
Università degli Studi di Pisa

Facoltà di Scienze Matematiche, Fisiche e Naturali

Corso di Laurea Magistrale in Informatica

A Framework to compare
text annotators and its

applications
October 2012

Master Degree Thesis

Candidate
Marco Cornolti

cornolti@cli.di.unipi.it

Supervisor
Prof. Paolo Ferragina

ferragin@di.unipi.it

Università di Pisa

Co-Reviewer
Prof.ssa Anna Bernasconi

annab@di.unipi.it

Università di Pisa

Academic Year 2011/2012

Contents

1 Introduction 3

2 Some topic retrieval problems 6
2.1 Terminology . 6
2.2 Definition of problems . 7
2.3 Our contribution: A hierarchy of problems 10
2.4 Conclusions . 12

3 New evaluation metrics 13
3.1 Metrics for correctness evaluation 14
3.2 Finding the mentions (for Sa2W and A2W) 18
3.3 Finding the concepts (for Sa2W and A2W) 18
3.4 Similarity between systems . 19
3.5 Conclusions . 22

4 The comparison framework 23
4.1 Code structure . 23
4.2 Running the experiments . 26
4.3 Extending the framework . 29
4.4 Conclusions . 39

5 Datasets, Systems and Wikipedia 40
5.1 Wikipedia and its graph . 40
5.2 Topic-retrieval systems . 41
5.3 Available datasets . 43
5.4 Comparing two systems for a given dataset 46
5.5 Conclusions . 47

6 Experimental Results 49
6.1 Setting up the experiments . 49
6.2 Results for Experiment 1: news 51
6.3 Results for Experiment 2: tweets 61
6.4 Results for Experiment 3: queries 62
6.5 Experiments about runtime . 63
6.6 Conclusions . 65

1

7 Future Developments 67
7.1 Definition of new problems . 67
7.2 Chimera: mixing systems together 70
7.3 Conclusions . 70

Appendices 72

A Formulary 73

References 75

2

Chapter 1

Introduction

Concerning topic-retrieval

Texts in human languages have a low logical structure and are inherently am-

biguous because of this structure and the presence of polysemous terms. Never-

theless, the typical approach of Information Retrieval to manage text documents

has been, up to now, based on the Bag-of-words model (BoW) [38]. In this

model, texts are represented as the multi-set of terms they contain, thus dis-

carding any possible structure or positional relations existing among the terms.

Moreover, terms are interpreted as sequence of characters and mapped to inde-

pendent dimensions into a huge Euclidean space, so that synonymy and poly-

semy issues are not taken into account at all. Because of its simplicity, BoW

is at the core of most (if not all) current text retrieval systems; but anyone is

aware of its obvious limitations.

Recently, some research groups tried to overcome these limitations by propos-

ing a novel approach which consists of adding some “contextual information”

to text representation, identifying meaningful mentions in the input text and

linking them to their corresponding topics provided by a proper ontology. See

Figure 1.1 for an example. This process is nowadays called “text annotation”

and the software systems which implement it are called “topic annotators” or

“topic-retrieval systems”. These systems differ to each other by the ontology

used to extract the annotated concepts (E.g. Wordnet [10], CiC [24], Wikipedia,

Yago 2 [16]) and by the algorithms employed to derive these annotations.

The power of these systems resides in the underlying structure which in-

terconnects the topics attached to the texts within the ontology. The most

successful systems are currently the ones based on Wikipedia, and these sys-

tems have been applied to improve the performance of IR tools on many classic

problems such as: the categorization or the clustering of documents; the topic-

3

based search over a web collection, and so on.

The success in the use of Wikipedia lies in the fact that this online ency-

clopedia offers free (as in freedom) and open access to a huge knowledge base

that, despite not being guaranteed to be correct, provides a very high quality

thanks to the process used to author Wikipedia pages [22]. Wikipedia is open

to the contribute of everyone, including anonymous users, and pages authoring

is collaborative. The lack of a central authority potentially leads to a low reli-

ability, but since the review process is distributed as well, involuntary mistakes

or malicious errors are quickly found and corrected [25].

Wikipedia is a huge mine of semi-structured information. First of all, Wiki-

pedia pages can be seen as a representation of specific and unambiguous topics.

Their abstract and their content give a detailed description of the topic, meta-

data like the hits count and the revisions give information about the popularity

of the concept and how frequently its description changes, pages are catego-

rized by a rich set of categories, and anchors of links to a Wikipedia page offer

a set of commonly used synonyms for the concept the page is about. But

the most interesting information lies into the structure of its graph, where the

nodes are the Wikipedia pages and the edges are the links between pages: the

shape of the graph can tell much about how semantically close two pages are

[31, 40, 12, 15, 34].

Many topic-retrieval systems use this direct graph, and the whole informa-

tion that Wikipedia offers, to solve synonymy and polysemy issues in the input

text [14, 28, 5, 8, 9]. The approaches followed by the systems differ in the way

this information is exploited.

Our Contribution

These systems give surprisingly good results, but the research have followed

specific and target-oriented trends, leading to disuniform terminology and ap-

proaches, despite targeting the same set of problems. To address the research,

it is fundamental to have a consistent framework that offers a formal base upon

which it’s possible to build new theories, algorithms and systems.

Moreover, there is no improvement without measuring, and literature gives

a plenty of ways to determine the performance of a system. Unfortunately, the

used methods are inconsistent with each other.

The aim of this thesis is to formalize such a framework, presenting both

some of the problems related to topic-retrieval and a set of measures to assess

the performance of the systems in solving those problems. The result of this

work is a benchmarking framework software that performs the measures on the

systems.

4

Figure 1.1: An example of a topic retrieval task: from the un-structured text
on the left, the unambiguous topics are extracted.

In Chapter 2, we discuss the formal framework, presenting the problems

related to topic-retrieval. To solve the lack of uniformity in the measures, our

contribution is the presentation in Chapter 3 of a set of metrics that can be used

to fairly compare the topic annotators to each other. Despite sounding straight-

forward, the definition of this metrics hides non-trivial issues. The implemented

benchmarking software based on these metrics is presented in Chapter 4.

In Chapter 5 a snapshot of the state-of-the-art topic annotators is given,

as well as the available datasets to perform the benchmarking. Results of the

benchmark of these annotators on the dataset are given in Chapter 6 and show

that some systems, like TagMe, Illinois Wikifier and Wikipedia Miner, give good

results with a rather low runtime, suggesting their application to large-scale

datasets.

In Chapter 7 some lines of possible future development are presented.

To facilitate the reading of this thesis, all defined formulas are reported in a

table in Appendix A, with a brief description.

5

Chapter 2

Some topic retrieval

problems
What’s in a name? that which we call a rose

By any other name would smell as sweet.

– William Shakespeare, Romeo and Juliet, Act II

2.1 Terminology

As stated in the Introduction, literature about topic retrieval presents a wide

variability of terminologies. The following terminology, that will be used in the

next chapters of this thesis, is a compromise between the popularity of a term

in literature, its clarity, and the avoidance of conflicts with other works that

may lead to ambiguity.

• A concept is a Wikipedia page. It can be uniquely identified by its Page-ID

(an integer value).

• A mention is the occurrence of a sequence of terms located in a text. It

can be codified as a pair 〈p, l〉 where p is the position of the occurrence

and l is the length of the sub-string including the sequence of terms.

• A score is a real value s ∈ R, s ∈ [0, 1] that can be assigned to an

annotation or a tag. Higher values of the score indicate that the annotation

(or tag) is more likely to be correct.

• A tag is the linking of a natural language text to a concept and is codified

as the concept c the text refers to. A tag may have a score: a scored tag

is encoded as a pair 〈c, s〉, where s is the score.

6

This thesis Milne-Witten
[33]

Han-Sun-Zhao
[13]

Ferragina et
al. [11]

Ratinov et al.
[36]

Meij et al. [27]

concept sense entity sense Wikipedia ti-
tle

concept

mention anchor name mention spot mention

tag annotation

annotation link entity linking annotation mapping

score score ρ-score score

Table 2.1: Terminology used by some of the works in literature.

• An annotation is the linking of a mention in a natural language text to a

concept. It can be codified as a pair 〈m, c〉 where m is the mention and c

is the concept. An annotation may have a score: a scored annotation can

be codified as 〈m, c, s〉, where s is the score.

Table 2.1 reports a “vocabulary” of the different terminology used in other

publications.

2.2 Definition of problems

We define a set of problems related to the retrieval of concepts in natural lan-

guage texts. The difference between these problems can be seen as subtle but

leads to different approaches to measure the performance of a topic-retrieval

system. The definition of the problems related to topic retrieval is given in Ta-

ble 2.2, where each problem comes with the type of the input (that is, the type

of a problem instance) and output (the type of the solution). Figure 2.1 shows

some examples of input and correct output for the given problems.

2.2.1 The topic-retrieval problems and their applications

Problems presented Table 2.2 face different applications. Let’s give some shallow

examples. For a document clustering based on the document topics, we are

interested in finding only the tags, and not the annotations of a document, hence

this application would depend on the the solution of C2W and its scored variant

Sc2W. Successful applications of this problem are presented in [18, 20, 39].

Rc2W, that returns concepts ordered by the likelihood that they are correct,

can as well be used. Applications such as user profiling and document retrieval

are as well based on these problems.

Annotations are useful for assisting human reading. Reading a text, like

an article on an on-line newspaper, the meaning of some mentions could be

unclear. Annotating the text adding a link from these mentions to the right

7

Problem Input Output Description

Disambiguate to Wikipedia
(D2W)

Text,
Set of
men-
tions

Set of annotations
that, to each men-
tion given as input,
assign a (possibly
null-) concept.

Given a list of men-
tions, find the concept ex-
pressed by each mention
(null if the concept could
not be found). This prob-
lem has been defined in
[36].

Concepts to Wikipedia (C2W) Text Set of tags Identify the set of con-
cepts that are explicitly
mentioned in a text.

Scored concepts to Wikipedia
(Sc2W)

Text Set of scored tags
with distinct con-
cepts

Identify the set of con-
cepts that are explicitly
mentioned in a text. Tags
are assigned a score rep-
resenting the likelihood
that the tag is correct.

Annotate to Wikipedia (A2W) Text Set of annotations Identify the relevant men-
tions of the text and
the concepts expressed by
those mentions.

Scored-annotate to Wikipedia
(Sa2W)

Text Set of scored anno-
tations

Identify the relevant men-
tions of the text and
the concepts expressed by
those mentions. Annota-
tions are assigned a score
representing the likeli-
hood that the annotation
is correct.

Ranked-concepts to Wikipedia
(Rc2W)

Text List of tags Identify the set of con-
cepts that are cited in a
text. The concepts are
ranked by the probability
that the concept is cor-
rect.

Table 2.2: Description of topic-retrieval problems

8

Figure 2.1: Examples of instances of the topic-retrieval problems and their
correct solution. Mentions are highlighted in red, (scored) tags in blue, (scored)
annotations in green. Concepts are in italics.

9

Reduction Instance adaptation Solution adaptation

A2W ∝ Sa2W No adaptation. discard the scores, take only the concepts with a
score higher than a given threshold.

D2W ∝ A2W Take only the text,
discard the mentions.

let M be the set of mentions to disambiguate, part
of the instance. Take only the annotations 〈m, c〉 of
the solution such that m ∈ M . Set the concept of
all other mentions in M to null.

Sc2W ∝ Sa2W No adaptation. Discard the mentions, take only the concepts and
their score. Let A = a1, · · · , an be the solution of
problem Sa2W. If two annotations ai and aj have
the same concept, discard the one with lower score.

Rc2W ∝ Sc2W No adaptation. Take only the concepts with a score higher than a
given threshold. Rank the concepts by their score,
discard the scores.

C2W ∝ Rc2W No adaptation. Turn the list into a set.

C2W ∝ A2W No adaptation. Discard the mentions, take only the set of concepts.

Table 2.3: Reduction between problems. A ∝ B means A can be reduced to B
(hence B is harder than A).

Wikipedia concept would help a human understand the text. This is called text

augmenting and lies upon the solution of A2W and its scored variant Sa2W.

D2W could also be used for this application, interactively asking the human

user which mentions should be annotated.

2.3 Our contribution: A hierarchy of problems

It is of key importance to note that the defined problems are strictly related

to each other, and some of them can be reduced to others. Note that A ∝ B

indicates that A reduces to B, so that an instance IA of A can be adapted in

polynomial time to an instance IB of B and a solution SB of B can be adapted

in polynomial time to a solution SA of A. In this case, we say that B is harder

than A, since an algorithm that solves B also solves A. For a presentation of

the reduction theory, see [7].

Let’s give an example. If a solution SA2W for the A2W problem is found, it

can be adapted in polynomial time (O(n) where n is the size of the output) to

a solution SC2W of the C2W problem, by simply discarding the mentions and

leaving the retrieved concepts. The instance IC2W of the problem C2W does

not even need any adaptation to fit to problem A2W, since both problems have

texts as instances (thus IA2W = IC2W and the adaptation is O(1)).

We can safely assume the reductions presented in Table 2.3.

Keeping in mind that the reduction between problems is transitive and re-

flexive, this leads to a hierarchy of problems illustrated by the graph in Figure

10

Figure 2.2: Preordering of the reductions between problems.

2.2. The most general problems is Sa2W, and all other problems reduce to it.

Problems D2W and C2W are the most specific. The complete chains in the

preordering of the problems are:

C2W ∝ Rc2W ∝ Sc2W ∝ Sa2W

C2W ∝ A2W ∝ Sa2W

D2W ∝ A2W ∝ Sa2W

Throwing a rope to the next chapters, it is fundamental to point out that,

for the purpose of benchmarking the annotation systems, the performance of

two systems S′ (solving problem P ′) and S′′ (solving problem P ′′) can be fairly

compared only if they respectively solve P ′ and P ′′, and there is a problem P

such that P ∝ P ′ ∧ P ∝ P ′′. In this hypothesis, the evaluation can be done

with respect to the ability of systems S′ and S′′ to solve problem P . Since

the preordering of the reductions is reflexive, obviously two systems can be

compared if they both solve problem P or if they solve respectively P ′ and P ′′,

and P ′ ∝ P ′′.
Keeping an eye on the graph in Figure 2.2, note that the performances of

systems S′ and S′′ in solving problem P can be compared if and only if a

reverse-path exists from problem P to P ′ and from problem P to P ′′.

Also note that, if P ′ ∝ P ′′, a dataset giving a gold standard (i.e. an expected

output) for P ′′ can be adapted to be used as a gold standard for P ′, using the

same techniques presented in Table 2.3.

11

2.4 Conclusions

This chapter has presented the basic terminology that will be used in the follow-

ing chapters. We also presented the first part of the formal framework, defining

a set of problems related to topic retrieval. These problems show different fea-

tures, but can be framed into a preordering representing the reduction between

them. This lets two systems natively solving two different problems P ′ and P ′′

be fairly compared to each other with respect to their ability to solve a third

problem P such that P ∝ P ′ ∧ P ∝ P ′′.

12

Chapter 3

New evaluation metrics
We judge ourselves by what we feel capable of doing,

while others judge us by what we have already done.

– Henry Wadsworth Longfellow, Kavanagh: A Tale.

The issue of establishing a baseline, shared by the community, to evaluate

the performance of systems that solve the problems presented in Chapter 2 is of

crucial importance to help the development of new algorithms and to address

the research in this field. In this chapter, some metrics for the evaluation of

correctness are proposed. The aim is to establish a set of experiments that fairly

evaluate the performance of a system (Section 3.1) and evaluate how similar two

systems are (Section 3.4). The performance of a system mainly depends on four

factors:

1. The ability of the system in recognizing the mentions (for problems Sa2W

and A2W).

2. The ability of the system in assigning a set of candidate concepts to each

mention (for problems Sa2W, A2W and D2W) or to the whole text (Sc2W,

Rc2W, C2W);

3. The ability of the system in selecting the right concept (disambiguation);

4. The ability of the system in assigning the score (for problems Sc2W,

Sa2W) or the ranking (for Rc2W) to the annotations or tags.

While Section 3.1 presents a set of metrics to evaluate the performance of

the full chain of these abilities (1-4) for all problems, some of them can be tested

in-depth and separately: Section 3.2 focuses the metrics on the evaluation of

finding mentions (ability 1), while metrics presented in Section 3.3 evaluates the

ability of finding the right concepts (abilities 2 and 3).

13

3.1 Metrics for correctness evaluation

Experiments are performed checking the output of the tagging systems against

the gold standard given by a dataset. Of course, for each problem a different

set of metrics has to be defined. This section covers all the problems presented

in Chapter 2. Classical measures like the true positives, false positives, false

negatives, precision and recall are generalized and built on top of a set of binary

relations. These binary relations represent a match between two tags or two

annotations. The necessity of the generalization comes from the need that two

annotations or tags, to be considered as matching, do not need to be equal

but, more generally, have to satisfy a match relation. Things will be clearer

continuing the reading of the next subsections. In the meanwhile, the following

definitions are given:

Definition 1 Let X be the set of elements such that a solution of problem P

is a subset of X. Let r ⊆ X be the output of the system for an instance I of

problem P , g ⊆ X be the gold standard given by the dataset for instance I and

M a symmetric match relation on X. The following higher-order functions are

defined:

true positives tp(r, g,M) = {x ∈ r | ∃x′ ∈ g : M(x′, x)}
false positives fp(r, g,M) = {x ∈ r | 6 ∃x′ ∈ g : M(x′, x)}
false negatives fn(r, g,M) = {x ∈ g | 6 ∃x′ ∈ r : M(x′, x)}
true negatives tn(r, g,M) = {x 6∈ r | 6 ∃x′ ∈ g : M(x′, x)}

Generally, a dataset offers more than one instance. Thus, an output of a

system checked against all the instances provided by a dataset consists of a list

of results, one for each instance. The following commonly used metrics [26] are

re-defined, generalized with the matching relation M .

Definition 2 Let G = [g1, g2, · · · , gn] be the gold standard given by a dataset

that contains n instances I1, · · · , In, given as input to a system, gi being the

gold standard for instance Ii. Let R = [r1, · · · , rn] be the output of the system,

where ri is the result found by the system for instance Ii. The following metrics

are defined:

14

precision P (r, g,M) = |tp(r,g,M)|
|tp(r,g,M)|+|fp(r,g,M)|

recall R(r, g,M) = |tp(r,g,M)|
|tp(r,g,M)|+|fn(r,g,M)|

F1 F1(r, g,M) = 2·P (r,g,M)·R(r,g,M)
P (r,g,M)+R(r,g,M)

macro-precision Pmacro(R,G,M) = 1
n ·

∑n
i=1 P (ri, pi,M)

macro-recall Rmacro(R,G,M) = 1
n ·

∑n
i=1R(ri, gi,M)

macro-F1 F1macro(R,G,M) = 1
n ·

∑n
i=1 F1(ri, gi,M)

micro-precision Pmicro(R,G,M) =
∑n

i=1 |tp(ri,gi,M)|∑n
i=1(|tp(ri,gi,M)|+|fp(ri,gi,M)|)

micro-recall Rmicro(R,G,M) =
∑n

i=1 |tp(ri,gi,M)|∑n
i=1(|tp(ri,gi,M)|+|fn(ri,gi,M)|)

micro-F1 F1micro(R,G,M) = 2·Pmicro(R,G,M)·Rmicro(R,G,M)
Pmicro(R,G,M)+Rmicro(R,G,M)

Note that, if the binary relation M is the equality (M(a, b) ⇔ a = b), the

measures presented above become the classical Information Retrieval measures.

Now that this layer of metrics have been defined, we can play on the match

relation M .

3.1.1 Metrics for the C2W problem

For the C2W problem, the match relation to use is quite straightforward. The

output of a C2W system is a set of tags. Keeping in mind that a tag is codified

as the concept it refers to, the following definitions are given:

Definition 3 Let T be the set of all tags. A Strong tag match is a binary

relation Mt on T between two tags t1 and t2. It is defined as

Mt(t1, t2)⇐⇒ d(t1) = d(t2)

Where d is the dereference function (see Definition 4)

Definition 4 Let L be the set of redirect pages, C be the set of non-redirect

pages (thus C ∩ L = ∅) in Wikipedia. Dereference is a function

d : L ∪ C ∪ {null} 7→ C ∪ {null}

such that:

d(p) =

p if p ∈ C

p′ if p ∈ L

null if p = null

where p′ ∈ C is the page p redirects to.

15

Definition 3 and the dereference function worth an explanation. In Wikipe-

dia, a page can be a redirect to another, e.g. “Obama” and “Barrack Hussein

Obama” are redirects to “Barack Obama”. Redirects are meant to ease the

finding of pages by the Wikipedia users. Redirects can be seen as many-to-one

bindings from all synonyms (pages in L) to the most common form of the same

concept (pages in C). Two concepts identified by c1 and c2, where c1 6= c2 but

d(c1) = d(c2) (meaning that c1 redirects to c2 or that c1 and c2 redirect to the

same page c3) represent the same concept and thus must be considered as equal.

It is obvious that the Strong tag match relation Mt is reflexive (∀x ∈
T. Mt(x, x)), symmetric (Mt(y, x) ⇔ Mt(x, y)), and transitive (Mt(x, y) ∧
Mt(y, z)⇒Mt(x, z)).

To achieve the actual metrics for the C2W problem, the number of true/false

positives/negatives, precision, recall and F1 must be computed according to

Definitions 1 and 2, using M = Mt.

3.1.2 Metrics for the D2W problem

D2W output consists of a list of annotations, some of them possibly with null -

concept. To compare two annotations, the following match function, as well

reflexive, symmetric and transitive, is given.

Definition 5 Let A be the set of all annotations. A Strong annotation match

is a binary relation Ms on A between two annotations a1 = 〈〈p1, l1〉, c1〉 and

a2 = 〈〈p2, l2〉, c2〉 . It is defined as

Ms(a1, a2)⇐⇒

p1 = p2

l1 = l2

d(c1) = d(c2)

Where d is the dereference function (see Definition 4).

Note that in D2W it does not make sense to count the negatives, since

the mentions of the annotations contained in the output are the same as the

mentions given as input, and only the concepts can be either correct (true

positive) or wrong (false positive). To compute the number of true and false

positives, as long as the precision, functions defined in Definition 1 and 2 can

be used, with M = Ms.

3.1.3 Metrics for the A2W problem

As in D2W, the output of a A2W problem is a set of annotations. The main

difference is that in A2W the mentions are not given as input and must be found

by the system.

16

A possible set of metrics for A2W would be analogue to those given in Defi-

nitions 1 and 2 with M = Ms (Definition 5). But the Strong annotation match

will result to be true only if the mention matches perfectly, and this approach

leaves aside some cases of matches that should still be considered as right. Sup-

pose a A2W annotator is given as input the sentence “The New Testament is the

basis of Christianity”. A correct annotation returned by the annotation system

could be 〈〈4, 13〉,New Testament〉 (correctly mapping the mention “New Testa-

ment” to the concept New Testament). But suppose the gold standard given by

the dataset was another similar and correct annotation 〈〈0, 17〉,New Testament〉
(mapping the mention “The New Testament” to the same concept). Since the

mentions differ, a metric based on the Strong annotation match would count

one false positive and one false negative, whereas only one true positive should

be counted. Definition 5 can be relaxed as described in Definition 6 to match

annotations with overlapping mentions and same concept.

Definition 6 Let A be the infinite set of all annotations. A Weak annotation

match is a binary relation Mw on A between two annotations a1 = 〈〈p1, l1〉, c1〉
and a2 = 〈〈p2, l2〉, c2〉. Let e1 = p1 + l1 − 1 and e2 = p2 + l2 − 1 be the indexes

of the last character of the two mentions. The relation is defined as

Mw(a1, a2)⇐⇒

{
p1 ≤ p2 ≤ e1 ∨ p1 ≤ e2 ≤ e1 ∨ p2 ≤ p1 ≤ e2 ∨ p2 ≤ e1 ≤ e2
d(c1) = d(c2)

A Weak annotation match is verified if a Strong annotation match is verified

(annotations have equal mentions) or, more generally, if the mentions overlap.

Both are verified only if the concept of the annotations is the same. Relation

Mw is trivially reflexive and symmetric, but is not transitive nor anti-symmetric.

Metrics for the A2W problem can be those defined in Definition 1 and 2,

with M = Mw (for Weak annotation match) or M = Ms (for Strong annotation

match).

3.1.4 Metrics for the Rc2W problem

As pointed out in [27], since the output of a Rc2W system is a ranking of tags,

common metrics like P1, R-prec, Recall, MRR and MAP [26] should be used

after being adapted to the Strong tag match relation Mt.

17

3.1.5 Metrics for the Sc2W and Sa2W problems

As their non-scored version, Sc2W and Sa2W return respectively a set of an-

notations and a set of tags, with the addition of a likelihood score for each

annotation/tag. In practice, the output of such systems is never compared

against a gold standard of the same kind (in a gold standard, it’s a nonsense

to assign a “likelihood score” to the annotations/tags). Hence, the output of a

Sc2W and Sa2W system must be adapted (see the Section 2.3 about problem

reductions) to the problem for which a solution is offered by the gold standard.

This introduce a threshold on the score. Metrics presented above (Definitions 1

and 2 with M = Mt for Sc2W and M ∈ {Mw,Ms} for Sa2W) can be used for

values of the threshold ranging in [0, 1].

3.2 Finding the mentions (for Sa2W and A2W)

The metrics presented above for Sa2W and A2W measure the ability of the

systems to find the correct annotation, which includes, for each annotation,

finding both the correct mention and the correct concept. But how much of the

error is determined by the lack of mention recognition? To answer this question,

we can use a match relation that only checks the overlap of mentions, ignoring

the concept:

Definition 7 Let A be the set of all annotations. A Mention annotation match

is a binary relation Mm on set A between two annotations a1 = 〈〈p1, l1〉, c1〉 and

a2 = 〈〈p2, l2〉, c2〉. Let e1 = p1 + l1 − 1 and e2 = p2 + l2 − 1 be the indexes of

the last character of the two mentions. The relation is defined as

Mm(a1, a2)⇐⇒ p1 ≤ p2 ≤ e1 ∨ p1 ≤ e2 ≤ e1 ∨ p2 ≤ p1 ≤ e2 ∨ p2 ≤ e1 ≤ e2

3.3 Finding the concepts (for Sa2W and A2W)

Dually, it would be interesting, when comparing the result of a Sa2W/A2W

problem against a gold standard, to isolate the problem of finding the right con-

cepts (discarding the binding of the mentions to the concepts). That’s exactly

what is done by the metrics for the C2W problem presented above.

Hence, to isolate the measure of concept recognition, the output of a system,

as long as the gold standard, have to be adapted to a solution for the C2W

problem (See Table 2.3) and measured with metrics presented in 3.1.1.

Note that this is roughly equivalent, for a Sa2W or A2W output, to:

18

1. Adapt the Sa2W output to a A2W output choosing a score threshold

under which annotations are discarded (Sa2W only);

2. Discard annotations a = (p, l, c) ∈ Ad given for document d such that

∃a′ = (p′, l′, d′) ∈ Ad | a′ 6= a ∧ d(c) = d(c′) (i.e. if more than one

annotation have the same concept, keep only one of them);

3. Use the metrics defined in Definitions 1 and 2 with M = Mc, defined as:

Definition 8 Let A be the set of all annotations. A Concept annotation match

is a binary relation Mc on A between two annotations a1 = 〈p1, l1, c1〉 and

a2 = 〈p2, l2, c2〉. It is defined as

Mc(a1, a2)⇐⇒ d(c1) = d(c2)

Where d is the dereference function (see Definition 4)

This measure roughly reflects the performance of the candidate finding and

the disambiguation process, and is fundamental for all applications in which

we are interested in retrieving the concept a text is about, rather than the

annotations.

3.4 Similarity between systems

The similarity between systems can be measured considering how similar their

output for the text documents contained in a dataset are. In this section, the

following definitions hold: let D = [d1, d2, · · · , dn] be a dataset that contains

n documents, given as input to two systems t1 and t2 that solve problem P ∈
{Sa2W,Sc2W,Rc2W,C2W,A2W,D2W}. Let A = [a1, a2, · · · , an] and B =

[b1, b2, · · · , bn] be respectively the output of t1 and t2, so that ai and bi are the

solutions found respectively by t1 and t2 for document di. The type of elements

in A, that is the same as elements in B, varies depending on the problem P

that t1 and t2 solve.

3.4.1 A new similarity measure on sets

A proposed measure to check the similarity of the two sets of annotations a and

b is inspired by the Jaccard similarity coefficient [21], but must take into account

the possibility that two annotations match according to a match relation such

as those presented in Definitions 3, 5, 6, 7 and 8, even though not being equal.

The following measure is proposed:

19

Definition 9 Let a ⊆ X and b ⊆ X be two sets, and M be a reflexive and

symmetric relation on set X. Similarity measure S′ is defined as:

S′(a, b,M) =
|{x ∈ a | ∃y ∈ b : M(x, y)}|+ |{x ∈ b | ∃y ∈ a : M(x, y)}|

|a|+ |b|

Note that function S′ is symmetric and ranges in [0, 1]. Important features

of S′ are that S′(a, b) = 1 if and only if, for all elements in a, there is a matching

element in b, and vice-versa; S′(a, b) = 0 if and only if there is not one single

element in a that matches with an element in b, and vice-versa. Unlike the

Jaccard measure, S′ is not a distance function since S′(a, b) = 0 does not imply

a = b, and it does not verify the triangle inequality.

Note that for our purpose, as M , any of Strong tag match (for Sc2W and

C2W systems whose output is a set of tags), Weak annotation match, Strong

annotation match, Mention annotation match and Concept annotation match

(for Sa2W, A2W, D2W systems whose output is a set of annotations) can be

used, since they are all reflexive and symmetric.

3.4.2 A similarity measure on lists of sets

The similarity of two lists of sets A and B can be defined as the average of S′ on

the sets of the lists, giving the same importance to all the sets contained in the

lists regardless of their size (Smacro) or as the overall “intersection” divided by

the overall size, which gives more importance to bigger sets (Smicro). Formally:

Definition 10 Let A and B be two lists of elements ai, bi ⊆ X and let M be a

binary relation on X. The following definitions are given:

Smacro(A,B,M) = 1
n ·

∑n
i=1 S

′(ai, bi,M)

Smicro(A,B,M) =
∑n

i=1(|{x∈ai | ∃y∈bi: M(x,y)}|+|{x∈bi | ∃y∈ai: M(x,y)}|)∑n
i=1(|ai|+|bi|)

Smacro and Smicro share the same properties as S′: they range in [0, 1],

their value is 0 if and only if, for each i ∈ [1, · · · , n], there is not one single

element in ai that matches with an element in bi and vice-versa, and their value

is 1 if and only if, for each i ∈ [1, · · · , n] and for all elements in ai, there is

a matching element in bi, and vice-versa. If M is reflexive and A = B, then

Smacro(A,B,M) = Smicro(A,B,M) = 1.

20

3.4.3 Combining S with M∗

Let S be any of Smacro or Smacro. The meaning of the value given by this

similarity measure depends only on the match relation M it is combined with.

For C2W and Sc2W, the only defined matching function is M = Mt. In this

case, S give a measure of how many of the concepts found by t1 and t2 are in

common.

For all problems whose output is a set of annotations (Sa2W, A2W, D2W),

any match relation M ∈ {Ms,Mw,Mm,Mc} can be used, with the following

meaning:

• S(A,B,Ms) gives the fraction of common annotations (having same con-

cept and same mention).

• S(A,B,Mw) gives the fraction of common overlapping annotations (hav-

ing same concept and overlapping mention).

• S(A,B,Mm) gives the fraction of common overlapping mentions found in

the text.

• S(A,B,Mc) gives the fraction of common concepts found in the text.

3.4.4 Measuring true positives and true negatives similar-

ity in detail

S-measures can be used not only to check the whole output of two systems. The

focus can instead be put on measuring how many of the true positives and true

negatives two systems have in common, to see whether their correct spots and

mistakes are similar or not. To do this, we can simply take a subset of elements

of A and B representing the true positives or the false negatives.

Definition 11 Let G = [g1, · · · , gn] be the gold standard for a dataset, gi ⊆ X
being the gold standard for instance Ii. Let O = [o1, · · · , on] be the output of

a system, oi ⊆ X being the output for instance Ii. Let M be a reflexive and

symmetric binary relation on X. The following definitions are given:

T (O,G,M) = [tp(o1, g1,M), · · · , tp(on, gn,M)]

F (O,G,M) = [fp(o1, g1,M), · · · , fp(on, gn,M)]

Where tp and fp are the true positives and the false positives functions defined

in Definition 1.

T (O,G,M) and F (O,G,M) are lists containing, for each instance Ii, re-

spectively the true positives and the false positives contained in the output oi

according to the match relation M and the gold standard gi.

21

The fraction of common true positives between outputs A and B is hence

given by S(T (A,G,M), T (B,G,M),M) whereas the fraction of common false

negatives is given by S(F (A,G,M), F (B,G,M),M), where S can be either

Smicro or Smacro.

3.5 Conclusions

This chapter has presented the second part constituting the formal framework

employed in this thesis. The classical measures of Information Retrieval have

been generalized adding a match relation M . This includes the basic measure-

ment of true/false positives/negatives for the solution of a single instance and

the F1, precision and recall measurements, in their macro- and micro- version,

for a set of solutions to instances given, for example, by a dataset. M is a binary

relation defined on a generic set X such that the output of a system is formed

by a subset of X. Playing on M , we can focus the measurement on specific fea-

tures of the comparison. For every problem, we defined a proper match relation

that, combined with the defined measures, lets us evaluate the performance of

a system in solving that problem. Other proposed match relations let us focus

the measures on certain aspects of a system.

We also defined a way of comparing the output of two systems, as well

based on a match relation. This S measure is inspired by the Jaccard similarity

measure but takes as parameter a match relation M . The similarity can be

restricted to the true positives or the false positives using functions T and F .

22

Chapter 4

The comparison framework
Comparisons are odious.

– Archbishop Boiardo, Orlando Innamorato.

It has been developed a benchmarking framework that runs experiments

on systems that solve problems given in Chapter 2 in order to measure the

performance of the systems and their similarity. The framework is based on

the metrics given in Chapter 3, providing an implementation of the proposed

measures and match relations. The target was to create a framework that is

easily extendible with new problems, new annotation systems, new datasets,

new match relations and new metrics not yet defined. This work is intended to

be released to the public, as a contribution to the scientific community working

on the field of topic retrieval. We would like it to become a basis for further

experiments, that anyone can reproduce on its own. Distributing this work open

source and with a clear documentation is a condition to let anyone assess its

fairness or propose modifications to the code.

The framework is written in Java and implements the actual execution of

the systems on a given dataset, the caching of the results, the measuring of the

performance in terms of correctness and runtime against a given dataset, the

computation of the similarity between systems, the reduction between problems

(that is, given two problems P ′, P ′′ such that P ′ ∝ P ′′, adapting an instance

of P ′ to P ′′ and adapt the solution of P ′′ to P ′). Datasets and topic-retrieval

systems are implemented as plugins.

4.1 Code structure

The code of the comparison framework is organized in 8 Java packages. All

package names begin with it.acubelab.annotatorBenchmark:

23

.data contains classes representing basic objects needed by the framework:

Annotation, ScoredAnnotation, Tag, ScoredTag.

.cache contains the caching system for the results of the experiment. Caching

is needed to avoid the repetition of experiments that may last for days,

depending on the size of the dataset. The package also contains, in class

Benchmark, the core of the framework, namely the methods to actually

perform the experiments and store the results in the cache. Caching is

done by simply storing the result in an object of the class BenchmarkResults

and serializing it to a file.

.problems contains interfaces representing a dataset for the problems defined in

Chapter 2 (such interfaces are called PDataset, where P is the name of the

problem, E.g. A2WDataset, C2WDataset) and the interfaces for a system

solving one of them (called PSystem, E.g. A2WSystem, C2WSystem)1. The

class hierarchy reflects the preordering of the problems given in Figure

2.2: if P ∝ Q then a system that solve Q can as well solve P . Speaking

of interfaces, this is reflected in the fact that a system that implements

interface QSystem (which defines a method for solving an instance of Q)

must also implement methods in PSystem (which defines a method for

solving an instance of P), and thus QSystem extends PSystem. The

hierarchy of these classes is reported in Figure 4.2.

.datasetPlugins contains some implementations of PDataset interfaces of

package .problems. These classes provide standard datasets used in lit-

erature.

.systemPlugins contains some implementations of PSystem interfaces of pack-

age .problems, providing actual access to the topic-retrieval systems.

These classes are the glue between the benchmarking framework and the

topic-retrieval systems. Generally, in their implementation, to solve an

instance of a problem, they query the system through its web service or

running it locally.

.metrics contains the implementation of the metrics presented in Chapter 3.

The abstract class Metrics provides the methods for finding the true/false

positives/negatives and for computing precision, recall, F1 and similarity.

These methods need, as parameter, an object representing a match rela-

tion, like those given in Section 3.1. The implementations of the match

relations (StrongTagMatch, StrongAnnotationMatch, etc.) are as well

1Interfaces for problems for which there is no system (natively or not) solving it or datasets
giving a gold standard for it, were not implemented in this version of the benchmarking
framework. They will be added if needed.

24

Figure 4.1: Automatically-generated UML class diagram with the packages of
the annotator benchmark framework and their dependencies.

contained in this package. Classes representing a match relation on type

E implement the generic interface MatchRelation, using E as type param-

eter.

.utils contains some general-purpose utilities used along the whole frame-

work. This includes some Exceptions; some data-storing utilities; Export,

the utility to export a dataset in XML form; ProblemReduction that im-

plements the adaptations of instances and solutions needed for problem

reductions; and WikipediaApiInterface, that provides some methods to

query the Wikipedia API to retrieve information about concepts (Wikipe-

dia pages). In particular, WikipediaApiInterface.dereference(int)

implements the de-reference function d defined in Definition 4.

.scripts contains example scripts that run the benchmark on the datasets and

print data in gnuplot and LATEX style.

The packages form a kind of four-“layer” structure2, depicted in Figure 4.1.

At the two bottom layers lie the utility package and the data package, sparsely

used by all other packages. The third layer provides the abstract part of the

framework, including the interfaces and the implementation of the metrics mea-

surement. The fourth and most concrete layer provide both the caching and the

implementations of some datasets and systems.

2The layer term is abused, since packages in the upper layer may depend on all lower
layers, and not only on the layer just below.

25

Figure 4.2: Hierarchy of interfaces that topic annotators must implement, re-
flecting the hierarchy of the problems presented in 2.2.

4.2 Running the experiments

A class with a main() method running the actual experiments should be located

on top of all these packages. The main() method basically creates the objects

representing the topic-retrieval system, the dataset, the match relation and the

metrics, asks the cache for the result for each document of the dataset (the

cache will perform the experiment if the result is not cached), and outputs the

results given by the metrics. An example snippet of code follows.

1 public class LulzMain {

2

3 public static void main(String [] args){

4 Benchmark.useCache("results.cache");

5 WikipediaApiInterface api = new WikipediaApiInterface("wid.cache", "

redirect.cache");

6 MatchRelation <Annotation > wam = new WeakAnnotationMatch(api);

7 Metrics <Annotation > metrics = new Metrics <Annotation >();

8 Sa2WSystem miner = new WikipediaMinerAnnotator ();

9 A2WDataset aidaDs = new ConllAidaDataset("datasets/aida/AIDA -YAGO2 -

dataset.tsv", api);

10

11 List <Set <ScoredAnnotation >> computedAnnotations = Benchmark.

doSa2WAnnotations(miner , aidaDs);

12 List <Set <Annotation >> reducedAnnotations = ProblemReduction.

Sa2WToA2WList(computedAnnotations , 0.5f);

13 List <Set <Annotation >> goldStandard = aidaDs.getA2WGoldStandardList ();

14 MetricsResultSet rs = metrics.getResult(reducedAnnotations ,

goldStandard , wam);

15

16 printResults(rs);

17

18 Benchmark.flush ();

19 api.flush();

20 }

26

Figure 4.3: Main classes and interfaces involved in running the Wikipedia Miner
annotator on the Conll/AIDA dataset. Both system and dataset will be pre-
sented in Chapter 5

27

21

22 public static void printResults(MetricsResultSet rs){

23 // print the results

24 }

25 }

Let’s have a closer look at the snippet of code above. Figure 4.3 shows the

hierarchy of the classes and interfaces involved in this snippet. Lines 4-9 prepare

the environment: the cache containing the results of the problems is bound to

file results.cache. An object representing the API to Wikipedia is created

and assigned to variable api. This object is needed by the match method of

the WeakAnnotationMatch object, assigned to variable wam, that implements

the Weak annotation match: as defined in Definition 6, this match relation

is based on the dereference function, implemented by the Wikipedia API. An

object representing the Wikipedia Miner annotator – discussed in Chapter 5 –

is created and assigned to variable miner. In the implementation, this object

queries the Wikipedia Miner web service passing a document as parameter and

returning the resulting set of scored annotations. Furthermore, the dataset

AIDA/CoNLL is created, loading the instances (i.e. documents) and the gold

standard from a file.

Lines 11-14 call some methods to gather the actual output of the Wikipedia

Miner system for the dataset AIDA/CoNLL. If this system has already been

called for some of the text contained in the dataset, the result stored in the cache

will be quickly returned instead of calling the Wikipedia Miner web service.

Since Wikipedia Miner solve problem Sa2W, while the dataset represent a gold

standard for problem A2W, the output of Wikipedia Miner (for each document,

a set of scored annotations) must be adapted to the output of A2W, discarding

the scores and taking only the annotations above a given threshold. In the code

snippet, the adaption of the solution is done in line 12 and the threshold on the

score is set to 0.5. In line 14 the object representing the metrics is called, passing

as parameter the list of solutions adapted to A2W, the A2W gold standard given

by the dataset, and the Weak annotation match object. The metrics object

computes the actual measures like the true positives, the precision, the F1, etc.

Results are returned in an object of class MetricsResultSet whose content is

printed to the screen calling method printResults in line 16.

Lines 18-19 flush the cache of the results and of the Wikipedia API to a file

in a permanent memory, to guarantee a faster execution if the Main method is

executed twice.

28

4.3 Extending the framework

An important feature of this benchmarking framework is that it can be easily

extended with new problems, new annotation systems, new datasets, new match

relations and new metrics. Let’s have a closer look at how an implementation

should be done for each of these categories.

4.3.1 Extending with new systems

To add to the framework a new system that solves a problem A, all that is

needed is to create a class that implements interface ASystem. Note that a

single system may natively solve more than one problem. In this case, the class

will implement one interface for each problem solved.

Suppose we want to add a new system called Cool Annotator that natively

solve A, and let B be a problem such that B ∝ A that Cool Annotator does not

natively solve. Let CoolAnnotator the concrete class representing the system,

implementing ASystem (and thus BSystem). CoolAnnotator will implement

a method defined in ASystem to solve problem A. The implementation of the

method defined in BSystem to solve problem B should simply

1. call routine methods to adapt the instance IB of problem B to an instance

IA of problem A. This takes polynomial time;

2. call the method defined in ASystem for solving problem A on the instance

IA, it will return solution SA;

3. adapt SA to a solution SB of problem B. This takes polynomial time;

4. return SB .

Methods for adapting the instances and the solutions from a problem to

another are implemented in the class ProblemReductions in package utils.

Here follows a complete example for A = A2W, B = T2W (thus, the reduction

is T2W ∝ A2W). The following interfaces are involved:

Interface problems.C2WSystem:

1 public interface C2WSystem extends TopicSystem {

2 public Set <Tag > solveC2W(String text) throws AnnotationException;

3 }

Interface problems.A2WSystem:

1 public interface A2WSystem extends C2WSystem{

2 public Set <Annotation > solveA2W(String text) throws AnnotationException

;

3 }

29

A draft for an annotator natively solving A2W (and thus solving C2W as

well), implementing the A2WSystem interface specified above, could look like

this:

1 public class CoolAnnotator implements A2WSystem{

2 private long lastTime = -1;

3

4 @Override

5 public Set <Annotation > solveA2W(String text) {

6 lastTime = Calendar.getInstance ().getTimeInMillis ();

7 Set <Annotation > result = this.computeResult(text);

8 lastTime = Calendar.getInstance ().getTimeInMillis () - lastTime;

9 return result;

10 }

11

12 @Override

13 public Set <Tag > solveC2W(String text) throws AnnotationException {

14 //no adaptation of the instance is needed

15 Set <Annotation > tags = solveA2W(text);

16 return ProblemReduction.A2WToC2W(tags);

17 }

18

19 @Override

20 public String getName () {

21 return "Cool Annotator";

22 }

23

24 @Override

25 public long getLastAnnotationTime () {

26 return lastTime;

27 }

28

29 private Set <Annotation > computeResult(String text){

30 // do the actual annotations

31 }

32 }

Method solveA2W() is the method which is called for annotating a doc-

ument. In its body, it takes the time after and before the annotation pro-

cess and store the difference in the lastTime variable returned by getLast-

AnnotationTime(). The actual annotations are done by a private method

computeResult().

Method solveC2W() gives the solution for problem C2W. Since an instance

for problem C2W (a text) is also an instance for problem A2W, there is no

need to adapt it. The instance is therefore solved for problem A2W calling the

method solveA2W(). Its solution is then adapted to a solution of the C2W

problem, calling ProblemReduction.A2WToC2W(). In its body (not listed), this

method simply discards the mentions leaving the computed concepts.

30

4.3.2 Extending with new datasets

To add to the framework a new dataset giving a gold standard for problem A, all

that is needed is to make a concrete class C implementing interface ADataset.

Talking of inheritance, the same logic explained in previous subsections for the

system hierarchy holds for the dataset hierarchy. A complete example of two

interfaces C2WDataset and A2WDataset follows. Note that C2W ∝ A2W (see

Chapter 2).

Interface problems.C2WDataset:

1 public interface C2WDataset extends TopicDataset{

2 public List <String > getTextInstanceList ();

3 public List <Set <Tag >> getC2WGoldStandardList ();

4 public int getTagsCount ();

5 }

Interface problems.A2WDataset:

1 public interface A2WDataset extends C2WDataset{

2 public List <Set <Annotation >> getA2WGoldStandardList ();

3 }

A draft for a dataset, whose name is Lulz Dataset, implementing the A2WDataset

interface specified above, could look like this:

1 public class LulzDataset implements A2WDataset{

2 List <String > texts;

3 List <Set <Annotation >> annotations;

4

5 public LulzDataset () throws AnnotationException{

6 texts = this.loadTexts ();

7 annotations = this.loadAnnotations ();

8 }

9

10 @Override

11 public int getSize () {

12 return texts.size();

13 }

14

15 @Override

16 public int getTagsCount () {

17 int count = 0;

18 for (Set <Annotation > a : annotations)

19 count += a.size();

20 return count;

21 }

22

23 @Override

24 public Iterator <Set <Annotation >> getAnnotationsIterator () {

25 return annotations.iterator ();

26 }

27

28 @Override

29 public List <Set <Annotation >> getA2WGoldStandardList () {

30 return annotations;

31 }

31

32

33 @Override

34 public List <String > getTextInstanceList () {

35 return texts;

36 }

37

38 @Override

39 public List <Set <Tag >> getC2WGoldStandardList () {

40 return ProblemReduction.A2WToC2WList(this.getA2WGoldStandardList ());

41 }

42

43 @Override

44 public String getName () {

45 return "Lulz Dataset";

46 }

47

48 private List <String > loadTexts (){

49 // load the text documents from somewhere into variable texts

50 }

51

52 private List <Set <Annotation >> loadAnnotations (){

53 // load the annotations for the documents from somewhere into variable

annotations

54 }

4.3.3 Extending the hierarchy of problems

Suppose we want to add a problem A. The hierarchy of interfaces – one for

each problem – presented in Figure 4.2, can be extended adding a new interface

called ASystem that all systems solving A must implement, providing methods

to solve an instance of A.

This interface should extend interface BSystem of package problems if and

only if B ∝ A. In this hypothesis, a class implementing ASystem representing

a system that solves the harder-problem A, must also implement the methods

defined in BSystem (therefore, it must also be able to solve the easier problem

B, as by the hypothesis B ∝ A).

Moreover, the hierarchy of interfaces for datasets, that is isomorphic to the

hierarchy for the systems interfaces, can be extended in an analogous way,

adding interface ADataset that extends BDataset if and only if B ∝ A.

Let B ∝ A. As explained in the previous subsections, to let a system natively

solving A solve B as well, a polinomial-time algorithm to adapt an instance of

B to an instance of A and a polinomial-time algorithm to adapt the solution

of A to a solution of B must be implemented. Two methods performing these

two adaptions must be implemented in a class extending ProblemReduction in

package utils.

A complete example follows. Suppose we want to add Ab2W (defined in

Definition 13 and further detailed in Chapter 7) to the problem hierarchy. Ab2W

32

is the problem of finding both mentioned concepts expressed in a text (like in

Sa2W) and the concepts expressed in a text, even though being not mentioned.

For an example, see Chapter 7. The solution of the problem is thus formed by

two sets: sa is the set of scored annotations (for mentioned concepts) and st is

the set of scored tags (for non-mentioned concepts). It’s trivial that Sa2W ∝
Ab2W: the instance needs no adaptation and the solution of Ab2W can be

adapted to Sa2W simply discarding st and keeping sa.

The new interface representing a system that solve Ab2W would look like

the following. Method getAb2WOutput returns a solution for problem Ab2W:

1 public interface Ab2WSystem extends Sa2WSystem{

2 public Pair <Set <ScoredAnnotation >, Set <ScoredTag >> getAb2WOutput(String

text);

3 }

The adaptation of the solution is trivially implemented in a method of a

class extending ProblemReduction:

1 public class Ab2WProblemsReduction extends ProblemReduction{

2 public static Set <ScoredAnnotation > Ab2WToSa2W(Pair <Set <

ScoredAnnotation >, Set <ScoredTag >> ab2wSolution){

3 return ab2wSolution.output1;

4 }

5 }

Here follows the draft of a class representing a system that solves Ab2W.

The class implements Ab2WSystem, and thus must provide an implementation

for the method getAb2WOutput. The actual solution, computed by the private

method computeMentionedAnnotations, is obviously not listed in the exam-

ple. Since Sa2W ∝ Ab2W, the class also implements method solveSa2W, that

provides a solution for Sa2W, computed calling the method implemented in

Ab2WProblemsReduction. All other problems P that this system does not solve

natively but such that P ∝ Ab2W, have an analogous method.

1 public class LolAbstractAnnotator implements Ab2WSystem{

2 private long lastAnnotation = -1;

3

4 @Override

5 public Pair <Set <ScoredAnnotation >,Set <ScoredTag >> getAb2WOutput(String

text) {

6 lastAnnotation = Calendar.getInstance ().getTimeInMillis ();

7 Pair <Set <ScoredAnnotation >,Set <ScoredTag >> res = computeAb2wSolution

(text);

8 lastAnnotation = Calendar.getInstance ().getTimeInMillis ()-

lastAnnotation;

9 return res;

10 }

11

12 private Pair <Set <ScoredAnnotation >,Set <ScoredTag >> computeAb2wSolution(

String text) {

13 ... // compute the solution and return it.

14 }

33

15

16 @Override

17 public Set <ScoredAnnotation > solveSa2W(String text) {

18 return Ab2WProblemsReduction.Ab2WToSa2W(getAb2WOutput(text));

19 }

20

21 @Override

22 public Set <ScoredTag > solveSc2W(String text) {

23 return Ab2WProblemsReduction.Sa2WToSt2W(solveSa2W(text));

24 }

25

26 @Override

27 public Set <Annotation > solveA2W(String text) {

28 return Ab2WProblemsReduction.Sa2WToA2W(solveSa2W(text));

29 }

30

31 @Override

32 public Set <Tag > solveC2W(String text) {

33 return Ab2WProblemsReduction.A2WToC2W(solveA2W(text));

34 }

35

36 @Override

37 public String getName () {

38 return "Lol Abstract Annotator";

39 }

40

41 @Override

42 public long getLastAnnotationTime () {

43 return lastAnnotation;

44 }

45 }

4.3.4 Implementation of the metrics

To introduce the extension of the metrics, we first have to explain how the

classes involved in the metrics measurement ineract with each other.

Package metrics contains class Metrics which implements the measures

defined in Chapter 3 (precision, recall, F1, etc). All methods for computing such

metrics take as argument a match relation M , implemented as an object of type

MatchRelation. For each match relation M given in Chapter 3, there is a class

implementing the interface MatchRelation that provides an implementation of

M in the method match.

Class Metrics is generic in that it has type variable T such that the measures

are computed over systems that return sets of objects of type T (E.g. T can be

Tag, Annotation, etc.). Therefore, measures like micro- and macro- F1, recall

and precision are performed for lists of sets of T-objects (a set for each instance

given by a dataset). Also interface MatchRelation has generic type variable

E, such that the match test is done on elements of type E. Of course, to use a

MatchRelation<E> with Metrics<T>, it must be T = E.

In other words, to assess the overall consistency, it must be true that:

34

• Match relation M is defined on elements of set X (E.g. X can be the set

of all annotations);

• Metrics are measured employing M as match relation, thus the tp, fp,

fn, F1, recall and precision measures are performed over subsets of X,

while micro- and macro- F1, precision and recall are performed over lists

of subsets of X (E.g. M can be the Weak annotation match Mw);

• In the framework, elements of X are represented as objects of class T (E.g.

T is class Annotation);

• The match relation M is represented as an object of a class implementing

MatchRelation<E>, let this object be assigned to variable matchRelation;

• The metrics are represented as an object of a class Metrics<T>, let this

object be assigned to variable metricsComputer;

• T=E;

In this scenario, actual measurements using match relation M can be run

calling the methods of the metricsComputer and passing matchRelation as

argument.

Interface MatchRelation also declares methods preProcessOutput and pre-

ProcessGoldStandard, which are called by all methods of class Metrics that

implement the measurements, before running the measurements. They should

be used if certain metrics need to adapt the output or to perform optimization

tasks3.

Before showing the classes, some preparatory speculations must be done.

Some gold standards, as well as the output of some annotators, may contain, for

a document, annotations with overlapping or nested mentions. For example, the

sentence “A cargo ship is sailing” could contain both annotations a1 = 〈〈2, 10〉,
Cargo ship〉 and a2 = 〈〈8, 4〉, Ship〉. Since some annotation systems return

overlapping annotations while other don’t, comparing the output of an anno-

tation system which contains overlapping annotations against a gold standard

that doesn’t contain overlapping annotations (or vice-versa) would be unfair.

For the sake of simplicity, before comparing the output of an annotator against

a gold standard, in the current implementation of the match relations, both are

pre-processed and scanned for overlapping mentions: if two annotations overlap,

then only the one with the longest mention is kept, while the other is discarded.

The choice of keeping the longest mention is motivated by the assumption that

longer mentions refer to more specific – and thus more relevant – concepts (see

3If no pre-processing has to be done, these methods should simply return the data given
as parameter.

35

the example of “Cargo ship” against “Ship”). Note that, using metrics based

on Weak annotation match, annotations with longer mentions are more likely

to result as a true positive.

Here follows the listing of (parts of) some classes involved in the extension

of the metrics.

Class metrics.Metrics implements the measures presented in Chapter 3:

1 public class Metrics <T> {

2

3 public MetricsResultSet getResult(List <Set <T>> outputOrig , List <Set <T>>

goldStandardOrig , MatchRelation <T> m) {

4 List <Set <T>> output = m.preProcessOutput(outputOrig);

5 List <Set <T>> goldStandard = m.preProcessGoldStandard(goldStandardOrig

);

6

7 int tp = tpCount(goldStandard , output , m);

8 int fp = fpCount(goldStandard , output , m);

9 int fn = fnCount(goldStandard , output , m);

10 float microPrecision = precision(tp, fp);

11 float microRecall = recall(tp, fp, fn);

12 float microF1 = F1(microRecall , microPrecision);

13 int[] tps = singleTpCount(goldStandard , output , m);

14 int[] fps = singleFpCount(goldStandard , output , m);

15 int[] fns = singleFnCount(goldStandard , output , m);

16 float macroPrecision = macroPrecision(tps , fps);

17 float macroRecall = macroRecall(tps , fps , fns);

18 float macroF1 = macroF1(tps , fps , fns);

19

20 return new MetricsResultSet(microF1 , microRecall , microPrecision ,

macroF1 , macroRecall , macroPrecision , tp, fn, fp);

21 }

22

23 public static float precision(int tp , int fp){

24 return tp+fp == 0 ? 1 : (float)tp/(float)(tp+fp);

25 }

26

27 public static float recall(int tp, int fp, int fn){

28 return fn == 0 ? 1 : (float)tp/(float)(fn+tp);

29 }

30

31 public static float F1(float recall , float precision){

32 return (recall+precision == 0) ? 0 : 2* recall*precision /(recall+

precision);

33 }

34

35 public List <Set <T>> getTp(List <Set <T>> expectedResult , List <Set <T>>

computedResult , MatchRelation <T> m){

36 List <Set <T>> tp = new Vector <Set <T>>();

37 for (int i=0; i<expectedResult.size(); i++){

38 Set <T> exp = expectedResult.get(i);

39 Set <T> comp = computedResult.get(i);

40 tp.add(getSingleTp(exp , comp , m));

41 }

42 return tp;

43 }

44

45 ...

36

46

47 }

Class metrics.WeakAnnotationMatch implements the Weak Annotation Match

Mw defined in Definition 6. Generic type T is set to Annotation, since Mw is

defined on the set of annotations. In the constructor, the interface to the Wi-

kipedia API is passed. This is needed to implement the dereference function.

The body of method match implements the match relation Mw: two annota-

tions match if they have the same (dereferenced) concept and their mentions

overlap. In methods preProcessOutput and preProcessGoldStandard, both

the system output and the gold standard are searched for internal nested or

overlapping annotations, that are discarded according to the speculations pre-

viously discussed. Moreover, the information about the concepts contained in

the dataset and in the system output (including their possible redirect page)

is pre-fetched from Wikipedia, to let the match relation work on cached data,

avoiding a call to the Wikipedia API for each match test.

Class metrics.WeakAnnotationMatch4:

1

2 package it.acubelab.annotatorBenchmark.metrics;

3

4 ...

5

6 public class WeakAnnotationMatch implements MatchRelation <Annotation >{

7 private WikipediaApiInterface api;

8

9 public WeakAnnotationMatch(WikipediaApiInterface api){

10 this.api = api;

11 }

12

13 @Override

14 public boolean match(Annotation t1, Annotation t2) {

15 return (api.dereference(t1.getConcept ()) == api.dereference(t2.

getConcept ())) &&

16 t1.overlaps(t2);

17 }

18

19 @Override

20 public List <Set <Annotation >> preProcessOutput(List <Set <Annotation >>

computedOutput) {

21 Annotation.prefetchRedirectList(computedOutput , api);

22 List <Set <Annotation >> nonOverlappingOutput = new Vector <Set <

Annotation >>();

23 for (Set <Annotation > s: computedOutput)

24 nonOverlappingOutput.add(Annotation.deleteOverlappingAnnotations(s)

);

25 return nonOverlappingOutput;

26 }

27

28 @Override

4In this listing, the treating of exceptions has been removed for the sake of clarity.

37

29 public List <Set <Annotation >> preProcessGoldStandard(List <Set <Annotation

>> goldStandard) {

30 Annotation.prefetchRedirectList(goldStandard , api);

31 List <Set <Annotation >> nonOverlappingGoldStandard = new Vector <Set <

Annotation >>();

32 for (Set <Annotation > s: goldStandard)

33 nonOverlappingGoldStandard.add(Annotation.

deleteOverlappingAnnotations(s));

34 return nonOverlappingGoldStandard;

35 }

36

37 ...

38

39 }

4.3.5 Extending with a new match relation

To add a new match relation M∗ on objects of type X, a class called Match-

RelationName should be created implementing MatchRelation<XObj>, where

XObj is the class representing elements of X. MatchRelationName could also

extend a class implementing MatchRelation<XObj>, to increase code reusage,

reimplementing only a subset of its methods.

The following listing gives an example of a match relation on tags. The

match occurs if and only if the semantic closeness of the two tags, accord-

ing to a certian function, is greater than 0.5. The class CloseTagMatch ex-

tends StrongTagMatch, and thus implements MatchRelation<Tag>, reusing the

implementation of methods preProcessOutput and preProcessGoldStandard

provided by StrongTagMatch.

1 public class CloseTagMatch extends StrongTagMatch implements

MatchRelation <Tag >{

2

3 public CloseTagMatch(WikipediaApiInterface api) {

4 super(api);

5 }

6

7 @Override

8 public boolean match(Tag t1 , Tag t2) {

9 return closeness(t1, t2) > 0.5;

10 }

11

12 private float closeness(Tag t1, Tag t2){

13 float closeness = ...

14 return closeness;

15 }

16 }

Note that, as explained in Chapter 3, all match relations must be reflexive

and symmetric. It is up to the user to implement the match method properly.

Breaking this requirement results in inconsistent measures.

38

4.3.6 Extending with a new measure

To extend the metrics adding new measures, it is enough to extend class Metrics

with a new class implementing the new measures.

Here follows a case study: the standard F1 measure is implemented in

Metrics, but F1 can be generalized adding a β parameter in the form:

Fmicro(R,G,M, β) = (1 + β2) · Pmicro(R,G,M) ·Rmicro(R,G,M)

β2 · Pmicro(R,G,M) +Rmicro(R,G,M)

Lower values of β give more importance to the precision, while higher values

give more importance to the recall. Setting β = 1 we obtain the F1 measure.

Suppose we want to add this measure to the set of metrics. A new class

implementing this measure would look like this:

1 public class GeneralizedF1Metrics <T> extends Metrics <T> {

2

3 public static float genF1(float recall , float precision , float beta){

4 float betaPow = beta*beta;

5 return (recall+precision == 0) ? 0 : (1+ betaPow)*recall*precision /(

betaPow*recall+precision);

6 }

7

8 public float computeMicroF1(List <Set <T>> outputOrig , List <Set <T>>

goldStandardOrig , float beta , MatchRelation <T> m) throws

IOException{

9 List <Set <T>> output = m.preProcessOutput(outputOrig);

10 List <Set <T>> goldStandard = m.preProcessGoldStandard(goldStandardOrig

);

11 int tp = tpCount(goldStandard , output , m);

12 int fp = fpCount(goldStandard , output , m);

13 int fn = fnCount(goldStandard , output , m);

14 float microPrec = precision(tp, fp);

15 float microRecall = recall(tp, fp, fn);

16

17 return genF1(microRecall , microPrec , beta);

18 }

19 }

4.4 Conclusions

This chapter presented an implementation of a benchmarking framework, that

makes it possible to run an experiment for a system solving one of the problems

defined in Chapter 2, measuring its performance with the metrics defined in

Chapter 3. In some cases, the code of the benchmarking framework reflects the

formal framework defined in the previous chapters.

The benchmarking framework is easily extendible adding new systems, new

datasets, new problems and new metrics. This chapter provides detailed exam-

ples on how to do that.

39

Chapter 5

Datasets, Systems and

Wikipedia
Every gun makes its own tune.

– The Good, the Bad and the Ugly.

There are several systems that solve problems related to the retrieval of

topics, most of them developed for research purposes according to different

philosophies. This chapter presents the features of a subset of them, selected

because they employ interesting and original techniques or give particularly

interesting results. All the reviewed systems use Wikipedia not only to refer

to its pages as unambiguous topics, but also as a knowledge base to extract

the information from. For this reason, this chapter starts with an introduction

to the features of the online encyclopedia. To perform the experiments, some

datasets have been developed providing a set of instances and the gold standard

solutions. These datasets are discussed in the last section of this chapter. In

the next chapter are reported the results given by the benchmarking framework

for all these systems and datasets.

5.1 Wikipedia and its graph

The Wikipedia online encyclopedia is probably the most important collaborative

project ever created on the Internet. Supported by the Wikimedia Foundation,

a U.S.-based non-profit organization, and based upon the MediaWiki software,

that lets any user edit the encyclopedia pages even with a small technical knowl-

edge, it comes up in 285 languages.

All versions of Wikipedia are entirely released under the Creative Commons

Attribution/ Share-Alike 3.0 license, that lets anyone freely distribute its con-

40

Name Institution Addressed
problem

Notes & key references

TagMe University of Pisa Sa2W [11]

Illinois Wikifier University of Illinois at Urbana-
Champaign

Sa2W,
D2W

[36]

CMNS University of Amsterdam C2W [27]

Wikipedia Miner University of Waikato Sa2W [33, 30, 32]

AIDA Max Planck Institute for Informatics Sa2W,
D2W

[41, 17]

Table 5.1: Problems natively addressed by the annotation systems.

tents and the derived works. Dumps of the whole encyclopedia are downloadable

in open formats. This open approach makes it easy to manipulate the data and

to automatically process it.

The english version of Wikipedia, the biggest of all language editions, has

about 10 million visits per hour and counts 4 million pages. The active editors

(users that made at least 5 edits in a month) are 33,680 and the encyclopedia is

growing with 1,067 new articles per day1. The Wikipedia graph is a Small-world

network, with an average shortest path from any node to another of just 4.5

steps. In the graph, there are more than 70 million edges (an average of about

17.5 outgoing edges per node).

An edge from page p1 to page p2 suggests some kind of semantic relation

between the two concepts expressed by the two pages, since p1, at a certian

point of the text, cites the concept expressed by p2. Unfortunately, this does

not always indicate an actual semantic proximity, because concepts cited in a

text may be not that relevant for the text. For example, the page about Shoes

has a direct link to Bone2, even though the two concepts are not strongly related.

Given the Small-world property of the graph, this loose correlation gets milder

increasing the length of the path in the graph: starting from the page about

Astronomy in medieval Islam, in just two steps, the page about Jimi Hendrix

can be reached. A mutual direct link between two pages indicates a stronger

semantic relation, and many other relatedness functions have been developed

to address the task of finding how semantically close two pages are [31, 36].

5.2 Topic-retrieval systems

The state-of-the-art topic retrieval systems and the problem they address na-

tively are presented in Table 5.1.

1Data for July 2012, taken from http://stats.wikimedia.org/EN/
2The anchor is contained in the sentence “The foot contains more bones than any other

single part of the body”.

41

http://stats.wikimedia.org/EN/

5.2.1 Overview of the algorithmic features of the topic-

retrieval systems

The topic-retrieval systems, while addressing the same area of problems, exploit

different techniques.

TagMe searches the input text for mentions picked up by the set of Wikipedia

page titles, anchors and redirects. Each mention is associated to a set

of candidate concepts the mention may refer to. The disambiguation is

done exploiting the structure of the Wikipedia graph, trying to bind the

mentions to concepts that are related to each other, using the relatedness

measure [31] introduced in the Wikification algorithm, that takes into

account the amount of common in-going and outgoing links between the

two pages. TagMe disambiguation is enriched with a voting scheme, in

which all possible bindings between mentions and concepts express a vote

for the others, and the combination with highest vote average is selected.

Wikipedia Miner is an implementation of the Wikification algorithm pre-

sented in [33], one of the first approaches to the disambiguation to Wiki-

pedia. This system performs disambiguation before the identification of

mentions. Disambiguation is done with a machine-learning approach that

trains with links taken from Wikipedia pages (thus created by Wikipe-

dia users). Semantic relatedness between pages is not computed with the

relatedness measure of the original Wikification algorithm but is as well

machine-learned.

AIDA searches for mentions using the Stanford NER Tagger and uses the

YAGO2 knowledge base [16], which provides a catalog of concepts and the

relationships among concepts, including their semantic distance. AIDA

disambiguation comes in three variants:

PriorOnly Mentions are bound to the concept that is most commonly

bound in the knowledge base.

LocalDisambiguation Uses the local similarity disambiguation tech-

nique, that disambiguates each mention independently, without en-

forcing a semantic coherence among the mentions.

CocktailParty YAGO2 is used to perform a collective disambiguation of

the mentions: using a graph-based approach, the mapping between

mentions and concepts that preserves the highest coherence between

each other is iteratively found.

Illinois Wikifier as TagMe, the input text is searched for mentions extracted

by Wikipedia anchors and titles using the Illinois NER system [35]. The

42

Figure 5.1: Part of an example document (news story) given in the AIDA/-
CoNLL dataset with its annotations, constituting the gold standard for this
document.

disambiguation problem is formulated as an optimization problem. As in

the other systems, a global approach is adopted, which instead of disam-

biguating each mention at a time, tries to disambiguate them all together,

preserving the highest coherence. Illinois Wikifier uses an original re-

latedness measure between Wikipedia pages based on NGD (Normalized

Google similarity distance) and PMI (Pointwise mutual information).

CMNS is meant to treat very short documents (e.g. Twitter posts). It gen-

erates a ranked list of candidate concepts for all N-grams in the input

text. The list is created through lexical matching and language modeling.

The disambiguation is done with a method based on supervised machine

learning that takes as input a set of documents and, for each document,

a set of annotations done by a human.

5.3 Available datasets

A noteworthy publication of a new system always comes along with test results

on peculiar datasets to assess its performance. Unfortunately, each system is

tested on different datasets and with different tricks and measures. Table 5.2

give a description for some of the published datasets, that were implemented in

the benchmarking framework.

Some extract of documents given by the datasets as instances, together with

the gold standard proposed by the dataset, are given in Figures 5.1, 5.2, 5.3,

5.4 and 5.5.

43

Dataset Description Published
in

AIDA/CoNLL Contains a subset of the the original CoNLL 2003 entity
recognition task dataset. The documents are taken from the
Reuters Corpus V1 and consists of news stories. A quite
large subset of mentions (though not all of them), including
the most important ones, are annotated. Topics are anno-
tated at each occurrence of a mention.

[17]

MSNBC Contains newswire text in English from MSNBC news net-
work. Only important topics are annotated and all occur-
rences of mentions that refer to those topics are annotated.

[8]

AQUAINT Contains a subset of the original AQUAINT corpus, consist-
ing of newswire text data in English. Not all occurrences
of the mentions are annotated: if more than one mention in
a document refers to the same concept, only the first men-
tion is actually annotated. Moreover, only the mentions that
refer to topics considered important are annotated. This re-
flects the Wikipedia-style linking.

[33]

Meij Contains microblog messages publicly available on twitter.
Maximum document length is 140 characters. All topics
contained in each tweet are tagged.

[27]

KDD Contains search engine queries. Most topics are annotated. [37]

Table 5.2: Description of available datasets.

Figure 5.2: Part of an example document (news story) given in the MSNBC
dataset with its annotations, constituting the gold standard for this document.

44

Figure 5.3: Part of an example document (news story) given in the Aquaint
dataset with its annotations, constituting the gold standard for this document.

Figure 5.4: Three example documents (twitter messages) given in the Meij
dataset with their tags, constituting the gold standard for these documents.

Figure 5.5: Three example documents (search engine queries) given in the KDD
dataset with their annotations, constituting the gold standard for these docu-
ments.

45

Dataset Native
Problem

Docs Ann
(Tags)

Distinct
Topics

Avg.
Ann/-
Doc

Avg.
length

Ann.
fre-
quency

AIDA/CO-NLL A2W 1393 27815 5591 20.0 1130 56−1

MSNBC A2W 20 658 279 32.9 3316 101−1

AQUAINT A2W 50 727 572 14.5 1415 98−1

Meij Rc2W 502 812 567 1.6 80 50−1

KDD A2W 1596 674 557 0.4 24 60−1

Table 5.3: Column Native Problem indicates the problem for which the dataset
offers a set of instances and their gold standard solutions. Docs is the number
of documents (instances) contained in the dataset. Ann (Tags) is the number
of overall annotations or tags in the dataset. Distinct Topics is the number
of distinct topics that appear in the dataset. Avg. Ann/Doc is the average
number of annotations or tags per document. Avg. length is the average length
of a document in the dataset, in characters. Ann. frequency is the frequency
of annotations or tags per character (a value of n−1 indicates an average of one
annotation or tag every n characters).

Some datasets include annotations to concepts that no longer exist as pages

in the current version of Wikipedia. This may happen if a page have been

deleted or if its name was changed, and the dataset refers to an older version

of Wikipedia. In the implementation of the benchmarking system, annotations

with non-existing concepts are discarded.

Table 5.3 gives figures about the datasets. These figures help understanding

the nature of the datasets: AIDA/CO-NLL, MSNBC and AQUAINT address

about the same kind of documents (news stories written in good english and

good punctuation), the first being the most rich and complete, the others con-

taining longer documents (with less annotations). Meij is focused on twitter

messages (short text often with abbreviations and poor punctuation) and is

quite rich as well. KDD is focused on search engine queries (few keywords).

5.4 Comparing two systems for a given dataset

Figure 5.6 shows how two topic retrieval systems can be compared to each other

and the datasets they can be compared against. Keeping an eye at the graph,

the performance of systems S′ and S′′ in solving problem P can be compared

if and only if a reverse-path exists from problem P to system S′ and from

problem P to system S′′, and there is a dataset D representing a gold standard

for problem P ′|P ∝ P ′. In this case, the performance of systems S′ and S′′ can

be measured with respect to their ability to solve the instances of problem P

provided by dataset D. E.g.: The only way of comparing CMNS and Illinois

46

Illinois CMNS Wikipedia Miner AIDA

TagMe Sa2W*, Sc2W,
A2W, Rc2W,
D2W, C2W

Rc2W, C2W Sa2W*, Sc2W,
A2W, Rc2W,
D2W, C2W

Sa2W*, Sc2W,
A2W, Rc2W,
D2W, C2W

Illinois Rc2W, C2W Sa2W*, Sc2W,
A2W, Rc2W,
D2W, C2W

Sa2W*, Sc2W,
A2W, Rc2W,
D2W*, C2W

CMNS Rc2W, C2W Rc2W, C2W

Wikipedia
Miner

Sa2W*, Sc2W,
A2W, Rc2W,
D2W, C2W

Table 5.4: Comparability of the topic-retrieval systems for each problem. Prob-
lems addressed natively by both systems are marked with a *.

Figure 5.6: Framing of the systems and datasets in the problem hierarchy. Each
system and each dataset is associated to the problem(s) it addresses natively.
Systems are highlighted in pink, while datasets in yellow.

Wikifier is to compare their ability to solve problem C2W, and the comparison

can be done with respect to their ability to solve the instances provided by any

of the described datasets, since all of them can be adapted to give an instance

and a gold standard for the C2W problem, while Illinois Wikifier and TagMe

can be compared to each other for their ability to solve A2W, for example using

dataset AQUAINT.

The comparability between systems derived from the graph in Figure 5.6 is

presented in the matrix in Table 5.4.

5.5 Conclusions

In this chapter, we presented some of the publicly available systems, selected for

their originality, that solve problems related to topic retrieval. For each systems,

the problem(s) natively solved is reported, together with its main features. Since

the reviewed systems are all based upon Wikipedia as a knowledge basis, we

47

briefly presented some features of this online encyclopedia.

Some publicly available datasets, representing a set of instances and a gold

standard for some problems, have been reviewed, together with their main fea-

tures. These datasets can be used to perform experiments and check the ability

of a system in solving the problems for the instances given by the dataset.

48

Chapter 6

Experimental Results
E quindi uscimmo a riveder le stelle.

– Dante Alighieri, La Divina Commedia, Canto XXXIV

Let’s put all the pieces together: in this chapter, benchmarking results given

by the framework illustrated in Chapter 4 are presented and commented. Ex-

periments were run benchmarking the topic retrieval systems with the datasets

presented in Chapter 5. The measures of performance and similarity are those

proposed in Chapter 3. Problems presented in Chapter 2 and their reductions

are the underlying basis for the analysis.

6.1 Setting up the experiments

6.1.1 Employed software and APIs

The benchmark has been done using the most up-to-date APIs or software made

available by their authors. TagMe has been tested using the publicly available

APIs [3] in September 2012; experiments on AIDA have been performed using

the AIDA RMI Service updated on 30/07/2012 [1]; experiments on Wikipe-

dia Miner have been performed querying the API publicly available at [4] in

September 2012; Illinois Wikifier has been downloaded from [2] in August 2012

and run locally.

6.1.2 Performed experiments

Three experiments, each exploring the ability of the systems on certian kinds

of datasets, have been set up. Configurations for the experiments are given in

Table 6.1.

49

Configuration Target Systems Datasets Problem Employed match
relations

Experiment 1 News stories All but CMNS AIDA/CO-NLL,
AQUAINT,
MSNBC

A2W Ms, Mw, Me, Mc

Experiment 2 Tweets All but CMNS Meij C2W Mt

Experiment 3 Queries All but CMNS KDD A2W Mc

Table 6.1: Configuration for the performed experiments. Columns Systems and
Datasets report respectively the systems that have been benchmarked in the
experiment and the datasets on which the systems are run. Column Problem
gives the problem for which the experiments are performed, that is the most
general problem that reduces to all the problems natively solved by the systems
and to the problem for which the dataset gives a set of instances and their gold
standard.

Experiment 1: News

In Experiment 1, the correctness evaluation is focused on the A2W problem,

the most general problem that all annotators (except CMNS) can solve and for

which most datasets are available.

All tested systems (Illinois Wikifier, TagMe, AIDA, Wikipedia Miner) na-

tively solve the Sa2W problem, and hence their output must be adapted to the

A2W problem, for which datasets AIDA/CO-NLL, AQUAINT and MSNBC

give a gold standard. As described in Table 2.3, the reduction A2W ∝ Sa2W

introduces a variable: the threshold on the score. By consequence, the experi-

ments are performed for values of the threshold ranging from 0 to 1.

Experiment 2: Tweets

Illinois Wikifier, TagMe, AIDA and Wikipedia Miner were also tested for their

ability to deal with short twitter messages, given by dataset Meij. Unfortunately,

CMNS could not be tested because it has not yet been published.

Since Meij is a C2W dataset, the system output must be adapted using

reduction C2W ∝ A2W ∝ Sa2W (that is, put a threshold on the scores and

take only the annotations with a higher score, then discard the mentions and

the scores, leaving only a set of distinct concepts).

It is important to note that only TagMe has been built with the aim of

annotating short text fragments, while Illinois Wikifier, AIDA and Wikipedia

Miner target documents written in correct english. Still, this test checks the

flexibility of these systems.

50

Experiment 3: Search engine queries (a preliminary study)

KDD dataset containing search engine queries is for problem A2W, and can

be given as input to Illinois Wikifier, TagMe, AIDA and Wikipedia Miner.

Nonetheless, in this case, we are not interested in computing annotations, but

only in concepts. That’s why the only match function adopted is the Concept

annotation match defined in Definition 8.

In this case, none of the systems were designed to address this kind of doc-

uments, made only of keywords. To work on this dataset, major modifications

should be applied to the reviewed systems. A study more focused on this task is

presented in [19]. For systems are used as they come, the results are extremely

poor, though showing some interesting results about their flexibility.

6.2 Results for Experiment 1: news

6.2.1 Finding the annotations

Note that each of the Sa2W annotators give a different meaning to the score, so

it does not make sense to compare the performance of two annotators for the

same threshold. The question that can instead be answered is: If an annotator

knew its optimal threshold on the score, which annotator would perform best?

To answer this question, the metrics presented in Chapter 3 have been

measured. The interesting data is the maximum value of F1micro(Rt, G,Mw)

reached varying the threshold t, where Mw is the Weak annotation match, G is

the gold standard, Rt is the result of the system adapted as an output of the

A2W problem using t as threshold. This measure for the tagging systems is

sketched out for each dataset by charts in Figures 6.1, 6.2 and 6.3.

The most significant results are those obtained with the AIDA/CO-NLL

dataset, since it is the largest with 1.393 documents and 27.815 annotations.

The dataset has an average document length of 1130 characters, as described in

Table 5.3.

Maximizing micro-F1

Results of metrics based on Weak annotation match are reported in Table 6.2 for

all datasets. Results for each system and each dataset are given for the threshold

t∗ that maximize the F1micro(Rt, G,Mw), where Rt is the result adapted from

Sa2W to A2W keeping only annotations with a score higher than t, G is the

gold standard given by the dataset, and Mw is the Weak annotation match. t∗

51

is obtained varying the threshold t ∈ [0, 1]. In other words, we have

t∗ = arg max
t∈[0,1]

F1micro(Rt, G,Mw)

Results based on the Strong annotation match, thus for the thresholds that

maximize the F1micro(Rt, G,Ms) are reported in Table 6.3 only for the AIDA/CO-

NLL dataset, mainly to show the difference between the two match relations

(results over other datasets are coherent). Metrics based on the Strong annota-

tion match give slightly lower results, especially for annotators such as TagMe,

Illinois Wikifier and Wikipedia Miner, that seem to return a significant set of

annotations with mentions that don’t coincide with those in the dataset, even

though overlapping with them.

The best annotator for AIDA/CO-NLL in terms of micro-F1 is TagMe, fol-

lowed by Illinois Wikifier, Wikipedia Miner, and then AIDA. For AIDA, the

best algorithm is clearly CocktailParty, followed by Local and PriorityOnly.

Note that AIDA have a high precision and a low recall - this is probably caused

by its poor ability to recognize the mentions (see Section 6.2.2): few mentions

are recognized, probably the clearest ones, but the concept associated to them

is mostly correct.

Datasets AQUAINT and MSNBC are less meaningful, but still give an idea

of the performance for longer documents. TagMe gives the best results. For

AQUAINT (avg. length: 1415 characters), Wikipedia Miner reaches the second

position followed by Illinois Wikifier and then AIDA. For MSNBC, the dataset

with longest documents (avg. length: 3316 characters), the second most per-

forming is AIDA with the Local algorithm, followed by Illinois Wikifier and

Wikipedia Miner.

Precision, recall and the scoring function

Charts in Figures 6.1, 6.4 and 6.5 respectively show the F1micro(Rt, G,Mw),

Pmicro(Rt, G,Mw) and Rmicro(Rt, G,Mw) measures obtained testing the anno-

tators against the AIDA/CO-NLL dataset, for t ∈ [0, 1].

As expected, for all the annotators, for values of t ' 1 the F1 drops, since

the recall drops to 0 (too many correct annotations are discarded increasing the

number of false negatives), as Figure 6.5 clearly shows.

It is less straightforward to interpret the behavior of the precision shown

in Figure 6.4. For Wikipedia Miner and AIDA-PriorityOnly, increasing the

threshold, the precision grows as expected, while the other annotators, for a

certain threshold, experience a counter-intuitive loss of precision. First of all, it

must be taken into account that the number of positives for such high thresholds

are very small, thus the precision is heavily affected by a small number of false

52

Dataset Annotator Best
Thresh-
old

F1micro Pmicro Rmicro tp fp fn

MSNBC
(len 3316)

TagMe 2 0.172 0.511 0.507 0.516 335 326 314
Illinois Wikifier 0.469 0.408 0.338 0.515 335 656 315
AIDA-Local 0.000 0.450 0.767 0.318 207 63 443
AIDA-
CocktailParty

0.000 0.441 0.752 0.312 203 67 447

AIDA-
PriorityOnly

0.000 0.359 0.611 0.254 165 105 485

Wikipedia Miner 0.672 0.191 0.191 0.191 124 526 525

AQUAINT
(len 1415)

TagMe 2 0.172 0.506 0.471 0.547 398 447 329
Illinois Wikifier 0.516 0.341 0.285 0.425 309 776 418
AIDA-Local 0.000 0.223 0.380 0.158 115 188 612
AIDA-
CocktailParty

0.000 0.216 0.366 0.153 111 192 616

AIDA-
PriorityOnly

0.000 0.219 0.373 0.155 113 190 614

Wikipedia Miner 0.531 0.469 0.365 0.657 478 833 249

AIDA/CO-NLL
(len 1130)

TagMe 2 0.219 0.552 0.587 0.520 14475 10172 13338
Illinois Wikifier 0.453 0.544 0.492 0.607 16897 17450 10922
AIDA-Local 0.000 0.469 0.725 0.346 9624 3644 18191
AIDA-
CocktailParty

0.000 0.470 0.728 0.347 9662 3606 18153

AIDA-
PriorityOnly

0.000 0.406 0.629 0.300 8343 4927 19472

Wikipedia Miner 0.594 0.520 0.495 0.547 15227 15537 12587

Table 6.2: The main results about correctness is shown in this table.
Column F1micro indicates the maximum micro-F1 measure computed as
F1micro(Rt∗ , G,Mw), where t∗ is the threshold that maximizes the micro-F1.
Column Best Threshold indicates t∗. Columns Pmicro and Rmicro indicate the
micro-precision and micro-recall for the same threshold t∗. Columns tp, fp, fn
respectively show the overall true positives, false positives and false negatives
for the results of the dataset, still for threshold t∗.

Dataset Annotator Best
Thresh-
old

F1micro Pmicro Rmicro tp fp fn

AIDA/CO-NLL
(len 1130)

TagMe 2 0.219 0.536 0.562 0.512 14243 11115 13572
Illinois Wikifier 0.469 0.499 0.423 0.610 16956 23150 10859
AIDA-Local 0.000 0.467 0.723 0.345 9595 3673 18220
AIDA-
CocktailParty

0.000 0.469 0.726 0.346 9632 3636 18183

AIDA-
PriorityOnly

0.000 0.405 0.627 0.299 8316 4954 19499

Wikipedia Miner 0.594 0.474 0.413 0.556 15472 22034 12343

Table 6.3: Results based on Strong annotation match (Only for AIDA/CONLL
dataset). Column F1micro indicates the maximum micro-F1 measure computed
as F1micro(Rt∗ , G,Ms). For a description of the other columns, see Table 6.2.

53

Figure 6.1: Micro-F1 measure for Sa2W systems on dataset AIDA/CO-NLL,
for threshold t ∈ [0, 1].

positives. Anyhow, this behavior demonstrates that a certain number of wrong

annotations have a high score. Note that this behavior does not have a big

influence on the F1 measure, since for these thresholds the recall is very close

to 0, and so is the F1.

The behaviour of the precision and recall in Figures 6.4 and 6.5 give an

evidence of the performance of an important feature of an annotation system.

As said in the introduction of Chapter 3, one factor which the performance of

a system depends upon how good the system is in assigning the score to the

annotations. This issue should be inspected more in-depth, but some assump-

tions can be made: Let p(a) be the probability that annotation a is correct, and

let s(a) be the scoring function. The ideal scoring function is s∗(a) = p(a). A

good scoring function should obviously assign higher scores to annotations that

are more likely to be correct, thus it should be s(a′) ≥ s(a′′) ⇔ p(a′) ≥ p(a′′).

In this scenario, functions describing precision and recall would be respectively

monotonically non-decreasing and monotonically non-increasing.

While for the recall chart in Figure 6.5 this property seems to be respected,

the precision chart given in Figure 6.4 indicates a failure for the scoring functions

of AIDA-Local, AIDA-CockailParty, Illinois Wikifier and TagMe, that, in some

cases, assign a high score to wrong annotations, while the scoring functions of

Wikipedia Miner and AIDA-PriorityOnly seem to perform better.

54

Figure 6.2: Micro-F1 measure for Sa2W systems on dataset AQUAINT, for
threshold t ∈ [0, 1].

Figure 6.3: Micro-F1 measure for Sa2W systems on dataset MSNBC, for thresh-
old t ∈ [0, 1].

55

Figure 6.4: Micro-Precision measure for Sa2W systems on dataset AIDA/CO-
NLL, for threshold t ∈ [0, 1].

Figure 6.5: Micro-recall measure for Sa2W systems on dataset AIDA/CO-NLL,
for threshold t ∈ [0, 1].

56

Dataset Annotator Best
Thresh-
old

F1micro Pmicro Rmicro tp fp fn

AIDA/CO-NLL
(len 1130)

TagMe 2 0.203 0.710 0.734 0.687 19011 6875 8657
Illinois Wikifier 0.391 0.680 0.593 0.798 22263 15308 5634
AIDA-Local 0.000 0.603 0.933 0.445 12381 887 15428
AIDA-
CocktailParty

0.000 0.603 0.933 0.445 12380 888 15429

AIDA-
PriorityOnly

0.000 0.603 0.933 0.445 12380 890 15429

Wikipedia Miner 0.484 0.682 0.607 0.779 21610 13976 6139

Table 6.4: Results based on Mention annotation match (Only for AIDA/CONLL
dataset). Column F1micro indicates the maximum micro-F1 measure computed
as F1micro(Rt∗ , G,Mm). For a description of the other columns, see Table 6.2.

6.2.2 Finding the mentions

As illustrated in Section 3.2, the sub-task of finding the mentions can be mea-

sured using the same micro-F1, micro-recall and micro-precision measures com-

bined with the Mention annotation match relation M = Mm.

The value of F1micro(Rt∗ , G,Mm) (for the threshold t∗ that maximizes it)

for the experiment ran on the AIDA/CO-NLL dataset is given for each system

in Table 6.4 and basically shows the performance of the NER algorithms used

by the annotation systems. Methods of the AIDA system use the same NER

system (Stanford NER tagger) and obviously have the same result, that is the

lowest one in terms of F1 but provides a very high precision. Illinois Wikifier

(that uses the Illinois Named Entity Tagger) shows similar results to Wikipedia

Miner. TagMe has a higher precision but a lower recall.

6.2.3 Finding the concepts

Keeping in mind Section 3.3, the sub-task of finding the concepts can be mea-

sured with the same metrics used in the other tests, combined with the Concept

annotation match M = Mc.

The value of F1micro(Rt∗ , G,Mc) (for the threshold t∗ that maximizes it) for

the experiment ran on the AIDA/CO-NLL dataset is given for each system in

Table 6.5. TagMe outperforms the other annotators in terms of F1 and recall,

while the highest precision is achieved by AIDA-CocktailParty, that has a very

low recall. The CocktailParty algorithm seems to be the best in the choice of

the AIDA algorithms, being slightly better than Local and significantly better

that PriorityOnly.

57

Dataset Annotator Best
Thresh-
old

F1micro Pmicro Rmicro tp fp fn

AIDA/CO-NLL
(len 1130)

TagMe 2 0.297 0.642 0.657 0.629 10480 5476 6190
Illinois Wikifier 0.531 0.567 0.531 0.609 10149 8976 6521
AIDA-Local 0.000 0.541 0.773 0.416 6932 2035 9738
AIDA-
CocktailParty

0.000 0.542 0.793 0.411 6859 1795 9811

AIDA-
PriorityOnly

0.000 0.473 0.655 0.370 6164 3249 10506

Wikipedia Miner 0.594 0.532 0.489 0.582 9708 10132 6962

Table 6.5: Results based on Concept annotation match (Only for AIDA/CONLL
dataset). Column F1micro indicates the maximum micro-F1 measure computed
as F1micro(Rt∗ , G,Mc). For a description of the other columns, see Table 6.2.

6.2.4 Output similarity

As described in Section 3.4, the outputs of two annotators can be compared to

understand how similar they are. This is measured with the Smicro and Smacro

measures given in Definition 10, combined with any match relation, depending

on what we want to check the similarity of, as described in Subsection 3.4.3.

Similarity of the annotations

In Table 6.6 are reported values of the similarity measure Smacro(At′ , Bt′′ ,Mw)

defined in Definition 10, where A and B are the output of each pair of annotators

and At′ and Bt′′ are the output keeping only annotations with a score above the

thresholds that maximize the micro-F1 (those reported in Table 6.2). These sets

include true positives and false positives found by the tagging systems. As match

relation M , the Weak annotation match Mw has been used. In other words, the

Smacro(At′ , Bt′′ ,Mw) measure given in Table 6.6 represents the similarity of the

best output of two systems, including both true and false positives.

As said in Subsection 3.4.4, the fraction of true positives can be measured

in detail. Table 6.7 is analogous to Table 6.6 except that the similarity

Smacro(T (At′ , G,Mw), T (Bt′′ , G,Mw),Mw)

is not computed on the whole output, but is restricted to the true positives

using the T function defined in Definition 11. Hence, this measure shows how

many of the correct annotations two systems have in common.

As expected, the highest similarities are between the methods of the AIDA

system, that all use the same NER algorithm. A similarity around 50% is also

shown between Illinois Wikifier, Wikipedia Miner and TagMe, while these three

58

TagMe 2 Illinois
Wikifier

AIDA-
Local

AIDA-
CocktailParty

AIDA-
PriorityOnly

Wikipedia
Miner

TagMe 2 1.000 0.407 0.325 0.318 0.342 0.533

Illinois Wiki-
fier

1.000 0.246 0.245 0.240 0.545

AIDA-Local 1.000 0.921 0.821 0.306

AIDA-
CocktailParty

1.000 0.808 0.300

AIDA-
PriorityOnly

1.000 0.317

Wikipedia
Miner

1.000

Table 6.6: Similarity between the annotation systems, given as the Smacro mea-
sure on the best outputs for the AIDA/CONLL dataset.

TagMe 2 Illinois
Wikifier

AIDA-
Local

AIDA-
CocktailParty

AIDA-
PriorityOnly

Wikipedia
Miner

TagMe 2 1.000 0.600 0.444 0.435 0.463 0.686

Illinois Wiki-
fier

1.000 0.430 0.427 0.431 0.691

AIDA-Local 1.000 0.963 0.899 0.471

AIDA-
CocktailParty

1.000 0.884 0.464

AIDA-
PriorityOnly

1.000 0.490

Wikipedia
Miner

1.000

Table 6.7: Similarity between the annotation systems, given as the Smacro mea-
sure on the true positives of the best outputs for the AIDA/CONLL dataset.

systems are rather dissimilar to the AIDA system. Results in Table 6.7 enhances

those in Table 6.6.

Similarity of the mentions

To check the similarity of the systems in recognizing the mentions, the same S

measure has been computed using M = Mm, that is, the Mention annotation

match is used as match relation. Here, the measure

Smacro(T (At′ , G,Mm), T (Bt′′ , G,Mm),Mm)

represents how much of the correct output have overlapping annotations. At′

and Bt′′ are selected using the thresholds reported in Table 6.4, that maximize

the recognition of mentions. Moreover, At′ and Bt′′ are restricted to the true

59

TagMe 2 Illinois
Wikifier

AIDA-
Local

AIDA-
CocktailParty

AIDA-
PriorityOnly

Wikipedia
Miner

TagMe 2 1.000 0.700 0.498 0.498 0.498 0.754

Illinois Wiki-
fier

1.000 0.503 0.502 0.503 0.819

AIDA-Local 1.000 0.999 1.000 0.545

AIDA-
CocktailParty

1.000 0.999 0.545

AIDA-
PriorityOnly

1.000 0.545

Wikipedia
Miner

1.000

Table 6.8: Similarity between the annotation systems in recognizing the men-
tions, given as the Smacro measure on the outputs that maximize the F1 for the
recognition of mentions. Results for the AIDA/CONLL dataset.

positives using the T function defined in Definition 11.

Results are shown in Table 6.8. The mention recognition for the AIDA

algorithm is the same, and thus show a similarity of 1. Wikipedia Miner shares

around 75% of mentions with TagMe and Illinois Wikifier, while AIDA have only

about 50% of mentions in common with the other systems. These data seem

to indicate that a big part of the performance of a system in solving problem

Sa2W and A2W is determined by the way mentions are recognized in the text.

Similarity of the concepts

The similarity for the concepts,

Smacro(T (At′ , G,Mm), T (Bt′′ , G,Mm),Mm)

is reported in Table 6.9. At′ and Bt′′ are selected using the thresholds reported

in Table 6.4, that maximize the recognition of concepts. Moreover, At′ and Bt′′

are restricted to the true positives using the T function defined in Definition 11.

Hence, values reported in Table 6.9 show how many of the correct concepts are

in common between two systems.

The similarity between the AIDA algorithms is still the highest, and all sim-

ilarities are above 50%, indicating that more than half of the retrieved concepts

are in common. A rather high similarity is shown between Wikipedia Miner,

TagMe and Illinois Wikifier.

60

TagMe 2 Illinois
Wikifier

AIDA-
Local

AIDA-
CocktailParty

AIDA-
PriorityOnly

Wikipedia
Miner

TagMe 2 1.000 0.675 0.526 0.525 0.525 0.750

Illinois Wiki-
fier

1.000 0.541 0.542 0.534 0.720

AIDA-Local 1.000 0.968 0.918 0.569

AIDA-
CocktailParty

1.000 0.904 0.564

AIDA-
PriorityOnly

1.000 0.580

Wikipedia
Miner

1.000

Table 6.9: Similarity between the annotation systems in recognizing the con-
cepts, given as the S measure on the outputs that maximize the F1 for the
recognition of concepts. Results for the AIDA/CONLL dataset.

6.3 Results for Experiment 2: tweets

The main difference between news stories and tweets is their size and the dif-

ferent register. Poor verbosity, many abbreviations and bad grammars make it

hard for the NER systems to recognize the mentions and find the associated

concepts. Hence, results on microblogging posts are lower than those on news

stories.

6.3.1 Finding the concepts

How do the reviewed systems deal with short microblogging messages? Val-

ues in Table 6.10 report the measures for the threshold t∗ that maximizes the

F1micro(Rt∗ , G,Mc). TagMe and Wikipedia Miner prove to perform well with

the highest micro-F1 and recall. Illinois Wikifier give lower results, especially in

terms of recall, while AIDA, in all its variants, has a poor performance, though

having the highest precision. This is probably due to the lack of mention recog-

nition.

6.3.2 Output similarity

Table 6.11 gives the similarity of the output for the system as the

Smacro(T (At′ , G,Mt), T (Bt′′ , G,Mt),Mt)

measure. At′ and Bt′′ are selected with the thresholds t′ and t′′ given in Ta-

ble 6.10, and restricted to the true positives using the T function defined in

Definition 11. Hence, figures in Table 6.11 give the amount of common correct

61

Dataset Annotator Best
Thresh-
old

F1micro Pmicro Rmicro tp fp fn

Meij
(len 80)

TagMe 2 0.125 0.481 0.473 0.489 397 443 415
Illinois Wikifier 0.406 0.417 0.510 0.353 287 276 525
AIDA-Local 0.000 0.243 0.529 0.158 128 114 684
AIDA-
CocktailParty

0.000 0.243 0.529 0.158 128 114 684

AIDA-
PriorityOnly

0.281 0.277 0.667 0.175 142 71 670

Wikipedia Miner 0.297 0.477 0.487 0.467 379 399 433

Table 6.10: Results based on Strong tag match for the Meij dataset.
Column F1micro indicates the maximum micro-F1 measure computed as
F1micro(Rt∗ , G,Mt). For a description of the other columns, see Table 6.2.

TagMe 2 Illinois
Wikifier

AIDA-
Local

AIDA-
CocktailParty

AIDA-
PriorityOnly

Wikipedia
Miner

TagMe 2 1.000 0.747 0.631 0.635 0.632 0.809

Illinois Wiki-
fier

1.000 0.705 0.709 0.716 0.790

AIDA-Local 1.000 0.995 0.955 0.651

AIDA-
CocktailParty

1.000 0.959 0.653

AIDA-
PriorityOnly

1.000 0.654

Wikipedia
Miner

1.000

Table 6.11: Similarity between the tagging systems in recognizing the mentions,
given as the S measure on the outputs that maximize the F1 for the recognition
of mentions. Results for the Meij dataset.

concepts found by the annotators on the Meij dataset.

There is a significant amount of common concepts between all the annota-

tors. AIDA-Local and AIDA-CocktailParty find almost the same set of con-

cepts, very similar to the output of AIDA-CocktailParty. There is also a high

similarity between TagMe, Illinois Wikifier and Wikipedia Miner.

6.4 Results for Experiment 3: queries

Search engine queries have little in common with natural language texts: made

of keywords, they have no grammar, no punctuation and no structure at all,

since they are usually meant to follow the bag-of-words model. Reviewed anno-

tation systems were not built to process such kind of documents, therefore, the

preliminary study that can be done give odd results.

62

Dataset Annotator Best
Thresh-
old

F1micro Pmicro Rmicro tp fp fn

KDD
(len 24)

TagMe 2 0.250 0.343 0.281 0.439 296 757 378
Illinois Wikifier 0.484 0.069 0.058 0.083 56 902 618
AIDA-Local 0.453 0.003 0.200 0.001 1 4 673
AIDA-
CocktailParty

0.266 0.003 0.167 0.001 1 5 673

AIDA-
PriorityOnly

0.953 0.003 0.200 0.001 1 4 673

Wikipedia Miner 0.313 0.222 0.148 0.444 299 1726 375

Table 6.12: Results based on Concept annotation match for the KDD dataset.
Column F1micro indicates the maximum micro-F1 measure computed as
F1micro(Rt∗ , G,Mt). For a description of the other columns, see Table 6.2.

6.4.1 Finding the concepts

Values in Table 6.12 report the measures for the threshold t∗ that maximizes the

F1micro(Rt∗ ,G,Mc). Even without any adaptation for the peculiar task, TagMe

and Wikipedia Miner give surprisingly good results, proving their flexibility and

their capacity to adapt to tasks of different nature. Illinois Wikifier gives visibly

lower results. AIDA finds almost no concepts.

6.5 Experiments about runtime

Another important feature of the annotation systems is their performance in

terms of the time needed to find the annotations. Such measure is dependent

on the input text, the system, and the problem natively solved by the system. It

does also depend on the problem the result is adapted to, but the time to perform

the adaptation is negligible and dependent on the framework implementation,

and thus is not included in the measures. Since in the previous experiments, all

tested systems solve Sa2W, a comparable runtime can be given for each system

run over each dataset.

It is important to point out that it’s hard to have an accurate measure of the

runtime, since the systems run on different servers, some faster than others, and

in some cases the network latency affects the measure. The aim was to record

the duration of the whole process, which –though systems were queried as black

boxes– supposedly includes the tokenization of the input text; the recognition

of mentions; the mapping from each mention to a set of Wikipedia concepts

the mention may refer to; the choice of the right concept (disambiguation); the

assignment of a score to the annotation.

For TagMe and Illinois Wikifier, which run locally on the same computer, the

63

Dataset Annotator Average Time

MSNBC
(len 3316)

Illinois Wikifier 5651ms
TagMe 2 1897ms
AIDA-Local 19726ms
AIDA-CocktailParty 45434ms
AIDA-PriorityOnly 685ms
Wikipedia Miner 1960ms

AIDA/CO-NLL
(len 1130)

Illinois Wikifier 3157ms
TagMe 2 748ms
AIDA-Local 12525ms
AIDA-CocktailParty 31190ms
AIDA-PriorityOnly 320ms
Wikipedia Miner 1021ms

AQUAINT
(len 1415)

Illinois Wikifier 2657ms
TagMe 2 878ms
AIDA-Local 10173ms
AIDA-CocktailParty 23246ms
AIDA-PriorityOnly 329ms
Wikipedia Miner 1058ms

KDD
(len 24)

TagMe 2 11ms
Illinois Wikifier 106ms
AIDA-Local 128ms
AIDA-CocktailParty 68ms
AIDA-PriorityOnly 15ms
Wikipedia Miner 49ms

Meij
(len 80)

TagMe 2 152ms
Illinois Wikifier 2267ms
AIDA-Local 1402ms
AIDA-CocktailParty 1307ms
AIDA-PriorityOnly 31ms
Wikipedia Miner 66ms

Table 6.13: The average time needed by the annotation systems to annotate the
documents contained in the datasets. In the first column, the average length of
the documents contained in the dataset is reported.

runtime has been recorded as the difference between the system time after and

before the library call; For AIDA, the time has been recorded as that returned

by the method getOverallRuntime() of the RMI Service, and thus does not

include network latency; For Wikipedia Miner, that is accessed through a web

service, the time has been recorded as the difference between the system time

after and before the query, and the timing has been calibrated subtracting the

time needed to process an empty query.

Despite the heterogeneity and roughness of the methods used to record the

timings, the figures differ enough to give a meaningful idea of how fast the

annotation systems work. Data for each system and dataset is given in Table

6.13.

Results show that TagMe and Wikipedia Miner have similar runtime per-

64

Figure 6.6: Average runtime (in log-scale) for dataset AIDA/CO-NLL and best
achieved F1 measures (metrics based on Weak annotation match).

formance, suggesting their deployment in large-scale data processing. Illinois

Wikifier is about 3 times slower. AIDA with PriorityOnly algorithm is the

fastest one (this is due to the trivial disambiguation process) while the other

methods, Local and CocktailParty are way slower, with the first being about 10

times and the latter being 30 times slower than TagMe and Wikipedia Miner.

For all of them, the time needed to find the annotations looks linear in the size

of the text – which is good. Chart in Figure 6.6 compares the runtime and

the achieved best F1 measure for the systems when performing tests on the

AIDA/CO-NLL dataset.

6.6 Conclusions

This chapter have reported the results given by the benchmarking framework

applied on the systems and datasets presented in the previous chapters. Three

experiments were run, each focusing on a different kinds of datasets: the news

stories, the twitter messages and the search engine queries. Commenting the

results, we highlighted some features and some weaknesses of the systems.

All systems can be improved but, at least for news and tweets, results are

encouraging. TagMe seems to outperform the other systems in each of the three

experiments, though other systems show interesting results. AIDA seems to

have a main weakness in the recognition of mentions.

65

For the queries, all systems clearly need a major adaptation. TagMe and

Wikipedia Miner incredibly give meaningful results even on this kind of dataset.

Despite not being satisfactory, results encourage the application of these systems

on search engine queries.

The similarity of the system outputs have also been measured, showing a

rather high similarity between TagMe, Illinois Wikifier and Wikipedia Miner,

while AIDA seem to find rather distinct annotations.

The measured runtime show the fundamental property that the time needed

to annotate a document is linear in the size of the document. This makes it

possible, especially for faster systems like TagMe, Wikipedia Miner and Illinois

Wikifier, to apply them to large-scale datasets.

66

Chapter 7

Future Developments
Gutta cavat lapidem non vi, sed saepe cadendo

– Latin proverb.

This thesis gives a contribution to a line of research that is moving its first

steps of development, and forecasting its future advancement is a hard job of

imagination. Though, some lines of expansion can be sketched out. First of

all, new algorithms and systems can be developed to enhance the performance

in solving the topic-retrieval problems. Moreover, the benchmark needs a clear

documentation provided in Javadoc that has not yet been done, and will prob-

ably need to be maintained reflecting the state of the art measures, even fixing

the bugs its code certainly hides. On the theoretical side, the measures pre-

sented in Chapter 3 can be expanded to inspect certain aspects of a system

performance.

7.1 Definition of new problems

The problems defined in Chapter 2 are not the only problems related to topic

retrieval. New problems can be formulated, exploring new horizons for this

research area.

7.1.1 Assigning a relevance to a topic

Most of the systems presented in Chapter 5 assign to the annotations a likelihood

score, expressing the probability that the annotation is correct, but none of them

deal with the task of finding the relevance of the topics, i.e. how important the

topic is to describe the content of the input text. This information would be

crucial to assist text categorization, text clustering and the document retrieval.

67

Figure 7.1: Examples of instances of the Ab2W and RelA2W problems and
their correct solution. Scored tags are highlighted in blue, scored annotations
in green. Concepts are in italics.

Definition 12 Relevance scored annotations to Wikipedia (Rsa2W) is the prob-

lem of identifying the set of annotations in a text and assign them both a

likelihood score s and a relevance score r indicating how relevant the topic is

to describe the contents of the text. The solution consists of a set of tuples

〈m, c, s, r〉 where m is the mention (a pair (p, l) where p is the index of the

character where the mention begin and l is the length of the mention), c is

the concept, s is the likelihood score and r is a real number r ∈ R, r ∈ [0, 1]

indicating the relevance of the concept to describe the topics of the input text.

An example instance of this problem and its solution is given in Figure 7.1.

7.1.2 Finding relevant non-mentioned topics

Another natural expansion of the problems presented in Chapter 2 can be the

definition of a new problem, Ab2W.

Definition 13 Abstraction to Wikipedia (Ab2W) is the problem of identifying

the set of concepts that are mentioned in the input text, assigning them both a

relevance score and a likelihood score, plus the concepts the text expresses, even

though they are not mentioned in the text (i.e. they are implicitly expressed).

A solution of an instance of this problem is a pair (sa, st) consisting of two

sets: the first including scored annotations (for the concepts that are explicitly

mentioned in the text), the latter including scored tags (for the concepts that

are implicitly expressed by the text).

An example instance of this problem and its solution is given in Figure 7.1.

68

Figure 7.2: The new preordering of the problem reductions, including Ab2W
and Rsa2W

7.1.3 Framing in the problem hierarchy

To properly expand the hierarchy of problems presented in Section 2.3, note

that Sa2W ∝ Rsa2W ∝ Ab2W, since a solution to the Ab2W problem can be

adapted in O(() 1) to a solution of the Rsa2W problem discarding the set st

(containing scored tags of concepts not mentioned in the text) and keeping the

set sa (containing scored annotations of concepts mentioned in the text), while

a solution to the Rsa2W problem can be adapted in O(()n) to a solution of

the Sa2W problem discarding, for each annotation 〈m, c, s, r〉, the relevance r,

leaving just a set of scored annotations 〈m, c, s〉.
Expanding the preordering of the problems, Ab2W is located on the very

left, since it is the hardest and most general, and all other problems reduce to

it. The new hierarchy is given in the graph in Figure 7.2 and is described by

the following chains:

C2W ∝ Rc2W ∝ Sc2W ∝ Sa2W ∝ Rsa2W ∝ Ab2W

C2W ∝ A2W ∝ Sa2W ∝ Rsa2W ∝ Ab2W

D2W ∝ A2W ∝ Sa2W ∝ Rsa2W ∝ Ab2W

7.1.4 Metrics for the new problems

To measure the correctness of the relevance assigned by a system to an annota-

tion, the concepts of the annotations could be ranked by their relevance score,

and new metrics to measure the quality of the ranking should be defined, based

on classical measures like MRR and MAP.

Metrics to measure the performance of a system solving Ab2W could be

based on metrics defined in Definition 2 with M = Mt for the set of tags st,

and M = Mw for the set of annotations sa.

69

7.2 Chimera: mixing systems together

Some systems seem to perform better for some aspects, other may be better

for others. Since to solve a problem P some systems share the same steps,

implementing them differently, would it be possible to use an implementation

for a step given by a system and the implementation for the next step of another

system?

Let’s consider a case study. Both TagMe, Illinois Wikifier and AIDA, to

solve the A2W problem, basically follow these steps:

1. Find the mentions;

2. Associate a set of candidates to each mention;

3. Select a candidate for each mention (disambiguation).

The first step is done by a NER system. For Illinois Wikifier and AIDA, the

implementation for problem A2W includes all three steps, while the implemen-

tation for D2W simply excludes the first step (mentions are given in the input,

though there is no need to find them).

It would be interesting, for example, to perform step 1 using the set of

mentions found by TagMe and perform steps 2 and 3 with Illinois Wikifier

or AIDA. A way of doing this, given an instance I of problem A2W (a text

document), is to run TagMe on I, convert the output of TagMe to an instance

of the D2W problems (the new instance I ′ would be the same text provided by

I with the addition of the mention found by TagMe), and solve I ′ with AIDA’s

or Illinois Wikifier’s native D2W implementation.

The new system, mixing TagMe and AIDA or TagMe and Illinois Wikifier,

would be able to natively solve Sa2W.

Chimera, a plugin for the benchmarking framework, could be developed in

such direction.

7.3 Conclusions

In this last chapter, we sketched out the possible future lines of development. A

new problem, Ab2W, has been defined. This problem is particularly meaningful

for some applications like document clustering, involving the retrieval of topics

that are not specifically mentioned in a text, though being highly relevant to

describe the topics the text is about.

Another fundamental task, that helps all applications, is that of finding the

relevance of an annotation, i.e. the importance of its topic for describing the

contents of the document.

70

Chimera, an expansion of the benchmarking framework, aiming to mix sys-

tems features, has been outlined.

71

Appendices

72

Appendix A

Formulary

To facilitate the reading, in Table A.1 is reported a list of formulas defined in

this thesis along with a brief description.

73

Formula Defined in Short description

tp(r, g,M) Def. 1, p. 14 The set of true positives (correctly retrieved elements) for an instance.
fp(r, g,M) Def. 1, p. 14 The set of false positives (incorrectly retrieved elements) for an in-

stance.
fn(r, g,M) Def. 1, p. 14 The set of false negatives (incorrectly non-retrieved elements) for an

instance.
tn(r, g,M) Def. 1, p. 14 The set of true negatives (correctly non-retrieved elements) for an

instance.
P (r, g,M) Def. 2, p. 14 Precision (fraction of the retrieved elements that are correct) for an

instance.
R(r, g,M) Def. 2, p. 14 Recall (fraction of the correct elements that were retrieved) for an

instance.
F1(r, g,M) Def. 2, p. 14 F1 measure (mix of precision and recall) for an instance.
Pmacro(R,G,M) Def. 2, p. 14 Average precision for a set of instances.
Rmacro(R,G,M) Def. 2, p. 14 Average recall for a set of instances.
F1macro(R,G,M) Def. 2, p. 14 Average F1 for a set of instances.
Pmicro(R,G,M) Def. 2, p. 14 Overall precision, not counting the belonging of an element to any

particular instance.
Rmicro(R,G,M) Def. 2, p. 14 Overall recall, not counting the belonging of an element to any par-

ticular instance.
F1micro(R,G,M) Def. 2, p. 14 Overall F1, not counting the belonging of an element to any particular

instance.
d(p) Def. 4, p. 15 Dereference function: given a page, return its non-redirect concept.
Mt(t1, t2) Def. 3, p. 15 Strong tag match binary relation: match occur if two tags have the

same (dereferenced) concept.
Ms(a1, a2) Def. 5, p. 16 Strong annotation match binary relation: match occur if two anno-

tations have the same (dereferenced) concept and equal mention.
Mw(a1, a2) Def. 6, p. 17 Weak annotation match binary relation: match occur if two annota-

tions have the same (dereferenced) concept and overlapping mention.
Mm(a1, a2) Def. 7, p. 18 Mention annotation match binary relation: match occur if two an-

notations have overlapping mentions.
Mc(a1, a2) Def. 8, p. 19 Concept annotation match binary relation: match occur if two anno-

tations have the same (dereferenced) concept.
S′(a, b,M) Def. 9, p. 20 Similarity measure over two solutions of an instance.
Smacro(A,B,M) Def. 10, p. 20 Average similarity for two lists of solutions.
Smicro(A,B,M) Def. 10, p. 20 Overall similarity for two lists of solutions, counting matches inde-

pendently on the solution they belong to.
T (O,G,M) Def. 11, p. 21 Mapping of function tp over the elements of lists O, G.
F (O,G,M) Def. 11, p. 21 Mapping of function fp over the elements of lists O, G.

Table A.1: Formulary reporting the formulas defined in the thesis.

74

Bibliography

[1] Aida rmi service. http://www.mpi-inf.mpg.de/yago-naga/aida/

#rmiservice.

[2] Ccg - software: Illinois wikifier. http://cogcomp.cs.illinois.edu/

page/software_view/33.

[3] Tagme - api guide. http://www.test.org/doe/.

[4] Wikipedia miner: Using the web services. http://wikipedia-miner.cms.

waikato.ac.nz/wiki/Wiki.jsp?page=Using%20the%20web%20services.

[5] Razvan Bunescu and Marius Pasca. Using encyclopedic knowledge for

named entity disambiguation. In Proceesings of the 11th Conference of

the European Chapter of the Association for Computational Linguistics

(EACL-06), pages 9–16, Trento, Italy, 2006.

[6] Soumen Chakrabarti, Kriti Puniyani, and Sujatha Das. Optimizing scor-

ing functions and indexes for proximity search in type-annotated corpora.

In Proceedings of the 15th international conference on World Wide Web,

WWW ’06, pages 717–726, New York, NY, USA, 2006. ACM.

[7] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction To

Algorithms. MIT Press, 2001.

[8] Silviu Cucerzan. Large-scale named entity disambiguation based on wi-

kipedia data. In In Proc. 2007 Joint Conference on EMNLP and CNLL,

pages 708–716, 2007.

[9] Mark Dredze, Paul McNamee, Delip Rao, Adam Gerber, and Tim Finin.

Entity disambiguation for knowledge base population. In Proceedings of

the 23rd International Conference on Computational Linguistics, COLING

’10, pages 277–285, Stroudsburg, PA, USA, 2010. Association for Compu-

tational Linguistics.

75

http://www.mpi-inf.mpg.de/yago-naga/aida/#rmiservice
http://www.mpi-inf.mpg.de/yago-naga/aida/#rmiservice
http://cogcomp.cs.illinois.edu/page/software_view/33
http://cogcomp.cs.illinois.edu/page/software_view/33
http://www.test.org/doe/
http://wikipedia-miner.cms.waikato.ac.nz/wiki/Wiki.jsp?page=Using%20the%20web%20services
http://wikipedia-miner.cms.waikato.ac.nz/wiki/Wiki.jsp?page=Using%20the%20web%20services

[10] Christiane Fellbaum. Wordnet. In Roberto Poli, Michael Healy, and

Achilles Kameas, editors, Theory and Applications of Ontology: Computer

Applications, pages 231–243. Springer Netherlands, 2010.

[11] Paolo Ferragina and Ugo Scaiella. Tagme: on-the-fly annotation of short

text fragments (by wikipedia entities). In Proceedings of the 19th ACM in-

ternational conference on Information and knowledge management, CIKM

’10, pages 1625–1628, New York, NY, USA, 2010. ACM.

[12] Evgeniy Gabrilovich and Shaul Markovitch. Computing semantic related-

ness using wikipedia-based explicit semantic analysis. In Proceedings of

the 20th international joint conference on Artifical intelligence, IJCAI’07,

pages 1606–1611, San Francisco, CA, USA, 2007. Morgan Kaufmann Pub-

lishers Inc.

[13] Xianpei Han, Le Sun, and Jun Zhao. Collective entity linking in web text: a

graph-based method. In Proceedings of the 34th international ACM SIGIR

conference on Research and development in Information Retrieval, SIGIR

’11, pages 765–774, New York, NY, USA, 2011. ACM.

[14] Xianpei Han and Jun Zhao. Named entity disambiguation by leveraging

wikipedia semantic knowledge. In Proceedings of the 18th ACM conference

on Information and knowledge management, CIKM ’09, pages 215–224,

New York, NY, USA, 2009. ACM.

[15] Xianpei Han and Jun Zhao. Structural semantic relatedness: a knowledge-

based method to named entity disambiguation. In Proceedings of the 48th

Annual Meeting of the Association for Computational Linguistics, ACL ’10,

pages 50–59, Stroudsburg, PA, USA, 2010. Association for Computational

Linguistics.

[16] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, Edwin Lewis-

Kelham, Gerard de Melo, and Gerhard Weikum. Yago2: exploring and

querying world knowledge in time, space, context, and many languages. In

Proceedings of the 20th international conference companion on World wide

web, WWW ’11, pages 229–232, New York, NY, USA, 2011. ACM.

[17] Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fürstenau,

Manfred Pinkal, Marc Spaniol, Bilyana Taneva, Stefan Thater, and Ger-

hard Weikum. Robust disambiguation of named entities in text. In Con-

ference on Empirical Methods in Natural Language Processing, Edinburgh,

Scotland, United Kingdom 2011, pages 782–792, 2011.

76

[18] Jian Hu, Lujun Fang, Yang Cao, Hua-Jun Zeng, Hua Li, Qiang Yang, and

Zheng Chen. Enhancing text clustering by leveraging wikipedia semantics.

In Proceedings of the 31st annual international ACM SIGIR conference

on Research and development in information retrieval, SIGIR ’08, pages

179–186, New York, NY, USA, 2008. ACM.

[19] Jian Hu, Gang Wang, Fred Lochovsky, Jian-tao Sun, and Zheng Chen.

Understanding user’s query intent with wikipedia. In Proceedings of the

18th international conference on World wide web, WWW ’09, pages 471–

480, New York, NY, USA, 2009. ACM.

[20] Xiaohua Hu, Xiaodan Zhang, Caimei Lu, E. K. Park, and Xiaohua Zhou.

Exploiting wikipedia as external knowledge for document clustering. In

Proceedings of the 15th ACM SIGKDD international conference on Knowl-

edge discovery and data mining, KDD ’09, pages 389–396, New York, NY,

USA, 2009. ACM.

[21] Paul Jaccard. Étude comparative de la distribution florale dans une por-

tion des Alpes et des Jura. Bulletin del la Société Vaudoise des Sciences

Naturelles, 37:547–579, 1901.

[22] Aniket Kittur, Bongwon Suh, Bryan A. Pendleton, and Ed H. Chi. He

says, she says: conflict and coordination in wikipedia. In Proceedings of

the SIGCHI conference on Human factors in computing systems, CHI ’07,

pages 453–462, New York, NY, USA, 2007. ACM.

[23] Sayali Kulkarni, Amit Singh, Ganesh Ramakrishnan, and Soumen

Chakrabarti. Collective annotation of wikipedia entities in web text. In

Proceedings of the 15th ACM SIGKDD international conference on Knowl-

edge discovery and data mining, KDD ’09, pages 457–466, New York, NY,

USA, 2009. ACM.

[24] Douglas B. Lenat. Cyc: a large-scale investment in knowledge infrastruc-

ture. Commun. ACM, 38(11):33–38, November 1995.

[25] Jun Liu and Sudha Ram. Who does what: Collaboration patterns in the

wikipedia and their impact on article quality. ACM Trans. Manage. Inf.

Syst., 2(2):11:1–11:23, jul 2011.

[26] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.

Introduction to Information Retrieval. Cambridge University Press, 1 edi-

tion, July 2008.

[27] Edgar Meij, Wouter Weerkamp, and Maarten de Rijke. Adding semantics to

microblog posts. In Proceedings of the fifth ACM international conference

77

on Web search and data mining, WSDM ’12, pages 563–572, New York,

NY, USA, 2012. ACM.

[28] Rada Mihalcea. Using Wikipedia for Automatic Word Sense Disambigua-

tion. In North American Chapter of the Association for Computational

Linguistics (NAACL 2007), 2007.

[29] Rada Mihalcea and Andras Csomai. Wikify!: linking documents to ency-

clopedic knowledge. In Proceedings of the sixteenth ACM conference on

Conference on information and knowledge management, CIKM ’07, pages

233–242, New York, NY, USA, 2007. ACM.

[30] David Milne. Applying Wikipedia to Interactive Information Retrieval. PhD

thesis, Department of Computer Science, The University of Waikato, 2010.

[31] David Milne and Ian H. Witten. An effective, low-cost measure of semantic

relatedness obtained from Wikipedia links. In AAAI 2008.

[32] David Milne and Ian H. Witten. An open source toolkit for mining wiki-

pedia. In Special Issue of the Artificial Intelligence Journal on ”Artificial

Intelligence, Wikipedia and Semi-Structured Resources”.

[33] David Milne and Ian H. Witten. Learning to link with wikipedia. In

Proceedings of the 17th ACM conference on Information and knowledge

management, CIKM ’08, pages 509–518, New York, NY, USA, 2008. ACM.

[34] Elahe Rahimtoroghi and Azadeh Shakery. Wikipedia-based smoothing for

enhancing text clustering. In Proceedings of the 7th Asia conference on

Information Retrieval Technology, AIRS’11, pages 327–339, Berlin, Heidel-

berg, 2011. Springer-Verlag.

[35] Lev Ratinov and Dan Roth. Design challenges and misconceptions in named

entity recognition. In Proceedings of the Thirteenth Conference on Compu-

tational Natural Language Learning, CoNLL ’09, pages 147–155, Strouds-

burg, PA, USA, 2009. Association for Computational Linguistics.

[36] Lev Ratinov, Dan Roth, Doug Downey, and Mike Anderson. Local and

global algorithms for disambiguation to wikipedia. In Proceedings of the

49th Annual Meeting of the Association for Computational Linguistics:

Human Language Technologies - Volume 1, HLT ’11, pages 1375–1384,

Stroudsburg, PA, USA, 2011. Association for Computational Linguistics.

[37] Stefan Rüd, Massimiliano Ciaramita, Jens Müller, and Hinrich Schütze.

Piggyback: using search engines for robust cross-domain named entity

recognition. In Proceedings of the 49th Annual Meeting of the Association

78

for Computational Linguistics: Human Language Technologies - Volume

1, HLT ’11, pages 965–975, Stroudsburg, PA, USA, 2011. Association for

Computational Linguistics.

[38] Gerard Salton and Christopher Buckley. Term-weighting approaches in

automatic text retrieval. Information Processing & Management, 24(5):513

– 523, 1988.

[39] Ugo Scaiella, Paolo Ferragina, Andrea Marino, and Massimiliano Cia-

ramita. Topical clustering of search results. In Proceedings of the fifth

ACM international conference on Web search and data mining, WSDM

’12, pages 223–232, New York, NY, USA, 2012. ACM.

[40] Michael Strube and Simone Paolo Ponzetto. Wikirelate! computing se-

mantic relatedness using wikipedia. In proceedings of the 21st national

conference on Artificial intelligence - Volume 2, AAAI’06, pages 1419–1424.

AAAI Press, 2006.

[41] Mohamed Amir Yosef, Johannes Hoffart, Ilaria Bordino, Marc Spaniol,

and Gerhard Weikum. AIDA: an online tool for accurate disambiguation

of named entities in text and tables. PVLDB, 4(12):1450–1453, 2011.

[42] Yiping Zhou, Lan Nie, Omid Rouhani-Kalleh, Flavian Vasile, and Scott

Gaffney. Resolving surface forms to wikipedia topics. In Proceedings of

the 23rd International Conference on Computational Linguistics, COLING

’10, pages 1335–1343, Stroudsburg, PA, USA, 2010. Association for Com-

putational Linguistics.

79

Acknowledgments...

I would like to thank my supervisor, Paolo Ferragina, whose brilliance and open

mind stimulated the development of this work, as long as Daniele Vitale and

Ugo Scaiella for their willingness in working together with me. Thanks to my

co-reviewer Anna Bernasconi for her precious advice.

During the development of this thesis, I interacted with many people around

the world, finding great and prompt cooperation. Thanks to Ian Witten (Uni-

versity of Waikato), Edgar Meij (University of Amsterdam), Mark Sammons and

Lev-Arie Ratinov (University of Illinois at Urbana-Champaign), Edwin Lewis-

Kelham (Max Planck Institute for Informatics).

I’d also like to thank the developers of the open-source software and services

that assisted the work of this thesis, most notably gnuplot, inkscape, LATEXand

Eclipse. Special thanks to the Wikimedia Foundation, the Wikipedia project,

and all its silent and industrious contributors, for having embarked the great

task of letting anyone benefit from the free sharing of knowledge.

None of this would have been possible without the constant support (both

scientific and humane) of those I have around in the everyday life: my family,

my friends, my flat-mates, and all those I share the will to change the world

with. Thank you for encouraging me in believing I am doing something worthy.

Thanks to the ice cream for containing sugar, to the penguins, kittens, wild

boars, elves and orcs, polynomials, mangoes, bicycles, and, above all, biscuits.

80

	Introduction
	Some topic retrieval problems
	Terminology
	Definition of problems
	Our contribution: A hierarchy of problems
	Conclusions

	New evaluation metrics
	Metrics for correctness evaluation
	Finding the mentions (for Sa2W and A2W)
	Finding the concepts (for Sa2W and A2W)
	Similarity between systems
	Conclusions

	The comparison framework
	Code structure
	Running the experiments
	Extending the framework
	Conclusions

	Datasets, Systems and Wikipedia
	Wikipedia and its graph
	Topic-retrieval systems
	Available datasets
	Comparing two systems for a given dataset
	Conclusions

	Experimental Results
	Setting up the experiments
	Results for Experiment 1: news
	Results for Experiment 2: tweets
	Results for Experiment 3: queries
	Experiments about runtime
	Conclusions

	Future Developments
	Definition of new problems
	Chimera: mixing systems together
	Conclusions

	Appendices
	Formulary
	References

