
Università di Pisa

Facoltà di Ingegneria

Corso di Laurea Specialistica in Ingegneria Informatica

Tesi di Laurea Specialistica

Design, testing and

performance analisys of

efficient lock-free solutions for

multi-core Linux scheduler

Relatori: Candidato:

Prof. Giuseppe Lipari Fabio Falzoi

Scuola Superiore Sant’Anna

Prof. Paolo Ancilotti

Scuola Superiore Sant’Anna

Anno Accademico 2011/2012

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14705332?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In loving memory of my mother

and my grandfather.

iii

Abstract

Multiprocessor systems are now the de facto preferred computing platform

for many application domains, including personal computers and server work-

stations.

The benefits of multi-core technology in terms of increased computational

power with a reduced energy consumption, are now being used for more

implementing efficient embedded devices and personal appliances like smart

phones and tablets.

A popular OS like Linux, which was not originally designed to be a Real-

Time Operating System (RTOS), is now being used for embedded real-time

systems with multi-core platforms. Consequently, many flavors of Linux now

include a real-time scheduler. One recent example of real-time scheduler for

Linux is the SCHED DEADLINE patch, an implementation of the popular

“Earliest Deadline First” algorithm. Such scheduler can be useful also for

large many-core server workstations, because it helps to control the quality

of service of the user requests. For this reason, it is important that the

scheduler implementation to be efficient and scale well with the number of

processors.

In this thesis, I present two original contributions to the area of real-time

scheduling in the Linux kernel. First, I present PRACTISE, a tool to develop,

debug, test and analyse real-time scheduling data structures in user space.

Unlike other similar tools, PRACTISE executes code in parallel, allowing to

test and analyse the performance of the code in a realistic multiprocessor

scenario.

Then, I present several data structures for implementing a distributed

queue to efficiently support global scheduling in a large multi-core: max-heap

and min-heap, skip-list with a flat-combiner strategy, and a novel algorithm

called fast-cache. I compare the different data structures and algorithms

using both PRACTISE and directly in the kernel.

Contents

Introduction x

1 Background 1

1.1 The Linux scheduler . 1

1.1.1 Modular scheduling framework 2

1.1.2 Scheduling entities, tasks and runqueues 3

1.2 The Linux real-time scheduler 4

1.2.1 SCHED FIFO and SCHED RR 5

1.2.2 Multiprocessor support 6

1.2.3 Linux scheduler multiprocessor support in real-time

scheduling class . 8

1.2.4 Real-time load balancing algorithm 8

1.2.5 Real-time scheduler data structures and concepts . . . 9

1.2.6 Root domains . 11

1.2.7 CPU priority management 12

1.2.8 Details of the Push scheduling algorithm 13

1.2.9 Details of the Pull scheduling algorithm 14

1.3 State of the art of Real-Time scheduling on Linux 15

1.3.1 RTLinux, RTAI and Xenomai 15

1.3.2 PREEMPT RT . 17

1.3.3 OCERA . 17

1.3.4 AQuoSA . 18

1.3.5 FRESCOR . 18

1.3.6 LITMUSRT . 19

iv

CONTENTS v

1.4 EDF and CBS theory . 19

1.4.1 Earliest Deadline First 20

1.4.2 Constant Bandwidth Server 22

1.4.3 EDF scheduling on SMP systems 23

1.5 The SCHED DEADLINE scheduling class 24

1.5.1 Main Features . 25

1.5.2 Interaction with Existing Policies 26

1.5.3 Current Multiprocessor Scheduling Support 26

1.5.4 SCHED DEADLINE Push implementation 29

1.5.5 Max-heap cpudl data structure for push operation . . 33

1.5.6 SCHED DEADLINE Pull implementation 35

1.5.7 Task Scheduling . 37

1.5.8 Usage and Tasks API 38

2 Synchronization mechanisms analysis 40

2.1 Kernel locking techniques . 40

2.1.1 SMP and UP Kernel 41

2.1.2 Atomic operators . 41

2.1.3 Spinlocks . 42

2.1.4 Semaphores . 43

2.1.5 Reader/Writer locks 44

2.2 Memory barriers . 45

2.2.1 Abstract memory access model 46

2.2.2 CPU guarantees . 48

2.2.3 Behaviour and varieties of memory barriers 49

2.2.4 SMP barriers pairing 51

2.2.5 Explicit Linux kernel barriers 52

2.2.6 Implicit kernel memory barriers 54

2.3 Flat combining . 54

3 New solutions for task migration 56

3.1 Skip list . 56

3.1.1 Skip List structure and asymptotic complexity 57

CONTENTS vi

3.1.2 cpudl skip list implementation 58

3.2 Lock-free skip list . 60

3.3 Bitmap flat combining . 61

3.3.1 Flat combining implementation details 61

3.3.2 cpudl bitmap flat combining implementation 62

3.4 Fastcache . 64

3.5 Improved pull algorithm . 67

4 PRACTISE framework 70

4.1 Tools for Linux kernel development 70

4.1.1 LinSched . 71

4.1.2 LITMUSRT . 72

4.1.3 KVM + GDB . 72

4.2 PRACTISE architecture . 72

4.2.1 Ready queues . 73

4.2.2 Locking and synchronization 74

4.2.3 Event generation and processing 74

4.2.4 Data structures in PRACTISE 77

4.3 Performance analysis with PRACTISE 78

4.4 Evaluation . 81

4.4.1 Porting to Linux . 81

5 Experimental Results 84

5.1 Experiments with PRACTISE 85

5.2 Kernel Experiments . 90

5.3 Comparison between max-heap and skip list 90

5.4 Improved Pull algorithm performance 93

5.5 Bitmap flat combining performance 95

5.6 Fastcache performance . 100

6 Conclusions and Future Work 106

A Code listings 108

A.1 cpudl skip list implementation 108

CONTENTS vii

A.2 cpudl bitmap flat combining implementation 114

A.3 cpudl fastcache implementation 129

A.4 Improved pull algorithm . 135

Acknowledgments 137

List of Figures

1.1 The Linux modular scheduling framework. 3

1.2 The CFS runqueue. 5

1.3 An EDF schedulation example. 21

1.4 The Linux modular scheduling framework with SCHED DEADLINE. 27

1.5 cpudl structure for push operation. 35

2.1 An abstract model of a multiprocessor system. 46

2.2 A sequence of memory operations where SMP barrier pairing

is required. 52

3.1 An example skip list. 57

3.2 cpudl structure for pull operation. 68

4.1 Comparison using diff. 82

5.1 Global data structure modify 86

5.2 Global data structure query 87

5.3 Global data structure cpupri modify 88

5.4 Global data structure cpupri query 88

5.5 Global data structure cpudl modify 89

5.6 Global data structure cpudl query 89

5.7 set operation on max-heap and skip list kernel 91

5.8 find operation on max-heap and skip list kernel 92

5.9 set operations number . 93

5.10 find operations number . 94

5.11 Number of task migrations due to push operation 95

viii

LIST OF FIGURES ix

5.12 Number of task migrations due to pull operation 96

5.13 Bitmap flat combining push performance 97

5.14 Bitmap flat combining pull performance 98

5.15 Number of successfull push operations 99

5.16 Fastcache push performance 101

5.17 Fastcache pull performance . 102

5.18 Number of task migrations due to push operation 103

5.19 Number of task migrations due to pull operation 104

Introduction

Multiprocessor systems are nowadays de facto standard for both personal

computers and server workstations. Benefits of dual-core and quad-core tech-

nology is also common in embedded devices and cellular phones as well. In

fact, raw increases in computational power is no more the answer for overall

better performance: the energy efficiency is a primary concern, that can’t be

ignored at any level of a system design, from hardware to software. Regarding

the hardware layer, multicore and multiprocessors technologies surely gived

an answer to that issue, but without a proper software design, the scalability

of the entire system may suffer.

The role of the operating system scheduler is fundamental while managing

the threads of execution: a sub-optimal schedule may lead to high latency and

very poor overall performance. If real time tasks, characterized by strictly

timing constraints, are also considered, we can easily understand that finding

an optimal schedule is far from trivial.

Linux, as a General Purpose Operating System (GPOS), should be able

to run on every possible system, from workstations to mobile devices. Even

if each configuration has its own issues, the common trend seems to be a

considerable interest in using Linux for real-time and control applications.

But Linux has not been designed to be a Real-Time Operating System

(RTOS) and this imply that a classical real-time feasibility study of the

system under development is not possible, there’s no way to be sure that

timing requirements of tasks will be met under every circumstance. POSIX-

compliant fixed-prority policies offered by Linux are not enough for specific

application requirements.

Great issues arise when size, processing power, energy consumption and

x

INTRODUCTION xi

costs are tightly constrained. Time-sensitive applications (e.g., MPEG play-

ers) for embedded devices have to efficiently make use of system resources

and, at the same time, meet the real-time requirements.

In a recent paper [14], Dario Faggioli and others proposed an implemen-

tation of the “Earliest Deadline First” (EDF) algorithm in the Linux kernel.

In order to extend stock Linux kernel’s features a new scheduling policy has

been created: SCHED DEADLINE. Later, Juri Lelli extended that scheduling

policy to add processes migration between CPUs [19]. This allowed to reach

full utilization of the system in multicore and multiprocessor environment.

While the proposed implementation is indeed effective, a problem of scala-

bility arises when the scheduler has to dinamically assigns real-time tasks to

an high number of online CPUs. All the scheduler shared data structures are

potential performance bottlenecks: the contention to manipulate tha data

structure may increase a lot, leading to unpredictable and unbounded laten-

cies.

Unfortunately, the development of new solutions to manage concurrency

in kernel space is far from trivial: when the number of parallel scheduler

instances increases the common tools used for debugging are not so effective.

In this thesis, we propose PRACTISE, a tool for performance analysis and

testing of real-time multicore schedulers for the Linux kernel. PRACTISE

enables fast prototyping of real-time multicore scheduling mechanisms, allow-

ing easy debugging and testing of such mechanisms in user-space. Thanks

to PRACTISE we developed a set of innovative solutions to improve the

scalability of the processes migration mechanism. We will show that, with

those modifications, not only a better scalability has been reached, but also

a schedule closer to G-EDF policy of the tasks has been achieved.

This document is organized as follows.

Chapter 1 (Background) gives a brief overview of the concepts and

the theory on which this thesis is based. First, the modular framework of

the Linux scheduler is analyzed (with special attention to multiprocessors

systems), then we find the state of the art of real time scheduling on Linux.

Since we will improve the SCHED DEADLINE implementation, in this chapter

we also give some insights on the theory behind those real time scheduling

INTRODUCTION xii

algorithms and analyze how they are implemented inside the Linux kernel.

Finally, we will discuss in great detail about the current implementation of

the task migrations algorithm in SCHED DEADLINE scheduling class.

Chapter 2 (Synchronization Mechanisms Analysis) gives a detailed

explanation of the available mechanisms to manage concurrent accesses on

a shared data structure. In particular, we will refer to the synchroniza-

tion techniques in Linux kernel. Finally, we will explain a recently proposed

framework that aims to improve performance for shared data structures ac-

cessed in parallel by a significant number of threads.

In Chapter 3 (New Solutions for Task Migration) we present a set

of new solutions for the task migration algorithms. We will show the main

idea behind each of those to explain why such a design was chosen.

Chapter 4 (PRACTISE Framework) contains the details of PRAC-

TISE implementation. Here we will explain how PRACTISE was designed

and how it can be used to facilitate the development of new kernel code. In

the last part of the chapter we focus on the ability of PRACTISE to predict

the relative performance of the various algorithm simulated with it.

Chapter 5 (Experimental Results) contains the graphs that show the

results of our experiments conducted with the Linux kernel. We present the

results of each new algorithm discussed above, explaining why a certain per-

formance trend is achieved. Doing so, we will point out the main advantages

and also the disadvantages of each solution.

Finally, in Chapter 6 (Conclusions and Future Works), we sum up

results and suggest possible future extensions to the code as well as alternate

ways of testing.

Chapter 1

Background

1.1 The Linux scheduler

The process scheduler is the component of the kernel that selects which

process to run next. Processor time is a finite resource, and the process

scheduler (or simply the scheduler) is a subsystem of the kernel that assigns

processor time to the runnable processes.

In a single processor machine, the scheduler gives the impression to the

user that multiple processes are executing simultaneously. This is the basis

of a multitasking1 operating system like Linux.

On multiprocessor machines processes can actually run concurrently (in

parallel) on different processors. The scheduler has to assign runnable pro-

cesses to processors and decide, on each of them, which process to run.

How the scheduler works affects how the system behaves. We can privilege

task switching in order to have a reactive and interactive system, we can allow

tasks to run longer and have a batch jobs well suited system, we can also

decide that some tasks are vital for the system and must execute to the

detriment of the others.

1In this context task and process are used as synonyms.

1

CHAPTER 1. BACKGROUND 2

1.1.1 Modular scheduling framework

The current version of the Linux scheduler has been designed and imple-

mented by Ingo Molnar [24] as a modular framework that can easily be ex-

tended. Each scheduler module is a scheduling class that encapsulate specific

scheduling policies details.

Scheduling classes are implemented through the sched class2 struc-

ture, which contains hooks to functions that must be called whenever the

respective event occurs. A (partial) list of scheduler hooks is:

• enqueue task(...): it is called when a task enters a runnable state.

It enqueues a task in the data structure used to keep all runnable tasks

(runqueue, see below).

• dequeue task(...): it is called when a task is no longer runnable.

It removes a task from the runqueue.

• yield task(...): it yields the processor giving room to the other

tasks to be run.

• check preempt curr(...): it checks if a task that entered the

runnable state should preempt the currently running task.

• pick next task(...): it chooses the most appropriate task eligible

to run next.

• put prev task(...): it preempts a running task.

• select task rq(...): it chooses on which runqueue (CPU) a waking-

up task has to be enqueued.

• task tick(...): mostly called from the time tick functions, it exe-

cutes periodical stuff related to the running task.

Three “fair” scheduling policies (SCHED NORMAL, SCHED BATCH, SCHED IDLE)

and two real-time scheduling policies (SCHED RR, SCHED FIFO) are cur-

rently implemented in the Linux scheduler. The situation is depicted in

Figure 1.1 on the following page.

2 Defined in include/linux/sched.h.

CHAPTER 1. BACKGROUND 3

LINUX MODULAR SCHEDULER

kernel/sched/fair.c kernel/sched/rt.c

SCHED_NORMAL SCHED_BATCH

SCHED_IDLE SCHED_RR SCHED_FIFO

Figure 1.1: The Linux modular scheduling framework.

1.1.2 Scheduling entities, tasks and runqueues

All data used by the scheduler to implement any scheduling policy are con-

tained into struct sched entity3 (there is a scheduling entity for each

scheduler module). Looking inside that structure we find the fields (e.g.

exec start, vruntime, etc. . .) that the CFS4 scheduler uses to carry

out his job. The concept of scheduling entity is essentially “something to be

scheduled”, which might not be a process (e.g. tasks groups [7]).

At the very beginning of the struct task struct5 there are the fields

that identify the tasks. Among others:

• volatile long state: it describes the task’s state. It can assume

three values (-1, 0, >0) depending on the task respectively beeing

unrunnable, runnable or stopped.

• const struct sched class *sched class: it binds the task

to his scheduling class.

• struct sched entity se, struct sched rt entity rt: it

3Defined in include/linux/sched.h.
4Completely Fair Scheduler, the default Linux scheduler, see [10].
5Defined in include/linux/sched.h.

CHAPTER 1. BACKGROUND 4

contains scheduling entity related informations.

• cpumask t cpus allowed: mask of the cpus on which the task can

run.

• pid t pid: process identifier that uniquely identifies the task.

Last but not least, we have runqueues. Linux has a main per-CPU run-

queue data structure called (not surprisingly) struct rq6. Runqueues are

implemented in a modular fashion as well. The main data structure contains

a “sub-runqueue” field for each scheduling class, and every scheduling class

can implement his runqueue in a different way.

To better understand the inner working of the scheduler, it is enlightening

to look at the CFS runqueue implementation. Structure struct cfs rq

holds both accounting informations about enqueued tasks and the actual

runqueue. CFS uses a time-ordered red-black tree to enqueue tasks and to

build a “timeline” of future task execution.

A red-black tree is a type of self-balancing binary search tree. For every

running process there is a node in the red-black tree. The process at the left-

most position is the one to be scheduled next. The red-black tree is complex,

but it has a good worst-case running time for its operations and is efficient

in pratice: it can search, insert and delete in O(log n) time, where n is the

number of elements in the tree. The leaf nodes are not relevant and do not

contain data. To save memory, sometimes a single sentinel node performs

the role of all leaf nodes.

Scheduling class designers must cleverly choose a runqueue implementa-

tion that best fits scheduling policies needs. Figure 1.2 on the next page

presents the structure of the run-queues.

1.2 The Linux real-time scheduler

Linux has been designed to be a general-purpose operating system (GPOS),

therefore it presents some issues, like unpredictable latencies, limited support

6Defined in kernel/sched.h, with all runqueue related things.

CHAPTER 1. BACKGROUND 5

struct rq {
 ...
 unsigned long nr_running;
 ...
 struct cfs_rq cfs;
 struct rt_rq rt;
 ...
};

struct cfs_rq {
 ...
 u64 exec_clock;
 u64 min_vruntime;

 struct rb_root tasks_timeline;
 struct rb_node *rb_leftmost;
 ...
};

Figure 1.2: The CFS runqueue.

for real-time scheduling, and coarse-grain timing resolution that might be a

problem for real-time application [20]. The main design goal of the Linux

kernel has been (and still remains) to optimise the average throughput (i.e.,

the amount of “useful work” done by the system in the unit of time).

Since Linux is a POSIX-compliant operating system, the Linux sched-

uler must also provide SCHED FIFO and SCHED RR scheduling algorithms.

These algorithms are actually implemented inside the SCHED RT scheduling

class, and so they represent the part of Linux kernel code dedicated to real-

time tasks management. In this section we provide a brief explanation of

those classes, with an inspection to the implementation code, with particular

reference to multiprocessor systems support.

1.2.1 SCHED FIFO and SCHED RR

SCHED FIFO and SCHED RR are simple fixed-priority policies. According

to the POSIX standard7, SCHED FIFO is a strictly first in-first out (FIFO)

scheduling policy. This policy contains a range of at least 32 priorities (ac-

tually, 100 inside Linux). Tasks scheduled under this policy are chosen from

a thread list ordered according to the time its tasks have been in the list

7IEEE Std 1003.1b-1993

CHAPTER 1. BACKGROUND 6

without being executed. The head of the list is the task that has been in the

list the longest time; the tail is the task that has been in the list the shortest

time.

SCHED RR is a round-robin scheduling policy with a per-system time slice,

named time quantum. This policy contains a range of at least 32 priorities

and is identical to the SCHED FIFO policy with an additional rule: when

the implementation detects that a running process has been executed for an

interval equal or greater than the time quantum, the task becomes the tail

of its task list, and the head of that task list is removed and made a running

task.

Both SCHED FIFO and SCHED RR unfortunately diverges from what the

real-time research community refer to as “realtime” [5]. Notable drawbacks of

fixed priority schedulers are the fairness and the security among processes [3].

In fact, if a regular non-privileged user is enabled to access the real-time

scheduling facilities, then he can also rise his processes to the highest priority,

starving the rest of the system.

1.2.2 Multiprocessor support

Since now, we have not addressed the issue of how many processor our system

has. In fact all that we have said remains the same for uni-processor and

multi-processor machines as well.

A multiprocessor Linux kernel (that is, one configured with CONFIG SMP

flag set, see Section 2.1.1 for more details) has additional fields into the afore-

mentioned structures in comparison to a uniprocessor one.

In struct sched class we find:

• select task rq(...): it is called from fork, exec and wake-up

routines; when a new task enters the system or a task is waking up the

scheduler has to decide which runqueue (CPU) is best suited for it.

• load balance(...): it checks the given CPU to ensure that it is

balanced within scheduling domain (see below); if not, attempts to

move tasks. This function is not implemented by every scheduling

class.

CHAPTER 1. BACKGROUND 7

• pre schedule(...): it is called inside the main schedule routine;

performs the scheduling class related jobs to be done before the actual

schedulation.

• post schedule(...): like the previous routine, but after the actual

schedulation.

• task woken(...): it is called when a task wakes up, there could be

things to do if we are not going to schedule soon.

• set cpus allowed(...): it changes a given task’s CPU affinity;

depending on the scheduling class it could be responsible for to begin

tasks migration.

A modern large multiprocessor system can have a complex structure and,

at-large, processors have unequal relationships with each other. Virtual

CPUs of a hyperthreaded core share equal access to memory, cache and even

the processor itself. On a symmetric multiprocessing system (SMP) each

processor maintains a private cache, but main memory is shared. Nodes of

a NUMA architecture have different access speeds to different areas of main

memory. To get things worse all these options can coexist: each NUMA node

looks like an SMP system which may be made up of multiple hyperthreaded

processors. One of the key objectives of a multiprocessor (non real-time)

scheduler is to balancing the load across the CPUs. Teaching the scheduler

to migrate tasks intelligently under many different types of loads is not so

easy. In order to cope with this problem scheduling domains [8] have been

introduced into the Linux kernel.

A scheduling domain (struct sched domain8) is a set of CPUs which

share properties and scheduling policies, and which can be balanced against

each other. Scheduling domains are hierarchical, a multi-level system will

have multiple levels of domains. A struct pointer struct sched domain

*sd, added inside struct rq, creates the binding between a runqueue

(CPU) and his scheduling domain. Using scheduling domain informations

the scheduler can do a lot to make good scheduling and balancing decisions.

8Defined in include/linux/sched.h.

CHAPTER 1. BACKGROUND 8

Furthermore, the scheduling domains architecture helps to reduce the con-

tention for scheduler shared data structures, so to avoid significant lowering

of performance in a very large multiprocessor system.

1.2.3 Linux scheduler multiprocessor support in real-

time scheduling class

In a multi-core environment, where we have N available CPUs, only the N

highest-priority tasks will be running at any given point in time. When a

task is runnable, the scheduler must ensure that it be put on a runqueue best

suited for it, that is, the real-time scheduler has to ensure system-wide strict

real-time priority scheduling.

Unlike non-real-time systems where the scheduler needs to look only at

its runqueue of tasks to make scheduling decisions (or, at most, it needs to

run a inter-processor load balancing routine very infrequently), a real-time

scheduler makes global scheduling decisions, taking into account all the tasks

in the system at any given point. Furthermore, real-time tasks balancing also

has to be performed frequently.

Task balancing can introduce cache thrashing and contetion for global

data and can degrade throughput and scalability. A real-time task scheduler

would trade off throughput in favor of correctness, but at the same time, it

must ensure minimal task migrationing.

1.2.4 Real-time load balancing algorithm

In this section we will detail the strategy used by Linux to balance real-time

tasks across CPUs. This strategy has been introduced as a trade-off between

global theoretical scheduling policy adherence and performance scalability.

The real-time scheduler adopts an active push-pull strategy developed by

Steven Rostedt and Gregory Haskins for balancing tasks across CPUs. The

scheduler has to address several scenarios:

1. Where to place a task optimally on wakeup.

CHAPTER 1. BACKGROUND 9

2. What to do with a lower priority task when it wakes up but is on a

runqueue running a task of higher priority.

3. What to do with a low priority task when a higher priority task on the

same runqueue wakes up and preempts it.

4. What to do when a task lowers its priority and thereby causes a previ-

ously lower priority task to have the higher priority.

A pre-balance algorithm is used in case 1 above, often leading to a push

operation. A push operation is also initiated in cases 2 and 3 above. The

push algorithm considers all the runqueues within its scheduling domain (see

1.2.2) to find the one that is of a lower priority than the task being pushed.

A pull operation is performed for case 4 above. Whenever a runqueue is

about to schedule a task that is lower in priority than the previous one, it

checks to see whether it can pull tasks of higher priority from other runqueues.

Real-time tasks are affected only by the push and pull operations. The CFS

load-balancing algorithm does not handle real-time tasks at all, as it has been

observed that the CFS load-balancing algorithm pulls real-time tasks away

from runqueues to which they were correctly assigned, inducing unnecessary

latencies.

1.2.5 Real-time scheduler data structures and concepts

As stated in Section 1.1.2, the main per-CPU runqueue data structure struct

rq, holds a structure struct rt rq, that encapsulates information about

the real-time tasks placed on the per-CPU runqueue. In Listing 1.1 we can

see the most relevant fields.

Listing 1.1: struct rt rq

struct rt_rq {

struct rt_prio_array active;

...

unsigned int rt_nr_running;

unsigned long rt_nr_migratory;

unsigned long rt_nr_uninterruptible;

struct {

CHAPTER 1. BACKGROUND 10

int curr;

int next;

} highest_prio;

int overloaded;

};

Real-time tasks have a priority in the range of 0-99. These tasks are or-

ganized on a runqueue in a priority-indexed array active, of type struct

rt prio array. An rt prio array consists of an array of subqueues.

There is one subqueue per priority level. Each subqueue contains the runnable

real-time tasks at the corresponding prority level. There is also a bitmask

corresponding to the array that is used to determine effectively the highest

priority task on the runqueue.

rt nr running and rt nr uninterruptible are counts of the num-

ber of runnable real-time tasks and the number of tasks in the TASK UNINTERRUPTIBLE

state, respectively.

rt nr migratory indicates the number of tasks on the runqueue that

can be migrated to the other runqueues. Some real-time tasks are bound

to a specific CPU, so, even if the runqueue is overloaded (that is, the run-

queue holds more than one real-time task), that tasks cannot be pushed

away or pulled from another CPUs. Unfortunately, the other CPUs can-

not determine this without the overhead of locking several data structures.

This can be avoided by mantaining a count of the number of tasks on the

runqueue that can be migrated to other CPUs. When a task is added to

a runqueue, the hamming weight of the task->cpus allowed mask is

looked at (cached in task->rt.nr cpus allowed. If the value is greater

then one, the rt nr migratory field of the runqueue is incremented by

one. The overloaded field is set when a runqueue contains more than one

real-time task and at least one of them can be migrated to another runqueue.

It is updated whenever a real-time task is enqueued on a runqueue.

The highest prio field is a structure caching the priority of the two high-

est priority tasks queued on the runqueue. Also this structure is updated

whenever a task in enqueued on a runqueue.

CHAPTER 1. BACKGROUND 11

1.2.6 Root domains

As mentioned before, because the real-time scheduler requires several sistem-

wide resources for making scheduling decisions, scalability bottlenecks appear

as the number of CPUs increase, due to the increased contention for the

locks protecting these resources. Recently, several enhancements were made

to the scheduler to reduce the contention for such variables and so improving

scalability. The concept of root domains was introduced by Gregory Haskins

for this purpose.

First, let’s briefly introduce cpusets. Cpusets provide a mechanism to

partition CPUs into a subset that is used by a process or a group of processes.

Several cpusets could overlap, on the other hand, a cpuset is called exclusive

if no other contains overlapping CPUs. Each exclusive cpuset defines an

isolated domain of CPUs partitioned from other cpusets or CPUs. Whenever

a cpuset is created, a root domain has to be created and attached to the one,

so root domain is a way to attach all the informations describing a cpuset to

the cpuset itself.

struct root domain is defined in kernel/sched/sched.h and

the most relevant field are shown in Listing 1.2.

Listing 1.2: struct root domain

struct root_domain {

atomic_t refcount;

atomic_t rto_count;

cpumask_t span;

cpumask_t online;

cpumask_t rto_mask;

...

struct cpupri cpupri;

};

Root domains are so used to narrow the scope of the global variables

to per-domain variables. Whenever an exclusive cpuset is created, a new

root domain object is created with information from the member CPUs. By

default, a single high-level root domain is created with all CPUs as members.

All real-time scheduling decisions are made only within the scope of a root

domain.

CHAPTER 1. BACKGROUND 12

As we can see, the concept of root domain is the equivalent of scheduling

domain inside the real-time scheduler part.

1.2.7 CPU priority management

CPU Priority Management is an infrastructure also introduced by Gregory

Haskins to make task migration decisions efficient. This code tracks the

priority of every CPU in the root domain. Every CPU can be in any one of

the following states: INVALID, IDLE, NORMAL, RT1, ...RT99. The system

maintains this state in a two-dimensional bitmap: one dimension for the

different priority levels and the second for the CPUs in that priority level.

CPU priority means the value in rq->rt.highest prio.curr, that is,

the priority of the highest priority task queued on that CPU runqueue. This

is implemented using two arrays, as shown in Listing 1.3.

Listing 1.3: struct cpupri

struct cpupri_vec {

atomic_t count;

cpumask_var_t mask;

};

struct cpupri {

struct cpupri_vec pri_to_cpu[CPUPRI_NR_PRIORITIES];

int cpu_to_pri[NR_CPUS];

};

The field pri to cpu yields information about all the CPUs of a cpuset

that are in a particular priority level. This is encapsulated in struct

cpupri vec.

The field cpu to pri indicates the priority of a CPU.

The struct cpupri is scoped at the root domain level, so every ex-

clusive cpuset has its own cpupri data value.

The CPU Priority Management infrastructure is used to find a CPU to

which to push a task, as shown in 1.4.

Listing 1.4: cpupri find function

int cpupri_find(struct cpupri *cp, struct task_struct *p,

CHAPTER 1. BACKGROUND 13

struct cpumask *lowest_mask)

{

int idx = 0;

int task_pri = convert_prio(p->prio);

if (task_pri >= MAX_RT_PRIO)

return 0;

for (idx = 0; idx < task_pri; idx++) {

struct cpupri_vec *vec = &cp->pri_to_cpu[idx];

int skip = 0;

if (!atomic_read(&(vec)->count))

skip = 1;

smp_rmb();

if (skip)

continue;

if (cpumask_any_and(&p->cpus_allowed, vec->mask) >= nr_cpu_ids)

continue;

if (lowest_mask) {

cpumask_and(lowest_mask, &p->cpus_allowed, vec->mask);

if (cpumask_any(lowest_mask) >= nr_cpu_ids)

continue;

}

return 1;

}

return 0;

}

If a priority level is non-empty and lower than the priority of the task

being pushed, the lowest mask is set to the mask corresponding to the

priority level selected. This mask is then used by the push algorithm to

compute the best CPU to which to push the task, based on affinity, topology

and cache characteristics.

1.2.8 Details of the Push scheduling algorithm

As discussed before, when a low priority real-time task gets preempted by

a higher one or when a task is woken up on a runqueue that already has

a higher priority task running on it, the scheduler needs to search for a

suitable runqueue for the task. This operation of searching a runqueue and

transferring one of its tasks to another runqueue is called pushing a task.

CHAPTER 1. BACKGROUND 14

The push rt task() algorithm looks at the highest priority non-running

runnable real-time task on the runqueue of the CPU calling the operation

itself and considers all the others runqueues to find a CPU where it can run.

It searches for a runqueue that is of lower priority, that is, one where the

currently running task can be preempted by the task is being pushed.

The CPU Priority Management mechanism, detailed in Section 1.2.7, is

used to find a mask of CPUs that have the lowest priority runqueues. It

is important to select only the best CPU from among all the candidates.

The algorithm gives the highest priority to the CPU on which the task last

executed, as it is likely to be cache-hot in that location. If that is not possible,

the scheduling domain map is considered to find a CPU that is logically

closest to the last CPU. If this too fails, a CPU is selected at random from

the mask.

The push operation is performed until a real-time task fails to be migrated

or there are no more tasks to be pushed. Because the algorithm always selects

the highest non-running task for pushing, the assumption is that, if it cannot

migrate it, then most likely the lower real-time tasks cannot be migrated

either and the search is aborted. No lock is taken when scanning for the

lowest priority runqueue. When the target runqueue is found, only the lock

of that runqueue is taken, after which a check is made to verify wheter it

is still a candidate to which to push the task, as the target runqueue might

have been modified by a parallel scheduling operation on another CPU. If

not, the search is repeated for a maximum of three tries, after which it is

aborted.

1.2.9 Details of the Pull scheduling algorithm

The pull rt task() algorithm looks at all the overloaded runqueues in

a root domain and checks whether they have a non runnable real-time task

that can run on the runqueue of the CPU calling the function, namely the

target runqueue. The task can run on the target runqueue if the target CPU

bit is set in the cpumask structure of the eligible task. Moreover, the eligible

task priority has to be higher than that of the task the target runqueue is

CHAPTER 1. BACKGROUND 15

about to schedule. If so, the task is queued on the target runqueue. This

search aborts only after scanning all the overloaded runqueues in the root

domain. Thus, the pull operation may pull more than one task to the target

runqueue.

As in the push operation, the pull selects a candidate task in the first

pass, and then performs the actual pull in the second pass, so there is a

possibility that the selected task is no longer a candidate, due to another

parallel scheduling operation executed in the meanwhile. To avoid this race

the pull operation continues to pull tasks even if the operation fails. In the

worst case, this might lead to a number of tasks being pulled to the target

runqueue which would later get pushed away to other CPUs, leading to the

so called task bouncing phenomenon.

1.3 State of the art of Real-Time scheduling

on Linux

During the last years, research institutions and independent developers have

proposed several real-time extensions to the Linux kernel, in order to address

the deficiencies of SCHED FIFO and SCHED RR scheduling classes. In this

section we present a brief description of the more interesting alternatives.

1.3.1 RTLinux, RTAI and Xenomai

RTLinux is a patch developed at Finite State Machine Labs (FSMLabs)

to add real-time features to the standard Linux kernel [33]. The RTLinux

patch implements a small and fast RTOS, utilizing the Interrupt Abstraction

approach. The approach based on Interrupt Abstraction consists of creat-

ing a layer of virtual hardware between the standard Linux kernel and the

computer hardware (Real-Time Hardware Abstraction Layer). The RTHAL

actually virtualizes only interrupts. To give an idead of how it works (a com-

plete description is beyond the focus of this thesis) we can imagine that the

RT-kernel and the Linux kernel work side by side. Every interrupt source

CHAPTER 1. BACKGROUND 16

coming from real hardware is marked as real-time or non real-time. Real-

time interrupts are served by the real-time subsystem, whereas non-real-time

interrupts are managed by the Linux kernel. In pratice, the resulting system

is a multithreaded RTOS, in which the standard Linux kernel is the lowest

priority task and only executes when there are no real-time tasks to run and

the real-time kernel is inactive.

RTAI is the acronym of “Real-Time Application Interface” [30]. The

project started as a variant of RTLinux in 1997 at Dipartimento di Ingeg-

neria Areospaziale of Politecnico di Milano (DIAPM), Italy. Although the

RTAI project started from the original RTLinux code, the API of the projects

evolved in opposite directions. In fact, the main developer (prof. Paolo Man-

tegazza) has rewritten the code adding new features and creating a more

complete and robust system. The RTAI community has also developed the

Adaptive Domain Environment for Operating Systems (ADEOS) nanokernel

as alternative for RTAI’s core to exploit a more structured and flexible way

to add a real-time environment to Linux [11]. The ADEOS nanokernel im-

plements a pipeline scheme into which every domain (OS) has an entry with

a predefined priority. RTAI is is the highest priority domain which always

processes interrupts before the Linux domain, thus serving any hard real time

activity either before or fully preempting anything that is not hard real time.

Xenomai [16] is a spin-off of the RTAI project that brings the concept of

virtualization one step further. Like RTAI, it uses the ADEOS nanokernel to

provide the interrupt virtualization, but it allows a real-time task to execute

in user space extensively using the concept of domain provided by ADEOS

(also refer to [20] for a deeper insight).

All the alternatives before are efficient solutions, as they allow to obtain

very low latencies, but are also quite invasive, and, often, not all standard

Linux facilities are available to tasks running with real-time privileges (e.d.,

Linux device drivers, network protocol stacks, etc. . .). Another major prob-

lem (on RTLinux and RTAI) is that the real-time subsystem executes in the

same memory space and with the same privileges as the Linux kernel code.

This means that there is no protection of memory between real-time tasks

and the Linux kernel; a real-time task with errors may therefore crash the

CHAPTER 1. BACKGROUND 17

entire system.

1.3.2 PREEMPT RT

The CONFIG PREEMPT RT [17] patch set is maintained by a small group

of core developers, led by Ingo Molnar. This patch allows nearly all of the

kernel to be preempted, with the exception of a few very small regions of

code. This is done by replacing most kernel spinlocks with mutexes that

support priority inheritance, as well as moving all interrupts and software

interrupts to kernel threads.

The Priority Inheritance (PI) protocol solves the problem of unbounded

priority inversion. You have a priority inversion when a high priority task

must wait for a low priority task to complete a critical section of code and re-

lease the lock. If the low priority task is preempted by a medium priority task

while holding the lock, the high priority task will have to wait for the medium

priority task to complete, that is, for a possibly long (and unbounded) time.

The priority inheritance protocol dictates that in this case, the low priority

task inherits the priority of the high priority task while holding the lock,

preventing the preemption by medium priority tasks.

The CONFIG PREEMPT RT patch set focus is, in short, make the Linux

kernel more deterministic, by improving some parts that do not allow a pre-

dictable behaviour. Even if the priority inheritance mechanism is a complex

algorithm to implement, it can help reduce the latency of Linux activities,

reaching the level of the Interrupt Abstraction methods [20].

1.3.3 OCERA

OCERA [26], that stands for Open Components for Embedded Real-time

Applications, is an European project, based on Open Source, which provides

an integrated execution environment for embedded real-time applications.

It is based on components and incorporates the latest tecniques for build

embedded systems.

A real-time scheduler for Linux 2.4 has been developed within this project,

and it is available as open source code [3], [29], [31]. To minimize the mod-

CHAPTER 1. BACKGROUND 18

ifications to the kernel code, the real-time scheduler has been developed as

a small patch and an external loadable kernel module. All the patch does is

exporting toward the module (by some hooks) the relevant scheduling events.

The approach is straightforward and flexible, but the position where the

hooks have to be placed is real challenge, and it made porting the code to

next releases of the kernel very hard.

1.3.4 AQuoSA

The outcome of the OCERA project gave birth to the AQuoSA [4] software

architecture. AQuoSA is an open-source project for the provisioning of adap-

tive Quality of Service functionality into the Linux kernel, developed at the

Real Time Systems Laboratory of Scuola Superiore Sant’Anna. The project

features a flexible, portable, lightweight and open architecture for support-

ing soft real-time applications with facilities related to timing guarantees and

QoS, on the top of a general-purpose operating system as Linux.

It basically consists on porting of OCERA kernel approach to 2.6 kernel,

with a user-level library for feedback based scheduling added. Unfortunately,

it lacks features like support for multicore platforms and integration with the

latest modular scheduler (see Section 1.1.1).

1.3.5 FRESCOR

FRESCOR [15] is a consortium research project funded in part by the Euro-

pean Union’s Sixth Framework Programme [13]. The main objective of the

project is to develop the enabling technology and infrastructure required to

effectively use the most advanced techniques developed for real-time appli-

cations with flexible scheduling requirements, in embedded systems design

methodologies and tools, providing the necessary elements to target recon-

figurable processing modules and reconfigurable distributed architectures.

A real-time framework based on Linux 2.6 has been proposed by this

project. It is based on AQuoSA and further adds to it a contract-based API

and a complex middleware for specifying and managing the system perfor-

mances, from the perspective of the Quality of Service it provides. Obviously,

CHAPTER 1. BACKGROUND 19

it suffers from all the above mentioned drawbacks as well.

1.3.6 LITMUSRT

The LITMUSRT [21] project is a soft real-time extension of the Linux kernel

with focus on multiprocessor real-time scheduling and synchronization. The

Linux kernel is modified to support the sporadic task model and modular

scheduler plugins. Both partitioned and global scheduling is supported.

The primary purpose of the LITMUSRT project is to provide a useful

experimental platform for applied real-time systems research. In that re-

gard LITMUSRT provides abstractions and interfaces within the kernel that

simplify the prototyping of multiprocessor real-time scheduling and synchro-

nization algorithms.

LITMUSRT is not a production-quality system, is not “stable”, POSIX-

compliance is not a goal and is not targeted at being merged into mainline

Linux. Moreover, it only runs on Intel (x86-32) and Sparc64 architectures

(i.e., no embedded platforms, the one typically used for industrial real-time

and control).

1.4 EDF and CBS theory

In this section we are going to detail one fundamental real-time scheduling

algorithm. As we will see in Section 1.5, an implementation of this algorithm

is already available in Linux as a new scheduling class.

In order to understand this algorithm, we first present a brief discussion of

the theory behind that. For this purpose will be used the following notation:

τi identifies a generic periodic task;

φi identifies the phase of task τi; i.e., the first instance activation time;

Ti identifies the period of task τi; i.e., the interval between two subsequent

activations of τi;

Ci identifies the Worst-Case Execution Time (WCET) of task τi;

CHAPTER 1. BACKGROUND 20

Di identifies the relative deadline of task τi; a symplifying assumption is

that Di = Ti;

di,j identifies the absolute deadline of the j-th job of task τi; it can be

calculated as di,j = φi + (j − 1)Ti +Di;

U identifies the CPU utilization factor; it is calculated as U =
N∑
i=1

Ci

Ti
,

and provides a measure of CPU load by a set of periodic tasks.

1.4.1 Earliest Deadline First

Dynamic priority algorithms are an important class of scheduling algorithms.

In these algorithms the priority of a task can change during its execution.

In fixed priority algorithms (a sub-class of the previous one), instead, the

priority of a task does not change throughout its execution.

Earliest Deadline First (EDF) schedules tasks for increasing absolute dead-

line. At every instant of time, the selected task from the runqueue is the one

with the earliest absolute deadline. Since the absolute deadline of a periodic

task depends from the k-th current job,

di,j = φi + (j − 1)Ti +Di,

EDF is a dynamic priority algorithm. In fact, although the priority of each

job is fixed, the relative priority of one task compared to the others varies

over time.

EDF is commonly used with a preemptive scheduler, when a task with

an earlier deadline than that of the running task gets ready the latter is

suspended and the CPU is assigned to the just arrived earliest deadline task.

This algorithm can be used to schedule periodic and aperiodic tasks as well,

as task selection is based on absolute deadline only.

A simple example may clarify how EDF works (Figure 1.3). A task set

composed by three tasks is scheduled with EDF: τ1 = (1, 4), τ2 = (2, 6),

τ3 = (3, 8), with τi = (Ci, Ti). The utilization factor is: U = 1
4

+ 2
6

+ 3
8

= 23
24

.

CHAPTER 1. BACKGROUND 21

All three tasks arrive at instant 0. Task τ1 starts execution since it has the

earliest deadline. At instant 1, τ1 has finished his job and τ2 starts execution;

the same thing happens at instant 3 between τ2 and τ3. At instant 4, τ1 is

ready again, but it does not start executing until instant 6, when becomes

the earliest deadline task (ties can be broken arbitrarily). The schedulation

goes on this way until instant 24 (hyperperiod, least common multiple of tasks

periods), then repeats the same.

20 4 6 8 10 12 14 16 18 20 22 24

Figure 1.3: An EDF schedulation example.

Last thing to say is about schedulability bound with EDF:

• Theorem [22]: given a task set of periodic or sporadic tasks, with

relative deadlines equal to periods, the task set is schedulable by EDF

if and only if

U =
N∑
i=1

Ci

Ti
≤ 1.

• Corollary: EDF is an optimal algorithm on preemptive uniprocessor

systems, in the sense that if a task set is schedulable, it is schedulable

by EDF (you can reach a CPU utilization factor of 100%).

We could ensure the schedulability of the task set in fig. 1.3 simply consid-

ering that U = 23
24
≤ 1.

CHAPTER 1. BACKGROUND 22

1.4.2 Constant Bandwidth Server

In Section 1.4.1 we have considered homogeneous task set only (periodic or

aperiodic). Here we have to cope with scheduling a task set composed by

periodic and aperiodic tasks as well. Periodic tasks are generally considered

of a hard type, whereas aperiodic tasks may be hard, soft or even non real-

time, depending on the application.

Using a periodic task (that is: a server), dedicated to serve aperiodic

requests, is possible to have a good average response time of aperiodic tasks.

As every periodic task, a server is characterized by a period Ts and a comput-

ing time Cs, called server budget. A server task is scheduled with the same

algorithm used for periodic tasks, and, when activated, serves the hanging

aperiodic requests (not going beyond its Cs).

The Constant Bandwidth Server (CBS) [2, 1] is a service mechanism of

aperiodic requests on a dynamic context (periodic tasks are scheduled with

EDF) and can be defined as follows:

• A CBS is characterized by an ordered pair (Qs, Ts) where Qs is the

maximum budget and Ts is the period of the server. The ratio Us =

Qs/Ts is denoted as the server bandwidth.

• The server manages two internal variables that define its state: cs is the

current budget at time t (zero-initialized) and ds is the current deadline

assigned by the server to a request (zero-initialized).

• If a new request arrives while the current request is still active, the for-

mer is queued in a server queue (managed with an arbitrary discipline,

for example FIFO).

• If a new request arrives at instant t, when the server is idle, you see

if you can recycle current budget and deadline of the server. If it is

cs ≤ (t − ds)Us, then we can schedule the request with the current

server values, else we have to replenish the budget with the maximum

value (cs = Qs) and calculate the deadline as ds = t+ Ts.

CHAPTER 1. BACKGROUND 23

• When a request is completed, the server takes the next (if it exists)

from the internal queue and schedule it with the current budget and

deadline.

• When the budget is exhausted (cs = 0), it is recharged at the maximum

value (cs = Qs) and the current deadline is postponed of a period

(ds = ds + Ts).

The basic idead behind the CBS algorithm is that when a new request arrives

it has a deadline assigned, which is calculated using the server bandwidth,

and then inserted in the EDF ready queue. At the moment an aperiodic task

tries to execute more than the assigned server bandwidth, its deadline gets

postponed, so that its EDF priority is lowered and other tasks can preempt

it.

1.4.3 EDF scheduling on SMP systems

In this thesis we will consider the problem of scheduling soft real-time tasks

on a Symmetric Multi Processor (SMP) platform, made up by M identical

processors (or cores) with constant speed.

On a multi-core platform, there are three different approaches to schedule

a task set:

partitioned-EDF tasks are statically assigned to processors and those on

each processor are scheduled on an EDF basis. Tasks are so pinned to

a specific runqueue without the possibility of migrate between those.

Therefore, in an M processor system we have M task sets independently

scheduled. The main advantage of this approach is its simplicity, as a

multiprocessor scheduling problem is reduced to M uniprocessor ones.

Furthermore, tasks experience no overhead, since there arent’t migra-

tions. On the contrary, drawbacks of P-EDF are the complexity to

find an optimal assignment of tasks to processors (which is NP-hard)

and the impossibility to schedule some particular task sets that are

schedulable only if task sets are not partitioned [6].

CHAPTER 1. BACKGROUND 24

global-EDF jobs are inserted in a global deadline-ordered ready queue, and

on a instant by instant basis the available processors are allocated to

the nearest deadline jobs in the ready queue.

hybrid-EDF tasks are statically assigned to fixed-size clusters, much as

tasks are assigned to processors in P-EDF. The G-EDF algorithm is

then used to schedule the tasks on each cluster, as if each cluster be

constituted by an independent system for scheduling purposes.

No variant of EDF is optimal, so deadline misses can occur under each EDF

variant in a feasible systems9. It has been shown, however, that deadline

tardiness under G-EDF is bounded in systems, which, as we said, is sufficient

for many soft real-time applications [9, 32].

Under the H-GDF approach, deadline tardiness is bounded for each clus-

ter as long as the total utilization of the tasks assigned to each cluster is at

most the number of cores per cluster.

1.5 The SCHED DEADLINE scheduling class

SCHED DEADLINE [14] is a scheduling policy (made by Dario Faggioli and

Michael Trimarchi), implemented inside its own scheduling class, aiming at

introducing deadline scheduling for Linux tasks. It is being developed by

Evidence S.r.l. 10 in the context of the EU-Funded project ACTORS 11.

The need of an EDF scheduler in Linux has been already highlighted

in the Documentation/scheduler/sched-rt-group.txt file, which

says: “The next project will be SCHED EDF (Earliest Deadline First schedul-

ing) to bring full deadline scheduling to the linux kernel”. Developers have

actually chosen the name SCHED DEADLINE instead of SCHED EDF because

EDF is not the only deadline algorithm and, in the future, it may be desider-

9Systems with total utilization at most the number of processors
10http://www.evidence.eu.com
11http://www.actors-project.eu/

http://www.evidence.eu.com
http://www.actors-project.eu/

CHAPTER 1. BACKGROUND 25

able to switch to a different algorithm without forcing applications to change

which scheduling class they request.

The partners involved in this project (which include Ericsson Research,

Evidence S.r.l., AKAtech) strongly believe that a general-purpose operating

system like Linux should provide a standard real-time scheduling policy still

allowing to schedule non real-time tasks in the usual way.

The existing scheduling classes (i.e., SCHED FAIR and SCHED RT, see

fig. 1.1) perform very well in their own domain of application. However,

• they cannot provide the guarantees a time-sensitive application may

require. The point has been analyzed for SCHED FIFO and SCHED RR

policies (refer to sec. 1.2.1); using SCHED FAIR no concept of timing

constraint can be associated to tasks as well.

• The latency experienced by a task (i.e., the time between two consec-

utive executions of a task) is not deterministic and cannot be bound,

since it highly depends on the number of tasks running in the system

at that time.

It has to be emphasized the fact that these issues are particularly critical

when running time-sensitive or control applications. Without a real-time

scheduler, in fact, it is not possible to make any feasibility study of the

system under development, and developers cannot be sure that the timing

requirements will be met under any circumstance. This prevents the usage

of Linux in industrial context.

1.5.1 Main Features

SCHED DEADLINE 12 implements the Earliest Deadline First algorithm and

uses the Constant Bandwidth Server to provide bandwidth isolation 13 among

tasks. The scheduling policy does not make any restrictive assumption about

the characteristics of tasks: it can handle periodic, sporadic or aperiodic

tasks.
12The new kernel/sched/dl.c file contains the scheduling policy core.
13Different tasks cannot interfere with each other, i.e., CBS ensures each task to run for

at most its runtime every (relative) deadline length time interval.

CHAPTER 1. BACKGROUND 26

This new scheduling class has been developed from scratch, without start-

ing from any existing project, taking advantage of the modularity currently

offered by the Linux scheduler, so as not to be too invasive. The implemen-

tation is aligned with the current (at the time of writing) mainstream kernel,

and it will be kept lined up with future kernel versions.

SCHED DEADLINE relies on standard Linux mechanisms (e.g., control

groups) to natively support multicore platforms and to provide hierarchical

scheduling through a standard API.

1.5.2 Interaction with Existing Policies

The addition of the SCHED DEADLINE scheduling class to the Linux ker-

nel does not change the behavior of the existing scheduling policies, neither

best-effort and real-time ones. However, given the current Linux scheduler

architecture, there is some interaction between scheduling classes. In fact,

since each class is asked to provide a runnable task in the order they are

chained in a linked list, “lower” classes actually run in the idle time of “up-

per” classes. Where to put the new scheduling class is a key point to obtain

the right behavior. Developers chose to place it above the existing real-time

and normal scheduling classes, so that deadline scheduling can run at the

highest priority, otherwise it cannot ensure that the deadlines will be met.

Figure 1.4 shows the Linux scheduling framework with SCHED DEADLINE

added.

1.5.3 Current Multiprocessor Scheduling Support

As we have seen in Section 1.1.2, in Linux each CPU has its own ready

queue, so the way Linux deals with multiprocessor scheduling is often called

distributed runqueue. Tasks can, if wanted or needed, migrate between the

different queues. It is possible to pin some task on some processor, or set of

processors, setting the so called scheduling affinity as well.

SCHED DEADLINE developers has initially chose to implement the P-

EDF solution, where no dynamic processes migration can take place, unless

we change the task affinity.

CHAPTER 1. BACKGROUND 27

LINUX MODULAR SCHEDULER

kernel/sched/fair.c kernel/sched/rt.c

SCHED_NORMAL SCHED_BATCH

SCHED_IDLE SCHED_RR SCHED_FIFO

kernel/sched/dl.c

SCHED_DEADLINE

Figure 1.4: The Linux modular scheduling framework with
SCHED DEADLINE.

Recently, Juri Lelli, the current mantainer of SCHED DEADLINE project,

has extended its implementation to allow a G-EDF and a H-EDF schedula-

tion schemes. At the time of writing, in SCHED DEADLINE newer version,

we found not only the same distributed runqueue approach that all other

scheduling classes follow, but also the push and pull algorithms to balance

the load over all CPUs in the system. Obviously, here the migrations are

done comparing the tasks deadline.

The goal of this design is to approximate as much as possible the G-EDF

rule: “on an M CPUs system, the M earliest deadline ready tasks run on

the CPUs”. We use the term approximate because it’s clear that there may

be some intervals in which the above rule may be violated: in fact, sched-

uler can migrate tasks only when they are woken up or when their relative

deadline changes, in a similar manner as we have seen in 1.2.4 for SCHED RT

scheduling class tasks. In other words, the scheduler uses only local informa-

tions to impose a schedule, while occasionally relying on the push and pull

mechanisms to achieve a global balancing.

Compared to a global scheduling policy with a single system-wide run-

queue, this solution has the advantage of a better scalability as the number

of underlying cores increases. In fact, we have to keep in mind that, on a M

processors SMP system, we can have up to M scheduler instances executing

CHAPTER 1. BACKGROUND 28

at the same time, that compete to acquire the lock on the single runqueue.

Now, let us briefly discuss the data structures and the algorithms behind

the SCHED DEADLINE support to multi-core environments.

The concept of root domain is used here as in SCHED RT, but the struct

root domain is extended to manage the deadline tasks, so we can find the

following additional fields:

Listing 1.5: struct root domain extended

struct root_domain {

<same fields as above>

...

cpumask_var_t dlo_mask;

atomic_t dlo_count;

...

struct cpudl cpudl;

};

The field dlo mask shows which CPUs are overloaded and dlo count

keeps count of those. The remaining field, struct cpudl, is fundamental

to speed up the push mechanism. In the current implementation, that data

structure is a max-heap that keeps the deadline of the earliest deadline task

in all the runqueue.

As we will see in the remaining part of this document, the main goal of

this thesis it to design and develop more efficient data structures to speed

up the migration algorithms.

To implement the tasks migration mechanism, SCHED DEADLINE also

uses some particular fields on his runqueue structure, as we can see in List-

ing 1.6.

Listing 1.6: struct dl rq

struct dl_rq {

struct rb_root;

struct rb_node *rb_leftmost;

unsigned long dl_nr_running;

#ifdef CONFIG_SMP

struct {

u64 curr;

CHAPTER 1. BACKGROUND 29

u64 next;

} earliest_dl;

unsigned long dl_nr_migratory;

unsigned long dl_nr_total;

int overladed;

struct rb_root pushable_dl_tasks_root;

struct rb_node *pushable_dl_tasks_leftmost;

#endif

...

};

The struct dl rq is the place where we store task accounting infor-

mations to manage overloading and migrations. Among these the most im-

portant fields are:

struct earliest dl a cache for the two earliest deadline task enqueued

in the runqueue, to speed up push and pull decisions.

dl nr migratory the number of deadline tasks that can migrate.

dl nr total total number of deadline tasks queued.

pushable dl tasks root the root of a red-black tree where pushable

deadline tasks are enqueued.

pushable tasks leftmost pointer to the earliest deadline pushable task.

1.5.4 SCHED DEADLINE Push implementation

Now, let us discuss in great detail the push algorithm implemented in SCHED DEADLINE

scheduling class. In Listing 1.7 we can see the main push mechanism func-

tion: push dl task.

Listing 1.7: Push function

static int push_dl_task {

struct task_struct *next_task;

struct rq *later_rq;

if (!rq->dl.overloaded)

CHAPTER 1. BACKGROUND 30

return 0;

next_task = pick_next_pushable_dl_task(rq);

if (!next_task)

return 0;

retry:

if (unlikely(next_task == rq->curr)) {

WARN_ON(1);

return 0;

}

/*

* If next_task preempts rq->curr, and rq->curr

* can move away, it makes sense to just reschedule

* without going further in pushing next_task.

*/

if (dl_task(rq->curr) &&

dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&

rq->curr->dl.nr_cpus_allowed > 1) {

resched_task(rq->curr);

return 0;

}

/* We might release rq lock */

get_task_struct(next_task);

/* Will lock the rq it’ll find */

later_rq = find_lock_later_rq(next_task, rq);

if (!later_rq) {

struct task_struct *task;

/*

* We must check all this again, since

* find_lock_later_rq releases rq->lock and it is

* then possible that next_task has migrated.

*/

task = pick_next_pushable_dl_task(rq);

if (task_cpu(next_task) == rq->cpu && task == next_task) {

/*

* The task is still there. We don’t try

* again, some other cpu will pull it when ready.

*/

dequeue_pushable_dl_task(rq, next_task);

goto out;

}

if (!task)

/* No more tasks */

goto out;

CHAPTER 1. BACKGROUND 31

put_task_struct(next_task);

next_task = task;

goto retry;

}

deactivate_task(rq, next_task, 0);

set_task_cpu(next_task, later_rq->cpu);

activate_task(later_rq, next_task, 0);

resched_task(later_rq, next_task, 0);

double_unlock_balance(rq, later_rq);

out:

put_task_struct(next_task);

return 1;

};

The push function first checks the overloaded flag to see if there are

deadline tasks to push away, then pick from the pushable rbtree the task

to try to push next. At this time, find lock later rq find and lock a

runqueue where the task can immediately run, that is, the pushable task

will preempt the task currently executing on the target runqueue. If such a

runqueue is found then the actual migration is accomplished, otherwise the

function just retries or exits.

The find lock later rq code is presented in Listing 1.8.

Listing 1.8: pick next pushable dl task function

static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)

{

struct rq *later_rq = NULL;

int tries;

int cpu;

for(tries = 0; tries < DL_MAX_TRIES; tries++) {

cpu = find_later_rq(task);

if ((cpu == -1) || (cpu == rq->cpu))

break;

later_rq = cpu_rq(cpu);

CHAPTER 1. BACKGROUND 32

/* Retry if something changed. */

if (double_lock_balance(rq, later_rq)) {

if (unlikely(task_rq(task) != rq ||

!cpumask_test_cpu(later_rq->cpu,

&task->cpus_allowed) ||

task_running(rq, task) ||

!task->on_rq)) {

double_unlock_balance(rq, later_rq);

later_rq = NULL;

break;

}

}

/*

* If the runqueue we found has no -deadline task, or

* its earliest one has a later deadline than our

* task, the rq is a good one.

*/

if(!later_rq->dl.dl_nr_running ||

dl_time_before(task->dl.deadline,

later_rq->dl.earliest_dl.curr))

break;

/* Otherwise we try again */

double_unlock_balance(rq, later_rq);

later_rq = NULL;

}

return later_rq;

}

This function tries up to DL MAX TRIES (that is, three times in the cur-

rent implementation) times to find a suitable runqueue to push the task away.

It only acquires a double lock, one on the source and the other on the desti-

nation runqueues if it succeeds in its work. A check is performed immediately

after that the locks are acquired to see if a parallel scheduling operation makes

the target runqueue no more eligible to immediately run the task to migrate.

The very core of all mechanism is inside the find later rq function. Here

we show only the relevant part:

Listing 1.9: find later rq function

static int find_later_rq(struct task_struct *task)

{

struct sched_domain *sd;

CHAPTER 1. BACKGROUND 33

struct cpumask *later_mask = __get_cpu_var(local_cpu_mask_dl);

int this_cpu = smp_processor_id();

int best_cpu, cpu = task_cpu(task);

/* Make sure the mask is initialized first */

if (unlikely(!later_mask))

return -1;

if (task->dl.nr_cpus_allowed == 1)

return -1;

best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,

task_rq(task)->rd->dlo_mask,

task, later_mask);

if (best_cpu == -1)

return -1;

...

return best_cpu;

}

1.5.5 Max-heap cpudl data structure for push opera-

tion

As we have seen, the function find later rq relies on the cpudl data

structure to efficiently find a target runqueue (that is, a target CPU) where

to push the task.

In the current SCHED DEADLINE implementation the cpudl data struc-

ture is a max-heap that stores the deadline value of the tasks currently exe-

cuting on a CPU. We can see an example of such a structure in Figure 1.5

on page 35 where a 4-CPUs system is represented. In the above Figure the

cpudl data structure is simply represented as an ordered queue, since we

will see that many possible solutions are available for the implementation of

such a structure.

The cpudl data structure is managed through a simple API made up of

two function, as we can see in Listing 1.10.

Listing 1.10: cpudl API

CHAPTER 1. BACKGROUND 34

int cpudl_find(struct cpudl *cp, struct cpumask *dlo_mask,

struct task_struct *p, struct cpumask *later_mask);

void cpudl_set(struct cpudl *cp, int cpu, u64 dl, int is_valid);

The find operation is called when a scheduler instance, running on a CPU,

has to migrate a task and needs to know where it can push one.

The set operation is called when a scheduler instance, running on a CPU,

has to update the cpudl data structure to reflect a change in the underlying

runqueue status.

To implement a scheduling policy as close as possible to G-EDF, the

cpudl data structure keeps also track of the free CPUs (that is, a CPU with

no deadline tasks enqueued in its runqueue). When a CPU needs to know

where to push a task, cpudl find first looks into a proper CPU bitmask

where all free CPUs has an associated cleared bit. If it is possible to find

at least one free CPU, we don’t have to search in the max-heap and we can

immediately return the CPU index founded.

Now, let us focus on the cpudl find and cpudl set parameters. Re-

garding the former operation, we have the following parameters:

cp same as above.

dlo mask not used in current version.

p a pointer to the task to migrate. We use this pointer to read the CPU

affinity of the task in its task struct. In this way, cpudl find can

always returns an eligilble CPU index where task p is allowed to run.

later mask a pointer to a CPU bitmask where cpudl find can set all

bits related to CPUs eligible for the migration. In particular, this mask

is used when there are more than one free CPUs and cpudl find lets

the caller choose which CPU is best.

Regarding the latter one, we have to specify the following parameters:

cp a pointer to the instance of the cpudl data structure. In fact, there are

as many different instances of cpudl data structures as the number of

root domains.

CHAPTER 1. BACKGROUND 35

cpu the index of the CPU that is calling the function.

dl the new deadline value of the currently running task on cpu.

is valid a flag to indicate if there is at least one

deadline task enqueued in the runqueue.

...

1345

CPU 1

...

1285

...

1412

...

1403

CPU 2 CPU 3 CPU 4

cpudl push data structure:

curr:

next:

1278 1254 1212 1202

1202 125412781212

Figure 1.5: cpudl structure for push operation.

1.5.6 SCHED DEADLINE Pull implementation

The pull function checks all the root domain’s overloaded runqueues to see

if there is a task that the calling runqueue can take in order to run it imme-

diately. If found, this function performs a migration, otherwise it continues

or just exits if there are no more runqueue to consider. So, we can state that

the main goal of both push and pull operations is to perform a preemption

in the target runqueue.

CHAPTER 1. BACKGROUND 36

The pull operation in implemented in the pull dl task function, pre-

sented in Listing 1.11. For brevity’s sake we remove all the comments from

the code.

Listing 1.11: pull dl task function

static int pull_dl_task(struct rq *this_rq)

{

int this_cpu = this_rq->cpu, ret = 0, cpu;

struct task_struct *p;

struct rq *src_rq;

u64 dmin = LONG_MAX;

if (likely(!dl_overloaded(this_rq)))

return 0;

for_each_cpu(cpu, this_rq->rd->dlo_mask) {

if (this_cpu == cpu)

continue;

src_rq = cpu_rq(cpu);

if (this_rq->dl.dl_nr_running &&

dl_time_before(this_rq->dl.earliest_dl.curr,

src_rq->dl.earliest_dl.next))

continue;

double_lock_balance(this_rq, src_rq);

if (src_rq->dl.dl_nr_running <= 1)

goto skip;

p = pick_next_earliest_dl_task(src_rq, this_cpu);

if (p && dl_time_before(p->dl.deadline, dmin) &&

(!this_rq->dl.dl_nr_running ||

dl_time_before(p->dl.deadline,

this_rq->dl.earliest_dl.curr))) {

WARN_ON(p == src_rq->curr);

WARN_ON(!p->on_rq);

if (dl_time_before(p->dl.deadline,

src_rq->curr->dl.deadline))

goto skip;

ret = 1;

deactivate_task(src_rq, p, 0);

CHAPTER 1. BACKGROUND 37

set_task_cpu(p, this_cpu);

activate_task(this_rq, p, 0);

dmin = p->dl.deadline;

}

skip:

double_unlock_balance(this_rq, src_rq);

}

return ret;

}

The key difference between the pull operation and the push function, is

that inside pull we have to check every single runqueue in order to find tasks

to pull. In other words, in the current implementation, there isn’t available

an analogous data structure like the cpudl one for the push operation. On

a large SMP system, with a considerable number of cores, this can lead to

an unsustainable latency to perform the pull operation.

We will see in Chapter 3 how we have addressed this problem.

1.5.7 Task Scheduling

As mentioned earlier, SCHED DEADLINE does not make any restrictive as-

sumption on the characteristics of its tasks, thus it can handle:

• periodic tasks, typical in real-time and control applications;

• aperiodic tasks;

• sporadic tasks (i.e., aperiodic tasks with a minimum interarrival time

(MIT) between releases), typical in soft real-time and multimedia ap-

plications;

A key feature of task scheduling in this scheduling class is that temporal

isolation is ensured (while this feature is not available in SCHED RT schedul-

ing class, as we seen in Section 1.2.1). This means that the temporal behavior

of each task (i.e., its ability to meet its deadlines) is not affected by the be-

havior of any other task in the system. So, even if a task misbehaves, it is

not able to exploit larger execution time than it has been allocated to it and

monopolize the processor.

CHAPTER 1. BACKGROUND 38

Each task is assigned a budget (sched runtime and a period, considered

equal to its deadline (sched period). The task is guaranteed to execute for

an amount of time equal to sched runtime every sched period (task

utilization or bandwidth). When a task tries to execute more than its budget

it is slowed down, by stopping it until the time instant of its next deadline.

When, at that time, it is made runnable again, its budget is refilled and a

new deadline computed for him. This is how the CBS algorithm works, in

its hard-reservation configuration.

This way of working goes well for both aperiodic and sporadic tasks,

but it imposes some overhead to “standard” periodic tasks. Therefore, the

developers have made it possible for periodic tasks to specify, before going to

sleep waiting for the next activation, the end of the current instance. This

avoid them (if they behave well) being disturbed by the CBS.

1.5.8 Usage and Tasks API

SCHED DEADLINE users have to specify, before running their real-time ap-

plication, the system wide SCHED DEADLINE bandwidth. They can do this

echoing the desired values in /proc/sys/kernel/sched dl

period us and /proc/sys/kernel/sched dl runtime us

files. The quantity
sched dl runtime us

sched dl period us

will be the overall system wide bandwidth SCHED DEADLINE tasks are al-

lowed to use.

Otherwise, it is possible to disable SCHED DEADLINE bandwidth control

echoing the value -1 to in /proc/sys/kernel/sched dl runtime us.

The existing system call sched setscheduler(...) has not been ex-

tended, because of the binary compatibility issues that modifying its struct

sched param parameters would have raised for existing applications.

Therefore, another system call, called struct sched param2 14 has been

implemented. It allows to assign or modify the scheduling parameters de-

14defined in include/linux/sched.h

CHAPTER 1. BACKGROUND 39

scribed above (i.e., sched dl runtime and sched dl period) for tasks

running with SCHED DEADLINE policy.

The struct sched param2 implementation can be seen in Listing 1.12.

Listing 1.12: struct sched param2

struct sched_param2 {

int sched_priority;

unsigned int sched_flags;

u64 sched_runtime;

u64 sched_deadline;

u64 sched_period;

};

The syscall has the following prototype:

Listing 1.13: sched setscheduler2 syscall

int sched_setscheduler2(struct task_struct *p, int policy,

const struct sched_param2 *param);

For the sake of consistency, also

Listing 1.14: sched setparam2 and sched getparam2 syscalls

int sched_setparam2(pid_t pid, struct sched_param2 *param);

int sched_getparam2(pid_t pid, struct sched_param2 *param);

have been implemented.

Chapter 2

Synchronization mechanisms

analysis

As we stated in the previous chapter, the main goal of this thesis is to design

and develop new migration mechanisms that scale well while the number of

underlying cores increases. So, we can’t leave aside a detailed description of

the various synchronization mechanisms used to ensure a correct interaction

between multiple threads of execution. In particular, we are going to detail

the facilities that the Linux kernel provides to developers.

After that, we will explain a novel (and widely applicable) framework to

efficiently manage concurrent accesses to a shared data structures, called flat

combining.

2.1 Kernel locking techniques

The fundamental issue surrounding locking is the need to provide mutual

exclusion in certain code paths in the kernel. These code paths, called critical

sections, require some combination of concurrency or re-entrancy protection

and proper ordering with respect to other events. The typical result without

proper locking is called a race condition: the output is dependent on the

sequence of events. To avoid race conditions we need to rely on locking. The

Linux kernel provides a family of locking primitives that developers can use

40

CHAPTER 2. SYNCHRONIZATION MECHANISMS ANALYSIS 41

to write safe and efficient code.

2.1.1 SMP and UP Kernel

Depending on the configuration used to compile the kernel, Linux can be

configured to be used in a uniprocessor (UP) or in a multiprocessor (SMP)

environment. Some locking issues arises only in a SMP kernel, where we

have real parallelism, that is, more than one instructions are executed at the

exact same time. But even in a UP kernel we may have some locking issues:

if it is compiled with preemption enabled, a kernel can preempt itself, thus

leading to the need of locking usage.

Linux locking primitives are written in order to ensure proper synchro-

nization with all kinds of kernel, thanks to the conditional compilation en-

abled by two macros:

• CONFIG SMP to enable kernel SMP support

• CONFIG PREEMPT to enable kernel preemption support

In the following analysis we will refer to a kernel with both two macros

defined.

2.1.2 Atomic operators

Atomic operators are maybe the simplest of the approaches to kernel synchro-

nization and thus probably the easiest to understand and use. In addition

to this, they are the building blocks of the kernel’s locks.

Atomic operators are operations, like add and subtract, which execute

in one uninterruptible operation. There are two different subsets of atomic

operations: methods that operates on integers and methods that operates on

bits. For the sake of simplicity, we are going to describe only the first subset.

The most important atomic operations are listed in the following List-

ing2.1.

Listing 2.1: Atomic operations on integer

CHAPTER 2. SYNCHRONIZATION MECHANISMS ANALYSIS 42

void atomic_set(atomic_t *v, int i);

int atomic_read(const atomic_t *v);

void atomic_add(int i, atomic *v);

void atomic_sub(int i, atomic_t *v);

int atomic_cmpxchg(atomic_t *v, int old, int new);

The above primitives work on a integer variable (encapsulated in atomic t

type), that extends on 32 bits on most hardware architectures. Others atomic

operations for 64-bit variables are also available.

The semantics of the above operations is quite straightforward, but there

is one of those that deserves a futher explanation. The atomic cmpxchg

operation is fundamental, because it allows to realize the so called CAS

(Compare-And-Swap) operation: the value of the memory location addressed

by v pointer is atomically exchanged with the new value iff memory contains

the old value. If the exchange actually takes place, atomic cmpxchg

returns old value, otherwise it returns a different value. This operation is

also particular because it is the only one among the above that issues a full

memory barrier. We will discuss about memory barriers in Section 2.2.

2.1.3 Spinlocks

For anything more complicated than the basic arithmetic operations, a more

complete locking solutions is needed. The most common locking primitive in

the kernel is the spinlock. The spinlock is a very simple single-holder lock. If

a process attempts to acquire a spinlock and it is unavailable, the process will

keep trying (that is: spinning) until it can acquire the lock. This simplicity

leads to a small and fast lock.

An example of usage is in Listing 2.2.

Listing 2.2: Spinlock operations

spinlock_t lock = SPIN_LOCK_UNLOCKED;

unsigned long flags;

spin_lock_irqsave(&lock, flags);

/* critical section */

spin_unlock_irqrestore(&lock, flags);

CHAPTER 2. SYNCHRONIZATION MECHANISMS ANALYSIS 43

The use of spin lock irqsave will disable interrupts locally and im-

plement the spinlock on SMP systems. With a call to spin unlock irqrestore,

interrupts are restored to the state when the lock was acquired. All of the

above spinlocks assume the data they are protecting is accessed in both inter-

rupt handlers and normal kernel code. If that critical section is accessed only

in user-context kernel code (like a system call) the variants spin lock()

and spin unlock have to be used instead of the above.

In Linux, spinlocks are not recursive, as in other operating systems: the

programmer has to carefully deal with them in order to avoid potential dead-

locks.

Spinlocks should be used to lock data in situations where the lock is not

held for a long time: a waiting process will spin, doing nothing, waiting for

the lock to be available.

Another fundamental API provided by Linux is spin trylock irqsave:

it is a non-blocking variant of spin lock irqsave that returns zero if the

lock is successfully acquired, otherwise it returns a non-zero value without

spin. In the subsequent chapters, we will see how this primitive can effectively

used to implement lock-free solutions for shared data structures concurrency

management.

2.1.4 Semaphores

Semaphores in Linux are implemented as sleeping locks: a task that fails to

acquire the semaphore due to contention is forced to sleep. Because of this,

semaphores are usually used in situations where the lock-held time may be

long. Conversely, since they have a non negligible overhead of putting a task

to sleep and subsequently waking it up, they should not be used where the

lock-hold time is short. On the other hand, a task can safely block while

holding a semaphore, so they can be used to synchronize user contexts.

In Linux, semaphores are represented by a structure, struct semaphore,

that contains:

• a pointer to a wait queue

CHAPTER 2. SYNCHRONIZATION MECHANISMS ANALYSIS 44

• a usage count

The wait queue is a list of processes blocking on the semaphore, while the

usage count is the number of concurrently allowed holders. If it is negative,

the semaphore is unavailable and the absolute value of the usage count is the

number of processes blocked on the wait usage.

The primitives used to manage a semaphore is showed in Listing 2.3.

Listing 2.3: Semaphore operations

void sema_init(struct semaphore *sem, int val);

int down_interruptible(struct semaphore *sem);

void down(struct semaphore *sem);

void up(struct semaphore *sem);

The sema init simply initializes the semaphore. The up function is used

to release the semaphore, incrementing the usage count. If the new value is

greater than or equal to zero, one or more tasks on the wait queue will be

woken up.

To attempt to acquire a semaphore, we have to use one among down interruptible

and down functions: the former decrements the usage count of the semaphore

and, if the new value is less than zero, the calling process is added to the

wait queue and blocked. If the new value is greater or equal to zero, the

process obtains the semaphore and the call returns 0. If a signal is received

while blocking, the call returns the -EINTR error code and the semaphore is

not acquired. The latter performs almost the same, except that it puts the

calling task into an uninterruptible sleep: a signal received by a process in

such a status is ignored.

2.1.5 Reader/Writer locks

In addition to spinlocks and semaphores, Linux provides reader/writer vari-

ants that divide lock usage into two groups: reading and writing. Since it

is safe for multiple threads to read data concurrently, so long as nothing

modifies the data, reader/writer locks allow multiple concurrent readers but

only a single writer (with no concurrent readers). If the data accesses can be

CHAPTER 2. SYNCHRONIZATION MECHANISMS ANALYSIS 45

clearly divided into reading and writing patterns, especially with a greater

amount of reading than writing, the reader/writer locks are to be preferred.

In Listings 2.4 we provide an usage example of reader/writer spinlocks and

reader/writer sempahores, respectively.

Listing 2.4: Reader/Writer Spinlocks

rwlock_t rw_lock = RW_LOCK_UNLOCKED;

read_lock(&rw_lock);

/* critical section (read only) */

read_unlock(&rw_lock);

write_lock(&rw_lock);

/* critical section (read and write) */

write_unlock(&rw_lock);

Listing 2.5: Reader/Writer Semaphores

struct rw_semaphore rw_sem;

init_rwsem(&rw_sem);

down_read(&rw_sem);

/* critical section (read only) */

up_read(&rw_sem);

down_write(&rw_sem);

/* critical section (write only) */

up_write(&rw_sem);

Use of those kind of locks, where appropriate, is an appreciable optimiza-

tion.

2.2 Memory barriers

Before discussing memory barriers, we need to introduce the mechanisms

that rules the interaction between CPUs and memory in a multiprocessor

environment. After that, it will be clear how important memory barriers are

while developing lock-free solutions in a multicore environment.

For further details about memory barriers see [23].

CHAPTER 2. SYNCHRONIZATION MECHANISMS ANALYSIS 46

2.2.1 Abstract memory access model

Consider the abstract model of the system in Figure 2.1.

CPU 1 CPU 2Shared
Memory

Figure 2.1: An abstract model of a multiprocessor system.

Each CPU executes a program that generates memory access operations.

In the abstract CPU, memory operation ordering is very relaxed: a CPU

may actually perform the memory operations in an order it likes, provided

program causality appears to be mantained. Similarly, the compiler may also

arrange the instructions it emits in any order it like, provided it does not

affect the apparent operation of the program.

So, in the above diagram, the effects of the memory operations performed

by a CPU are perceived by the rest of the system as the operations cross the

interface between the CPU and rest of the system.

As an example, consider the sequence of events shown in Table 2.1.

CPU 1 CPU 2

{A == 1; B == 2}

A = 3; x = A;

B = 4; y = B;

Table 2.1: A sequence of memory operations performed by two CPUs

CHAPTER 2. SYNCHRONIZATION MECHANISMS ANALYSIS 47

The set of accesses as seen by the memory system can be arranged in 24

different combinations, some of them are showed below as examples.

STORE A=3, STORE B=4, x=LOAD A→3, y=LOAD B→4;

STORE A=3, STORE B=4, y=LOAD B→4, x=LOAD A→3;

STORE A=3, x=LOAD A→3, STORE B=4, y=LOAD B→4;

STORE A=3, x=LOAD A→3, y=LOAD B→2, STORE B=4;

STORE A=3, y=LOAD B→2, STORE B=4, x=LOAD A→3;

STORE A=3, y=LOAD B→2, x=LOAD A→3, STORE B=4;

STORE B=4, STORE A=3, x=LOAD A→3, y=LOAD B→4;

...

Since all of the above permutations are eligible, the final result can be

one of the subsequent four different combinations of values:

x == 1, y == 2

x == 1, y == 4

x == 3, y == 2

x == 3, y == 4

Furthermore, the stores committed by a CPU to the memory system may

not be perceived by the loads made by another CPU in the same order as

the stores were committed.

As a further example, consider the sequence of events showed in Table 2.2

CPU 1 CPU 2

{A == 1, B == 2, C == 3, P == &A, Q == &C}

B = 4; Q = P;

P = &B; D = *Q;

Table 2.2: Another sequence of memory operations performed by two CPUs

There is an obvious data dependency here, as the value loaded into D

depends on the address retrieved from P by CPU 2. At the end of the

sequence, any of the following results are possible:

CHAPTER 2. SYNCHRONIZATION MECHANISMS ANALYSIS 48

(Q == &A) and (D == 1)

(Q == &B) and (D == 2)

(Q == &B) and (D == 4)

Note that CPU 2 will never try and load C into D because the CPU will

load P into Q before issuing the load of *Q.

2.2.2 CPU guarantees

Since we have stated that any CPU may reorder instructions until it doesn’t

affect program causality, let’s now list the minimal guarantees that a pro-

grammer may be expected from a CPU:

• On any given CPU, dependent memory accesses will be issued in order,

with respect to itself. This means that for:

Q = P; D = *Q;

the CPU will issue the following memory operations:

Q = LOAD P, D = LOAD *Q

and always in that order.

• We say that loads and stores operations overlap if they are targeted at

overlapping pieces of memory. So, overlapping loads and stores within

a particular CPU will appear to be ordered within that CPU. This

means that for:

a = *X; *X = b;

the CPU will only issue the following sequence of memory operations:

a = LOAD *X, STORE *X = b

CHAPTER 2. SYNCHRONIZATION MECHANISMS ANALYSIS 49

And for:

*X = c; d = *X;

the CPU will only issue:

STORE *X = c, d = LOAD *X

Besides those, there are a number of things that must or must not be

assumed:

• It must not be assumed that independent (that is, not overlapping)

loads and stores will be issued in the order given.

• It must be assumed that overlapping memory accesses may be merged

or discarded. This means that for:

*A = X; Y = *A;

we may get any one of the following sequences:

STORE *A = X; Y = LOAD *A; STORE *A = Y = X;

2.2.3 Behaviour and varieties of memory barriers

As seen above, independent memory operations are effectively performed in

random order, this can be a problem for CPU to CPU interaction (and even

for interaction with the I/O subsystem). What is required is some way to

instruct the compiler and the CPU to restrict the order.

Memory barriers have been created for this purpose: they impose a per-

ceived partial ordering over the memory operations on either side of the

barrier.

Such enforcement is important because the CPUs can use a variety of

tricks to improve performance, including reordering, deferral and combina-

tion of memory operations, speculative loads, speculative branch prediction

CHAPTER 2. SYNCHRONIZATION MECHANISMS ANALYSIS 50

and various type of caching. Memory barriers are thus used to override or

suppress these tricks, allowing the code to sanely control the interaction of

multiple CPUs.

Memory barriers come in four basic varieties:

Write memory barriers These barriers gives the guarantee that all STORE

operations specified before the barrier will appear to happen before all

the STORE operations specified after the barrier with respect to the

other CPUs of the system.

A write barrier is a partial ordering on stores only: it is not required

to have any effects on load.

Data dependecy barriers They are a weaker form of read barrier. In the

case where two loads are performed such that the second depends on

the result of the first (e.g.: the first load retrieves the address to which

the second load will be directed), a data dependency barrier would be

required to make sure that the target of the second load is updated

before the address obtained by the first load is accessed.

A data dependecy barrier is a partial ordering on interdependent loads

only; it is not required to have any effects on stores, independent loads

or overlapping loads.

Read memory barriers Those barriers are like data dependency type plus

a guarantee that all the LOAD operations specified before the barrier

will appear to happen before all the LOAD operations specified after

the barrier with respect to the other CPUs of the system.

A read barrier is a partial ordering on loads only; it is not required to

have any effect on stores.

General memory barriers A general memory barrier gives a guarantee

that all the LOAD and STORE operations specified before the barrier

will appear to happen before all the LOAD and STORE operations

specified after the barrier with respect to the other CPUs of the system.

CHAPTER 2. SYNCHRONIZATION MECHANISMS ANALYSIS 51

A general memory barrier implies both read and write memory barriers,

and so can substitute for either.

There are also a couple of implicit varieties:

LOCK operations This acts as one-way permeable barrier. It guarantees

that all memory operations after the LOCK operation will appear to

happen after the LOCK operation with respect to the other components

of the system.

UNLOCK operations This also acts as a one-way permeable barrier. It

guarantees that all memory operations before the UNLOCK operation

will appear to happen before the UNLOCK operation with respect to

the other components of the system.

LOCK and UNLOCK operations are guaranteed to appear with respect

to each other strictly in the order specified.

It is important to note that these are minimum guarantees that barriers

provide. Different architectures may give more substantial guarantees, but

they may not be relied upon outside of architecture specific code in Linux.

2.2.4 SMP barriers pairing

It is important to point out that there are certain things that the Linux

kernel memory barriers does not guarantee:

• There is no guarantee that any of the memory accesses specified before

a memory barrier will be complete by the completion of a memory

barrier instruction: the barrier can be considered to draw a line in

that CPU’s access queue that accesses of the appropriate type may not

cross.

• There is no guarantee that issuing a memory barrier on one CPU will

have any direct effect on another CPU or any other hardware in the

system. The indirect effect will be the order in which the second CPU

sees the effects of the first CPU’s accesses occur.

CHAPTER 2. SYNCHRONIZATION MECHANISMS ANALYSIS 52

• There is no guarantee that a CPU will see the correct order of effects

from a second CPU’s accesses, even if the second CPU uses a memory

barrier, unless the first CPU also uses a matching memory barrier.

Starting from the last two points, we can understand that, when deal-

ing with CPU to CPU interactions, certain types of memory barrier should

always be paired.

A write barrier should always be paired with a data dependency barrier

or read barrier, though a general barrier would also be viable. Similarly, a

read barrier or a data dependency barrier should always be paired with at

least a write barrier, though, again, a general barrier is viable.

An example of such pairing is the sequence of events reported in Fig-

ure 2.2.

a = 1;

b = 2;

c = 3;

< write barrier >

d = 4;

v = c;

w = d;

x = a;

< read barrier >

y = b;

CPU 1 CPU 2

Figure 2.2: A sequence of memory operations where SMP barrier pairing is
required.

Note that the stores before the write barrier would normally be expected

to “match” the loads after the read barrier or the data dependency barrier,

and vice versa.

2.2.5 Explicit Linux kernel barriers

The Linux kernel has a variety of different barriers that act at different levels:

CHAPTER 2. SYNCHRONIZATION MECHANISMS ANALYSIS 53

• Compiler barriers: Linux has an explicit compiler barrier function that

prevents the compiler from moving the memory accesses either side of

it to the other side:

barrier()

This is a general barrier. The compiler barrier has no direct effect on

the CPU, which may then reorder things however it wishes.

• CPU memory barriers: Linux has eight basic CPU memory barriers,

as we can see in Table 2.3.

Type Mandatory SMP Conditional

General mb() smp mb()

Write wmb() smp wmb()

Read rmb() smp rmb()

Data Dependency read barrier depends() smp read barrier depends()

Table 2.3: Linux kernel memory barriers

All memory barriers, except the data dependency barriers imply a com-

piler barrier.

SMP memory barriers are reduced to compiler barriers on uniprocessor

compiled systems because it is assumed that a CPU will appear to be self-

consistent, and will order overlapping accesses correctly with respect to itself.

So, SMP memory barriers must be used to control the ordering of references

to shared memory on SMP systems, though the use of locking instead is

sufficient.

Mandatory barriers should not be used to control SMP effects, since

mandatory barriers unnecessarily impose overhead on UP systems.

CHAPTER 2. SYNCHRONIZATION MECHANISMS ANALYSIS 54

2.2.6 Implicit kernel memory barriers

Some of the other functions in the Linux kernel imply memory barriers,

amongst which are locking and scheduling functions.

It is importanto to point out that all the atomic operations that mod-

ify some state in memory and return information about the state (old or

new) imply an SMP-conditional general memory barrier (that is: a call to

smp mb()) on each side of the actual operation. Among these operations

we find atomic cmpxchg, explained in Section 2.1.2.

2.3 Flat combining

Flat combining [18] is a new synchronization paradigm recently introduced

by D. Hendler, I. Incze, N. Shavit and M. Tzafrir, that aims at reducing

the synchronization overhead while accessing a shared data structure with

multiple threads of execution.

The idea behind Flat combining is to have a given sequential data struc-

ture, named D, protected by a lock and have an associated dynamic publica-

tion list of a size proportional to the number of threads that are concurrently

accessing it. Each thread accessing D for the first time adds a thread-local

publication record to the list, and publishes all its successive accesses or mod-

ifications requests using a write to the request field of its publication record.

In each access, after writing its request, it checks if the shared lock is free,

and if so attempts to acquire it using a CAS (Compare-And-Set) operation.

A thread that succesfully acquires the lock becomes a combiner :

• it scans the list, collecting pending requests;

• applies the combined requests to D ;

• writes the results back to the threads’ request fields in the associated

publication records;

• finally, it releases the lock.

CHAPTER 2. SYNCHRONIZATION MECHANISMS ANALYSIS 55

Otherwise, a thread that detects that some other thread already owns

the lock, spins on its record, waiting for the owner to return a response in

the request field, at which point it knows the published request has been

applied to D. Once in a while, a combining thread will perform a cleanup

operation on the publication list. During this cleanup it will remove records

not recently used, so as to shorten the length of the combining traversals.

Thus, in each repeated access request, if a thread has no active publication

record, it will use it, and if not, it will create a new record and insert it into

the list.

We can assert that flat combining is a concurrency management frame-

work that can be adapted to many sequential data structures.

Unfortunately, not all the data structures are suited to be managed with

this framework: the authors say that any data structure such that k oper-

ations on it, each taking time δ, can be combined and then applied in time

less than k · δ, is a valid candidate to benefit from flat combining. So, as an

example, most kind of search trees do not fit the above formula.

Furthermore, even in beneficially combinable structures, the ones that

have high levels of mutation on the data structure will be rapidly beaten in

performance by a finely-grained lock implementation.

Finally, we have to consider that such implementation introduces an asyn-

chronous programming pattern: a thread that want to issue a sort of find

operation on the data structure may have to wait until a combiner thread

return the searched value in his publication record.

Chapter 3

New solutions for task

migration

In this chapter we will explain several solutions designed to improve the

scalability of the task migration algorithms. Our analysis will be related to

new data structures and new concurrency management solutions.

3.1 Skip list

Common abstract data types like ordered lists are usually implemented through

a binary tree or through a sort of balanced tree. The former is simple to

develop and mantains good performance except when some particular se-

quences of operations are performed on it. An example of such a sequence

is the inserting of elements in order: in such a scenario the tree becomes

a degenerated data structure that has very poor performance. The latter

has a similar behaviour but, with a more complicated algorithm, it tries to

mantain certain balance conditions to ensure good performance. Obviously,

we have to pay this benefit with a certain overhead that affects all operations

performed on the self-balanced tree . It is possible to observe that the num-

ber of “bad” sequences are low: so, if it were possible to randomly permute

the list of items to be inserted, trees would work well with high probability

for any input sequence. Unfortunately, in most cases, queries are answered

56

CHAPTER 3. NEW SOLUTIONS FOR TASK MIGRATION 57

“online”, so randomly permuting the input is impractical.

Skip lists are a probabilistic alternative to balanced trees: they are bal-

anced by consulting a random number generator. Although skiplists have

bad worst-case performance, no input sequence consistently produces the

worst-case performance, as observed in [27].

3.1.1 Skip List structure and asymptotic complexity

A skip list is capable to store a sorted list of items using a hierarchy of linked

lists that connect increasingly (bottom-up) sparse subsequences of the items.

An example of its structure is visible in Figure 3.1.

1 5

NULL

12 27 32 56 78

NULL

NULL

NULL

Figure 3.1: An example skip list.

Each link of the sparser lists skips over many items of the full list in

one step, hence the structure’s name. These forward links may be added in

a randomized way with some kind of probability distribution, typically the

geometric one. Skip lists present the following operations complexity:

• Insert O(log n)

• Search O(log n)

• Delete O(log n)

where n is the number of items stored in the list. A skip list is built in

layers. The bottom layer is an ordinary ordered linked list. Each higher

layer contains extra pointers that permit to skip over intermediate nodes:

CHAPTER 3. NEW SOLUTIONS FOR TASK MIGRATION 58

an element in layer i appears in layer i+1 with some fixed probability p

(commonly used values are 1
2

and 1
4
). On average, each element appears in

1
(1−p) , and the tallest element (usually a special head element at the front of

the skip list) in log 1
p
n lists.

A search for a target element begins at the head element in the top list,

and proceeds horizontally until the current element is smaller than the target.

If the current element is equal to the target, it has been found. Otherwise,

if the current element is greater than the target, or the search reaches the

end of the linked list, the procedure is repeated after moving down vertically

to the next lower list. The expected number of steps in each linked list is at

most 1
p
.

Therefore, the total expected cost of a search is log 1
p
n, that is, as we

stated above, logarithmic. Skip lists also offer the possibility to trade search

costs against storage costs by choosing different values of p.

3.1.2 cpudl skip list implementation

In this section we will present an implementation of a skip list tailored to be

used in SCHED DEADLINE migration mechanism.

The data structure has to hold the deadline value of the tasks currently

executing on the CPUs (to speed-up push algorithm decisions) and the dead-

line value of the next tasks currently enqueued on the CPUs’ runqueue (to

speed-up pull algorithm decisions).

We have already seen in Section 1.5.5 the API used to cope with a certain

cpudl implementation. Since we are only modifying cpudl itself while

leaving (for now) the same push/pull mechanism, we decided to mantain the

same API.

Now, we can make two insightful observations:

• regarding the find operation, we can see that the callers are always

interested in picking up the first element of the data structures, that

is, the index of the best CPU to where to push or pull a task;

• regarding the set operation, we can see that the callers always indicate

CHAPTER 3. NEW SOLUTIONS FOR TASK MIGRATION 59

the cpu index whose deadline related value has to be updated.

So, we chose the following design to improve the accesses to the data

structure:

• all the lists that compose the data structure are doubly-linked. So, we

can traverse the skip list both forward and backward, starting from any

item;

• we allocate a set of skip list nodes, one for each CPU in the system,

and we definitively pin each node to a specific CPU. Doing so, we don’t

have to allocate or free memory after kernel start-up;

• all the skip list items are referenced by an array of pointers, so we can

address an item simply knowing the index of the associated CPU;

• when a CPU has no deadline task in its runqueue, that is, when the

scheduler running on that CPU calls cpudl set with is valid sets

to zero, we write a specific “invalid” value in the corresponding skip

list node. Consequently, we detach the node from the skip list. This

node will be ready for later use and it will be addressable through the

array;

• when a CPU has a deadline task in its runqueue, we can recover the

associated node through the array, store the new deadline value, and

then insert it in the skip list;

• finally, when a scheduler instance running on a CPU needs to know

which CPU is the best for task migration, we only have to read the

head element of the skip list.

To guarantee the synchronization between the different scheduler in-

stances that issues operations on cpudl data structure, we used a simple

spinlock. We have to point out that the lock must be acquired only for

the set operation: the find operation is always performed lock-free through

these simple steps:

CHAPTER 3. NEW SOLUTIONS FOR TASK MIGRATION 60

• we copy the pointer to the skip list head node in a local variable;

• we check if this pointer is NULL: if so, no runqueue holds a deadline

task;

• otherwise we read the CPU index and we return it to the caller.

This design leads to the following asymptotic complexities:

• find O(1)

• set O(log(n))

where n is equal to the number of CPUs in the system. The code for this

cpudl implementation is reported in Appendix A.1.

3.2 Lock-free skip list

An implementation of a lock-free skip list is described in [28]. To realize such

a skip list, the author starts from an insightful observation: “the distribution

of levels within a skip list effects only the performance of operations, not their

correctness”. So, to delete an element we simply reduce the level of that

element one step at a time, until the level is equal to one. Then, we delete

it from the level one linked list, which deletes the element. If we think of a

level zero element as an element that has no pointers and is not in the list,

we can think of the process of deletion as reducing the level of an element

down to zero. The lock-free insertions works similarly: we first insert the

element in the level one linked list, then build up the level of the element as

appropriate.

Unfortunately, this approach can not be easily extended to a doubly-

linked skip list, as needed in SCHED DEADLINE to rapidly access to an item

associated with a certain CPU. So, we decided to give up with lock-free skip

list to focus on another concurrency management solutions.

CHAPTER 3. NEW SOLUTIONS FOR TASK MIGRATION 61

3.3 Bitmap flat combining

Flat Combining framework has already been briefly described in Section 2.3.

Here we are going to present some improvements that aim at making the

framework suitable for SCHED DEADLINE integration.

3.3.1 Flat combining implementation details

Recall from the previous discussion that flat combining, as its name suggests,

combines multiple operations together to complete them with a single pass

on the underlying data structure. To accomplish this task, the framework

relies on a list of publication records, through which the threads can request

operations on the data structure.

Also, the published records list is a shared data structure that needs to

be protected from concurrent accesses. In the original framework design, the

authors suggest to use a linked list, with some devices to reduce contention:

• the list can not be left empty: at least one publication record must

always be enqueued in it. This is useful to reduce contention between

the combiner and the others thread: the former always scans the list

from the head, the latter adds publication records to the tail;

• the publication records have a field that indicates if the requested op-

eration is completed. So, even if the combiner must leave a record in

the list, it knows that there are no more operations to complete;

• to avoid critical races when multiple threads add records to the list, we

use a CAS operation on the tail of the list: this prevent us to use a

lock that may quickly become a performance bottleneck as the number

of threads increases;

• finally, to balance the work between threads, the authors of the original

paper [18] suggest to add an aging mechanism. In this way, every

publication record has an age field that is initialized when the record

is published. The combiner thread, while scanning the list, discards

CHAPTER 3. NEW SOLUTIONS FOR TASK MIGRATION 62

the old records. The publisher thread has to periodically check if the

requested operation is completed, otherwise he has to publish again the

record.

The publication records list is crucial for flat combining performance.

Suppose that we have to perform a set of insert operations on the data

structure: to “combine” the operations and insert multiple values at a time,

the combiner thread needs to sort the publication records list first. In this

way, it is possible to insert all the values in the structure in only one pass,

one value after the other.

3.3.2 cpudl bitmap flat combining implementation

To obtain a suitable implementation of the flat combining framework, we

bring some improvements to the publication records list. Obviously, it was

not possible to use the framework “as is” in SCHED DEADLINE: the pub-

lication records list would have soon arised scalability issues, both for the

contention while adding new records and for the sorting of all requests prior

to execute the “combined” operations. Moreover, it is not possible to use an

asynchronous programming model inside push and pull operations: whenever

a scheduler instance running on a CPU has to migrate a task, it needs to

know immediately which runqueue to choose.

It was decided to implement the publication records list as a hierarchical

bitmap.

The top layer is a 64-bits bitmap: each bit is associated to a CPU in

the system. Whenever a CPU has at least one publication record active, the

corresponding bit in the 64-bits bitmap is set.

The bottom layer is made of a set of 32-bits bitmap, one for each CPU.

Every 32-bits bitmaps keep tracks of the records published by a CPU (more

precisely, by a scheduler instance running on a CPU). So, in this implemen-

tation, every CPU can publish at most 32 operations at a time.

As in the cpudl skip list implementation, all the publication records are

pre-allocated at kernel start-up and freed only at system shutdown: no over-

head due to memory management will slow down the migration mechanism.

CHAPTER 3. NEW SOLUTIONS FOR TASK MIGRATION 63

The main reason to use bitmaps to arrange the publication records is the

speed of the functions that operate on them. In fact, almost every modern

architecture provides, in its Instruction Set, a mean to know which is the first

or the last bit set in such a bitmap. Since these operations are hardware-

implemented, they are usually very fast. In the C POSIX Library we found

the function:

int ffs(int i);

that operates on an int variable. The GNU C Library adds the following

two functions that operates on arguments of possibly different size:

int ffsl(long int i);

int ffsll(long long int i);

These functions all do the same thing: starting from the least significant

bit in the argument, they search for a set bit and, if found, the position is

returned, otherwise they return zero.

Also the Linux kernel provides two functions that do the same thing,

except that they return the most significant set bit in the argument. For our

purpose, this different behaviour is peddling. The functions are:

int fls(int x);

int fls64(u64 x);

As discussed in Section 2.2, to ensure that the sequence of write opera-

tions on the top level and the bottom level bitmaps made by a CPU will be

perceived by all other CPUs in the same order, a write memory barrier has

to be issued. Similarly, the combiner CPU, while traversing the list, has to

issue a paired read memory barrier.

Regarding the lock that protects the underlying data structure, it was de-

cided to implement it through an atomic t variable. The lock is acquired

with a simple CAS operation, therefore with an atomic cmpxchg(). Note

that, as stated in Section 2.1.2, this operation issues an implicit memory bar-

rier, so there is no way that the critical section instructions will be reordered

CHAPTER 3. NEW SOLUTIONS FOR TASK MIGRATION 64

and positioned prior to the locking instruction. For the same reason, when

we release the lock, we use an atomic set operation and, after that, we

issue a write memory barrier. This design allows us not to deal with irqs

mask saving and restore, so it is a little faster than the spinlock solution.

As stated in the previous section, the flat combining framework introduces

an asynchronous programming model. This model is unacceptable for both

the find and the set operation. Regarding the former operation, we introduce

a cache to always keep an updated value of the best CPU index where to

migrate a task. Every time a CPU do a set operation, it checks the cached

value and compare its deadline to decide if the cache has to be updated. If

so, a CAS operation is immediately performed and, after that, the record is

published.

Regarding the latter operation, it was decided to restrict the maximum

number of records that a CPU can publish without waiting for the work to be

done. In the actual implementation, this parameter can be varied changing

the value of the macro PUB RECORD PER CPU, ranging from 1 to 32.

Finally, regarding the mechanism of “combining” the set operations, here

we can not apply such a strategy. If we compare the mean number of such

operations with the number of elements in the underlying data structure

(that is, the number of CPUs in the system) we can easily understand that

it is not worth to sort the requests to apply that in a single pass. Anyhow,

using a combiner thread that does all the work, we can benefit from keeping

the cache hot in the combiner CPU, thus speeding up all the operations.

The code for this cpudl implementation is reported in Appendix A.2.

3.4 Fastcache

Starting from the flat combining cpudl implementation discussed above, we

can lead some important considerations.

Most of the find operations are answered through the cache. In fact, we

use the underlying data structure only to “reconstruct” the cache when it is

invalidated. With such a design we can reach very high performance in the

find operation. Unfortunately, the set operation doesn’t experiment a similar

CHAPTER 3. NEW SOLUTIONS FOR TASK MIGRATION 65

boost: as we will see in Section 5.5, the CPU cycles needed to complete a set

is in the same order than the skip list solution.

This drawback can be addressed using a different design that aim to use

as much as possible the cache, to avoid complex algorithms that are not well

suited to manage a low number of items.

A common design pattern used in parallel programming to develop scal-

able algorithms consists of separating the code path depending on how the

concurrent requests on the data structure are interleaved. Typically we have

a fast path, where no lock is taken, and a slow path, where we must take

some kind of lock to ensure the correctness of the implementation. If we can

ensure that the fast path will be taken most of the time, thus leads to a very

fast solution.

Regarding the set operation on the cpudl data structure, recall from the

discussion above that we already implicitly defined what we consider the fast

path: when a CPU finds the cache in a valid state, it can compare the cached

valued with its deadline value to update it, if needed. Since the update is

performed through atomic operations, no lock will be taken. If the cache

must not be updated, we are still in a path where no lock is needed.

A slow path must be followed when a set operation takes place and the

cached CPU is just the same that calls the function. In this case, the value

of the deadline related to that CPU must be updated, and we can not know

if another CPU holds a better deadline value. So, we need to rely on a data

structure where the deadline of all CPUs are stored to find which is the best

one at the time. Since multiple CPUs can call the set operation concurrently,

we have to ensure that only one CPU will be authorized to manipulate the

cache, in other words, we need to protect the slow path with a lock.

For our purpose, we choose to implement the underlying structure with a

simple array, to be searched with a sequential search. This choice may seem

self-defeating but, as the experiments in Section 5.6 show, it is not. Such an

array allows a very fast update of the deadline value associated to each CPU

in the system: an atomic set plus a write memory barrier is enough. This

means that the fast path is indeed very fast. Obviously, as the number of

underlying CPUs increases, the sequential search will be increasingly slower

CHAPTER 3. NEW SOLUTIONS FOR TASK MIGRATION 66

and so will be the slow path. However, when the number of CPUs increases

it is more likely that, between two subsequent set operations coming from

the same CPU (the second of which would invalidate the cache), there will

be another set operation from a different CPU that instead updates the

cache. This update will change the CPU index cached value, preventing the

subsequent set operation from invalidating the cache. In this manner the

slow path will be taken in very few cases.

To guarantee the consistency of the cpudl data structure, we have to

ensure that:

• as soon as a CPU enters the cpudl set function, it has to update its

deadline value stored in the array with an atomic set;

• when more than one CPU concurrently executes the cpudl set while

the cache is invalidated, we first try to acquire the lock to refill it, but,

if the lock is taken, we simply retry until the cache is valid. This way,

we have a chance to “fast-update” the cache with our new deadline

value through a simple CAS.

Finally, another improvement can be made to speed up the slow path.

Suppose that the number of per-CPU tasks is low: this condition leads to a

higher number of runqueues with only one deadline tasks enqueued in it. So,

we would have an increasing rate of set operations with the is valid flag

set to zero, thus leading to a higher rate of cache invalidations. So, to obtain

good performance even in such a situation, we used the CPU bitmask also

for the pull operation: while scanning the deadlines array through the slow

path, that bitmask tell us which CPU has no next deadline tasks. Doing

this, we don’t need to scan every single element of the array: we can simply

skip those CPUs.

This solution has been named fastcache, from the words “fast path” and

“cache”. The fastcache code is reported in Appendix A.3.

CHAPTER 3. NEW SOLUTIONS FOR TASK MIGRATION 67

3.5 Improved pull algorithm

As discussed in Section 1.5.7, the current implementation of SCHED DEADLINE

lacks a data structure to speed up the pull operation. So, a scheduler instance

that wants to migrate a task through a pull operation needs to sequentially

search all the runqueues in the system to find the eligible tasks to pull. This

is a major drawback, for two main reasons:

• With the number of CPUs increasing, an unacceptable latency will

affect every pull operation;

• as seen in Section 1.2.9, the pull operation continues to pull tasks until

a suitable one could be found. Even if the CPUs are clustered into root

domains, this strategy can lead to a lot of useless task migrations, since

only a single task will be the running one: the others will remain en-

queued with little chance to execute. These tasks will be eligible for the

subsequent push operations, leading to the task bouncing phenomenon.

Thus we can conclude that this algorithm puts a non negligible overhead

on the scheduler. Theus, we decided to tackle the same approach followed

for push operation: similar data structure has been implemented, with three

key differences:

• the tasks that we have to consider when executing a pull operation are

the second ones enqueued in each runqueue;

• tasks are sorted in increasing deadline order;

• since we are searching for a task to pull in the current runqueue, and

we have no pointer to such a task, we can not check, inside cpudl data

structure, the task affinity, as we do for the push operation.

An example of such a cpudl implementation can be seen in Figure 3.2

on the following page where we consider a 4-CPUs system.

All the data structures presented in the previous sections have been de-

veloped with a hook to a deadline compare function: this way we can use

the same code for both push and pull operations.

CHAPTER 3. NEW SOLUTIONS FOR TASK MIGRATION 68

1202

...

1345

CPU 1

1212

...

1278

...

1254

...

CPU 2 CPU 3 CPU 4

cpudl pull data structure:

curr:

next: 1285 1412 1403

1285 1403 14121345

Figure 3.2: cpudl structure for pull operation.

CHAPTER 3. NEW SOLUTIONS FOR TASK MIGRATION 69

The related source code is reported in Appendix A.4.

Chapter 4

PRACTISE framework

In this chapter we will describe PRACTISE, a novel framework to help devel-

oping new scheduling algorithm for the Linux kernel in user space. We briefly

present a survey about the state-of-art kernel development tools, highlighting

the major advantages and drawbacks of each one. Then, we will show why a

PRACTISE may be useful and how it is designed.

Finally, we will compare the results of some experiments made both in

PRACTISE and in the Linux kernel.

4.1 Tools for Linux kernel development

Scheduling on multi-core and multiprocessor system is an open research field

both from the point of view of the theory and for the technical difficulties in

implementing an efficient scheduling algorithm in the kernel.

Regarding the second problem, we’re going to point out the difficulties

that kernel developers encounter in their task.

The scheduler is a fundamental part of the operating system kernel: a

buggy scheduler will soon chrash the system, usually at random and unex-

pected points. The major difficulty that a prospective developer encounters

when developing a new scheduling algorithms derives from the fact that,

when the system crashes, it is difficult to reconstruct the sequence of events

and states that led to the crash.

70

CHAPTER 4. PRACTISE FRAMEWORK 71

The developer has to carefully analyse system logs and traces, but this

task is far from simple due to the complexity of the kernel itself: the num-

ber of functions that compose a commercial OS like Linux is huge. More

importantly, it is often impossible to impose a precise sequence of events

to deterministically reproduce a particular status. Hence, it is practically

impossible to run a sequence of test-cases.

This problem is exacerbated in multi-core architectures where the sched-

uler service routines run in parallel on the different processors, and make use

of shared data structures that are accessed in parallel. In these cases, it is

necessary to ensure that the data structures remain consistent under every

possible interleaving of the service functions: as we will see in the following

sections, this problem is far from trivial.

Now let us present a quick list of the most widely adopted solutions for

Linux kernel development, with particular reference to the tools specifically

designed for the developing of a new scheduling algorithm.

4.1.1 LinSched

LinSched was originally developed by the Real Time System Group at Uni-

versity of North Carolina at Chapel Hill, and it’s currently mantained by P.

Turner from Google. This tool lets developers modify the behaviour of the

Linux scheduler and test changes in user-space. One of the major strength

points of this tool is that it introduces very few modifications in the kernel

sources: the developer can write kernel code and, once satisfied by tests, he

has kernel ready patches at hand. One key point of LinSched is that it runs

as a single thread user-space program. This leads to a facilitated debugging

process, because we can effectively use user-space common tool like, among

the others: GDB, gprof and Valgrind.

On the other hand, single-threading is a notable drawback when we are

focusing on the analysis of behaviour assumining a high degree of concur-

rency. LinSched can indeed verify locking, but it cannot precisely model

multi-core contention.

CHAPTER 4. PRACTISE FRAMEWORK 72

4.1.2 LITMUSRT

We have already described LITMUS in Section 1.3.6, here we are going to

point out the facilities that come with LITMUS to facilitate the development

of a new real-time scheduling algorithm.

LITMUS provides an integrated tracing infrastructure (named Feather-

Trace) with which performance and overhead data can be collected for off-line

processing.

Being a research tool rather than a production-quality system, LITMUS

does not target Linux mainline inclusion nor POSIX-compliance: in other

words code patches created with it cannot be seamless applied to a “Vanilla”

Linux kernel.

4.1.3 KVM + GDB

The very first step after having modified the kernel is usually to run it on

a virtualized environment. This solution allows to create a virtual machine

with suitable characteristics for the developed code (like a high number of

virtual cores to simulate a high concurrency platform) and with a faster

booting process compared to that of a physical machine.

In addition to this, KVM has on option to expose a server on a port where

GDB can connect to control the kernel execution. Even if this solution has

some limitations, like the impossibility of using software breakpoints, it is

indeed an invaluable help in the debugging process.

Unfortunately, this solution can hardly be used in a presence of high

concurrency, moreover, it can occasionally affect the repeatability of certain

bugs.

4.2 PRACTISE architecture

PRACTISE emulates the behaviour of the Linux scheduler subsystem on a

multi-core architecture with M parallel cores. The tool can be executed on

a machine with N cores, with N that can be less, equal or greater than M.

The tool can be executed in one of the following modes:

CHAPTER 4. PRACTISE FRAMEWORK 73

• testing

• performance analysis

Each processor in the simulated system is modelled by a software thread

that performs a cycle in which:

• scheduling events are generated at random

• the corresponding scheduling functions are invoked

• statistics are collected

In testing mode, a special “testing” thread is executed periodically and

it performs consistency checks on the shared data structures. In the perfor-

mance analysis mode, instead, each thread is pinned on a processor, and the

memory is locked to avoid spurious page faults; for this reason, to obtain

realistic performances it is necessary to set M ≤ N.

4.2.1 Ready queues

In the current version of PRACTISE the structure of distributed queues as it

is in the kernel has been mantained. The same push and pull algorithms used

in Linux to migrate tasks between runqueues, as described in Section 1.2.3,

have been implemented too. To speed up the push operation we have seen

that the current release of SCHED DEADLINE uses a max heap to store the

deadlines of the tasks executing on the processors. In a similar manner, the

current release of SCHED RT scheduling class uses a priority map1 to record,

for each processor, the priority value of the highest priority tasks. We find

those global data structure even in PRACTISE, with one key difference: in

PRACTISE we developed and tested a cpudl data structure to speed up also

the pull operations in SCHED DEADLINE scheduling class. This solution and

its potential advantages has been already described in Section 3.5.

During the simulation, tasks are inserted into (removed from) the ready

queues using the enqueue() (dequeue()) function, respectively. In Linux,

1implemented in kernel/sched/cpupri.c

CHAPTER 4. PRACTISE FRAMEWORK 74

the queues are implemented as red-black trees. In PRACTISE, for the sake

of simplicity, we have implemented them as priority heaps, using the data

structure proposed by B. Brandenburg 2. Since we are mainly interested in

observing the migration tasks pattern of activity, this difference don’t affect

our analysis.

In the following subsections, where we’re going to analyze in great detail the

tool internals, we will refer to the global data structures used to speed up the

push and pull operations as push struct and pull struct, respectively.

4.2.2 Locking and synchronization

PRACTISE uses a range of locking and synchronization mechanisms that

mimic the corresponding mechanisms in the Linux kernel. An exhaustive

list is given in Table 4.1. These differences are major culprits for the slight

changes needed to port code developed on the tool in the kernel, as we will

see in Section 4.4.1.

It has to be noted that wmb and rmb kernel memory barriers have no cor-

responding operations in user-space; therefore we have to issue a full memory

barrier (sync synchronize) for every occurence of them.

4.2.3 Event generation and processing

PRACTISE cannot execute or simulate a real application. Instead, each

threads (that emulates a processor) periodically generates random scheduling

events according to a certain distribution, and calls the scheduler functions.

The goals of PRACTISE are to make sure that the developer can easily

debug, test, compare and evaluate real-time scheduling algorithms for multi-

core processors. Therefore, we identified two main events: activation and

blocking.

When a task is activated, it must be inserted in one of the kernel queues;

since such an event can cause a preemption, the scheduler is invoked, data

structures are updated, etc. Something similar happens when a task self-

2Code available here: http://bit.ly/IozLxM.

http://bit.ly/IozLxM

CHAPTER 4. PRACTISE FRAMEWORK 75

suspends (for example because it blocks on a semaphore, or it suspends on

a timer).

The pseudo-code for the task activation is represented in Listing 4.1.

Listing 4.1: Task activation pseudo-code

on_activation(task) {

enqueue(task, local_queue);

pull(); /* pre-schedule */

push(); /* post-schedule*/

}

The code mimics the sequence of events that are performed in the Linux

code:

• First, the task is inserted in the local queue

• Then, the scheduler performs a pre-schedule, corresponding to pull(),

which looks at the global data structure pull struct to find the

task to be pulled; if it finds it, does a sequence of dequeue() and

enqueue().

• Then, the Linux scheduler performs the real schedule function; this

corresponds to setting the curr pointer to the executing task. In

PRACTISE this step is skipped, as there is no real context switch to

be performed.

• Finally, a post-schedule is performed, consisting of a push() operation,

which looks at the global data structure push struct to see if some

task need to be migrated, and in case the response is positive, performs

a dequeue() followed by an enqueue(). A similar thing happens

when a task blocks (see the pseudo-code for the task blocking operation

in Listing 4.2).

Listing 4.2: Task blocking pseudo-code

on_block(task) {

CHAPTER 4. PRACTISE FRAMEWORK 76

dequeue(&task, local_queue);

pull(); /* pre-schedule */

push(); /* post-schedule*/

}

Linux PRACTISE Action

raw spin lock pthread spin lock lock a structure

raw spin unlock pthread spin unlock unlock a structure

atomic inc sync fetch and add add a value in memory atomically

atomic dec sync fetch and sub subtract a value in memory atomically

atomic read simple read read a value from memory

wmb sync synchronize issue a memory barrier

rmb sync synchronize issue a read memory barrier

mb sync synchronize issue a full memory barrier

Table 4.1: Locking and synchronisation mechanisms (Linux vs. PRACTISE).

As anticipated, every processor is simulated by a periodic thread. The

thread period can be set varying a constant in the parameters.h header

file and represents the average frequency of events arriving at the processor.

At every cycle, the thread randomly select one between the following events:

• activation

• early finish

• idle

In the first case, a task is generated with a random value of the deadline

and function on activation() is called. In the second case, the task

currently executing on the processor blocks: therefore function on block()

is called. In the last case, nothing happens. Additionally, in all cases, the

deadline of the executing task is checked against the current time: if the

deadline has passed, then the current task is blocked, and here again, function

on block() is called.

CHAPTER 4. PRACTISE FRAMEWORK 77

With PRACTISE, it is possible to specify the period of the thread cycle,

the probability of an activation event, and the probability of an early finish.

4.2.4 Data structures in PRACTISE

PRACTISE has a modular structure, tailored to provide flexibility in devel-

oping new algorithms. The interface exposed to the user consists of hooks to

function that each global structure must provide. The most important hooks

are:

data init initialises the structure, e.g. spinlock init, dynamic memory

allocation, etc.

data cleanup performs clean up tasks at the end of a simulation.

data preempt called each time a local queue chenges its status (e.g. an

arriving task has higher priority that the currently executing one, so

it causes a preemption); this function modifies the global structure to

reflect new local queue status.

data find used by a scheduling policy to find the best CPU to (from)

which push (pull) a task.

data check implements the checker mechanism (described below).

One of the major features provided by PRACTISE is the checking infras-

tructure. Since each data structure has to obey different rules to preserve

consistency among successive updates, the user has to equip the implemented

algorithm with a proper checking function. When the tool is used in testing

mode, the data check function is called at regular intervals. Therefore, an

on-line validation is performed in presence of real concurrency thus increas-

ing the probability of discovering bugs at an early stage of the development

process. User-space debugging techniques can then be used to fix design or

developing flaws.

To give an example, the checking function for SCHED DEADLINE cpudl

structure ensures the max-heap property: if B is a child node of A, then

CHAPTER 4. PRACTISE FRAMEWORK 78

deadline(A) ≥ deadline(B); it also check consistency between the heap and

the array used to perform updates on intermediates nodes (see [19] for further

details). We also implemented a checking function for cpupri data structure:

periodically, all ready queues are locked, and the content of the data structure

is compared against the corresponding highest priority task in each queue,

and the consistency of the flag overloaded in the struct root domain

is checked. We found that the data struture id always perfectly consistent to

an external observer.

4.3 Performance analysis with PRACTISE

To collect the measurements we use the TSC3 of IA-32 and IA-64 Instruc-

tion Set Architectures. The TSC is a special 64-bit per-CPU register that is

incremented every clock cycle. This register can be read with two different

instructions: RDTSC and RDTSCP. The latter reads the TSC and other in-

formation about the CPU that issues the instruction itself. However, there

a number of possible issues that needs to be addressed in order to have a

reliable measure:

• CPU frequency scaling and power management. Modern CPUs can

dynamically vary frequency to reduce energy consumption. Recently,

CPUs manufacturer has introduced a special version of TSC inside their

CPUs: constant TSC. This kind of register is always incremented at

CPU maximum frequency, regardless of CPU actual frequency. Every

CPU that supports that feature has the flag constant tsc in /proc/cpuinfo

proc file of Linux. Unfortunately, even if the update rate of TSC is con-

stant in these conditions, the CPU frequency scaling can heavily alter

measurements by slowing down the code unpredictably; hence, we have

conducted every experiment with all CPUs at fixed maximum frequency

and no power-saving features enabled. To do this the cpufreq utility

has been used.

3Time Stamp Counter

CHAPTER 4. PRACTISE FRAMEWORK 79

• TSC synchronisation between different cores. Since every core has its

own TSC, it is possible that a misalignment between different TSCs

may occur. Even if the kernel runs a synchronisation routine at start up

(as we can see in the kernel log message), the synchronisation accuracy

is tipically in the range of several hundred clock cycles. To avoid this

problem, we have set CPU affinity of every thread with a specific CPU

index. In other words we have a 1:1 association between threads and

CPUs, fixed for the entire simulation time. In this way we also prevent

thread migration during an operation, which may introduce unexpected

delays.

• CPU instruction reordering. To avoid instruction reordering, we use

two instructions that guarantees serialisation: RDTSCP and CPUID.

The latter guarantees that no instructions can be moved over or beyond

it, but has a non-negligible and variable calling overhead. The former,

in contrast, only guarantees that no previous instructions will be moved

over. In conclusion, as suggested in [25], we used the following sequence

to measure a given code snippet:

CPUID

RDTSC

code

RDTSCP

CPUID

• Compiler instruction reordering. Even the compiler can reorder in-

structions; so we marked the inline asm code that reads and saves the

TSC current value with the keyword volatile.

• Page faults. To avoid page fault time accounting we locked every page

of the process in memory with a call to mlockall.

PRACTISE collects every measurement sample in a global multidimen-

sional array, where we keep samples coming from different CPUs separated.

After all simulation cycles are terminated, all the samples are written to an

output file.

By default, PRACTISE measures the following statistics:

CHAPTER 4. PRACTISE FRAMEWORK 80

• duration and number of push and pull operations;

• number of enqueue and dequeue operations;

• duration and number of data preempt, data finish and data find oper-

ations

It is possible to add different measures in the code of a specific algorithm

by using PRACTISE’s macros.

For example, suppose that we want to measure the number of clock cycles

that a code snippet takes to be executed: we refer to this piece of code as

operation under measure in the subsequent explanation.

To enable the measure samples collection we have to:

• insert the following lines of code in include/measure.h header file:

EXTERN_MEASURE_VARIABLE(operation_under_measure)

EXTERN_DECL(ALL_COUNTER(operation_under_measure))

and also the following lines in src/measure.c source file:

MEASURE_VARIABLE(operation_under_measure)

ALL_COUNTER(operation_under_measure)

to declare the array that will holds all the measurement samples and the

variable that will holds the number of measurement samples collected

(useful for average calculation).

• insert the following lines of code at the beginning and at the end of the

main function in src/practise.c source file, respectively:

MEASURE_ALLOC_VARIABLE(operation_under_measure)

MEASURE_FREE_VARIABLE(operation_under_measure)

to allocate memory for the measurement samples global array.

• surround the code snippet to measure with the following two instruc-

tions:

CHAPTER 4. PRACTISE FRAMEWORK 81

MEASURE_START(operation_under_measure, CPU-index)

<code_to_measure>

MEASURE_END(operation_under_measure, CPU-index)

where CPU-index is the CPU that is executing the code under mea-

sure. This is useful if we want to analyze how much operations a specific

CPU carries on.

• finally, add those lines of code in src/practise.c:

MEASURE_STREAM_OPEN(operation_to_measure, online_cpus);

for(i = 0; i < online_cpus; i++){

MEASURE_PRINT(out_operation_to_measure, operation_to_measure, i);

fprintf(out_operation_to_measure, "\n");

}

MEASURE_STREAM_CLOSE(operation_to_measure);

to print all the measurements sample in a properly formatted way.

4.4 Evaluation

In this section, we show how difficult is to port a scheduler developed with

the help of PRACTISE into the Linux kernel; then, we report performance

analysis figures and discuss the different results obtained in user space with

PRACTISE and inside the kernel.

4.4.1 Porting to Linux

The effort in porting an algorithm developed with PRACTISE in Linux can

be estimated by counting the number of different lines of code in the two

implementations. We have two global data structures implemented both in

PRACTISE and in the Linux kernel: cpudl and cpupri.

We used the diff utility to compare differences between user-space and

kernel code of each data structure. Results are summarised in Table 4.2.

Less than 10% of changes were required to port cpudl to Linux, these dif-

ferences mainly due to the framework interface (that is, pointers conversion).

CHAPTER 4. PRACTISE FRAMEWORK 82

Structure Modifications Ratio

cpudl 12+ 14- 8.2%

cpupri 17+ 21- 14%

Table 4.2: Differences between user-space and kernel code.

[...]
-void cpupri_set(void *s, int cpu, int newpri)
+void cpupri_set(struct cpupri *cp, int cpu,
+ int newpri)
{
- struct cpupri *cp = (struct cpupri*) s;

int *currpri = &cp->cpu_to_pri[cpu];
int oldpri = *currpri;
int do_mb = 0;

@@ -63,57 +61,55 @@
if (newpri == oldpri)

return;

- if (newpri != CPUPRI_INVALID) {
+ if (likely(newpri != CPUPRI_INVALID)) {

struct cpupri_vec *vec =
&cp->pri_to_cpu[newpri];

cpumask_set_cpu(cpu, vec->mask);
- __sync_fetch_and_add(&vec->count, 1);
+ smp_mb__before_atomic_inc();
+ atomic_inc(&(vec)->count);

do_mb = 1;
}

[...]

Figure 4.1: Comparison using diff.

Slightly higher changes ratio for cpupri, due to the quite heavy use of atomic

operations. An example of such changes is given in Figure 4.1 (lines with a

- correspond to user-space code, while those with a + to kernel code).

The difference on the synchronisation code can be reduced by using ap-

propriate macros. For example, we could introduce a macro that translates

to sync fetch and add when compiled inside PRACTISE, and to the

corresponding Linux code otherwise. However, we decide to mantain the dif-

ferent code to highlight the differences between the two frameworks, rather

than hide them.

In conclusion, the amount of work shouldered on the developer to transfer

CHAPTER 4. PRACTISE FRAMEWORK 83

the implemented algorithm to the kernel, after testing, is quite low reducing

the probability of introducing bugs during the porting.

Chapter 5

Experimental Results

In this chapter, we will summarize the results of various experiments con-

ducted with all the solutions presented in Chapter 3. First we will compare

the results of some experiments made both in PRACTISE and in the Linux

kernel. Those experiments show the ability of PRACTISE to predict the

relative performance of different algorithms.

Then, we will focus on the scalability of the algorithms presented in Chap-

ter 3: as the number of the underlying CPUs increases, we will see that the

tasks migration mechanism still shows good performance for both push and

pull operations.

Before implementing the algorithms in kernel space, extensive tests with

PRACTISE were conducted. We used the tool to correct all the bugs found

by the checking subsystem (discussed in Section 4.2.4). Then, we conducted a

performance analysis to understand which solution performs best in the user

space simulation. As we will show in this chapter, each algorithm provides

interesting results that allowed us to reach, step by step, a solution that scales

well in every situation. So, it has been decided to port all the algorithms

in kernel space, to run a performance test with each of them. Those tests

have confirmed once again the ability of PRACTISE to predict the relative

performance of the code tested with it.

While porting the algorithms in kernel space, the code developed with

PRACTISE has undergone very little changes, almost all related to the dif-

84

CHAPTER 5. EXPERIMENTAL RESULTS 85

ferences presented in Table 4.1 in Section 4.2.3. In addition to those, a single

modification has to be highlited: in kernel space we do not have the rand

function of the C standard library, so the kernel current time function

has been used to obtain a pseudo-random value to generate skip list items.

For our purpose this function is sufficient, because we do not need a strong

random generator.

5.1 Experiments with PRACTISE

The aim of the experimental evaluation is to compare performance measures

obtained with PRACTISE with what can be extracted from the execution

on a real machine.

Of course, we cannot expect the measures obtained with PRACTISE to

compare directly with the measure obtained within the kernel; there are

too many differences between the two execution environments to make the

comparison possible. For example, we can consider the completely different

synchronization mechanisms or the unpredictability of hardware interrupts

that the kernel has to manage. However, comparing the performance of two

alternative algorithms within PRACTISE can give us an idea of their relative

performance within the kernel.

In Linux we run experiments on a Dell PowerEdge R815 server equipped

with 64GB of RAM, and 4 AMDR OpteronTM 6168 12-core processors run-

ning at 1.9 GHz, for a total of 48 cores. We generated 20 random task

sets (using the randfixedsum [12] algorithm) with periods log-uniform

distributed in [10ms, 100ms], per CPU utilisation of 0.6, 0.7 and 0.8 and

considering 2, 4, 8, 16, 24, 32, 40 and 48 processors. Then, we ran each task

set for 10 seconds using a synthetic benchmark 1 that lets each task execute

for its WCET every period. We varied the number of active CPUs using the

Linux CPU hot plug feature and we collected scheduler statistics through

the sched debug proc file.

The results for the Linux kernel are reported in Figures 5.1 and 5.2, for

1rt-app: https://github.com/gbagnoli/rt-app

https://github.com/gbagnoli/rt-app

CHAPTER 5. EXPERIMENTAL RESULTS 86

modifying and querying the data structures, respectively.

Figure 5.1: Global data structure modify

The figures show the number of cycles (y axis) measured for different

number of processors ranging from 2 to 48 (x axis). The measures are shown

in boxplot format: a box indicates all data comprised between the 25% and

the 75% percentiles, whereas an horizontal lines indicates the median value;

also, the vertical lines extend from the minimum to the maximum value.

In PRACTISE we run the same experiments. As depicted in Section 4.2.3

random scheduling events generation is instead part of PRACTISE. We var-

ied the number of active processors from 2 to 48 as in the former case.

We set the following parameters: 10 milliseconds of thread cycle; 20%

probability of new arrival; 10% probability of finish earlier than deadline (for

cpudl data structure) or runtime (for cpupri data structure); 70% probability

of doing nothing. These probability values lead to rates of about 20 task

activation / (core * s), and 20 task blocking / (core * s).

The results are shown in Figures 5.3 and 5.5 for modifying the cpupri and

cpudl data structures, respectively; and in Figures 5.4 and 5.6 for querying

CHAPTER 5. EXPERIMENTAL RESULTS 87

Figure 5.2: Global data structure query

the cpupri and cpudl data structures, respectively.

Insightful observations can be made comparing performance figures for

the same operation obtained from the kernel and from simulations. Looking

at Figure 5.1 we see that modifying the cpupri data structure is generally

faster than modifying cpudl data structures: every measure corresponding

to the former structure falls below 1000 cycles while the same operation on

cpudl takes about 2000 cycles. Same trend can be noticed in Figures 5.3 and

5.5. Points dispersion is generally a bit higher than in the previous cases;

however median values for cpupri are strictly below 2000 cycles while cpudl

never goes under that threshold. We can see that PRACTISE overestimates

this measures: in Figure 5.3 we see that the estimation for the set operation

on cpupri are about twice the ones measured in the kernel; however, the

same happens for cpudl (in Figure 5.5); therefore, the relative performance

of both does not change.

Regarding query operations the ability of PRACTISE to provide an es-

timation of actual trends is even more evident. Figure 5.6 shows that a find

CHAPTER 5. EXPERIMENTAL RESULTS 88

(cpupri)

Figure 5.3: Global data structure cpupri modify

(cpupri)

Figure 5.4: Global data structure cpupri query

CHAPTER 5. EXPERIMENTAL RESULTS 89

(cpudl)

Figure 5.5: Global data structure cpudl modify

(cpudl)

Figure 5.6: Global data structure cpudl query

CHAPTER 5. EXPERIMENTAL RESULTS 90

on cpudl is generally more efficient than the same operation on cpupri ; this

was expected, because the former simple reads the top element of the heap.

Comparing Figure 5.4 with Figure 5.6 we can state that latter operations

are the most efficient also in the simulated environment. As a concluding

use-case, it is worth mentioning that PRACTISE has already been used as a

testing environment for the last SCHED DEADLINE release on the LKLM2.

The cpudl global data structure underwent major changes that needed to be

verified. The tested code has been finally merged within the patch set.

5.2 Kernel Experiments

Regarding the kernel experiments, since the results for the different values of

CPU utilization are very similar, in the subsequent sections we are going to

show only the graphs related to task sets with a U value of 0.8.

We will focus on the graphs related to the performance of the cpudl

data structures, that is: the CPU cycles of the find operation and the set

operation. We will show the number of push and pull operations and we will

point out the benefit of using a cpudl data structure to speed up the pull

operations.

5.3 Comparison between max-heap and skip

list

In this section we are going to focus on the push operation: we will compare

the cpudl max-heap with the skip list one.

The results are shown in Figure 5.7.

We can see that the find operation is always faster in the skip list im-

plementation: the median value is always under 600 CPU cycles, while the

max- heap never goes under that threshold. Both implementations are not

2LKLM (Linux Kernel Mailing List) thread available at: https://lklm.org/lklm/
2012/4/6/39

https://lklm.org/lklm/2012/4/6/39
https://lklm.org/lklm/2012/4/6/39

CHAPTER 5. EXPERIMENTAL RESULTS 91

affected by the increase in the CPUs number: we can see that the results are

the same from 2 to 48 CPUs. This shows that they are both scalable.

300

400

500

600

700

800

900

1000

1100

2 4 8 16 24 32 40 48

C
P

U
 c

lo
ck

 c
yc

le
s

CPUs number

Find on cpudl push structure

Push Heap
Push Skiplist

Figure 5.7: set operation on max-heap and skip list kernel

Regarding the set operation, the result is reversed (Figure 5.8): we see

that the max-heap is very fast and never exceeds the 2000 cycles threshold.

We can see that also the scalability of this solution is good: as the number of

CPUs increases, the heap still performs quite well, even if a slight worsening

can be noted when the CPUs are 24 or more.

The skip list implementation is not as fast as the heap in updating the

structure: the number of CPU cycles needed to perform the same operations

are about double. Regarding the scalability, we can see that the operation

tends to slightly slow while the CPUs are more than 16, but still mantains a

good performance even with 48 CPUs.

To perform a fair comparison between the two implementations, we need

to know the number of operations carried out on the data structure. In

CHAPTER 5. EXPERIMENTAL RESULTS 92

0

1000

2000

3000

4000

5000

6000

7000

8000

2 4 8 16 24 32 40 48

C
P

U
 c

lo
ck

 c
yc

le
s

CPUs number

Set on cpudl push structure

Push Heap
Push Skiplist

Figure 5.8: find operation on max-heap and skip list kernel

CHAPTER 5. EXPERIMENTAL RESULTS 93

Figure 5.9 and Figure 5.10 we can see the number of set and find per CPU

operations, respectively. Since the number of set operations greatly exceeds

the find one, and since the spread between max-heap and skip list perfor-

mance is much wider in the set case than the find one, we can definitely state

that the heap is a better solution for the push operation.

3800

4000

4200

4400

4600

4800

5000

5200

5400

5600

5800

2 4 8 16 24 32 40 48

E
ve

nt
s

nu
m

be
r

CPUs number

Number of set operations on cpudl push structure

Push Heap
Push Skiplist

Figure 5.9: set operations number

5.4 Improved Pull algorithm performance

As we have seen in Section 1.5.6 and in Section 3.5, the current implementa-

tion of SCHED DEADLINE lacks a data structure to speed up the pull oper-

ation. So, we decided to address this problem following the same approach

developed for the push operation. We chose the skip list implementation of

the cpudl data structure and, with a kernel modified as such, we conduct

the same experiments described in Section 5.1.

CHAPTER 5. EXPERIMENTAL RESULTS 94

1080

1100

1120

1140

1160

1180

1200

1220

1240

1260

0 5 10 15 20 25 30 35 40 45 50

E
ve

nt
s

nu
m

be
r

CPUs number

Number of find operations on cpudl push structure

Push Heap
Push Skiplist

Figure 5.10: find operations number

CHAPTER 5. EXPERIMENTAL RESULTS 95

The results are shown in Figure 5.11 and in Figure 5.12 where we can see the

number of succesfull per-CPU task migrations due to push and pull opera-

tions, respectively. Regarding the push-related migrations, we see that there

is no difference; on the other hand, since we used a cpudl data structure also

for pull operation, there is no need to explore all runqueues in the system:

so, the number of migrations is lower for every number of online CPUs.

400

500

600

700

800

900

1000

1100

1200

2 4 8 16 24 32 40 48

E
ve

nt
s

nu
m

be
r

CPUs number

Task migrations due to push

Push Heap
Push/Pull Skiplist

Figure 5.11: Number of task migrations due to push operation

5.5 Bitmap flat combining performance

In this section we discuss the performance of the bitmap flat combining

solutions. This implementation is the basis for the fastcache algorithm.

In Figures 5.13 and 5.14 we can observe the performance related to the

push and the pull operations, respectively. Each graphs contains two figures:

CHAPTER 5. EXPERIMENTAL RESULTS 96

50

100

150

200

250

300

350

400

450

2 4 8 16 24 32 40 48

E
ve

nt
s

nu
m

be
r

CPUs number

Task migrations due to pull

Push Heap
Push/Pull Skiplist

Figure 5.12: Number of task migrations due to pull operation

CHAPTER 5. EXPERIMENTAL RESULTS 97

the find operation results on the top half and the set operation results on

the bottom half.

0

200

400

600

800

1000

1200

1400

2 4 8 16 24 32 40 48

C
P

U
 c

lo
ck

 c
yc

le
s

Find

Push Heap
Flat Combining

0

2000

4000

6000

8000

10000

12000

14000

2 4 8 16 24 32 40 48

C
P

U
 c

lo
ck

 c
yc

le
s

CPUs number

Set

Push Heap
Flat Combining

Figure 5.13: Bitmap flat combining push performance

Regarding the push operation, we compared the bitmap flat combining

with the best current solution: the max-heap. We can see that, as with the

skip list, flat combining reaches very high performance in the find operation.

This is due to the best CPU cached value: if the cache is valid, we can

immediately return that CPU index, so the operation is very fast. The set

operation is instead slower for the bitmap flat combining solution. More

importantly, we can see that the performance doesn’t scale as well as with

the max-heap: with an increasing number of CPUs, the spread between the

two solutions is even more evident. With 48 online CPUs, the bitmap flat

combining overcomes the 4000 CPU cycles threshold, while the max-heap

remains under 2000 CPU cycles.

Regarding the pull operation, the trend is the same for both find and

CHAPTER 5. EXPERIMENTAL RESULTS 98

100

200

300

400

500

600

700

2 4 8 16 24 32 40 48

C
P

U
 c

lo
ck

 c
yc

le
s

Find

Push/Pull Skiplist
Flat Combining

0

500

1000

1500

2000

2500

2 4 8 16 24 32 40 48

C
P

U
 c

lo
ck

 c
yc

le
s

CPUs number

Set

Push/Pull Skiplist
Flat Combining

Figure 5.14: Bitmap flat combining pull performance

CHAPTER 5. EXPERIMENTAL RESULTS 99

set operations. Here we have to point out that the comparison is done with

the skip list as the improved pull algorithm has been tested with such data

structure.

In conclusion, we see how the cache mechanism, initially introduced to

keep the cpudl updated among the underlying runqueues status, makes the

solution very fast for the find operation, however, the flat combining frame-

work is not adequate for the set operation. If we consider the results for

the single-lock skip list another time, we can see how flat combining is even

worse than that. This means that the underlying mechanism to defer work

on the data structure puts a non negligible overhead.

200

300

400

500

600

700

800

900

1000

1100

1200

2 4 8 16 24 32 40 48

E
ve

nt
s

nu
m

be
r

CPUs number

Task migrations due to push

Push Heap
Flat Combining

Figure 5.15: Number of successfull push operations

Another insightful observation can be made referring to Figure 5.15,

where the number of successfull per CPU push operations is showed. In

the graph the max-heap and the flat combining are compared. As we can

see, the latter has a lower number of succesfull migrations: since we did

CHAPTER 5. EXPERIMENTAL RESULTS 100

not change the push mechanism, then the work deferring mechanism is the

responsible. Hence, the data structure cannot correctly represents the run-

queues status under certain conditions. This is a notable drawback that

highlights the inadequacy of this implementation.

5.6 Fastcache performance

As discussed in the previous sections, a good solution that aims at speeding

up the task migration mechanism, has to achieve very high performance in the

set operation. We have seen how the cache introduced with flat combining

offers good performance in the find operation, but the way this cache is

filled after being invalidated overcomes that benefit. With fastcache (see

Section 3.4), we try to focus on the cache mechanism, refilling that with

a very light-weight algorithm while ensuring that the set operation related

work will be done immediately.

In Figure 5.16 we can see the performance of the find (top half) and set

(bottom half) push related operations.

As usual, we compare fastcache with the max-heap, the fastest solution

for the push operation. As we can see, fastcache overcomes the previous

algorithm, both in the find and the set operations. The graph related to the

latter operation is the most important: we can see that the trend remains flat

as the number of the CPUs increases. In fact, the spread between the two

graphs is more and more evident increasing the number of CPUs. Considering

the 48 CPUs results, we can see how fastcache performs the set operation in

about 600 CPU cycles, while the max-heap takes more then the 1500 CPU

cycles.

The results for the pull operation, showed in Figure 5.17, are quite similar:

we see how fastcache, compared to the skip list, tends to be always faster.

Also here we can see that the trend of the set operation is not as flat as

the analogous one for push. This phenomenon can be explained looking at

the number of successfull migration due to push and pull, respectively, as

shown in Figures 5.18 and 5.19.

We can see that the number of task migrations due to the push operation,

CHAPTER 5. EXPERIMENTAL RESULTS 101

300

400

500

600

700

800

900

1000

1100

2 4 8 16 24 32 40 48

C
P

U
 c

lo
ck

 c
yc

le
s

Find

Push Heap
Fastcache

0

500

1000

1500

2000

2500

3000

3500

2 4 8 16 24 32 40 48

C
P

U
 c

lo
ck

 c
yc

le
s

CPUs number

Set

Push Heap
Fastcache

Figure 5.16: Fastcache push performance

CHAPTER 5. EXPERIMENTAL RESULTS 102

0

100

200

300

400

500

600

700

2 4 8 16 24 32 40 48

C
P

U
 c

lo
ck

 c
yc

le
s

Find

Push/Pull Skiplist
Fastcache

400

500

600

700

800

900

1000

1100

1200

2 4 8 16 24 32 40 48

C
P

U
 c

lo
ck

 c
yc

le
s

CPUs number

Set

Push/Pull Skiplist
Fastcache

Figure 5.17: Fastcache pull performance

CHAPTER 5. EXPERIMENTAL RESULTS 103

presented in the former figure, greatly overcomes the pull related one, in the

latter figure.

400

500

600

700

800

900

1000

1100

1200

2 4 8 16 24 32 40 48

E
ve

nt
s

nu
m

be
r

CPUs number

Task migrations due to push

Push Heap
Fastcache

Figure 5.18: Number of task migrations due to push operation

Recall from Figures 1.5 and 3.2 how the push and pull operations work:

the former has to cope with the curr deadline tasks, while the latter keeps

track of the next deadline tasks. This means that is easier, for the pull

cpudl data structure, to have an higher number of empty items: that is,

CPUs with no next deadline tasks. This condition leads to an higher per-

centage of set operations with the flag is valid set to zero, thus an higher

percentage of cache invalidations. Since the slow path has to be followed more

frequently for the pull related set operation, fastcache tends to be slightly

dependent on the number of underlying CPUs. However, we can see that

with an higher number of CPUs fastcache performs better than the skip list.

So we can state that fastcache scales better than the skip list.

Finally, from these latest figures, we can see that the number of task

CHAPTER 5. EXPERIMENTAL RESULTS 104

50

100

150

200

250

300

350

400

2 4 8 16 24 32 40 48

E
ve

nt
s

nu
m

be
r

CPUs number

Task migrations due to pull

Push/Pull Skiplist
Fastcache

Figure 5.19: Number of task migrations due to pull operation

CHAPTER 5. EXPERIMENTAL RESULTS 105

migrations is about the same for max-heap, skip list and fastcache.

Chapter 6

Conclusions and Future Work

In this thesis, we presented PRACTISE a tool for performance analysis and

testing of real-time multicore schedulers for the Linux kernel. PRACTISE en-

ables fast prototyping of real-time multicore scheduling mechanisms, allowing

easy debugging and testing of such mechanisms in user-space. We showed

the ability of this novel framework to predict the relative performance of

multiple solutions.

Thanks to PRACTISE we were able to develop a set of innovative solu-

tions to manage the task migrations in SCHED DEADLINE scheduling class.

We started with a probabilistic data structure, the skip list, that performs

very well in find operation. Then we developed a specific implementation

of the flat combining framework, named bitmap flat combining. This algo-

rithm performs even better than the skip list in find operation. However, we

showed that bitmap flat combining is not suitable for task migration mecha-

nism. Finally, we developed fastcache, a novel algorithm that overcomes all

previous one.

Regarding PRACTISE, a lot of improvements can be made.

First, it is possible to refine the framework adherence to the Linux ker-

nel. In doing so, we have to enhance task affinity management, local run-

queues capabilities and provide the possibility to generate random scheduling

events following probability distributions gathered from real task sets exe-

cution traces. Moreover, an improvement to the performance analysis mode

106

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 107

can be made. In particular, the main goal is to alleviate the unpredictable

latency introduced by a preemptive kernel while the user space code is un-

der measure. A possible solution is first to develop some scripts that can

translate the code in the kernel space equivalent one. After that, it will be

possible to run that code inside PRACTISE, if the tool will be designed to

work as a kernel module. Doing so, it will be possible to obtain more control

on kernel preemption so as to obtain more accurate measurements.

Thanks to PRACTISE, we developed a set of improved solutions for the

cpudl data structure. Driven by PRACTISE results, we decided to port each

one of them in kernel space. The results show that, thanks to the fastcache

algorithm, the task migration latency has been reduced, with a significant

improvement from the point of view of the scalability.

A considerable result has also been obtained with the new pull algorithm:

it has been showed that using a cpudl data structure even in the pull op-

eration reduces the spurious task migrations, leading to a schedule closer to

the theoretic G-EDF.

Regarding those aspects the research is all but over. To better understand

how the schedules imposed by SCHED DEADLINE are close to G-EDF a deep

analysis is needed: it would be appropriate to develop a tool aimed to verify,

for a given task sets, that the schedule obtained is really the G-EDF one.

Driven by this results, it will be possible to address all cases where a schedule

divergency arises.

Finally, the fastcache algorithm opens several usage scenarios that deserve

to be investigated. Probably, the most interesting of those is the implemen-

tation of a single global (but scalable) ready queue: this way, reaching a real

G-EDF scheduling policy will be plain. The original SCHED RT scheduling

class authors stated that a distributed runqueues design can scales well com-

pared to a single global runqueue one [24]. But with the introduction of

proper lock-free data structures and algoritms this statement may no longer

be true.

Appendix A

Code listings

A.1 cpudl skip list implementation

/∗
∗ ke rne l / sched/ cpud l . h

∗
∗ CPU dead l ine s g l o b a l management

∗
∗ Author : Fabio Fa l zo i <f a b i o . f a l z o i@a l i c e . i t>

∗
∗ This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or

∗ modify i t under the terms o f the GNU General Pub l i c License

∗ as pub l i s h ed by the Free Software Foundation ; ver s ion 2

∗ o f the License .

∗/

#i f n d e f LINUX CPUDL H

#de f i n e LINUX CPUDL H

#inc lude <l i nux / sched . h>

#de f i n e CPUDLMAX LEVEL 8

#de f i n e IDX INVALID −1

s t r u c t s k i p l i s t i t em {
u64 d l ;

i n t l e v e l ;

s t r u c t s k i p l i s t i t em ∗next [CPUDLMAX LEVEL] ;

s t r u c t s k i p l i s t i t em ∗prev [CPUDLMAX LEVEL] ;

i n t cpu ;

} ;

108

APPENDIX A. CODE LISTINGS 109

s t r u c t cpudl {
r aw sp in l o ck t l ock ;

s t r u c t s k i p l i s t i t em ∗head ;

s t r u c t s k i p l i s t i t em ∗ cpu to idx [NR CPUS] ;

unsigned i n t l e v e l ;

cpumask var t f r e e c pu s ;

bool (∗ cmp dl) (u64 a , u64 b) ;

} ;

#i f d e f CONFIG SMP

in t cpud l f i nd (s t r u c t cpudl ∗cp , s t r u c t cpumask ∗dlo mask ,

s t r u c t t a s k s t r u c t ∗p , s t r u c t cpumask ∗ l a t e r mask) ;

void cpud l s e t (s t r u c t cpudl ∗cp , i n t cpu , u64 dl , i n t i s v a l i d) ;

i n t c p ud l i n i t (s t r u c t cpudl ∗cp , bool (∗ cmp dl) (u64 a , u64 b)) ;

void cpudl c l eanup (s t r u c t cpudl ∗cp) ;

#e l s e

#de f i n e cpud l s e t (cp , cpu , d l) do { } whi le (0)

#de f i n e c p ud l i n i t () do { } whi le (0)

#end i f /∗ CONFIG SMP ∗/

#end i f /∗ LINUX CPUDL H ∗/

/∗
∗ ke rne l / sched cpud l . c

∗
∗ Globa l CPU dead l ine s management

∗
∗ Author : Fabio Fa l zo i <f a b i o . f a l z o i@a l i c e . i t>

∗
∗ This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or

∗ modify i t under the terms o f the GNU General Pub l i c License

∗ as pub l i s h ed by the Free Software Foundation ; ver s ion 2

∗ o f the License .

∗/

#inc lude <l i nux / gfp . h>

#inc lude <l i nux / s l ab . h>

#inc lude <l i nux / time . h>

#inc lude "cpudl.h"

#de f i n e LEVEL PROB VALUE 0.20

#de f i n e NOT IN LIST −1
#de f i n e CPUDLRANDMAX 10

#de f i n e CPUDL HEAD IDX −1

s t a t i c i n l i n e u64 cpudl detach (s t r u c t cpudl ∗ l i s t , s t r u c t s k i p l i s t i t em ∗p)
{

i n t i ;

APPENDIX A. CODE LISTINGS 110

f o r (i = 0 ; i <= p−>l e v e l ; i++) {
p−>prev [i]−>next [i] = p−>next [i] ;

i f (p−>next [i])

p−>next [i]−>prev [i] = p−>prev [i] ;

}

whi le (! l i s t −>head−>next [l i s t −>l e v e l] && l i s t −>l e v e l > 0)

l i s t −>l e v e l −−;

p−>l e v e l = NOT IN LIST ;

re turn p−>dl ;

}

s t a t i c u64 cpudl remove idx (s t r u c t cpudl ∗ l i s t , const i n t cpu)

{
s t r u c t s k i p l i s t i t em ∗p ;

p = l i s t −>cpu to idx [cpu] ;

i f (p−>l e v e l == NOT IN LIST)

return 0 ;

cpumask set cpu (cpu , l i s t −>f r e e c pu s) ;

r e turn cpudl detach (l i s t , p) ;

}

s t a t i c i n l i n e unsigned i n t cpud l r and l e v e l (unsigned i n t max)

{
unsigned i n t l e v e l = 0 , so r t ed ;

s t r u c t t imespec l im i t ;

max = max > CPUDLMAX LEVEL − 1 ? CPUDLMAX LEVEL − 1 : max ;

do {
l e v e l++;

l im i t = cu r r en t k e rn e l t ime () ;

s o r t ed = ((unsigned i n t) l im i t . t v n s e c % CPUDLRANDMAX) ;

} whi le ((so r t ed >= (((f l o a t) (1 − LEVEL PROB VALUE)) ∗ CPUDLRANDMAX)) &&

l e v e l < max) ;

r e turn l e v e l ;

}

s t a t i c i n t c pud l i n s e r t (s t r u c t cpudl ∗ l i s t , const i n t cpu , u64 d l)

{
s t r u c t s k i p l i s t i t em ∗p ;

s t r u c t s k i p l i s t i t em ∗update [CPUDLMAX LEVEL] ;

APPENDIX A. CODE LISTINGS 111

s t r u c t s k i p l i s t i t em ∗new node ;

i n t cmp res , l e v e l , i ;

unsigned i n t r and l e v e l ;

new node = l i s t −>cpu to idx [cpu] ;

new node−>dl = dl ;

p = l i s t −>head ;

l e v e l = l i s t −>l e v e l ;

whi l e (l e v e l >= 0) {
update [l e v e l] = p ;

i f (! p−>next [l e v e l]) {
l e v e l −−;
cont inue ;

}

cmp res = l i s t −>cmp dl (new node−>dl , p−>next [l e v e l]−>dl) ;

i f (cmp res > 0)

p = p−>next [l e v e l] ;

e l s e

l e v e l −−;
}

r a nd l e v e l = cpud l r and l e v e l (l i s t −>l e v e l + 1) ;

new node−>l e v e l = r and l e v e l ;

i f (r a nd l e v e l > l i s t −>l e v e l)

update[++ l i s t −>l e v e l] = l i s t −>head ;

f o r (i = 0 ; i <= rand l e v e l ; i++) {
new node−>next [i] = update [i]−>next [i] ;

update [i]−>next [i] = new node ;

new node−>prev [i] = update [i] ;

i f (new node−>next [i])

new node−>next [i]−>prev [i] = new node ;

}

cpumask c lear cpu (cpu , l i s t −>f r e e c pu s) ;

r e turn 0 ;

}

/∗
∗ c pud l f i n d − f i nd the b e s t (l a t e r−d l) CPU in the system

∗ @cp : the cpud l s k i p l i s t con tex t

∗ @dlo mask : mask o f over loaded runqueues in the root domain (not used)

∗ @p: the ta sk

APPENDIX A. CODE LISTINGS 112

∗ @later mask : a mask to f i l l in with the s e l e c t e d CPUs (or NULL)

∗
∗ Returns : i n t − b e s t CPU (s k i p l i s t maximum i f s u i t a b l e)

∗/
i n t cpud l f i nd (s t r u c t cpudl ∗cp , s t r u c t cpumask ∗dlo mask ,

s t r u c t t a s k s t r u c t ∗p , s t r u c t cpumask ∗ l a t e r mask)

{
s t r u c t s k i p l i s t i t em ∗ f i r s t ;

u64 f i r s t d l ;

i n t f i r s t c p u , best cpu = −1;
const s t r u c t s c h e d d l e n t i t y ∗ d l s e ;

i f (p)

d l s e = &p−>dl ;

i f (l a te r mask && cpumask and (later mask , cp−>f r e e cpus ,

&p−>cpus a l lowed) && cpumask and (later mask ,

later mask , cpu act ive mask)) {
best cpu = cpumask any (la te r mask) ;

} e l s e {
f i r s t = cp−>head−>next [0] ;

i f (! f i r s t)

r e turn −1;

f i r s t c p u = f i r s t −>cpu ;

f i r s t d l = f i r s t −>dl ;

/∗
∗ i f c pud l f i n d i s c a l l e d on b e h a l f o f

∗ a p u l l attempt , we can not do any other

∗ check , so we return immediate ly

∗ the CPU va lue from cpudl s t r u c t u r e

∗/
i f (! p)

re turn f i r s t c p u ;

i f (cpumask test cpu (f i r s t c p u , &p−>cpus a l lowed) &&

cp−>cmp dl (d l s e−>deadl ine , f i r s t d l)) {
best cpu = f i r s t c p u ;

i f (l a te r mask)

cpumask set cpu (best cpu , la te r mask) ;

}
}

r e turn best cpu ;

}

/∗
∗ c pud l s e t − update the cpud l s k i p l i s t

∗ @cp : the cpud l s k i p l i s t con tex t

APPENDIX A. CODE LISTINGS 113

∗ @cpu : the t a r g e t cpu

∗ @dl : the new e a r l i e s t dead l ine f o r t h i s cpu

∗
∗ Notes : assumes cpu rq (cpu)−>l o c k i s l ocked

∗
∗ Returns : (vo id)

∗/
void cpud l s e t (s t r u c t cpudl ∗cp , i n t cpu , u64 dl , i n t i s v a l i d)

{
unsigned long f l a g s ;

r aw sp i n l o c k i r q s a v e (&cp−>lock , f l a g s) ;

cpudl remove idx (cp , cpu) ;

i f (i s v a l i d)

c pud l i n s e r t (cp , cpu , d l) ;

r aw sp i n un l o c k i r q r e s t o r e (&cp−>lock , f l a g s) ;

}

/∗
∗ c p u d l i n i t − i n i t i a l i z e the cpud l s t r u c t u r e

∗ @cp : the cpud l s k i p l i s t con tex t

∗ @cmp dl : f unc t i on used to order dead l i ne s i n s i d e s t r u c t u r e

∗/
i n t c p ud l i n i t (s t r u c t cpudl ∗cp , bool (∗ cmp dl) (u64 a , u64 b))

{
i n t i ;

memset (cp , 0 , s i z e o f (∗ cp)) ;

cp−>cmp dl = cmp dl ;

r aw s p i n l o c k i n i t (&cp−>l o ck) ;

cp−>head = (s t r u c t s k i p l i s t i t em ∗) kmalloc (s i z e o f (∗ cp−>head) , GFP KERNEL)

;

memset (cp−>head , 0 , s i z e o f (∗ cp−>head)) ;

cp−>head−>cpu = CPUDL HEAD IDX;

memset (cp−>cpu to idx , 0 , s i z e o f (∗ cp−>cpu to idx) ∗ NR CPUS) ;

f o r (i = 0 ; i < NR CPUS; i++) {
cp−>cpu to idx [i] = (s t r u c t s k i p l i s t i t em ∗) kmalloc (s i z e o f (∗ cp−>

cpu to idx [i]) , GFP KERNEL) ;

memset (cp−>cpu to idx [i] , 0 , s i z e o f (∗ cp−>cpu to idx [i])) ;

cp−>cpu to idx [i]−> l e v e l = NOT IN LIST ;

cp−>cpu to idx [i]−>cpu = i ;

}

i f (! a l l oc cpumask var (&cp−>f r e e cpus , GFP KERNEL))

re turn −ENOMEM;

cpumask se ta l l (cp−>f r e e c pu s) ;

APPENDIX A. CODE LISTINGS 114

r e turn 0 ;

}

/∗
∗ cpud l c l eanup − c lean up the cpud l s t r u c t u r e

∗ @cp : the cpud l s k i p l i s t con tex t

∗/
void cpudl c l eanup (s t r u c t cpudl ∗cp)

{
i n t i ;

f o r (i = 0 ; i < NR CPUS; i++)

k f r e e (cp−>cpu to idx [i]) ;

k f r e e (cp−>head) ;

}

A.2 cpudl bitmap flat combining implemen-

tation

/∗
∗ ke rne l / sched/ cpud l . h

∗
∗ CPU dead l ine s g l o b a l management

∗
∗ Author : Fabio Fa l zo i <f a b i o . f a l z o i@a l i c e . i t>

∗
∗ This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or

∗ modify i t under the terms o f the GNU General Pub l i c License

∗ as pub l i s h ed by the Free Software Foundation ; ver s ion 2

∗ o f the License .

∗/

#i f n d e f LINUX CPUDL H

#de f i n e LINUX CPUDL H

#inc lude <l i nux / sched . h>

#inc lude <l i nux / threads . h>

#inc lude <l i nux /cpumask . h>

#inc lude <l i nux / types . h>

#inc lude "bm_fc.h"

#de f i n e CPUDLMAX LEVEL 8

#de f i n e NOT IN LIST −1
#de f i n e CPUDLRANDMAX ˜0UL

APPENDIX A. CODE LISTINGS 115

#de f i n e CPUDL HEAD IDX −1
#de f i n e NO CACHED CPU −1

s t r u c t s k i p l i s t i t em {
u64 d l ;

i n t l e v e l ;

s t r u c t s k i p l i s t i t em ∗next [CPUDLMAX LEVEL] ;

s t r u c t s k i p l i s t i t em ∗prev [CPUDLMAX LEVEL] ;

i n t cpu ;

} ;

s t r u c t cpudl {
s t r u c t s k i p l i s t i t em ∗head ;

s t r u c t s k i p l i s t i t em ∗ cpu to i t em [NR CPUS] ;

unsigned i n t l e v e l ;

cpumask var t f r e e c pu s ;

bool (∗ cmp dl) (u64 a , u64 b) ;

s t r u c t f l a t c omb in ing ∗ f c ;

} ;

#i f d e f CONFIG SMP

in t cpud l f i nd (s t r u c t cpudl ∗cp , s t r u c t cpumask ∗dlo mask ,

s t r u c t t a s k s t r u c t ∗p , s t r u c t cpumask ∗ l a t e r mask) ;

void cpud l s e t (s t r u c t cpudl ∗cp , i n t cpu , u64 dl , i n t i s v a l i d) ;

i n t c p ud l i n i t (s t r u c t cpudl ∗cp , bool (∗ cmp dl) (u64 a , u64 b)) ;

void cpudl c l eanup (s t r u c t cpudl ∗cp) ;

#e l s e

#de f i n e cpud l s e t (cp , cpu , d l) do { } whi le (0)

#de f i n e c p ud l i n i t () do { } whi le (0)

#end i f /∗ CONFIG SMP ∗/

#end i f /∗ LINUX CPUDL H ∗/

/∗
∗ ke rne l / sched cpud l . c

∗
∗ Globa l CPU dead l ine s management

∗
∗ Author : Fabio Fa l zo i < f a l z o i@ t e c i p . sssup . i t>

∗
∗ This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or

∗ modify i t under the terms o f the GNU General Pub l i c License

∗ as pub l i s h ed by the Free Software Foundation ; ver s ion 2

∗ o f the License .

∗/

APPENDIX A. CODE LISTINGS 116

#inc lude <l i nux / gfp . h>

#inc lude <l i nux / s l ab . h>

#inc lude <l i nux / time . h>

#inc lude <l i nux /atomic . h>

#inc lude <l i nux /atomic . h>

#inc lude <asm/ ba r r i e r . h>

#inc lude "bm_fc.h"

#inc lude "cpudl.h"

s t a t i c i n l i n e u64 cpudl detach (s t r u c t cpudl ∗ l i s t , s t r u c t s k i p l i s t i t em ∗p)
{

i n t i ;

f o r (i = 0 ; i <= p−>l e v e l ; i++) {
p−>prev [i]−>next [i] = p−>next [i] ;

i f (p−>next [i])

p−>next [i]−>prev [i] = p−>prev [i] ;

}

whi le (! l i s t −>head−>next [l i s t −>l e v e l] && l i s t −>l e v e l > 0)

l i s t −>l e v e l −−;

p−>l e v e l = NOT IN LIST ;

re turn p−>dl ;

}

s t a t i c u64 cpudl remove idx (s t r u c t cpudl ∗ l i s t , const i n t cpu)

{
s t r u c t s k i p l i s t i t em ∗p ;

p = l i s t −>cpu to i t em [cpu] ;

i f (p−>l e v e l == NOT IN LIST)

return 0 ;

cpumask set cpu (cpu , l i s t −>f r e e c pu s) ;

r e turn cpudl detach (l i s t , p) ;

}

s t a t i c i n l i n e unsigned i n t cpud l r and l e v e l (unsigned i n t max)

{
unsigned i n t l e v e l = 0 , so r t ed ;

s t r u c t t imespec l im i t ;

max = max > CPUDLMAX LEVEL − 1 ? CPUDLMAX LEVEL − 1 : max ;

do {

APPENDIX A. CODE LISTINGS 117

l e v e l++;

l im i t = cu r r en t k e rn e l t ime () ;

s o r t ed = ((unsigned i n t) l im i t . t v n s e c % CPUDLRANDMAX) ;

} whi le ((so r t ed >= (((f l o a t) (1 − LEVEL PROB VALUE)) ∗ CPUDLRANDMAX)) &&

l e v e l < max) ;

r e turn l e v e l ;

}

s t a t i c i n t c pud l i n s e r t (s t r u c t cpudl ∗ l i s t , const i n t cpu , u64 d l)

{
s t r u c t s k i p l i s t i t em ∗p ;

s t r u c t s k i p l i s t i t em ∗update [CPUDLMAX LEVEL] ;

s t r u c t s k i p l i s t i t em ∗new node ;

i n t cmp res , l e v e l , i ;

unsigned i n t r and l e v e l ;

new node = l i s t −>cpu to i t em [cpu] ;

new node−>dl = dl ;

p = l i s t −>head ;

l e v e l = l i s t −>l e v e l ;

whi l e (l e v e l >= 0) {
update [l e v e l] = p ;

i f (! p−>next [l e v e l]) {
l e v e l −−;
cont inue ;

}

cmp res = l i s t −>cmp dl (new node−>dl , p−>next [l e v e l]−>dl) ;

i f (cmp res > 0)

p = p−>next [l e v e l] ;

e l s e

l e v e l −−;
}

r a nd l e v e l = cpud l r and l e v e l (l i s t −>l e v e l + 1) ;

new node−>l e v e l = r and l e v e l ;

i f (r a nd l e v e l > l i s t −>l e v e l)

update[++ l i s t −>l e v e l] = l i s t −>head ;

f o r (i = 0 ; i <= rand l e v e l ; i++) {
new node−>next [i] = update [i]−>next [i] ;

update [i]−>next [i] = new node ;

new node−>prev [i] = update [i] ;

i f (new node−>next [i])

APPENDIX A. CODE LISTINGS 118

new node−>next [i]−>prev [i] = new node ;

}

cpumask c lear cpu (cpu , l i s t −>f r e e c pu s) ;

r e turn 0 ;

}

s t a t i c void cpud l d i spa t che r (void ∗ l i s t , i n t cpu , u64 d l ine , i n t i s v a l i d)

{
s t r u c t cpudl ∗cp = (s t r u c t cpudl ∗) l i s t ;

cpudl remove idx (cp , cpu) ;

i f (i s v a l i d)

c pud l i n s e r t (cp , cpu , d l i n e) ;

}

/∗
∗ c pud l f i n d − f i nd the b e s t (l a t e r−d l) CPU in the system

∗ @cp : the cpud l s k i p l i s t con tex t

∗ @dlo mask : mask o f over loaded runqueues in the root domain (not used)

∗ @p: the ta sk

∗ @later mask : a mask to f i l l in with the s e l e c t e d CPUs (or NULL)

∗
∗ Returns : i n t − b e s t CPU (s k i p l i s t maximum i f s u i t a b l e)

∗/
i n t cpud l f i nd (s t r u c t cpudl ∗cp , s t r u c t cpumask ∗dlo mask ,

s t r u c t t a s k s t r u c t ∗p , s t r u c t cpumask ∗ l a t e r mask)

{
u64 f i r s t d l ;

i n t f i r s t c p u , best cpu = −1;
const s t r u c t s c h e d d l e n t i t y ∗ d l s e ;

/∗
∗ f o r push operat ion , f i r s t we

∗ search a s u i t a b l e cpu in

∗ cp−>f r e e cpu s (f r e e CPUs mask) ,

∗ o therwi se we ask a cpu index

∗ from cpudl

∗/
i f (p)

d l s e = &p−>dl ;

i f (l a te r mask && cpumask and (later mask , cp−>f r e e cpus ,

&p−>cpus a l lowed) && cpumask and (later mask ,

later mask , cpu act ive mask)) {
best cpu = cpumask any (la te r mask) ;

} e l s e {
/∗
∗ we read b e s t cpu from

APPENDIX A. CODE LISTINGS 119

∗ f l a t combining cache

∗/
f i r s t c p u = atomic read(&cp−>f c−>cached cpu) ;

i f (f i r s t c p u < 0)

re turn −1;
e l s e

f i r s t d l = (u64) atomic64 read(&cp−>fc−>cu r r e n t d l [f i r s t c p u]) ;

/∗
∗ i f c pud l f i n d i s c a l l e d on b e h a l f o f

∗ a p u l l attempt , or f i r s t c p u i s equa l

∗ to −1, we can not do anything ,

∗ so we return immediate ly

∗ the CPU va lue from cpudl s t r u c t u r e

∗/
i f (! p)

re turn f i r s t c p u ;

/∗
∗ i f c pud l f i n d i s c a l l e d f o r

∗ a push we must check the cpus a l l owed

∗ mask and the dead l ine

∗/
i f (cpumask test cpu (f i r s t c p u , &p−>cpus a l lowed) &&

cp−>cmp dl (d l s e−>deadl ine , f i r s t d l)) {
best cpu = f i r s t c p u ;

i f (l a te r mask)

cpumask set cpu (best cpu , la te r mask) ;

}
}

r e turn best cpu ;

}

/∗
∗ c pud l s e t − update the cpud l s k i p l i s t

∗ @cp : the cpud l s k i p l i s t con tex t

∗ @cpu : the t a r g e t cpu

∗ @dl : the new e a r l i e s t dead l ine f o r t h i s cpu

∗
∗ Notes : assumes cpu rq (cpu)−>l o c k i s l ocked

∗
∗ Returns : (vo id)

∗/
void cpud l s e t (s t r u c t cpudl ∗cp , i n t cpu , u64 dl , i n t i s v a l i d)

{
s t r u c t pub record ∗ r e c ;

i n t now cached cpu ;

u64 now cached dl = 0 ;

/∗

APPENDIX A. CODE LISTINGS 120

∗ i f i s v a l i d i s s e t we may have

∗ to update the cached CPU

∗/
i f (i s v a l i d) {

/∗ we update immediate ly our dead l ine ∗/
atomic64 se t (&cp−>fc−>cu r r e n t d l [cpu] , d l) ;

whi l e (1) {
now cached cpu = atomic read(&cp−>fc−>cached cpu) ;

i f (now cached cpu != NO CACHED CPU)

now cached dl = (u64) atomic64 read(&cp−>fc−>cu r r e n t d l [

now cached cpu]) ;

/∗
∗ check i f we have to update cached CPU va lue

∗ we break the loop i f the va lue must not be

∗ updated or i f we have to and the update succeed

∗/
i f ((now cached cpu != NO CACHED CPU &&

now cached cpu != cpu &&

cp−>cmp dl (now cached dl , d l)) | |
atomic cmpxchg(&cp−>fc−>cached cpu , now cached cpu , cpu) == cpu)

break ;

}
}

/∗
∗ i f i s v a l i d i s c l e a r we may have

∗ to c l e a r the cached CPU

∗/
i f (! i s v a l i d) {

/∗ we update immediate ly our dead l ine ∗/
atomic64 se t (&cp−>fc−>cu r r e n t d l [cpu] , 0) ;

whi l e (1) {
now cached cpu = atomic read(&cp−>fc−>cached cpu) ;

i f (now cached cpu != NO CACHED CPU)

now cached dl = (u64) atomic64 read(&cp−>fc−>cu r r e n t d l [

now cached cpu]) ;

i f ((now cached cpu != NO CACHED CPU && now cached cpu != cpu) | |
atomic cmpxchg(&cp−>fc−>cached cpu , now cached cpu , cpu) == cpu)

break ;

}
}

r e c = f c g e t r e c o r d (cp−>fc , cpu) ;

rec−>req = SET;

rec−>par . s e t p . cpu = cpu ;

rec−>par . s e t p . d l i n e = dl ;

rec−>par . s e t p . i s v a l i d = i s v a l i d ;

rec−>h . s e t h . func t i on = cpud l d i spa t che r ;

f c p ub l i s h r e c o r d (cp−>fc , cpu) ;

APPENDIX A. CODE LISTINGS 121

f c t r y comb ine r (cp−>f c) ;

}

/∗
∗ c p u d l i n i t − i n i t i a l i z e the cpud l s t r u c t u r e

∗ @cp : the cpud l s k i p l i s t con tex t

∗ @cmp dl : f unc t i on used to order dead l i ne s i n s i d e s t r u c t u r e

∗/
i n t c p ud l i n i t (s t r u c t cpudl ∗cp , bool (∗ cmp dl) (u64 a , u64 b))

{
i n t i ;

memset (cp , 0 , s i z e o f (∗ cp)) ;

cp−>cmp dl = cmp dl ;

cp−>f c = f c c r e a t e (cp) ;

a tomic s e t (&cp−>f c−>cached cpu , NO CACHED CPU) ;

cp−>head = (s t r u c t s k i p l i s t i t em ∗) kmalloc (s i z e o f (∗ cp−>head) , GFP KERNEL)

;

memset (cp−>head , 0 , s i z e o f (∗ cp−>head)) ;

cp−>head−>cpu = CPUDL HEAD IDX;

memset (cp−>cpu to item , 0 , s i z e o f (∗ cp−>cpu to i t em) ∗ NR CPUS) ;

f o r (i = 0 ; i < NR CPUS; i++) {
cp−>cpu to i t em [i] = (s t r u c t s k i p l i s t i t em ∗) kmalloc (s i z e o f (∗ cp−>

cpu to i t em [i]) , GFP KERNEL) ;

memset (cp−>cpu to i t em [i] , 0 , s i z e o f (∗ cp−>cpu to i t em [i])) ;

cp−>cpu to i t em [i]−> l e v e l = NOT IN LIST ;

cp−>cpu to i t em [i]−>cpu = i ;

}

i f (! a l l oc cpumask var (&cp−>f r e e cpus , GFP KERNEL))

re turn −ENOMEM;

cpumask se ta l l (cp−>f r e e c pu s) ;

r e turn 0 ;

}

/∗
∗ cpud l c l eanup − c lean up the cpud l s t r u c t u r e

∗ @cp : the cpud l s k i p l i s t con tex t

∗/
void cpudl c l eanup (s t r u c t cpudl ∗cp)

{
i n t i ;

f o r (i = 0 ; i < NR CPUS; i++)

k f r e e (cp−>cpu to i t em [i]) ;

k f r e e (cp−>head) ;

APPENDIX A. CODE LISTINGS 122

f c d e s t r o y (cp−>f c) ;

}

/∗
∗ ke rne l / sched/bm fc . h

∗
∗ Bitmap Fla t Combining header f i l e

∗
∗ Author : Fabio Fa l zo i <f a b i o . f a l z o i@a l i c e . i t>

∗
∗ This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or

∗ modify i t under the terms o f the GNU General Pub l i c License

∗ as pub l i s h ed by the Free Software Foundation ; ver s ion 2

∗ o f the License .

∗/

#i f n d e f BM FC H

#de f i n e BM FC H

#inc lude <l i nux / b i tops . h>

/∗ f l a t combining parameters ∗/

/∗
∗ no more than 32 pu b l i c a t i on

∗ records a l l owed in t h i s

∗ implementation

∗/
#de f i n e PUB RECORD PER CPU 10

/∗ data s t r u c t u r e opera t ions type ∗/
typede f enum {

SET

} op type ;

/∗ data s t r u c t u r e opera t ions parameters ∗/
typede f s t r u c t {

i n t cpu ;

u64 d l i n e ;

i n t i s v a l i d ;

} set params ;

typede f union {
set params s e t p ;

} params ;

/∗ data s t r u c t u r e opera t ions handler ∗/
typede f s t r u c t {

APPENDIX A. CODE LISTINGS 123

void (∗ f unc t i on) (void ∗ data s t ruc tu r e , i n t cpu , u64 d l ine , i n t i s v a l i d) ;

} s e t hand l e r ;

typede f union {
s e t hand l e r s e t h ;

} handler ;

/∗ pu b l i c a t i on record ∗/
s t r u c t pub record {

/∗ operat ion type ∗/
op type req ;

/∗ operat ion parameters ∗/
params par ;

/∗ operat ion handler ∗/
handler h ;

} ;

/∗ data s t r u c t u r e l o c k i n t e r f a c e ∗/
#de f i n e DS LOCKED 1

#de f i n e DS UNLOCKED 0

s t r u c t d a t a s t r u c t u r e l o c k {
atomic t l ock ;

} ;

/∗ pu b l i c a t i on record l i s t ∗/
s t r u c t p ub l i s t {

/∗ pub l i s h e r CPUs bitmap ∗/
u64 cpu bitmap ;

/∗ a c t i v e pu b l i c a t i o n records bitmap ∗/
u32 rec bitmap [NR CPUS] ;

/∗ pu b l i c a t i on record array ∗/
s t r u c t pub record r e c a r r ay [NR CPUS ∗ PUB RECORD PER CPU] ;

/∗ l a s t used per CPU pub l i c a t i on record index ∗/
i n t l a s t u s e d i d x [NR CPUS] ;

} ;

/∗ f l a t combining he l pe r s t r u c t u r e ∗/
s t r u c t f l a t c omb in ing {

/∗ concurrent data s t r u c t u r e ∗/
void ∗ da ta s t ru c tu r e ;

/∗ pu b l i c a t i on l i s t ∗/
s t r u c t p ub l i s t map ;

/∗ data s t r u c t u r e l o c k ∗/
s t r u c t d a t a s t r u c t u r e l o c k d s l o ck ;

/∗ cache cpu ∗/
atomic t cached cpu ;

/∗ d l array ∗/
atomic64 t cu r r e n t d l [NR CPUS] ;

} ;

APPENDIX A. CODE LISTINGS 124

/∗ f l a t combining i n t e r f a c e ∗/
s t r u c t f l a t c omb in ing ∗ f c c r e a t e (void ∗ da ta s t ru c tu r e) ;

i n t f c d e s t r o y (s t r u c t f l a t c omb in ing ∗ f c) ;

s t r u c t pub record ∗ f c g e t r e c o r d (s t r u c t f l a t c omb in ing ∗ f c , const i n t cpu) ;

void f c p ub l i s h r e c o r d (s t r u c t f l a t comb in ing ∗ fc , const i n t cpu) ;

/∗
∗ i f we use a t o t a l l y asynchronous f l a t combining

∗ implementation , t h i s func t i on i s going to be

∗ used only i n t e r n a l l y in t h i s module .

∗ Otherwise , when we want to s top d e f e r r i n g work ,

∗ we have to c a l l i t e x p l i c i t l y .

∗/
void f c t ry comb ine r (s t r u c t f l a t comb in ing ∗ f c) ;

/∗
∗ i f we want to ensure t ha t a ce r t a in operat ion

∗ w i l l be executed synchronous ly and s e q u e n t i a l l y

∗ we have to acqu i re and f u r t h e r r e l e a s e l o c k

∗ on data s t r u c t u r e with the se func t i ons

∗/
void f c d a t a s t r u c t u r e l o c k (s t r u c t f l a t c omb in ing ∗ f c) ;

void f c d a t a s t r u c t u r e un l o c k (s t r u c t f l a t c omb in ing ∗ f c) ;

/∗ he l pe r func t i on u s e f u l f o r debugging purpose ∗/
void f c p r i n t p u b l i c a t i o n l i s t (s t r u c t f l a t c omb in ing ∗ f c) ;

#end i f /∗ BM FC H ∗/

/∗
∗ ke rne l / sched/bm fc . h

∗
∗ Bitmap Fla t Combining source f i l e

∗
∗ Author : Fabio Fa l zo i <f a b i o . f a l z o i@a l i c e . i t>

∗
∗ This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or

∗ modify i t under the terms o f the GNU General Pub l i c License

∗ as pub l i s h ed by the Free Software Foundation ; ver s ion 2

∗ o f the License .

∗/

#inc lude <l i nux / ke rne l . h>

#inc lude <l i nux /smp . h>

APPENDIX A. CODE LISTINGS 125

#inc lude <l i nux / gfp . h>

#inc lude <l i nux / s l ab . h>

#inc lude <l i nux / threads . h>

#inc lude <l i nux / b i tops . h>

#inc lude <l i nux /atomic . h>

#inc lude <asm/ ba r r i e r . h>

#inc lude "bm_fc.h"

/∗ bitmap management he l p e r func t i ons ∗/
i n l i n e void bitmap64 set (u64 ∗bitmap , i n t n)

{
∗bitmap |= ((u64) 1 << n) ;

smp wmb() ;

}

i n l i n e void bitmap32 set (u32 ∗bitmap , i n t n)

{
∗bitmap |= ((u32) 1 << n) ;

smp wmb() ;

}

i n l i n e void b i tmap64 c l ear (u64 ∗bitmap , i n t n)

{
∗bitmap &= ˜((u64) 1 << n) ;

smp wmb() ;

}

i n l i n e void b i tmap32 c l ear (u32 ∗bitmap , i n t n)

{
∗bitmap &= ˜((u32) 1 << n) ;

smp wmb() ;

}

i n l i n e i n t b i tmap64 tes t (u64 ∗bitmap , i n t n)

{
smp rmb () ;

r e turn ((∗ bitmap & ((u64) 1 << n)) > (u64) 0) ;

}

i n l i n e i n t b i tmap32 tes t (u32 ∗bitmap , i n t n)

{
smp rmb () ;

r e turn ((∗ bitmap & ((u32) 1 << n)) > (u32) 0) ;

}

i n l i n e i n t b i tmap64 f l s (u64 ∗bitmap)

{
smp rmb () ;

r e turn f l s 6 4 (∗ bitmap) − 1 ;

APPENDIX A. CODE LISTINGS 126

}

i n l i n e i n t b i tmap32 f l s (u32 ∗bitmap)

{
smp rmb () ;

r e turn f l s (∗ bitmap) − 1 ;

}

/∗ data s t r u c t u r e l o c k i n t e r f a c e ∗/
void f c l o c k (s t r u c t d a t a s t r u c t u r e l o c k ∗ ds l o ck)

{
i n t old , r e t ;

whi l e (1) {
smp rmb () ;

o ld = atomic read(&ds lock−>l o ck) ;

i f (o ld == DS LOCKED)

cont inue ;

/∗
∗ Any atomic opera t ion tha t modi f i e s

∗ some s t a t e in memory and re turns informat ion

∗ about the s t a t e imp l i e s an SMP−cond i t i ona l

∗ genera l memory ba r r i e r on each s i d e o f the

∗ ac tua l opera t ion

∗
∗ See Documentation/memory−b a r r i e r s . t x t f o r

∗ f u r t h e r d e t a i l s

∗/
r e t = atomic cmpxchg(&ds lock−>lock , old , DS LOCKED) ;

i f (r e t == old)

break ;

}
}

i n t f c t r y l o c k (s t r u c t d a t a s t r u c t u r e l o c k ∗ ds l o ck)

{
i n t old , r e t ;

smp rmb () ;

o ld = atomic read(&ds lock−>l o ck) ;

i f (o ld == DS LOCKED)

return −1;
r e t = atomic cmpxchg(&ds lock−>lock , old , DS LOCKED) ;

i f (r e t == old)

re turn 0 ;

e l s e

re turn −1;
}

void f c un l o ck (s t r u c t d a t a s t r u c t u r e l o c k ∗ ds l o ck)

APPENDIX A. CODE LISTINGS 127

{
/∗
∗ Since a tomic se t () doesn ’ t re turns

∗ anything about new or o ld memory s t a t e

∗ we have to i s s u e a memory ba r r i e r

∗/
a tomic s e t (&ds lock−>lock , DS UNLOCKED) ;

smp wmb() ;

}

/∗ f l a t combining i n t e r f a c e ∗/
s t a t i c void f c do combiner (s t r u c t f l a t comb in ing ∗ f c)
{

s t r u c t p ub l i s t ∗map = &fc−>map ;

s t r u c t pub record ∗ r e c ;

i n t cpu index , r e c i ndex ;

whi l e ((cpu index = b i tmap64 f l s (&map−>cpu bitmap)) >= 0) {
whi le ((r e c i ndex = b i tmap32 f l s (&map−>rec bitmap [cpu index])) >= 0) {

r e c = &map−>r e c a r r ay [cpu index ∗ PUB RECORD PER CPU + rec i ndex] ;

switch (rec−>req) {
case SET:

rec−>h . s e t h . func t i on (fc−>data s t ruc tu r e ,

rec−>par . s e t p . cpu ,

rec−>par . s e t p . d l ine ,

rec−>par . s e t p . i s v a l i d) ;

break ;

d e f au l t :

p r in tk (KERN ERR "ERROR: unknown operation type on cpu %d pub

record\n" , cpu index) ;

}
b i tmap32 c l ear (&map−>rec bitmap [cpu index] , r e c i ndex) ;

}
b i tmap64 c l ear (&map−>cpu bitmap , cpu index) ;

}
}

s t r u c t f l a t c omb in ing ∗ f c c r e a t e (void ∗ da ta s t ru c tu r e)

{
s t r u c t f l a t c omb in ing ∗ f c ;

f c = (s t r u c t f l a t comb in ing ∗) kmalloc (s i z e o f (∗ f c) , GFP KERNEL) ;

memset (fc , 0 , s i z e o f (∗ f c)) ;
a tomic s e t (&fc−>ds l o ck . lock , DS UNLOCKED) ;

smp wmb() ;

fc−>da ta s t ru c tu r e = da ta s t ru c tu r e ;

r e turn f c ;

}

APPENDIX A. CODE LISTINGS 128

i n t f c d e s t r o y (s t r u c t f l a t c omb in ing ∗ f c)
{

i f (f c) {
k f r e e (f c) ;

r e turn 0 ;

}

r e turn −1;
}

s t r u c t pub record ∗ f c g e t r e c o r d (s t r u c t f l a t c omb in ing ∗ f c , const i n t cpu)

{
s t r u c t p ub l i s t ∗map = &fc−>map ;

i n t i d x t o u s e ;

/∗ next pu b l i c a t i on record to use ∗/
i d x t o u s e = map−>l a s t u s e d i d x [cpu] ;

whi l e (1) {
/∗ i f record i s not busy we use i t ∗/
i f (! b i tmap32 tes t (&map−>rec bitmap [cpu] , i d x t o u s e))

re turn &map−>r e c a r r ay [cpu ∗ PUB RECORD PER CPU + idx t o u s e] ;

/∗
∗ no f r e e record , so :

∗ we s e t our b i t in cpu bitmap and

∗ we spin to become a combiner

∗/
whi le (b i tmap32 tes t (&map−>rec bitmap [cpu] , i d x t o u s e)) {

bitmap64 set (&map−>cpu bitmap , cpu) ;

f c t r y comb ine r (f c) ;

}
}

}

void f c p ub l i s h r e c o r d (s t r u c t f l a t comb in ing ∗ fc , const i n t cpu)

{
s t r u c t p ub l i s t ∗map = &fc−>map ;

i n t i d x t o u s e ;

i d x t o u s e = map−>l a s t u s e d i d x [cpu] ;

map−>l a s t u s e d i d x [cpu] = (map−>l a s t u s e d i d x [cpu] + 1) %

PUB RECORD PER CPU;

bitmap32 set (&map−>rec bitmap [cpu] , i d x t o u s e) ;

b i tmap64 set (&map−>cpu bitmap , cpu) ;

}

void f c t ry comb ine r (s t r u c t f l a t comb in ing ∗ f c)
{

APPENDIX A. CODE LISTINGS 129

i f (! f c t r y l o c k (&fc−>ds l o ck)) {
f c do combiner (f c) ;

f c un l o ck (&fc−>ds l o ck) ;

}
}

void f c d a t a s t r u c t u r e l o c k (s t r u c t f l a t c omb in ing ∗ f c)
{

f c l o c k (&fc−>ds l o ck) ;

}

void f c d a t a s t r u c t u r e un l o c k (s t r u c t f l a t c omb in ing ∗ f c)
{

f c un l o ck (&fc−>ds l o ck) ;

}

void f c p r i n t p u b l i c a t i o n l i s t (s t r u c t f l a t c omb in ing ∗ f c)
{

s t r u c t p ub l i s t ∗map = &fc−>map ;

i n t i , cpu = smp proce s so r id () ;

t r a c e p r i n t k ("[%d] - CPUs map: %llu\n" , cpu , map−>cpu bitmap) ;

f o r (i = 0 ; i < NR CPUS; i++)

t r a c e p r i n t k ("[%d] - cpu %d map %u\n" , cpu , i , map−>rec bitmap [i]) ;

}

A.3 cpudl fastcache implementation

/∗
∗ ke rne l / sched/ cpud l . h

∗
∗ CPU dead l ine s g l o b a l management

∗
∗ Author : Fabio Fa l zo i <f a b i o . f a l z o i@a l i c e . i t>

∗
∗ This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or

∗ modify i t under the terms o f the GNU General Pub l i c License

∗ as pub l i s h ed by the Free Software Foundation ; ver s ion 2

∗ o f the License .

∗/

#i f n d e f LINUX CPUDL H

#de f i n e LINUX CPUDL H

#inc lude <l i nux /cpumask . h>

#inc lude <l i nux / types . h>

#de f i n e CACHE LINE SIZE 64

APPENDIX A. CODE LISTINGS 130

s t r u c t cu r r d l i t em {
atomic64 t d l ;

u8 padding [CACHE LINE SIZE − s i z e o f (atomic64 t)] ;

} ;

s t r u c t cpudl {
cpumask var t f r e e c pu s ;

bool (∗ cmp dl) (u64 a , u64 b) ;

atomic t cached cpu ;

s t r u c t cu r r d l i t em cu r r en t d l [NR CPUS] a t t r i b u t e ((a l i gned (

CACHE LINE SIZE))) ;

r aw sp in l o ck t l ock ;

} ;

#i f d e f CONFIG SMP

in t cpud l f i nd (s t r u c t cpudl ∗cp , s t r u c t cpumask ∗dlo mask ,

s t r u c t t a s k s t r u c t ∗p , s t r u c t cpumask ∗ l a t e r mask) ;

void cpud l s e t (s t r u c t cpudl ∗cp , i n t cpu , u64 dl , i n t i s v a l i d) ;

i n t c p ud l i n i t (s t r u c t cpudl ∗cp , bool (∗ cmp dl) (u64 a , u64 b)) ;

void cpudl c l eanup (s t r u c t cpudl ∗cp) ;

#e l s e

#de f i n e cpud l s e t (cp , cpu , d l) do { } whi le (0)

#de f i n e c p ud l i n i t () do { } whi le (0)

#end i f /∗ CONFIG SMP ∗/

#end i f /∗ LINUX CPUDL H ∗/

/∗
∗ ke rne l / sched/ cpud l . c

∗
∗ CPU dead l ine s g l o b a l management

∗
∗ Author : Fabio Fa l zo i <f a b i o . f a l z o i@a l i c e . i t>

∗
∗ This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or

∗ modify i t under the terms o f the GNU General Pub l i c License

∗ as pub l i s h ed by the Free Software Foundation ; ver s ion 2

∗ o f the License .

∗/

#inc lude <l i nux / sched . h>

#inc lude <l i nux / types . h>

#inc lude <asm/ ba r r i e r . h>

#inc lude <l i nux / sp in l o ck . h>

#inc lude <l i nux / gfp . h>

APPENDIX A. CODE LISTINGS 131

#inc lude <l i nux / s l ab . h>

#inc lude <l i nux /cpumask . h>

#inc lude "cpudl.h"

/∗ cache not v a l i d ∗/
#de f i n e NO CACHED CPU −1
/∗ no cpu with dead l ine ta sk ∗/
#de f i n e NO CPU DL −2
/∗ not v a l i d d l ∗/
#de f i n e NO CACHED DL 0

s t a t i c i n l i n e void update cache s low (s t r u c t cpudl ∗cp)

{
i n t best cpu = NO CPU DL;

u64 b e s t d l = NO CACHED DL;

u64 cu r r e n t d l ;

i n t i ;

i f (! cpumask fu l l (cp−>f r e e c pu s))

f o r e a ch cpu no t (i , cp−>f r e e c pu s) {
cu r r e n t d l = (u64) atomic64 read(&cp−>cu r r e n t d l [i] . d l) ;

i f (c u r r e n t d l == NO CACHED DL)

cont inue ;

i f (b e s t d l == NO CACHED DL | |
cp−>cmp dl (be s t d l , c u r r e n t d l)) {
b e s t d l = cu r r e n t d l ;

bes t cpu = i ;

}
}

smp wmb() ;

a tomic s e t (&cp−>cached cpu , best cpu) ;

}

/∗
∗ c pud l f i n d − f i nd the b e s t CPU in the system

∗ @cp : the cpud l con tex t

∗ @dlo mask : mask o f over loaded runqueues in the

∗ root domain (used only f o r push operat ion)

∗ @p: the ta sk

∗ @later mask : a mask to f i l l in with the s e l e c t e d

∗ CPUs (or NULL)

∗
∗ Returns : i n t − b e s t CPU to /from migrate

∗ the ta sk

∗/
i n t cpud l f i nd (s t r u c t cpudl ∗cp , s t r u c t cpumask ∗dlo mask ,

s t r u c t t a s k s t r u c t ∗p , s t r u c t cpumask ∗ l a t e r mask)

{

APPENDIX A. CODE LISTINGS 132

i n t now cached cpu = NOCACHED CPU;

u64 now cached dl ;

unsigned long f l a g s ;

i n t best cpu = −1;
const s t r u c t s c h e d d l e n t i t y ∗ d l s e ;

i f (l a te r mask && cpumask and (later mask , cp−>f r e e cpus ,

&p−>cpus a l lowed) && cpumask and (later mask ,

later mask , cpu act ive mask))

re turn cpumask any (la te r mask) ;

now cached cpu = atomic read(&cp−>cached cpu) ;

i f (now cached cpu == NO CPU DL | | now cached cpu == NOCACHED CPU)

return −1;

/∗
∗ c pud l f i n d i s c a l l e d on b e h a l f

∗ o f a pu l l , so we don ’ t care about

∗ cp−>cu r r en t d l [now cached cpu] va lue

∗/
i f (! p)

re turn now cached cpu ;

/∗
∗ i f c pud l f i n d i s c a l l e d on b e h a l f o f

∗ a push we must check the cpus a l l owed

∗ mask and the dead l ine

∗
∗ A read ba r r i e r i s needed ,

∗ o therwi se we may see

∗ cp−>cached cpu updated

∗ with an o ld va lue in

∗ cp−>cu r r en t d l

∗/
smp rmb () ;

now cached dl = (u64) atomic64 read(&cp−>cu r r e n t d l [now cached cpu] . d l) ;

/∗
∗ a p a r a l l e l opera t ion may have

∗ changed the dead l ine va lue o f

∗ now cached cpu

∗/
i f (now cached dl == NO CACHED DL)

return −1;

d l s e = &p−>dl ;

i f (cpumask test cpu (now cached cpu , &p−>cpus a l lowed) &&

cp−>cmp dl (d l s e−>deadl ine , now cached dl)) {
best cpu = now cached cpu ;

i f (l a te r mask)

cpumask set cpu (best cpu , la te r mask) ;

APPENDIX A. CODE LISTINGS 133

}

r e turn best cpu ;

}

/∗
∗ c pud l s e t − update the cpud l s k i p l i s t

∗ @cp : the cpud l s k i p l i s t con tex t

∗ @cpu : the t a r g e t cpu

∗ @dl : the new e a r l i e s t dead l ine f o r t h i s cpu

∗
∗ Notes : assumes cpu rq (cpu)−>l o c k i s l ocked

∗
∗ Returns : (vo id)

∗/
void cpud l s e t (s t r u c t cpudl ∗cp , i n t cpu , u64 dl , i n t i s v a l i d)

{
i n t now cached cpu ;

u64 now cached dl ;

bool updated = f a l s e ;

unsigned long f l a g s ;

/∗
∗ i f i s v a l i d i s s e t we may have

∗ to update the cached CPU

∗/
i f (i s v a l i d) {

cpumask c lear cpu (cpu , cp−>f r e e c pu s) ;

a tomic64 se t (&cp−>cu r r e n t d l [cpu] . dl , d l) ;

whi l e (1) {
now cached cpu = atomic read(&cp−>cached cpu) ;

i f (now cached cpu != NO CACHED CPU &&

(now cached cpu != cpu | | updated)) {
smp rmb () ;

now cached dl = (u64) atomic64 read(&cp−>cu r r e n t d l [now cached cpu] .

d l) ;

} e l s e {
i f (! r aw sp i n t r y l o c k i r q s a v e (&cp−>lock , f l a g s)) {

update cache s low (cp) ;

r aw sp i n un l o c k i r q r e s t o r e (&cp−>lock , f l a g s) ;

updated = true ;

}
cont inue ;

}

i f ((now cached cpu != NO CPU DL &&

now cached dl != NO CACHED DL &&

cp−>cmp dl (dl , now cached dl)) | |
atomic cmpxchg(&cp−>cached cpu , now cached cpu , cpu) ==

now cached cpu)

APPENDIX A. CODE LISTINGS 134

break ;

}
} e l s e {

cpumask set cpu (cpu , cp−>f r e e c pu s) ;

a tomic64 se t (&cp−>cu r r e n t d l [cpu] . dl , NO CACHED DL) ;

/∗
∗ i f i s v a l i d i s c l e a r we may have

∗ to c l e a r the cached CPU

∗/
whi le (1) {

now cached cpu = atomic read(&cp−>cached cpu) ;

i f (now cached cpu == cpu &&

atomic cmpxchg(&cp−>cached cpu , now cached cpu , NO CACHED CPU) !=

now cached cpu)

cont inue ;

i f (now cached cpu == NOCACHED CPU) {
i f (! r aw sp i n t r y l o c k i r q s a v e (&cp−>lock , f l a g s)) {

update cache s low (cp) ;

r aw sp i n un l o c k i r q r e s t o r e (&cp−>lock , f l a g s) ;

}
/∗
∗ here we doesn ’ t have

∗ to wait f o r the cache to

∗ be va l i d , so we can

∗ e x i t immediate ly

∗/
}
break ;

}
}

}

/∗
∗ c p u d l i n i t − i n i t i a l i z e the cpud l s t r u c t u r e

∗ @cp : the cpud l s k i p l i s t con tex t

∗ @cmp dl : f unc t i on used to order dead l i ne s i n s i d e s t r u c t u r e

∗/
i n t c p ud l i n i t (s t r u c t cpudl ∗cp , bool (∗ cmp dl) (u64 a , u64 b))

{
i n t i ;

r aw s p i n l o c k i n i t (&cp−>l o ck) ;

a tomic s e t (&cp−>cached cpu , NO CACHED CPU) ;

f o r (i = 0 ; i < NR CPUS; i++)

atomic64 se t (&cp−>cu r r e n t d l [i] . dl , NO CACHED DL) ;

cp−>cmp dl = cmp dl ;

i f (! a l l oc cpumask var (&cp−>f r e e cpus , GFP KERNEL))

APPENDIX A. CODE LISTINGS 135

r e turn −ENOMEM;

cpumask se ta l l (cp−>f r e e c pu s) ;

r e turn 0 ;

}

/∗
∗ cpud l c l eanup − c lean up the cpud l s t r u c t u r e

∗ @cp : the cpud l s k i p l i s t con tex t

∗/
void cpudl c l eanup (s t r u c t cpudl ∗cp)

{
f r ee cpumask var (cp−>f r e e c pu s) ;

}

A.4 Improved pull algorithm

/∗
∗ Deadline Schedu l ing Class (SCHED DEADLINE)

∗
∗ Ea r l i e s t Deadline F i r s t (EDF) + Constant Bandwidth Server (CBS) .

∗
∗ Tasks t ha t p e r i o d i c a l l y execu te s t h e i r in s tance s f o r l e s s than t h e i r

∗ runtime won ’ t miss any o f t h e i r dead l ine s .

∗ Tasks t ha t are not p e r i od i c or sporad ic or t ha t t r i e s to execute more

∗ than t h e i r re served bandwidth w i l l be s lowed down (and may p o t e n t i a l l y

∗ miss some of t h e i r dead l i ne s) , and won ’ t a f f e c t any other ta sk .

∗
∗ Copyright (C) 2012 Dario Fag g i o l i <r a i s t l i n@ l i n u x . i t >,

∗ Juri L e l l i < j u r i . l e l l i@ gma i l . com>,

∗ Michael Trimarchi <michael@amarulaso lut ions . com>,

∗ Fabio Checconi <f ab io@ganda l f . sssup . i t>

∗/

s t a t i c i n t p u l l d l t a s k (s t r u c t rq ∗ t h i s r q)

{
i n t th i s cpu = th i s r q−>cpu , r e t = 0 , cpu ;

s t r u c t t a s k s t r u c t ∗p ;

s t r u c t rq ∗ s r c r q ;

i f (l i k e l y (! d l ove r l oaded (t h i s r q)))

goto out ;

cpu = cpud l f i nd (& th i s r q−>rd−>pu l l cpud l , t h i s r q−>rd−>dlo mask , NULL,

NULL) ;

i f (cpu == −1 | | th i s cpu == cpu)

goto out ;

APPENDIX A. CODE LISTINGS 136

s r c r q = cpu rq (cpu) ;

/∗ Might drop t h i s r q−>l o c k ∗/
doub l e l o ck ba l anc e (t h i s r q , s r c r q) ;

/∗
∗ I f the p u l l a b l e t a s k i s no more on the

∗ runqueue , we ’ re done with i t

∗/
i f (s r c rq−>dl . d l n r runn ing <= 1)

goto sk ip ;

p = p i c k n e x t e a r l i e s t d l t a s k (s r c rq , t h i s cpu) ;

/∗
∗ We found a ta sk to be pu l l e d i f :

∗ − p can run on t h i s cpu (o therwi se p i c k n e x t e a r l i e s t d l t a s k has

returned NULL)

∗ − i t preempts our current (i f t he re ’ s one)

∗/
i f (p && (! t h i s r q−>dl . d l n r runn ing | |

d l t ime b e f o r e (p−>dl . dead l ine , t h i s r q−>dl . e a r l i e s t d l . cur r))) {

WARNON(p == src rq−>curr) ;

WARNON(! p−>on rq) ;

/∗
∗ Then we p u l l i f f p has a c t u a l l y an e a r l i e r

∗ dead l ine than the current t a sk o f i t s runqueue .

∗/
i f (d l t ime b e f o r e (p−>dl . dead l ine , s r c rq−>curr−>dl . dead l ine))

goto sk ip ;

r e t = 1 ;

d e a c t i v a t e t a s k (s r c rq , p , 0) ;

s e t t a s k cpu (p , th i s cpu) ;

a c t i v a t e t a s k (th i s r q , p , 0) ;

}

sk ip :

doub l e un lock ba lance (t h i s r q , s r c r q) ;

out :

r e turn r e t ;

}

Acknowledgments

Vorrei innanzi tutto ringraziare il prof. Giuseppe Lipari per avermi dato

l’occasione di svolgere questa tesi. Il suo continuo supporto stato un fon-

damentale aiuto per raggiungere il risultato finale. Ma non solo: durante il

periodo di tesi mi stata anche data l’occasione di presentare parte del lavoro

al Workshop OSPERT 2012. E’ stata un’esperienza molto impegnativa ma,

al contempo, molto gratificante.

Desidero ringraziare anche il prof. Paolo Ancilotti per la sua disponibilit

nell’assistermi durante la discussione della tesi.

Un ringraziamento particolare va a Juri Lelli. Juri mi ha assistito per

tutta la durata del lavoro, aiutandomi in ogni aspetto tecnico della tesi:

senza la sua grande disponibilit non potrei scrivere adesso queste parole.

Adesso, il momento di ringraziare famiglia ed amici.

Non semplice condensare in poche parole tutto quello che vorrei esprimere.

Il primo pensiero va sicuramente a mia nonna e a Katia.

137

Bibliography

[1] L. Abeni and G. Buttazzo. Resource reservations in dynamic real-time

systems. Real-Time Systems, 27(2):123–165, 2004.

[2] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard

real-time systems. In Proceedings of the IEEE Real-Time Systems Sym-

posium, Madrid, Spain, December 1998.

[3] L. Abeni and G. Lipari. Implementing resource reservations in linux. In

Proc. of Fourth Real-Time Linux Workshop, 2002.

[4] AQuoSA. Aquosa - “adaptive quality of service architecture” (for the

linux kernel). http://aquosa.sourceforge.net/index.php.

[5] G. Buttazzo. Sistemi in Tempo Reale. Pitagora Editrice Bologna, 2006.

[6] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and

S. Baruah. Handbook of Scheduling: Algorithms, Models and Perfor-

mance Analysis, chapter 30: A Categorization of Real-Time Multipro-

cessor Scheduling Problems and Algorithms. Chapman Hall/CRC Press,

2004.

[7] Johnathan Corbet. Cfs group scheduling. http://lwn.net/

Articles/240474/.

[8] Johnathan Corbet. Scheduling domains. http://lwn.net/

Articles/80911/.

138

http://aquosa.sourceforge.net/index.php
http://lwn.net/Articles/240474/
http://lwn.net/Articles/240474/
http://lwn.net/Articles/80911/
http://lwn.net/Articles/80911/

BIBLIOGRAPHY 139

[9] U Devi and J. Anderson. Tardiness bounds for global edf scheduling

on multiprocessor. In Proceedings of the 26th IEEE Real-time Systems

Symposium, pages 330–341, 2005.

[10] Linux documentation. Design of the cfs scheduler.

Documentation/scheduler/sched-design-CFS.txt.

[11] L. Dozio and P. Mantegazza. Real-time distributed control using rtai.

In Sixth IEEE Internation Symposium on Object-Oriented Real-Time

Distributed Computing (ISORC ’03), Hakodate, Hokkaido, Japan, May

2003.

[12] Paul Emberson, Roger Stafford, and Robert I. Davis. Techniques for

the synthesis of multiprocessor tasksets. In Proceedings of the 1st Inter-

national Workshop on Analysis Tools and Methodologies for Embedded

and Real-time Systems (WATERS 2010), Brussels, Belgium, July 2010.

[13] Community Research European Commission. Sixth framework pro-

gramme. http://ec.europa.eu/research/fp6/index_en.

cfm.

[14] D. Faggioli, M. Trimarchi, and F. Checconi. Sched deadline. https:

//github.com/jlelli/sched-deadline.

[15] FRESCOR. Framework for real-time embedded systems based

on contracts. http://www.frescor.org/index.php?page=

FRESCOR-homepage.

[16] P. Gerum. The xenomai project, implementing a rtos emulation frame-

work on gnu/linux. Nov. 2002.

[17] PREEMPT RT group. Config preempt rt patch set. http://www.

kernel.org/pub/linux/kernel/projects/rt/.

[18] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat Com-

bining and the Synchronization-Parallelism Tradeoff. Work, 2010.

http://ec.europa.eu/research/fp6/index_en.cfm
http://ec.europa.eu/research/fp6/index_en.cfm
https://github.com/jlelli/sched-deadline
https://github.com/jlelli/sched-deadline
http://www.frescor.org/index.php?page=FRESCOR-homepage
http://www.frescor.org/index.php?page=FRESCOR-homepage
http://www.kernel.org/pub/linux/kernel/projects/rt/
http://www.kernel.org/pub/linux/kernel/projects/rt/

BIBLIOGRAPHY 140

[19] Juri Lelli, Giuseppe Lipari, Dario Faggioli, and Tommaso Cucinotta. An

efficient and scalable implementation of global EDF in Linux. In Pro-

ceedings of the 7th Annual Workshop on Operating Systems Platforms

for Embedded Real-Time applications (OSPERT 2011). July 2011.

[20] G. Lipari and C. Scordino. Linux and real-time: Current approaches

and future oppostunities. IEEE International Congress ANIPLA, 2006.

[21] LITMUSRT . Linux testbed for multiprocessor scheduling in real-time

systems. http://www.cs.unc.edu/˜anderson/litmus-rt/.

[22] C. L. Liu and James W. Layland. Scheduling algorithms for multi-

programming in a hard-real-time environment. J. ACM, 20(1):46–61,

January 1973.

[23] Paul E Mckenney. Memory Barriers: a Hardware View for Software

Hackers. 2009.

[24] Ingo Molnar. Modular scheduler core and completely fair scheduler [cfs].

http://lkml.org/lkml/2007/4/13/180.

[25] Gabriele Paoloni. How to benchmark code execution times on Intel IA-32

and IA-64 Instruction Set Architectures. Intel White Paper, September

2010.

[26] OCERA Project. Open components for embedded real-time applica-

tions. http://www.ocera.org/index.html.

[27] William Pugh. Skip Lists: A Probabilistic Alternative to Balanced

Trees. Elements.

[28] William Pugh. Concurrent Maintenace of Skip Lists. 1989, 1990.

[29] I. Ripoll, P. Pisa, L. Abeni, P. Gai, A. Lanusse, S. Sergio, and B. Privat.

Wp1 - rtos state of the art analysis: Deliverable d1.1 - rtos analysis.

OCERA, 2006.

http://www.cs.unc.edu/~anderson/litmus-rt/
http://lkml.org/lkml/2007/4/13/180
http://www.ocera.org/index.html

BIBLIOGRAPHY 141

[30] RTAI. Rtai - the realtime application interface for linux from diapm.

https://www.rtai.org/.

[31] C. Scordino and G. Lipari. A resource reservation algorithm for power-

aware scheduling of periodic and aperiodic real-time tasks. IEEE Trans-

action on Computers, 2006.

[32] P. Valente and G. Lipari. An upper bound to the lateness of soft real-

time tasks scheduled by edf on multiprocessors. In Proceedings of the

26th IEEE Real-time Systems Symposium, pages 311–320, 2005.

[33] V. Yodaiken. The rtlinux manifesto. In Proceeding of the Fifth Linux

Expo, Raleigh, North Carolina, Mar. 1999.

https://www.rtai.org/

	Introduction
	Background
	The Linux scheduler
	Modular scheduling framework
	Scheduling entities, tasks and runqueues

	The Linux real-time scheduler
	SCHED_FIFO and SCHED_RR
	Multiprocessor support
	Linux scheduler multiprocessor support in real-time scheduling class
	Real-time load balancing algorithm
	Real-time scheduler data structures and concepts
	Root domains
	CPU priority management
	Details of the Push scheduling algorithm
	Details of the Pull scheduling algorithm

	State of the art of Real-Time scheduling on Linux
	RTLinux, RTAI and Xenomai
	PREEMPT_RT
	OCERA
	AQuoSA
	FRESCOR
	LITMUSRT

	EDF and CBS theory
	Earliest Deadline First
	Constant Bandwidth Server
	EDF scheduling on SMP systems

	The SCHED_DEADLINE scheduling class
	Main Features
	Interaction with Existing Policies
	Current Multiprocessor Scheduling Support
	SCHED_DEADLINE Push implementation
	Max-heap cpudl data structure for push operation
	SCHED_DEADLINE Pull implementation
	Task Scheduling
	Usage and Tasks API

	Synchronization mechanisms analysis
	Kernel locking techniques
	SMP and UP Kernel
	Atomic operators
	Spinlocks
	Semaphores
	Reader/Writer locks

	Memory barriers
	Abstract memory access model
	CPU guarantees
	Behaviour and varieties of memory barriers
	SMP barriers pairing
	Explicit Linux kernel barriers
	Implicit kernel memory barriers

	Flat combining

	New solutions for task migration
	Skip list
	Skip List structure and asymptotic complexity
	cpudl skip list implementation

	Lock-free skip list
	Bitmap flat combining
	Flat combining implementation details
	cpudl bitmap flat combining implementation

	Fastcache
	Improved pull algorithm

	PRACTISE framework
	Tools for Linux kernel development
	LinSched
	LITMUSRT
	KVM + GDB

	PRACTISE architecture
	Ready queues
	Locking and synchronization
	Event generation and processing
	Data structures in PRACTISE

	Performance analysis with PRACTISE
	Evaluation
	Porting to Linux

	Experimental Results
	Experiments with PRACTISE
	Kernel Experiments
	Comparison between max-heap and skip list
	Improved Pull algorithm performance
	Bitmap flat combining performance
	Fastcache performance

	Conclusions and Future Work
	Code listings
	cpudl skip list implementation
	cpudl bitmap flat combining implementation
	cpudl fastcache implementation
	Improved pull algorithm

	Acknowledgments

