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INTRODUCTION

The present thesis deals with a number of geometric properties of convex functions in
a non-Euclidean framework. This setting is represented by the so-called Sub-Riemannian
space, also called a Carnot-Carathéodory (CC) space, that can be thought of as a space
where the metric structure is a constrained geometry and one can move only along a pre-
scribed set of directions depending on the point. More precisely, a sub-Riemannian space
is given by an open subset Ω ⊂ Rn endowed with a family of vector fields

X = {X1, . . . , Xm}.

One also assumes that every two points x, y ∈ Ω can be joined by an absolutely continuous
path γ : [0, T]→ Ω, T > 0 such that for almost every t ∈ [0, T]

γ̇(t) =
m

∑
j=1

hj(t)Xj(γ(t)),
m

∑
j=1

hj(t)2 ≤ 1,

where {hj} are measurable functions. Such curve is called a subunit curve. The notion of
Carnot-Carathéodory (CC) distance associated with the family X is defined as follows

(1) d(x, y) = inf{T ≥ 0 exists a subunit curve γ : [0, T]→ Rn,

such that γ(0) = x and γ(T) = y}.

By a classical result due to Chow [47], if the family X is bracket generating, namely, given
a multi-index I = (i1, . . . , ip), 1 ≤ ij ≤ m, setting |I| = p,

X[I] =
[

Xi1 ,
[
. . . ,

[
Xip−1 , Xip

]
. . .
]]

,

and for every x ∈ Rn there exists an integer r = r(x) such that

(2) span{X[I](x) : |I| ≤ r} = Rn,

then the CC distance d(x, y) introduced above is finite for every x, y ∈ Rn. Moreover, d is
a metric that induces the Euclidean topology of Rn.
In classical PDE theory, the bracket generating condition, also called Hörmander condition,
is well known. It appeared first in [57], in this work the author proved the hypoellipticity
of second order degenerate operators of the type

L = −
m

∑
i=1

X2
i ,

iii



iv INTRODUCTION

where Xi are the vector fields in X and condition (2) holds everywhere. We observe that
there is a direct connection between the regularity of the CC distance d and the hypoellip-
ticity of L, we refer to [32] for further details. In general, one can associate a distance to
every degenerate elliptic operator. For the operator L it coincides with the CC distance.
Many contributions have appeared in this area. Let us mention for instance the work of
Bony [16], Capogna, Danielli and Garofalo [21], Citti, Garofalo and Lanconelli [23], Fabes,
Kenig and Franchi, Folland [33, 34], Franchi and Lanconelli [36, 37], Garofalo and Lan-
conelli [41], Jerison and Sánchez-Calle [59], Nagel, Ricci and Stein [82], Sánchez-Calle [94].
This list is certainly far from being complete.
Sub-Riemannian spaces, as the name means to suggest, are a natural generalization of the
Riemannian ones. In fact, the CC metric can be introduced as a limit case of the Riemann-
ian metric, see [22, 36, 37]. We point out that despite these Riemannian approximations, CC
spaces are far from being Euclidean even locally, indeed the CC distance is not biLipschitz
equivalent to the Euclidean one. Hence the extension of classical theory to this setting can
also be a useful inspiration for further developments of analysis in general metric spaces.
As a special class of CC-spaces we have Carnot groups also known as stratified groups. They
inherit all the geometric complexity of a non-Euclidean space along with a very rich struc-
ture for analytic and geometric investigations. A Carnot group of step r is a connected and
simply-connected Lie group whose Lie algebra g is stratified. This means that g admits a
decomposition as a vector space direct sum

g = V1 ⊕ · · · ⊕Vr,

with [V1, Vj] = Vj+1, for j = 1, . . . , r− 1, and g is r-nilpotent. We recall that the exponential
map exp : g → G is a global analytic diffeomorphism. It allows to define a set of analytic
coordinate maps. Moreover a Carnot group is naturally equipped with a family of non-
isotropic dilations defined as δλ(Zj) = λjZj, where Zj ∈ Vj. According to notations and
terminology of Section 1.2, we represent a stratified group G as a finite dimensional Hilbert
space that is a direct sum of orthogonal subspaces H1, H2, . . ., Hι and that it is equipped
with a suitable polynomial operation. Throughout this thesis H1 will denote the subspace
of horizontal directions at the origin. Let g = V1⊕ · · · ⊕Vι be the Lie algebra associated to G.
The left invariant vector fields of Vj are exactly the ones that at the origin take values in Hj.
We call horizontal the vector fields in V1. We also remark that Carnot groups arise as “tan-
gent space” to sub-Riemannian manifolds with equiregular distributions, [9, 74, 77]. This
goes back to the techniques used by Rothschild and Stein [93], Métivier [75] and Goodman
[48] to approximate linear differential operators defined by means of vector fields satisfy-
ing the Hörmander condition with homogeneous left invariant vector fields. In view of
this characterization Carnot groups can also be considered as a local model for general
CC-spaces.

Motivated by some interesting questions in the theory of fully nonlinear equations and
the role played by convexity in the Euclidean setting, D. Danielli, N. Garofalo and D.M.
Nhieu introduced the notion of convexity in Carnot groups, for more details on these mo-
tivations, see [26, 44] and also [50, 51]. Convexity in Sub-Riemannian groups is a quite
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recent stream, that goes back to the works by Danielli, Garofalo and Nhieu [26], Lu, Man-
fredi and Stroffolini [64]. Contributions in the more general setting of Sub-Riemannian
spaces can be found in Trudinger [99] and more recently in the paper of Bardi and Dragoni
[8]. For Carnot groups different pointwise notions of convexity have been investigated in
[26]. Among them, the most natural one turned out to be that of weakly h-convex function,
in short, h-convex function. An h-convex function u : Ω −→ R defined on an open set Ω of a
stratified group G satisfies the property of being classically convex, when it is restricted to
all horizontal lines contained in Ω. These are exactly the integral curves of the horizontal
vector fields of G. More precisely, we say that u : Ω −→ R is h-convex if whenever h ∈ H1
and [0, h] ⊂ x−1 ·Ω, where [0, h] = {th : 0 ≤ t ≤ 1}, we have

(3) u(xδth) ≤ (1− t)u(x) + tu(xh).

We stress that this notion of convexity turns out to be “local” and it does not require any
assumption on Ω. In fact, it is not difficult to observe that smooth h-convex functions are
characterized by an everywhere nonnegative horizontal Hessian, see Definition 2.2.4. This
fits with the approach of [64], where the authors introduce v-convex functions as upper
semicontinuous functions, whose Hessian is nonnegative in the viscosity sense. Let us
point out that the notions of v-convexity and of h-convexity are equivalent, [6], [102], [60],
[71], [88]. It is worth to mention that other definitions of convexity can be introduced in
this setting. For instance, the distributional convexity which we postpone to Chapter 4 or
the geodetic convexity studied in [78]. This last notion, which is natural in the Riemannian
setting, is useless in the sub-Riemannian case, since the classes of geodetically convex sets
and functions are trivial in the Heisenberg group, [78].

All details and precise definitions related to convexity in stratified groups will be de-
ferred to Section 2.1.

So far, in stratified groups the following first order regularity properties have been
proved for h-convex functions. First, it has been proved in [26] that continuous h-convex
functions are locally Lipschitz continuous with respect to the CC metric, then as a con-
sequence of the celebrated Rademacher type differentiability theorem of Pansu [85], they
are almost everywhere h-differentiable, see Theorem 1.2.25. The local Lipschitz continuity
of h-convex functions has been first proved for h-convex functions bounded from above
in [6, 71], and subsequently to all measurable h-convex function in [87]. In addition, a
quantitative Lipschitz estimate holds, [26, 60, 64, 88]. More precisely one can control the
supremum norm of an h-convex function on a ball of radius r by the integral mean of its
absolute values on a ball with comparable radius, see Theorem 2.2.10. In Section 2.1 we
will give a different proof of this result by a sub-mean formula proved by Bonfiglioli and
Lanconelli in [12]. One of the main result in this thesis is that these L∞ − L1 estimates can
be suitably extended to CC-spaces.

In order to introduce this result in Carnot Carathéodory spaces let us define the notion
of X -convexity, see [8]. Consider a family of smooth vector fields X which satisfy the
Hörmander condition. All linear combinations of vector fields in X correspond to the so-
called horizontal vector fields. We say that a function u is X -convex if it is convex along
the integral curves of horizontal vector fields, see Definition 5.3.1. In Theorem 6.1 of [8],
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it is proved that X -convexity, local boundedness and upper semicontinuity imply local
Lipschitz continuity with respect to d, where the Carnot-Carathéodory distance d given by
X , is only assumed to yield the Euclidean topology. This result also gives L∞-estimates for
the horizontal derivatives Xu in terms of the L∞-norm of u, where X ∈ X . In the case X
generates a Carnot group, these estimates take a quantitative form, see [26] and [60, 64].
The following result, proved in collaboration with V. Magnani [66], establishes that the
previous estimates can be suitably extended to Carnot-Carathéodory spaces generated by
a set X of Hörmander vector fields, see also Theorem 5.6.1
Theorem For each X -convex function u : Ω → R, that is locally bounded from above, for every
x ∈ K, where K is a compact set of Rn we have

sup
Bx,r

|u| ≤ C
∫

Bx,2r

|u(w)| dw(4)

|u(y)− u(z)| ≤ C
d(y, z)

r

∫
Bx,2r

|u(w)| dw ,(5)

for every 0 < r < R and every y, z ∈ Bx,r. Here R and C are constants depending only on X and
K.

Our approach to prove (4) and (5) differs from both the geometric approach of [26] and
the PDEs approach of [60, 64]. In fact, we need both these aspects, according to the follow-
ing scheme. We start from a X -convex function u : Ω → R that is locally bounded from
above. By a result of D. Morbidelli, [80], the Carnot-Carathéodory ball can be covered by
suitable composition of flows of horizontal vector fields in a quantitative way, depending
on the radius of the ball. This essentially allows us to apply the approach of [71] that relies
on the one dimensional convexity of u along these flows, hence obtaining explicit Lips-
chitz estimates. It follows that u belongs to the anisotropic Sobolev space W1,2

X ,loc(Ω), see
Section 1.1 for more information. The crucial step is to show that for every x ∈ Ω the X -
convex function u is a weak subsolutions on a small ball centered at x of a suitable “pointed
sub-Laplacian”

Lx =
m

∑
j=1

Y2
j ,

that depends on x, see Theorem 5.5.3. Since the Lebesgue measure is locally doubling with
respect to metric balls, the Poincaré inequality holds, and cut-off functions are available
see [21], then the classical Moser iteration technique can be applied for weak subsolutions
to the sub-Laplacian equation, hence getting in particular the local upper estimate, see
also Corollary 5.5.4. The local lower estimate of u is reached using again the approximate
exponential, obtaining the pointwise estimate

(6) 2Nx u(x)− (2Nx − 1) sup
Bx,N̄δ

u ≤ inf
Bx,bδ

u ,

where Nx depends on x and it satisfies the uniform inequality 1 ≤ Nx ≤ N̄ on some
compact set, see Lemma 5.3.2. This eventually leads us to the proof of (5). The estimate
(6) is a straightforward consequence of Theorem 5.3.5 joined with Theorem 5.6.2. In sum,
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the geometric part of our method arises from a quantitative representation of the Carnot-
Carathéodory ball by approximates exponentials and it leads us to the lower estimates.The
PDEs part of our approach provides the upper estimates.

There are various challenging questions on h-convex functions in stratified groups, that
are still far from being understood. The rich geometric structure of a Carnot group allows
for a deeper study of its differentiability properties. One of the most important is certainly
the validity of an Alexsandrov-Bakelman-Pucci estimate, that is still an intriguing open
question already in the Heisenberg group and it was also one of the main motivations to
study h-convexity in this framework, see [26] and [27]. On another side, we also have
the second order differentiability of convex functions, namely, the classical Alexsandrov-
Busemann-Feller’s theorem. This is an important result in different areas of Analysis and
Geometry. For instance, in the theory of fully nonlinear elliptic equations, this theorem
plays an essential role in uniqueness theory, see Chapter 5 of [18]. Since the works of
Busemann and Feller, [17], and of Alexsandrov [2], there have been different methods to
establish this theorem in Euclidean spaces. The functional analytic method by Reshetnyak,
[86], relies on the fact that the gradient of a convex function has bounded variation. This
scheme can be extended to stratified groups, provided that one can prove that an h-convex
function is BV2

H in the sense of [5]. This important fact has been established by differ-
ent authors for h-convex functions on Heisenberg groups and two step stratified groups
[50], [51], [44], [28] and also for k-convex functions with respect to two step Hörmander
vector fields, [99]. Precisely, the main result of [28] gives us the following version of the
Alexsandrov-Busemann-Feller theorem. Let Ω be an open set of a two step stratified group and
let u : Ω −→ R be h-convex. Then u has at a.e. x ∈ Ω a second order h-expansion at x. We
say that u : Ω −→ R has a second order h-expansion at x ∈ Ω if there exists a polynomial
Px : G −→ R of homogeneous degree less than or equal to two, such that

(7) u(xw) = Px(w) + o(‖w‖2) asw→ 0.

Unfortunately, it is still not clear whether h-convex functions are BV2
H in higher step groups

and this makes the Alexsandrov-Busemann-Feller’s theorem an important open issue for
the higher step geometries of stratified groups.

On the other hand, the first proofs of this result in Euclidean spaces, [2], [17] and also
some of the subsequent proofs did not use the bounded variation property of the gradient.
For instance, Rockafellar’s proof of [89] relies on Mignot’s a.e. differentiability of mono-
tone functions, [76], where the crucial observation is that the subdifferential of a convex
function is a monotone function. This may suggest different approaches to Alexsandrov’s
theorem in stratified groups and constitutes our first motivation to study the properties
of the h-subdifferential in Chapter 4. The notion of h-subdifferential has been introduced
in [26] for h-convex functions. In analogy with the local notion of convexity mentioned
above, we use “a local version” of this notion, that allows us to treat h-convex functions
on arbitrary open sets.
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We say that p ∈ H1 is an h-subdifferential of u : Ω −→ R at x ∈ Ω if whenever h ∈ H1
and [0, h] ⊂ x−1 ·Ω,

(8) u(xh) ≥ u(x) + 〈p, h〉 .

We denote by ∂Hu(x) the set of all h-subdifferentials of u at x and the corresponding set-
valued mapping by ∂Hu : Ω ⇒ H1. Here 〈·, ·〉 in (8) is the scalar product fixed in G, such
that all subspaces Hj are orthogonal. Our starting point was the characterization of the
second order differentiability of h-convex functions. In the Euclidean framework, this has
been done by Rockafellar, where in Theorem 2.8 of [91] proves that a convex function has a
second order expansion at a fixed point if its gradient is differentiable at that point in the extended
sense. In Chapter 4, we extend such result to all Carnot groups. More precisely in Theorem
3.2.8 we prove that every h-convex function u has a second order h-expansion at x ∈ Ω if
and only if

(9) ∂Hu(xw) ⊆ v + Ax(w) + o(‖w‖)B,

for all w ∈ x−1Ω, where B denotes the unit ball in H1 and Ax : G→ H1 is a suitable linear
map, see the joint work with V. Magnani, [67]. Notice that in order to prove the analogous
of Rockafellar’s theorem in stratified groups we have to establish a connection between
the differentiability of the h-subdifferential (9) and the differentiability of the gradient. To
this aim we have to develop a nonsmooth calculus for h-convex functions, that is the main
object of Chapter 3. We start with a characterization of the h-subdifferential. Let u : Ω→ R

be h-convex. Then for every x ∈ Ω we have

(10) c̄o (∇?
Hu(x)) = ∂Hu(x) .

We denote by co(E) ⊂ H1 the convex hull in H1 of the subset E ⊂ H1 and by c̄o(E) its
closure. The h-reachable gradient is given by

(11) ∇?
Hu(x) =

{
p ∈ H1 : xk → x, ∇Hu(xk) exists for all k’s and ∇Hu(xk)→ p

}
.

The proof of (10) cannot follow the Euclidean scheme. However, it is still possible to use
the Hahn-Banach’s theorem, when applied inside the horizontal subspace H1, that has a
linear structure. Another difficulty is that the group mollification does not commute with
horizontal derivatives, hence the mollification argument of the Euclidean proof cannot be
applied. We overcome this point by a Fubini type argument with respect to a semidirect
factorization, following the approach of [68].

The uniqueness of the h-subdifferential as a consequence of h-differentiability has been
already shown [27], see also [20] for the case of Heisenberg groups. To show the opposite
implication we decompose the difference quotient of u into sums of difference quotients
along horizontal directions. The same decomposition along horizontal directions have
been first used by Pansu, [85]. The second ingredient is the following non-smooth mean
value theorem.
Theorem Let u : Ω −→ R be an h-convex function. Then for every x ∈ Ω and every h such that
[0, h] ⊆ H1 ∩ x−1Ω, there exists t ∈ [0, 1] and p ∈ ∂Hu(xδth) such that u(xh)− u(x) = 〈p, h〉.
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This theorem, corresponding to Corollary 3.1.16, is also important in the proof of The-
orem 3.2.8. In fact, it is an essential tool to establish that twice h-differentiability implies
the existence of a second order h-expansion. In the Euclidean framework, the previous im-
plication can be found in Theorem 7.10 of [1], where the Clarke’s nonsmooth mean value
theorem plays a key role.

Another natural notion of convexity introduced in the Euclidean setting is the distribu-
tional one: let Ω be an open set of Rn and let T ∈ D′(Ω) be a distribution. We say that T is
convex if its Hessian is positive definite in the sense of distributions. In Euclidean spaces,
the first distributional characterization of convexity goes back to L. Schwartz in [95], who
proved that a distribution in R is a convex function if and only if its second derivative
is a non-negative Radon measure. Bakel’man showed that all second order distributional
derivatives of a convex function in Rn are signed Radon measures, [7]. Subsequently,
Reshetnyak established that a locally summable function is defined by a convex function
if and only if its distributional Hessian is nonnegative, [86]. This characterization has been
improved by Dudley, who proved that any distribution with nonnegative Hessian in the
distributional sense is defined by a convex function, see Theorem 2.1 in [29].

Our aim is to extend this characterization in stratified groups. As it is clear from Dud-
ley’s proof, the geometry of the space plays an important role. Dudley’s approach uses
the following elementary fact: given a convex function u and a simplex S, then u attains
its maximum on S at a vertex q. This allows to consider the set S′, that is symmetric to S
with respect to the vertex q. It follows that u(y) ≥ u(q) for every y ∈ S′, giving a local
lower bound. This implies that in the case the sequence of convex functions diverges to
+∞ at some point, we get its uniform limit to +∞, contradicting the distributional conver-
gence. The preceding description constitutes the leading idea in Dudley’s approach. Un-
fortunately this scheme is not completely reproducible in stratified groups due to the lack
of existence of ”simplexes” in general stratified groups. We refer to Section 4.2 for more
details, where we prove Dudley’s characterization for Heisenberg groups. This suggests
to follow a different approach with respect to the Euclidean one, in order to get the full
distributional characterization. It was already known that in all stratified groups every h-
convex function has nonnegative horizontal Hessian in the distributional sense, see [26, 64],
although the fact that any distribution with nonnegative horizontal Hessian is given by an
h-convex function was not completely clear in the setting of general stratified groups. In
Section 4.1 we give a full answer to this question, see the joint work with A. Bonfiglioli, E.
Lanconelli and V. Magnani, [15]. More precisely, we have the following theorem
Theorem Let µ ∈ D′(Ω) be a Radon measure, then µ is defined by an h-convex function if and
only if it is given by an h-convex distribution.

Our scheme is elementary, although it differs from the standard approach: we consider
the group convolution of the measure µ, but instead of computing its horizontal Hessian by
direct differentiation, we consider its distributional version. This respects the noncommu-
tativity of the convolution operator. As a byproduct of the previous theorem if a function
is in L1

loc and h-convex in the distributional sense, then outside a negligible set it coincides
with a locally Lipschitz continuous h-convex function.
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This result also extends one of the characterizations given in [60], where the subhar-
monic theory used to prove the equivalence of various notions of h-convexity requires the
upper semicontinuity of the function. To reach the complete distributional characterization
of h-convexity, we combine Corollary 4.1.7 and Lemma 4.1.8. Using the fundamental solu-
tion of the sub-Laplacian ∆H in stratified groups, [34], this lemma shows that an h-convex
distribution T can be written as the sum of a ∆H-harmonic function and a locally summa-
ble function. Since ∆H-harmonic functions are smooth by Hörmander’s theorem, [57], we
conclude that T is given by a function in L1

loc(Ω). Hence if T ∈ D′(Ω) is h-convex, then
T is defined by an h-convex function on Ω. Recall that all measurable h-convex functions
are locally Lipschitz continuous, [87]. Thus, the previous result shows that the class of h-
convex measurable functions coincides with that of h-convex distributions, that are locally
Lipschitz continuous h-convex functions. Although we still do not know whether one
can find h-convex functions in higher step groups that are nonmeasurable, these functions
certainly would not be included in the previous families. This confirms that the natural
notion of h-convexity in stratified groups should always include either measurability or
local boundedness from above, that are indeed equivalent conditions.
As a last observation we wish to emphasize the importance of distributional characteriza-
tion from Complex Analysis. In fact, the well known relationship between the Heisenberg
group Hn and the unit sphere in Cn+1 suggests an interesting analogy between plurisub-
harmonic functions, that are subharmonic on all one dimensional complex affine sub-
spaces, and h-convex functions on Heisenberg groups, that are subharmonic on all hor-
izontal lines, that are one dimensional real affine subspaces contained in the horizontal
planes. Moreover, the horizontal planes in the Heisenberg groups Hn correspond to the
complex subspaces of the real tangent spaces to the unit sphere in Cn, in view of the iden-
tification of Hn by the holomorphic stereographic projections.

Thus, we may interpret h-convexity in Heisenberg groups as a kind of “real plurisub-
harmonicity” for mapping on the unit sphere of Cn. In this setting, a distribution whose
complex Hessian defines a positive current of bidegree (1,1) is precisely a plurisubhar-
monic function, see [25]. Since plurisubharmonicity has its real counterpart in h-convexity,
as discussed above, we expect that in Heisenberg groups and in more general stratified
groups the notion of h-convexity in the distributional sense should have further interest-
ing developments.

The thesis is organized as follows. CHAPTER 1 presents Carnot-Carathéodory spaces
and Carnot groups. We start from the basic properties of vector fields and Lie brackets,
then we introduce CC spaces and the CC distance induced by a family of vector fields X .
In the second part of the chapter we introduce Carnot groups and we collect some defi-
nitions and elementary results related to differentiation in this setting. We conclude the
chapter with a section on homogeneous polynomials.

In CHAPTER 2 we introduce convexity in sub-Riemannian spaces. This chapter is or-
ganized as follows. In the first section we introduce the notion of h-convexity in Carnot
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groups. In Section 2, we state some well known regularity results. We introduce the hor-
izontal Hessian and the notion of v-convexity. Finally, we present a short proof of some
L∞ − L1 estimates for h-convex functions proved in [26, 60]. In fact, these estimates easily
follows by an integral representation formula proved in [14].

In CHAPTER 3 we introduce the notion of h-subdifferential in stratified groups and
we characterize both first and second order differentiability of h-convex functions. More-
over we show that Alexsandrov’s second order differentiability of h-convex functions is
equivalent to a suitable differentiability of their horizontal gradient. In Section 3.1, we
prove several basic results involving the h-subdifferentials. The set of h-subdifferentials of
a function u at x will be denoted by ∂Hu(x). As a first result we prove that ∂Hu(x) is the
convex envelope of the limit point set of ∇Hu, see Theorem 3.1.4 and Theorem 3.1.8. The
main result of this section is the nonsmooth mean value theorem for h-convex functions,
Corollary 3.1.16. We mention also the first order characterization of h-convex functions
proved in Theorem 3.1.20. In Section 3.2 we deal with second order analysis of h-convex
functions. Here the main result is Theorem 3.2.8, where we prove the equivalence, for h-
convex functions, of two notions of second order differentiability, namely Definition 3.2.1
and 3.2.5. In order to prove this we need some preliminary results. The most important
one is the characterization of second order h-differentiability, Lemma 3.2.6.

The full characterization of h-convex distributions is the main topic of CHAPTER 4.
In Section 4.1 as a first result we extend the Reshetnyak’s characterization to all stratified
groups, Theorem 4.1.6. As a byproduct we have that a locally summable h-convex func-
tion, in the distributional sense, outside a negligible set coincides with a locally Lipschitz
continuous h-convex function, Corollary 4.1.7. The main result of this chapter is given in
Theorem 4.1.9, where we prove the full distributional characterization. In Section 4.2 we
give a different proof of Theorem 4.1.9 restricted to Heisenberg groups. In these groups it
is possible to follow the original scheme of Dudley, [29]. This approach is more geometric,
but unfortunately it cannot be extended to general stratified groups, see Theorem 4.2.16.

In CHAPTER 5 we consider the notion of convexity in general Sub-Riemannian spaces.
The main result of the chapter is the quantitative Lipschitz estimate of Theorem 5.3.5,
which is a consequence of the local L∞ − L1 inequality, see Theorem 5.0.17. In Section 5.1
we introduce two equivalent CC-distances. In Section 5.2 we define almost exponential
maps an their properties, according to the work by D. Morbidelli [80]. The main result of
Section 5.3 is Theorem 5.3.4. Here we prove that X -convex functions bounded from below
are also bounded form above, this follows as in [71]. In Section 5.4 we describe the Moser
iteration technique in sub-Riemmanian setting. Although the subject is well known we
give full proofs for completeness. Finally, in Section 5.5 we prove our main result, namely
Theorem 5.0.17
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BASIC NOTATIONS

Rn n-dimensional Euclidean space
G a Carnot group, p. 7
g a stratified Lie algebra, p. 7
Vi i layer of the stratified Lie algebra g, p. 7
exp exponential map, p. 2
ea p almost exponential map, p 63
Hn n-Heisenberg group, p. 8
Hi image of Vi under the exponential map, p. 8
Hx horizontal plane at x, namely x · H1, p. 7
Ω open set in Rn

Ω0 open and bounded set in Rn

Xi a smooth vector field on Rn, p. 1
X family of vector fields in Rn, p. 1
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CHAPTER 1

MAIN NOTIONS

This chapter is an introduction to Carnot-Carathéodory spaces and Carnot groups. We
start with the basic properties of vector fields and Lie brackets, then we introduce CC
spaces and the CC distance induced by a family of vector fields X . In the second part of
the chapter we introduce Carnot groups and we collect some definitions and elementary
results related to differentiation in this setting. We conclude the chapter with a section on
homogeneous polynomials.

1. Sub-Riemannian spaces

After a brief introduction on vector fields and Lie brackets, we define Sub-Riemannian
spaces and the CC-distance.

1.1. Vector fields and commutators. Let Ω ⊂ Rn be an open set. A vector field X on Ω
is a first order partial differential operator

X =
n

∑
i=1

ai(x)∂xi

where ai are smooth functions in Ω. Here, as usual, we identify the smooth section of
the tangent bundle (ai(x), . . . , an(x)) ∈ Rn with the first order differential operator X.
Throughout the thesis we will use both interpretations. Hence it makes sense to talk about
the linear independence of a collection of vector fields. Let X be a family of m smooth
vector fields (X1, . . . , Xm) with Xj = ∑n

i=1 ai
j(x)∂xi . Fix a multi-index I = (i1, . . . , in), ij ≤ m.

We define the determinant

λI(x) = det [Xi1(x), . . . , Xin(x)] = det
(

ak
ij
(x)
)

.

If X and Y are two vector fields, then the Lie bracket or commutator is the operator

[X, Y] := XY−YX.

In coordinates, if X = ∑n
i=1 ai(x)∂xi and Y = ∑n

i=1 bi(x)∂xi then

[X, Y] =
n

∑
k=1

(
n

∑
i=1

ai(x)∂xi bk(x)− bi(x)∂xi ak(x)

)
∂xk .

It is a well known fact that for every vector fields X, Y, Z the Jacoby identity holds:

[X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0.

1
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The Lie algebra generated by X , denoted by Lie (X1, . . . , Xm), is defined as the smallest
vector space which contains X and it is closed under the bracket operation.
Definition 1.1.1 (Flow of a vector field) Let X be a smooth vector field of Rn and let x ∈ Rn.
We consider the Cauchy problem {

γ̇(t) = X(γ(t))
γ(0) = x

and denote it by t → ΦX(x, t). The mapping ΦX defined on an open neighborhood of
Rn × {0} in Rn+1 is the flow associated to X. The flow ΦX will also define the local diffeo-
morphism ΦX

t (·) = ΦX(·, t) on bounded open sets for t sufficiently small.

For every smooth vector field X on Rn, we denote by exp(tX) = ΦX(0, t), where t ∈ R

is sufficiently small. The following lemma is elementary, but provide a useful equivalent
definition of the commutators of two vector fields.
Lemma 1.1.2 Let X, Y be two smooth vector fields on Rn and suppose that exp(·X) and exp(·Y)
are defined in a symmetric neighborhood of the origin I ⊂ R. Then for every smooth function u on
Rn and x ∈ Rn we have[

d
dt

Y(u ◦ exp(−tX))

]
(exp(tX)x) = [X, Y](u ◦ exp(−tX))(exp(tX)x), t ∈ I.

PROOF. By a direct computation we get

(12) Y(
d
dt
(u ◦ exp(−tX)))(exp(tX)x) + Y(u ◦ exp(−tX))(

d
dt

exp(tX)x) =

−YX(u ◦ exp(−tX))(exp(tX)x) + XY(u ◦ exp(−tX))(exp(tX)x),

and the proof is complete. �

Definition 1.1.3 Given a smooth vector field on Rn, X = ∑n
i=1 ai(x)∂xi we shall denote by

X∗ the formal adjoint to X in L2(Rn), namely the operator which for all φ, ψ ∈ C∞
0 (Rn)

satisfies ∫
Rn

φ(x)Xψ(x)dx =
∫

Rn
ψX∗φ(x)dx.

If X is a smooth vector field, the operator X∗ can be written as

X∗ =
n

∑
i=1
−∂xj(aj(x)·).

1.2. CC-distance. A Carnot-Carathéodory (CC) space is a manifold M with a metric
induced by a fixed family of vector fields. Since we are interested in local properties we
restrict our attention only to open and connected subset of Rn. Let Ω ⊂ Rn be an open
set and let X = (X1, . . . , Xm), with m ≤ n an Xi, i = 1, . . . , m smooth vector fields on
Ω. A detailed introduction to CC spaces can be found in [9], here we recall only the basic
definitions.
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Definition 1.1.4 A Lipschitz continuous map γ : [0, T] → Ω, T ≥ 0, is admissible with
respect to X if there exist measurable functions (h1, . . . , hm) : [0, T]→ Rm such that
(i) γ′(t) = ∑m

i=1 hi(t)Xi(γ(t)) for a.e. t ∈ [0, T]
(ii) ‖h‖L∞(0,T) < +∞.
The curve γ is subunit if it is admissible and for a.e. ∈ [0, T], ∑m

j=1 h2
j (t) ≤ 1.

Now we introduce the function d : Ω×Ω→ [0,+∞], called CC distance, defined as

(13)
dCC(x, y) = inf{T ≥ 0| there exists a subunit curveγ : [0, T]→ Ω,

such that γ(0) = x, γ(T) = y}.

If the set on the right hand side of (13) is empty, then we set dCC(x, y) = +∞. In general it
is false that the CC distance, with respect toX , between two points will be finite. However,
we have the following important fact, see for instance [9].
Theorem 1.1.5 If d(x, y) < +∞ for all x, y ∈ Ω, then (Ω, d) is a metric space, called a Carnot-
Carathéodory space.

Given a multi-index I = (i1, . . . , ip), 1 ≤ ij ≤ m, we set |I| = p and

(14) X[I] =
[

Xi1 ,
[
. . . ,

[
Xip−1 , Xip

]
. . .
]]

.

Throughout the thesis we always assume that the family X of vector fields X1, . . . , Xm
satisfy the Hörmander condition, [57] : for any open bounded set Ω ⊂ Rn, and for every
x ∈ Rn there exists an integer r = r(Ω) such that

(15) span{X[I](x) : |I| ≤ r} = Rn.

If condition (15) is satisfied the CC distance is finite, hence by Theorem 1.1.5 the space
(Ω, d) is a metric space. This well know result was first proved by Chow in [47]. The
metric space (Ω, d) under the assumption (15) is also called a Sub-Riemannian space.
Example 1.1.6 Let us fix m < n and consider Rm × Rn−m = Rn. Denote by (x̄, x′) ∈
Rm ×Rn−m the points in Rn and define n vector fields as follows

X1 = ∂x1 , . . . , Xm = ∂xm Xm+1 = |x̄|2k∂xm+1 , . . . , Xn = |x̄|2k∂xn ,

where | · | denote the Euclidean norm and k ∈ N, k > 0. Clearly the family X =
(X1, . . . , Xn) satisfies the Hörmander condition in fact

[ Xi, · · · ,︸ ︷︷ ︸
(k−1)−times

[Xi, Xm+j] · · · ] = (2k)!∂xm+j ,

for every 0 < i ≤ m and 0 < j ≤ n − m. The induced CC metric d on Rn is called the
Grushin metric. This kind of sub-Riemannian metric has been introduced by Franchi and
Lanconelli in [36, 37]. Notice that if k is a positive real number, the Hörmander condition is
in general no longer verified by the family X1, . . . , Xn. However it is not difficult to prove
that the Carnot-Carathéodory distance is well defined and finite also in this more general
case, see for instance [79].
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Since throughout the thesis we will need different CC-distances, first we introduce the
notion of local equivalence. Following the terminology of [83], we introduce the following
definition.
Definition 1.1.7 We say that two distances ρ1 and ρ2 in Rn are equivalent, if for every com-
pact set K ⊂ Rn, there exist cK ≥ 1, depending on K, such that

c−1
K ρ1(x, y) ≤ ρ2(x, y) ≤ cKρ1(x, y) for all x, y ∈ K.

One can prove that the distance (13) is equivalent to the following one, which was first
introduced in [32].
Definition 1.1.8 For every x, y ∈ Rn we define

(16) d(x, y) = inf{t > 0 : there exists γ ∈ Γx,y(t)} ,

where Γx,y(t) denotes the family of all absolutely continuous curves γ : [0, t] −→ Rn with
γ(0) = x, γ(t) = y and such that for a.e. s ∈ [0, t] we have

γ̇(s) =
m

∑
j=1

aj(s)Xj(γ(s)) and max
1≤j≤m

|aj(s)| ≤ 1 .

Metric balls are defined using the following notation

Bx,r = {z ∈ Rn : d(z, x) < r}, Dx,r = {z ∈ Rn : d(z, x) ≤ r}

for any r > 0 and x ∈ Rn.

Throughout the thesis we refer to d when speaking of Carnot-Charatheodory distance.

1.3. Sobolev spaces. Next, we introduce the anisotropic Sobolev space W1,p
X with re-

spect to the family X . Throughout, for every open set Ω ⊂ Rn we denote by C∞
c (Ω), the

class of smooth functions with compact support.

Definition 1.1.9 Given an open set Ω ⊂ Rn, we define the X -Sobolev space W1,p
X (Ω), with

1 ≤ p ≤ ∞, as follows

W1,p
X (Ω) =

{
f ∈ Lp(Ω), Xj f ∈ Lp(Ω), j = 1, . . . , m

}
,

where Xju is the distributional derivative of u ∈ L1
loc(Ω), namely

〈Xiu, φ〉 =
∫

Ω
u X∗i φ dx, φ ∈ C∞

0 (Ω),

and X∗i is the formal adjoint of Xi, namely, X∗i = −Xi − divXi.

The linear space W1,p
X (Ω) is turned into a Banach space by the norm

‖ f ‖W1,p
X (Ω)

:= ‖ f ‖Lp(Ω) +
m

∑
j=1
‖Xi f ‖Lp(Ω) .

The following Meyers-Serrin type theorem was proved in [38, 42] and holds for a more
general class of vector fields than the smooth ones. We also remark that the method goes
back to the work of Friedrichs [40].
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Theorem 1.1.10 Let X = (X1, . . . , Xm) be a system of locally Lipschitz vector fields and let
Ω ⊂ Rn be an open set. If 1 ≤ p < ∞ then

C∞(Ω) ∩W1,p
X (Ω) is dense in W1,p

X (Ω).

In view of Theorem 1.1.10, the following definition is natural.
Definition 1.1.11 Let X be a family of Lipschitz continuous vector fields. If 1 ≤ p < ∞
then we define

W1,p
X ,0(Ω) := C∞

0 (Ω)
W1,p
X .

As in the Euclidean case Lipschitz continuous functions with respect to d are W1,∞
X

functions, see [39, 43].
Theorem 1.1.12 Let Ω ⊂ Rn be a bounded, open set with dΩ = supx,y∈Ω d(x, y) < ∞. If for a
given function u : Ω→ R we have for some constant C > 0

|u(x)− u(y)| ≤ Cd(x, y), for x, y ∈ Ω,

then u ∈W1,∞
X (Ω).

2. Stratified groups

In this section we introduce a particular class of CC spaces, called Carnot groups. These
groups are the main object of study in the thesis. First, we recall the definition of Lie group
and Lie algebra.
Definition 1.2.1 A Lie group is a differentiable manifold G endowed with a differentiable
group structure, namely the product (x, y) 7→ x · y and the inversion x 7→ x−1 are smooth
maps. We denote by 0 the identity of the group.

Definition 1.2.2 A vector field X ∈ Γ(TG) is left invariant if

dlg(X(0)) = X(g) for everyg ∈ G,

where the map lg is the diffeomorphism lg : G→ G defined as lg(x) = gx, x ∈ G.

Notice that if we look at vector fields as differential operators, the left invariance of
X ∈ Γ(TG) is equivalent to the following

X(u ◦ lg) = (Xu) ◦ lg, for any u ∈ C∞(G).

Let Xj left invariant vector fields on G, given a multi-index α ∈ Np define Xα as Xα =

Xα1
1 · · ·X

αp
p . Then for every smooth function u on G and every x, g ∈ G, we have

(17) Xα(u(gx)) = (Xαu) (gx).

By definition of left invariant vector field, Xj(gx) = dlgXj(x) moreover given a smooth
function u, Xju(x) =

〈
du(x), Xj(x)

〉
. Thus for every j = 1, . . . , m1 we have
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Xju(gx) =
〈
d(u ◦ lg)(x), Xj(x)

〉
=

〈
du(gx)dlx, Xj(g)

〉
=

〈
du(gx), Xj(gx)

〉
=
(
Xju

)
(gx).

Clearly the previous equality implies (17).
Definition 1.2.3 We say that a finite dimensional vector space g is a Lie algebra if there
exists an antisymmetric bilinear map

g× g→ g, (X, Y)→ [X, Y],

such that the Jacobi identity holds, i.e. for every X, Y, Z ∈ g

[X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0.

A linear subspace a ⊂ g is a Lie sub algebra of g if [X, Y] ∈ a for any X, Y ∈ a.

Let G be the set of all vector fields X ∈ Γ(TG) which are left invariant. Since for every
X, Y ∈ Γ(TG), and every diffeomorphism f : G→ G, we have

f?[X, Y] = [ f?X, f?Y],

it follows that G is a Lie subalgebra of Γ(TG). Hence g = G is called the Lie algebra
associated to G.

Now we introduce the exponential map in Lie groups. Consider the following system
of O.D.E.

(18)
{

∂tφ(x, t) = X(φ(x, t))
φ(x, 0) = x

where X ∈ G. The flow φ is defined on all R, this is a consequence of the left invariance of
X. More precisely if φ(x, ·) is defined on some interval [0, b] then also φ(x, ·) = x · φ(e, ·) is
defined on [0, b]. Moreover

φ(φ(e,
b
2
), t) = φ(e,

b
2
)φ(e, t) = φ(e, t +

b
2
),

hence φ(e, ·) can be extended on [0, 3b
2 ]. This argument can be repeated analogously on the

left side.
Definition 1.2.4 For any X ∈ G we define the map Exp : G → G as

Exp(X) := φ(e, 1),

where φ is the flow associated to the system (18).

Definition 1.2.5 Let g be a Lie algebra and a, b two subspaces. We denote by [a, b] the
subspace of g generated by all linear combinations of elements [X, Y], where X ∈ a and
Y ∈ b. For each k ∈N \ {0} we define by induction the following subspaces

g1 = g, gk+1 = [gk, g].
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The family (gk)k≥1 is called the descending central sequence of g. If there exists a positive
integer s such that gs+1 = 0 we say that g is a nilpotent Lie algebra of step s. A Lie group G

is said to be nilpotent if its Lie algebra is nilpotent.

Theorem 1.2.6 (1.127 in [62]) If G is a simply connected nilpotent Lie group with Lie algebra g,
then the exponential map is a diffeomorphism of g onto G.

As a consequence of the preceding theorem we can define the inverse map ln = Exp−1

in simply connected nilpotent groups.
Now we state the important Baker-Campbell-Hausdorff formula, in the sequel called

BCH formula, were a relation between vectors of the algebra and the product of their
corresponding exponentials is established.
Theorem 1.2.7 (B.22 in [62]) Let G be a Lie group with Lie algebra G. Then for all X, Y suffi-
ciently close to 0 in g, Exp(A)Exp(B) = Exp(C), where

C = A + B + C2 + . . . + Cn + . . .

is a convergent series which H2 = 1
2 [X, Y] and Hn is finite linear combination of expressions

(adX1) · · · (adXn−1)Xn with each Xj equal to either X or Y. The particular linear combinations
that occur may be taken to be independent of G, as well as of X and Y.

Explicit computation shows that

(19) C3 =
1
12

[X, [X, Y]] +
1
12

[Y, [Y, X]] , C4 = − 1
24

[X, [Y, [X, Y]]] .

Definition 1.2.8 We say that a Lie algebra g is graded if it can be decomposed as a direct
sum of vector spaces as

g = V1 ⊕ · · · ⊕Vs, s ∈N,

with Vi+1 ⊂ [Vi, V1] for any i ∈ N \ {0}, and Vj = {0} for any j > s. A Lie group whose
Lie algebra is graded is called graded group. The previous decomposition is called the
grading of the group. If G is a simply connected group associated to the algebra g, we
define for every x ∈ G the subspace of degree k at x as follows

Hk
xG =

{
X(x)| X ∈ Vj

}
⊂ TxG.

We denote by Hk = ExpVk ⊂ G the space of elements in G of degree k = 1, . . . , s.

Remark 1.2.9 Notice that any graded group is nilpotent and the positive integer s is the
step of the group. This follows because we assume that the group is finite dimensional.

Definition 1.2.10 Let g be a graded algebra. Then for every t ≤ 0, we define the map δt : g → g
as

δt(v) =
s

∑
i=1

rivi,

where v = ∑s
i=1 vi, vi ∈ Vi. If t < 0 we define δt as

δt(v) = −δ|t|(v).
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Definition 1.2.11 A graded algebra g with grading

g = V1 ⊕ · · · ⊕Vs, s ∈N,

is called stratified if for any i ∈ N \ {0} we have Vi+1 = [Vi, V1], where Vj = {0} for any
j > s. A Lie group whose Lie algebra is stratified is called stratified group or Carnot group.

A stratified group can be also thought of as a graded vector space G = H1 ⊕ · · · ⊕ Hι

with a polynomial group operation given by the Baker-Campbell-Hausdorff formula. The
left invariant vector fields of Vj are exactly the ones that at the origin take values in Hj.
Recall that the origin is exactly the unit element of the group. A scalar product on G will
be understood, assuming that all subspaces Hj are orthogonal. We denote by πj : G −→ Hj
the associated orthogonal projections. For every s = 1, . . . ι, we fix a basis (ems−1+1, . . . , ems)
of Hs, then

ms

∑
i=ms−1+1

xiei ∈ Hs and x =
ι

∑
s=1

ms

∑
i=ms−1+1

xi ei.

Throughout the thesis, for every Carnot group G we also fix

(20)
(
Xms−1+1, . . . , Xms

)
as the basis of Vs such that, with respect to the coordinates (xj), Xj is ej.

We define the homogeneous dimension of G as

Q =
s

∑
i=1

i dim (Vi) .

2.1. The Heisenberg groups. The first examples of non abelian stratified Lie groups
are the so called Heisenberg groups Hn, defined as follows.
Definition 1.2.12 A Lie algebra h2n+1 = V1 ⊕ V2 with basis (X1, . . . , Xn, Y1, . . . , Yn), T re-
spectively of V1 and V2, that satisfies relations[

Xi, Xj
]
= 0,

[
Yi, Yj

]
= 0,

[
Xj, Yj

]
= T,

for every j, i = 1, . . . , n is called Heisenberg algebra. The Heisenberg group Hn is the simply
connected nilpotent Lie group associated to h2n+1.

Using exponential coordinates on Hn we identify the group as the algebra h2n+1. The
group operation is given by the Backer-Campbell-Hausdorff formula as

x · y = x1 + y1 + x2 + y2 + β(x1, y1)

where β : V1 × V1 → V2 is non-degenerate, bilinear and skew-symmetric. Moreover we
have used the unique decomposition x = x1 + x2, x1 ∈ V1 and x2 ∈ V2.
Remark 1.2.13 Notice that, for every t ∈ V2 and x1 ∈ V1, with x1 6= 0, there exists y1 ∈ V1
such that β(x1, y1) = t. In fact, β is a non-degenerate bilinear form.



2. STRATIFIED GROUPS 9

2.2. Carnot groups as CC spaces. Let G = H1 ⊕ · · · ⊕Hι be a Carnot group, with
stratified Lie algebra g = V1 ⊕ · · · ⊕ Vι, ι ≥ 2. Fix an orthonormal basis (X1, . . . , Xm)
of V1 as in (20). Since the algebra g is stratified the Hörmander condition (15) is clearly
verified hence the basis (X1, . . . , Xm) induces a CC metric d on Rn. Moreover, since the
fields inducing the metric space d are left invariant and 1-homogeneous one can prove the
following remarkable facts:

d(δλx, δλy) = λd(x, y)

d(g · x, g · y) = d(x, y),

for all x, y, g ∈ G and λ > 0.
Now we define a class of distances that are compatible with the geometry of stratified

groups.
Definition 1.2.14 Let G be a graded group. A homogeneous distance on G is a continuous
map η : G×G→ [0,+∞[ that makes (G, d) a metric spaces and has the following proper-
ties:
(i) η(x, y) = η(ux, uy) for every x, y, u ∈ G,
(ii) η(δtx, δty) = tη(x, y) for every t > 0.

We denote by η(x) or ‖x‖ the homogeneous norm of x induced by the distance η , i.e.
‖x‖ := η(x, 0). As in [35], open balls with respect to the Carnot-Carathéodory distance d
will be denoted by Bx,r. Balls of radius r centered ad 0 will be denoted simply by Br. The
symbols Dx,r and Dr denote closed balls with analogous meanings.
Proposition 1.2.15 (2.3.37 in [72]) Let η and δ be homogeneous distances on G. Then there exist
two positive constants C1 and C2 such that for any x, y ∈ G we have

C1δ(x, y) ≤ η(x, y) ≤ C2δ(x, y).

Proposition 1.2.16 (2.3.39 in [72]) Let d be the CC-distance induced by (X1, . . . , X1) of a Carnot
group G. Then d is an homogeneous distance.

Carnot groups are nilpotent and so unimodular, thus the right and the left Haar mea-
sures coincide, up to constants. We shall denote by Hk the Hausdorff k-dimensional mea-
sure associated to the Carnot-Carathéodory distance on G. The Hausdorff measureHQ by
the left translation and scaling invariance of the CC distance is an Haar measure on G and
it will be also denoted by volG. Moreover, in exponential coordinates, this measure coin-
cides with a constant multiple of the Lebesgue measure on Rn. From these considerations
it follows that

volG(δλ(A)) = λQvolG(A),

for all Borel sets A ⊆ G. In particular

(21) volG(Bρ(g)) = cρQ

for some constant c > 0 independent of g.
The following proposition is a well known fact, see for instance Lemma 1.40 in [35].

Proposition 1.2.17 Let G be a stratified group and let (e1, . . . , em1) be an orthonormal basis of H1.
Then there exists a positive integer γ along with a vector of integers (i1, . . . , iγ) ∈ 1, . . . , m1

γ and
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a bounded open set U ⊂ Rγ such that

(22) D0,1 ⊂
{

γ

∏
s=1

aseis | (a1, . . . , aγ) ∈ U

}
.

Remark 1.2.18 The inclusion (22) can be always established by a rescaling argument, once
we know that {∏γ

s=1 aswis | (as) ⊂ U} is a neighborhood of the origin.

Definition 1.2.19 Let U ⊂ Rγ and (i1, . . . , iγ) ∈ {1, . . . , m1}γ be as in Proposition 1.2.17.
Thus, we define

(23) W =
{ γ

∏
s=1

aswis | (as) ⊂ U
}

, and M = sup
y∈W
‖y‖.

Definition 1.2.20 Let γ be the positive integer defined in Proposition 1.2.17. Then we
introduce the mapping F : U → G as follows

F(a1, . . . , aγ) =
N

∏
s=1

aseis ,

Notice that we have F(λa) = δλF(a) for all λ > 0 and a ∈ RN .

2.3. Calculus on stratified groups.
Definition 1.2.21 Let L : G → R. We say that L is homogeneous if δt(Lx) = L(δtx) for
every t > 0.

Definition 1.2.22 We say that a map L : G→ R is an horizontal linear map, briefly h-linear
map, if it is an homogeneous Lie group homomorphism. We denote by HL(G, R) the space
of all h-linear maps.

Remark 1.2.23 Notice that the previous definition is equivalent to the following one: a
map L : G −→ R is h-linear if and only if L : G −→ R is linear and L(x) = L(π1(x)), for
every x ∈ G.

Now we introduce the concept of h-differential for real valued functions defined on G,
see also the seminal paper of Pansu 1.2.25.
Definition 1.2.24 We say that u : Ω −→ R is h-differentiable at x ∈ Ω, if there exists an
h-linear mapping L : G −→ R such that u(xz) = u(x) + L(z) + o(‖z‖). Notice that L is
unique and we denote L by dHu(x), and its associated vector with respect to the scalar
product, that we call horizontal gradient is denoted by ∇Hu(x).

Theorem 1.2.25 ([85]) Let Ω ⊂ G be an open set and let u : Ω→ R be a Lipschitz function with
respect to the CC distance. Then u is a.e. h-differentiable in Ω.

Following [4] we introduce the X-derivative in a Carnot group G. Given a vector field
X ∈ Γ(TG) we define the divergence divX in the sense of distributions as follows:

(24)
∫

G
Xu d volG = −

∫
G

u divX d volG ∀u ∈ C∞
c (G).
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Definition 1.2.26 Let u ∈ L1
loc(G) and let X ∈ Γ(TG) be divergence-free. We denote by Xu

the distribution
〈Xu, v〉 := −

∫
G

uXv d volG, v ∈ C∞
c (G).

If f ∈ L1
loc(G), we write Xu = f if 〈Xu, v〉 =

∫
G

v f d volG for all v ∈ C∞
c (G). Analogously,

if µ is a Radon measure on G, we write Xu = µ if 〈Xu, v〉 =
∫

G
v dµ for all v ∈ C∞

c (G).

Given X ∈ Γ(TG) we denote by ϕX : G×R → G the flow of X, assuming that X is
sufficiently smooth to ensure its global existence and uniqueness.
Theorem 1.2.27 ([4]) Let u ∈ L1

loc(G) be satisfying Xu = 0 in the sense of distributions. Then,
for all t ∈ R, u = u ◦ΦX(·, t) volG-a.e. in G.

One can prove that all X ∈ g are divergence free, using the invariance of the right Haar
measure with respect to the flow of X (see Remark 2.13 of [4] for details).
Definition 1.2.28 Let φ ∈ C∞

c (G) be a nonnegative function, whose support is contained
in the unit open ball of G with respect to the fixed homogeneous norm. For every ε > 0,
we set φε(x) = ε−Qφ(δ 1

ε
x). We say that {φε}ε>0 is a family of mollifiers. For all x ∈ G, we

define the functions Φx,ε : G→ R as Φx,ε(y) = φε(xy−1).

Consider two measurable functions f , g on G, their convolution is defined by

(25) f ? g(x) =
∫

G
f (y)g(y−1x)dy,

provided the integral on the right hand side converges.
As in the Euclidean setting, it is useful to have a procedure which allows to regularize a
function, see Proposition 1.20 [35].
Lemma 1.2.29 Let f ∈ L1

loc(Ω), and define fε(x) := φε ? f (x). Then
(i) fε ∈ C∞(Ωε),
(ii) fε → f uniformly in Ω as ε ↓ 0 provided f is continuous.

Definition 1.2.30 Let Ω ⊂ G be an open set. A function u : Ω → R is in the Folland-
Stein class Γk(Ω) if it is continuous along with all its (distributional) derivatives X Iu, I =
(i1, . . . , ik) and il ∈ {1, . . . , m}.

If u ∈ Γ1(Ω) then we define the horizontal gradient as

(26) ∇Hu := (X1u, . . . , Xmu).

Definition 1.2.31 Let u ∈ L1(Ω), we say that u has h-bounded second variation and write
u ∈ BV2

H if the X-derivatives Xiu, XiXju are finite Radon measures for every i, j = 1, . . . , m.
If u ∈ L1

loc(Ω) and Xiu, XiXju are Radon measures we write u ∈ BV2
H,loc(Ω).

2.4. Homogeneous polynomials. In the previous sections we have already introduced
polynomials of homogeneous order 1, namely h-linear maps, see Definition (1.2.22). Now
we define polynomials on G of arbitrary homogeneous order and we prove some technical
lemmas that we will need in Chapter 4.
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Definition 1.2.32 We say that P : G→ R is a polynomial on G, if with respect to some fixed
graded coordinates we have P(x) = ∑α∈A cαxα, under the convention xα = ∏n

i=1 xαi
i , and

x0
j = 1, where A ⊂Nn is a finite set.

The homogeneous degree of P is the integer h-deg(P) = max {d(α), α ∈ A}, where d(α) =
∑ diαi, and di = s if ms−1 + 1 ≤ i ≤ ms.

By the previous definitions, any polynomial P can be decomposed into the sum of its
j-homogeneous parts, denoted by P(j), hence

P = ∑
0≤j≤h-degP

P(j).

A polynomial is j-homogeneous if it coincides with its j-homogeneous part.
There is a canonical way to realize abstract stratified Lie algebras as algebras of vector

fields over Rn. Here we state some general facts on Carnot groups, based on the B-C-H
formula.
For a proof of the following Proposition see [96], Chapter 12.
Proposition 1.2.33 In exponential coordinates the group product has the form

x · y = x + y +Q(x, y) ∀x, y ∈ Rn

where Q = (Q1, . . . ,Qn) : Rn ×Rn → Rn and each Qi is a homogeneous polynomial of degree
αi with respect to the intrinsic dilations of G, i.e.

Qi(δλx, δλy) = λαiQi(x, y) ∀x, y ∈ G.

Moreover ∀x, y ∈ G

Q1(x, y) = . . . = Qm(x, y) = 0,

Qj(x, 0) = Qj(0, y) = 0 and Qj(x, x) = Qj(x,−x) = 0, m < j ≤ n;

and for i > m, Qi is a sum of terms each of which contains a factor (xjyl − xlyj) for some 1 <
j, l < i. Finally, if mi−1 < j ≤ mi and 2 ≤ i, then

Qj(x, y) = Qj(x1, . . . , xmi−1 , y1 . . . , ymi−1).

Exponential coordinates characterize the left invariant vector fields Xj as vector fields
on Rn.
Proposition 1.2.34 The vector fields Xj have polynomial coefficients, moreover if ml−1 < j ≤ ml
and 1 ≤ l ≤ s,

Xj(x) = ∂j +
n

∑
i>ml

qi,j(x)∂i,

where qi,j(x) = ∂Qi
∂yj

(x, y)|y=0, so that if ml−1 < i ≤ ml then qi,j(x) = qi,j(x1, . . . , xml−1) and
qi,j(0) = 0.

As in [35], given a ∈ N, we shall denote by Pa the space of polynomials of homo-
geneous degree ≤ a. Moreover, by Proposition 1.25 in [35], Pa is invariant under left
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translations. Given a multi-index I = (i1, . . . , in), 1 ≤ ij ≤ m1 set

X I = Xi1 · · ·Xin

and |I| = n.
Proposition 1.2.35 (1.30 in [35]) Take a ∈N, and let µ be the dimension of Pa. Then the map

P→ (X I P(0))|I|≤a,

is a linear isomorphism from Pa to Cµ.

Remark 1.2.36 Let P be a polynomial of homogeneous degree at most 2, and suppose that
P(0) = p0 and XiP(x) = li(x), for i = 1, . . . , m1 where li : G → R are h-linear maps.
Clearly we can compute (XαP)(0) for each multi-index α, |α| ≤ 2, then by the previous
proposition P is uniquely determined.

We are interested to find the explicit isomorphism of the previous proposition in the
case of real polynomials of homogeneous degree less than or equal to two.
Lemma 1.2.37 Let P be a 2-homogeneous polynomial

P(x) =
1
2 ∑

1≤i,j≤m1

cij xixj +
m2

∑
s=m1+1

cs xs

Then the following formula holds

(27) P(x) = 〈∇V2 P, x〉+ 1
2
〈∇2

HPx, x〉 ,

here 〈∇V2 P, x〉 = ∑m2
j=m1+1 XjP xj, and ∇2

H = ∑i,j
1
2{XiXj + XjXi}, see also Definition 2.2.4.

PROOF. Let us consider, with respect to the same system of graded coordinates, the left
invariant vector fields

Xj = ∂xj +
n

∑
l=mdj

+1
al

j(x)∂xl

for j = 1, . . . , n, where al
j(x) are (dl − dj)-homogeneous polynomial.

Since ∇V2 P = (Xm1+1P, . . . , Xm2 P) and ∇2P are 0-homogeneous it follows that they are
constant. The explicit expression of Xj immediately yields XjP = cj for all j = m1 +
1, . . . , m2. Hence, it remains to prove that

(28)
cij + cj i

2
=

XiXjP + XjXiP
2

for 1 ≤ i, j ≤ m1. First we observe that

(29) Xj(x) = ∂xj +
m2

∑
l=m1+1

m1

∑
i=1

ali
j xi ∂xl +

n

∑
l=m2+1

al
j(x) ∂xl
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since al
j(x) = ∑m1

i=1 ali
j xi is 1-homogeneous for dl = 2 and dj = 1. Taking into account the

previous expression, we arrive at the following

XjP(x) =
1
2

m1

∑
i=1

(cij + cj i) xi +
m1

∑
i=1

m2

∑
l=m1+1

Xl P ali
j xi

that immediately yields

(30) XiXjP =
cij + cj i

2
+

m2

∑
l=m1+1

Xl P ali
j .

Finally, formula (28) follows by the equality ali
j = −al j

i . This is in turn a consequence of the
Baker-Campbell-Hausdorff formula for the second order bilinear terms. �

Definition 1.2.38 Suppose x ∈ G, a ∈ N and f a function whose (distributional) deriva-
tives X I f are continuous functions in a neighborhood of x for |I| ≤ a. We define the
left Taylor polynomial of f at x of homogeneous degree a as the unique P ∈ Pa, such that
X I P(0) = X I f (x) for all |I| ≤ a.

Theorem 1.2.39 (Stratified Taylor Inequality, 1.42 in [35]) For each positive integer k there
is a constant Ck such that for all continuous function f whose distributional derivatives X I f are
continuous functions and for all x, y ∈ Ω,

| f (xy)− Px(y)| ≤ Ck‖y‖kη(x, bk‖y‖),

where Px is the left Taylor polynomial of f at x of homogeneous degree k, b is a constant depending
only on G, and for r > 0,

η(x, r) = sup
‖z‖≤r,|I|=k

∣∣∣X I f (xz)− X I f (x)
∣∣∣ ,

where X I = Xi1 · · ·Xil , for a certain l dependent on I and (i1, . . . , il) ∈ {1, . . . , m1}l .

Lemma 1.2.40 Let P : G → R be a polynomial of homogeneous degree at most 2. Let P(2)(x) be
the 2-homogeneous part of P, and define

λ = max
‖w‖=1

|P(2)(w)|.

Consider P(xh) as a function of h ∈ G, then we have the following inequality

P(xh) ≥ P(x) + 〈∇HP(x), h〉 − λ‖h‖2.

PROOF. For every 1 ≤ i, j ≤ m1, we have XiXjP = XiXj(P(xh)) = ci,j for every x, h ∈
G. This is a consequence of the following general fact, given a smooth function u and X, a
left invariant vector field on G, then X(u(xh)) = (Xu)(xh). Consider P(xh) as a function
of h, applying Theorem 1.2.39 we get a polynomial Px(h) such that

P(xh) = Px(h) + o(‖h‖2).
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Notice that by the left translation invariance of P2, P(xh) as a function of h is a polynomial
of homogeneous degree at most 2, hence P(xh) = Px(h). Clearly P(0)

x (h) = P(x) and
P(1)

x (h) = 〈∇HP(x), h〉, as a consequence

(31) P(xh)− P(x)− 〈∇HP(x), h〉 = P(2)
x (h).

By (31) and previous considerations it follows that

ci,j = XiXjP(h) = XiXjP(2)(xh) = XiXjP
(2)
x (h), i, j = 1, . . . , m1.

Moreover all the other derivatives of P(2)
x are zero, thus we can conclude that P(2)

x (h) =
P(2)(h) by Proposition 1.2.35. Finally we get

P(xh) = P(x) + 〈∇HP(x), h〉+ P(2)(h)

≥ P(x) + 〈∇HP(x), h〉 − λ‖h‖2.

�

2.5. Sub-Laplacians and sub-mean formulas on Carnot groups. In this section we
present some basic facts on sub-Laplacians on Carnot groups, with a particular interest
on the operator ∆H = ∑m

i=1 X2
i , where X1, . . . , Xm is the basis of V1 defined in 20. Our

reference for this section is the book [14] where this topic is covered in full generality. Some
results presented here will be useful in Chapter 3 where we will give a simple proof of the
L∞ − L1 estimates for h-convex functions using a sub-mean estimates of ∆H-subsolutions,
see Theorem 2.2.10 (a). Also in Chapter 5 we will need a representation formula with
respect to the fundamental solution of ∆H.
Definition 1.2.41 Any operator

L :=
m

∑
i=1

Y2
i ,

where Y1, . . . , Ym is a basis of the horizontal layer V1, is called a sub-Laplacian on G. Let
(X1, . . . , Xm) be the basis of V1 defined in (20), we set

(32) ∆H =
m

∑
i=1

X2
i .

For every open set Ω ⊂ G, D(Ω) corresponds to C∞
c (Ω) topologized in the standard

way, where Ω is an open set of a stratified group thought of as a differentiable manifold.
We denote by D′(Ω) the topological vector space of distributions on Ω.
We say that a distribution τ ∈ D′(Ω) is homogeneous of degree α if for every φ ∈ D(Ω)
and r > 0 we have 〈τ, φ ◦ δr〉 = r−α−Q〈τ, φ〉, where Q = ∑ι

i=1 idimVi is the so called
homogeneous dimension of G.
Definition 1.2.42 ([34]) Let consider the sub-Laplacian ∆H = ∑m

i=1 X2
i on G. A distribution

Γ on Ω is a fundamental solution for ∆H if :
(i) Γ ∈ C∞(G \ {0}),
(ii) Γ ∈ L1

loc(R
n) and Γ(x)→ 0 when d(x)→ +∞,

(iii) ∆HΓ = −δ0 in the sense of distributions.
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From the hypoellipticity of ∆H, [57], one can infer the existence of a “local” fundamen-
tal solution of the operator ∆H see Trèves [97]. Then by the homogeneity properties of ∆H
on can get the global result. Moreover one can prove that such fundamental solution is
also unique, symmetric and δλ-homogeneous.
Theorem 1.2.43 ([34], Theorem 2.1) Let G be a Carnot group of homogeneous dimension Q > 2,
then there exists a fundamental solution Γ for ∆H.

Definition 1.2.44 (5.4.1 in [14]) We call ∆H-gauge on G an homogeneous norm dH smooth
out of the origin and satisfying

∆H(d
2−Q
H ) = 0 in G \ {0}

The following Proposition relates a ∆H-gauge to the fundamental solution of ∆H.
Proposition 1.2.45 Let Γ be the fundamental solution of ∆H on G. Then

d0(x) :=

{
(Γ(x))

1
2−Q if x ∈ G \ {0},

0 if x = 0

is a ∆H-gauge.

Moreover, also the reverse of Proposition 1.2.45 holds, in fact in Theorem 5.5.6 in [14]
it is proved that if dH is a ∆H gauge on G, then there exists a positive constant C such that
Γ = Cd2−Q

H is the fundamental solution of ∆H.
Definition 1.2.46 Let dH be the ∆H-gauge. We set, for x ∈ G \ {0},

(33) ΨH := |∇HdH |2(x).

Moreover, for every x, y ∈ G with x 6= y, we define the functions

(34) ΨH(x, y) := ΨH(x−1y) and KH :=
|∇HdH |2(x−1y)
|∇(d(x−1·))|(y) .

Remark 1.2.47 We observe that ΨH is δλ-homogeneous of degree 0. This is a consequence
of the following general fact: given an homogeneous vector field X of degree dX and a
function f : G → R, homogeneous of degree d f , then the function X f is homogeneous
of degree d f − dX. As a consequence, since ∇H is 1-homogeneous as dH, we deduce that
|∇HdH | is 0-homogeneous.

Definition 1.2.48 Let Ω be an open subset of G, and u ∈ C2(Ω). Then for every x ∈ Ω and
r > 0 such that D(x, r) ⊂ Ω, we define surface mean as

(35) Mr(u)(x) :=
(Q− 2)βd

rQ−1

∫
∂B(x,r)

KH(x, z)u(z)dHn−1(z),

and the solid mean as

(36) Mr(u)(x) :=
md

rQ

∫
B(x,r)

ΨH(x−1y)u(y)dy,

where KH and ΨH are defined respectively in (34) and (33). HereHn−1 is the n− 1 dimen-
sional Hausdorff measure associated to the Euclidean metric of Rn.
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Definition 1.2.49 If Ω ⊂ G is an open set, we say that an USC function u : Ω → [−∞, ∞[
satisfies the local surface (local solid) sub-mean property if, for every x ∈ Ω, there exists
rx > 0 such that

(37) u(x) ≤Mr(u)(x) (u(x) ≤ Mr(u)(x)) for 0 < r < rx.

If (37) holds for any r > 0 such that Dd(x, r) ⊂ Ω, we shall say that u satisfies the global
surface (global solid) sub-mean property.

The next theorem shows that all the previous definitions are indeed equivalent for USC
functions, hence in the sequel we will say that such functions have the sub-mean property.
Theorem 1.2.50 (8.1.3 in [14]) Let u : Ω → [−∞, ∞[ be an USC function. Then the following
statements are equivalent:
(i) u satisfies the local solid sub-mean property,
(ii) u satisfies the global solid sub-mean property,
(iii) u satisfies the local surface sub-mean property,
(iv) u satisfies the global surface sub-mean property.

For every open set Ω ⊂ G we denote

H(Ω) := {u ∈ C∞(Ω) : ∆Hu = 0} .

A function u ∈ H(Ω) will be called ∆H-harmonic in Ω.
Definition 1.2.51 A bounded open set V ⊂ G will be called ∆H-regular if the boundary
value problem

(38)
{

∆Hu = 0 in V,
u∂V = ϕ

has a unique solution u := HV
ϕ for every continuous function ϕ : ∂V → R. We say that u

solves (38) if u is L-harmonic in V and

lim
x→y

u(x) = ϕ(y) ∀y ∈ ∂V.

As a consequence of the weak maximum principle for sub-Laplacians on Carnot groups,
see Theorem 5.13.4 in [14], for every ∆H-regular open set V there exists a Radon measure
µV

x supported in ∂V such that

(39) HV
ϕ (x) =

∫
∂V

ϕ(y)dµV
x (y), ∀ϕ ∈ C(∂V).

We call µV
x the ∆H-harmonic measure related to V and x. For further details on harmonic

measures we refer to Chapter 7 of [14].
Definition 1.2.52 Let Ω be an open set of G. A function u : Ω → [−∞,+∞[ will be called
∆H-subharmonic in Ω if:
(i) u is USC and u > −∞ in a dense subset of Ω,
(ii) for every ∆H-regular open set V with closure V̄ ⊂ Ω and for every x ∈ V,

u(x) ≤
∫

∂V
u(y)dµV

x (y).
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The family of the ∆H-subharmonic functions in Ω will be denoted by S(Ω).

The next lemma characterize smooth ∆H-subharmonic functions, see Proposition 7.2.5
in [14] for a proof.
Lemma 1.2.53 Let u be a function in C2(Ω). Then u is ∆H-subharmonic if and only if

∆Hu ≥ 0 in Ω.

We conclude this section with an useful result which relates sub-mean functions with
∆H-subharmonic functions.
Lemma 1.2.54 (8.2.2 in [14]) Let Ω ⊂ G be an open set, and let u : Ω → [−∞, ∞[ be an USC
function, finite on a dense subset of Ω. Then u ∈ S(Ω) if and only if u is sub-mean.



CHAPTER 2

CONVEXITY IN STRATIFIED GROUPS

The main topic of the thesis, namely convexity in sub-Riemannian spaces is addressed
in this chapter. In the sub-Riemannian setting many regularity results analogous to the
Euclidean ones have been proved for h-convex functions. In particular, it has been shown
that continuous h-convex functions are locally Lipschitz continuous with respect to the
CC distance. Hence, as a consequence of the Rademacher type differentiability theorem
due to Pansu [85], it implies that continuous h-convex functions are almost everywhere
differentiable. This result has been generalized first to h-convex functions bounded from
above in [6, 71, 102], and subsequently to h-convex measurable functions by Rickly in [87].
Moreover some quantitative version of the previous result can be proved. In particular the
L∞ − L1 estimates:
Theorem 2.2.10 Let u : Ω → R be an h-convex function, then there exists a positive constant
C = C(G) such that for every ball Bx0,r one has

(40)

(a) sup
Bx0,r

|u| ≤ C
1

Bx0,8r

∫
Bx0,8r

|u|dx,

(b) ess sup
Bx0,r

|∇Hu| ≤ C
r

1
Bx0,24r

∫
Bx0,24r

|u|dx

This theorem has been first proved in [26] and a similar result has been obtained in
[64] also for v-convex functions, see Definition 2.2.11. In Section 2.1 we give a different
proof of Theorem 2.2.10. Our approach is based on a sub-mean inequality, proved in [14],
which holds for subharmonic functions on Carnot groups, for precise definitions we refer
to Section 2.5.

1. H-convexity

Definition 2.1.1 (h-convex set) We say that a subset C ⊂ G is h-convex if for every x, y ∈ C
such that x ∈ Hy we have xδλ(x−1y) ∈ C for all λ ∈ [0, 1].

In the Euclidean space convex sets are connected. This is not true for h-convex set, as
proved in the following simple example.
Example 2.1.2 Let consider the Heisenberg group H1 and choose the two points

A = (0, 0, 0), B = (0, 0, 1).

19
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Those points lie on the vertical line L = {(0, 0, t) | t ∈ R}, hence each point of L lies on
a different horizontal plane. Hence the set {A, B} is h-convex and disconnected. More
complicated examples are available, in fact M. Rickly proved in [87] the existence of a
totally disconnected non measurable h-convex set in H1.

We denote by Hx the left translation of H1 by x, namely Hx = xH1. For each h ∈ H1,
we define the horizontal segment {th, t ∈ [0, 1]} through the short notation [0, h]. For any
x ∈ G, we set x · [0, h] = {xδth, 0 ≤ t ≤ 1} and throughout Ω denotes an open subset of
G.

We also remark that in groups of step 2 horizontal segments are indeed “affine seg-
ments”. In fact if G = H1 ⊕ H2 is a step 2 group, x ∈ G and h ∈ H1 then for every t > 0

(41) x · δth = x1 + th + x2 + Q2(x, th),

where Q2 : G× G → G is a bilinear 2-homogeneous map and xi = πi(x), i = 1, 2 see
Chapter 1. Hence

x · δth = x1 + th + x2 + tQ2(x, h),
this implies that x · [0, h] is an “affine segment”. This is no longer true for general stratified
groups, for instance in a step 3 group (41) becomes

x · δth = x1 + th + x2 + tQ2(x, h) + x3 + Q3(x, th),

where Q3(x, th) may have second order terms with respect to t, in those cases x · [0, h] is
an arch of parabola.
Definition 2.1.3 (h-convex function) We say that u : Ω→ R is h-convex if for every x, y ∈ Ω
such that x ∈ Hy and x · [0, x−1y] ⊂ Ω, we have

(42) u
(
xδλ(x−1y)

)
≤ λu(y) + (1− λ)u(x), ∀λ ∈ [0, 1].

2. Regularity of H-convex functions

Notice that this notion of h-convexity is local and it does not require any assumption on
Ω. Moreover, this definition requires that the restriction of the function u to all horizontal
lines t → xδth with h ∈ V1 is a one-dimensional convex function. Although the informa-
tion of the behavior of an h-convex function is known only on a family of 1-dimensional
manifolds, namely horizontal lines, the Hörmander condition on those directions yields a
“global” information in terms of the Carnot-Carathéodory distance. In fact as an important
property of h-convex functions, we have the following.
Theorem 2.2.1 (M. Rickly, [87]) Every measurable h-convex function is locally Lipschitz.

Throughout, all h-convex functions are assumed to be measurable, hence a.e. differen-
tiable by the Rademacher-type theorem 1.2.25.
Remark 2.2.2 We observe that h-convexity is preserved under left translations and intrin-
sic dilations. We prove only the first assertion, the second one follows the same scheme.
Let u : Ω → R be an h-convex function. Fix a point x0 ∈ G, and consider the func-
tion τx0 u(x) = u(x0x), defined in x−1

0 Ω. Let x, y ∈ x−1
0 Ω be such that x ∈ Hy and
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x · [0, x−1y] ⊂ x−1
0 Ω. Set x̄ = x0x, ȳ = x0y, and note that x̄, ȳ ∈ Ω. Moreover x̄ ∈ Hȳ

by definition of horizontal planes. Hence by h-convexity of u

τx0 u
(
xδλ(x−1y)

)
= u

(
x̄δλ(x̄−1ȳ)

)
≤ λu(ȳ) + (1− λ)u(x̄)

= λτx0 u(y) + (1− λ)τx0 u(x), ∀λ ∈ [0, 1]

this implies that τx0 u is h-convex.

As a first consequence of Definition 2.1.3 we obtain the following.
Proposition 2.2.3 ([26]) Suppose that u : Ω → R is h-convex. If u ∈ Γ1(Ω) one has for any
x ∈ Ω

u(x′) ≥ u(x) + 〈∇Hu(x), x−1x′〉, x′ ∈ Hx

¿From a geometric point of view we can interpret the previous basic result as follows:
for every x ∈ Ω, the graph of the h-convex function u restricted on Hx lies above the
horizontal tangent plane. This will be a useful observation in Chapter 3 when we deal
with h-subdifferentials.
Definition 2.2.4 Let u : Ω −→ R be a C2(Ω) function. We define the symmetrized horizontal
Hessian of u as follows

(∇2
Hu)ij =

(
XiXju + XjXiu

2

)
ij

, i, j = 1, . . . , m1.

The following theorem gives a motivation for Definition 2.1.3: as in the Euclidean case,
smooth h-convex functions are characterized by the positivity of their Hessian.
Theorem 2.2.5 (5.12 in [26]) Let Ω ⊂ G be an open set let u be in Γ2(Ω). Then u is h-convex if
and only if the symmetrized horizontal Hessian ∇2

Hu(x) is positive semidefinite at every x ∈ Ω.

Example 2.2.6 We observe that in step 2 groups h-convexity is a weaker notion than the
classical convexity (E-convexity) in Rn, this follows form the fact that horizontal segments
are “affine segments” as proved in (41), hence every E-convex set is h-convex. Indeed the
inclusion is strict, see for instance Example 2.1.2. This is true also for h-convex functions.
Let us consider the following homogeneous function

N(x, y, t) =
(
(x2 + y2)2 + t2) 1

4

on the first Heisenberg group H1. Clearly N is not E-convex, however its h-convexity has
been proved in [26]. We recall that N is often called the gauge map in H1.
Given a Carnot group G = H1 ⊕ · · · ⊕ Hι we can define the analogous of the Heisenberg
gauge as

(43) NG(x) =

(
ι

∑
i=1
|xi|

2ι!
i

) 1
2ι!

where | · | is the Euclidean norm on Hi, and xi ∈ Hi, i = 1, . . . , ι. In [26] the authors raised
the question whether NG is h-convex for every Carnot groups.
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Theorem 2.2.7 ([26, 64]) Let Ω ⊂ G be an open set, and let u : Ω→ R be an h-convex function.
Then the second order symmetric X-derivatives, namely

XiXju + XjXiu
2

, i, j = 1, . . . , m,

are nonnegative Radon measures.

Now we prove that we can approximate h-convex functions by smooth ones. We recall
that the functions φε are defined in Definition 1.2.28.
Lemma 2.2.8 Let u be an h-convex function in an open set Ω ⊂ G. Then the functions uε :=
φε ? u are h-convex and uε converges to u uniformly on compact set.

PROOF. Let Ω′ be an open bounded set such that Ω′ ⊂ Ω. There exists κ > 0 such that

max
x∈Ω′

d(y−1x, x) < dist(Ω′, G \Ω),

whenever ‖y‖ ≤ κ. Then the convolution uε =
∫

Ω φε(y)u(y−1x)dy is smooth an well
defined in Ω′ for every ε < κ, notice that u ∈ L1(Ω′) since it is Lipschitz continuous.
Moreover, by Lemma 1.2.29, we know that uε converges to u uniformly on Ω′. Consider
an horizontal segment x[0, h] ⊂ Ω′, then for every t ∈ [0, 1] we have

uε(xδth) =
∫

Ω
φε(y)u(y−1xδth)dy.

Since h-convexity is invariant under left translation, see Remark 2.2.2, we get∫
Ω

φε(y)u(y−1xδth)dy ≤ (1− t)
∫

Ω
φε(y)u(y−1x)dy + t

∫
Ω

φε(y)u(y−1xh),

or equivalently uε(xδth) ≤ (1− t)uε(x) + tuε(xh). This completes the proof. �

We already mentioned at the beginning of this section that measurable h-convex func-
tions are locally Lipschitz continuous. Moreover, some quantitative versions of this fact
hold for h-convex functions, [26, 60, 64].
Theorem 2.2.9 Let Ω ⊂ G be an open set and let u : Ω→ R be an h-convex function. Then there
exists a positive constant C = C(G) such that the following estimate holds

‖∇Hu‖L∞(Bx0,r) ≤
C
r
‖u‖L∞(Bx0,3r),

for any x0 ∈ G and every r > 0.

As an improvement of the previous result we have the L∞ − L1 estimates, see for in-
stance Theorem 9.2 in [26].
Theorem 2.2.10 Let u : Ω → R be an h-convex function, then there exists a positive constant
C = C(G) such that for every ball Bx0,r one has

(44)

(a) sup
Bx0,r

|u| ≤ C
1

Bx0,8r

∫
Bx0,8r

|u|dx,

(b) ess sup
Bx0,r

|∇Hu| ≤ C
r

1
Bx0,24r

∫
Bx0,24r

|u|dx
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In Subsection 2.1 we give a new proof of (44) (a), see also [26, 60, 64].
We conclude this section with the definition of v-convexity, this notions has been in-

troduced by Lu, Manfredi and Stroffolini in [64]. It turns out that it is equivalent to h-
convexity, see [60, 64, 71, 88, 102].
Definition 2.2.11 (v-convex function) An upper semicontinuous function u : Ω → R is
v-convex if

∇2
Hu ≥ 0, in the viscosity sense,

namely for every φ ∈ C2(Ω) such that u− φ has a maximum in x0, we have

∇2
Hφ(x0) ≥ 0.

Theorem 2.2.12 Let u : Ω→ R be an upper semicontinuous function. Then u is h-convex if and
only if it is v-convex.

2.1. L1 − L∞ inequality in Carnot group. Here we present a simple proof of the in-
equality (44) (a) on Carnot groups. We remark that the proof involves methods from po-
tential theory, more precisely the key ingredient is the sub-mean formula for sub-harmonic
functions proved in [14], see Chapter 1.
Throughout the section we denote by USC(Ω) the class of upper semicontinuous functions
in the open set Ω ⊂ G.
Lemma 2.2.13 Let Ω ⊂ G be an open set. There exists a constant C = C(G), such that for every
sub-mean function u ∈ USC(Ω), see (37), for every x0 ∈ Ω and all r > 0 with Dx0,2r ⊂ Ω we
have

(45) sup
x∈Bx0,r

u(x) ≤ C
∫

Bx0,2r

|u(y)|dy.

PROOF. This is an easy consequence of the fact that ΨH, defined in (33), is δλ-homogeneous
of degree 0 and positive on G. Let x̄ ∈ B(x0, r), such that u(x̄) ≥ 1

2 supBx0,r
u. Since u is

sub-mean we have

u(x̄) ≤ Mr(u)(x̄) =
md

rQ

∫
Bx̄,r

ΨH(x̄−1y)u(y)dy

≤
(

sup
G\{0}

ΨH

)
md

rQ

∫
Bx̄,r

|u(y)|dy.

Clearly we have that Bx̄,r ⊂ Bx0,2r, hence by the previous inequality

sup
x∈Bx0,r

u(x) ≤ 2u(x̄) ≤ C
∫

Bx0,2r

|u(y)|dy.

�

In order to estimate supBx0,r
|u| we state a lemma, see for instance [71, 88], where it is

proved that an h-convex function, locally bounded above is bounded from below.
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Lemma 2.2.14 Let u : Ω→ R be an h-convex function. Suppose that u is locally bounded above.
Then there exists a positive constant C only depending on G such that for every x0 ∈ Ω and r > 0,
Dx0,4r ⊂ Ω we have

(46) u(x1) ≥ −C(G) sup
Bx0,4r

u, ∀x1 ∈ Bx0,r.

PROOF OF THEOREM 2.2.10. Let φε be as in Definition 1.2.28, then consider the smooth
function uε = φε ? u, see Lemma 1.2.29. It follows, by Lemma 2.2.8, that uε is an h-convex
function, hence as a consequence of Theorem 2.2.5 we have ∆Huε ≥ 0 in Ωε. Lemma 1.2.53
implies that uε ∈ S . As a consequence of Lemma 1.2.54 uε has the sub-mean property,
hence we can apply Lemma 2.2.13, getting a constant C > 0 (independent of uε) such that

sup
x∈Bx0,r

uε(x) ≤ C
∫

Bx0,2r

|uε(y)|dy.

Since uε → u uniformly on compact sets, the previous inequality can be extended to all
continuous h-convex functions. Now by Lemma 2.2.14 and the previous estimate, it fol-
lows that for every x1 ∈ Bx0,r

u(x1) ≥ −C1 sup
Bx0,4r

u ≥ −C2

∫
Bx0,8r

|u(y)|dy

where C1 and C2 are suitable positive constant depending only on G. Hence taking the
infimum over all x1 ∈ Bx0,r in the left hand side of the previous inequality we get

inf
Bx0,r

u ≥ −C2

∫
Bx0,8r

|u(y)|dy.

This concludes the proof of (44) (a). The estimate of the horizontal gradient, namely (44)
(b), follows from Theorem 2.2.9 and (a). �



CHAPTER 3

H-SUBDIFFERENTIALS AND APPLICATIONS

This chapter is based on the paper [67], a joint work with V. Magnani. In the Euclidean
framework R. T. Rockafellar in Theorem 2.8 of [91] proves that a convex function has a second
order expansion at a fixed point if its gradient is differentiable at that point in the extended sense.
Extending this characterization to the framework of stratified groups is the aim of this
section, that requires the development of some basic tools.

We translate this notion in stratified groups. Let us fix an orthonormal basis of V1,
(X1, . . . , Xm1). A locally Lipschitz function u : Ω → R is twice h-differentiable at x if there
exists the horizontal gradient of u at x, namely ∇Hu(x) = (X1u(x), . . . , Xm1 u(x)) and more-
over there exists a linear map Ax : G→ H1 such that

(47)
∥∥∥∥∇Hu(xw)−∇Hu(x)− Ax(w)

‖w‖

∥∥∥∥
L∞(Bδ,H1)

−→ 0 as δ→ 0+ .

If (47) holds we also say that∇Hu is h-differentiable at x in the extended sense. This notion
makes sense, since Lipschitz functions are almost everywhere h-differentiable, by Pansu’s
result [85]. We are now in the position to state the main result of this paper.
Theorem 3.2.8 Let u : Ω −→ R be h-convex and let x be a point in Ω. Then u has a second order
h-expansion at x if and only if it is twice h-differentiable at x.

The proof of Theorem 3.2.8 needs several basic results involving the h-subdifferential.
Since we expect that these results should play a role in the potential development of a
nonsmooth calculus for h-convex functions, we wish to emphasize some of them. To this
aim, we first prove the following
Lemma 3.2.6 Let u : Ω −→ R be h-convex. Then u is twice h-differentiable at x if and only if
there exist an h-linear mapping Ax : G→ H1 and v ∈ H1 such that

(48) ∂Hu(xw) ⊆ v + Ax(w) + o(‖w‖)B
for all w ∈ x−1Ω, where B denote the unit ball in H1. In particular, if (48) holds, then v =
∇Hu(x).

At first sight, extended differentiability in the sense of (48) seems stronger than (47),
that implies a convergence up to a negligible set, where ∇Hu is not defined. In fact, the
delicate point is to prove that extended differentiability implies (48). This is a consequence
of the following characterization of the h-subdifferential.
Theorem 3.1.8 Let u : Ω→ R be h-convex. Then for every x ∈ Ω we have

(49) c̄o (∇?
Hu(x)) = ∂Hu(x) .

25
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We denote by co(E) ⊂ H1 the convex hull in H1 of the subset E ⊂ H1 and by c̄o(E) its
closure. The h-reachable gradient is given by

(50) ∇?
Hu(x) =

{
p ∈ H1 : xk → x, ∇Hu(xk) exists for all k’s and ∇Hu(xk)→ p

}
.

The proof of equality (49) in the Euclidean case can be found for instance in [3]. There are
two main features in the proof of Theorem 3.1.8, with respect to the Euclidean one. First,
it is still possible to use the Hahn-Banach’s theorem, when applied inside the horizontal
subspace H1, that has a linear structure. Second, the group mollification does not com-
mute with horizontal derivatives, hence the mollification argument of the Euclidean proof
cannot be applied. We overcome this point by a Fubini type argument with respect to a
semidirect factorization, following the approach of [69].

The h-differentiability of u from validity of (48) is a consequence of the following
Theorem 3.1.20 Let u : Ω −→ R be h-convex. Then u is h-differentiable at x if and only if
∂Hu(x) = {p} and in this case ∇Hu(x) = {p}.

The uniqueness of the h-subdifferential as a consequence of h-differentiability has been
already shown [27], see also [20] for the case of Heisenberg groups. To show the opposite
implication we decompose the difference quotient of u into sums of difference quotients
along horizontal directions. The same decomposition along horizontal directions have
been first used by Pansu, [85]. The second ingredient is the following
Theorem 3.1.16 Let u : Ω −→ R be an h-convex function. Then for every x ∈ Ω and every
h such that [0, h] ⊆ H1 ∩ x−1Ω, there exists t ∈ [0, 1] and p ∈ ∂Hu(xδth) such that u(xh) −
u(x) = 〈p, h〉.

This theorem is also important in the proof of Theorem 3.2.8. In fact, it is an essential
tool to establish that twice h-differentiability implies the existence of a second order h-
expansion. This implication again requires Pansu’s approach to differentiability and in
addition a nonsmooth mean value theorem for functions of the form U + P, where U is
h-convex and P is a polynomial of homogeneous degree at most two. This slightly more
general version of Theorem 3.1.16 is given in Theorem 3.1.15, where the h-subdifferential
is replaced by the more general λ-subdifferential, see Definition 3.1.12. In the Euclidean
framework, a short proof of the previous result can be found in Theorem 7.10 of [1], where
the Clarke’s nonsmooth mean value theorem plays a key role.

In this connection, we wish to emphasize the intriguing open question on the validity
of a nonsmooth mean value theorem for Lipschitz functions in stratified groups. In the
Euclidean framework, this theorem holds using the notion of Clarke’s differential. This
notion of differential relies on subadditivity of “limsup directional derivatives”, that al-
lows in turn to apply Hahn-Banach’s theorem, see [24]. The obvious extension of this
notion to stratified groups does not work and the analogous obstacle comes up consider-
ing h-convex functions, where horizontal directional derivatives always exist, see Defini-
tion 3.1.18. It is curious to notice that our nonsmooth mean value theorem implies this sub-
additivity, see Corollary 3.1.19, whereas in the Euclidean framework subadditivity even-
tually leads to the nonsmooth mean value theorem.
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1. Properties of the h-subdifferential

This section is devoted to the proof of our results concerning h-differentiability, h-
subdifferentials, converging sequences of h-convex functions and nonsmooth mean value
theorems. Recall that B is the the unit ball in H1 centered at the origin with respect to the
fixed scalar product on G. We say that p ∈ H1 is an h-subdifferential of u : Ω −→ R at x ∈ Ω
if whenever h ∈ H1 and [0, h] ⊂ x−1 ·Ω,

(51) u(xh) ≥ u(x) + 〈p, h〉 .

We denote by ∂Hu(x) the set of all h-subdifferentials of u at x and the corresponding set-
valued mapping by ∂Hu : Ω⇒ H1. Here 〈·, ·〉 in (51) is the scalar product in G.
Lemma 3.1.1 Let Ω ⊂ G be an open set and let u : Ω → R be a continuous function. Then the
set ∂Hu(x) ⊂ H1 is convex.

PROOF. Let p and q be in ∂Hu(x) and choose λ ∈ [0, 1], we need to prove that λp +
(1− λ)q ∈ ∂Hu(x). This follows from adding the two inequalities

λu(xh) ≥ λu(x) + 〈λp, h〉
(1− λ)u(xh) ≥ (1− λ)u(x) + 〈(1− λ)q, h〉 .

�

Remark 3.1.2 Let u be an h-convex function in Ω, then our assumption of measurability
yields by Theorem 2.2.1 the locally Lipschitz continuity of u. Hence as a straightforward
consequence of the definition of h-subdifferential, for every Bx,r ⊆ Ω, there exists a positive
number L depending on x ∈ Ω, r > 0 and u, such that

(52) ∂Hu(y) ⊆ LB for every y ∈ Bx,r.

Remark 3.1.3 As already mentioned, an h-convex function u : Ω→ R that is h-differentiable
at x ∈ Ω has unique subdifferential, hence ∂Hu(x) = {∇Hu(x)} according to Proposition
2.2.3.

We denote by co(E) ⊂ H1 the convex hull in H1 of the subset E ⊂ H1 and by c̄o(E) its
closure. The h-reachable gradient is given by

(53) ∇?
Hu(x) =

{
p ∈ H1 : xk → x, ∇Hu(xk) exists for all k’s and ∇Hu(xk)→ p

}
.

Theorem 3.1.4 Let Ω ⊂ G be an open set, and let u : Ω→ R be h-convex. Then for every x ∈ Ω
we have

(54) ∂Hu(x) ⊆ c̄o (∇?
Hu(x)) ,

where ∇?
Hu(x) is defined in (53).

PROOF. Suppose that there exists p ∈ ∂Hu(x) such that p /∈ c̄o (∇?
Hu(x)). We can

assume that p = 0, otherwise one considers v(x) = u(x)− 〈p, π1(x)〉, that is still h-convex.
Since c̄o (∇?

Hu(x)) is a closed convex subset of H1, the Hahn-Banach separation theorem
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can be applied to this set and the origin, hence there exists q ∈ H1, d(0, q) = 1, and α > 0
such that

(55) 〈z, q〉 > α ∀z ∈ ∇?
Hu(x).

We claim the existence of r > 0 such that Bx,r ⊂ Ω and 〈∇Hu(y), q〉 > α
2 for every y ∈ Bx,r

where u is h-differentiable. By contradiction, suppose there exist sequences rj → 0 and yj ∈
Bx,rj such that

〈
∇Hu(yj), q

〉
≤ α

2 , then possibly passing to a subsequence we have yj → x
and ∇Hu(yj) → z ∈ ∇?

Hu(x), with 〈z, q〉 ≤ α
2 and this conflicts with (55). Denote by r the

positive number having the previous property. Let Q be the set Q = {δtq : t ∈ R} and
consider µ the Haar measure on G. By Lemma 2.7 in [68] there exists a normal subgroup
N ⊂ G, such that N ∩ Q = {e} and NQ = G. Moreover, by Proposition 2.8 in [68], there
exist νq and µN , respectively Haar measures on Q and N such that for every measurable
set A ⊂ G

(56) µ(A) =
∫

N
νq(An) dµN(n)

where An = {h ∈ Q : nh ∈ A}. Let P be the set of h-differentiable points of u, which has
full measure in Ω. ¿From (56) it follows that for µN-a.e. n ∈ N, νQ(Q \ n−1P) = 0. Then for
µN-a.e. n ∈ N, nδtq ∈ P for a.e. t ∈ R. Let n̄ ∈ N and δt̄q ∈ Q be respectively the unique
elements in N and Q such that x = n̄δt̄q. Let ε > 0 and s > 0 be such that BN

n̄,s · B
Q
δt̄q,ε ⊂ Bx,r,

where BN
n̄,s and BQ

δt̄q,ε are open balls respectively in N and Q. Fix a point n ∈ BN
n̄,s where

u(nh) is νq-a.e. differentiable and consider the convex function v(t) = u(nδtq), for νq-a.e.
δtq, t ∈ (−ε + t̄, ε + t̄) we have

v′(t) = 〈∇Hu(nδtq), q〉 > α

2
.

Integrating the previous inequality, taking into account the Lipschitz regularity of v we get

v(t1)− v(t2) = u(nδt1 q)− u(nδt2 q) >
α

2
(t1 − t2)

where −ε + t̄ < t2 < t1 < ε + t̄. Now let nj → n̄ ∈ BN
n̄,s be such that njh is a differentiable

point of the map h → u(njh) for every j and νq-a.e. h, by the previous considerations we
have

u(njδt1 q)− u(njδt2 q) >
α

2
(t1 − t2) − ε + t̄ < t2 < t1 < ε + t̄

finally we can pass to the limit in j and get the strict monotonicity of u(n̄δtq) i.e.

(57) u(n̄δt1 q)− u(n̄δt2 q) ≥ α

2
(t1 − t2) − ε + t̄ < t2 < t1 < ε + t̄.

Recall that 0 ∈ ∂Hu(x), i.e. u(xh) ≥ u(x) whenever [0, h] ⊆ H1 ∩ x−1Ω. Thus, u(n̄δtq) ≥
u(n̄δt̄q) for all t ∈ (t̄− ε, t̄ + ε), in contrast with the monotonicity (57). �

Joining Theorem 3.1.4 with Theorem 2.2.10, we immediately get
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Corollary 3.1.5 Let u : Ω → R be an h-convex function. There exists C = C(G) > 0 such that
for every ball B(x, r) ⊂ G one has

(58) sup
p∈∂Hu(y)

y∈Bx,r

|p| ≤ C
r

1
|Bx,15r|

∫
Bx,15r

|u(y)|dy.

Given a set E ⊂ G and ρ > 0, by I(E, ρ), we denote the open set

I(E, ρ) = {x ∈ G, d(x, E) < ρ} .

Proposition 3.1.6 Let Ω ⊂ G be an open set ad ui : Ω→ R be a sequence of h-convex functions.
Suppose that ui uniformly converges on compact sets to an h-convex function u. Let x be a point in
Ω and let (xi) be a sequence in Ω converging to x. Then for every ε > 0, there exists i0 ∈ N such
that

∂Hui(xi) ⊆ ∂Hu(x) + εB for all i ≥ i0.(59)

In addition, if u is everywhere h-differentiable in Ω, then for every compact set K ⊂ Ω and every
ε > 0, there exist iε,K such that

∂Hui(y) ⊆ ∇Hu(y) + εB for all i ≥ iε,K, whenever y ∈ K.(60)

PROOF. We argue by contradiction in both cases, hence we suppose that there exist ε >
0 and a subsequence pik ∈ ∂Huik(xik) such that for every p ∈ ∂Hu(x) we have |pik − p| > ε.
By estimate (58) one easily observes that the sets ∂Hui(xi) are equibounded, thus possibly
passing to a subsequence, pik → q and dist(pjk , ∂Hu(xjk)) ≥ ε. Define a monotone family
of compact sets

Kτ =

{
x ∈ Dτ : d(x, Ωc) ≥ 1

τ

}
,

such that
⋃

τ>0 Kτ = Ω. Let jl be a subsequence such that pjl → q and ‖uil − u‖L∞(Kl) <
1
l .

Recall that pjl ∈ ∂Hujl (xjl ), then

ujl (xjl h) ≥ ujl (xjl ) +
〈

pjl , h
〉

whenever [0, h] ⊆ H1 ∩ x−1
jl

Ω.

By uniform convergence for l sufficiently large, we get

(61) u(xil h) ≥ u(xil )−
2
l
+
〈

pil , h
〉

whenever [0, h] ⊆ H1 ∩ x−1
il

Kl .

Take [0, h] ⊆ (x−1Ω)∩H1, then there exists l0 such that for every l > l0, [0, h] ⊂ x−1Kl ∩H1.
Since Ω is an open set there exists ρ > 0 such that I(x · [0, h], ρ) ⊂ Kl . By continuity of left
translation there exists j(ρ) such that for every jl > j(ρ),

xjl · [0, h] ⊆ I(x · [0, h], ρ),

hence [0, h] ⊆ x−1
jl

Kl . Then (61) holds with h and passing to the limit in l we get

(62) u(xh) ≥ u(x) + 〈q, h〉 ,
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thus q ∈ ∂Hu(x), getting a contradiction. Now suppose that u is everywhere h-differentiable.
Again, by contradiction there exist a compact set Z ⊂ Ω, ε > 0 and a subsequence jl such
that for all l, xjl ∈ Z we have

∂Hujl (xjl ) * ∂Hu(xjl ) + εB.

Then, we can find pjl ∈ ∂Hujl (xjl ) such that dist(pjl , ∂Hu(xjl )) ≥ ε, for all l > 0. As before,
we can suppose that, possibly passing to a subsequence, xjl → x̄ ∈ W and pjl → p̄. By h-
differentiability at x̄ and Remark 3.1.3, taking into account the first part of this proposition,
we get that for every η > 0 there exists jl′ such that

∂Hujl (xjl ) ⊂ ∇Hu(x̄) + ηB

∂Hu(xjl ) ⊂ ∇Hu(x̄) + ηB, ∀jl > j′l .

¿From the previous inclusions, it follows that

ε ≤ dist(pjk , ∂Hu(xjk)) ≤ 2η.

If we choose η = ε
4 , then reach a contradiction, concluding the proof. �

Taking the constant sequence ui = u in the previous proposition and taking into ac-
count (59), we immediately reach the following
Corollary 3.1.7 Let Ω be an open set of G and let u : Ω → R be an h-convex function, then
∂Hu : Ω→ P(H1) has closed graph.

The previous corollary allows us to complete the proof of Theorem...
Theorem 3.1.8 Let u : Ω→ R be h-convex. Then for every x ∈ Ω we have

(63) c̄o (∇?
Hu(x)) = ∂Hu(x) .

PROOF. By virtue of Theorem 3.1.4, we only have to prove the inclusion

c̄o (∇?
Hu(x)) ⊆ ∂Hu(x).

By Corollary 3.1.7, the set-valued map ∂Hu has closed graph and ∂Hu(y) = {∇Hu(y)} at
any h-differentiable point y of u. This immediately yields

∇?
Hu(x) ⊆ ∂Hu(x).

Moreover ∂Hu(x) is a convex set in H1 for every x ∈ G, then our claim follows. �

Remark 3.1.9 The a.e. h-differentiability of an h-convex function u implies that∇∗Hu(x) 6=
∅ for all x ∈ Ω. Then (63) implies that ∂Hu(x) 6= ∅ for all x ∈ Ω. We have then shown
that any h-convex function has everywhere nonempty h-subdifferential. This fact was
first proved in [20] for h-convex functions on Heisenberg groups. The opposite implica-
tion can be found in [26] for h-convex domains. The same implication holds for h-convex
functions on open sets, since the everywhere h-subdifferentiability implies the everywhere
Euclidean subdifferentiability along horizontal lines. Then the Euclidean characterization
of convexity through the subdifferential gives the Euclidean convexity along horizontal
lines, that coincides with the notion of h-convexity.
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Definition 3.1.10 Let Ω ⊂ G be an open subset and let u be a real valued function in Ω.
Then we define the first order sub jet of u at x ∈ Ω as

J1,−
u (x) =

{
p ∈ H1 : u(xh) ≥ u(x) + 〈p, h〉+ o(‖h‖), if [0, h] ⊂ H1 ∩ x−1Ω

}
Remark 3.1.11 Let u be an h-convex function in Ω. Then u is h-subdifferentiable at x if
and only if J1,−

u (x) 6= ∅. Moreover J1,−
u (x) = ∂Hu(x). For the reader’s sake we give the

proof of this property, in the Heisenberg group it has been proved in [20]. The inclusion
J1,−
u (x) ⊇ ∂Hu(x) follows by definition. Now let p be in J1,−

u (x), and fix [0, h] ⊆ x−1Ω∩ H1
. Then p satisfies

u(xδth) ≥ u(x) + 〈p, th〉+ o(‖th‖).
By h-convexity of u, tu(xh) + (1− t)u(x) ≥ u(xδth) which implies

u(xh) ≥ u(x) + 〈p, h〉+ o(‖th‖)
t

.

Now the claim follows letting t→ 0.

Definition 3.1.12 Let Ω ⊂ G an open subset and consider u : Ω → R . Given λ ≥ 0 we
define the λ-subdifferential of u at x ∈ Ω as

∂λ
Hu(x) =

{
p ∈ H1 : u(xh) ≥ u(x) + 〈p, h〉 − λ‖h‖2, whenever [0, h] ⊆ H1 ∩ x−1Ω

}
.

Notice that ∂0
Hu(x) coincides with the h-subdifferential ∂Hu(x).

Lemma 3.1.13 Consider a function u = U + P in Ω. Let U be h-convex and let P be a polynomial
with h-degP ≤ 2, denote by P(2) the 2-homogeneous part of P. Define λ = max

‖w‖=1
|P(2)(w)|, then

∂λ
Hu(x) ⊇ ∂HU(x) +∇HP(x).

PROOF. Recall that by Lemma 1.2.40, for every x, h ∈ G we have

P(xh) ≥ P(x) + 〈∇HP(x), h〉 − λ‖h‖2.

Let p be in ∂HU(x) then

U(xh) + P(xh) ≥ U(x) + P(x) + 〈p +∇HP(x), h〉 − λ‖h‖2,

whenever [0, h] ⊆ x−1Ω ∩ H1. This implies that p +∇HP(x) ∈ ∂λ
Hu(x). �

Proposition 3.1.14 Let Ω be a subset of G. Let U and V be respectively an h-convex function and
a C1

H(Ω) function, we define the map u as u = U + V. Fix λ ≥ 0, then for every x ∈ Ω we have

∂λ
Hu(x) ⊆ ∂HU(x) +∇HV(x).

PROOF. Let p be in ∂λ
Hu(x) and consider any [0, h] ⊆ H1 ∩ x−1Ω. We have

u(xh) ≥ u(x) + 〈p, h〉 − λ‖h‖2 ,

that can be written as follows

U(xh) + V(xh) ≥ U(x) + V(x) + 〈∇HV(x), h〉+ 〈p−∇HV(x), h〉 − λ‖h‖2 .
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Thus, the C1
H smoothness of V gives

U(xh) ≥ U(x) + 〈p−∇HV(x), h〉+ o(‖h‖) ,

hence p−∇HV(x) ∈ J1,−
U (x). Since U is h-convex, in view of Remark 3.1.11 we have that

p−∇HV(x) ∈ ∂HU(x). This concludes the proof. �

In the following theorem we extend the classical non-smooth mean value theorem to
stratified groups.
Theorem 3.1.15 Let U be h-convex and let P be a polynomial, with h-deg P ≤ 2 and λ =
max‖w‖=1 |P(2)(w)|. We define the function u as u = U + P. Then for every x ∈ Ω and ev-
ery h such that [0, h] ⊆ H1 ∩ x−1Ω, there exist t ∈ [0, 1] and p ∈ ∂λ

Hu(xδth) such that

u(xh)− u(x) = 〈p, h〉 .

PROOF. Let Ui be a sequence of C∞(Ω) h-convex functions, converging to U uniformly
on compact sets. Define ui = Ui + P. For such functions the mean value theorem holds i.e.
there exists tj ∈ [0, 1] such that

ui(xh)− ui(x) = 〈∇Hui(xδti h), h〉 , [0, h] ⊂ H1 ∩ x−1Ω.

Possibly passing to a subsequence we have ti → t and ∇Hui(xδti h) → p, thus by the
uniform convergence

u(xh)− u(x) = 〈p, h〉 .

Our claim follows if we prove that p ∈ ∂λ
Hu(xδth). By Proposition 3.1.6, for every k > 0

there exists ik such that

∇HUi(xδti h) = ∂HUi(xδti h) ⊆ ∂HU(xδth) +
1
k

B, ∀i ≥ ik

Moreover, possibly choosing a larger ik, we have

∇HUi(xδti h) +∇HP(xδti h) ⊆ ∂HU(xδth) +∇HP(xδth) +
2
k

B, ∀i ≥ ik

By Lemma 3.1.13, ∂λ
Hu(x) ⊇ ∂HU(x) +∇HP(x) thus the previous inclusion implies that

∇Hui(xδti h) = ∇HUi(xδti h) +∇HP(xδti h) ⊆ ∂λ
Hu(xδth) +

2
k

B, ∀i ≥ ik

then letting k→ ∞ we get that p ∈ ∂λ
Hu(xδth). �

As an immediate consequence of the previous result, we have the following.
Corollary 3.1.16 Let u : Ω→ R be an h-convex function. Then for every x ∈ Ω and every h such
that [0, h] ⊂ H1 ∩ x−1Ω, there exists t ∈ [0, 1] and p ∈ ∂Hu(xδth) such that u(xh)− u(x) =
〈p, h〉.

PROOF. It suffices to apply Theorem 3.1.15 with P = 0 and λ = 0. �
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Remark 3.1.17 In the literature a nonsmooth mean value theorem can be found for Lip-
schitz mappings on Banach homogeneous groups, that clearly include stratified group,
[92]. Unfortunately, this work does not imply our Theorem 3.1.16, since it uses the notion
of Clarke generalized gradient for Lipschitz mappings adapted to homogeneous groups.

Definition 3.1.18 Let Ω ⊂ G be an open set, and let u : Ω→ R be a function. Take h ∈ H1.
The horizontal directional derivative of u at x, along h, is given by the limit

lim
λ→0+

u(xδλh)− u(x)
λ

,

whenever it exists. We denote this derivative by u′(x, h).

Corollary 3.1.19 Let u be an h-convex function in Ω. Then for every x ∈ Ω and h ∈ H1 the
horizontal directional derivative u′(x, h) exists and satisfies

(64) u′(x, h) = max
p∈∂Hu(x)

〈p, h〉 ,

hence it is subadditive with respect to the variable h.

PROOF. The h-convexity of u implies the existence of u′(x, h) for any x ∈ Ω and h ∈ H1.
Let p0 ∈ ∂Hu(x) be such that 〈p0, h〉 = max

p∈∂Hu(x)
〈p, h〉. By definition of ∂Hu(x),

u(xδλh) ≥ u(x) + 〈p0, λh〉 , whenever [0, λh] ⊂ x−1Ω ∩ H1.

Then we easily get that

lim
λ→0+

u(xδλh)− u(x)
λ

≥ 〈p0, h〉 .

Notice that, for λ small enough, [0, λh] ⊂ x−1Ω ∩ H1, hence we can apply Theorem 3.1.15.
Then for every λ there exist c(λ) ∈ [0, 1] and p(λ) ∈ ∂Hu(xδc(λ)λh) such that

u(xδλh)− u(x)
λ

= 〈p(λ), h〉 .

Now fix a sequence λi → 0 such that p(λi) → p̄, then by the closure property of the
subdifferential we get p̄ ∈ ∂Hu(x). Moreover, the existence of the following limit gives

lim
λ→0+

u(xδλh)− u(x)
λ

= 〈 p̄, h〉 ≤ max
p∈∂Hu(x)

〈p, h〉 ,

concluding the proof. �

Theorem 3.1.20 (First order characterization) Let u : Ω −→ R be h-convex. Then u is h-
differentiable at x if and only if ∂Hu(x) = {p} and in this case ∇Hu(x) = {p}.

PROOF. Uniqueness of the h-subdifferential under h-differentiability has been already
established in [26], see Remark 3.1.3. Let assume now that the h-subdifferential p of u at x
is unique. Let U, W and M be as in Definition 1.2.19. Thus for any w ∈ G with ‖w‖ = 1
we have w = ∏γ

s=1 aseis , for some (a1, . . . , aγ) ∈ U. We fix r > 0 such that B0,r ⊂ x−1Ω and
define the h-convex function

g(y) = u(xy)− u(x)− 〈p, y〉 , y ∈ x−1Ω.
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We choose ρ0 > 0 such that ρ0M < r. Thus, whenever 0 < ρ < ρ0, by Theorem 3.1.16
and the generating property, we have

g(δρw) =
γ

∑
s=1
〈ps, ρaseis〉 − 〈p, ρaseis〉

where ps ∈ ∂Hu
(

xδρ(∏s−1
k=1 akeik)δts δρaseis

)
with ts ∈ [0, 1]. By Proposition 3.1.6, for every

ε > 0 there exists ρ0 such that

∂Hu

(
xδρ(

s−1

∏
k=1

aseik)δts δρaseis

)
⊆ ∂Hu(x) + εB = {p}+ εB ∀ρ < ρ0, s = 1, . . . , γ.

Thus |g(δρw)| ≤ Cγερ, where C is independent on (a1, . . . , aγ), since W is a bounded

set. This implies that
|g(δρw)|

ρ
uniformly converges to zero with respect to w ∈ W as

ρ→ 0+. �

2. Second order differentiability

The aim of this section is to prove the characterization of the second order differentia-
bility of h-convex functions.
Definition 3.2.1 We mean that u : Ω → R has a second order h-expansion at x ∈ Ω if there
exists a polynomial Px : G → R whose homogeneous degree is less than or equal to two,
such that

(65) u(xw) = Px(w) + o(‖w‖2).

Let us begin this section with the following simple fact.
Lemma 3.2.2 Let Ω ⊂ G be an open set, let u : Ω → R be a function. If u has a second order
expansion at x ∈ Ω, then u is h-differentiable at x and

(66) P(1)
x (w) = 〈∇Hu(x), w〉.

PROOF. If (65) holds for u at x ∈ Ω,then we can rewrite (65) as

u(xw)− P(0)
x (w)− P(1)

x (w) = P(2)
x (w) + o(‖w‖2).

Clearly P(0)
x (w) = u(x) and P(1)

x (w) is an h-linear map. Thus we achieve

|u(xw)− u(x)− P(1)
x (w)| = o(‖w‖),

and the h-differentiability of u follows. In view of the uniqueness of the h-differential we
get (66), concluding the proof. �

As in [91], we introduce the difference quotients of convex functions.
Definition 3.2.3 (Difference quotients, [91]) Let u : Ω → R be h-convex and assume that
it is h-differentiable at x. For every τ > 0 define the first order h-quotient at x

ux,τ(w) = τ−1{u(xδτw)− u(x)}
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and second h-differential quotient at x

(67) ∆2
x,τu(w) =

u(xδτw)− u(x)− τ 〈∇Hu(x), w〉
τ2 .

assuming in addition that u is h-differentiable at x. At this h-differentiability point, the
h-difference quotient of the subdifferential mapping is given by the set-valued mapping

(68) ∆x,τ∂Hu : w⇒
∂Hu(xδτw)−∇Hu(x)

τ
.

Remark 3.2.4 Notice that ∆2
x,τu can be written as

∆2
x,τu(w) = τ−1 [ux,τ(w)− 〈∇Hu(x), w〉]

where ux,τ is clearly h-convex. Moreover if we take the subdifferential of ∆2
x,τu we get

∂H
[
∆2

x,τu(w)
]

= τ−1 {∂Hux,τ(w)−∇Hu(x)}(69)

= τ−1 {∂Hu(xδτw)−∇Hu(x)}
= ∆x,τ∂Hu(w).

where the equality ∂Hux,τ(w) = ∂Hu(xδτw) follows from the definition of ux,τ.

Definition 3.2.5 A locally Lipschitz function u : Ω → R is twice h-differentiable at x if there
exists the horizontal gradient of u at x, and moreover there exists a linear map Ax : G→ H1
such that

(70)
∥∥∥∥∇Hu(xw)−∇Hu(x)− Ax(w)

‖w‖

∥∥∥∥
L∞(Bδ,H1)

−→ 0 as δ→ 0+ ,

If (70) holds we also say that∇Hu is h-differentiable at x in the extended sense. We call Ax
the second order h-differential of u at x and denote it by D2

Hu(x), since it is uniquely defined.
The notion of differentiability in the extended sense is well posed, since Lipschitz functions
are almost everywhere h-differentiable, [85]. Differentiability in the extended sense in the
Euclidean case has been introduced by Rockafellar, [91]. The next lemma establishes a
precise characterization of this differentiability.
Lemma 3.2.6 Let u : Ω −→ R be h-convex. Then u is twice h-differentiable at x if and only if
there exist an h-linear mapping Ax : G→ H1 and v ∈ H1 such that

(71) ∂Hu(xw) ⊆ v + Ax(w) + o(‖w‖)B

for all w ∈ x−1Ω, where B denote the unit ball in H1. In particular, if (71) holds, then v =
∇Hu(x).

PROOF. Choosing w = 0 we get ∂Hu(x) = {v}, thus by Theorem 3.1.20, u is h-
differentiable at x, moreover v = ∇Hu(x). The twice h-differentiability immediately fol-
lows from (71), taking its restriction to all h-differentiable points. For the converse impli-
cation, we rewrite expansion (70) as follows, for all ε > 0 there exists ρ > 0 such that

(72)
∣∣∣∣∇Hu(xh)−∇Hu(x)− Ax(h)

‖h‖

∣∣∣∣ ≤ ε ‖h‖ < ρ.
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for all h ∈ x−1Ω such that u is h-differentiable at xh. By (53), for any w ∈ x−1Ω ∩ B0,ρ,
taking into account (72), we get∣∣∣∣ p−∇Hu(x)− Ax(w)

‖w‖

∣∣∣∣ ≤ ε for all p ∈ ∇?
Hu(xw).

In an equivalent form, we have

(73) ∇?
Hu(xw) ⊆ ∇Hu(x) + Ax(w) + ε‖w‖B.

Moreover, the set on the right is convex, hence Theorem 3.1.8 yields

(74) ∂Hu(xw) = c̄o (∇?
Hu(xw)) ⊆ ∇Hu(x) + Ax(w) + o(‖w‖)B.

This leads us to the conclusion. �

The previous lemma is an important tool to establish one implication of the character-
ization of second order differentiability of h-convex functions, stated in Theorem 3.2.8. It
can be seen as a “set inclusion continuity” of the subdifferential joined with a first order
expansion of the horizontal gradient, at those points where it exists.
Corollary 3.2.7 If u : Ω → R is h-convex, then it is twice h-differentiable at x if and only if
for any compact set D b Ω and for all ε > 0, there exists δ > 0 such that for all w ∈ W and
τ ∈ (0, δ) we have

(75) ∆x,τ∂Hu(w)− Ax(w) ⊆ εB.

PROOF. Let u be twice h-differentiable at x, fix a bounded set D b Ω and ε > 0. We set
µD = maxw∈D ‖w‖. Then there is ρ(ε, D, Ω) > 0 such that

∂Hu(xw) ⊂ ∇Hu(x) + Ax(w) +
‖w‖ε

µD
B,

whenever ‖w‖ < ρ(ε, D, Ω) and Bx,ρ(ε,D,Ω) ⊂ Ω. We consider w = δτh, where h ∈ D, and

0 < τ < ρ(ε,D,Ω)
µD

. It follows that

∂Hu(xδτh) ⊂ ∇Hu(x) + τAx(h) + ετB

which is equivalent to (75). Conversely, let S = {w ∈ G : ‖w‖ = 1} be a compact set and
fix ε > 0. Then there exists δ > 0 such that (75) holds whenever 0 < τ < δ. Thus, we have

∂Hu(xδτw)−∇Hu(x)
τ

− Ax(w) ⊆ εB.

In other words, whenever 0 < ‖h‖ < δ, we have

∂Hu(xh) ⊆ ∇Hu(x) + Ax(h) + ε‖h‖B,

that establishes the twice h-differentiability of u at x.
�

Finally we can prove our main result.
Theorem 3.2.8 (Second order characterization) Let u : Ω −→ R be h-convex and let x be a
point in Ω. Then u has a second order h-expansion at x if and only if it is twice h-differentiable at
x. In addition, in this case the following facts hold
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(1) the gradient ∇V2 u(x) =
(
Xm1+1u(x), . . . , Xm2 u(x)

)
of u at x along V2 exists, where

(Xm1+1, . . . , Xm2) is an orthonormal basis of the second layer V2,
(2) denoting by Px the second order h-expansion of u at x, we have

Px(w) = u(x) +
〈(
∇Hu(x) +∇V2 u(x)

)
, w
〉
+

1
2
〈∇2

HPx w, w〉,

where (∇2
H)ij =

XiXj+XjXi
2 , i, j = 1, . . . , m1 is the horizontal Hessian,

(3) denoting by Ax the h-differential of ∇Hu in the extended sense at x, then its connection
with Px is given by the formula(

∇2
HPx

)
ij = (Ax)

i
j −

m2

∑
l=m1+1

ali
j Xlu(x) ,

where ali
j only depend on the coordinates of the group and appear in (29), the horizontal

Hessian ∇2
HPx is nonnegative and XiXjPx = (Ax)i

j.

PROOF. Let us assume that u has a second order h-expansion at x. By Proposition
3.2.2, u is h-differentiable at x, then P(0)

x (w) = u(x) and P(
x1)(w) = 〈∇Hu(x), w〉, where Px

is the polynomial associated to the second order h-expansion. Define φ(w) := P(2)
x (w) and

notice that ∇HP(2)
x (w) is an h-linear map, since it is a polynomial of homogeneous degree

1. The second order h-expansion yields

(76) ∆2
x,τu(w)− φ(w) =

u(xδτw)− P(0)
x (δτw)− P(1)

x (δτw)− P(2)
x (δτw)

τ2 =
o(‖δτw‖2)

τ2 .

As a consequence, ∆2
x,τu uniformly converges to φ on compact sets as τ → 0+. Moreover

∆2
x,τu is h-convex, then so is φ. Applying Theorem 3.1.6, we can establish that for every

compact set D ⊂ Ω and ε > 0 there exists δ > 0 such that

∂HUx,τ(w) ⊆ ∇Hφ(w) + εB, for all w ∈ D and τ ∈ (0, δ).

Notice that (69), gives ∂HUx,τ(w) = ∆x,τ∂Hu(w), hence

∆x,τ∂Hu(w) ⊆ ∇HP(2)
x (w) + εB.

As a result, we have ∆x,τ∂Hu(w) −∇HP(2)
x (w) ⊂ εB whenever w ∈ D and 0 < τ < δ.

By Proposition 3.2.7, u is twice h-differentiable. Furthermore, ∇HP(2)
x is the second order

h-differential D2
Hu(x) of u at x.

We now assume that u is twice h-differentiable at x, where D2
Hu(x) denotes the second

order h-differential of u at x. By Lemma 3.2.6 we have

∇Hu(xw) = ∇Hu(x) + D2
Hu(w) + o(‖w‖).

where D2
Hu(x) is regarded as an h-linear mapping. Let U, W and M be as introduced in

Definition (1.2.19). We define

v(w) = u(xw)− u(x)− Px(w)
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for every w ∈ x−1 ·Ω and Px is the unique polynomial, with h-degP ≤ 2 that satisfies the
condition Px(0) = 0 and

(77) ∇HPx(w) = ∇Hu(x) + D2
Hu(x)w.

This is a consequence of Remark 1.2.36. Let r > 0 be such that B0,r ⊂ x−1Ω. Let ρ0 be such
that ρ0M < r and choose w such that ‖w‖ = 1. We consider for every 0 < ρ < ρ0 and
δρw = ∏γ

s=1 aseis , for some (a1, . . . , aγ) ∈ U. Then v(δρw) = v(δρw)− v(0) can be written
as

v(δρw) =
γ

∑
s=1

v(
s

∏
l=1

δρail eil )− v(
s−1

∏
l=1

δρail eil ).

Observe that v is an h-convex function plus a polynomial of homogeneous degree less than
or equal to two. By Theorem 3.1.15 applied to horizontal directions eis we get

v(δρw) =
γ

∑
i=1

〈
ps, δρaseis

〉
with ps ∈ ∂λ

Hv
(

xδρ(∏s−1
k=1 akeik)δts δρaseis

)
, λ = max

‖h‖=1
|P(2)

x (h)|, where ts ∈ [0, 1] and λ =

max‖h‖=1 |P
(2)
x (h)|. Moreover, by Proposition 3.1.14 we know that

(78) ps +∇Px

(
δρ(

s−1

∏
k=1

akeik)δts δρaseis

)
∈ ∂Hu

(
xδρ(

s−1

∏
k=1

akeik)δts δρaseis

)
.

The expansion (71) for the h-subdifferential of u implies that

∂Hu

(
xδρ(

s−1

∏
k=1

akeik)δts δρaseis

)
⊂ ∇Hu(x) + Ax

(
δρ(

s−1

∏
k=1

akeik)δts δρaseis

)
(79)

+o

(
|δρ(

s−1

∏
k=1

akeik)δts δρaseis |
)

B,

Thus, by formula (77), taking into account (78) and (79), we get that

|ps| = o

(
|δρ(

s−1

∏
k=1

akeik)δts δρaseis |
)

= o(ρ).

As a consequence, |v(δρw)| = o(ρ2). This concludes the proof of our characterization. Next
we have to prove the claims (1), (2) and (3). The first one follows considering the restriction
of (76) to directions z ∈ H2, with |z| = 1, and taking into account (27), hence getting the
uniform limit

u(x · exp(t2Z))− u(x)− t2〈∇V2 P(2)
x , z〉

t2 −→ 0

as t → 0+, where Z is the unique left invariant vector field such that Z(0) = z. In fact, we
have used the equality

xδtz = x · δt exp(Z) = x · exp(t2Z).
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In particular, we have ∇V2 u(x) = ∇V2 P. Taking into account Lemma 3.2.2 and formula
(27), then claim (2) follows. Now, with respect to the fixed basis (e1, . . . , en) of G, we have
coefficients (D2

Hu(x))ij such that

D2
Hu(x)w =

m1

∑
i,j=1

(D2
Hu(x))ij wi ej ,

therefore (77) yields ∇HP(2)
x (w) = D2

Hu(x)w. For any j = 1, . . . , m1, we have

XjP
(2)
x (w) =

m1

∑
i=1

(D2
Hu(x))ij wi ,

then formula (30) gives

XiXjP
(2)
x = (D2

Hu(x))ij = (∇2
HP(2)

x
)

ij +
m2

∑
l=m1+1

Xlu(x) ali
j .

As a result, we get

(∇2
HP(2)

x )ij = (D2
Hu(x))ij −

m2

∑
l=m1+1

Xlu(x) ali
j ,

that coincides with the formula of claim (3). Finally, we observe that P(2)
x is the uniform

limit on compact sets of the h-convex functions ∆2
x,τu(w). This implies that P(2)

x is also
h-convex and then its symmetrized horizontal Hessian is nonnegative. �





CHAPTER 4

H-CONVEX DISTRIBUTIONS IN STRATIFIED GROUPS

In this chapter, we address the question of the characterization of h-convex distribu-
tions. The results in the first part of the chapter have been obtained in a joint work with
A. Bonfiglioli, E. Lanconelli and V. Magnani, [15]. In all stratified groups, every h-convex
function has nonnegative horizontal Hessian in the distributional sense, as observed in [26]
and [64]. Surprisingly, the converse to this fact, namely, establishing whether a distribution
with nonnegative horizontal Hessian is given by an h-convex function was not addressed
yet. This chapter gives a full answer to this question. The first result in this direction
extends the Reshetnyak’s characterization to all stratified groups.
Theorem 4.1.6 If µ ∈ D′(Ω) is a Radon measure, then µ is defined by an h-convex function if
and only if it is an h-convex distribution.

Our scheme is elementary, although it differs from the standard approach: we consider
the group convolution of the measure µ, but instead of computing its horizontal Hessian
by direct differentiation, we consider its distributional version. This respects the noncom-
mutativity of the convolution operator. As a byproduct of Theorem 4.1.6, we have the
following important corollary.
Corollary 4.1.7 If u ∈ L1

loc(Ω) is h-convex in the distributional sense, then outside a negligible
set it coincides with a locally Lipschitz continuous h-convex function on Ω.

This result also extends one of the characterizations given in [60], where the subhar-
monic theory used to prove the equivalence of various notions of h-convexity requires that
the function be also upper semicontinuous. To reach the complete distributional character-
ization of h-convexity, we combine Corollary 4.1.7 and Lemma 4.1.8. Using the fundamen-
tal solution of the sub-Laplacian ∆H in stratified groups, [34], this lemma shows that an
h-convex distribution T can be written as the sum of a ∆H-harmonic function and a locally
summable function. Since ∆H-harmonic functions are smooth by Hörmander’s theorem,
[57], we conclude that T is given by a function in L1

loc(Ω).
We should also remark that this approach seems to be new also in the classical context.

In fact, Dudley’s proof uses a special geometric construction that cannot be extended to
general stratified groups. On the other hand, the rich geometric properties of Heisenberg
groups allow to carry out the Dudley’s scheme in these groups, this is done in Section 2.
We are now arrived to our main result of the chapter.
Theorem 4.1.9 Let Ω be an open set of G. If T ∈ D′(Ω) is h-convex, then T is defined by an
h-convex function on Ω.

41
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Recall that all measurable h-convex functions are locally Lipschitz continuous, [87].
Thus, Theorem 4.1.9 shows that the class of h-convex measurable functions coincides with
that of h-convex distributions, that are locally Lipschitz continuous h-convex functions.
Although we still do not know whether one can find h-convex functions in higher step
groups that are nonmeasurable, these functions certainly would not be included in the
previous families. This confirms that the natural notion of h-convexity in stratified groups
should always include either measurability or local boundedness from above, that are in-
deed equivalent conditions.

It should be eventually apparent that the main point of this note is to show how the
well developed theory of subharmonic functions in stratified groups allows us to use sim-
ple arguments to establish new results in the realm of h-convex functions.

In Section 2 we follows the Dudley approach to give a more geometric proof Theorem
4.1.9, unfortunately this holds only in Heisenberg groups.

Moreover, the same scheme to prove Theorem 4.1.6, joined with Lemma 4.2.3 leads us
to a more general distributional approximation theorem.
Theorem 4.2.4 Let Ω ⊂ G be an open bounded subset, let T ∈ D′(Ω) be such that D2

HT ≥ 0
and let δ > 0 be such that Ω−δ is nonempty. It follows that there exists C(Ω) > 0 such that
the convolutions 〈T, Φx,ε〉 are smooth h-convex functions on Ω−δ for all 0 < C(Ω)ε1/ι < δ and
converge to T in D′(Ω−δ), where ι > 1 is the step of G.

It is worth to stress that this theorem shows in particular that smooth convolutions
of h-convex distributions are smooth h-convex functions. We also notice that in the case
T is given by a measurable h-convex function, the smooth convolution 〈T, Φx,ε〉 defined
in Lemma 4.2.3 uniformly converges to u on compact sets, since measurable h-convex
functions are locally Lipschitz continuous, [87]. This fact was already observed in [60],
since in this case the h-convex function u is in particular upper semicontinuous.

Concerning the hypotheses on Ω in Theorem 4.2.4, the requirement that Ω be bounded
only depends on the noncommutativity of the group, as explained in Remark 4.2.6. It is
also clear that one can easily modify the conclusion of Theorem 4.2.4 in the case of an
arbitrary open set, according to Corollary 4.2.5.

It is now natural to see the role of Theorem 4.2.4, in the problem of showing that
h-convex distributions are given by h-convex functions. Unfortunately, the fact that an
h-convex distribution T is the distributional limit of smooth h-convex functions is not
enough to conclude that T is given by an h-convex function. To establish this result, we
need some compactness, namely, we have to establish a closure theorem. This is a delicate
issue, that requires more information on the geometry on the group. The second part of
this work is devoted to the proof of this closure theorem in all Heisenberg groups Hn.
Theorem 4.2.15 Let Ω be an open set of Hn. If un : Ω → R is a sequence of h-convex functions
converging to T ∈ D′(Ω) in the distributional sense, then T is defined by an h-convex function.

This theorem in Euclidean spaces has been proved by Dudley, see Theorem 2.1 in [29].
As it is clear from his proof, the geometry of the space plays an important role. Dudley’s
approach uses the following elementary fact: given a convex function u and a simplex S,
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then u attains its maximum on S at a vertex q. This allows to consider the set S′, that is
symmetric to S with respect to the vertex q. It follows that u(y) ≥ u(q) for every y ∈ S′.
Thus, in the case the sequence of convex functions diverges to +∞ at some point, we get
its uniform limit to +∞, contradicting the distributional convergence. This constitutes the
leading idea in Dudley’s approach.

Our first step is to replace simplexes with finitely h-convex sets in Hn, namely, finite
sets whose h-convex closure has nonempty interior. The existence of these sets is proved
by Rickly in [87] for step two groups. He also shows that this result is false in higher
step groups, as the Engel group. However, this h-convex closure is not as manageable as
a simplex in the Euclidean space. This forces us to establish some technical lemmas to
extract the geometric properties of this set. In Proposition 4.2.12, we modify the finitely h-
convex set A0, getting the new finite set A1, such that at any vertex p ∈ A1 the horizontal
plane Hp through p contains an interior point of the h-convex closure C(A0). However,
this lemma can give a uniform lower bound on the sequence only on an open piece of a
horizontal plane, since h-convexity is only defined on horizontal planes. The lower bound
on an open set is obtained by moving the base point p along a horizontal direction, making
the horizontal plane rotate around this direction, see Lemma 4.2.14. This leads to the proof
of the uniform upper bound on the sequence. Notice that here we have used the fact that
we are working in Heisenberg groups. By a technique similar to the one used for Theorem
3.17 of [71], we also get the uniform lower bound on the sequence. Finally, by the L∞

estimates of h-convex functions with respect to their L1 norm, see for instance Theorem 9.2
of [26], we reach the wished compactness.

After this result, in Heisenberg groups the hypothesis in Theorem 4.1.6 that the h-
convex distribution is a Radon measure can be removed, getting the complete distribu-
tional characterization of h-convexity. Precisely, we have the following theorem.
Theorem 4.2.16 Let Ω be an open set of Hn. If T ∈ D′(Ω) is h-convex, then T is defined by an
h-convex function in Ω.

1. H-convex distributions

Remark 4.1.1 Let (X1, . . . , Xm) denote an orthonormal basis of the first layer V1 and let
T ∈ D′(Ω). The vector fields Xj have formal adjoint X?

j = −Xj, this justifies the following
definition of XjT,

〈XjT, φ〉 = −〈T, Xjφ〉, φ ∈ D(Ω).

Notice that XjT is a distribution. Since T is a distribution, for any compact set K ⊂ Ω,
there exists CK > 0 and N > 0 such that

|〈T, φ〉| ≤ CK‖φ‖N , for all φ ∈ D(K),

where ‖φ‖N = supy∈Ω{|Dαφ(y)|, α ∈ 1, . . . , nk, k = 1, . . . , N}. Therefore,

|〈XjT, φ〉| = |〈T, Xjφ〉| ≤ CK‖Xjφ‖N ≤ C′K‖φ‖N+1,
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for every φ ∈ D(K) and this proves the claim. Since Xj in general do not commute, the
order of the iterated differential operators Xj is important. We have

〈Xi1 . . . Xik T, φ〉 = (−1)k〈T, Xik . . . Xi1 φ〉, φ ∈ D(Ω).

Definition 4.1.2 Let T ∈ D′(Ω). The distributional Hessian of T is the matrix valued distri-
bution 〈D2

HT, ψ〉 := 〈T, ∇2
Hψ〉 of entries〈

1
2
(
XjXi + XiXj

)
T, ψ

〉
:=
〈

T,
1
2
(
XiXj + XjXi

)
ψ
〉

for every i, j = 1, . . . , m and every ψ ∈ C∞
c (Ω).

Definition 4.1.3 We say that the distributional Hessian of T ∈ D′(Ω) is nonnegative if for
every nonnegative test function ψ ∈ C∞

c (Ω) the matrix 〈T, ∇2
Hψ〉 is nonnegative. In this

case we write D2
HT ≥ 0 and say that the distribution T is h-convex.

In the smooth case, a simple computation shows that a nonnegative horizontal Hessian
characterizes h-convexity, see for instance [71].
Definition 4.1.4 Let φ ∈ C∞

c (G) be a nonnegative function, whose support is contained in
the unit open ball of G with respect to the fixed homogeneous norm. For every ε > 0, we
set φε(x) = ε−Qφ(δ 1

ε
x). We say that {φε}ε>0 is a family of mollifiers. For all x ∈ G, we define

the functions Φx,ε : G→ R as Φx,ε(y) = φε(xy−1).

Lemma 4.1.5 (Remark 3.10 of [70]) Let G be a stratified group of step ι. Let w, h ∈ G and let
ν > 0 be such that d(w), d(h) ≤ ν. Then there exists a constant C(ν) only depending on G such
that d(w−1hw) ≤ C(ν)d(h)

1
ι .

We will use the notation Ω−r = {x ∈ Ω : dist(x, Ωc) > r} for any r > 0.
Theorem 4.1.6 If µ ∈ D′(Ω) is a Radon measure, then µ is defined by an h-convex function if
and only if it is an h-convex distribution.

PROOF. We first suppose that Ω is bounded. Let h > 0 be such that Ω−h is nonempty.
Let

µε(x) =
∫

Ω
φε(xy−1) dµ(y)

is well defined on Ω for all ε > 0. Then for any ψ ∈ D(Ω−h) , we get∫
Ω−h

∇2
Hψ(x) µε(x) dx =

∫
Ω

(∫
Ω−h

φε(xy−1) ∇2
Hψ(x) dx

)
dµ(y)

(
x = zy

)
=

∫
Ω

(∫
Dε

φε(z) ∇2
Hψ(zy) dz

)
dµ(y)

=
∫

Dε

φε(z)
(∫

Ω
∇2

H [ψ(zy)] dµ(y)
)

dz

≥ 0 ,
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since y → ψ(zy) is smooth and compactly supported in Ω. In fact, let ω ∈ Ωc, then
applying Lemma 4.1.5, with ν = C(Ω) = supx∈Ω d(x), we have

d(y, ω) ≥ d(zy, ω)− d(y−1zy) > h− C(Ω)ε
1
ι > 0.

for all ε
1
ι < h

C(Ω)
. Then it follows from Proposition 5.1 in [71] that µε is h-convex. Further-

more, for every compact set K contained in Ω−h we have the uniform estimate∫
K
|µε(x)| dx ≤ |µ|(K)| < +∞ .

Then the L∞-estimates in Theorem 9.2 of [26] joined with the classical Ascoli-Arzelà com-
pactness theorem imply the existence of a continuous h-convex function ũ on Ω−h that
a.e. coincides with u. The arbitrary choice of h > 0 concludes the proof in the case of Ω
bounded. For a general open set Ω we have to consider for every M > 0 the set Ω ∩ BM,
the proof proceed as in the previous case, then by the arbitrary choice of M > 0 we can
conclude. �

As a byproduct of Theorem 4.1.6, we have the following important corollary.
Corollary 4.1.7 If u ∈ L1

loc(Ω) is h-convex in the distributional sense, then outside a negligible
set it coincides with a locally Lipschitz continuous h-convex function on Ω.

Lemma 4.1.8 Let Ω ⊂ G be a open set and let Ω1 ⊂ Ω be a bounded open set such that Ω̄1 ⊂ Ω.
If T ∈ D′(Ω) satisfies ∆HT ≥ 0, then its restriction to Ω1 is given by function in L1

loc(Ω1).

PROOF. Since ∆HT ≥ 0, we know that there exists a nonnegative Radon measure µ on
Ω such that ∆HT = µ. Let Γ be as in Definition 1.2.42, and consider the function

v(x) = −
∫

Ω1

Γ(y−1x)dµ(y).

Since Γ is locally integrable on G, for every compact set K ⊂ Ω1 we have∫
K
|v(x)|dx ≤

∫
Ω1

∫
K
|Γ(y−1x)|dxdµ(y) ≤ µ(Ω1) sup

y∈Ω̄1

∫
K
|Γ(y−1x)|dx < +∞.

Let us show that v satisfies the distributional equality ∆Hv = µ|Ω1
. In fact, for every φ ∈

C∞
c (Ω1) we have

〈∆Hv, φ〉 = −
∫

Ω1

∫
Ω1

Γ(y−1x)∆Hφ(x)dx dµ(y).

Thus, being Γ the fundamental solution for ∆H, we get

〈∆Hv, φ〉 =
∫

Ω1

φ(y)dµ(y).

Hence ∆H (T − v) = 0 in D′(Ω1). Since ∆H is hypoelliptic, [57], the function T − v coin-
cides with a smooth ∆H-harmonic function h on Ω1, up to a negligible set. Finally we can
conclude that T is represented by an L1

loc function on Ω1. �

We wish to point out that this lemma follows the same lines to prove representation for-
mulas for upper semicontinuous subharmonic functions, see Theorem 9.4.4 in [14]. Com-
bining Lemma 4.1.8 and Corollary 4.1.7, we establish the proof of our main result.



46 4. H-CONVEX DISTRIBUTIONS IN STRATIFIED GROUPS

Theorem 4.1.9 Let Ω be an open set of G. If T ∈ D′(Ω) is h-convex, then T is defined by an
h-convex function on Ω.

PROOF. Let Ω̄n ⊂ Ω, n ∈ N be an increasing sequence of open and bounded sets.
By hypothesis D2

HT ≥ 0 and in particular ∆HT ≥ 0, hence Lemma 4.1.8 implies that T is
represented by an L1

loc function on Ωn. Finally we can conclude, by Corollary 4.1.7, that T
is defined by an h-convex function on Ωn. Since

⋃
n∈N Ωn = Ω, the theorem follows. �

2. Distributional h-convexity in Heisenberg groups: a classical approach

In this section we give a different proof of Theorem 4.1.9 for Heisenberg groups. The
proof follows the ideas of Dudley in [29], and the main point is to prove a closure theo-
rem for convex function in D′. We extend this result to h-convex functions in Heisenberg
groups, however the proof follows a different approach to the Euclidean one.

First, we prove two technical lemmas, which holds in general Carnot groups. There
are three common ways of viewing the elements of the Lie algebra g of G: (i) as tangent
vectors at the origin, (ii) as left-invariant vector fields or (iii) as right-invariant vector fields.
Throughout the thesis we have always used definition (ii), see Chapter 1. However in this
section we shall need also (iii). We will use the notations gL and gR respectively for g seen
as in definition (ii) and (iii). We observe that the map ∆ which sends X ∈ gL to the unique
X̃ ∈ gR which agrees with X at the origin is an anti-isomorphism. As a consequence
if one applies the Barker-Campbell-Hausdorff formula to gR, one obtains a different, but
isomorphic, group law for G. Let Y1, . . . , Ym the basis of gR obtained as image of X1, . . . , Xm
through ∆.
Proposition 4.2.1 (Corollary 1.44 in [35]) Let f : G→ Rn be a smooth function. Then for every
k > 0 there exists a constant C(k) > 0 such that

| f (xy)− Px(y)| ≤ C(k)|y|k+1 sup
|z|<βk+1|y|, d(I)=k+1

|X I f (xz)|,

where Px(y) is the right Taylor polynomial of f of homogeneous order k at x, and β is a constant
depending only on G.

Throughout the section we define the functions Φx,ε : G −→ R as Φx,ε(y) = φε(xy−1)
for all x, y ∈ G and ε > 0. Where the functions φε, ε > 0 are defined in Proposition 1.2.28.
Lemma 4.2.2 Let x, z ∈ G then Φx,ε converges to Φz,ε in D(G) as x → z. Moreover, let
(e1, . . . , em) be a basis of H1, as in Section 2, then

1
r
(Φx,ε(·(−rej))−Φx,ε)→ −XjΦx,ε(·) in D(G),

for every j = 1, . . . , m.

PROOF. Let Y1, . . . , Yn be a basis of right invariant vector fields, with homogeneous
degree dj, j = 1, . . . , n, generated by the horizontal vector fields Y1, . . . , Ym defined above.
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By Theorem 1.33 in [35], there exists C̄ > 0 and β > 0 such that for all x, y ∈ G

(80) |φε(xz−1zy)− φε(zy)| ≤ C̄
n

∑
j=1
|xz−1|dj sup

|w|≤β|xz−1|
|Yj f (wy)|,

Hence Φx,ε converges to Φz,ε uniformly on every compact set. Moreover, observe that
we can apply (80) to the functions X Iφε(xz−1zy) − X Iφε(zy), where X I = Xi1 . . . Xik and
I ⊂ {1, . . . , m}k, k > 0. This implies the uniform convergence on compact set of X Iφε(xy)
to X Iφε(zy), for every I and as a consequence the convergence inD(G). Now we prove the
second part of the lemma. Let f (y, r) be the smooth function f (y, r) = (Φx,ε(y(−rej)) −
Φx,ε)/r. Then for any compact set K ⊂ G, by Proposition 4.2.1 with k = 1, there exists CK,
such that

(81) sup
y∈K
| f (r, y) + XjΦx,ε(y)| ≤ CKr, for r <

δ

2bk+1 .

Notice that CK = C(K, X2 f ), more precisely

CK = C(1) sup
z∈Ω− δ

2
, h,l=1,...,m

|XhXl f (r, z)|,

where C(1) is the constant that appears in Proposition 4.2.1 for k = 1. Observe that

Yi f (r, y) =
(YiΦx,ε)(y(−rej))− (YiΦx,ε)(y)

r
.

Fix Yi and apply estimates (81) to Yi f , then we get

sup
y∈K
|Yi f (r, y) + XjYiΦx,ε(y)| ≤ C(K, X2Yi f )r, for r <

δ

2bk+1

Given two vector fields X, Y respectively left invariant and right invariant we have [X, Y] =
0. Recall that for every smooth function u on G the following elementary formula holds

(82)
d
dt

Y(uexp(−tX))(exp(tX)x) = [X, Y](uexp(−tX))(exp(tX)x).

We also recall that

exp(tX)(x0) = x · Exp(tX) exp(tY)(x0) = Exp(tY) · x.

Hence
Y(uexp(−tX))(exp(tX)x) = Y(uexp(−tX))(x · Exp(tX))

= Y(uexp(−tX))(RExp(tX)(x))

= Y(u ◦ exp(−tX) ◦ RExp(tX))(x)

Let us consider the function u ◦ exp(−tX) ◦ RExp(tX)(·). Then we obtain

u ◦ exp(−tX) ◦ RExp(tX)(y) = u(exp(−tX)(y · Exp(tX))

= u(y · Exp(tX) · Exp(−tX))

= u(y).
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Thus the right left hand side of (82) does not depend on t, as a consequence [X, Y] = 0 and
the two vector fields commute. Then we get

sup
y∈K
|Yi f (r, y) + YiXjΦx,ε(y)| ≤ C(K, X2Yi f )r.

Then by the same observation, for every I ⊂ 1, . . . , mk, k > 0, we get

sup
y∈K
|Y I f (r, y) + Y I XjΦx,ε(y)| ≤ C(K, X2Y I f )r, , for r <

δ

2bk+1

Hence we have the convergence of f (r, y) to −XjΦx,ε(y) in D(G), �

Lemma 4.2.3 Let Ω ⊂ G be an open bounded set and let u ∈ D′(Ω). Let {φε} be a family
of mollifiers. We choose any ψ ∈ C∞

c (Ω) and define δ > 0 as the distance between supp ψ and
Ωc. Then there exists a constant C(Ω) > 0 such that for all ε > 0, C(Ω)ε

1
ι < δ, we have

supp ψ ⊂ Ω−ε, the function Ω−δ 3 x → 〈u, Φx,ε〉 is continuous and

(83)
∫

Ω−δ

ψ(x) 〈u, Φx,ε〉 dx =

〈
u,
∫

Ω−δ

ψ(x)Φx,ε dx
〉

,

where
∫

Ω−δ

ψ(x)Φx,ε dx denotes the function y −→
∫

Ω−δ

ψ(x) φε(xy−1) dx.

PROOF. Let consider z ∈ Ω−ε. It follows, by Lemma 4.2.2, that Φz,ε → Φx,ε in D(Ω) as
z → x. Hence x → 〈u, Φx,ε〉 is continuous on Ω−ε. Moreover we notice that the function

y −→
∫

Ω−δ

ψ(x) φε(xy−1) dx is compactly supported in Ω. In fact, for every ω ∈ Ωc, every

y ∈ Ω and every x ∈ Ω−δ, we get

d(y, ω) ≥ d(x, ω)− d(x, y) ≥ δ− d(y−1xy−1y).

Hence applying Lemma 4.1.5 with ν = C(Ω) = supx∈Ω d(x), and h = xy−1 we get

d(y, ω) ≥ δ− C(Ω)ε
1
ι > 0.

With respect to a fixed scalar product on G, we consider the familyQn of closed cubes in G

of side e−n, whose interior parts are disjoint and such that G =
⋃

Q∈Qn

Q. We choose a fixed

xQ ∈ Q for any Q ∈ Qn and then obtain

(84)

∣∣∣∣∣
∫

Ω−δ

ψ(x)〈u, Φx,ε〉 dx− ∑
Q∈Qn

ψ(xQ)〈u, ΦxQ,ε〉|Q ∩Ω−δ|
∣∣∣∣∣ ≤ h Lq((supp ψ)1

)
for all n ≥ nh. Notice that the uniform continuity of x → ψ(x)〈u, Φx,ε〉 on supp ψ implies
(84). This shows that∫

Ω−δ

ψ(x)〈u, Φx,ε〉 dx = lim
n→∞ ∑

Q∈Qn

ψ(xQ)〈u, ΦxQ,ε〉|Q ∩Ω−δ| .

Since we have finite sums, by linearity of distributions we also have

∑
Q∈Qn

ψ(xQ)〈u, ΦxQ,ε〉|Q ∩Ω−δ| =
〈
u, ∑

Q∈Qn

ψ(xQ)ΦxQ,ε |Q ∩Ω−δ|
〉

.
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Arguing as before, one also observes the convergence

∑
Q∈Qn

ψ(xQ)ΦxQ,ε |Q ∩Ω−δ| −→
∫

Ω−δ

ψ(x)Φx,ε dx in D(Ω−δ)

as n→ ∞. This leads us to the limit∫
Ω−δ

ψ(x)〈u, Φx,ε〉 dx = lim
n→∞

〈
u, ∑

Q∈Qn

ψ(xQ)ΦxQ,ε |Q ∩Ω−δ|
〉

that concludes the proof. �

Many thanks are due to Giovanni Alberti for a stimulating conversation about the
lemma above. As a consequence of Lemma 4.2.3 we get a more general distributional
approximation theorem.
Theorem 4.2.4 Let Ω ⊂ G be an open bounded subset, let T ∈ D′(Ω) be such that D2

HT ≥ 0
and let δ > 0 be such that Ω−δ is nonempty. It follows that there exists C(Ω) > 0 such that
the convolutions 〈T, Φx,ε〉 are smooth h-convex functions on Ω−δ for all 0 < C(Ω)ε1/ι < δ and
converge to T in D′(Ω−δ), where ι > 1 is the step of G.

PROOF. Let ψ ∈ D(Ω) and let δ = dist(suppψ, Ωc) > 0. Let {φε}ε>0 be a family of
mollifiers and set Φx,ε(y) = φε(xy−1). We consider the family of functions

Tε(x) = 〈T, Φx,ε〉 on Ω−δ

for all 0 < C(Ω)ε
1
s < δ, where C(Ω) > 0 is defined as in Lemma 4.2.3. It follows that Tε

are smooth functions. Le e1, . . . , em be a basis of H1, as in Section 2. Then by definition of
Tε we get

1
r
(Tε(x(rej))− Tε(x)) = 〈T,

1
r
(Φx(rej),ε −Φx,ε)〉.

for every j = 1, . . . , m and r > 0. Since

Φx(rej),ε −Φx,ε = Φx,ε(·(−rej))−Φx,ε,

Lemma 4.2.2 implies that
XjTε(x) = −〈T, XjΦx,ε〉.

Iterating this procedure one easily obtains that

X I Tε(x) = (−1)|I|〈T, X−IΦx,ε〉,

for every X I = Xi1 . . . Xik , X−I = Xik . . . Xi1 , where I ⊂ {1, . . . , m}k, k > 0. Hence Tε is a
smooth function on Ω−δ. In view of Lemma 4.2.3, we get∫

Ω
∇2

Hψ(x) Tε(x) dx =

〈
T,
∫

Ω
∇2

Hψ(x)Φx,ε dx
〉

.

Notice that as in the previous lemma the function y →
∫

Ω∇
2
Hψ(x)Φx,ε dx has compact

support in Ω. The change of variable x = zy gives∫
Ω−δ

∇2
Hψ(x)Φx,ε(y) dx =

∫
Dε

(∇2
Hψ)(zy) φε(z) dz .
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We denote by lz : G −→ G the left translation lz(w) = zw. Then the left invariance of the
family of vector fields Xi, i = 1, . . . , m, yields∫

Dε

(∇2
Hψ)

(
lz(y)

)
φε(z) dz = ∇2

H

( ∫
Dε

φε(z) (ψ ◦ lz)(y) dz
)

.

Since y →
∫

Dε
ψ(zy) φε(z) dz is smooth and compactly supported in Ω and taking into

account the previous equalities and our hypothesis D2
HT ≥ 0, we have∫

Ω
∇2

Hψ(x) Tε(x) dx =
〈

T,∇2
H

∫
Dε

φε(z) (ψ ◦ lz) dz
〉
≥ 0 .

It remains to prove that Tε → T in D′(Ω−δ). In view of Lemma 4.2.3, we have

〈Tε, ψ〉 = 〈T,
∫

Ω−δ

ψ(x)Φx,εdx〉,

for all ψ ∈ D(Ω−δ). Recall that the functions

y→
∫

Ω−δ

ψ(x)φε(xy−1)dx

are smooth and compactly supported in Ω. Moreover, if we denote by

ψε(y) =
∫

Ω−δ

ψ(x)φε(xy−1)dx,

we have that ψε → ψ in D(Ω), for ε→ 0. This implies that Tε → T in D′(Ω−δ). �

A simple consequence of Theorem 4.2.4 is the following result.
Corollary 4.2.5 For any M > 0 and any δ > 0, there exists CM > 0, only depending on M, Ω
and G and BM, such that the smooth h-convex function x → 〈T, Φx,ε〉 is defined in (Ω ∩ BM)−δ

whenever 0 < CM ε
1
ι < δ and converges to u in D′

(
(Ω ∩ BM)−δ

)
.

Remark 4.2.6 We wish to show that in general the estimate of d(xy) with respect to d(yx)
depends on both d(x) and d(y). For every x, y ∈ G, the product is given by x · y = x1 + y1 +
x2 + y2 + β(x1, y1), where xi, yi ∈ Hi for i = 1, 2 and β : V1 × V1 → V2 is non-degenerate,
bilinear and skew-symmetric. Let c ≥ 1 such that |β(x1, y1)| ≤ c|x||y| for all x, y ∈ G,
then d(x) = max{|x1|,

√
|x2/c|}, defines a homogeneous norm on G. By contradiction, we

assume that there exists C > 0 such that

d(xyx−1) ≤ C d(y)
1
2

and C does not depend on y. Thus, for every λ > 0, we get

λd(δ 1
λ
(x)yδ 1

λ
(x−1)) = d(xδλ(y)x−1) ≤ Cλ

1
2 d(y)

1
2 ,

that yields a contradiction as λ → +∞. It follows that C must depend on d(y). Again, by
contradiction, we assume that C is independent from x. Here we use the explicit expression
of both d and the group operation, then we get

(85)
∣∣∣y2 + 2β(x1, y1)

c

∣∣∣ 1
2 ≤ d(xyx−1) ≤ Cd(y)

1
2 .
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Since β is nondegenerate, we can select a sequence (x1n)n such that β(x1n, y1)→ +∞, that
conflicts with (85).

In Lemma 4.2.3 and Theorem 4.2.4 in order to define the functions x →< T, Φx,ε > on
Ω−δ, we need the condition Cε

1
ι < δ. The constant C appears in the estimate of d(x, y) in

terms of d(y, x) for y ∈ Ω and x ∈ Ω−δ. By the previous discussion C must depend on
diam(Ω), hence the hypothesis of boundedness of Ω can not be removed.

Now we state some definitions and properties introduced in [87]. The h-convex closure
C(A) of a subset A ⊂ G is the smallest h-convex set containing A. A stratified group G

is finitely h-convex if it contains a finite subset F ⊂ G whose h-convex closure C(F) has
non-empty interior.
Theorem 4.2.7 ([87]) Any stratified group of step two is finitely h-convex.

Notice that Theorem 4.2.7 does not hold in general stratified groups. In fact Rickly, in
[87], proved that the Engel group E is not finitely h-convex. This is the main obstacle to
the extension of Dudley’s characterization in general stratified groups.
Definition 4.2.8 Denote by Γ the set of integral curves γ : R → G of left invariant hori-
zontal vector fields on G. Given S ⊂ G we define

H(S) = {γ(t) |γ ∈ Γ, t ∈ [0, 1], γ(0), γ(1) ∈ S} ,
H0(S) = S, Hk+1(S) := H(Hk(S)),

H∞(S) =
⋃∞

k=1 Hk(S).

The following corollary of Theorem 4.2.7 allows us to work with a finite h-convex com-
bination of F, i.e. Hk(F) for a certain k ∈ N, instead the whole of C(F). For the reader’s
convenience we give also the proof taken form [87].
Corollary 4.2.9 Let F ⊂ G be a finitely h-convex set. Then there exists k0 = k0(G, F) such
that Hk0(F) has nonempty interior.

PROOF. Clearly H∞(F) is h-convex, by construction. Given an h-convex set K ⊇ F,
it follows that if Hl(F) ⊂ K then Hl+1(F) ⊂ K. This implies that H∞(F) ⊂ K and by
definition of C(F), H∞(F) = C(F). Moreover a direct computation gives that H(F) is
compact if F is. The compactness property of H and the theorem of Baire imply that Hk(F),
has non-empty interior for a certain k0 = k0(G, F) ∈N. �

In the sequel, open and closed balls will refer to a fixed homogeneous distance of the
Heisenberg group Hn.
Definition 4.2.10 We define the set A0 = {q1, . . . , qα} in Hn and the positive integer k0
given by Theorem 4.2.7 and Remark 4.2.9, such that A := Hk0(A0) has non-empty interior.

Lemma 4.2.11 Let p ∈ Hn \ H1, let 0 < t < 1 and let ε > 0 be such that Bp,ε ∩ H1 = ∅. Then
there exist q, q′ ∈ Bp,ε, with q 6= q′, along with h ∈ qH1 ∩ H1 and h′ ∈ q′H1 ∩ H1 such that
th + (1− t)h′ = 0.

PROOF. Let p = p1 + p2, where pi ∈ Hi with i = 1, 2 and p2 6= 0. It is not restrictive to
assume p1 6= 0, since one can possibly consider a different center and a smaller radius of a
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ball contained in Bp,ε. Since β is non-degenerate, there exists p̄1 ∈ H1 such that

(86) β(p1, p̄1) + p2 = 0.

We choose a sufficiently small ε′ > 0 such that, defining w = ε′ p̄1 and defining w′ ∈ H1
such that tw + (1− t)w′ = 0, we have ‖p−1(p + w)‖, ‖p−1(p + w′)‖ < ε. We set q = p + w
and q′ = p + w′ and observe that

q
(

p̄1 + λ(p1 + w)
)
= p1 + p̄1 + w + λ(p1 + w) ∈ U ⊂ H1

q′
(

p̄1 + µ(p1 + w′)
)
= p1 + p̄1 + w′ + µ(p1 + w′) ∈ U ⊂ H1

for any λ, µ ∈ R, with U = span{p1, p̄1}. Since p1 +w and p1 +w′ are linearly independent
and belong to U, there exist λ̄, µ̄ ∈ R such that

t
(

p1 + p̄1 + w + λ̄(p1 + w)
)
+ (1− t)

(
p1 + p̄1 + w′ + µ̄(p1 + w′)

)
= 0 .

This concludes the proof. �

Proposition 4.2.12 (Construction of the “good” set) Let A0 = {q1, . . . , qα} ⊂ Hn and k0 ∈
N be as in Definition 4.2.10. Let B ⊂ Hk0(A0) be an open ball. Then we can construct

A1 = {q11, q12, . . . , qα1, qα2},

such that qi1 = qi2 = qi whenever qi H1 ∩ B 6= ∅. If qi H1 ∩ B = ∅, then we have

(87) qi1 6= qi2, qij ∈ qi H1, qijH1 ∩ B 6= ∅ for j = 1, 2,

and there exists t ∈ (0, 1) such that tqi1 + (1− t)qi2 = qi.

PROOF. We have to consider the case qi H1 ∩ B = ∅, hence we apply Lemma 4.2.11 to
a small open ball contained in q−1

i B. Then this ball does not intersect H1. Then there exist
distinct elements b1, b2 ∈ q−1

i B and also h1, h2 ∈ H1 such that

(88) h1 ∈ b1H1 ∩ H1, h2 ∈ b2H1 ∩ H1, th1 + (1− t)h2 = 0 and 0 < t < 1.

This implies that hjH1 ∩ q−1
i B 6= ∅ for j = 1, 2. Since b1, b2 /∈ H1, it follows that h1, h2 6=

0 and the equality of (88) implies that h1 6= h2. This allows us to define two distinct
elements qi1 = qih1 and qi2 = qih2 that satisfy (87). Finally, a direct computation gives
tqi1 + (1− t)qi2 = qi, concluding the proof. �

Remark 4.2.13 The proof of Proposition 4.2.12 also implies that A0 ⊂ H(A1).

The next geometric lemma will be important in the proof of the closure theorem.
Lemma 4.2.14 Let y, q̄ ∈ Hn such that y ∈ q̄H1 and consider a ball By,r for some r > 0. If
y = q̄h̄−1, then for every σ, σ0, ε̄ > 0 there exist ε0 ∈ (0, ε̄), an ε > 0 and a bounded open
neighborhood V ⊂ H1 ∩ Bh̄,σ0

of h̄ such that

P = {(q̄δsh̄)(δlh) : s ∈ [0, ε0], l ∈ [0, ε], h ∈ V}

has nonempty interior and in addition

P ⊂
{

q̄(δsh̄)(δlh) | s ∈ [0, ε0], l ∈ [0, ε], h ∈ H1, q̄(δsh̄)h−1 ∈ By,r

}
∩ Bq̄,σ.
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PROOF. Since y = q̄h̄−1 ∈ By,r there exists an open bounded set U in H1 and δ > 0 such
that h̄ ∈ U and for all 0 < s < δ and h ∈ U, we have q̄(δsh̄)h−1 ∈ By,r. Let us fix a basis
(h̄, h1, . . . , h2n−1) of H1 and consider

G(s, t, τ1, . . . , τ2n−1) = (δsh̄)h = (sh̄)

(
th̄ +

2n−1

∑
j=1

τjhj

)
.

The open bounded set U of H1 gives an open bounded set Ω of {0} ×R2n with respect to
the basis (h̄, h1, . . . , h2n−1) of H1 and the canonical basis (ē2, . . . , ē2n+1) of {0} ×R2n, hence

G
(
(0, δ)×Ω

)
⊂
{
(δsh̄)h | s > 0, h ∈ H1, q̄(δsh̄)h−1 ∈ By,r

}
.

We now consider the open set Ω0 = {lz : z ∈ Ω, l > 0} and observe that

G
(
(0, δ)×Ω0

)
⊂
{
(δsh̄)(δlh) | s, l > 0, h ∈ H1, q̄(δsh̄)h−1 ∈ By,r

}
.

With respect to the canonical basis (ē1, . . . , ē2n+1) of R2n+1, we consider the explicit form
of G as follows

G

(
sē1 + tē2 +

2n−1

∑
j=1

τj ēj+2

)
= (s + t)h̄ +

2n−1

∑
j=1

τjhj +
2n−1

∑
j=1

s τj β(h̄, hj) e2n+1 .

There exists 1 ≤ j0 ≤ 2n − 1 such that β(h̄, hj0) 6= 0, then for all ε, ε′ > 0 and for all
j = 1, . . . , 2n− 1, the vectors

∂sG(εē2 + εε′ ēj0+2) = h̄ + εε′ β(h̄, hj0)e2n+1
∂tG(εē2 + εε′ ēj0+2) = h̄
∂τj G(εē2 + εε′ ēj0+2) = hj

are linearly independent. Let us fix ε′ > 0 small, such that ē2 + ε′ ēj0+2 ∈ Ω and

G(ē2 + ε′ ēj0+2) = h̄ + ε′hj0 ∈ H1 ∩ Bh̄,σ0/2.

Then we choose an open neighborhood Ω1 ⊂ Ω of ē2 + ε′ ēj0+2 and ε > 0 such that

G(lu) ∈ Bσ/2 for all (l, u) ∈ [0, ε]×Ω1 and G(Ω1) ⊂ H1 ∩ Bh̄,σ0
.

Since dG
(

ε
2 (ē2 + ε′ ēj0+2)

)
is invertible, we choose a possibly smaller neighborhood Ω2 ⊂

Ω1 of ē2 + ε′ ēj0+2, an open interval Iε/2 with ε/2 ∈ Iε/2 ⊂ (0, ε) and a number

0 < ε0 < min{δ, ε̄}

such that G
({

sē1 + lu : s ∈ [0, ε0], l ∈ [0, ε], u ∈ Ω1
})
⊂ Bσ and G(Iε0/2 × Iε/2Ω2) has

nonempty interior in Hn, for a suitably small open interval Iε0/2 ⊂ (0, ε0) containing ε0/2,
where Iε/2Ω2 = {tu : (t, u) ∈ Iε/2 ×Ω2}. This concludes the proof. �

Theorem 4.2.15 Let Ω be an open set of Hn. If un : Ω → R is a sequence of h-convex functions
converging to T ∈ D′(Ω) in the distributional sense, then T is defined by an h-convex function.
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PROOF. In the sequel, possible subsequences of un will be denoted by the same symbol.
We have first to prove that supn un(x) < +∞ for all x ∈ Ω. By contradiction, suppose this
is not the case for some p ∈ Ω. Then up to subsequences, we can assume that un(p) →
+∞. Since h-convexity is preserved under left translations and so is the distributional
convergence, it is not restrictive to assume that p = 0. Let A0 and A = Hk0(A) be as in
Definition 4.2.10 and let A1 be as in Proposition 4.2.12. In view of Remark 4.2.13, we have
A = Hk0(A0) ⊂ Hk0+1(A1). The fact that both Hk0+1(A1) and Hk0(A) have nonempty
interior part is a “spanning property” of both A0 and A1 that is clearly invariant under left
translations and group dilations. Thus, we can allow the origin to be an element of A0 and
also assume that the diameter of A1 is sufficiently small. Then so can be taken the diameter
of Hk0+2(A1), hence we have R > 0 such that A0 ∪ A1 ∪ Hk0+2(A1) ⊂ BR ⊂ B3R ⊂ Ω.
By h-convexity, any un restricted to A attains its maximum at a point of A0. Then up to
subsequences, we have qi0 ∈ A0 such that

max
x∈A

un(x) = un(qi0) .

Then un(qi0) ≥ un(0) −→ +∞ as n → +∞. By Proposition 4.2.12, we have that either
qi0 H1 contains an interior point of A or both qi01H1 and qi02H1 do, with qi01, qi02 ∈ A1. From
Proposition 4.2.12, we also know that qi01 and qi02 lie in the same horizontal line passing
through qi0 . Then h-convexity implies that, up to extracting a subsequence, un(qi0 j0) ≥
un(qi0) for all n, where j0 ∈ {1, 2}.

As a result, in both of the previous cases we have an interior point y of A and an
element q̄ ∈ A0 ∪ A1 such that y ∈ q̄H1 and un(q̄) → +∞ as n → +∞. Then we have
h̄ ∈ H1 such that y = q̄h̄−1 and also q̄δth̄−1 ∈ Ω for all 0 ≤ t ≤ 1. In fact, in the event
q̄ ∈ A0, the condition q̄, q̄h̄−1 ∈ Hk0(A0), implies

q̄δth̄−1 ∈ Hk0+1(A0) ⊂ Hk0+2(A1) ⊂ BR ⊂ B3R ⊂ Ω for all 0 ≤ t ≤ 1.

In the remaining case q̄ ∈ A1, we have q̄, q̄h̄−1 ∈ Hk0+1(A1) gives

q̄δth̄−1 ∈ Hk0+2(A1) ⊂ BR ⊂ B3R ⊂ Ω for all 0 ≤ t ≤ 1 .

Hence h-convexity and the fact that un(q̄h̄−1) ≤ un(q̄) give

un(q̄) ≤ un(q̄δsh̄) for all s ≥ 0

such that q̄δl h̄ ∈ Ω for all l ∈ [0, s]. Now, we choose r > 0 such that By,r is contained in the
interior of A and fix σ > 0 such that Bq̄,σ ⊂ Ω. We set ε̄ > 0 sufficiently small, such that
q̄δsh̄ ∈ BR for all s ∈ [0, ε̄] and σ > 0 such that Bq̄,σ ⊂ BR. In view of Lemma 4.2.14, we find
ε, ε0 > 0, with 0 < ε0 < ε̄ and an open neighborhood V ⊂ H1 of h̄ such that

P = {(q̄δsh̄)(δlh) : s ∈ [0, ε0], l ∈ [0, ε], h ∈ V} ⊂ Bq̄,σ

has nonempty interior and q̄(δsh̄)h−1 ∈ By,r ⊂ BR whenever (q̄δsh̄)(δlh) ∈ P, hence

‖h‖ ≤ ‖qδsh̄h−1‖+ ‖qδsh̄‖ < 2R .
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It follows that for all 0 ≤ t ≤ 1, 0 ≤ s ≤ ε0 and h ∈ V, we have q̄δsh̄δth−1 ∈ B3R ⊂ Ω. By
h-convexity, since

un
(
q̄(δsh̄)h−1) = un

(
q̄ (sh̄)(−h)

)
≤ un(q̄) ≤ u(q̄δsh̄) ,

it follows that for all 0 ≤ l ≤ ε, we have

un(q̄) ≤ un(q̄δsh̄) ≤ un
(
q̄(δsh̄)δlh

)
.

Thus, un uniformly converges to +∞ on the interior part of P, that is nonempty. This
contradicts the distributional convergence un.

We have now to prove that infn un(x) > −∞ for all x ∈ Ω. Again, by contradiction
we assume that there exists p ∈ Ω such that, up to subsequences, un(p) → −∞. As
before, invariance with respect to left translations allows us to assume that p = 0. We
consider again A and A0 as in Definition 4.2.10, where up to translating and rescaling A0,
we can assume that 0 is an interior point of A and Br ⊂ A ⊂ Ω, for some r > 0. By
Proposition 1.2.17, we can find r0 > 0 sufficiently small such that

F([−2r0, 2r0]
N) = U2 ⊂ Br

is a compact neighborhood of 0 and F is introduced in Definition 1.2.20. Up to subse-
quences, we have q̄ ∈ A0 such that maxA0 un = un(q̄) and the previous part of the proof
gives un(q̄) ≤ M < +∞ for all n, hence supA un ≤ maxA0 u ≤ M. We have

un(F(a)) = un

(( N−1

∏
j=1

ajhij

)(
(tNσNr0 + (1− tN)0)hiN

)))
,

where σj = sign(aj) if aj 6= 0, σj = 1 otherwise and aj = tjσj2r0 for all j = 1, . . . , N. We
consider all a ∈ [−r0, r0]N , hence 0 ≤ tj ≤ 1/2 for all j = 1, . . . , N. The h-convexity of un
yields

un(F(a)) ≤ tN un

(( N−1

∏
j=1

ajhij

)(
σNr0hiN

)))
+ (1− tN) un

( N−1

∏
j=1

ajhij

)
≤ M + (1− tN) un

( N−1

∏
j=1

ajhij

)
≤ N M +

( N−1

∏
l=0

(
1− tN−l

))
un(0)

where the last inequality follows by iteration of the first one. For n large enough un(0) < 0,
hence the previous estimate gives

un(F(a)) ≤ N M +
1

2N un(0)→ −∞ as n→ +∞.

Then un uniformly goes to −∞ on the neighborhood δ1/2U2 of the origin, giving a con-
tradiction to distributional convergence. Thus, it follows that infn un(x) > −∞ for all
x ∈ Ω. To conclude the proof, it suffices to show that any p ∈ Ω has a neighborhood
where, up to extracting a subsequence, un uniformly converges. As in the previous steps,
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it is not restrictive to assume that p = 0, then taking A and A0 from Definition 4.2.10, as-
suming that 0 is an interior point of A and Br ⊂ A ⊂ Ω, for some r > 0. In particular,
supBr

un ≤ maxA0 un = un(q̄) ≤ M for all n, up to subsequences. As before, let r0 > 0 be
sufficiently small such that

F([−r0, r0]
N) = U1 ⊂ Br.

Then arguing as in the proof of Theorem 3.17 of [71], one easily gets the lower bound for
un on the neighborhood U1. For the reader’s sake, we add a few details. In fact,

µ1n = 2un(0)−M ≤ 2un(0)− un(−a1hi1) ≤ u(a1hi1)

that in turn yields

µ2n = 2µ1n −M ≤ 2un(a1hi1)− un
(
(a1hi1)(−a2hi2)

)
≤ un

(
(a1hi1)(a2hi2)

)
and further iterating this argument, one ends up with

µNn = 2µ(N−1)n −M ≤ un
(

F(a)
)

for all a ∈ [−r0, r0]
N .

where µjn = 2µ(j−1)n −M for any j = 2, . . . , N. Since infn un(0) > −∞, we have M′ > 0
such that infU1 un ≥ −M′ for all n, therefore supn supU0

|un| ≤ max{M, M′}. Finally, by
standard arguments, the L∞ estimates of Theorem 9.2 in [26], along with Ascoli-Arzelà
compactness theorem yield a uniformly convergent subsequence on a possibly smaller
compact neighborhood of the origin. �

Theorem 4.2.16 Let Ω be an open set of Hn. If T ∈ D′(Ω) is h-convex, then T is defined by an
h-convex function in Ω.

PROOF. Let us fix M, δ > 0 such that (Ω ∩ BM)−δ is non empty. Then by Corol-
lary 4.2.5, there exists CM > 0 such that for CMε

1
ι < δ, the functions Tε are defined in

(Ω ∩ BM)−δ and converge to T in D′
(
(Ω ∩ BM)−δ

)
. By Theorem 4.2.15 we deduce that T,

restricted to (Ω ∩ BM)−δ, is defined by an h-convex function. The arbitrary choice of M
and δ concludes the proof. �



CHAPTER 5

CONVEXITY IN CARNOT-CARATHÉODORY SPACES

Introduction

Motivated by the study of comparison principles for Monge-Ampere type equations
with respect to Hörmander vector fields, Bardi and Dragoni have introduced the notion
of X -convexity that corresponds to the one dimensional convexity along integral curves
of horizontal vector fields, [8]. Another natural type of convexity in this setting analogous
to the one discussed for Carnot groups is the the v-convexity. Let us fix a system X of
vector fields, then an upper semicontinuous functions u : Ω → R, defined on an open set
Ω ⊂ Rn, is v-convex if

(89) ∇2
X u ≥ 0 in the viscosity sense,

where the entries of this horizontal Hessian in the case u is smooth are exactly the sym-
metrized second order derivatives (XiXju + XjXiu)/2 for all i, j = 1, . . . , m. The main
result of [8] is that in the class of upper semicontinuous functions, v-convexity and X -convexity
do coincide, where the vector fields of X are only assumed to be of class C2. When these
vector fields generate a Carnot group structure, the previous characterization can be found
in a number of previous works, [6], [60], [71], [88], [102]. In Theorem 6.1 of [8], it is also
proved that X -convexity, local boundedness and upper semicontinuity imply local Lips-
chitz continuity with respect to d, where the Carnot-Carathéodory distance d given by X ,
is only assumed to yield the Euclidean topology. This result also gives L∞-estimates for
the horizontal derivatives Xu in terms of the L∞-norm of u, where X ∈ X . In the case X
generates a Carnot group, these estimates take a quantitative form, see the central results
of [26] and [60, 64].
The following theorem establishes that the previous estimates can be suitably extended
to Carnot-Carathéodory spaces generated by a set X of Hörmander vector fields, see also
Theorem 5.6.1.
Theorem 5.0.17 Let X = {X1, . . . , Xm} be a set of Hörmander vector fields, let Ω ⊂ Rn be open
and let K ⊂ Ω be compact. Then there exist C > 0 and R > 0, depending on K, such that each
X -convex function u : Ω → R, that is locally bounded from above, for every x ∈ K satisfies the
following estimates

sup
Bx,r

|u| ≤ C
∫

Bx,2r

|u(w)| dw(90)

|u(y)− u(z)| ≤ C
d(y, z)

r

∫
Bx,2r

|u(w)| dw ,(91)

57
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for every 0 < r < R and every y, z ∈ Bx,r.

Clearly, the constant C > 0 cannot be chosen independent of K as in the case of Carnot
groups, since general Carnot-Carathéodory spaces need not have either a group opera-
tion or dilations and the doubling dimension may change from point to point. This should
suggest that the estimates of Theorem 5.0.17 are somehow sharp.

Our approach to prove (90) and (91) differs from both the geometric approach of [26]
and the PDEs approach of [60, 64]. In fact, we need both these aspects, according to the
following scheme. We start from a X -convex function u : Ω → R that is locally bounded
from above. By a result of D. Morbidelli, [80], the Carnot-Carathéodory ball can be covered
by suitable compositions of flows of horizontal vector fields in a quantitative way, depend-
ing on the radius of the ball. This essentially allows us to apply the approach of [71] that
relies on the one dimensional convexity of u along these flows, hence obtaining explicit
Lipschitz estimates. It follows that u belongs to the anisotropic Sobolev space W1,2

X ,loc(Ω),
see Section 1.1 for more information. The crucial step is to show that for every x ∈ Ω the
X -convex function u is a weak subsolutions of a suitable “pointed sub-Laplacian”

Lx =
m

∑
j=1

Y2
j ,

that is constructed around x, see Theorem 5.5.3. Since the Lebesgue measure is locally
doubling with respect to metric balls and the Poincaré inequality holds, the classical Moser
iteration technique holds for weak subsolutions to the sub-Laplacian equation, hence get-
ting the classical inequality

(92) sup
By, r

2

u ≤ κx

∫
By,r

|u(z)|dz

for 0 < r < σx and y ∈ Bx,δx , where the positive constants κx, σx and δx > 0 depend on x,
see Section 5.5 for more information and in particular Corollary 5.5.4. The lower estimate
of u is reached using again the approximate exponential, hence obtaining the following
pointwise estimate

(93) 2Nx u(x)− (2Nx − 1) sup
Bx,N̄δ

u ≤ inf
Bx,bδ

u ,

where Nx depends on x and it satisfies the uniform inequality 1 ≤ Nx ≤ N̄ on some
compact set, see Lemma 5.3.2. This eventually leads us to the proof of (90). The estimate
(91) is a straightforward consequence of Theorem 5.3.5 joined with Theorem 5.6.2. In sum,
the geometric part of our method arises from a quantitative representation of the Carnot-
Carathéodory ball by approximates exponentials and it leads us to the lower estimates.
The PDEs part of our approach provides the upper estimates.
The results in this chapter have been obtained in a joint work with V. Magnani, [66].
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1. Equivalent CC-distances

We begin this section with the definition of a distance introduced by Franchi and Lan-
conelli in [36]. Throughout the chapter we consider a family X = (X1, . . . , Xm) of smooth
vector fields on Rn satisfying the Hrmander condition (15).
Definition 5.1.1 Let Γc

x,y(t) be the family of all absolutely continuous curves γ : [0, t] −→
Rn with γ(0) = x, γ(t) = y, such that for a.e. s ∈ [0, t] we have

γ̇(s) =
m

∑
j=1

aj(s)Xj(γ(s)) and (a1, . . . , am) ∈ {±e1, . . . ,±em} ,

where the curve (a1, . . . , am) is piecewise constant on [0, t] and (e1, . . . , em) is the canonical
basis of Rm. Thus, we define the distance

(94) ρ(x, y) = inf{t > 0 : there exists γ ∈ Γc
x,y(t)} .

Notice that these distances are well defined, since the Hörmander condition implies the
connectivity with respect to absolutely continuous curves that are piecewise equal to the
flow t→ ΦX

t (x) of some X ∈ X and x ∈ Rn.

Remark 5.1.2 Let us consider X ∈ X and t, τ ∈ R, by definition of d (1.1.8) and ρ, we have

max{d(ΦX
t (x), ΦX

τ (x)), ρ(ΦX
t (x), ΦX

τ (x))} ≤ |t− τ|
for any x ∈ Rn, whenever the flows are defined for times t and τ.

Remark 5.1.3 Let X be the family of smooth Hörmander vector fields X1, . . . , Xm intro-
duced above. Then by a rescaling argument, one can easily check that there holds

(95) d(x, y) = inf
{

δ > 0 : there exists γ ∈ Γδ
x,y

}
,

where Γδ
x,y(X ) is the family of absolutely continuous curves γ : [0, 1] → Rn such that

γ(0) = x, γ(1) = y and for a.e. t ∈ [0, 1] we have

γ̇(t) =
m

∑
j=1

aj(t)Xj(γ(t)) and max
1≤j≤m

|aj(t)| < δ ,

where d is introduced in Definition 1.1.8.

Lemma 5.1.4 Let d and d1 two CC-distances associated to the families of smooth Hörmander vec-
tor fields X = {X1, . . . , Xm} and X1 = {Y1, . . . , Ym}, respectively. Let {i1, j1, . . . , jm−1} =
{1, 2, . . . , m} and assume that Yj = Xj for all j 6= i1 and Yi1 = Xi1 + Xj1 . Then we have
4−1d ≤ d1 ≤ 4d.

PROOF. We can use for d and d1 the equivalent definition stated in Remark 5.1.3. Tak-
ing this into account, we fix a compact set K ⊂ Rn and choose any x1, x2 ∈ K, set-
ting d(x1, x2) = δ/2, for some δ > 0. Then there exists an absolutely continuous curve
γ : [0, 1]→ Rn belonging to Γδ

x,y(X ). Clearly, we observe that

γ̇ = ai1Yi1(γ) + (aj1 − ai1)Yj1(γ) +
m−1

∑
s=2

ajs Yjs(γ),
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hence γ ∈ Γ2δ
x,y(X1), then d1(x, y) ≤ 2δ = 4 d(x, y). In analogous way we get d(x1, x2) ≤

4 d1(x1, x2), concluding the proof. �

Remark 5.1.5 As a consequence of the Hörmander condition, for every bounded set A ⊂
Rn we have a positive integer r such that (15) is satisfied for r′ = r and all x ∈ A.

We say that a function u ∈W1,2
X (Ω) is an L-weak subsolution of

(96) Lu =
m

∑
i=1

X2
i u = 0,

if for every nonnegative η ∈W1,2
X ,0(Ω), we have

m

∑
i=1

∫
Ω

XiuX∗i ηdx ≥ 0.

Lemma 5.1.6 Let Ω′ be an open set compactly contained in Ω and let X ∈ X . There exists
T > 0 such that the map ΦX is well defined on Ω′ × (−2T, 2T) and for every t ∈ (−2T, 2T), the
mapping ΦX(·, t) : Ω′ → Rn is bi-Lipschitz onto its image with inverse ΦX(·,−t). The Jacobian
JX of ΦX satisfies

JX(x, t) = 1 + J̃X(x, t) and | J̃X(x, t)| ≤ C|t|
for all x ∈ Ω′ and |t| < 2T, where C > 0 is independent of x and t.

The proof of this lemma can be achieved by ODEs methods [55], see also [39] for the
general case of a Lipschitz vector field.

Theorem 5.1.7 Every Lipschitz function on an open set Ω ⊂ Rn belongs to W1,∞
X (Ω).

The proof of Theorem 5.1.7 can be found from either Proposition 2.9 of [39] or Theo-
rem 1.3 of [43]. From either these papers or the arguments of Theorem 11.7 of [53], it is also
not difficult to deduce the following proposition.
Proposition 5.1.8 Let u : Ω → R be a Lipschitz function. Let X be a vector field of X and fix
x ∈ Ω. Let ΦX

t (x) be the flow of X starting at x. Then the directional derivative d
dt u(ΦX

t (x))|t=0
exists almost everywhere and it coincides with the distributional derivative Xu.

2. Almost exponentials and CC-distances

In this section, we will introduce almost exponential mappings and their properties,
following the notations of D. Morbidelli [80]. We define

X(1) = {X1, . . . , Xm},
X(2) = {X[i1,i2], 1 ≤ i1 < i2 ≤ m}

and so on, in such a manner that elements of X(k) are the commutators of length k. We
denote by Y1, . . . , Yq an enumeration of all the elements of X(1), . . . , X(r), where r is an
integer large enough to ensure that Y1, . . . , Yq span Rn at each point of a fixed bounded
open set Ω ⊂ Rn, see Remark 5.1.5. We call r the local spanning step and q the local spanning
number of X , to underly that they depend on Ω. It may be worth to stress that the Lie
algebra spanned by X at some point need not be nilpotent, although the local spanning
step is finite.



2. ALMOST EXPONENTIALS AND CC-DISTANCES 61

If Yi is an element of X(j), we say Yi has formal degree di := d(Yi) = j. Let I =
(i1, . . . , in) ∈ {1, 2, . . . , q}n be a multi-index and define from [83] the functions

λI(x) = det [Yi1(x), . . . , Yin(x)] and ‖h‖I = max
j=1,...,n

|hj|
1

d(Yij
)
.

As a consequence of the choice of (Y1, . . . , Yq), we have that for every x ∈ Ω there exists
I ∈ {1, 2, . . . , q}n with λI(x) 6= 0. We denote by d(I) the integer di1 + . . . + din , where
dik = d(Yik).

Definition 5.2.1 Let X, S ∈ X and consider the mappings ΦX
t and ΦS

t , that coincide with
ΦtX

1 and ΦtS
1 , respectively. Thus, for t sufficiently small, we can define the local exponentials

exp(tX) := ΦtX
1 and exp(tS) := ΦtS

1 , along with the local product

exp(tX) exp(tS) = ΦtX
1 ◦ΦtS

1 .

Let S1, . . . , Sl be vector fields belonging to the family X . Therefore, for every a ∈ R

sufficiently small, we can define

C1(a, S1) = exp(aS1),

C2(a, S1, S2) = exp(−aS2)exp(−aS1)exp(aS2)exp(aS1),

Cl(a, S1, . . . , Sl) = Cl−1(a; S2, . . . , Sl)
−1exp(−aS1)Cl−1(a; S2, . . . , Sl)exp(aS1).

According to (14) of [80], for σ ∈ R sufficiently small we define

(97) e
σS[(1,...,l)]
ap =

{
Cl(σ

1
l , S1, . . . , Sl), σ > 0,

Cl(|σ|
1
l , S1, . . . , Sl)

−1, σ < 0.

Following (16) of [80], given a multi-index I = (i1, . . . , in), 1 ≤ ij ≤ q and h ∈ Rn small
enough, we also set

(98) EI(x, h) = e
h1Yi1
ap · · · ehnYin

ap (x).

The next theorem, that is contained in Theorem 3.1 of [80], shows that almost exponential
maps give a good representation of the Carnot-Carathéodory balls.
Theorem 5.2.2 If Ω ⊂ Rn is an open bounded set with local spanning number q and K ⊂ Ω is a
compact set, then there exist δ0 > 0 and positive numbers a and b, b < a < 1, so that, given any
I ∈ {1, . . . , q}n such that

(99) |λI(x)|δd(I) ≥ 1
2

max
J∈{1,...,q}n

|λJ(x)|δd(J),

for x ∈ K and 0 < δ < δ0, it follows that Bx,bδ ⊂ EI,x({h ∈ Rn : ‖h‖I < aδ}) ⊂ Bx,δ.

We recall Definition 1.1.7 form Chapter 1.
Definition 5.2.3 We say that two distances ρ1 and ρ2 in Rn are equivalent, if for every compact
set K ⊂ Rn, there exist cK ≥ 1, depending on K, such that

c−1
K ρ1(x, y) ≤ ρ2(x, y) ≤ cKρ1(x, y) for all x, y ∈ K.
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Remark 5.2.4 We have stated Theorem 5.2.2 using only metric balls with respect to the
distance d. In fact, in [80] the same symbol denotes the same distance, with a different
definition, see Remark 5.1.3. Up to a change of the constant b > 0 in Theorem 3.1 of [80],
we can replace the distance denoted by ”ρ” in [80] with d. In fact, these two distances are
equivalent, due to Theorem 4 of [83], joined with our Remark 5.1.3.

We fix a multi-index I = (i1, . . . , in) and for each Yik we have a multi index

Jik = (jik
1 , jik

2 , . . . , jik
dik
) such that Yik = X[Jik

],

where dik is the formal degree of Yik . We notice that 1 ≤ jik
s ≤ m for all 1 ≤ s ≤ dik and

dik ≤ r, where r is the local spanning step of X . By definition of eap we get

(100) e
hYik
ap =

 ∏
Nik
s=1 exp(σsh

1
dik Xik

s ) h ≥ 0,

∏
Nik
s=1 exp(−σNik

+1−s|h|
1

dik Xik
Nik

+1−s) h < 0.

where σs ∈ {−1, 1}, Nik is the length of e
hYik
ap and Xik

1 , Xik
2 , . . . , Xik

Nik
is a suitable possibly

iterated choice among the vectors X
j
ik
1

, X
j
ik
2

, . . . , X
j
ik
dik

. A simple calculation gives Nik =

2dik − 2 + 2dik
−1. We define N(I) = ∑n

k=1 2Nik along with the mapping GI,x : RN → Rn,
that is

(101) GI,x(w) =
n

∏
k=1


Nik

∏
s=1

exp(wk,s,2Xik
Nik

+1−s)

Nik

∏
s=1

exp(wk,s,1Xik
s )

 (x).

In the definition of GI,x, we use the product to indicate the composition of flows according
to the order that starts from the right. The variable w denotes the vector

(w1,1,1, w1,2,1, . . . , w1,Ni1 ,1, w1,1,2, w1,2,2, . . . , w1,Ni1 ,2, . . . , wn,1,2, . . . , wn,Nin ,2)

belonging to RN(I). The integer N(I) is locally uniformly bounded from above, since every
multi-index I = (i1, . . . , in) of Theorem 5.2.2 depends on x and satisfies Nik ≤ 2r− 2+ 2r−1,
where r is the local spanning step of X , depending on the fixed bounded open set Ω.
Therefore we have a local upper bound N̄ defined as follows

(102) N̄ = 2n(2r+1 − 2 + 2r−1)

and clearly N(I) ≤ N̄, where N̄ is independent of I.
Definition 5.2.5 For every N ∈ N \ {0}, we set ‖w‖N = max

k=1,...,N
|wk|, for every w ∈ RN .

The corresponding open ball is defined as follows

SN,δ = {w ∈ RN : ‖w‖N < δ} .

From standard theorems on ODEs, one can establish the following fact.
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Proposition 5.2.6 If K ⊂ Ω is a compact set and N ∈N is positive, then there exists δ1 > 0 only
depending on K, Ω and X such that for every 0 < δ ≤ δ1 and every x ∈ K we have Bx,Nδ1 ⊂ Ω
and for every integers 1 ≤ j1, . . . , jN ≤ m, the composition(

exp(wNXjN ) · · · exp(w2Xj2) exp(w1Xj1)
)
(x)

is well defined and contained in Bx,Nδ for all w ∈ SN,δ.

The previous proposition immediately leads us to the following consequence.
Corollary 5.2.7 Let Ω be an open bounded set with local spanning number q and local spanning
step r. If K ⊂ Ω is a compact set, then there exist δ1 > 0 such that for every x ∈ K, every
0 < δ ≤ δ1 and every multi-index I ∈ {1, 2, . . . , q}n, the mapping GI,x introduced in (101) is well
defined on SN(I),δ and

GI,x(SN(I),δ) ⊂ Bx,N̄δ ⊂ Dx,N̄δ1
⊂ Ω ,

where N̄ is defined in (102).

For any of the above multi-indexes I = (i1, . . . , in), we introduce the function FI,x :
Rn → RN(I) as follows

FI,x(h1, . . . , hn) = (σ1,1δ1(h1)h
1

di1
1 , . . . , σ1,Ni1

δ1(h1)h
1

di1
1 ,−σ1,Ni1

δ2(h1)|h1|
1

di1 ,

. . . ,−σ1,1δ2(h1)|h1|
1

di1 , . . . , σn,1δ1(hn)h
1

din
n . . . , σn,Nin

δ1(hn)h
1

din
n , . . .)

where σk,j ∈ {−1, 1}, k = 1, . . . , n and j = 1, . . . , Nik . More precisely, we have

(103) FI,x(h) =
n

∑
k=1

{ Nik

∑
s=1

σk,s δ1(hk) h
1/dik
k ek,s,1 −

Nik

∑
s=1

σk,Nik
+1−s δ2(hk) |hk|1/dik ek,s,2

}
,

where we have introduced the canonical basis{
ek,s,i : 1 ≤ k ≤ n, 1 ≤ s ≤ Nik , i = 1, 2

}
of RN(I) and the functions

δ1(x) =
{

1 x ≥ 0
0 x < 0

and δ2(x) =
{

0 x ≥ 0
1 x < 0

.

Remark 5.2.8 From the definitions of GI,x and FI,x, it is straightforward to observe that
EI,x = GI,x ◦ FI,x on a sufficiently small neighborhood of the origin in Rn.

Theorem 5.2.9 If Ω ⊂ Rn is an open bounded set with local spanning number q and K ⊂ Ω is
compact, then there exist δ0 > 0 and positive numbers a and b, b < a < 1, so that for any x ∈ K
and 0 < δ < δ0 and any I ∈ {1, . . . , q}n with

(104) |λI(x)|δd(I) ≥ 1
2

max
J∈{1,...,q}n

|λJ(x)|δd(J) ,

we have Bx,bδ ⊂ GI,x({w ∈ RN(I) : ‖w‖N(I) < aδ}) ⊂ Bx,N̄δ ⊂ Dx,N̄δ0
⊂ Ω.
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PROOF. From Theorem 5.2.2, we get the existence of δ0, a, b > 0, with b < a < 1 such
that for every x ∈ K, 0 < δ < δ0 and I ∈ {1, . . . , q}n satisfying (104), we have the inclusion

Bx,bδ ⊂ EI,x({h ∈ Rn : ‖h‖I < aδ}).

This proves the validity of this inclusion, since for every x ∈ K and 0 < δ < δ0 the existence
of I satisfying (104) is trivial. From formula (103), we have

(105) ‖FI,x(h)‖N(I) = ‖h‖I for all h ∈ Rn.

Remark 5.2.8 implies that EI,x(h) = GI,x ◦ FI,x(h) for all h ∈ Rn, possibly small, such that
GI,x, introduced in (101), is well defined on FI,x(h). In view of Corollary 5.2.7, it is not
restrictive to choose δ0 > 0 possibly smaller, such that GI,x is well defined on

(106) SN(I),δ0
and GI,x(SN(I),δ) ⊂ Bx,N̄δ ⊂ Dx,N̄δ0

⊂ Ω.

Taking into account (105), we have FI,x({h ∈ Rn : ‖h‖I < aδ}) ⊂ SN(I),δ, that leads us to
the following inclusions

(107) Bx,bδ ⊂ EI,x({h ∈ Rn : ‖h‖I < aδ}) ⊂ GI,x
(
SN(I),δ

)
⊂ Bx,N̄δ

concluding the proof. �

According to [83], for x ∈ Rn, we set

Λ(x, δ) = ∑
I∈{1,2,...,q}n

|λI(x)| δd(I) .

From Theorem 1 of [83], we get the following important fact.
Theorem 5.2.10 For every K ⊂ Rn compact, there exist δ0 > 0 and positive constants C1 and C2,
depending on K, so that for all x ∈ K and every 0 < δ < δ0 we have

C1 ≤
|Bx,δ|

Λ(x, δ)
≤ C2.

The point of this theorem is that it gives the doubling property of metric balls, as
pointed out in [83]. In fact, Λ is a polynomial with respect to δ, that only depends on
the enumeration of vector fields Y1, . . . , Yq on some fixed open bounded set Ω. Thus, we
have the following corollary.
Corollary 5.2.11 For every compact set K ⊂ Rn there exist positive constants C and r0, depending
on K, such that for every x ∈ K and every 0 < r < r0, we have

|Bx,2r| ≤ C |Bx,r|.

3. Boundedness from above implies Lipschitz continuity

The following notion of convexity was first introduced by Bardi and Dragoni in [8].
Definition 5.3.1 Let Ω be an open set of Rn and let X = {X1, . . . , Xm} be a set of vector fields
defined on Rn. Then u : Ω → R is X -convex, if the composition u ◦ γ is convex whenever
γ : I → Ω satisfies γ′ = ∑m

i=1 αiXi ◦ γ on the open interval I and αi are arbitrary real numbers.
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Lemma 5.3.2 Let u : Ω → R be a X -convex function on an open set Ω ⊂ Rn and let K be a
compact set. Then there exist δ0 > 0, 0 < b < 1 and an integer N̄ only depending on K and X
such that for every x ∈ K, there exists an integer 1 ≤ Nx ≤ N̄ such that for every 0 < δ < δ0 we
have Dx,N̄δ0

⊂ Ω and

(108) 2Nx u(x)− (2Nx − 1) sup
Bx,N̄δ

u ≤ inf
Bx,bδ

u .

PROOF. Let Ω′ be an open bounded set containing K such that Ω′ ⊂ Ω, let r be the local
spanning step and q be the local spanning number with local spanning frame Y1, . . . , Yq on
Ω′. We apply Theorem 5.2.9 to both K and Ω′, getting an integer N̄ and positive number
δ0 > 0, 0 < b < a < 1, depending on K, Ω′ and X , having the properties stated in this
theorem. Thus, we choose any x ∈ K and 0 < δ < δ0, so that we can find a multi-index
I ∈ {1, . . . , q}n such that (104) holds. Theorem 5.2.9 implies that

Bx,bδ ⊂ GI,x(SN(I),aδ) ⊂ Bx,N̄δ ⊂ Dx,N̄δ0
⊂ Ω′

where GI,x is defined in (101). In particular, the closure SN(I),x satisfies

GI,x(SN(I),aδ) ⊂ Ω′.

Let us consider the scalar function ϕ(w) = u ◦ GI,x(w), that is well defined for all w ∈
SN(I),aδ. By definition of X -convexity, we have

µ1 = 2ϕ(0)− sup
Bx,N̄δ

u ≤ 2ϕ(0)− ϕ(−w1, 0, . . . , 0) ≤ ϕ(w1, 0, . . . , 0) ,

whenever |w1| ≤ aδ. Notice that µ1 = 2 u(x)− supBx,N̄δ
u. Of course, in the case supBx,N̄δ

u =

+∞, then the inequalities (110) become trivial. For each w1 ∈ [−aδ, aδ], the function

[−aδ, aδ] 3 s 7→ ϕ(w1, s, 0, . . . , 0),

is convex with respect to s, hence arguing as before we get

µ2 = 2µ1 − sup
Bx,N̄δ

u ≤ ϕ(w1, s, 0, . . . , 0)).

whenever |s| ≤ aδ. We can repeat this argument up to N(I) times, achieving

(109) µN(I) ≤ u ◦ GI,x0(w) for every w ∈ SN(I),aδ,

where µj = 2µj−1 − supBx,N̄δ
u for j = 1, . . . , N(I). In particular, we have

µN(I) = 2N(I)u(x)−
( N(I)−1

∑
j=0

2j
)

M = 2N(I)u(x)− 2N(I)M + M

with M = supBx,N̄δ
u. In sum, we have proved that there exist δ0 > 0, 0 < b < 1 and an

integer N̄ only depending on K and X such that for every x ∈ K, we can provide an integer
1 ≤ Nx ≤ N̄, depending on x, such that for every 0 < δ < δ0 we have Dx,N̄δ0

⊂ Ω and
(108) holds. �
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Corollary 5.3.3 Under the assumptions of Lemma 5.3.2, we have

(110) inf
Bx,bδ

u ≥


2 u(x)− (2N̄ − 1) supBx,N̄δ

u if u(x) ≥ 0

2N̄ u(x)− (2N̄ − 1) supBx,N̄δ
u if u(x) < 0 and supBx,N̄δ

u ≥ 0

2N̄ u(x)− supBx,N̄δ
u if supBx,N̄δ

u < 0
.

The previous corollary immediately leads us to another consequence.
Corollary 5.3.4 Every X -convex function that is locally bounded from above on an open set is also
locally bounded from below.

The proof of the next theorem follows the scheme of Lemma 3.1 in [71]. In the sequel,
we will use the distance function distd(A, x) = infa∈A d(a, x) for every A ⊂ Rn.
Theorem 5.3.5 Let u : Ω → R be a X -convex function. If u is locally bounded from above,
then it is locally Lipschitz continuous. More precisely, for every α1, α2 > 0 such that α1 + α2 <
distd(K, w) and every x, y ∈ K, we have

(111) |u(x)− u(y)| ≤ 2ρ(x, y)
min{α1, α2}

sup
Kα1+α2

|u|

where Kα1+α2 = {z ∈ Rn : distd(K, z) ≤ α1 + α2} ⊂ Ω.

PROOF. First of all, from Corollary 5.3.4 it follows that u is locally bounded. Let us
choose 0 < D < distd(K, Ωc) and consider the compact set

KD = {z ∈ Rn : distd(K, z) ≤ D} ,

that is clearly contained in Ω. Choose any α > 0 such that D + α < distd(K, Ωc). Therefore
for every x ∈ KD and X ∈ X , we have

distd
(
KD, ΦX(x, t)

)
≤ d(ΦX(x, t), x) ≤ |t| ≤ α

hence ΦX(x, t) ∈ KD+α = {z ∈ Rn : distd(K, z) ≤ D + α} ⊂ Ω for all |t| ≤ α. Hence ΦX

is defined on KD × [−α, α] and it is contained in the larger compact set KD+α ⊂ Ω. Let us
fix x, y ∈ K such that ρ(x, y) < D. Let ε > 0 be arbitrary chosen such that ρ(x, y) + ε < D.
Thus, by definition of ρ, there exists ρ(x, y) < t̄ < ρ(x, y) + ε and γ ∈ Γc

x,y(t̄) such that
t0 = 0 < t1 < · · · < tν = t̄ and

(112) γ(t) = ΦXjk
(
γ(tk−1), t− tk−1

)
for all t ∈ [tk−1, tk] and k = 1, . . . , ν, where 1 ≤ j1, . . . , jν ≤ m. We have that

d(γ(t), x) ≤ ρ(γ(t), x) ≤ t ≤ t̄ < D,

therefore the whole curve γ is contained in KD and any restriction γ|[tk−1,tk ] can be smoothly
extended on [tk−1 − α, tk + α] preserving the same form (112). Since u is locally bounded,
we set

M = sup
w∈KD+α

|u(w)| < +∞.
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As a result, the X -convexity of u implies that the difference quotient

|u(γ(tk))− u(γ(tk−1))|
|tk − tk−1|

is not greater than the

max
{
|u
(
ΦXjk (γ(tk−1), tk + α− tk−1)

)
− u(γ(tk))| α−1, |u

(
ΦXjk (γ(tk−1),−α)

)
− u(γ(tk−1))|α−1

}
.

This yields proves that
|u(γ(tk))− u(γ(tk−1))|

|tk − tk−1|
≤ 2M

α
.

It follows that

|u(y)− u(x)| ≤
ν

∑
k=1
|u(γ(tk))− u(γ(tk−1)| ≤

2M
T

ν

∑
k=1

(tk − tk−1) <
2M
α

(ρ(x, y) + ε) ,

with an arbitrary choice of ε > 0. In the case ρ(x, y) ≥ D, we immediately have |u(x)−
u(y)| ≤ 2Mρ(x, y)/D, that leads to the inequality

|u(x)− u(y)| ≤ 2ρ(x, y)
min{D, α} sup

KD+α

|u|

for every x, y ∈ K, where D, α > 0 satisfy D + α < distd(K, Ωc). �

The following proposition has been pointed out to us by D. Morbidelli. It is essentially
contained in his work, being a consequence of Theorem 3.1 of [80].
Proposition 5.3.6 The distances d and ρ introduced in Definition 1.1.8 are equivalent.

Remark 5.3.7 Notice that the inequality d ≤ ρ is trivial. As a consequence of the previous
proposition, X -convex functions that are locally bounded are also locally Lipschitz con-
tinuous with respect to d and any other equivalent distance, according to the notion of
equivalence given in Definition 1.1.7

4. Moser iteration technique

We begin this section stating the Sobolev embedding theorem for the anisotropic Sobolev
spaces, proved by Capogna, Danielli and Garofalo in [21]. As a consequence of the fol-
lowing theorem we are able to use the Moser iteration technique on L-weak subelliptic
functions.
Theorem 5.4.1 (2.3 in [21]) Let Ω0 ⊂ Rn be a bounded open set and denote by Q the homogeneous
dimension relative to Ω0. Let 1 < p < Q. Then there exists C > 0 and R0 > 0 such that for any
x ∈ Ω0 and BR, with R < R0, we have

(113)
(

1
|BR|

∫
BR

|u|κpdx
) 1

κp

≤ CR
(

1
|BR|

∫
BR

|DX u|pdx
) 1

p

,

for any u ∈W1,p
X ,0(BR). Here 1 ≤ κ ≤ Q

Q−p .

The following technical lemmas are well known, see for instance Lemma 8.15 in [45]
and Theorem 7.8 in [46].
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Lemma 5.4.2 Let φ : [0, T] → R be a non-negative bounded function. Suppose that for 0 ≤ ρ <
R ≤ T we have

φ(ρ) ≤ A(R− ρ)−α + εφ(R)
for some A, α > 0, 0 ≤ ε < 1. Then there exists a constant c = c(α, ε) such that for 0 ≤ ρ < R ≤
T we have

φ(ρ) ≤ cA(R− ρ)−α.

Lemma 5.4.3 Let f ∈ C1(R) be such that f ′ ∈ L∞(R), and consider u ∈ W1,2
X (Ω), Ω ⊂ Rn

bounded. Then f ◦ u ∈W1,2
X (Ω) and X( f ◦ u) = f ′(u)Xu, for every X ∈ X .

PROOF. By Theorem 1.1.10, there exists a sequence um ∈ C1(Ω) such that um and Xum
converge to u and Xu respectively in L2(Ω). Then integrating in Ω we have∫

Ω
| f (um)− f (u)|2dx ≤ sup | f ′|2

∫
Ω
|um − u|2dx → 0,

as m goes to infinity. Moreover, we get
(114)

1
2

∫
Ω
| f ′(um)Xum − f ′(u)Xu|2dx ≤ sup | f ′|2

∫
Ω
|Xum − Xu|2dx +

∫
Ω
| f ′(um)− f ′(u)|2|Xu|2dx.

Possibly passing to a subsequence um converges a.e. to u in Ω. Moreover, since f ′ is
continuous f ′(um) converges to f ′(u) a.e.. Hence the second term in the right hand side of
(114) tends to zero by dominated convergence. As a consequence f (um) and f ′(um)Xum
tend to f (u) and f ′(u)Xu respectively. Therefore X( f ◦ u) = f ′(u)Xu and the proof is
complete. �

The following lemma is essentially Lemma 1 of [81].
Lemma 5.4.4 ([81]) Let f : R → R be a non-negative, convex, monotone increasing function.
Let Ω ⊂ Rn be an open bounded set and let u ∈ W1,2

X (Ω) be a weak subsolution of (96). If
f ◦ u ∈ L2

loc(Ω), then f ◦ u is a weak sub-solution.

PROOF. Assume that f ∈ C2(R) and for some M > 0 we have f ′′(t) = 0 if |t| > M.
Let η ∈ C∞

0 (Ω), η ≥ 0 and define the non-negative function

ζ(x) := f ′(u(x))η(x).

Since f ′ ∈ L∞, from Lemma 5.4.3, it follows that f ◦ u ∈W1,2
X (Ω) and

Xi f ◦ u = f ′(u)Xiu, i = 1, . . . , m.

The same conclusions hold for f ′ ◦ u, hence ζ ∈W1,2
X ,0(Ω). Then we have

XiuX∗i ζ = Xi( f ◦ u)X∗i η − f ′′(u)XiuXiuη ≤ Xi( f ◦ u)X∗i η.

Hence we get

0 ≤
m

∑
i=1

∫
Ω

XiuX∗i ζdx ≤
m

∑
i=1

∫
Ω

Xi( f ◦ u)X∗i ηdx.

The general case follows by approximations. Let v ∈ W1,2
X (Ω) be a nonnegative subso-

lution of (96). For any 0 < ρ < R < 1, take η ∈ C∞
0 (Bx0,R), with η = 1 on Bx0,ρ and
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|DX η| ≤ 2
R−ρ . The existence of such a function can be found in Lemma 3.2 [21], see also

7.12 [63]. Consider the admissible test function vη2 ≥ 0, then we get

0 ≥
m

∑
i=1

∫
Ω

Xiv(−X∗i )(vη2) =
m

∑
i=1

∫
Bx0,R

(Xiv)2η2dx + 2
m

∑
i=1

∫
Bx0,R

XivXiηvηdx

−
m

∑
i=1

∫
Bx0,R

Xiuvη2

(
n

∑
j=1

∂ja
j
i(x)

)
dx.

Since ai
j are smooth functions there exists C = C(Ω) such that

m

∑
i=1

∫
Bx0,R

(Xiv)2η2dx ≤ 2
m

∑
i=1

∫
Bx0,R

|Xiv| |Xη| vηdx + C
m

∑
i=1

∫
Bx0,R

|Xiv|vη2dx

Now using Young inequality ab ≤ εa2

2 + b2

2ε , we get

c1

m

∑
i=1

∫
Bx0,R

(Xiv)2η2dx ≤ c2

m

∑
i=1

∫
Bx0,R

v2 (|Xiη|2 + η2) dx.

Therefore we have a constant c3 > 0 such that
m

∑
i=1

∫
Bx0,R

(Xiv)2η2dx ≤ c3

m

∑
i=1

∫
Bx0,R

v2 ((Xiη)
2 + η2) dx.

Now note that (Xi(ηv))2 ≤ 2 |Xiv|2 η2 + 2v2 |Xiη|2, then

(115)
m

∑
i=1

∫
Bx0,R

(Xi(ηv))2dx ≤ c4

m

∑
i=1

∫
Bx0,R

{
(Xiη)

2 + η2} v2dx.

Let φ ∈ C∞
c ((0, 1)), φ ≥ 0,

∫
(0,1) φ(x)dx = 1, and consider fm = f m ? φ 1

m
. Where f m is

a convex functions, monotone increasing functions, such that f m = f on |x| < m and
f m(x) ≤ f (x) is a piecewise linear function on |x| ≥ m. Clearly fm is a smooth convex
function, moreover f m(s− εt) ≤ f m(s), for every t, ε > 0 and s ∈ R, by monotonicity of
f m. This yields that fm ≤ f m ≤ f . Notice that fm → f , f ′m(u) → f ′(u), where f ′(u) exists.
Then set vm = fm(u) and v = f (u), by the previous computations vm is a subsolution of
(96), moreover one has by (115)

m

∑
i=1

∫
Bx0,R

(Xi(ηvm))
2dx ≤ c4

m

∑
i=1

∫
Bx0,R

{
(Xiη)

2 + η2} v2
mdx.

Hence, by the estimates vm ≤ f we can write
m

∑
i=1

∫
Bx0,R

(Xi(ηvm))
2dx ≤

m

∑
i=1

∫
Bx0,R

{
(Xiη)

2 + η2} v2dx,

on the other hand, by Fatou’s theorem
m

∑
i=1

∫
Bx0,R

(Xi(ηv))2dx ≤ lim inf
m→∞

m

∑
i=1

∫
Bx0,R

(Xi(ηvm))
2dx ≤ c4

∫
Bx0,R

{
(Xiη)

2 + η2} v2dx,
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hence f ◦ u ∈ W1,2
X (Ω). Since the sequence vm is bounded in W1,2

X , possibly passing to
a subsequence we can suppose that for every i = 1, . . . , m, Xivm weakly converges to
gi ∈ L2(Ω). Moreover by Lebesque convergence theorem we have for every φ ∈ C∞

0 (Ω)

∫
Ω

vmX?
i φdx →

∫
Ω

vX?
i φdx =

∫
Ω

Xivφdx,

as a consequence Xiv = gi. This implies that for every ζ ∈W1,2
X ,0(Ω),

0 ≤
m

∑
i=1

∫
Ω

Xi(vm)X?
i ζdx →

m

∑
i=1

∫
Ω

Xi(v)X?
i ζdx,

and the proof is complete. �

The proof of the following theorem is standard: it follows the celebrated Moser itera-
tion technique for weak solutions to elliptic equations in divergence form [81], that applies
to very general frameworks, including Carnot-Carathéodory spaces. There is a plenty of
works in this area, so we limit ourselves to mention just a few of them, [37] [63], [54], [21].
A further discussion of this topic can be found for instance in [53]. We present a proof that
is an adaptation of Proposition 8.19 in [45].
Theorem 5.4.5 Let Ω ⊂ Rn be an open bounded set, and let X be a family of smooth Hörmander
vector fields and let p > 0. Thus, there exists r0 > 0, depending on Ω and X , and there exists
κ ≥ 1, depending on p, Ω and X , such that whenever u ∈ W1,2

X (Ω) is a weak L-subsolution to
(96), we have

(116) esssup
Bx, r

2

u ≤ κ

(∫
Bx,r

|u(y)|pdy
) 1

p

,

for every x ∈ Ω such that 0 < r ≤ min{r0, dist(Ωc, x)}.

PROOF. Without loss of generality we can consider only nonnegative sub-solutions, in
fact if u is a sub-solution of (96) then u+ = max{0, u} is a sub-solution. Moreover

sup
B

x0, R
2

u ≤ sup
B

x0, R
2

u+ ≤ k1

(∫
Bx0,R

(u+)dx

)
≤ k1

(∫
Bx0,R

|u(x)|dx

)
.

For any 0 < ρ < R < 1, take η ∈ C∞
0 (Bx0,R), with η = 1 on Bx0,ρ and |DX η| ≤ 2

R−ρ . Choose

β ≥ 0, and consider the test function uβ
muη2 ≥ 0, where

um(x) = min (u(x), m) .
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The function uβ
muη2 is in W1,2

X ,0 as one can easily prove. Using this function as a test function
in (96) we get

0 ≥
m

∑
i=1

∫
Ω

Xiu(−X∗i )(u
β
muη2)

= β
m

∑
i=1

∫
Bx0,R

(Xium)
2uβ

mη2dx +
m

∑
i=1

∫
Bx0,R

(Xiu)2uβ
mη2dx + 2

m

∑
i=1

∫
Bx0,R

XiuXiηuβ
muηdx

−
m

∑
i=1

∫
Bx0,R

Xiuuβ
muη2

(
n

∑
j=1

∂ja
j
i(x)

)
dx.

Since ai
j are smooth functions there exists C = C(Ω0) such that

β
m

∑
i=1

∫
Bx0,R

(Xium)
2uβ

mη2dx +
m

∑
i=1

∫
Bx0,R

(Xiu)2uβ
mη2dx ≤ 2

m

∑
i=1

∫
Bx0,R

|Xiu| |Xη| uβ
muηdx

+C
m

∑
i=1

∫
Bx0,R

|Xiu|u
β
muη2dx

We should emphasize that later on we will begin the iteration with β = 0. Now using
Young inequality ab ≤ εa2

2 + b2

2ε , we get

β
m

∑
i=1

∫
Bx0,R

(Xium)
2uβ

mη2dx + c1

m

∑
i=1

∫
Bx0,R

(Xiu)2uβ
mη2dx ≤ c2

m

∑
i=1

∫
Bx0,R

uβ
mu2 ((Xiη)

2 + η2) dx

Set w = u
β
2
mu, and note that

|Xiw|2 ≤ (2 + β){βuβ
m(Xium)

2 + uβ
m(Xiu)2}

Therefore we have
m

∑
i=1

∫
Bx0,R

(Xiw)2η2dx ≤ c3(1 + β)
m

∑
i=1

∫
Bx0,R

((Xiη)
2 + η2)w2dx.

Now note that (Xi(ηw))2 ≤ 2(Xiw)2η2 + 2w2(Xiη)
2, then

m

∑
i=1

∫
Bx0,R

(Xi(ηw))2dx ≤ c4(1 + β)
m

∑
i=1

∫
Bx0,R

{
(Xiη)

2 + η2}w2dx,

where c4 is independent of β. By Sobolev inequality (113) we have
(117)(∫

Bx0,ρ

w2∗dx

) 2
2∗

≤
(∫

Bx0,R

(wη)2∗dx

) 2
2∗

≤ CR|Bx0,R|Q(
Q−2

Q −1)+1
∫

Bx0,R

m

∑
i=1
{Xi (ηw)}2 dx

≤ C1RQ( Q−2
Q −1)+2

∫
Bx0,R

m

∑
i=1
{Xi (ηw)}2 dx,
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since Q
(

Q−2
Q − 1

)
+ 2 = −Q 2

Q + 2 = 0 we get

(∫
Bx0,ρ

w2∗dx

) 2
2∗

≤ C
∫

Bx0,R

m

∑
i=1
{Xi (ηw)}2 dx

≤ c5(1 + β)

(R− ρ)2

∫
Bx0,R

w2dx.

Now set λ := 2∗
2 , and recalling the definition of w, we have

(118)

(∫
Bx0,ρ

u2λuβλ
m dx

) 1
λ

≤ c5(1 + β)

(R− ρ)2

∫
Bx0,R

u2uβ
mdx.

Hence by the definition of um, we get(∫
Bx0,ρ

u(β+2)λ
m dx

) 1
λ

≤ c5(1 + β)

(R− ρ)2

∫
Bx0,R

uβ+2dx,

provided the integral in the right-hand side is bounded. By letting m → +∞ we conclude
that

(119)

(∫
Bx0,ρ

u(β+2)λdx

) 1
λ

≤ c5(1 + β)

(R− ρ)2

∫
Bx0,R

uβ+2dx,

Since u(β+2)λ is still a sub-solution, thanks to estimate (126) we can apply Lemma 5.4.4,
and iterate (126). We start the iteration with β = 0,

σi := βi + 2 = 2λi, Ri := ρ +
R− ρ

2i , (Ri − Ri+1)
2 =

(R− ρ)2

22i+2 .

Then by (119) we have(∫
Bx0,Ri+1

uσi+1 dx

) 1
λi+1

≤
(

c5(σi − 1)
2−2i−2(R− ρ)2

) 1
λi
(∫

Bx0,Ri

uσi dx

) 1
λi

≤
i

∏
k=0

(
c5(σi − 1)

2−2k−2(R− ρ)2

) 1
λk ∫

Bx0,R

u2dx.

Since

log

(
i

∏
k=0

(
c4(σi + 1)

2−2k−2

) 1
λk
)

=
i

∑
k=0

1
λk

{
(2k + 2) log(2) + log(2c5(2λk − 1))

}
< +∞

∞

∑
k=0

1
λk =

Q
2
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we have limi→∞ ∏i
k=0

(
c4

2−2k−2(R−ρ)2

) 1
λk ≤ c5(R− ρ)−

Q
2 . Therefore

(∫
Bx0,ρ

uσi dx

) 1
σi

≤
(∫

Bx0,Ri

uσi dx

) 1
σi

≤ c6(R− ρ)−
Q
2

(∫
Bx0,R

u2dx

) 1
2

.

Letting i→ ∞ the left hand side converges to supBx0,ρ
u, hence

sup
Bx0,ρ

u ≤ c6(R− ρ)−
Q
2

(∫
Bx0,R

u2dx

) 1
2

.

Set ρ = R
2 and let p < 2, then we have

sup
B

x0, R
2

u ≤ c6(
R
2
)−

Q
2

(
sup
Bx0,R

u

)1− p
2
(∫

Bx0,R

updx

) 1
2

.

By Young’s inequality ab ≤ ap1
p1

+ bp2
p2

, valid whenever a, b ≥ 0, 1
p1
+ 1

p2
= 1. We choose

1
p1

= 1− p
2 , p2 := 2

p ,

sup
B

x0, R
2

u ≤ 1
2

sup
Bx0,R

u + c7(
R
2
)−

Q
p

(∫
Bx0,R

updx

) 1
p

.

If we set φ(ρ) = supBd(x0,ρ) u the conclusion follows by Lemma 5.4.2. �

5. L-weak subsolutions and upper integral estimates

The point of this section is to show that locally bounded above X -convex functions are
L-weak subsolutions of (96), where X = {X1, . . . , Xm} is a family of Hörmander vector
fields. This will enable us to apply Theorem 5.4.5.

In the proof of Theorem 5.5.3, we will use the following basic fact.
Lemma 5.5.1 Let X be a vector field on Rn, let z ∈ Rn be such that X(z) 6= 0 and let π be a
hyperplane of Rn transversal to X(z) and passing through z. There exists an open neighborhood
A of z in π, τ > 0 and an open neighborhood U of z in Rn such that the restriction of the flow
ΦX to A× (−τ, τ) is a diffeomorphism onto U. Moreover, for every fixed system of coordinates
(ξ1, . . . , ξn−1) on π, denoting by φ the previous restriction with respect to these coordinates and
by Jφ its Jacobian, we get

(120) divX(x) =
∂t Jφ

Jφ
◦ φ−1(x) for all x ∈ U.

Remark 5.5.2 From the definition of commutator and the fact that the family X satisfies
the Hörmander condition, it is clear that for each z ∈ Rn, there exists X ∈ X such that
X(z) 6= 0.
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Theorem 5.5.3 Let Ω ⊂ Rn be an open set, let x0 ∈ Ω and let u : Ω → R be a X -convex
function that is locally bounded from above. There exist δ0 > 0 and a family of vector fields
X1 = {Y1, . . . , Ym}, with Yi = ∑m

j=1 aijXj, and aij ∈ {0, 1}, both depending on x0, such that
Bx0,δ0 ⊂ Ω and u is a weak subsolution of the equation

(121)
m

∑
i=1

Y2
i v = 0 on Bx0,δ0 .

PROOF. As observed in Remark 5.5.2, since X is a family of Hörmander vector fields,
we must have some j1 ∈ {1, 2, . . . , m} such that Xj1(x0) 6= 0. Thus, for each i = 1, . . . , m, we
define Yi = Xi if Xi(x0) 6= 0 and Yi = Xi + Xj1 otherwise, so that all Yi do not vanish on x0.
In view of Lemma 5.5.1, for each i = 1, . . . , m we can find an open bounded neighborhood
Ui of x0, that is compactly contained in Ω, an open bounded set Ai ⊂ Rn−1, τi > 0 and a
diffeomorphism φi : Si −→ Ui, with Si = Ai × (−τi, τi), φi is the restriction of the flow of
Yi and then it satisfies (120). We can find δ0 > 0 such that Bx0,δ0 is compactly contained in
Ui for all i = 1, . . . , m. Let us choose any ϕ ∈ C∞

c (Bx0,δ0) with ϕ ≥ 0. Our claim follows if
we prove that

(122)
m

∑
i=1

∫
Bx0,δ0

Yiu(x) Y∗i ϕ(x) dx ≥ 0.

We will prove a stronger fact, namely, the validity of∫
Bx0,δ0

Yiu(x) Y∗i ϕ(x) dx ≥ 0 for all i = 1, . . . , m .

By definition of X -convexity, we have that u(φi(ω, ·)) is convex on the interval where
it is defined for all i = 1, . . . , m. By Theorem 5.3.5, u is locally Lipschitz continuous
with respect to d. Iterating Lemma 5.1.4, no more than m − 1 times, and observing that
X1 = {Y1, . . . , Ym} is also a family of Hörmander vector fields, its associated distance d1 is
equivalent to d, that is obtained from X . Theorem 5.1.7 and Proposition 5.1.8 imply that
u ∈W1,∞

X ,loc(Ω) and the pointwise derivative

∂Yi u(x) =
d
dt

u(ΦYi(x, t))|t=0

exists for almost every x ∈ Ω and coincides with the distributional derivative Yiu, up to a
negligible set. In particular, there exists L > 0 such that |Yiu| ≤ L almost everywhere in
Ui, where Yiu is the distributional derivative of u along Yi. Since φi sends negligible sets
into negligible sets, we have that

(123)
∂

∂s
u(φi(ω, s))|s=t = ∂Yi u(φ(ω, t)) = Yiu(φi(ω, t))

for almost every (ω, t) ∈ Si. There exist 0 < ti < τi such that φ(Ai × (−ti, ti)) = U′i still
contains Bx0,δ0 , hence for ε > 0 sufficiently small, we can consider

(u ◦ φi)ε(ω, t) =
∫ τi

−τi

(u ◦ φi)(ω, s)) νε(t− s)ds,
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for all t ∈ (−ti, ti), where νε are one dimensional mollifiers. Since (u ◦ φi)(ω, ·) is convex
on (−τi, τi) it is also locally Lipschitz, with distributional derivative. It follows that

∂

∂t
(u ◦ φi)ε(ω, t) = (∂Yi u ◦ φi)ε(ω, t)

for all ω ∈ Ai and t ∈ (−ti, ti). Due to (123), applying Fubini’s theorem it follows that
for almost every ω ∈ Ai the pointwise derivative ∂Yi u(ω, t) equals the distributional de-
rivative Yiu(ω, t) for almost every t ∈ (−τi, τi), that is precisely represented almost every-
where. As a consequence, we have

(124)
∂

∂t
(u ◦ φi)ε(ω, t) = (∂Yi u ◦ φi)ε(ω, t) =

(
(Yiu) ◦ φi

)
ε
(ω, t)

for almost every ω ∈ Ai and every t ∈ (−ti, ti). Since (u ◦ φ)ε(ω, ·) is smooth and convex
for all ω ∈ Ai, we achieve∫

S′i

∂2

∂t2 (u ◦ φi)ε(ω, t) ϕ(φ(ω, t))Jφi(ω, t) dωdt ≥ 0

where S′i = Ai × (−ti, ti).
Integrating by parts, it follows that the previous nonnegative integral equals the fol-

lowing one

−
∫

S′i

∂

∂t
(u ◦ φi)ε(ω, t)

∂

∂t
{

ϕ(φi(ω, t))Jφi

}
dωdt

that can be written as follows

−
∫

S′i

(
∂

∂t
(u ◦ φi)ε(ω, t)

∂

∂t
ϕ(φi(ω, t))Jφi +

∂

∂t
(u ◦ φi)ε(ω, t) (ϕ ◦ φi)(ω, t))

∂

∂t
Jφi

)
dωdt

Clearly, we have ∂
∂t (ϕ ◦ φi)(ω, t) = (Yi ϕ)(φi(ω, t)), hence by Lemma 5.5.1, we obtain

−
∫

S′i

∂

∂t
(u ◦ φi)ε(ω, t)

(
(Yi ϕ)(φ(ω, t)) + (divYi ◦ φi)(ω, t) (ϕ ◦ φi)(ω, t))

)
Jφi dωdt ≥ 0.

We can then pass to the limit as ε → 0+, taking into account that Yiu ∈ L∞(Ui) and that
both (123) and (124) hold, getting

−
∫

φ−1
i (U′i )

(Yiu) ◦ φi {(Yi ϕ ◦ φi + (divYi ◦ φi) ϕ ◦ φi} Jφi dωdt ≥ 0.

By a change of variables towards the former coordinates, we have

−
∫

U′i
Yiu(x) {(Yi ϕ)(x) + divYi(x) ϕ(x)} dx =

∫
Bx0,δ0

Yiu(x) Y∗i ϕ(x) dx ≥ 0 ,

that establishes our claim. �

As a consequence of both Theorem 5.4.5 and Theorem 5.5.3, we get the following con-
sequence.
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Corollary 5.5.4 Let Ω ⊂ Rn be open and let p > 0. If x ∈ Ω, then there exist σx, δx > 0 and
κx ≥ 1, depending on x, Ω, p and X , such that Bx,δx ⊂ Ω, σx ≤ δx/2 and whenever u : Ω −→ R

is X -convex and locally bounded from above, for all y ∈ Bx,δx/2 and 0 < r ≤ σx, we have

(125) sup
By, r

2

u ≤ κx

(∫
By,r

|u(z)|pdz
) 1

p

.

PROOF. Let x ∈ Ω and and consider the corresponding δx > 0 given by Theorem 5.5.3,
such that Bx,δx ⊂ Ω and u is a weak subsolution of (121) where the vector fields Yj depend
on x. In view of Theorem 5.4.5 applied to the open bounded set Bx,δx , we get some con-
stants κx ≥ 1 and rx > 0, depending on Bx,δx , p, and the vector fields Yj, such that there
holds

(126) ess-sup
By, r

2

u ≤ κx

(∫
By,r

|u(z)|pdz
) 1

p

,

for all 0 < r ≤ min{rx, dist(Bc
x,δx

, y)}. Since for all y ∈ Bx,δx/2, we have

dist(Bc
x,δx

, y) ≥ δx/2,

setting σx = min{rx, δx
2 }, then (126) holds for all 0 < r ≤ σx and all y ∈ Bx,δx/2. �

Remark 5.5.5 Notice that we do not need to use the essential supremum in (125), since
X -convex functions that are locally bounded from above are locally Lipschitz continuous,
due to Theorem 5.3.5.

As a consequence of Corollary 5.5.4, we can easily establish the following result.
Theorem 5.5.6 Let Ω ⊂ Rn be open, let p > 0 and let K ⊂ Ω be compact. Then there exists σ > 0
and κ ≥ 1, depending on K, Ω, X and p, such that for every X -convex function u : Ω −→ R that
is locally bounded from above and for every x ∈ K, we have Bx,σ ⊂ Ω and there holds

(127) sup
Bx, r

2

u ≤ κ

(∫
Bx,r

|u(z)|pdy
) 1

p

for all 0 < r ≤ σ.

6. Integral estimates for X -convex functions

Theorem 5.6.1 Let Ω ⊂ Rn be open, let K ⊂ Ω be compact and let u : Ω −→ R be a X -convex
function that is locally bounded from above. Then there exists C0 > 0, b0 > 0 and N0 > 1,
depending on K, such that for every x ∈ K there holds

sup
Bx,r

|u| ≤ C0

∫
Bx,N0r

|u(z)| dz

whenever 0 < r < b0 and K0 = {z ∈ Rn : dist(K, z) ≤ N0 b0} ⊂ Ω.
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PROOF. By Lemma 5.3.2, we have δ0 > 0, 0 < b < 1 and a positive integer N̄ such that
for every y ∈ K, we have Dy,N̄δ0

⊂ Ω and there exists with 1 ≤ Ny ≤ N̄ such that

(128) 2Ny u(y)− (2Ny − 1) sup
By,N̄δ

u ≤ inf
By,bδ

u

for all 0 < δ < δ0. Let us consider x ∈ K and any 0 < δ′ < bδ0/4, observing that there
exists x′ ∈ Bx,δ′ such that

u(x′) ≥ −
∫

Bx,δ′
|u(z)| dz .

We clearly have infBx,δ′ u ≥ infBx′ ,2δ′ u, hence for some 1 ≤ Nx′ ≤ N̄, we can apply the
estimate (128) at x′, getting

inf
Bx,δ′

u ≥ 2Nx′u(x′)− (2Nx′ − 1) sup
B

x′ ,N̄ 2δ′
b

u.

From the previous inequalities, it follows that

inf
Bx,δ′

u ≥ −2N̄
∫

Bx,δ′
|u(z)| dz− (2Nx′ − 1) sup

B
x,N̄ 4δ′

b

u.

Theorem 5.5.6 provides σ > 0 and κ ≥ 1 such that, up to choose δ0 > 0 possibly smaller,
such that N̄δ0 < σ/2, hence N̄ 8δ′

b < σ and it follows that

inf
Bx,δ′

u ≥ −2N̄
∫

Bx,δ′
|u(z)| dz− (2N̄ − 1) κ

∫
B

x,N̄ 8δ′
b

|u(z)| dz.

As a consequence of Corollary 5.2.11, we have Q0 > 0 and r0 > 0 such that

|Bx,N̄ 8δ′
b
| ≤ 2Q0

(
N̄

8
b

)Q0
|Bx,δ′ |,

up to making δ0 further smaller, namely, satisfying 2N̄δ0 < r0. It follows that

inf
Bx,δ′

u ≥ −2N̄
[

κ + (16)Q0
( N̄

b

)Q0
]∫

B
x,N̄ 8δ′

b

|u(z)| dz

and also

sup
Bx,δ′

u ≤ κ 2Q0
(

N̄
4
b

)Q0
∫

B
x,N̄ 8δ′

b

|u(z)| dz ,

that yield a constant C0 > 0 depending on K, such that

sup
Bx,r

|u| ≤ C0

∫
Bx,N0r

|u(z)| dz

for every 0 < r < b0 and every x ∈ K, with b0 = bδ0/4 and N0 = N̄ 8
b > 1. By the previous

requirements on δ0, being N0b0 = 2δ0N̄, we also have

K0 = {z ∈ Rn : dist(K, z) ≤ N0b0} ⊂ Ω,

reaching the conclusion of the proof. �
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Theorem 5.6.2 Let Ω ⊂ Rn be open, let K ⊂ Ω be compact and let λ > 1. Then there exist
C̄ > 0 and Q̄ > 0, depending on K and there there exists r̄ > 0, depending on both K and λ, such
that for every x ∈ K and every 0 < r < r̄, each X -convex function u : Ω −→ R, that is locally
bounded from above satisfies the following estimate

(129) sup
Bx,r

|u| ≤ C̄
(

λ + 1
λ− 1

)Q̄∫
Bx,λr

|u(z)| dz .

PROOF. We fix any β > 0 such that K1 = {z ∈ Rn : dist(K, z) ≤ β} ⊂ Ω and apply
Theorem 5.6.1 to K1, getting the corresponding positive constants C1, b1 and N1 > 1. We
have in particular

{z ∈ Rn : dist(K1, z) ≤ N1 b1} ⊂ Ω.
Taking 0 < r < β/λ, we have Bx,λr ⊂ K1 for all x ∈ K and fixing a = (λ− 1)/N1, it follows
that for 0 < r < r1 and r1 = min{b1/a, β/λ}, the following inequality

sup
By,ar

|u| ≤ C1

∫
By,N1ar

|u(z)| dz

holds for all y ∈ K1. Now, let us fix x ∈ K. Thus, whenever 0 < r < r1 we can cover the
compact set Dx,r with a finite number of balls Bxj,ar centered at points of Dx,r, hence there
exists xj0 ∈ Dx,r such that

sup
Bx,r

|u| ≤ sup
Bxj0

,ar
|u| .

Since xj0 ∈ K1 and ar < b1, Theorem 5.6.1 implies that

sup
Bxj0

,ar
|u| ≤ C1

∫
Bxj0

,N1ar

|u(z)| dz = C1

∫
Bxj0

,(λ−1)r

|u(z)| dz .

As a result, we have proved that

sup
Bx,r

|u| ≤ C1
|Bx,λr|

|Bxj0 ,(λ−1)r|

∫
Bx,λr

|u(z)| dz ≤ C1
|Bxj0 ,(λ+1)r|
|Bxj0 ,(λ−1)r|

∫
Bx,λr

|u(z)| dz

for all 0 < r < r1, where r1 also depends on λ. Finally, we apply Corollary 5.2.11 to K0,
getting r2 > 0 and Q̄ > 0 such that for all 0 < r < min{r1, r2/λ + 1} our claim (129) holds
with C̄ = C1 2Q̄. �
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Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math., 49,
10811144, (1996).

[43] N. GAROFALO , D.M. NHIEU, Lipschitz continuity, global smooth approximations and
extension theorems for Sobolev functions in Carnot-Carathéodory spaces, J. Anal. Math., 74,
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condition and applications, Rev. Mat. Iber., 8, 3, 376-349, (1992).
[64] G.LU, J.MANFREDI, B.STROFFOLINI, Convex functions on the Heisenberg group, Calc.

Var. Partial Differential Equations 19, n.1, 1-22, (2004).
[65] E. LANCONELLI, Stime sub-ellittiche e metriche Riemanniane singolari, Seminario di

Analisi Matematica, Dip. di Matematica, Univ. di Bologna, A.A. 1982-83.
[66] V. MAGNANI, M. SCIENZA, Regularity estimates for convex functions in Carnot-
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[85] P. PANSU, Métriques de Carnot-Carathéodory quasiisométries des espaces symétriques de

rang un, Ann. Math., 129, 1-60, (1989).
[86] YU.G.RESHETNYAK, Generalized derivatives and differentiability almost everywhere, Mat.

Sb. 75, 323-334 (in Russian), Math. USSR-Sb. 4, 293-302 (English translation), (1968).
[87] M. RICKLY, First-order regularity of convex functions on Carnot groups, J. Geom. Anal. 16,

n.4, 679-702 (2006).
[88] M. RICKLY, On questions of existence and regularity related to notions of convexity in Carnot

groups, PhD thesis, (2005).
[89] R. T. ROCKAFELLAR, Maximal monotone relations and the second derivatives of convex
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