs/100 µl) were subsequently stimulated with 10 µl of the 

bacterial host (i.e. either P. aeruginosa or S. aureus, at a concentration of 107 cfu/ml, 

i.e., 105 cfu per 106 PBMC or 10-1 cfu/PBMC), 10 µl of the phage suspensions (i.e. 

either a phage lysate or a highly purified (CsCl) phage suspension (Table 8. 1)) at 

concentrations between 1013 and 109 pfu/ml, i.e., 105 or 10 pfu/PBMC, or phage 

suspension in combination with 10 µl endotoxins (commercial preparation derived 

from P. aeruginosa strain 10; Sigma Aldrich) at concentrations of 101, 105 or 107 

Endotoxin units/ml (EU/ml), i.e., 10-1, 10-3 or 10-7 EU/PBMC. As a negative control, 

10 µl saline was added to the cells. The PBMCs were incubated for 20 h at 37 °C in 

5 % CO2. All stimulation experiments and controls were carried out on six biological 

replicates (i.e. anonymous donors) in triplicate. We confirm that all methods were 

carried out in accordance to relevant guidelines and regulations and that all 

experimental protocols were approved by the ethical committee of Ghent University 

(EC/2017/0558). 

 After 20 h of PBMC stimulation, the total cell volume 

was transferred to 1 ml Qiazol (Qiagen, Valencia, CA) and stored at -80 °C for at 

least 16 h before extracting the RNA. The total RNA fraction was isolated using a 

semi-automated procedure of NucliSens EasyMag (Biomérieux, Marcy l’Étoile, 

France). Briefly, 900 µl EasyMag lysis buffer was added to the 1.1 ml Qiazol 

solution. This mixture was subsequently transferred to a NucliSens EasyMag 

cartridge. Finally, 100 µl magnetized silica was added and the cartridge was loaded 

on the machine (according to the manufacturer). In a final step, the nucleic acids 

was eluted with 35 µl NucliSens EasyMag elution buffer. 

 DNase digest was performed immediately after nucleic acid extraction 

to remove DNA from the sample. Five µl of the nucleic extract was added to one µl 

of DNase (1 U/µl), one µl 10X DNase reaction buffer (Promega, Mannheim, 

Germany) and three µl of RNase free H2O to make up a total volume of 10 µl. This 

mixture was incubated for 30 min at 37 °C. The DNase digestion was terminated by 
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adding 1 µl of DNase Stop Solution and incubating the mixture at 65 °C for 10 min. 

DNase digested RNA samples were stored at -80 °C.  

 The cDNA synthesis was preformed using the RevertAid RT kit 

(Thermo Scientific, Waltham, MA) in four times 40 µl volumes according to the 

manufacturer’s instructions. 

 Based on the RNA seq data, twelve target genes were selected for further 

evaluation by RT-qPCR. Combining the datasets of both the phage PNM lysate and 

P. aeruginosa stimulated PBMCs; we observed that a total of 2679 genes were 

uniquely expressed. As a cut-off for qPCR detection, a minimum of 7000 reads was 

selected either in the control condition or after stimulation, to ensure detection in 

the RT-qPCR. This led to a reduction to 418 genes. Furthermore, to detect a 

difference in gene expression in the qPCR, a Log2Fold change difference was needed 

after normalization of the target genes by the reference gene ACTB. This led to a 

further reduction to 176 potential target genes for qPCR-based analysis. From 

these, a total of twelve genes were selected on the basis of their possible importance 

in the immune response, i.e CD14, CXCL1, CXCL5, IL1A, IL1B, IL1RN, IL6, IL10, 

LYZ, SOCS3, TGFBI and TNFA (Table 8. 2). 

The RT-qPCR was performed in a total reaction volume of 10 µl using 0.5 µM of 

each primer (Table 8. 3), 2.5 µl cDNA and LightCycler 480 High resolution Melting 

master (Roche Applied Sciences, Indianapolis, Indiana). 

The selection of the most stable reference gene(s) was carried out as described by 

Vandesompele et al. (2002) using SybrGreen as means of detection. Using geNorm, 

we found that all six reference genes (i.e. ACTB, GADPH, HRPT1, PPIA, TBP and 

UBC; Table 8. 4) are sufficiently stable (internal control gene-stability measure M 

< 1.5). Therefore, the minimal optimal number of reference targets to be used in 

this experiment was 1 (V < 0.15). The mRNA levels are expressed in relative copy 

numbers normalized against the reference gene (ACTB), as described by Giulietti 

et al. (2001) and Samarasinghe et al. (2006). 
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Table 8. 2: Selection of the 12 target genes for further analysis by RT-qPCR.  

Symbol 
# reads 
control 

# reads 
phage PNM 
lysate 

# reads P. 
aeruginosa 
strain 573 

Log2Ratio 
phage PNM 
lysate 

Log2Ratio P. 
aeruginosa 
strain 573 

TGFBI 34300 640 62 -5.68 -9.27 

CD14 134382 NA 594 NA -7.96 

LYZ 42484 3997 206 -3.34 -7.83 

CXCL5 249901 NA 8756 NA -4.97 

IL1B 30961 636519 137021 4.44 2.01 

IL1RN 3167 41322 19681 3.78 2.5 

TNF 2260 4823 16990 1.17 2.77 

IL1A 418 28048 8740 6.15 4.25 

IL10 363 6890 7771 4.32 4.28 

IL6 573 51002 52356 6.55 6.37 

SOCS3 20597 79658 NA 2.02 NA 

CXCL1 20185 152399 NA 2.99 NA 

Selection was based on number of reads in either control of stimulated condition (i.e. phage 

PNM lysate or P. aeruginosa strain PA573) which needs to exceed 6000 and the Log2ratio, 

which needs to be larger than |2|. NA indicated no differential expression for a specific 

condition/gene; hence no number reads were included. 
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Table 8. 3: List of primers used in the RT-qPCR for the validation of the RNA seq.  

Names Sequence (5' - 3') 
Tm 
(°C) 

IL10_F CATCGATTTCTTCCCTGTGAA 45.3 

IL10_R TCTTGGAGCTTATTAAAGGCATTC 47.2 

TNFa_F CCCAGGGACCTCTCTCTAATC 51.2 

TNFa_R ATGGGCTACAGGCTTGTCACT 49.2 

ACTB_F GGATGCAGAAGGAGATCACTG 49.2 

ACTB_R CGATCCACACGGAGTACTTG 62.0 

SOCS3_F GGCCACTCTTCAGCATCTC 60.0 

SOCS3_R ATCGTACTGGTCCAGGAACTC 49.2 

TGFBI_F GAAGGGAGACAATCGCTTTAGC 49.7 

TGFBI_R TGTAGACTCCTTCCCGGTTGAG 51.6 

CD14_F CGCTCCGAGATGCATGTG 58.0 

CD14_R TTGGCTGGCAGTCCTTTAGG 62.0 

LYZ_F AAAACCCCAGGAGCAGTTAAT 45.3 

LYZ_R CAACCCTCTTTGCACAAGCT 60.0 

CXCL5_F ATCTGCAAGTGTTCGCCATAG 47.3 

CXCL5_R ACAAATTTCCTTCCCGTTCTTC 46.0 

IL1B_F GGCCACATTTGGTTCTAAGAAA 46.0 

IL1B_R TAAATAGGGAAGCGGTTGCTC 47.3 

IL1RN_F GAAGATGTGCCTGTCCTGTGT 49.2 

IL1RN_R CGCTCAGGTCAGTGATGTTAA 47.3 

IL1A_F CGCCAATGACTCAGAGGAAGA 49.2 

IL1A_R AGGGCGTCATTCAGGATGAA 60.0 

IL6_F GGTACATCCTCGACGGCATC 64.0 

IL6_R GCCTCTTTGCTGCTTTCACAC 49.2 

CXCL1_F GGAAAGAGAGACACAGCTGCA 49.2 

CXCL1_R AGAAGACTTCTCCTAAGCGATGC 50.2 

The F denotes the forward primer and the R denotes the reverse primer. 
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Table 8. 4: Primers used to determine the most stable reference genes.  

mRNA target Name primer Sequence (5’- 3’) Tm (°C) 

ACTB  ACTB_F GGATGCAGAAGGAGATCACTG 49.2 

   ACTB_R CGATCCACACGGAGTACTTG 62.0 

HPRT1 HPRT1_F TCAGGCAGTATAATCCAAAGATGGT 49.3 

  HPRT1_R AGTCTGGCTTATATCCAACACTTCG  50.9 

UBC UBC_F TCGCAGCCGGGATTTG 52.0 

  UBC_R GCATTGTCAAGTGACGATCACA 47.9 

TBP TBP_F ATGTGAAGTTTCCTATAAGGTTAG 45.4 

  TBP_R AGGAAATAACTCTGGCTCATAAC 46.6 

GAPDH GAPDH_F TCACCACCATGGAGAAGGC  60.0 

  GAPDH_R GCTAAGCAGTTGGTGGTGCA  62.0 

F denotes the forward primer and R denotes the reverse primer. 
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Phages as pharmaceuticals are protein-based, biological agents that actively 

replicate, and even evolve during manufacture or use and that can potentially 

interact with the body’s immune system (Loc-Carrillo and Abedon, 2011). Phages 

may control bacterial infections in two ways. Under active treatment most of the 

bacteria are killed by secondary infections after extensive reproduction and 

transmission of the phage. If the phages do not increase in number, there can still 

be passive treatment in which the initial phage dosage is large enough to inundate 

the bacteria by primary infection alone or by lysis from without, whereby the 

bacterial cell loses its integrity due to membrane damage caused by massive phage 

adherence and penetration. Kinetically, passive treatment can be compared to 

antibiotic treatment, both lacking the advantage of amplification of the 

antibacterial agent, as is the case in active treatment, when secondary phage 

infections do occur (Payne and Jansen, 2000). 

When pharmaceutical agents are active replicating entities, a different set of 

pharmacokinetic principles is needed. Furthermore, these entities can interact, 

replicate and evolve, and demonstrate phenomena unknown in chemical kinetics of 

conventional drugs (Payne and Jansen, 2003). The specific pharmacokinetic 

phenomena expected to occur when actively replicating viruses are used to control 

bacterial infections have been described (Cairns et al., 2009; Kasman et al., 2002; 

Payne and Jansen, 2001, 2003, 2000). In these mathematical models, the rate at 

which a bacterial population declines due to phage infection, the rate at which the 

phage population increases and the levels at which they are maintained depends 

primarily on five parameters: the infectivity of the phage, the latency period, the 

burst size, the rate at which the phages are degraded or removed from the site of 

infection, and the bacterial growth rate. Besides these five parameters, two other 

variables need to be taken into account: the density of susceptible bacteria and the 

density of phage (Levin and Bull, 2004). In summary, these models describe phage 

pharmacodynamics as being analogous to the population dynamics of the phage-

bacterial interaction (Abedon and Thomas-Abedon, 2010), not taking into account 

potential interaction between bacteria and/or phages with the innate or adaptive 

immune response. 

Recently, these mathematical models have been further extended to include the 

mammalian host response towards the phage (Hodyra-Stefaniak et al., 2015). Based 

on experimental data, the authors developed a general scheme of the tripartite 

interactions between bacteriophages, bacteria and mammalian immunity. This 

scheme summarizes the main reciprocal dependencies, specifically the effect that 

limit the bacterial or phage survival, or the effects inducing the activation of the 

immune response (Figure 9. 1). There are three key assumptions on which their 

scheme is based. First, adaptive immunity specific to phages and adaptive 

immunity specific to bacteria have no important cross-talk; second, phages are not 
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able to boost an innate immune response (Miernikiewicz et al., 2013; Park et al., 

2014); and third, the boosted innate immune response acts against the bacteria, but 

at the same time also acts against the phage. These assumptions led to the 

development of a mathematical model based on those previously described by Levin 

and Bull (Levin and Bull, 1996, 2004), and Payne and Jansen (Payne and Jansen, 

2001, 2003). This led to the development of a model with a set of immunology-

representing variables; innate immunity (I), adaptive immunity specific to phages 

(A), and adaptive immunity specific to bacteria (B) (Addendum – Mathematical 

model). 

 

Figure 9. 1: Schematic representation of the immune response against phages and 

bacteria. P – Phage, S – susceptible bacteria, I – innate immunity, A – adaptive immune 

response to phage, B – adaptive immune response to bacteria. Green arrows represent a 

stimulatory effect; red arrows represent an inhibitory effect. Adapted from Hodyra-Stefaniak 

et al. (2015) with the addition of the anti-inflammatory property of the phage (dotted line). 

Abbreviations are further explained in addendum Table A 1. 
 

The Hodyra-Stefaniak in silico model predicts a successful intervention of phages 

in the removal of a bacterial infection when no interaction occurs between the innate 

immunity and the phages (Figure 9. 2A). Similar outcomes were predicted in an in 

silico model developed by Leung and Weitz (2017). This in silico model also does not 

include a direct interaction of phages with the innate immune response, but hints 



144 

 

to the importance of neutrophils in order to remove the remainders of the bacterial 

infection or the occurrence of phage resistant bacteria. The inclusion of the innate 

immunity-representing variable in the Hodyra-Stefaniak in silico model 

(Addendum – Mathematical model) demonstrates that the expected outcome of 

phage therapy could be abrogated by the innate immunity boosted by the bacteria 

(Figure 9. 2B). Moreover, the removal of the phage leads to a second increase in 

bacterial count. Subsequently, the phage therapeutic intervention fails, in contrast 

to phage therapy related data available ( ). According to this model, the 

undesirable effect could be counteracted by adjusting the phage dose or altering the 

timing, as long as the innate immunity is considered (Figure 9. 2D). These in silico 

models could eventually be further optimized, to more closely mimic the 

immunological outcome, by including the innate immune response induced by the 

phage. Whether the phage-induced immune response is dependent on the bacterial 

presence needs to be further evaluated, as such data are limited. 

The Hodyra-Stefaniak and Leung in silico models miss one key feature: the 

interaction of the phage with the innate immune response. This interaction can be 

anti-inflammatory, i.e. a suppression of the immune response, or pro-inflammatory, 

i.e. an increase of the immune response.  

Our results indicate that phages are able to induce innate immune responses and 

more specifically that they have anti-inflammatory properties ( ). Therefore, 

the in silico model of Hodyra-Stefaniak et al. (2015) could be further adapted to 

include an innate component effected by the phages. If the phage has anti-

inflammatory properties, the innate immune response should decrease. This should 

provide the phage with a higher survival rate. Therefore, we suggest to expand the 

equation of the innate immune response (Addendum – mathematical model - 

Equation 3), to include the effect of phages on the innate immune response (XP). We 

propose to divide the initial equation describing the innate immune response (I) into 

two parts (Addendum – Equation 4-9), one part describing the effect of bacteria on 

the innate immune response (XS; Addendum – Equation 4-6) and the other one 

describing the effect of phages on the innate immune response (XP; Addendum – 

Equation 7-9). Furthermore, additional constraints were given to the mathematical 

model. When the phage concentration (P) is larger than the critical phage 

concentration (PC), i.e. the phage concentration needed to induce an anti-

inflammatory response and to reduce the innate immune response, the phage decay 

rate (ϒdP) approaches one.  

Although only limited data are available about the interaction of phages with the 

innate immune response, the modified Hodyra-Stefaniak model more closely 

resembles a real-life outcome, but still forms a hypothetical model. Our adapted 

model thus describes the effect of innate and adaptive immunity on the success or 
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failure of phage antibacterial treatment, taking into account the anti-inflammatory 

nature of the phage (Figure 9. 2C, E, G and I). By including the anti-inflammatory 

property of phages to the innate immunity equation the prediction of the phage 

therapeutic outcome becomes successful again (Figure 9. 2C), in contrary to what 

the initial model predicts (Figure 9. 2B). The phage is able to subdue the innate 

immune response, subverting its rapid removal and hence clears the bacterial 

infection. When a bacterial infection is combated with an initial high phage dose, 

the effects of the innate immune response are negligible (Figure 9. 2D and E). Yet, 

if the phage has anti-inflammatory properties, the bacterial clearance occurs much 

faster. Nevertheless, if anti-phage antibodies are present prior to the phage 

therapeutic intervention, the intervention fails as the phages are rapidly removed 

(Figure 9. 2F and G).  

When no pre-immunization is present, and no anti-inflammatory phage properties 

are taken into account, the removal of the bacterial infection is attributed to the 

adaptive immune response against the bacteria (Figure 9. 2H). Initially the phages 

lead to a reduction of the bacterial count, but are themselves removed by a 

combination of the innate and adaptive immune response towards the phage. This 

leads to a second rise in the bacterial concentration. In a later stage the bacterial 

infection is removed by the adaptive immune response directed against the bacteria, 

hence the clearance of the bacterial infection is not due to the presence of the phage 

but due to the adaptive immune response against the bacteria. When assuming 

anti-inflammatory properties of the phages, the bacterial infection is cleared much 

faster and is attributed to the presence of the phage (Figure 9. 2I). 

The expanded hypothetical model clearly shows that, although the adaptive 

immunity is an important factor in the success or failure of phage antibacterial 

therapy, the anti-inflammatory properties of the phage could explain why the 

treatment of a bacterial infection is successful (Figure 9. 2C and I). Additionally, 

our model predicts that an anti-inflammatory effect of phage is necessary (Figure 

9. 2C and I), otherwise phage therapy could not be successful (Figure 9. 2B and H). 

We can conclude that phages have an effect on the human immune response, but 

this is often overshadowed by the negative effects induced by the bacterial infection.
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Figure 9. 2: Effects of innate and adaptive immunity on the success or failure of 

phage antibacterial treatment, numerical simulations. Innate immune response. 

A| No relation between innate immunity and phage viability. The survival of the 

phage is independent of the presence of an innate immune response. B| Phage 

susceptibility to the innate immune response. The innate immunity has a negative 

effect on the phage survival and leads to its removal. Subsequently the bacteria are no longer 

infected by the phage, and a rise in bacteria is observed. C| Phage susceptibility to the 

innate immune response, taking into account the anti-inflammatory property of 

the phage. The anti-inflammatory characteristic of the phage leads to a decline in innate 

immune particles. This has as effect that the bacterial count diminish and the phage 

survives, similar to A. D| Phage susceptibility to innate immune response 

accommodated and counteracted by an increased phage dose. The higher phage dose 

leads to the removal of the pathogen and the survival of the phage. E| Phage susceptibility 

to innate immune response accommodated and counteracted by an increased 

phage dose, assuming the anti-inflammatory property of the phage. The effect is the 

same as in D, but the innate immune response is diminished. Innate and adaptive immune 

response. F| Phage susceptibility to the innate immune response and presence of 

pre-immunization towards the phage. Presence of pre-existing anti-phage antibodies 

leads to a rapid drop in phage concentration, hence the phages have no effect on the survival 

of the bacteria. Once an adaptive immune response against the bacteria is present, the 

bacterial count decreases. G| Phage susceptibility to the innate immune response and 

no pre-immunization to the phage exists, assuming the anti-inflammatory property 

of the phage. The anti-inflammatory response of the phage has no direct influence on the 

phage survival in the presence of an adaptive immune response against the phage. Overall, 

the response is similar as in F. H| Phage susceptibility to the innate immune response 

and no pre-immunization to the phage exists. The absence of a specific adaptive immune 

response against the phage leads to a decrease in the bacterial population. The combined 

effect of innate and adaptive immunity towards the phage leads to a drop in phage particle 

concentration. I| Phage susceptibility to the innate immune response and no pre-

immunization to the phage exists, assuming the anti-inflammatory property of the 

phage. Once the phage reaches a critical concentration (Pc, the concentration of phages 

needed to induce an anti-inflammatory response), the innate immune response decreases and 

the phage concentration grows until all bacteria are removed. Once an adaptive immune 

response is present against the phage, the phage concentration diminishes until completely 

removed. Variables and parameters used in these models are described in Addendum – 

Mathematical model – Table A1. The Y-axis represents the respective particle concentration 

and the X-axis represents the time, in hours. 
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With the growing interest in phage therapy, due to the rising prevalence of 

antibiotic resistant bacteria, clinical trials are being set up to evaluate the efficacy 

and safety of this new type of therapeutic intervention (Levy and Marshall, 2004; 

Matsuzaki et al., 2014; Merabishvili et al., 2009; Rhoads et al., 2009; Wright et al., 

2009). Most of these available phage therapy trials primarily address safety issues 

of topically or orally applied phages.  

Phages, as pharmaceuticals, possess unique pharmacokinetics and 

pharmacodynamics that are generally poorly understood (Cooper et al., 2016). To 

further understand these pharmacokinetic and –dynamic properties it is important 

to perform in vivo and in vitro experiments. Furthermore, to perform such studies, 

it is of vital importance that the phage preparations are free of any contaminating 

molecules such as bacterial proteins or endotoxins, released during phage 

production. 

Unpublished data from the Barr lab indicates that phages possess the ability to 

transcytose from the apical-to-basal side of different cell types (i.e. cell lines 

originating from the gut, lung, liver, kidney and brain). This clearly demonstrates 

that phage are able to cross cell layers and provides further evidence into how 

phages are able to interact with the mammalian immune system. 

Endotoxin removal from phage preparations is one of the most important, but also 

highly cumbersome, steps in the use of phages in therapeutic settings. Furthermore, 

the removal of endotoxins is important when studying the effects of phages on 

eukaryotic cells, more specifically; peripheral blood mononuclear cells (PBMCs). 

Recently, several methods have become available for the purification of phage 

preparations, taking into account the removal of endotoxins, such as phage on tap 

(Bonilla et al., 2016). This protocol described a quick and efficient method for the 

preparation of homogenous phage stocks. Unfortunately, this method requires 

specific lab equipment, e.g. speed vacuum to remove residual organic solvent. Our 

results showed a low endotoxin removal efficacy when organic solvent (1-octanol) 

was used, this might be due to differences in the phages used (whereas we used P. 

aeruginosa phages, Bonilla used E. coli phages).  

We evaluated the efficiency of seven different endotoxin purification strategies, (i.e., 

Endotrap HD column purification and/or CsCl density centrifugation in 

combination with Endotrap purification, followed by organic solvent treatment, 

detergent treatment, enzymatic inactivation of the endotoxin using alkaline 

phosphatase, or CIM monolithic anion exchange chromatography) for five different 

phages ( ). Interestingly, large differences 

with regard to initial endotoxin concentrations were observed for the four different 

P. aeruginosa phages, ranging from approximately 104 to 106 EU/ml (Van Belleghem 

et al., 2017a). The removal of endotoxins by CsCl centrifugation leads to an 

endotoxin removal efficacy of up to 99.6 %. Further removal of the remaining 
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endotoxins by additional strategies, such as the use of Endotrap HD, organic 

solvent, Triton-X100, alkaline phosphatase or anion-exchange chromatography 

enables a further reduction of the endotoxin content and a total endotoxin removal 

efficacy of 99.9 %.  

Although we were not able to include the endotoxin content of the original phage 

lysates, our results do show the difficulties related to obtaining endotoxin-free P. 

aeruginosa phage preparations. Even though phages infecting the same bacterial 

host seem similar, they clearly showed different endotoxin removal efficacies. This 

makes it hard to provide a universal strategy for the removal of endotoxins from 

phage preparations, although a combination of strategies might be advised for the 

complete removal of endotoxins. 

Comparing the endotoxin removal efficacy observed in our experiments with those 

described in the literature (which are often less than 102 EU/ml), the difference 

could be explained by the use of different phages. We mainly used P. aeruginosa 

phages whereas others have focused on E. coli phages (Bonilla et al., 2016; 

Boratynski et al., 2004; Szermer-Olearnik and Boratyński, 2015), or used repeated 

purification to obtain low endotoxin concentrations (Dufour et al., 2016). 

For therapeutic purposes, phage titers of 107 – 108 pfu/ml are used (Merabishvili et 

al., 2009). When starting from phage preparations of 1012 pfu/ml, the low endotoxin 

removal efficacy can be supplemented with further diluting the phage preparation. 

In our case this would lead to a further reduction in the endotoxin concentration 

ranging from 0.0002 to 31.6 EU/ml for 107 pfu/ml, which is within the 

therapeutically allowed range of 5 EU/ml/kg/h for therapeutic applications 

(Daneshian et al., 2006). For example, a patient weighing 75 kg can be treated with 

over a six hour period with a 107 pfu/ml phage preparation containing a maximum 

amount of 30 EU/ml. 

For other purposes, such as studying the immune responses induced by phages, 

lower endotoxin concentrations are advised without lowering the phage 

concentration. In case this is not possible, including control conditions with the 

same endotoxin concentration can be included, as was done in . Although 

this might complicate the analysis of the observed immune response, it enables one 

to establish to what extent the immune response is influenced by the residual 

endotoxins. 

It has been demonstrated that the oral uptake of phages by animals results in the 

translocation of phages to systemic tissues (Duerr et al., 2004; Hamzeh-Mivehroud 

et al., 2008; Majewska et al., 2015). This suggests that mammals have mechanisms 

for the uptake and delivery of phages. The resulting contact between systemic 

tissues and phages may allow intestinal phages to elicit innate and adaptive 

immune responses.  
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Therefor we evaluated the innate immune response induced by five different 

phages, i.e. four infecting P. aeruginosa and one infecting S. aureus. These five 

phages represent the three major phage morphologies: Myoviridae, Podoviridae and 

Siphoviridae. The initial immune responses were observed after 20 h of PBMC 

stimulation. To obtain a more in-dept view of the phage induced immune response, 

time course experiments could be conducted. 

Based on the fact that phages are present everywhere, and translocation of phages 

from the gut to the blood has been shown (Duerr et al., 2004; Hamzeh-Mivehroud 

et al., 2008; Majewska et al., 2015), it is not surprising that they elicit immune 

responses (Figure 8. 6). Moreover, the four P. aeruginosa phages tested have an 

overall comparable induced immune response, which largely corresponds to our 

previously performed transcriptome analysis of PBMCs stimulated with a P. 

aeruginosa phage PNM lysate (Van Belleghem et al., 2017b). Furthermore, the 

immune response induced by the Gram-negative P. aeruginosa phages is similar to 

the one induced by the Gram-positive S. aureus phage ISP. Although small 

differences in the expression of CD14, IL10, TGFBI and LYZ were observed (Figure 

8. 1 and 8. 4), this could be attributed to the difference in host bacteria instead of 

difference in the phage morphology, as the four P. aeruginosa phages belong to 

different phage morphologies.  

The removal of all endotoxins from the P. aeruginosa phages was not possible, 

leaving up to 106 EU/ml present in the phage preparations in the phage lysates. 

Therefore, we compared the immune response induced by the phage lysate and the 

highly purified phage, with the addition of endotoxins in the same concentration as 

present in the phage lysate. We observed that the immune response of the highly 

purified phage with addition of endotoxins did not bring it more closely to that of 

the phage lysate (Figure 8. 3). Furthermore, the addition of endotoxins to a highly 

purified S. aureus phage ISP preparation did not alter the observed immune 

response previously induced by the phage lysate or the highly purified phage 

preparation. 

This indicates that the observed immune response is endotoxin independent for the 

twelve immunity related genes evaluated during our studies. Our results indicate 

that phages can induce an anti-inflammatory response, as clearly shown by the up-

regulation of SOCS3 and IL1RN, which is a known inhibitor of the pro-

inflammatory IL1 response (Arend, 2001). 

Although our study of the phage induced immune response is based on direct gene 

expression and not protein production, our data clearly show that phages are able 

to induce an immune response. In order to further validate these observed response, 

cytokine protein productions could be measured overtime. 
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The Hodyra-Stefaniak in silico model, not taking into account the possibility that 

phages might have anti-inflammatory properties, comes to the unexpected 

conclusion that phages would be inactivated by components of either the innate or 

adaptive immune response. This suggest that phages would not contribute to the 

clearing of the bacterial infection. This seems to contradict the well-established 

successes of many therapeutic applications of phages. 

Expanding the Hodyra-Stefaniak in silico model (Hodyra-Stefaniak et al., 2015), 

with the inclusion of the anti-inflammatory property of phages, predicted a 

successful phage therapeutic intervention. Based on the results obtained during 

this PhD thesis, and the mathematical predictions of this model, indicating that a 

reduction on the innate immune response is necessary for the phages to remove a 

bacterial infection, we conclude that phages can interact with the mammalian 

innate immune response and that these interactions have important effects on the 

outcome of a phage therapeutic intervention. These in silico models can be further 

extended to include the occurrence of phage resistant bacterial strains during the 

phage therapeutic intervention, which will significantly affect the predicted 

outcome (Leung and Weitz, 2017). 

Based on the in silico model ( ); our experiments can be further extended to 

include the bacterial host. If it can be further consolidated that phages are able to 

induce anti-inflammatory responses, as our data suggests, this should lead to a 

successful intervention and removal of the bacterial infection. Moreover, could the 

phage induced anti-inflammatory properties influence the survival of the bacteria, 

when phage resistant strains are used? Are phages able to influence the immune 

response in such a way that it affects the bacterial survival? To what extent might 

the anti-inflammatory effect of phages overcome the pro-inflammatory response 

induced by the bacteria? Is this anti-inflammatory response active during the whole 

phage infection or only at certain time points or phage concentration? Could the 

anti-inflammatory properties of the phages dampen the unwanted side effects of an 

overreacting immune response? And could they in this sense reduce tissue damage 

in chronic infections, such as in the case of cystic fibrosis lung infection? 

Answers to these questions should be able to give us a more in-depth view of what 

is occurring during phage therapy and might give us a better understanding why 

certain phage therapeutic interventions are more successful than others. 

Furthermore, separation of the immunological cells after stimulation with the 

phages could provide detailed information into which cells interact with the phages 

and induced the pro- and/or anti-inflammatory properties. 

Whether phages induce a highly comparable overall immune response or whether 

only specific parts of the immune response are similar could be further studied 

through whole transcriptome analysis. Furthermore, time dependent studies 



 

154 

 

should be able to give us a more detailed view of the phage-induced immune 

response. Which time points are predominantly pro-inflammatory and which are 

predominantly anti-inflammatory. Moreover, which phage proteins are responsible 

for these anti-inflammatory responses? By comparing the immune response of a 

large set of phages, it will become possible, based on the phage genomes, to deduce 

the protein(s) responsible for these immune responses. Once these proteins are 

identified, their properties can be exploited to produce new anti-inflammatory drugs 

or to engineer new phages with elevated anti-inflammatory responses to increase 

the success rate of phage therapy. 

It is thus important to gather more data concerning the pharmacodynamics and -

kinetics of phages in an immunological context and further update these in silico 

models so they can be used to predict the outcome of a phage therapeutic 

intervention, such as determining the exact minimal concentration of phages 

needed in order for them to induce anti-inflammatory responses. 

 



 

 



II 

 

Bacteriophages are the most abundant biological entities on Earth with an 

estimated number of up to 1030 particles. Every bacterial cell can potentially harbor 

many phages. These viruses use bacteria as a mean to replicate, almost always 

destroying their prokaryotic host in the process. Current knowledge states that 

phages ignore every cell but the strain of bacteria they have evolved to inhabit. This 

makes them ideal candidates to treat bacterial infections, while being harmless to 

mammalian cells and even non-target bacteria.  

Phages provide a valid alternative to antibiotics. Nevertheless, the effect of phages 

on the human immune response needs to be evaluated. Therefore we need to obtain 

highly purified phage preparations, free of endotoxins. The removal of these 

endotoxins is necessary as they are highly immunogenic (as highlighted in 

) and could influence the induced immune response. For this purpose, we evaluated 

the endotoxin removal efficacy of seven different endotoxin removal strategies, 

described in . These strategies consisted of Endotrap HD column 

purification and/or CsCl density centrifugation in combination with Endotrap 

purification, followed by organic solvent (1-octanol) treatment, detergent (Triton X-

100) treatment, enzymatic inactivation of the endotoxin using alkaline 

phosphatase, or removal of the endotoxin using CIM monolithic anion exchange 

chromatography, carried out for five different phages (i.e. four P. aeruginosa phages 

and one S. aureus phage).  

We showed that CsCl density purification of the P. aeruginosa phages, at an initial 

concentration of 1012 - 1013 pfu/ml, led to the strongest reduction of endotoxins, with 

an endotoxin removal efficacy of up to 99.6 %, whereas additional purification 

methods yielded an additional endotoxin removal efficacy of 23 to 99 % on top of the 

initial purification, although sometimes accompanied with strong losses in phage 

titer. 

Phage biology studies necessitate highly purified phage particles, when used in high 

concentration. Using the highly purified (CsCl density centrifugated, followed by 

Endotrap purification), endotoxin free, phage preparations, described in , 

we were able to study the immune response induced by these phages. 

 describes a transcriptome analysis of freshly isolated peripheral blood 

mononuclear cells (PBMCs), isolated from one healthy individual, stimulated for 20 

h with either a P. aeruginosa phage PNM lysate or its bacterial host P. aeruginosa 

strain 573.  The phage PNM lysate was shown to increase the production of IL10, 

IL6, SOCS1, SOCS3, CXCL2, CXCL3 and CXCL6 and decrease the production of 

LYZ, HLA-DMA, HLA-DMB, HLA-DRB1 and HLA-DRB4, CCL17, CCR1, CCR2 

and CCR5. These results showed that the P. aeruginosa phage PNM lysate possess 

the potential to induce an immune response. 

Further analysis on the potential of phages to induce an immune response was 

obtained by evaluating five different phages (S. aureus phage ISP and four P. 
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aeruginosa phages (i.e. PNM, LUZ19, 14-1 and GE-vB_Pae-Kakheti25)), discussed 

in . By means of specific RT-qPCR assays, we assessed the gene expression 

profile of PBMCs derived from six donors for twelve immunity-related genes (i.e. 

CD14, CXCL1, CXCL5, IL1A, IL1B, IL1RN, IL6, IL10, LYZ, SOCS3, TGFBI and 

TNFA). It was established that the phages were able to induce clear and 

reproducible immune responses.  

First, the five different phages induced a comparable immune response, although 

endotoxins could not be completely removed from the P. aeruginosa phage 

preparations. Second, the observed immune response was largely anti-

inflammatory, indicated by at least a fivefold up-regulation of IL1RN, IL10 and 

SOCS3. Third, the observed immune response was shown to be endotoxin-

independent. Addition of endotoxins to the highly purified phages did not cause an 

immune response comparable to the one induced by the (endotoxin containing) 

phage lysate, but remained similar to that of the initial highly purified phage. 

Using the observations made during these studies, we were able to construct a 

predictive hypothetical model on the outcome of phage therapy based on a previous 

model described by Hodyra-Stefaniak et al. (2015), described in . We 

expanded their initial model with the inclusion of an anti-inflammatory phage. This 

adaptation predicts important consequences on the theoretical outcome of a phage 

therapeutic intervention. Our model showed that when the phage has anti-

inflammatory properties, phage therapy succeeds whereas the initial model showed 

a failure of the phage therapeutic intervention into the removal of the bacterial 

infection. 



 

 

 



 

 

 



VI 

 

Bacteriofagen, bacteriële virussen, zijn de meest voorkomende biologische 

entiteiten op aarde, met een geschat aantal van 1030 partikels. Elke bacteriële cel 

heeft de mogelijkheid om fagen voort te brengen. Deze virussen gebruiken de 

bacteriën om zich te repliceren. Dit proces heeft als gevolg dat de prokaryote 

gastheer bijna altijd wordt vernietigd. Gebaseerd op de literatuur wordt er in het 

algemeen gezegd dat fagen elke cel negeert buiten de bacteriële stam waarvoor ze 

geëvolueerd zijn om te kunnen infecteren. Dit maakt van hen ideale kandidaten om 

bacteriële infecties te behandelen, terwijl ze onschadelijk zijn voor niet-target 

bacteriën en zelfs eukaryote cellen. 

Fagen vormen een belangrijk alternatief voor antibiotica. Desalniettemin is het 

belangrijk of de interactie van fagen met het humaan immuun systeem te 

evalueren. Daarvoor dienen we zeer zuivere, endotoxine vrije, faagbereidingen te 

bekomen. Het verwijderen van deze endotoxines is noodzakelijk omdat ze sterk 

immunogeen zijn (zoals aangehaald in ) en zouden de geïnduceerde 

immuun respons kunnen beïnvloeden. Voor deze reden hebben we de endotoxine 

verwijderingseffectiviteit van zeven verschillende endotoxine verwijdering 

strategieën geëvalueerd, beschreven in Deze strategieën omvatten een 

Endotrap HD kolom zuivering en/of CsCl densiteit centrifugatie in combinatie met 

Endotrap zuivering, gevolgd door een behandeling met organisch solvent (1-

octanol), detergent (Triton X-100) behandeling, enzymatisch inactiveren van het 

endotoxine door gebruik te maken van alkalisch fosfatase, of een verwijdering van 

endotoxines door gebruik te maken van CIM monolithische anion uitwisseling 

chromatografie, uitgevoerd voor vijf verschillende fagen (i.e. vier P. aeruginosa 

fagen en één S. aureus faag). 

We hebben kunnen aantonen dat CsCl densiteit centrifugatie van P. aeruginosa 

fagen, met een initiële concentratie van 1012 – 1013 pfu/ml, leidde tot de sterkste 

reductie in endotoxine concentratie, met een endotoxine verwijderingseffectiviteit 

van 99.6 %. Additionele zuiveringsmethodes leidde niet tot de volledige 

verwijdering van endotoxines uit de faag bereidingen, en leidde slechts tot een extra 

endotoxine verwijderingseffectiviteit van 23 tot 99 %, dit ging soms gepaard met 

een sterk verlies in faag concentratie. 

Faag biologische studies hebben nood aan hoog zuivere faag partikels in hoge 

concentraties. Gebruikmakend van de hoog zuivere (CsCl ultra gecentrifugeerde, 

Endotrap gezuiverde), endotoxine vrije, faag bereidingen, beschreven in 

, waren we instaat om de immuun respons te bestuderen geïnduceerd door deze 

fagen. 

 beschrijft een transcriptoom analyse van vers geïsoleerde perifere bloed 

mononucleaire cellen (PBMCs), geïsoleerd uit één gezonde individu, gestimuleerd 

voor 20 h met ofwel een P. aeruginosa faag PNM lysaat of zijn bacteriële gastheer 

P. aeruginosa stam 573. De faag PNM lysaat verhoogde de genexpressie van de 
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genen IL10, IL6, SOCS1, SOCS3, CXCL2, CXCL3 en CXCL6 en verlaagde de 

genexpressie van LYZ, HLA-DMA, HLA-DMB, HLA-DRB1, HLA-DRB4, CCL17, 

CCR1, CCR2 en CCR5. Deze resultaten toonde aan dat de P. aeruginosa faag PNM 

lysaat het potentieel bezit om een immuun respons te induceren. 

Verdere analyse in verband met de mogelijkheid van fagen om een immuun respons 

te induceren werd verkregen door vijf verschillende fagen (een S. aureus faag ISP 

en vier P. aeruginosa fagen (i.e. PNM, LUZ19, GE-vB_Pae-Kakheti25 en 14-1)) te 

evalueren, besproken in . Door middel van een specifieke RT-qPCR assay 

bestudeerden we het genexpressie profiel van perifere bloed mononucleaire cellen, 

geïsoleerd uit zes verschillende donoren, voor twaalf immuniteit gerelateerde genen 

(i.e. CD14, CXCL1, CXCL5, IL1A, IL1B, IL1RN, IL6, IL10, LYZ, SOCS3, TGFBI en 

TNFA). Het werd aangetoond dat fagen in staat zijn om een duidelijke en 

reproduceerbare immuun respons te induceren. 

Eerst en vooral, de vijf verschillende fagen induceren een vergelijkbare immuun 

respons, alhoewel alle endotoxines niet volledig verwijderd konden worden uit de P. 

aeruginosa faag bereidingen. Ten tweede, de geobserveerde immuun respons was 

hoofdzakelijk anti-inflammatoir, dit werd aangetoond door een vijfvoudige 

opregulatie van IL1RN, IL10 en SOCS3. Ten derde, er werd aangetoond dat de 

geobserveerde immuun respons endotoxine onafhankelijk was. Het toevoegen van 

endotoxines aan de sterk gezuiverde fagen zorgde er niet voor dat de geobserveerde 

immuun respons sterker lijkt op die van het (endotoxine bevattende) lysaat, maar 

bleef gelijkaardig aan dat van het initieel sterk gezuiverde faag preparaat. 

Gebruikmakende van de observaties gemaakt gedurende deze studies waren we in 

staat een hypothetisch model te generen die de uitkomst van een faag 

therapeutische behandeling kan voorspellen. Dit model is gebaseerd op een eerder 

beschreven model van Hodyra-Stefaniak et al. (2015), beschreven in , 

waarbij we hun model verder hebben uitgebreid om rekening te houden met een 

anti-inflammatoire faag. Deze aanpassing voorspelt belangrijke gevolgen op de 

theoretische uitkomst van een faag therapeutische interventie. Ons model toont aan 

dat, wanneer de fagen anti-inflammatoire eigenschappen hebben, faag therapie 

succesvol is. Het initiële model van Hodyra-Stefaniak daarentegen toonde een falen 

van de faag therapeutische interventie voor het verwijderen van de bacteriële 

infectie aan. 
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The original mathematical model described by Hodyra-Stefaniak et al. (2015), based 

on models of Levin and Bull (1996, 2004), and Payne and Jansen (2001, 2003) was 

expanded to include the anti-inflammatory properties of phages. The dynamics of 

bacteria, phage, innate and adaptive immunity and their interactions are described 

by differential equations. When the concentration of bacterial cells exceeds the 

threshold SC and resources are unlimited, the concentration of innate system 

particles grows exponentially with a constant rate of aI. When the phage 

concentration exceeds the threshold PC and resources are unlimited, the 

concentration of the innate particles decrease at a constant rate of ϒg, ultimately 

approaching one. 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝑎𝑆𝑆(𝑡) −  𝜌𝑆(𝑡)𝑃(𝑡) − 𝜅𝑆𝐼𝑆(𝑡)𝐼(𝑡) −  𝜅𝑆𝐵𝑆(𝑡)𝐵(𝑡) (1) 

𝑑𝑃(𝑡)

𝑑𝑡
= 𝑏𝜌𝑆(𝑡 − 𝜆)𝑃(𝑡 −  𝜆) −  𝜌𝑆(𝑡)𝑃(𝑡) − 𝜅𝑃𝐼𝑃(𝑡)𝐼(𝑡) − 𝜅𝑃𝐴𝑃(𝑡)𝐴(𝑡) (2) 

 
𝑑𝐼

𝑑𝑡
=  (𝑋𝑠(𝑡) +  𝑋𝑃(𝑡))𝐼(𝑡) (3) 

 

𝑋𝑆 =  {
 𝑎𝐼𝛾𝑔𝑆(𝑡) for 𝑆(𝑡) ≥ 𝑆𝐶,

−𝑑𝐼𝛾𝑑𝑆(𝑡) otherwise
 

(4) 

 

𝑋𝑃 =  {
 −𝑑𝐼𝛾𝑑𝑃(𝑡) for 𝑃(𝑡) ≥ 𝑃𝐶,

𝑎𝐼𝛾𝑔𝑃(𝑡) otherwise
 

(7) 

 

𝛾𝑔𝑆(𝑡) =  (1 +  
𝑆𝐶

𝑘𝐼
) (

𝑆(𝑡)

𝑆(𝑡) + 𝑘𝐼
) − 

𝑆𝑐

𝑘𝐼
, (5) 𝛾𝑔𝑃(𝑡) =  (1 +  

𝑃𝐶

𝑘𝐼
) (

𝑃(𝑡)

𝑃(𝑡) + 𝑘𝐼
) − 

𝑃𝑐

𝑘𝐼
, (8) 

 

𝛾𝑑𝑆(𝑡) =  √1 −  
𝑆(𝑡)

𝑆𝐶
 (6) 𝛾𝑑𝑃(𝑡) =  √1 − 

𝑃𝐶

𝑃(𝑡)
 (9) 

 

𝑑𝐴(𝑡)

𝑑(𝑡)
=  𝑎𝐴 (

𝑃(𝑡)

𝑃(𝑡) +  𝑘𝐴

) 𝐴(𝑡) (1 −  
𝐴(𝑡)

𝐴𝑚𝑎𝑥

) 
(10

) 

 

𝑑𝐵(𝑡)

𝑑(𝑡)
=  𝑎𝐵 (

𝑆(𝑡)

𝑆(𝑡) +  𝑘𝐵

) 𝐵(𝑡) (1 −
𝐵(𝑡)

𝐵𝑚𝑎𝑥

) 
(11

) 
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Table A 2: Differentially expressed genes exclusively present in the phage PNM stimulated 

dataset. Peripheral blood mononuclear cells (PBMCs) derived from one healthy individual 

were stimulated for 20 h with a Pseudomonas aeruginosa phage PNM lysate or its 

corresponding host (P. aeruginosa strain 573). Gene expression was normalized against a 

non-stimulated control condition. Differential gene expression between the P. aeruginosa 

phage PNM and P. aeruginosa strain 573 was compared to identify the genes uniquely 

expressed in the P. aeruginosa phage PNM stimulated dataset. 

Gene symbol log2Ratio 

(P. aeruginosa phage PNM/Control) 

P-value FDR 

RMRP -4.75 8.07E-06 1.07E-04 

CAMK1 -4.15 5.69E-58 9.10E-56 

FAM131C -2.96 5.54E-24 2.83E-22 

NCRNA00256

A 
-2.56 

4.85E-16 1.61E-14 

NCRNA00256

B 
-2.36 

1.57E-10 3.60E-09 

MEIS3 -1.79 2.68E-04 2.61E-03 

SPRY2 -1.70 7.87E-10 1.72E-08 

F13A1 -1.64 1.22E-08 2.39E-07 

ADAMTSL4 -1.61 1.03E-08 2.04E-07 

ALCAM -1.57 1.95E-33 1.45E-31 

CABP4 -1.44 2.42E-10 5.49E-09 

ADAM28 -1.41 1.80E-22 8.34E-21 

PCSK6 -1.40 5.67E-04 5.09E-03 

HLA-DMA -1.37 1.68E-28 1.05E-26 

ADAMTS1 -1.30 1.04E-05 1.36E-04 

LOC729041 -1.30 9.65E-04 8.13E-03 

ITGA6 -1.30 1.96E-05 2.44E-04 

NME1 -1.28 7.28E-12 1.87E-10 

FLT3 -1.26 1.72E-04 1.74E-03 

NCR3 -1.25 5.76E-13 1.57E-11 

DENND1B -1.24 1.09E-14 3.35E-13 

NMUR1 -1.24 1.43E-06 2.13E-05 

DHCR24 -1.21 6.55E-19 2.54E-17 

LOC100505746 -1.21 3.36E-22 1.54E-20 

PLCB1 -1.20 1.20E-04 1.26E-03 

ZBED2 -1.16 2.10E-06 3.07E-05 

KCP -1.13 9.02E-04 7.66E-03 
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Gene symbol log2Ratio 

(P. aeruginosa phage PNM/Control) 

P-value FDR 

DGKE -1.12 3.52E-11 8.56E-10 

CTNNBIP1 -1.12 6.95E-08 1.25E-06 

LY86 -1.11 7.98E-04 6.88E-03 

GATM -1.11 3.02E-05 3.64E-04 

RAB37 -1.09 1.17E-13 3.38E-12 

ITGAM -1.08 1.94E-13 5.50E-12 

HLA-DRB1 -1.07 9.18E-19 3.54E-17 

PRSS23 -1.06 4.60E-06 6.30E-05 

FCRL6 -1.05 1.62E-07 2.79E-06 

LPAR6 -1.03 4.11E-15 1.30E-13 

APOL4 -1.02 2.09E-05 2.58E-04 

HLA-DMB -1.02 1.29E-16 4.45E-15 

DLEU1 -1.02 6.86E-04 6.04E-03 

IER5 1.00 9.44E-20 3.82E-18 

FMN1 1.01 1.73E-05 2.17E-04 

LYN 1.01 4.19E-20 1.72E-18 

LONRF3 1.01 5.22E-04 4.72E-03 

STARD8 1.02 5.13E-10 1.14E-08 

RNF169 1.03 8.89E-07 1.37E-05 

LOC730227 1.03 2.54E-04 2.49E-03 

ARHGAP31 1.03 2.91E-17 1.06E-15 

NXPH4 1.03 7.45E-13 2.03E-11 

CXCR6 1.03 1.08E-15 3.51E-14 

MYO1G 1.03 4.43E-12 1.16E-10 

LOC100133445 1.03 4.02E-14 1.20E-12 

C5orf32 1.04 2.43E-15 7.74E-14 

LCP2 1.04 7.36E-21 3.12E-19 

NAB1 1.04 1.70E-11 4.26E-10 

FAM167A 1.05 2.75E-06 3.91E-05 

NFE2L2 1.05 1.10E-20 4.64E-19 

VAC14 1.06 5.43E-20 2.21E-18 

PRR16 1.06 5.55E-04 4.99E-03 

NKD1 1.06 2.74E-08 5.13E-07 



XVI 

 

Gene symbol log2Ratio 

(P. aeruginosa phage PNM/Control) 

P-value FDR 

LRRC3 1.06 9.59E-05 1.03E-03 

LILRB1 1.06 3.32E-05 3.96E-04 

ACO1 1.06 8.37E-14 2.44E-12 

LRP12 1.07 1.16E-07 2.03E-06 

ERN1 1.07 4.01E-11 9.70E-10 

CSNK1E 1.07 1.80E-18 6.87E-17 

LYPD3 1.08 2.31E-11 5.70E-10 

KCNG1 1.08 6.59E-04 5.83E-03 

DLGAP3 1.08 3.29E-06 4.62E-05 

MAP7 1.08 9.32E-04 7.88E-03 

MTHFS 1.08 7.81E-07 1.22E-05 

ZSWIM4 1.08 2.26E-14 6.79E-13 

PMEPA1 1.09 2.76E-20 1.14E-18 

SPTBN5 1.10 1.33E-05 1.70E-04 

LRCH3 1.10 2.14E-06 3.12E-05 

NINJ1 1.11 7.40E-24 3.77E-22 

AQP9 1.11 1.26E-23 6.33E-22 

LOC100131532 1.11 1.19E-03 9.75E-03 

ELL 1.11 1.01E-22 4.81E-21 

PPAP2B 1.11 1.88E-11 4.70E-10 

SYN1 1.12 2.07E-11 5.15E-10 

PNKD 1.12 5.85E-21 2.50E-19 

RADIL 1.13 1.10E-03 9.13E-03 

MAP4K4 1.13 1.68E-23 8.43E-22 

HLX 1.13 1.57E-21 6.83E-20 

LOC100130357 1.13 2.40E-06 3.45E-05 

C6orf105 1.14 1.65E-11 4.15E-10 

PPP4R2 1.14 8.58E-11 2.01E-09 

CHST15 1.14 8.95E-23 4.27E-21 

SCG5 1.15 1.28E-04 1.33E-03 

TP53INP2 1.16 7.86E-23 3.77E-21 

MGLL 1.16 1.15E-22 5.45E-21 

PNPLA8 1.16 1.69E-08 3.23E-07 
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Gene symbol log2Ratio 

(P. aeruginosa phage PNM/Control) 

P-value FDR 

DENND5A 1.17 2.38E-25 1.31E-23 

SPSB1 1.17 6.77E-15 2.11E-13 

S100B 1.17 1.56E-04 1.59E-03 

GPR157 1.17 5.31E-05 6.04E-04 

OAF 1.18 7.49E-22 3.36E-20 

CD48 1.18 1.07E-25 5.97E-24 

SLFN5 1.18 3.96E-05 4.63E-04 

C15orf48 1.19 6.66E-23 3.21E-21 

TRIM56 1.19 1.49E-08 2.88E-07 

RN7SL1 1.19 2.18E-04 2.16E-03 

FLJ45445 1.19 5.40E-19 2.11E-17 

PLK3 1.19 1.04E-25 5.81E-24 

RABGEF1 1.20 7.83E-14 2.29E-12 

FAM20A 1.20 4.73E-04 4.33E-03 

TBC1D30 1.20 4.42E-13 1.22E-11 

QPCT 1.21 3.79E-16 1.27E-14 

FAM70B 1.21 1.45E-08 2.80E-07 

AQP6 1.21 4.67E-05 5.40E-04 

ABCA1 1.21 7.91E-25 4.23E-23 

TNNT2 1.21 1.08E-05 1.40E-04 

PANX1 1.21 1.09E-11 2.78E-10 

LGALS3BP 1.21 1.03E-06 1.57E-05 

RASD1 1.22 1.30E-07 2.26E-06 

HELB 1.22 1.13E-04 1.19E-03 

LOC650623 1.22 6.00E-05 6.75E-04 

KIAA0247 1.22 5.80E-28 3.53E-26 

SLC22A15 1.23 7.25E-16 2.38E-14 

STX11 1.23 7.58E-26 4.27E-24 

TNIP1 1.23 2.80E-29 1.82E-27 

SESN2 1.24 1.17E-26 6.79E-25 

SLC16A10 1.24 2.62E-24 1.37E-22 

PTAFR 1.24 9.70E-09 1.93E-07 

WBP5 1.25 6.96E-04 6.11E-03 
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Gene symbol log2Ratio 

(P. aeruginosa phage PNM/Control) 

P-value FDR 

A4GALT 1.26 4.83E-04 4.42E-03 

XKR9 1.26 1.29E-04 1.35E-03 

BTG3 1.26 1.72E-15 5.51E-14 

DLC1 1.27 7.18E-04 6.27E-03 

ABL2 1.27 1.10E-17 4.09E-16 

ATP13A3 1.27 4.13E-30 2.74E-28 

S1PR3 1.27 2.75E-04 2.67E-03 

CDC42EP3 1.28 1.88E-22 8.70E-21 

ELK1 1.28 1.37E-22 6.43E-21 

CEP135 1.28 3.45E-23 1.70E-21 

IRS2 1.28 3.35E-24 1.75E-22 

NEFH 1.28 9.09E-04 7.70E-03 

MAP3K4 1.29 8.50E-28 5.12E-26 

ZP3 1.29 1.31E-08 2.56E-07 

CSDA 1.30 6.64E-29 4.23E-27 

NCRNA00241 1.30 3.28E-04 3.12E-03 

SLC30A4 1.30 1.09E-08 2.14E-07 

CFP 1.30 6.70E-06 8.98E-05 

WLS 1.31 5.63E-06 7.64E-05 

SPRED3 1.31 3.55E-06 4.95E-05 

TJP2 1.32 6.96E-22 3.12E-20 

FMNL2 1.33 2.08E-07 3.53E-06 

MSC 1.33 7.11E-05 7.86E-04 

TBC1D7 1.34 2.48E-17 9.04E-16 

TMEM38B 1.35 4.93E-17 1.76E-15 

DCUN1D3 1.35 6.20E-23 3.01E-21 

PLAGL2 1.36 2.36E-12 6.27E-11 

MN1 1.36 3.12E-22 1.43E-20 

MB21D2 1.36 1.94E-18 7.37E-17 

ANKRD57 1.37 1.84E-23 9.18E-22 

SRC 1.37 3.32E-35 2.61E-33 

TMEM44 1.38 2.79E-19 1.10E-17 

L1CAM 1.38 1.60E-17 5.91E-16 
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Gene symbol log2Ratio 

(P. aeruginosa phage PNM/Control) 

P-value FDR 

ITIH1 1.39 5.18E-05 5.92E-04 

RAB31 1.39 1.87E-34 1.44E-32 

IRAK3 1.39 9.11E-30 6.03E-28 

CREG1 1.39 1.72E-14 5.25E-13 

MTF1 1.40 1.25E-33 9.38E-32 

OSGIN2 1.41 2.13E-04 2.12E-03 

ETS2 1.42 2.97E-18 1.13E-16 

KNDC1 1.43 2.88E-05 3.49E-04 

MEFV 1.43 6.06E-05 6.80E-04 

C9orf46 1.43 1.17E-13 3.38E-12 

SMPDL3A 1.43 2.51E-09 5.26E-08 

LILRA1 1.44 2.87E-05 3.47E-04 

GPR137B 1.44 3.01E-33 2.22E-31 

ARL4A 1.45 4.80E-04 4.39E-03 

TSPY26P 1.45 1.19E-04 1.25E-03 

HYDIN2 1.46 5.33E-12 1.38E-10 

MT1H 1.46 1.18E-03 9.70E-03 

LAD1 1.47 8.86E-29 5.62E-27 

ERGIC1 1.48 7.67E-38 6.77E-36 

FLJ34208 1.48 8.45E-10 1.84E-08 

ST6GALNAC2 1.49 7.13E-05 7.87E-04 

FMO5 1.49 8.08E-07 1.26E-05 

CLEC4D 1.50 1.84E-07 3.15E-06 

FNDC3B 1.50 6.84E-32 4.81E-30 

BASP1 1.50 1.78E-41 1.76E-39 

ARHGEF10L 1.50 3.42E-35 2.68E-33 

NANOS3 1.50 5.06E-04 4.60E-03 

ATP1B4 1.50 4.50E-13 1.24E-11 

PALM2-

AKAP2 
1.51 

7.00E-08 1.26E-06 

C12orf61 1.51 5.60E-07 8.97E-06 

ALPK2 1.52 2.03E-12 5.40E-11 

CPM 1.52 1.20E-15 3.87E-14 
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Gene symbol log2Ratio 

(P. aeruginosa phage PNM/Control) 

P-value FDR 

SPARC 1.52 4.84E-08 8.80E-07 

CTSH 1.52 1.90E-42 1.99E-40 

PLSCR1 1.53 5.16E-07 8.30E-06 

LPP-AS2 1.53 1.35E-05 1.73E-04 

HCK 1.54 4.62E-44 5.21E-42 

CD82 1.56 1.63E-44 1.87E-42 

UPB1 1.56 4.19E-09 8.66E-08 

KCNH4 1.56 9.08E-07 1.40E-05 

ENTPD7 1.58 1.01E-08 2.00E-07 

MAFA 1.58 7.30E-04 6.36E-03 

DFNA5 1.58 5.83E-16 1.93E-14 

EBLN2 1.59 5.28E-04 4.77E-03 

HTRA3 1.59 1.71E-04 1.73E-03 

C9orf30 1.59 1.54E-33 1.15E-31 

DLEU7 1.60 6.68E-05 7.42E-04 

BAI1 1.60 1.67E-24 8.86E-23 

DNER 1.60 2.37E-35 1.87E-33 

CHI3L1 1.61 7.02E-04 6.16E-03 

CH25H 1.61 1.01E-04 1.08E-03 

PAPSS2 1.62 1.16E-16 3.99E-15 

ARHGEF17 1.62 2.65E-11 6.52E-10 

LY6E 1.63 1.66E-04 1.69E-03 

SEMA3C 1.63 4.90E-15 1.54E-13 

AMPD3 1.63 1.33E-45 1.58E-43 

WNK2 1.64 1.09E-07 1.92E-06 

TRAF3IP2 1.64 8.42E-43 9.06E-41 

VNN3 1.66 5.91E-21 2.51E-19 

LOC200261 1.66 2.52E-08 4.73E-07 

MT1F 1.67 1.18E-16 4.08E-15 

HRH1 1.67 1.82E-17 6.68E-16 

IRF7 1.67 3.59E-07 5.92E-06 

AGRN 1.69 2.88E-31 2.00E-29 

CCRL2 1.69 5.83E-46 7.09E-44 
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Gene symbol log2Ratio 

(P. aeruginosa phage PNM/Control) 

P-value FDR 

SLCO4A1 1.71 8.32E-04 7.15E-03 

SMTN 1.72 1.69E-10 3.85E-09 

NAMPT 1.73 2.29E-54 3.35E-52 

KANK1 1.74 6.00E-24 3.06E-22 

SLC2A6 1.75 7.59E-54 1.10E-51 

TGFA 1.76 1.05E-12 2.83E-11 

HMGN2P46 1.77 1.25E-12 3.37E-11 

ZC3H12A 1.77 3.24E-29 2.10E-27 

NLRP3 1.78 4.04E-24 2.08E-22 

ADA 1.78 5.21E-55 7.68E-53 

EHD1 1.79 1.08E-57 1.69E-55 

MYLK 1.80 5.33E-05 6.07E-04 

LDLRAD3 1.83 4.35E-11 1.05E-09 

CDC42EP2 1.86 4.06E-58 6.56E-56 

MCTP1 1.86 1.68E-07 2.89E-06 

TBC1D9 1.87 4.96E-49 6.50E-47 

ZFP92 1.88 5.92E-04 5.28E-03 

P2RY2 1.89 3.97E-07 6.50E-06 

TMEM54 1.90 1.31E-05 1.68E-04 

ZBED3 1.92 3.79E-04 3.54E-03 

NTSR1 1.93 1.37E-12 3.65E-11 

ACSL5 1.94 3.16E-16 1.06E-14 

TM4SF19 1.94 1.11E-15 3.60E-14 

SLC24A4 1.94 4.12E-16 1.38E-14 

MPZL1 1.96 5.48E-23 2.67E-21 

NKX3-1 1.96 5.82E-16 1.92E-14 

C13orf29 1.98 2.41E-06 3.47E-05 

C22orf45 2.00 2.96E-09 6.16E-08 

NR6A1 2.00 2.81E-04 2.72E-03 

SCARF1 2.02 9.46E-22 4.20E-20 

SOCS3 2.02 2.57E-44 2.93E-42 

SPATC1 2.03 2.16E-09 4.56E-08 

PHACTR1 2.06 2.24E-23 1.12E-21 
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Gene symbol log2Ratio 

(P. aeruginosa phage PNM/Control) 

P-value FDR 

TBC1D16 2.06 9.10E-07 1.40E-05 

LIF 2.10 3.79E-46 4.67E-44 

PTGIR 2.12 3.67E-52 5.09E-50 

HRH2 2.13 2.37E-05 2.90E-04 

LOC100127888 2.15 5.14E-04 4.66E-03 

EIF2AK2 2.16 3.69E-05 4.36E-04 

FNIP2 2.16 2.79E-57 4.31E-55 

RFX8 2.19 1.21E-10 2.80E-09 

SOD2 2.21 6.80E-22 3.06E-20 

DTX4 2.21 1.52E-05 1.92E-04 

STON2 2.21 1.27E-04 1.33E-03 

MT1G 2.21 3.15E-08 5.85E-07 

STEAP1 2.22 7.91E-06 1.05E-04 

LIMK2 2.23 1.14E-83 3.04E-81 

DUSP1 2.25 4.59E-29 2.94E-27 

LILRA3 2.29 2.23E-05 2.74E-04 

C1orf61 2.29 9.93E-05 1.06E-03 

FFAR2 2.31 1.23E-06 1.87E-05 

BCAT1 2.31 9.30E-80 2.20E-77 

MARCKS 2.34 2.39E-92 7.84E-90 

SIGLEC14 2.34 1.51E-18 5.80E-17 

CASP5 2.35 2.17E-20 8.99E-19 

MT2A 2.35 1.46E-84 3.96E-82 

STC2 2.35 8.13E-13 2.20E-11 

ARNT2 2.37 2.06E-65 3.81E-63 

CXCL3 2.37 1.07E-27 6.41E-26 

TRIM36 2.37 1.43E-15 4.61E-14 

HS3ST3B1 2.37 7.38E-58 1.17E-55 

C19orf59 2.38 2.32E-90 7.24E-88 

DCBLD1 2.41 7.16E-21 3.04E-19 

HBEGF 2.41 1.24E-91 4.00E-89 

MT1E 2.41 1.79E-20 7.43E-19 

CLGN 2.42 1.05E-04 1.12E-03 
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Gene symbol log2Ratio 

(P. aeruginosa phage PNM/Control) 

P-value FDR 

SERPINB2 2.43 3.42E-08 6.32E-07 

NPHS1 2.45 1.44E-04 1.48E-03 

SERPINA1 
2.46 

6.53E-

103 2.78E-100 

ACSL1 2.47 2.14E-98 8.00E-96 

FAM110B 2.54 1.06E-15 3.46E-14 

ADAMTS14 2.55 1.03E-47 1.31E-45 

CDK1 2.55 4.75E-14 1.41E-12 

GPR84 2.56 1.47E-82 3.76E-80 

PLAUR 2.56 4.00E-78 9.02E-76 

WNT5A 2.58 2.84E-23 1.40E-21 

CACNA2D3 2.58 6.61E-06 8.87E-05 

SIAH3 2.59 2.93E-06 4.15E-05 

OSMR 2.59 9.60E-07 1.47E-05 

FAM108C1 2.60 8.78E-36 7.06E-34 

KRT86 2.64 4.89E-25 2.63E-23 

MMP14 
2.65 

7.41E-

118 3.86E-115 

CLEC4E 2.68 6.06E-89 1.77E-86 

CCNE2 2.70 1.21E-05 1.55E-04 

GLIS3 2.73 7.83E-36 6.34E-34 

GUCY1B2 2.74 9.81E-09 1.95E-07 

LRRC38 2.78 5.26E-08 9.54E-07 

BMP6 2.85 3.30E-18 1.25E-16 

PAPLN 2.89 2.40E-47 3.02E-45 

SIGLEC5 2.90 3.25E-37 2.83E-35 

SLC9A7P1 2.93 1.42E-19 5.70E-18 

MT1M 2.95 7.66E-15 2.37E-13 

KL 2.96 1.50E-06 2.24E-05 

CXCL1 2.99 1.98E-11 4.94E-10 

SLC7A7 3.01 3.92E-58 6.39E-56 

CCL23 3.01 7.90E-07 1.23E-05 

TRPM2 
3.03 

3.04E-

135 2.19E-132 



XXIV 

 

Gene symbol log2Ratio 

(P. aeruginosa phage PNM/Control) 

P-value FDR 

CXCL6 3.09 1.16E-05 1.50E-04 

LOC100652730 3.10 4.19E-08 7.69E-07 

SGIP1 3.19 3.45E-05 4.10E-04 

TRPV4 3.21 3.28E-04 3.12E-03 

FJX1 3.22 1.44E-13 4.12E-12 

GJA1 3.26 1.36E-04 1.40E-03 

CES1 3.31 1.70E-24 8.98E-23 

GPR124 3.35 3.22E-11 7.83E-10 

PNPLA1 3.36 2.14E-39 1.99E-37 

FGF2 3.37 1.68E-08 3.22E-07 

LARP6 3.39 4.11E-29 2.65E-27 

STEAP3 3.41 1.12E-08 2.19E-07 

KREMEN1 
3.43 

3.43E-

162 3.21E-159 

TDRD9 3.43 1.10E-27 6.55E-26 

ZDHHC19 3.51 3.48E-06 4.86E-05 

FAM124A 3.54 1.21E-38 1.10E-36 

SERPIND1 3.58 1.46E-10 3.37E-09 

SH3PXD2B 3.61 5.82E-35 4.52E-33 

IGFN1 
3.68 

3.20E-

122 2.00E-119 

C3 3.69 3.89E-37 3.37E-35 

DYSF 3.72 1.82E-34 1.40E-32 

SBSN 3.90 1.73E-07 2.96E-06 

SLC24A3 3.92 2.11E-14 6.37E-13 

HAS1 4.00 6.37E-10 1.40E-08 

TMEM132A 4.09 4.62E-17 1.66E-15 

ITGB3 
4.26 

2.73E-

141 2.13E-138 

TNFRSF6B 4.41 4.39E-43 4.78E-41 

DDAH1 4.43 1.40E-04 1.45E-03 

C9orf70 4.58 3.88E-05 4.56E-04 

RETN 4.72 6.23E-23 3.01E-21 

ATOH8 4.78 2.41E-07 4.08E-06 
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Gene symbol log2Ratio 

(P. aeruginosa phage PNM/Control) 

P-value FDR 

TBX3 4.95 3.11E-07 5.16E-06 

C20orf160 
5.17 

6.26E-

165 6.51E-162 

IL36B 6.02 6.68E-14 1.96E-12 

CA12 6.34 2.19E-06 3.17E-05 

FLJ36644 12.99 1.10E-03 9.10E-03 

CDC42EP5 13.41 7.10E-04 6.22E-03 

LOC100507410 13.58 3.02E-05 3.63E-04 
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