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Conventions

We denote by I, a finite set of indices i € {1,...,n}. I denotes an infinite set of indices, while I = {0,1,...,n}.

With the expression f : U — V is smooth or differentiable (where U € R™, V € R™) we will always mean that
it is differentiable an infinite number of times in its definition domain. A differentiable map in U is denoted by
f € 8°(U). A diffeomorphism is a map which is smooth, invertible and such that the inverse map is also smooth.

Let n indicates the dimension of the space considered, which can be a smooth manifold, a linear space, etc.
Italic letters from the middle of the alphabet like 4, j, k, . .. are usually referred to real coordinates indices. They
take values in I,,. Latin letters from the middle of the alphabet like u, v, p, ... are usually referred to complex
coordinates indices. Since they are used on complex space, usually there are n coordinates z* and their complex
conjugates T". Then p takes their values in I, but can be referred to two different set of coordinates which
are conjugate among each other. Italian letters from the beginning of the alphabet like a,b,c,... are usually
referred to vielbeins directions. They take values in I,,.

Latin letters from the beginning of the alphabet like «, 8,~ are usually referred to open sets. They take
values in . For example U, is an open set on a smooth manifold M. U,g denotes the overlap U, N Ug. More
generally U,, o, denotes the overlap of the n open sets Uy, NUy, N---NU,,,.

We will always denote the identity over a generic space X by 1x.

We will always denote the transpose of the matrix A by A”. The transposition of the invertible matrix A~*
is denoted by A~7T.






Introduction

String Theory was born in 60’s to explain the strong interactions, but it was soon superseded by QCD. The
massless state with spin two which String Theory possesses in its own spectrum has been considered a problem
for a long time.

However since 1974 the two-spin massless state was recognized to have the same properties of the graviton,
String Theory rapidly became the most promising theory in trying to unify all the fundamental interactions in
a unique framework [}, 2].

The introduction of fermionic matter in String Theory brings to consider the supersymmetric extension of
this, also called Superstrings Theory [3]. The number of dimensions in which Superstring Theory is consistently
defined is d = 10. The discrepancy with phenomenology, which provides only four dimensions is filled by one
of the most interesting theoretical aspects of Superstring Theory, that is the compactification of the 6 extra
dimensions.

The most common way to compactify the extra dimensions is a generalization of the dimensional reduction.
This procedure was first used by T. Kaluza and O. Klein [4] [5]. They succeded in unifying the gravity and
the electromagnetism in four dimensions by deriving both interactions from a five dimensional theory of pure
gravity. The idea is both simple and surprising. As an example let us consider the five dimensional action for
a real massless scalar ¢

S = /dsa: Oupde (1.1)

where we took the flat metric on the five dimensional space M. Let us we compactify a direction of M such

that it decomposes as
M = M, x S! (1.2)

where My is a four dimensional manifold while S! is a circle of radius R. Moreover let 2* be the set of cordinates
which locally parametrize My, while let = be the coordinate which parametrizes the circle, such that z ~ x + 2.
Then the Klein-Gordon equation reads

Op=0 = 09,0l¢0+0%=0 (1.3)
12 x

so that by using the periodicity in « we can write the Fourier expansion

o0

]. snT
H, x) = n(zt)e '’ 1.4
p(z", ) 5T n;wv? (") (1.4)
By substituting in Equation (1.3 we obtain
LA 1.5
nO" Pn — ﬁ@n = (1.5)

which includes the actual idea of the compactification procedure: the compactified directions give rise to the
mass term for the real scalar ¢,,. In particular a tower of states is obtained, each of which has mass proportional
to . The main point here is that at low energies the only observable states are the massless ones. This amount
to take the limit for R — 0, which is physically amounts to to think about the size of the compact direction
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to be of the order Is ~ 17—, where Mp = 10" Gev is the Planck mass. In this limit only ¢o remains light,
while all the other modes ¢,, with n # 0 become increasingly heavy and can be discarded. The dimensional
reduction is precisely the limit in which only the zero mode is kept. Its name is due to the fact that we would
have obtained the same results by taking ¢ = ¢(a*).

This procedure is generalizable to the ten dimensional case [7]. The manifold is decomposed as
M=MeK (1.6)

where My is a four dimensional maximally symmetric manifold, while K is a six-dimensional manifold called
the internal space. This form of the decomposition is forced by the requirement that the Poincaré invariance is
preserved in four dimensions.

In this Section we will indicate by M, N, ... indices which refer to the ten-dimensional space, by u,v,...
indices which refer to the four-dimensional space and by ¢, j, ... indices which refer to the internal space.

The dimensional reduction of the fields in ten dimensions brings to the following results

e A gauge field which transforms as a vector in the SO(1,9) decomposes under SO(1,3) ® SO(6) as
9=(4,1)®(1,6) (1.7)
so that we can recognize a four-dimensional gauge field A, and six scalars {4;}icr,-

e The metric tensor gy which decomposes in the components g,.,, gi, and g;;, where g, is the four-
dimensional metric tensor, while form the four-dimensional point of view g;, are spin one fields and g;;
are scalar fields.

e The spinor fields decomposed in a non-trivial way that we will study in Section They play a key
role since as it is well known they constitute the matter of our Universe.

It’s remarkable to probe the consequences of Dirac equation in ten dimensions. Let us denote by I'M the
ten-dimensional Dirac matrices, and let us consider the Dirac field ¥. The d-dimensional Dirac operator is
denoted by Dy Then we can write

10 4 10
0=iDy¥ =iy TMDyW=iY (T"D,W)+i» T'D;¥=i(py+ Pe)¥ (1.8)
M=1 p=1 i=5

From
iy =DV (1.9)

we can immediately see that the term —I)q¥ plays the role of a mass operator whose eigenvalues are the masses
as seen in four dimensions. However, as we have mentioned before in the dimensional reduction we have to
neglect the massive terms. This means that the zero modes of the six-dimensional Dirac operator )4 corre-
sponds to the massless fermions in four dimensions. Massless fermions are those we are interested in, since the
observed fermions are massless in this approssimation. In fact they acquire their small masses as a consequence
of a symmetry breaking.

The fact that observed fermions are expected to correspond to zero modes of the operator D allows us to
say that the way in which fields appear in the four-dimensional world is strictly related to the topology and
geometry of the internal space K. The present work concerns the study of different aspects of the geometry of K.

As a consequence of what we have just said, phenomenology puts strong constraints on the geometry of K [7].
The most accredited phenomenological models are currently those which provide for a N = 1 supersymmetric
extension of the Standard model. In fact one of the major concerns of String Theory in the last two decades
has been to find a realistic compactification which brings to a Standard model sector in four dimensions at low
energies.

Strikingly, it turns out that the (NS, NS) groundstates of Superstrings Theory are described by a set of
objects, namely (g, H, ¢), where g is the Riemannian metric on the internal space, H is a three-form also called
the Neveu-Schwarz fluz, while ¢ is the dilaton. Moreover, these three objects can be inserted in the Polyakov



action, which describe exactly the propagation of a string in the background defined by (g, H, ¢). Compacti-
fications with vanishing H-flux have been intensively studied until the first half of the ’90s, and they brought
to the study of a particular kind of complex manifold, also called Calabi-Yau. Calabi-Yau are simply a kind
of manifolds which admits the existence of a covariantly constant well defined spinor. On the contrary, the
geometry of the manifolds involved in compactifications with H-flux turned on has been unknown for long time.

Recently, the interest for compactifications with H-flux turned on has grown since it has been proven that
non-vanishing vev for H can be used to partially break the NV = 2 supersymmetry of Calabi-Yau compactifi-
cations to N =1 [§]. In fact the advent of the so-called G-structures technique (reviewed in Section [2.1.5)) to
study complex structures with additional structures has solved many problems. In particular now a complete
classification of this kind of manifolds is given. If the H-flux is turned on then the internal space geometry is
no longer Kéhler: it is called generalized Kahler [10]. The first part of the present work is devoted to the
study of the G-structures. In particular we will see that the generalized Kéahler structures are SU(3) structures,
and how they can be described in terms of spinors on a manifold.

T-duality is a non-local symmetry of String Theory related to duality with respect to the inversion of the
compactification radius R — %. In the case of compactifications with H flux, T-duality consists of a map T
which associate to a background (g, H, ¢) its dual background (¢’, H',¢'). At the level of local supergravity
backgrounds, there exists a standard way to find the dual background, which is given by what is called the
Buscher rules. These consist in introducing a gauge field by gauging the non-linear sigma model defined by
(9, H,®). The dual background can be simply obtained by integrating the gauge field out.

One of the aspects of the present work is to understand under which conditions a dual background can be
defined in a global manner. C. Hull [I1] has furnished general arguments to understand if the non-linear sigma
model associated to a global background can be gauged in a way which defines a global dual background. It’s
in this context that the double field theory was born [12].

In the present work we will explicitly study the non-physical example of the three-torus T3. Even if this
example can’t be used as an actual background (its dimension is 3!) it is very useful since it allows us to
highlight the mathematical details of the question. Moreover, even if a global treatment is possible in this
case, we will see explicitly that the results locally agree with those given by Buscher rules. In particular we
will explicitly show that the three-torus represents the simplest example in which an ungaugeable isometry can
actually be gauged by using what is known as the double space technique. In particular, as it was formalized
by P. Bouwknegt, J. Evslin and V. Mathai [13] the topology of the background can change after T-duality. We
will explicitly see this phenomenon in the T2 example.

The main point of the present work is however the systematic study of the Generalized Complex Geometry
[14] [I5]. It turns out to be the natural framework to describe generalized Kéahler structures. Since it provides a
doubling of the degrees of freedom due to the fact that tangent space and cotangent spaces are merged together,
it can be used to describe the doubled space in a natural way. In particular T-duality map takes a very simple
form when written in terms of generalized structures [16].

There are various versions of Superstring Theory. We will deal only with a couple of these, and we will con-
centrate on the geometric aspects of their backgrounds. It will be shown that Generalized Complex Geometry
provides the right way to describe type II superstrings backgrounds at low energy, and in this context we will
consider two explicit examples which are SU(3) structures. In particular we will study the form of the T-duality
map written in terms of pure spinors for these examples, and we will see explicitly that the local form of such
a map is equivalent to that prescribed by Buscher rules.

Doubtless the most interesting point is to understand if such local dual supergravity backgrounds can be
extended to global Superstring backgrounds. We will see explicitly that the examples considered are T-folds
according to the definition given in [II] and we will study the mathematical details which descend from it. In
particular we will concentrate on the generalized geometry consequences for T-folds.

The thesis is organized as follows:

e In Chapter [2| we will give the basic notions in differential geometry which are needed to work with
Riemannian manifolds, with fiber bundles and with G structures.

e In Chapter |3| we will review the basics notions on spinors. In particular we will focus on their algebraic
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nature as elements of a Clifford algebra and on conditions needed to exist over a smooth manifold.

e In Chapter [4 we will study the complex geometry. The final purpose of this Chapter is to describe SU(3)
structures.

e In Chapter [5| we enter the topic of Generalized Complex Geometry. We will focus on aspects which are
useful to study examples in the following Chapter, as for example the definition of generalized metric and
vielbeins.

e In Chapter [ we will study various aspects of T-duality.



Geometry background

Real differential geometry is the most immediate attempt to generalize our innate geometrical vision of the
world. It is exactly half way between the linear algebra, which talks about lines, plans, etc, and the topology,
which permits us to classify and to study objects of any shape.

Both the linear algebra and the topology are not completely satisfactory to describe the real world. In fact,
if on the one hand the linear algebra is too rigid to describe the enormous variety of objects that make up
the world and their complexity, on the other the topology is too little. Roughly speaking and following the
topological classification, one could say that a bottle is equivalent (homeomorphic) to a couch, since neither has
holes (this is true only in three dimensions). Of course in a large variety of situations this classification turns
out to be too little restrictive, and then it must be avoided.

Real differential geometry is just an attempt to strike a balance between the linear algebra and the topology
by mixing them into a single structure: a manifold. It can globally assume any form, but it locally seems like
a real vector space R™. One of the most important feature of a manifold is that we can define some way to
perform differential calculus on it.

In Section [2.1.5|we will introduce the G-structures. They provide a useful tool to describe the mathematical
structures which play a fundamental role in the present work, namely the SU(3)-structures. We will study their
mathematical details in Chapter [] where we will explain also the physical motivation to introduce them.

In the present Chapter we briefly recall some basic concepts in differential geometry on Riemannian mani-
folds and fiber bundles.

2.1 Basics in real geometry

2.1.1 Real manifolds
Differential structures

A smooth manifold is a set which locally looks like a subset of R”, and in which the gluing of all this kind of
subsets is smooth. More precisely

Definition 2.1.1. Let U C M and p € U. Let ¢ : U — @(U) C R™ be a bijective map, where ¢(U) is an
open set in R™. The pair (U, ¢) is an n-chart over M. Two n-charts (U, ¢) and (V, ) over M are compatible
fUNV ={@}orif UNV # {@}, the sets (U NV) and (U NV) are open sets in R™ and the map
hop l:pUNV)—p(UNV)is a diffeomorphism. The map 1) o ¢~ ! is a chart’s change, while the inverse
map ¢t : p(U) — U is a local parametrization.

Since p(U) C R, if we consider the canonical basis of R”, we can write in coordinates

p(p) = (@' ()., 2"(p)) = 2"(p) (2.1)

{x(p) }ic1, are the local coordinates in the given n-chart (U, p).
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In order to define a smooth manifold we have to consider a set of charts which forms a covering.

Definition 2.1.2. A collection {(Uy, a)}acr of n-charts over a set M is a smooth n-atlas if M = J,.; Ua
and if the n-charts are compatible two by two. A smooth n-atlas {(Uy, ¢u)}acr is a smooth n-structure if each
n-chart compatible with all the elements in {(Uy, ©a)}acr is already contained in {(U,, ¢a)}acr itself.

One can prove that each smooth atlas is contained in a unique maximal smooth atlas which is the union of
all the charts compatible with the charts given [I7]. Eventually

Definition 2.1.3. Let M be a set endowed with a smooth n-structure. Then M is a smooth manifold of
dimension n, i.e. dim(M) = n.

Needless to say, if a set M allows for a smooth n-structure, it can’t admit a smooth m-structure with n # m
(Theorem of the invariance of the dimension [17]). From now on we will leave understood the dimension of the
charts and of the manifolds, assuming that it is always equal to n, unless differently specified.

It is interesting to notice that in many books the initial requirement is not for an arbitrary set M, but for
a topological space. In that case each set U defining a chart has to be an open set in the topology of M and
each map defining a chart has to be a homeomorphism with the image. It’s amazing to observe that this is an
unnecessary requirement, since each smooth atlas {(Ua, ¢¥a)}aecr defines uniquely a topological structure over
the set M [17]. In fact it suffices to state

AC Misanopenset < Vael ¢, (ANU,)isan open set in R”

In this way we have defined the topology induced by the smooth structure over M. Naturally, if we will define
a smooth structure over a topological space, we will assume that the induced topology be exactly the given
topology.

Although it is clear that given a point on a manifold p € M, we can always find a neighbourhood containing
p which locally looks like an open set of R™, the concept which makes a smooth manifold really interesting and
efficient is the charts’ compatibility, which allows us to move among charts smoothly.

Let us give two simple examples of smooth manifolds, which are useful to our purposes.

Example 2.1.1. The circle S!
St can be defined as a subset of R2

S' = {(w.y) €RY >4y =1) (2.2)

It can be equipped with a differentiable structure in the following way. Let us consider the two open sets
in Figure (2.1). Let us suppose that the length of the circle is equal to 1. Then we can define the local

(a) Us. (b) Us.

Figure 2.1: A covering {Uy, Us} for a circle S*.

parametrizations such that

11
Y1 U1 — (O, 1) Y2 UQ — <2, 2> (23)
There are two connected components for the intersection Uyjs = U3 NUs. We will call them the upper component
U}, and the lower component Up,. It turns out that a convenient choice for the transition functions is

Pl U = U
x = (2.4)
and
pr2:U = Up

x — x4+1 (2.5)
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We observe that if M, N are smooth manifolds with dimension respectively dim(M) = m and dim(N) = n,
then M x N has a natural structure of smooth manifold with dim(M x N) =m +n. If A = {(Uqs,va)} is an
atlas for M and B = {(V3,¢3)} is an atlas for N, then an atlas for M x N is simply given by the product atlas

A X B ={(Ua X V5,00 X p)} (2.6)
where the map ¢, X g : Uy x Vg — R™" ig defined by
Pa X Yp(,y) = (Pal2), ¥p(y)) (2.7)

Example 2.1.2. The n-dimensional torus is defined as T? = S! x --- x SL.
—_——

n times

The case n = 3 will be diffusely studied in Chapter [6]
It’s natural to generalize the concept of differentiability to maps between two smooth manifolds.

Definition 2.1.4. Let M and N be two smooth manifolds such that dim(M) = m and dim(N) = n. Let
F: M — N be amap. F is differentiable or smooth in p € M if there exist two charts (U, ¢) in p € M and
(V,v) in F(p) € N such that F(U) C V and there exists a neighborhood of p, U’ C U such that the composition
woFop™:UDU — V is asmooth map. If F is smooth in each p € M then it is smooth over M. A
smooth bijection, with smooth inverse is a diffeomorphism.

It’s immediate to notice that a map ¢ defining a chart (U, ) over a smooth manifold M is automatically a
diffeomorphism between U and ¢(U) C R™.

The power of Definition [2.1.4] resides in the fact that the differentiability concept is completely independent
of the chosen chart [17, [19]. Moreover, if F': M — N is smooth in some p € M, then it is continuous in p [17].
Finally, if F: M — N and G : N — S are two smooth maps between manifolds, then also their composition
GoF: M — S is smooth.

If there exists a diffeomorphism between M and N, they are said to be diffeomorphic. If M is diffeo-
morphic to N then dim(M) = dim(N). Exactly as homeomorphisms classify spaces according to whether it
is possible to continuously deform one of them to the other, in the same way diffeomorphisms classify spaces
according to whether it’s possible to smoothly deform one of them to the other: they define an equivalence
class. Smooth functions f : M — M form a group called the diffeomorphism group of M.

Vectors and one-forms

Vectors on a manifold M can be induced from vectors which are tangent to some curve on M [19, 20] as the
intuition suggests us.

Let for example v: R 2 I — M (0 € I) be a smooth curve which intersects a chart (U, ) and such that
p=(0) € U. Let {z'};c1, be the coordinates induced by ¢ on U. The coordinates of v on U are z*(7y(t)) and
the tangent vector to this curve is defined as

d . ;
@ (@) (2.8)
Let f € C*°(M) be a smooth map. In ¢t = 0, the change of f is given by
&5 (29)
dt t=0
or, in local coordinates
d(fop™! dx?
% | i (2.10)
zt=p(7(t)) t=0
Then defining '
X=X ai where X' = 270(1) (2.11)
dz* |, dt =0
we obtain J
SHo)| =X (212)
t=0
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The differential operator X is a tangent vector to the manifold at the point p € M, since it is the tangent vector
to the curve v in ¢ = 0. If now we consider the following equivalence class of curves

(1) = {ﬁ(t) such that 7(0) = v(0) and dxi(jt(t)) _ da:igt(t))}

(2.13)

All the equivalence classes of curves passing through p € M, namely all tangent vectors at p € M span a
real vector space that is the tangent space T, M. In local coordinates the set of vectors

0
- (2.14)
{ Oz p}iGIn

form the coordinate basis for the tangent space T, M.

However, a basis for T,,M doesn’t need to be induced by the local coordinates. In fact we can take a set of

matrices {A! € GL(n,R)} and define a basis for T, M such that e,|, = A’ 821- , Which is called a non-coordinate

basis.

It is well known that for each finite dimensional vector space there exists a relative dual. The dual space of
the tangent space is the cotangent space Ty M, which is spanned in the coordinate basis by

{da'|p }ier, (2.15)

and the non-coordinate basis {e®|,}acr, can be defined in the same way of the tangent space.

A non-degenerate scalar product (,) : T,M x T,M — R is defined on the vector space T,M such that
(alp,eblp) = dab-

The duality relation (which is also denoted by (,)) naturally holds
(e%lps evlp) = (eplp,®]p) = 6 Va,be I, (2.16)
where (,) is the natural interior product between a vector space and its dual, induced by the map

T;M Se":T,M — R
ep — (eq,ep) = 0p (2.17)

A dual vector w|, = wqe®|, € Ty M, is a one-form on M.

Submanifolds

As it seems to be intuitive we can define the concept of submanifold.

Definition 2.1.5. Let M, N be smooth manifolds, and p € M, where m = dim(M) and n = dim(N). Let
f: M — N be a smooth map. f induces the differential map f, if V smooth map g € C*(N)

f* : TpM — Tf(p) (N)

such that
f«X[g] = X[go f] (2.18)

f+« is a pushforward of vectors. If h : N — L, with L a smooth manifold, then the naturality condition

(ho f)e =hso fu (2.19)

holds.

If we consider a chart (U,¢) in p € M, and a chart (V,4) in f(p) € N, which respectively establish the
coordinates {z'};cr, and {y};cs., then we can compute the expression in components of the pushforward. In
fact Equation means

[ Xlgo ™ (y) = X[go fo e~ |(x) (2:20)
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where ¢(p) = z and ¢¥(f(p)) = y. This gives

-0 ;0
Jj_2 —1 _ 7 —1
f X5 lgov™](y) =X"55lgo for™(z) (2.21)
Now putting g = 3/ we obtain the expression in components
oy
X =X = 2.22
/ o (222)

Finally we can explore the concept of submanifold.

Definition 2.1.6. Let f : M — N be a smooth map, and let dim(M) < dim(N). The map f is an immersion
of M into N if f. : T,M — Ty,) N is an injection, namely if r&k(f.) = dim(M). The map f is an embedding if

f is an injection and an immersion. Usually we will denote an embedding ¢ by <, Finally, if 7 is an embedding,
then i(M) is a submanifold of N, and (M) is naturally diffeomorphic to M.

2.1.2 Fiber bundles

T,M and T;M characterize the manifold only in a neighborhood of the point p € M. However, if we are
interested in the global properties of a manifold, it’s much more convenient to introduce a new object: a bundle.

The simplest example of bundle we can study is the trivial one. In fact we can always endow a smooth
manifold M with a bundle structure simply by taking the product of M with another smooth manifold F. We
have to define also the smooth map

T MXF — M
(p,x) — P Vpe M, VxeF (2.23)
which projects on the first factor of the pair (-,). Then
Definition 2.1.7. The quadruple (M x F, M, m, F) is a trivial bundle.
Definition [2.1.7]is introductory to the following
Definition 2.1.8. The quadruple (E, M, r, F) is a fiber bundle if the following conditions hold

1. E, M and F are smooth manifolds called the total space, the base space and the standard fiber respectively.
The smooth map 7 : E — M is surjective and is called the projection.

2. There exists an open covering {Uy}aecs of M such that Va € I there exists a diffeomorphism ¢, :
7 YU,) — U, x F and a commutative diagram such as in Figure The pair (Uy,ts) is a local
trivialization for the bundle. The set of all local trivializations {(Ug,ta)}acr is a trivialization for the
bundle.

If the fiber F' is a real (complex) vector space then the fiber bundle is a real (complex) vector bundle. The
rank of a vector bundle is the dimension of F' as a vector space.

In absence of ambiguities, instead of a quadruple, we will often denote a vector bundle by its projection

m: E — M, leaving F implicit.

t(Y
Wﬁl(Ua) ———Ua x F

Ua
Figure 2.2: Local structure of a fiber bundle.
Let {(Uq, ¢a)}acr be a smooth atlas for the smooth manifold M, and let 7 : E — M be a fiber bundle. We

want to underline that it’s unnecessary that {U, }ocr be the covering of an atlas of the differentiable structure
of M. In that case {m~!(Ua)}acsr would constitute the covering of a differentiable atlas on E, called a fiber
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atlas for E, and we will say that the smooth atlas {(Uy, ¢a)} trivializes the fiber bundle 7 : E — M. We will
always consider smooth atlases which trivialize 7= : £ — M unless differently specified.

So far, a fiber bundle seems to be a differentiable way to associate a fiber to each point of a manifold.
Locally, the way of doing it is trivial: it’s just the topological product. However, the way in which fibers are
glued together is the really interesting point, which clarifies the global topological properties of the bundle.
With this purpose we give the following [17, [I8]

Proposition 2.1.1. Let M be a smooth manifold and let F be a set. Let 7 : E — M be a surjective map. Let
{(Ua,ta)}acr be a trivialization of E. If the following conditions hold Vo, 8 € T

1. T O ta = W‘Trfl(Ua)
2. VU,p # {@} there exists a smooth map
9ap : Uap = GL(n,R) (2.24)

such that the composition ¢, o t,gl :Uqg X F' = Uqyg x F'is of the form
taoty' (p,2) = (0, 9ap(P)(x))  PEUss, w€F (2.25)

then E admits a unique structure (up to isomorphisms [20]) of fiber bundle, for which {(Ua,ta)}acr is a
trivialization.

{9as}a,per are the transition functions for the bundle 7 : E — M. As Equation ({2.25)) shows, they act on
the fiber by a left translation. {(Uag, gas)}a,per form a cocycle on M, namely they obey the cocycle conditions:
\4 pE Ua[g,y

1. gaa(p) = 1F
2. (9a5(P)) ™" = gpa(p)
3. gaﬁ(p) o gﬁ'y(p) © g’ya(p) = 1F

Naturally, if we can choose all the transition functions of a bundle E to be the identity, then the bundle F is
trivial. Moreover one can show that a fiber bundle over a contractible space is trivial [20].

Every time we introduce a new structure, we have to introduce also a class of maps which preserve the new
structure. With this purpose we give the following

Definition 2.1.9. Let 7; : Fy — M; and 73 : E5 — M be two fiber bundles. A pair of maps (P, ¢) such that
®: FE; — Es and ¢ : My — M, is a bundle morphism if

mo®d=¢pom (2.26)

namely if the diagram in Figure is commutative. If ¢ : M; — M> is a diffeomorphism, then the bundle
morphism is a strong morphism. If My = My = M and ¢ = 1, then the bundle morphism is a wvertical
morphism.

A bundle morphism is a map between bundles which preserves both the differentiable structure and the
bundle structure.

Remarkably, if M, = My, ¢ = 1g and @ is injective, then 71 : £y — M is a subbundle of 75 : Ey — Mo.

d

n—2 LK

1

A”[l —_— J[ 2

Figure 2.3: The pair (®, ¢) represents a bundle morphism between F; and FEs.
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Example 2.1.3. The tangent bundle

Let us try to apply Proposition 2.1.1] to tangent spaces. In particular let M be a smooth manifold such that
dim(M) = n. Let us define

T=1[] T,M (2.27)
peEM

where ][ indicates the disjoint union, and define the natural projection

T: T — M
oM — P (2.28)

Let us consider, for simplicity, a coordinate basis {z% };c;, induced by a smooth atlas {(Ua,¥a)}acs on M.
The trivialization functions ¢, : 7= 1(U,) — U, x R™ can be defined as follows

n
ta (Z vl
i=1

aia ) — (p,0) (2.20)

et

where v = (7}17 e 7’[)”) € (Rn)*’ and { agi

} is the coordinate basis for 7, M. Naturally we can obtain a
P)iel

non-coordinate basis as described in Section m Then

L) LY RO Te) ] o oz
ta O til(p: v) = ta Ch 7 = ta |: ? (p) UZ:| s = (p, J(p) U) (2.30)
B ; ozl . ng ; Oz oz |, Ozg
where gig is the Jacobian matrix of the coordinate change ¢, o @El. Then Proposition is satisfied with
transition functions
_ 92a (2.31)
Gap = 8%5 )

and T has the structure of a vector bundle with rank n. T is the tangent bundle. Where the notation creates
some ambiguities about the base space, we denote the tangent bundle over M by T'M.

Example 2.1.4. The cotangent bundle
Let us define
=[] ;M (2.32)
peM

and define the natural projection

m:T* — M
M~ p (2.33)
Again, for simplicity, consider the coordinate basis induces by a smooth atlas {(Us, ¢4)} on M. Such a basis

will be dual respect to the tangent space coordinate basis in Example {dz! |, }icr,. Then we can define
trivialization functions on each Uy: t, : 771 (U,) — U, x R™ by imposing

to <Z widxfl|p> = (p,wT) (2.34)
i=1
where wT € R™. We obtain

n ) n n 63;1 ] - T
ta 051 (p,wT) = ta (Zwidwzp> —t (Z [; - (p)wz} dwup) - <p, ([52w]) wT> (2.35)

i=1 j=1

Thus using Proposition [2.1.1} the transition functions

Gap = ([ZZDT (2.36)

define the structure of a vector bundle on T* with rank n. T* is the cotangent bundle. Where the notation
creates some ambiguities about the base space, we denote the cotangent bundle over M by T*M.
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Let us observe that given two vector bundles E1, F> on the same base M the algebraic operations on vector
spaces (see Appendix can be extended to define vector bundles such as E; @ Es2, E1 ® E3 [2I]. In this way
we can endow a manifold with several useful structures. This observation is crucial for the development of the
Generalized Complex Geometry in Chapter

In fact, recall that Vo € M the tangent and the cotangent spaces T, M and T M are vector spaces, and
define
Ty = I 7], M (2.37)
zeM
where J], ;, denotes the disjoint union. Let us define the natural projection 7 : Tg’(M) — M which maps
Tp| M into x € M. Using Proposition is straightforward to prove that T?(M) is a fiber bundle. It is
the (’q’)-tensor fiber bundle over M. A basis for this fiber bundle is trivially given by making the 6tensor
product of the elements of the basis of T,M and T; M (see Examples and [2.1.4):

0
Azt

Sometimes it’s udeful to observe that each element as in Equation (2.38) can be identified as a multilinear map
which acts as follows

® - ® —

P Lo

® dal! @ ® dals |p} (2.38)
P

13,5 €1n

oMy, ®--- T, M|y, ®T,M|y, ®---@T,M|ly, — R (2.39)

It’s extremely useful to introduce a sort of inverse map with respect to the projection 7, since it allows us
to interpret tensors as functions on the base space of a bundle.

Definition 2.1.10. Let E be a fiber bundle, and let U C M be an open set. A smooth map o : U — 7~ 1(U),
such that 7w o oy = 1y is a local section of w. If U = M then o is a global section of m or simply a section
of E. The space of local sections defined on U is denoted by T'(U, E), while the space of global sections is
denoted simply by X(F). Moreover we can see smooth functions f : M — R as global sections and write
feT(R) =C>(M).

Example 2.1.5. Let M be a smooth manifold. It is well known that the tangent bundle 7 : T — M is a
vector bundle. T'(T') = X(M) is the space of smooth vector fields over M. Similarly we can speak about the
cotangent bundle T* over M. The sections of this bundle I'(T*) = Q!(M) are the exterior 1-forms over M.
In particular, let (U, ) a chart in p € M which determines the coordinates {x'};c;, . We can define a set of
local sections of the tangent bundle {9y, ...,0,} such that

0
oxt

e T,M (2.40)
p

P — 0i(p) =

In particular, if X € X(M), then it is a linear combination of 9 (p),...,0,(p), so that we can find n functions
X1,..., X, : U — R such that

X(p) =Y _ X'(p)ap) (2.41)
=1

An similar reasoning can be repetead for exterior one-forms. Moreover, let (V%) be another chart in p € M,
and let us denote by {9,,...,9,} the associated local sections of 7. We find that on UNV

~ " 9xd
di = Z 50 (2.42)
j=1
Since X = 3. X79; = " X*0), we get that
n .
. Ozt ~
X' = — X 2.4
97 (2.43)
=1
One can find that there exists a set of local sections {dz!(p),...,dz"(p)} which form a local frame for the

cotangent bundle, and are defined as the dual vectors of the basis vectors {01 (p), ..., ()}
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Furthermore
Definition 2.1.11. Smooth sections in T'(T?(M)) = T? are the smooth (g)-tensors on M.
In presence of ambiguities we will write I'(T7(M)) = TP M.
Every construction seen in this Section can be generalized from the tangent bundle T' to a generic vector

bundle F, obtaining for example the space of smooth vector fields on E - X(E)) - or the space of one-forms on
E - Q'(E) - as well as the space of the (})-tensor fields on E, namely T?E.

2.1.3 Exterior forms

Needless to say, the exterior forms are one of the most powerful tools in differential geometry. Since their prin-
cipal feature is the antisymmetry, as we can easily imagine they are strictly related to anticommuting objects
as spinors, as we will see.

Basics

For the linear algebra underlying the present Section we refer to Appendix [A]

We can define the exterior algebra over M
ANT™) = @ AP (T™) (2.44)
p<n
The space of its smooth sections (namely all forms over M) is denoted by AT* = I'(M, A(T™)).
It’s obviously possible to build up by analogy the space of sections AT = I'(M,A(T)), where A(T) =
©D,<, AP(T) and the elements of AP(T) are the alternating p-vectors over M. In general we can repeat the

same constructions of for a general vector bundle F to obtain for example the space of the p-forms AP E* or the
space of alternating p-multivectors APE (see Section [2.1.2]).

Obviously the exterior algebra AT™* inherits from A(V*) its algebra structure. In particular, it inherits the
wedge product. We define the exterior product between two forms w,n € AT* as the form

(WAn)(p) =wlp) Anlp) € AT*  Ype M (2.45)
The exterior product obeys the following properties Vw,n, A € AT*, Va € R
1. Tt is associative, namely (W An) AX=w A (n A X).
2. Tt is distributive with respect to the sum, namely w A (AN =w Ap+w A A
3. It commutes with the product with scalars w A (an) = a(w A n) = (aw) An.
4. It is graded, namely if w € APT* and n € AYT* then w A1 € APTIT*,
5. It is anticommutative, namely w A n = (—1)PIn A w.

where we left implicit the point p € M in which the forms take values. Hereafter we will use this convention.
Properties from 1. to 5. mean that AT™ is a graded, associative and anticommutative algebra.

Needless to say AT* inherits an inner product which acts fiberwise, from that defined in Equation (A.16).

Let us choose a chart (U,, p,) over M which induces coordinates {z¢ };c;, , where dim(M) = n. A r-form
¢ € A"T™ is locally expressed by

1 . .
Hlu.(p) = -5 > i dal A Adaly (2.46)
’ {iiYicr,
where p € U, C M and ¢;, ; € C*°(U,). In other words a basis for the exterior algebra APT|’{]a is simply

given by the set . .
{dzd N Ndzir} (2.47)



20 Geometry background

so that the rank of A"T™ as a vector bundle is given by (Z) Consequently the rank of the whole exterior algebra
is >, (Z) Moreover we get dim(APT*) = dim(A""PT*).

As we have seen, there are some difficulties to transport vector fields by means of differentiable maps between
manifolds. One of the most interesting properties of differential forms is that they are easily transportable. In

fact

Definition 2.1.12. Let M, N be smooth manifolds, and p € M. Let F': M — N be a smooth map. F induces
the pullback map F* such that VX € T,M,Vw e Ty M

F(p)
F*:Tf,N = TiM (2.48)
such that
(F*w)(X) = w(FX) (2.49)
In components we obtain [20]
) 9y’
Frw;(z) = wj(y(x))awi (2.50)
where {x%},c; are the coordinates on U C M and {y'};c;, are the coordinates on F(U) C N.
It’s straightforward to generalize the map for generic g-forms. In fact
Definition 2.1.13. The map F* : AYT*N — A?T* M such that
Fru(Xq,...,X,) =w(F.X1,...,F.X,) (2.51)
is the pullback of a g-form.
In coordinates we can write
\ Ayt Iyl
Flwi iy (@) = 03, (@) S S (252

Moreover we can sum up some of the main properties of the pullback map F* [20]
1. (GoF)*=F*oG* where F:M — N and G:N — P are smooth maps
2. F*(wAT)=(F*w) A (F*1) Ywe APT*, V7 e AIT*

We have to notice that pushforward is defined only for vectors, while pullback is defined only for forms. How-
ever if the map which induces them is a diffeomorphism between manifolds, we can define both pushforward
and pullback on vectors and forms. In fact it suffices to note that in the case of diffeomorphism (F~1), = F*
and (F~1)* = F, [23, 24].

A fundamental tool is given in the following

Definition 2.1.14. Let X € X(M) be a vector field on the smooth manifold M. Let w € APT*. The
contraction C*°(M)-linear map
ix : APT*  —  APTIT* (2.53)

such that
(’L'XoJ)(Yl,...,Y;,,l):OJ(X,Yh...,Yp,l) VYl,...,Yp,1 Ef(M) (254)

for each p > 1, with the convention that ix (A°T*) = 0.
We can see the map ix as a sort of generalization of the inner product in Equation (2.16)).

Definition 2.1.15. Let M be a smooth manifold such that dim(M) = n and let ¢ : X(M) — End(AT*) such
that VX = X752 € X(M)

7

i(X)=1ix (2.55)
ix has the following properties
1l.ixf=0 VfelC®(M)
2. ixdr) = X7 Vdzd € QY (M)
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3.2 =0 VXeXM)
4. ix(wAn) =ixwAn+ (—=1)PwAixn Ywe APT* Vn e NIT*

For example if w € T* we obtain
ixw = X'w; = w(X) (2.56)

since we recall that a one-form can be seen as a linear map w : T — R. If £ € A2T* then
, ‘ 1 o o
ix§ = ix&y(da' N da?) = 538 (X'da! — X7da") = £(X) (2.57)

from which we recall that a two-form can be seen as a linear map & : T — T™*. In general if w € APT*

P

1 <& — , , ,
ixw= =Y (=)' X, i, de Ao NdETA - Adatt =

1 , . .
- mxwwm__ipdw A Adate (2.58)

where the hatted index denotes the absence of the element.

At this point it seems quite natural to wonder if there is a map which is the inverse of ix. It turns out that
not only such a map exists, but it is one of the most important tools in the differential geometry. In fact

Theorem 1. Let M be a smooth manifold such that dim(M) = n. Then I'R—linear map d : AT* — AT*, the
exterior differential, such that the following properties

1. d(APT*) C APFIT*  VYpeN
2. If f € A°T* = C°°(M), then df € AT* is the differential of f

3. If we APT*, n € NIT* then
dw An) = (dw) A+ (—=1)Pw A (dn) (2.59)

4.d>=0

The exterior differential is the backbone on which is based the cohomology theory, and it is immediately
related to a series of objects with important geometrical meaning. We will explore these questions in some
details in Sections The starting point of the cohomology theory is the definition of closed and exact forms

APT* D ZP(T*) = {¢ € A’T*| d¢ =0} = Ker(d) Vp>0 (2.60)

Elements in ZP(T*) are the closed p-forms over M, also called the p-cocycles. Also, dAP~1T* C ZP(T*).
Elements in dAPT* = I'm(d) are the exact p-forms over M, also called the p-coboundary.

The exterior differential satisfies several important properties [17], for example Vw € AT*
e d is local, namely if w = w’ on the open set U C M then dw|y = dw'|y.

e d commutes with the restriction, namely if U C M is an open set, then d(w|y) = (dw)|y.
e d commutes with the pull-back map, namely if F': M — N is a smooth map, then

d(F*w) = F*(dw) (2.61)

Sometimes it’s useful to speak about a more general class of objects, namely the (p) -tensor valued r-forms.
As it seems intuitive they are simply sections of the bundle 77 (M) ® A"(T™), which we denote by

te TP @ AT (2.62)
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Integration

Exterior form provides a useful as well as convenient framework to perform integrations over a smooth manifold
M. For what concerns manifolds with boundaries we refer to Appendix

The first important concept is that of orientability.

Definition 2.1.16. Let M be a connected manifold such that dim(M) = n. Then M is orientable if there
exists a smooth atlas {(Uy, ¢a) tacr such that the transition functions {¢4 }aer have positive jacobian determi-
nant.

The condition of orientability is equivalent to the existence of a consistent choice of oriented basis on the
tangent bundle 7. Moreover it is also equivalent to the existence of a nowhere vanishing v € A™T™. If there
exists two nowhere vanishing forms vy, vy € A"T* and a smooth positive map f € C*°(M) such that v = fuo,
then 1 and vy define the same orientation over M.

Definition 2.1.17. A nowhere vanishing form v € A"T* is a volume form.

v is called a volume form because as we will see in the following it allows us to integrate forms on a smooth
manifold.

Definition 2.1.18. Let w € AT*. The closure of the set {p € M|w(p) # 0} is the support of w and is denoted
by supp(w). A form w € AT* such that supp(w) C K C M where K is a compact subset of M is a form with
compact support.

The form with compact support are integrable over a smooth manifold M. In particular it can be shown
[I7] that if M is orientable, w € A"T* with compact support contained in the overlap of two charts (U, ¢) and

(V, ), then
/ (o) 'w= / (W) w (2.63)
e((U) (V)

This result allows us to give the following [17]

Proposition 2.1.2. Let M be an orientable smooth manifold. Let {(Ua, ¢0)}acr be an oriented atlas and let
{po} be a partition of unity subject to this atlas. Then for each w € A™T™* with compact support we can define

the integral
W= PaWw (2.64)
=2,

acl
which is independent from both the atlas and the partition of unity.

We can simply generalize the Definition of an integral over a manifold to a function f € C*°(M). In fact if

j € A*T™* is a volume form we can write
/ = / fi (2.65)
M M

Eventually, if M is compact we define the j-volume as
volj(M)/ J (2.66)
M
vol;(M) is always positive.

We can list some useful properties of the integration over a manifold M, in fact

1. Let M be an oriented manifold. Let —M the manifold with opposite orientation. Then

2. Let M and N be two oriented manifolds such that dim(M) = dim(N) = n. Let F : M — N be a
diffeomorphism. Let us suppose that F' preserves the orientation, then

/M F*(w) = /Nw (2.68)
/M F*(w)=— /Nw (2.69)

while if F' inverts the orientation
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Eventually the fundamental

Theorem 2. Stokes’ Theorem
Let M be a smooth oriented manifold with boundary such that dim(M) = n, and let OM be its n— 1-dimensional

boundary. Let w be a n-form over M. Then
/ dw :/ w (2.70)
M oM

2.1.4 Flows and Lie derivatives

In this Section we want to introduce a way to compare vectors and one-forms lying on different tangent spaces of
the tangent bundle, without using any metric. The Lie derivative is the tool which allow us to compare vectors
(as well as one-forms) computed in different but near points on the manifold. Remarkably, it is an intrinsic
object on a manifold.

Let v(¢t,p) : I x M — M be an integral curve (I C R and 0 € I) on a smooth manifold M. This means that
it is a curve whose tangent vector is given at each point p € M by a vector field X € X(M).

We choose a chart (U, ¢) in p, such that ¢(p) = x € (U) C R" and coordinates {z'};cz,. So locally we can

write o
“(t . . )
DD _ X51,0) with 7(0.p) = o (2.71)
~v is the flow generated by the vector X € X(M). A flow satisfies the following

Proposition 2.1.3. Let X € X(M). Then Vp € M 3 an integral curve, a flow v : I x M — M such that v(¢, p)
is a solution of the differential Equation (2.71)).

Proposition 2.1.4. A flow satisfies the group property
v(t,v(s,p)) =t +s,p) Vts€ICR (2.72)

Definition 2.1.19. Let v(¢,p) be a flow over the smooth manifold M. While keeping ¢ fixed, we can rewrite

v(t,p) =1 (p) (2.73)

The map v : M — M is a diffeomorphism and represents the commutative one parameter group, which
satisfies

1 vo=1xm
2. %t =
3. MVs = Vivs

Choosing the parameter ¢ infinitesimal, we find the infinitesimal flow from Equation (2.71])
7 (p) = = +1X"(p) (2.74)

and X is the infinitesimal generator of the flow group ~;. Recall that a finite flow can be expressed throughout

the exponentiation _ _
v'(t,p) = exp(tX)z" (2.75)

The commutator between two vector fields is a very common tool among physicists

Definition 2.1.20. Let X, Y € X(M). The bilinear map [,] : X(M) x X(M) — X(M) is the Lie bracket or
the commutator. The vector field [X,Y] = XY — Y X is defined by

(X, Y]f = X(Y[f]) =Y(X[f]) VS feC=(M) (2.76)
We will say that X and Y commute if [X,Y] = 0.

Moreover [17]
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Proposition 2.1.5. Let X,Y,Z € X(M), a,b € R, f,g € C°(M) and F : M — N smooth map. Then

1. [,] is anticommutative, namely [X,Y] = —[Y, X]
2. [,] is R-linear in both the entries, namely
[aX +bY,Z) =a[X,Z]+b]Y,Z] and [X,aY +bZ] =a[X,Y]+0[X, 7] (2.77)

3. [,] satisfies the Jacobi identity, namely J(X,Y,Z) = [X,[Y, Z]| + [V, [Z, X]] + [Z,[X, Y]] =0
4. [,] satisfies the following Leibniz rule [fX, gY] = fg[X,Y]+ f(X[g)Y — g(Y[f]) X
5. The push-forward map F. acts naturally on the Lie bracket, namely F,[X,Y] = [F. X, F.Y]

6. If (U, ¢) is a local chart on M which induces coordinates {z'};c7, on U, then we can locally write

- LOYIL9XY
X, V] =>" (X el ) 9; (2.78)

ij=1
and in particular [0;,0;] = 0.
The function J(X,Y, Z) is the Jacobiator.

As we mentioned at the beginning of the Section we are interested in the change of a vector field X along
a flow . Since we can’t compare vectors in different tangent spaces, thus we have to define an operator which
allows us to quantify the difference between vectors. This kind of operator is the Lie derivative.

Definition 2.1.21. We define the Lie derivative of a vector field Y € X(M) along the vector field X € X(M)

as
1 ) B> AR
£x¥ =lim 3l YOu) - Y0l = X550 (2.79)
For the last equality see [19, [20]. Then
L 0Y7 0X77 0 o)
X'—— -V —| ==X, Y]" — 2.
oX'i 8951] i X, Y] oxk (2.80)

and we we can simply write, £xY = [X,Y]. Moreover, since if Y € X(M) and w € Q' (M), then the interior
product (w,Y) € C*°(M), and by imposing that £x(w,Y) = (£xw,Y) + (w, £xY), we can find the action of
the Lie derivative on one-forms.

Definition 2.1.22. Let w € AYT*. The Lie derivative of w along the vector field X € X(M) is defined as

. 1.,
Exw=lim —[w(up) —wp)] VpeM (2.81)
Explicitly we find
1 . . . .
Lxw = a [Xjajwil,,,iq + qwjiz,,,iq(’)ilX]] dz"* A - Ndxt (2.82)
In particular, if w is a one-form _ _ '
Lxw = [Xfﬁjwi + Wjain] dx’ (283)

While if f € A°T* = C>(M), then
Lxf = XI[f] (2.84)

It’s useful to rewrite the Lie derivative of a g-form w in a more compact manner as follow
Lxw = (iderdix)w (2.85)

which is the Cartan formula. It is convenient to immediately see an application of the Cartan formula, which
we will use several times in the work

Lemma 2.1.1. Let w € Q'(M). Then

do(X,Y) = ixw(Y) —iyw(X) —w(X,Y]) VX,Y € X(M) (2.86)
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In fact

dw(X, Y) = iy(ix)dw = iy(ﬂxw) - iy(dixw) =
= Lx (iyw) + iy, xw — iy (dixw) = dixiyw + ixdw(Y) — iydw(X) + iy, xjw =
— ixdw(Y) — iydw(X) — w([X,Y]) (2.87)

where we have used that ixiyw = 0 and that [iy, £x] = 4y, x], as stated in the Lie derivative properties listed
below.

It’s interesting to notice that by knowing the action of the Lie derivative on the tensor product of tensors

T, € Tgll and Ty € Tg"
Ex(Th @ Tz) = (ExTh) @ To +T1 @ (£xT2) (2.88)
one can deduce the action of the Lie derivative on a general tensor T' € T} from its action on smooth functions

f € C°°(M), on vectors X € X(M) and on one-forms w € Q(M).

We can sum up some of the main properties of the Lie derivative, that is V f € C*°, VX,Y € X(M) [20]:
1. £xfY =[X, fY]

2. LixY =[fX,Y]

3. [£x,ix]=0

4. [£x,d]=0

5. [Lx,iy] = 1ix,y]

6. [£x,Ly] = Lix v

2.1.5 G-structures

As we will see in Chapter [4] the condition on geometry arising from the supersymmetric compactifications can
be successfully studied in terms of G-structures. In the present Section we introduce them.

In physical applications, a fiber bundle often come with a preferred group of transformations, which is a
subgroup of GL(n,R). This is due to the fact that it is often necessary to restrict the allowed transition functions
on the overlappings of an atlas. These restrictions can be encoded by a new structure: the structure group.

Definition 2.1.23. Let (E, M, 7, F; A\, G) be a sextuple such that

1. (E,M,n,F) is a fiber bundle. G is a Lie group called the structure group and X\ : G — GL(n,R) defines
a left action on the standard fiber F'.

2. There exists a family of preferred trivializations {(U,,to)}aer such that the following holds. Let gaps :
Uap — GL(n,R) define transition functions. There exists a family of functions h,g : Uy — G such that
if p € Upnp, the following relations hold (see Figure

L haa(p) = 1G
o (has(p)) ™" = hsa(p)
® hag(p) o hgy(p) 0 hya(p) = 1a

Then (E, M, 7, F; )\, G) is a fiber bundle with structure group G or simply a G-structure. h,g are
the transition functions with values in G, and depend on the trivializations chosen. The set {(Ung, hag)}a.ger
forms a cocycle with values in G. The preferred trivializations are said to be compatible with the structure.
We will often denote a G-structure simply by specifying the structure group G in addition to its fiber
bundle structure 7 : £ — M.

The diagram in Figure explains how a G-structure works. In fact starting from the group G and the
transition functions g.g, troughout the upper part of the diagram we can manipulate the G-action on the fiber,
for example selecting only a subgroup of G' by means of h,g, and then implementing the action on the fiber
F by means of A. In this regard, given a G-structure it’s possible to make a pair of operations: to enlarge the
structure group, or to reduce it [2I]. The latter operation is very common and we have just described it. It’s
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Figure 2.4: The structure of a structure bundle with its cocycle.

equivalent to the existence of some extra structure over the base space M. For example in General Relativity
the presence of a metric on a orientable manifold reduces the structure group to SO(n, R).

In many physical applications, it is often necessary to specialize more the structure of a fiber bundle. This
fact brings us to the following

Definition 2.1.24. Let 7 : P — M be a G-structure. If the fiber is taken equal to the structure group itself,
then it is a principal bundle.

Remember that, from Proposition transition functions act locally on the fiber by a left translation. In
the case of the principal bundles, it is also important to define a right action on the fiber. It’s intuitive that, if
{(Uq,ta)} is a trivialization for the G-structure 7 : E — M (with fiber F'), then the right action can be defined
locally on t, (7~ 1(U,)) as

Ry i to(m H(U,)) — to(mH(Uy))
(p, ) — (p,x-g) VpelU,, VreFVged (2.89)
One of the important features of a principal bundle is that the right action is preserved by the transition

functions. This is a natural consequence of the fact that transition functions act by left translations on the
fibers. Thus we have

Proposition 2.1.6. [I8] Let 7 : P — M be a principal bundle with structure group G. There exists a global
right action on Rg : P x G — P such that Vp,q € P

1. Ry is free, i.e. if Ry(p) =pthen g=1
2. R, is transitive, i.e. if m(p) = w(¢) then g € G such that ¢ = Ry(p)
3. Ry is vertical on the fibers, i.e. 7(R4(p)) =7(p) Vpe P

In other words 2. and 3. dictates that the fibers of a principal bundle are the orbits of the group G. The local
expression of R, is given in Equation ([2.89).

One can see that it isn’t possible to define a left action preserved by transition functions [I8]. Moreover it
can be proved that the existence of global sections is equivalent to a strong constraint over principal bundles.
In fact [19]

Proposition 2.1.7. Let 7 : P — M be a principal bundle with structure group G. Then it admits global
sections if and only if it is trivial.

In fact let s € I'(P) a global section, i.e. a map s: M — P where M is the base space of the bundle. Each
element of the form Rys(p) where g € G belongs to the fiber in p. Since the right action is free and transitive,
then there exist p € M and g € g such that each element v € P is uniquely written as R,s(p). Eventually we
can define an homeomorphism

®:P =  MxG
Rgs(p) = (p,9) (2.90)

which assures that P ~ M x G. Conversely, let us assume that P ~ M x G. Then let t : M x G — P be a
trivialization function and let g € G. Then the map

84 : M — P
p = t(p, 9) (2.91)
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is a global section. In this sense the principal bundles are different from vector bundles, on which it is always
possible to define at least the global null section.

Again, we have to fix what kind of maps preserve the principal bundle structure.

Definition 2.1.25. Let 7 : P — M and «’ : P’ — M’ be two principal bundles with structure group respectively
G and G'. Let 8 : G — G’ be a Lie group homomorphism. The maps ® : P — P’ and ¢ : P — P’ form a
principal morphism with respect to 6 if

Do Rygy=Ryo® Vge G (2.92)

namely if the diagram in Figure is commutative. If G = G’ and 6, = 1 then the pair (®, ¢) is a principal
morphism.

Figure 2.5: Principal morphisms with respect to 0¢.

A very useful result is the following [17]

Proposition 2.1.8. Let 7 : P — M a surjection. Let 8 : P x G — M be a free action of the Lie group G on
the manifold M such that the orbits of 6 coincide with the fiber of 7 : P — M. Then 7 :— M si a principal
bundle with structure group G.

One of the most important examples of principal bundles is

Example 2.1.6. [I8] The frame bundle
Let M be a smooth manifold. A frame at p € M

éa(p) = (é1(p), .-, €n(p)) (2.93)
is an ordered basis of the tangent space T, M. Let us define
L,M ={é,(p) ={é1(p),....én(p)}| éa(p) 1isa frameatpe M}} (2.94)

and then consider the union of every L,(M)

LM = | L,M (2.95)
pEM

We can define a projection in the natural way

w: LM - M
éalp) = p (2.96)

and in addition we can define a GL(n,R)-right action which acts freely on the elements of LM, that is

LM x GL(n,R) — LM
eap) xh = E(p) = (éah®,. .., Eah%) (2.97)

It can be shown that it is a smoothly varying well defined right action, so that = : LM — M is a principal
bundle with structure group G. It is called the frame bundle.

LM represents an immediate way to associate a principal bundle to a vector one like the tangent bundle 7.

We can also consider the dual of the frame bundle. It is immediately given by the set of all frames of the
cotangent bundle T, which we can write

e’ (p) = (e'(p),---.¢"(p) (2.98)
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The construction of the coframe bundle is identycal to that of LM, and one can choose the frames such that
e“(eb) = 5ab (299)

so that e can be interpreted as the inverse of é,. Frame and coframe bundles are crucial since they allow us to
define the vielbein on a manifold, as we will see in Section

A G-structure can always be interpreted as the result of a reduction of the structure group of the frame bundle,
to one of its subgroups G C GL(n,R). For example, if it’s possible to find a global section o of the frame bundle
LE, then it’s possible to choose the local frames {é,(p)} such that o has the same form everywhere. This brings
to the fact that the only transition function which preserves it is the identity, so that the structure group is the
trivial subgroup of GL(n,R) consisting of only the identity element. In that case the manifold is parallelizable.

In the general case a useful way to describe a G-structure is in terms of one or more G-invariant tensors
(or spinors, as we will see in Chapter [3|), which are globally defined and non-degenerate. If for example, is is
possible to define a nowhere vanishing, positive definite, symmetric tensor g € T3 (that is a Riemannian metric,
as we will see in Section then we see that the structure group is reduced from GL(n,R) to O(n,R). Let
us work out explicitly this example.

Example 2.1.7. The Riemannian structure

Let T be the tangent bundle, and let g € T¢ be a symmetric, positive definite and nowhere vanishing tensor.
We require that g be globally defined, namely that in each overlap U, we get

g* =4g° (2.100)
where ¢® and ¢” are the restriction of the tensor respectively on U, and Ug. This means that
9% o, ® dad, = g dly @ dar) (2.101)

where {2} and {z”} are the coordinates respectively on U, and Ug. This implies that

ozk 0
B « a «
— x T 2.102
gz] Ikl 8.137'6 aij ( )
from which follows that the transition functions U!; = —g;’; have to obey

¢? =UTgU (2.103)

or in other words they have to belong to O(n,R) C GL(n,R). The principal bundle obtained by reducing the
set of allowed transition functions is the orthonormal frame bundle O(M). If we take g to be defined over
a generic vector bundle F instead of to be defined on the tangent bundle 7', we can repeat the same argument
to obtain the orthonormal frame bundle over E which is denoted by O(E).

If in addition the manifold is orientable, so that we can find a globally defined volume form j € A"T™, then

the structure group is further reduced to SO(n,R). The resulting principal bundle is the special orthonormal
frame bundle SO(E).

Definition [2.1.25[ allows us to to enlarge the structure group of a G-structure. Let K(H) be the center of
the Lie group H
K(H)={he H| hk=kh VkeH} (2.104)

Then
Definition 2.1.26. Let f : G — H be a surjective, covering homomorphism such that Ker(f) C K(H). A
bundle morphism f between 7 : P — M with structure group G adn 7’ : Q — N with structure group G’ is a

lift of P to Q if it is a principal morphism with respect to f. If f is the universal covering of the Lie group G,
then f is the universal lift of G to H.

Unfortunately it is not always possible to lift a principal bundle, because topological obstructions can occur,
as we will see in Chapter
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Eventually we introduce a tool which is important in the context of spinors, as we will see in Section
We have seen that the frame bundle can be interpreted as a tool which allows us to associate a principal bundle
to a vector bundle. Now we can see a way to go in the opposite direction. There is in fact a way to canonically
associate a vector bundle to the principal bundle 7 : P — M with structure group G, provided that a continuous
homomorphism

p:G— GL(n,R) (2.105)

is fixed. If F' is a vector space, the map p allows us to define a free right action over the bundle P x F in the
following way

Ry(p, f) = (Rg(p),p(g™")f)  V(p,f) € PxF (2.106)

and let us denote by
Ow.5) ={Re(p, f)| 9 €G} (2.107)

the G-orbit of the point (p, f). Then we can give the following

Definition 2.1.27. Let (P,G) be a principal bundle and let p be a linear representation of G over the n-
dimensional vector space F', as in Equation (2.105)). Next define an equivalence relation ~

o~ f) < @ f)€O0uy (2.108)

Then the quotient
Px,F=FxF), (2.109)

is a fiber bundle, called the associated bundle to P by p.

The projection of the associated bundle 7’ : P x, F' — M is inherited from the projection 7 : P — M of the
starting bundle P, so that the associated bundle is a bundle over M. If F' is a vector space, then the associated
bundle is a vector bundle over M.

2.2 Riemannian geometry

So far we have studied the basics concepts in differential geometry, which allow us to define a differentiable
structure on a topological manifold, and hence to perform differential calculus on it. We have not yet addressed
the question of how to measure the distance between two points on a smooth manifold. This is exactly the
question dealt with by the Riemannian geometry.

2.2.1 Riemannian manifold

In this Section we will set up the whole apparatus of the Riemannian geometry. The first principal novelty we
will introduce is the concept of connection, which allows us to give a sort of generalization of the directional
derivative studied in analysis. Next we will start the study of the notion of metric which gives us a way to
compute distances between points on a manifold. The last fundamental object which we will introduce is the
curvature, which tells us how much a space is curved, changing significantly the geometrical intuition suggested
by the Euclidean geometry.

Connections
Let M be a smooth manifold such that dim(M) = n and let 7 : E — M be a vector bundle of rank dim(E) = r.
Definition 2.2.1. Let the following map
V:X(M)x X(E) — X(E)
(X,V) — VxV (2.110)
obeys the following

1. V is C*°-linear in the first argument, namely

VixigyV =fVxs+gVyV VXY € X(M), YfgeC®M), VYV eX(E) (2.111)
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2. V is R-linear in the second argument, namely

Vx(@V +bV')=aVxV +bVxV' VX eX(M), VV,V e X(E), Va,beR (2.112)
Then V is a connection over E.

The section VxV € X(FE) is the covariant derivative of V along X. Finally, if E =T, V is a linear
connection.

The simplest obvious example is the connection on a trivial bundle E = M x R". Let us recall that in this
case, the general section of the vector bundle is of the form V' =3, V’e;, where {e;};cr, is the global frame
of the trivial bundle. It’s straightforward to see that

ViV = ZX[Vj]ej (2.113)
J
is a connection over E. It is called the flat connection.
The connections over vector bundles obey several interesting properties, and in particular it can be shown

that each vector bundle admits a connection. A curious fact is that the linear combination of connections is far
to be a connection again. It happens to be only in the case of an affine linear combination of connections.

However the most important feature on which we shold focus is the local behaviour of the connections,
which is fundamental if one wants to think about connections as a generalization of the directional derivatives.
In particular it can be easily shown [17] that the value of VxV (p) depends only on the direction X (p) of the
derivative at p and on the behaviour of the section V restricted to a curve throughout p which has X (p) as
tangent vector in p.

We can give a local characterization of the connection by writing
T
Viej = Thjen i€l jel. (2.114)
k

where we have written V; instead of Vjg,i, and {27} ¢, are the coordinates induced by the local chart. The
functions T'*;; € C°°(M) are the Christoffel symbols of V with respect to the local frame and to the local
chart chosen. The Christoffel symbols uniquely determine the connection. In particular we can write

n T T n T
VxV =) X'V, (Z Vkek> =D X(VMer+ > Y XV e (2.115)
J k k ikl
Let us notice that for example the flat connection has vanishing Christoffel symbols.

The significance of the the r.h.s. of Equation (2.115) is evident: the first term Y., X[V¥]ey indicates the
change of the section V along the direction of the derivative X, while the second term Z;L S XIVET e
measures the change of the section V' due to the fact that local frame {e;};cr, change from point to point.

We can associate to each locally defined connection a new tensor.

Proposition 2.2.1. Let V be a linear connection over the smooth manifold M. The map 7: X(M) x X(M) —
X(M) such that
T(X,Y)=VxY - VyX — [X,Y] (2.116)

is the torsion of V. Then 7 is a tensor 7 € T}. V is symmetric if 7 = 0.

The following Proposition impose an important constraint on the Christoffel symbols of a symmetric con-
nection

Proposition 2.2.2. V be symmetric if and only if for each choice of the coordinates we have

Ik =T, (2.117)
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Next we can introduce the parallel transport. Let X € X(M) and let V € X(FE). V is parallel in the
direction of X at p € M if
VxV(p)=0 (2.118)

If v:R D> I — M is a smooth curve, then V is parallel along ~ if
ViV(y(t) Vtel (2.119)
Moreover, the parallel transport condition in Equation (2.157)) can be locally rewritten

Al —1—221“ GXVE=0 Vkel, (2.120)
i

An interesting point is that the theorem of existence and unicity of the solution of a Cauchy’s problem allows
us to extend the local definition of parallel trasnport, given in Equation (2.120). In particular one can find that
the parallel transport along ~ with respect to V is the map [17]

i Hp) = 7 ) (2.121)

such that ¥(v) = V(1). 7 is an isomorphism. Moreover if v : [0,1] — M is a closed curve, then the map
v € Aut ((ﬁ’l(p))). The set of such automorphisms is called the holonomy group of M at p. We will
explore these arguments in detail in the next Section.

An interesting observation is that, given a connection V over a vector bundle E and a smooth curve
v : I — M, there always exists a local parallel frame, namely a r-ple of sections {e; € X(M)|,}ier,, each
of which is parallel along v and such that {e;(y(t))}ics, is a basis for 771(v(¢)). In fact, it’s sufficient to choose
a point ty € I and a basis {e;} of 771(to), and the to use the parallel extension of each element of the basis.

Riemannian metrics

In the present Section we study the consequensces of introducing a tensor such in Example on a smooth
manifold M. It is called a metric.

Definition 2.2.2. Let M be a smooth manifold such that dim(M) = n. Let g be a positive definite quadratic
form g : X(M) x X(M) — R, such that

L g(X,Y)=g(Y,X) VXY €X(M)
2. g(X,Y)>0 VX,Y e X(M)

Then g is said to be a Riemannian metric over M. A manifold on which a Riemannian metric is defined is a
Riemaniann manifold. g can be seen also as a (3)-tensor. If g is such that 1. holds, while instead of 2. only
the condition of non-degeneracy holds

2. g(X,Y)=0 VXeX(M) = Y=0 (2.122)

In this case g is a pseudo-Riemannian metric over M. A o-manifold is a manifold on which a pseudo-
Riemannian metric with signature o = (r,s) is defined. In particular if o = (1,n — 1) then we speak of a
Lorentzian manifold.

It can be proved that on each smooth manifold M a Riemannian metric exists [22]. On the contrary, there
may be some topological obstructions which prevent the existence of a pseudo-Riemannian metric on M. For
example a compact n-dimensional smooth manifold M admits the existence of a Lorentzian metric if and only
if its Euler characteristic vanishes. In fact the presence of a Lorentzian metric means that a globally defined
and nowhere vanishing vector field can be chosen (it refers to the time direction). This condition holds if and
only if the Euler characteristic vanishes. We will deal with these issues also in Section

It’s important to define the pullback of the metric along a map f: M — N

g'(p) = f9(f(p)) (2.123)
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since it is strictly related with symmetries on a smooth manifold M.

Let (U, ¢) be a chart in p € M and (V, %) be a chart in f(p) = q. Let be p(p) = z° and ¢(q) = y*. Then we
obtain

k T m(p
9i;(x) = gkm(y(x»aya—;)aya—xg) (2.124)

If f: M — M, we can define the isometry group as the group of transformations such that

g(p) = [*9(f(p)) (2.125)

Isometry transformations preserve the length of the vectors. In particular, if we take as map between manifolds
an infinitesimal flow 4 4 ‘
"=zt (2.126)

where £ = £ 821‘ is the vector which generates the flow, then we can rewrite Equation (2.124) imposing the

isometry condition, and obtain

A(ah +t&F) d(a™ +te™)

ij = Jkm t - 2.127
from which, expanding, we can obtain the Killing equation
" 0kgij (@) + gr;j (2)0:E" + gin(2)0;6" =0 (2.128)
and its solution £ = ¢&° a?ci is called the Killing vector. Equation (2.128) is central in the study of the isometry
transformations of a manifold. If we remember the Definition [2.79] we can rewrite the isometry condition in
Equation (2.125) as [23]
Lxg(p) =0 (2.129)

Let us notice that the last consideration is completely independent from the existence of a connection over
the manifold M: we are allowed to speak about isometries over a manifold M, once a metric is defined over
it. Further conditions can be imposed such that a compatibility relation between metric and connection is
established. In fact, take a smooth manifold M endowed with a metric g. We can put the restriction that g be
covariantly constant, i.e.

Vigij =0 (2.130)

It’s easy to find [19] that a covariantly constant metric is a metric which keeps the scalar product between
parallel transported vectors constant. Equation (2.130) can be rewritten [19] 23]

Ngi; — T*ugr; — Thjgri =0 (2.131)

The condition in Equation (2.130) is called metric compatibility.

The parallel transport can be strictrly related to the metric by defining a geodesic curve y: R 2D I — M
by the following
VxX =alvy(t)X (2.132)

where X € X(M) is the tangent vector field to the curve 7. In a chart (U,¢) which establishes the set of
local coordinates {x'};c;, , the curve is z(t) and the tangent vector takes the form X°¢ = dd—“:. Then after some
manipulations in order to reabsorb « we obtain in components

d?z’ - da? daF

e, — = = 2.1
a2 Vg =0 (2.133)

which is the geodesic Equation.

As it is well known, the two cornerstones of the Euclidean geometry are that parallel lines never cross and
that the sum of the angles of a triangle always udd up to m. These two statements are consequences of the
implicit Euclidean hypotesis of the space’s flatness. However we know that the space can be curved. In fact
let us think about a sphere, which is the most intuitive curved space, and take for example two non coincident
longitudinal lines. When viewed from the equator, they appear to be parallel. But if you follow them in either
direction, they eventually converge at the poles. Moreover, if you take a triangle over the sphere’s surface, it’s
easy to see that its angles sum up to more that w. This is because the sphere curvature is positive. If the
curvature is taken to be negative (as in the case of a saddle), then the angle of a triangle over its surface sum to
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less that . Moreover, in an Euclidean space the parallel transport of a vector along two different paths which
end at the same point returns the same vector. We will see that this is not true in general, on a manifold with
non-zero curvature. Let us try to formalize these concepts.

We can introduce

Definition 2.2.3. Let V be a linear connection, and let M be a smooth manifold. Let X,Y € X(M) and let
p,q € N. The map

Rxy : TV — 17
Rxy =VxVy —VyVx —V[xy) (2.134)
is the curvature endomorphism.
It turns out that Rxy is C*°-linear with respect to all the entries. Then

Definition 2.2.4. Let V be a linear connection, and let M be a smooth manifold. The tensor field R € T3
such that VXY, Z € X(M)
R(X,Y,Z)=RxvZ (2.135)

is the curvature tensor.

If V is the Levi-Civita connection of the Riemannian manifold (M, g) then we can consider also the tensor
field R € T} such that VX,Y, Z, T € X(M).

A remarkable point is that the curvature tensor of a Riemannian manifold is invariant under local isometries
[17].
The most important properties of the curvature tensor are listed in the following

Proposition 2.2.3. Let R € T4 be the curvature tensor of a Levi-Civita connection on the smooth manifold
M. It XY, Z,T € X(M) then the following properties hold

e R is antysimmetric: Rxy = —Ryx.
e R satisfies the first Bianchi identity

RxyZ +RyzX +RzxY =0 (2.137)

and if in particular V is the Levi-Civita connection of a Riemannian manifold, then
* g(RxyZ,T) =g(Z,RxyT)
* g(RxvyZ,T) = g(Rzr X,Y)

In a chart (U, ¢) on M we can write the local form of the curvature tensor explicitly. Let us fix the coordinate
{2'}icr, . If we write Rg,p,0, = R';;j10;, then we can wirte

orly, Tl -
Rl = ijz ~ 9y + T g TRy — T, (2.138)
If we write
Rijki = gmiR™ ijk (2.139)

then the properties in Proposition [2.2.3| can be rewritten
Rijii = —Rjin Rijii + Rjkit + Riiji =0 Rijri = —Rijik Rijii = Riaij (2.140)
Finally we define the Ricci tensor $R;; € T% obtained by contraction of two indices
Rij = Ry (2.141)

and the Ricci scalar R N
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2.2.2 Geometry of fiber bundles

In order to build up a gauge field theory it is not sufficient to limit our geometrical description to the Rieman-
nian geometry over a smooth manifold M. In fact so far we don’t know how to describe very general tools as
gauge connections or field strenghts, which are very common objects in QFT. In this Section we focus over the
geometry of pricipal bundles. They are central in the study of gauge theories, since the structure group can
immediately be indentified with the gauge group.

Gauge connections

The first object that we want to define is a connection over a principal bundle. Since it takes values in the Lie
algebra of the structure group it generalizes the connections studied in the previous Section, and it can be used
to introduce general holonomies on a manifold.

Let 7 : P — M be a principal bundle with structure group G. Let u € P such that w(u) = p and let us
naturally denote the tangent space in u by T, P. g is the Lie algebra of the Lie group G, and remember that
g~ T.G. Next let A € g, and define the following curve through v € P

v:R>I = P
t = Rexp(tA)u (2143)

where as it is well known if A € g then exp (t4) € G. Since the right action over a principal bundle acts locally
as in Equation (2.89), we can conclude that 7(u) = m(Rexp (14)u) = p and in particular that if f € C°°(P) then
the one parameter group defined by the map ¢ — exp (tA) defines the following vector field

d
— [(Rexpeay)|,_, VAe€g (2.144)

Aflu) = =

which is the fundamental vector field. Notice that A? is contained in a subspace of T}, P which is parallel to
the fiber GG, namely it is tangent to the orbit of G through u. In particular, by varying A € g we obtain the
basis of a vector space V,, P such that dim(V,, P) = dim(g). Formally

Definition 2.2.5. The vector space
VuP={X eT,P| m.(X)=0}=ker(n.) CT,P (2.145)

is the vertical subspace. An element X € V, P is a vertical vector field. The complement of V, P is
H,P c T,P in T,,P and is called the horizontal subspace. An element X € H,P is a horizontal vector
field.

Definition [2:2.5] is well explained in Figure 2.6, The map £ : g — V,, P defines an isomorphism g = V, P
which is uniquely defined [19, 20]. Moreover the vertical subspace is invariant under the G-action. In fact since
for the transitivity property of R, we have that 7 o R, = , then from the properties of the pushforward map
we get that m, o Ry, = ..

The map f preserves the Lie algebra structure, namely
[A*, BY) = [A,B]* VABeg. (2.146)

or in other words, the Lie bracket of two vertical vector fields is in turn a vector field. Eventually we arrive at
the

Definition 2.2.6. Let (P, G) be a principal bundle. A (Ehresmann) connection over P is a unique splitting
of T,P Ywu € P such that

1. T,P=V,P&® H,P

2. A smooth vector field X € P can be uniquely decomposed as X = X + XV, where X € H, P, while
XV e V,P.

3. RpoH,P=Hp P YueP, VgeG
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Figure 2.6: V, P is the vertical subspace, while H, P is the horizontal subspace.

Properties 1. and 2. can be resumed by saying that TP = V P® HP where V P and H P are respectively the
collections of all the V,, P and H, P, by smoothly varying v € P. They are also called distributions. As shown
in Figure and as 3. in the last Definition dictates, the horizontal subspace obtained from the G-action over
H, P is again a horizontal subspace, Hg_(,). In other words the horizontal tangent bundle H P is G-invariant.
Recall that instead, in the vertical case, each vertical subspace V,, P is G-invariant.

The following step is to reconnect Definition [2:2.6] with Definition [2:2.1] already seen in Section In
fact, according to those Definitions, we expect that the connection is representable through a one-form. This is
easily achieved by introducing the following [19]

Definition 2.2.7. Let w € g ® T* P be a Lie algebra valued one-form over P such that
1. wAH) =A VAcg, A*eV,P
2. Rjw = Ady-w Vge G

w is the connection one-form.

As we expect Definition [2.2.7]is equivalent to Definition This is easily proven, by noticing that we can
redefine the horizontal subspace H, P as

H,P={XeT,P| w(lX)=0}=ker(w) (2.147)

Since from 3. in Definition VX € H,P then Ry. X € Tp ()P, from the Definition of pullback in Equation
(2.48)
W(RgX) = Riw(X) = Adg-1w(X) =g 'w(X)g =0 (2.148)

because w(X) = 0 VX € H,P. Tt follows that Rj.X € Hpg, ,)P. In this way we have proven that a
connection as defined in Definition [2:2.7] implies the existence of an Ehresmann connection. Now we have to

prove the inverse. Consider a given Ehresmann connection, and a g-valued one-form such that 1. and 2. in
Definition hold. If X € H, P then 3. in Definition holds trivially. If A* € V,, P, then

R;w(Aﬁ) = w(Rg*AZ) = w ((Adgf1A)§%g(u)) = (AdgflA)Rg(u) = (Adgflﬁ,«J(Au))Rg(u) (2.149)

which implies 3. Notice that we have used that the following relation holds

d d
Ryl = Ry (Repeny ()| = % (Ry(u) Adyr(exp(t4))| =
t=0 t=0
d
== (Rg(u) exp(tAd,-1A)) i = (Adg_lA)Rg(u) (2.150)
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It is convenient to pullback the connection w in order to obtain a connection defined over the base space
manifold M of the principal bundle 7 : P — M with structure group G. Let {U,}aer be a covering of M.
Let us define a set of local sections o, : Uy, — P. We will call the set {o,} the canonical trivialization of the
principal bundle if

oap) =(p,e) VpeM (2.151)
Then each point v € P such that m(u) = p can be reached by using the transitive action of R,
Ry(oa(p)) = (p,eg) = (p,g) VpEM, Vge& (2.152)
Then we can define the local form of the connection or gauge connection
Ao =0k (w) €g@AT*U, (2.153)

If the whole set of couples {(Un,Aa)}acr is given, then it is possible to reconstruct the Lie algebra valued
one-form w € g @ TP [19].

A remarkable point is that the Lie algebra valued one-forms A, cannot be defined globally, since a principal
bundle cannot have global sections (unless it is trivial) as we have seen in Section m Therefore, in order to
make w defined globally, we have to impose some constraints over the transformation of A, on the overlappings
Uap- Such constraint is the defining property of a connection, and it is the analogous of Equation (??)

Ap =9,50°Aacgas + 9o © dgap (2.154)

where g, are the transition functions from U, and Ug. Again we stress on the fact that w carries the global
informations of the principal bundle, as well as the whole set {(Uy, Aq)}aer satistfying the compatibility condi-

tion in Equation (2.154).

Holonomy

At this point we can extend the definition of parallel transport given in Equation (2.157)) by introducing the
following

Definition 2.2.8. Let 7 : P — M a principal bundle with structure group G and let v : [0,1] — M be a curve
over M. The curve 7 : [0,1] — P is a horizontal lift of -y if

.« roT=1
° %ﬁ(t) € Hq(t)P

Let X be a vector tangent to 7. If w € g ® T*P is the connection one-form, then w()?) = 0 by definition.
An horizontal lift always exists, up to the initial condition. In particular [19]

Proposition 2.2.4. Let 7 :[0,1] — M be a smooth curve and let ug = 7 1(7(0)). Then there exists a unique
horizontal lift 7 in P such that 5(0) = ug.

It’s interesting to notice the following result

Lemma 2.2.1. Let v be a smooth curve over the smooth manifold M. Let 5, 5" be two horizontal lifts of ~,
such that 7' (0) = Ry(5(0)). Then 7'(t) = Ry(7(t)) Yt e [0,1].

In fact the map

J,:001] — P
t = R,A)®) (2.155)

is also a horizontal lift of v, since the horizontal subspace is invariant under Ry: RyH, = Hp (4. Furthermore,
Proposition tells us that it is the unique horizontal lift through Ry(7)(0).

We can extend the concept of parallel transport. In fact let v : [0,1] — M and let 5 and consider the point
up € 7 1(5(0)). Let (Ua, o) be the chart which contains v(t). Proposition tells us that there exists a
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unique horizontal lift 5 through ug, and thus a unique point u; = 5(1), which is the parallel transport of ug
along the curve 7. We can define a map

uo — U (2.156)

such that

1 i
up = oa(w(l))?exp{—/o Amdx?t(t))dt} (2.157)

where P indicates that the integral is path-ordered.

Lemma 2.2.] allows us to show that
I'(¥) o Ry = RgoI'(9) (2.158)

In fact let ug € P. Then Ry oI'(¥)(uo) = Rg(u1) and I'(¥) o Rg(uo) = I'(7)(Ry4(uo)). The curve R, (¥)(¢) is a
horizontal lift through R,(u) and Ry(uy). Since the horizontal lift through R, (uo) is unique, from Proposition
we have that R,(u1) = I'(¥)(R4(uo)), and then R, o I'(7)(Up) = I'(¥) o Ry(uo) Yug € 7~ 1(v(0)), from
which follows the initial statement in Equation (2.158).

Next consider the parallel transport along a closed curve. Let v, A : [0,1] — M, such that v(0) = A(0) = p
and v(1) = A(1) = ¢q be two curves. Let 5, A be two horizontal lifts of v and A, such that ¥ = X\ = wg. It

turns out that J(1) is not necessarily equal to X(l) Much more, if we consider a loop «, automatically we have
defined a transformation
To T N p) — 7 l(p) (2.159)

which is compatible with Ry, that is
Ta(Rg(u)) = Ry(7a(u)) (2.160)

as an obvious consequence of Equation (2.158). Let us notice the fundamental point that 7, depends not only
on the loop v, but also on the connection, as it is evident from Equation (2.157)).

Let p € M be such that 7(u) = p, and consider the set of loops at p, namely
Co(M)={a:10,1] - M| «a(0)=«a(l)=p} (2.161)

Then the set
O, (M) ={ga € G| Ta(u) =Ry (u), acC,(M)}CG (2.162)

is a subset of the structure group G, and is called the holonomy group at u. The family

o(M) =[] @, (2.163)
ueP

is the holonomy group. The group properties can be derived by noticing that two curves v, \ : [0,1] — M
can be "composed" into v x A : [0,1] — M if v(1) = A(0). In fact we can write

_f (2t if 0<t< 3
VA = {)\(Qt —1) if f<t<1 (2.164)
and obviously y71(t) = v(1 — t). Then we also get
PEF)=T7'A) T2 =TFHIMN) (2.165)

In particular let us notice that two loops «, 5 at the same base point p € M can always be composed. Moreover,
let o, B, = o x B be three loops at p € M. Then we have 7, = 753 0 74, and thus

Ty(u) =T 0 To(u) = 750 Ry, (u) = Ry, o 75(u) = Ry, o Ry, (u) = Rg,g, (1) (2.166)

namely g, = gg © go. Moreover the constant loop ¢ : [0,1] — p defines the identity transformation 7. : u — w.

. 71 . . . _ 71 _ 71
The inverse loop 77" induces the inverse transformation 7,-1 = 7.7°, and then g,-+ = g .
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Field strenghts

After having introduced a gauge connection we have to study what a field strenght is. With this purpose in
mind let define the horizontal projection h : TP — HP over the horizontal distribution, which is a family of
maps

X if XeH,P
hu(X) = { 0 if XeV,P (2.167)
The obvious relation
hoRgi. =Rgi0h (2.168)
holds. Moreover we can define h* : T*P — H*P such that if ¢ € A"T*P
Ro(Xq,..., X)) = o(h(X1),..., (X)) VXy,...,X,€TP (2.169)

Let us notice that h* is the dual map of h, but it is not the pushforward of any smooth map A : P — P and in
particular it does not commute with the exterior differential d, as a pullback map does. A form ¢ € AT* such
that h*¢ = ¢ is an horizontal form. Finally

Definition 2.2.9. Let 7 : P — M be a principal bundle with structure group G, let HP C TP be an Ehresmann
connection, and let w € g ® A'T*P be a connection one-form. Then we define the curvature 2-form as

Q=h*dw € g A°T*P (2.170)
By Definition and by Lemma we get

QX,Y) = h*dw(X,Y) = dw(hX,hY) =

= inxw(hY) — inyw(hX) — w([hX, hY]) = —w([hX,hY]) VX,Y € TP (2.171)
since w(hX) = w(hY) =0, for hX,hY € HP. It’s evident that Q(X,-) =0 VX € VP, because in that case
QX,) =hdw(X, ) = dw(hX, h:) = dw(0, h-) = 0. Instead it’s really interesting to notice that Q(X,Y) =0 if

and only if [hX,hY] € HP. In other words the curvature two-form € measures the failure of the integrability
of the horizontal distribution HP C TP.

The curvature 2-form satisfies

e The Cartan structure Equation

1
Q=dw+ i[w,w] (2.172)
where [w,w] = [T, T)] ® w® A w®
e The Bianchi identity
h*dQ =0 (2.173)
e The transformation rule
R;Q = Ad,1Q Vge G (2.174)

It’s really useful to pullback also the curvature €2 on the base space manifold M. Let {U,}aer be a covering
of M and let us consider the canonical trivialization o, : U, — P of the principal bundle 7 : P — M with
structure group G. Then

F=0L(Q) €ga AT, (2.175)

is the local curvature, and can be expressed as
F=dA+ANA (2.176)
Moreover we have an analogous of the Cartan structure Equation
F(X,Y)=dA(X,Y) + [A(X),A(Y)] VXY € X(M) (2.177)
Finally, using Equation it’s straightforward to prove that
F5 = 0oj ©Fa © gap (2.178)

where F, is defined on U,, Fp is defined on U (Uyp # {@}) and gap are the transition functions from U, to Ug.
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2.3 de-Rham cohomology

The cohomology group is a natural and intrinsic object which can be constructed over a smooth manifold M.
It arises from the study of the exterior algebra, and it encodes the topological non-triviality of M. Many topo-
logical invariants, such as Chern classes, are elements of the de-Rham cohomology group.

The differential operator d induces the de-Rham complex

0 & AT & AT 4 4 AT 4 AT 4 (2.179)

And finally we can define the p-th de Rham cohomology group over M
(M) = 2T o (2.180)

where H)(M) = Z°(T*) and Z°(T*) is the space of constant functions over connected components of M. The
space

H*(M) = é HP(M) (2.181)
p=0

is a ring with the wedge product A : H* — H* induced by A : H:(M) x HY(M) — HY (M), Vp,q such that
p+g<n

Next let us state the fundamental

Lemma 2.3.1. Poincaré Lemma
Let M be a smooth manifold and let U be a contractible open set U C M. Then Vw € APT|}; such that dw =0
there exists a T € AP7'T|}; such that w = dr.

In other words each closed form is locally exact, but the converse is in general not true.

Example 2.3.1. The circle bundle
The circle bundle is a principal bundle with structure group U(1) ~ S'. Given a covering {Uap}a,ger of the
base space M the circle bundle can be defined as a set of transition functions

9ap :Uag  — S5 (2.182)
such that goo =1, gap = g[;; and the cocycle condition is satisfied in each triple overlap Uagp,

9aB © 9By © Gya = 1 (2.183)

One of the most interesting point is that a circle bundle can be associated to each closed two-form % €

H?(M,7Z) on the base space. In fact by using the Poincaré Lemma we can find a descent chain of relations

T =dA, Aa €EAN'T (2.184)
Ao — .Ag = dAQB Aag S COO(UQL—}) (2.185)
Ao+ Ay + Ao = dagy dopy € 27 (2.186)

where the last relation is guaranteed from the fact that 5~ € H?(M,Z) [50]. Equation (2.186) permits us to
exponentiate the transition functions 4
Jap = €'he? (2.187)

so that Equation (2.185) takes the nice form
iAo —i1Ag = 9,;5 o dgags (2.188)

in which we recognize the transformation rule of the gauge connection for a U(1)-bundle. This means that the
set of local connections {A, }ocr defines a connection-one-form on the bundle, and that F is the field strenght
of the circle bundle. The choices of inequivalent connections with the same curvature are parametrized by the

coset, L
H (M, IR{)/H1<M,7 2) (2.189)

An interesting generalization of this Example is given in Section [5.2.1
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The Poincaré lemma, leads us to investigate the presence of a duality, relating APT™* and A" ~PT™*.

Let w € APT*, let n € A" PT*, and let M be a smooth manifold such that dim(M) = n. If we note that
w A7 is a volume form, then we can define a bilinear inner product

() : APT* x A" PT* 5 R
(wym) = [, wAn (2.190)

Since (,) is non-degenerate, it defines the Poincaré duality between APT* = A" PT*. It can be naturally
extended to cohomology groups: HY (M) ~ H} P (M).

We can write explicitly the isomorphism given by the Poincaré duality APT* and A" PT*. Surprisingly it
involves the Riemannian metric, in fact

Definition 2.3.1. Let % be the map

*: APT* — APPT™ (2.191)
such that on basis elements
i j 1 Pk gk Fpia .
*(dx? N NdadP) = (n_p)'\/ﬁg PP gk ke ATTPTE N NdT (2.192)
The following relation
xxw = (=1)P(nPy (2.193)

holds, where w € APT*. * is the Hodge star.

An inner product over the space of real forms is automatically defined
(,): APT* x APT* - R
wx &= [l wA*E (2.194)

It’s straightforward to see that (w,{) = (§,w) and that if w, £ € APT*

1 o
(w, &) = lj /wjl__,jpfjl'“h\/gdxl A Adz" (2.195)
(,) gives us the chance to define the adjoint of the d operator:
d' . APT* — APTIT™ (2.196)

such that Vw € APT* V¢ € AP~IT™
(w,d€) = (d'w, ) (2.197)

For boundaryless M (OM = {@}) we obtain that df = (—1)P(*=P+1) x dx.
A generalization of the concept of the laplacian in real analysis is given simply as follows
Definition 2.3.2. Let A be the map
A APTY — APT™
A =dd' +dtd (2.198)
We will call this operator laplacian.
And naturally

Definition 2.3.3. Let w € APT™. If Aw = 0, then w is said to be a harmonic form, and we will denote it by
we YP(M).

It’s easy to see that Aw = 0 is equivalent to the condition that w be closed dw = 0 and coclosed dfw at the
same time [29].

A generic r-form can always be decomposed in a closed form, plus a coclosed form, plus an harmonic one.
In fact
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Theorem 3. Hodge’s theorem [29, [19]
Let (M, g) be a compact, boundaryless Riemannian manifold. Then APT* admits a unique orthogonal decomn-
position

A'T* = dA™ ' T* @ dTA™ 1T @ Y7 (M) (2.199)

namely w € APT* is uniquely expressed as
w=da+dp+ry (2.200)
where o € AP7YT* ) B € APTIT* € YP(M).

The last Theorem allows us to define a couple of topological invariants. In fact if we take w € HP(M) and
B € APTIT* thanks to Theorem 3| we can write

0= (dw, ) = (dd'B, ) = (d'B,d"B) (2.201)

and then d'3 = 0, or in other words w = da + 7, where a € AP"!T* and v € YP(M). Repeating the same
reasoning after having chosen w to be coclosed df = 0, we obtain w = df + v, where 3 € APTIT* and
v € TP(M). In addition, if w is harmonic, then we obtain that w = ~. This implies that it is the harmonic
component of a form which determines its cohomology class and as a consequence there exists an isomorphism

TP(M) ~ HP (M) (2.202)
Then we can define the Betti numbers
b, = dim(H?(M)) (2.203)

which represents the number of linearly independent harmonic p-forms. Thanks to Poincaré duality we can

write
by =bn_p (2.204)

The Betti numbers are topological invariants.

Another topological invariant is the Euler characteristic defined as

n n

X(M) = (=1)Pb, = Y (~1)Pdim(Ker(A,)) (2.205)

p=0 p=0

If we take a manifold such as M = M; x M, then the cohomology can be decomposed as suggested by the
Kiinnet formula
H"(M) = @ [HP (M) ® H(Ms)] (2.206)
p+q=k

Hence the Betti numbers are related by
V(M) = > vP(My)b(My) (2.207)
ptg=k

and the Euler characteristic becomes
X(M) = x(M1)x(Ma) (2.208)
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Spinors

In this Chapter we will try to briefly build the theory of spinors on curved manifolds, expressing it in the most
useful way for the development of the Generalized Complex Geometry (GCG) in Chapter |5 and to understand
its role in the supersymmetric string theories. Furthermore, we will study some characteristic classes which
feature the topology of a manifold M in terms of e connections.

The spinors have different transformation rules with respect to tensor fields. In fact we know that under a
coordinate change the components of a real vector field X on the real smooth manifold M obey the following
rule
ox't _ . o
= xI =yt X9
aij =U"X (3.1)
where the matrix U’; = %’;/ji € GL(n,R) as we have seen in Example Since SO(n,R) C GL(n,R), it is
obvious that properly choosing the U matrices, we can obtain the representations of SO(n,R) as restrictions
of the representations of GL(n,R). Next, using the G-structures technique developed in Section we can
identify SO(n,R) with the structure group of a G-structure and eventually build up a theory with bosonic fields
coupled to g;;-

X X' =

A realistic field theory must include anticommuting spinor fields describing objects with half-integer spin and
also the covariance must be preserved. However it is well known that SO(n,R) doesn’t allow for the existence
of objects with half-integer spin. In order to obtain such kind of objects we need to use another technique which
we mentioned in Section - the lift of the structure group - whose peculiarity is to allow for an enlargement
of the structure group. We will explore this in detail.

In addition, it is particularly important to study the spinors since realistic String theories are the super-
symmetric ones. Supersymmetry is a of global symmetry which mixes bosonic and fermionic fields of a theory.
Moreover, the compactification of six of the dimensions which arise in Superstring theory, together with the
requirement that four-dimensional results are realistic, brings us to some important constraints on the spinor
which can be constructed on the compactification space. We will explore this in Section 77.

3.1 Clifford algebras

The idea that led to the study of Clifford algebras is the attempt to extend to vectors the multiplication
- : R x R — R operation which is well defined for the real numbers. Its main properties are distributivity,
associativity and commutativity. Unfortunately there is no chance of succesfully mantain the request of com-
mutativity in dimension n > 3 so that we have to resort to a generalization of it.

3.1.1 Basic notions

Let V be a vector space over the field K (we will consider only K = R or K = C) such that dim(V) = n. Let
7:V xV — K be an inner product with signature o = (r,s) (r + s = n) defining a quadratic form Q@ : V= K
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by Q(v) =n(v,v) Vv e V. It is well known that for a quadratic form @ the polarization relation
Qv+ w) = Qv) = Qw) =2n(v,w) Vo,weV (3.2)
holds. Let us begin with the

Definition 3.1.1. Let J(Q) be the bilateral ideal generated in 7' (V') by the elements of the form v®@v—Q(v)1k,
where v € V < T*(V). In other words

JQ) ={z@(wev-QWlk)®yl zyeT*(V),veV} (3.3)
The quotient
cvy="T (V)/J(Q) (3.4)
is the Clifford algebra on V generated by Q.

Let us notice that when we write C(V'), we leave understood the data Q. On the other hand once we have
V and @ the Clifford algebra C(V) is entirely defined. We can define a projection wg : T*(V) — C(V) such
that Vo € T*(V) it acts as z + J(Q) — x. The map

mooi: THV) <5 T*(V) — C(V) (3.5)

is an injection only if k € {0, 1} since for k& > 2 there are surely elements in 7%(V') which are identified through
elements in J(Q). In this sense we can see V' (k = 1) as sitting inside C'(V'). For this reason we can write the
images of a scalar A or of a vector v € V in the Clifford algebra C'(V') simply as A and v respectively. If n = 1y,
then the Clifford algebra simply becomes the exterior algebra A(V'), as we adverted in Section m From now
on, in this Section we will write 1x = 1.

The tensor product ® defined on T*(V) induces the Clifford product on the Clifford algebra C(V)

QO

T*(V)> vQw r— ovw €C(V) (3.6)

Then for example for example that the image of the element v ® v — Q(v)1 € J(Q) is [v? — Q(v)]. Since by
definition [v? — Q(v)] = [0], then in the Clifford algebra we can write

v? = Q(v) Vo e COV) (3.7)

The interesting point is that in general, the Clifford product of two vectors doesn’t return a degree-two object,
as it seems to be intuitive since we are tensoring two vectors, but it operates a splitting (as in Equation due to
the quotient which defines the Clifford algebra.

The Clifford algebra C(V) is an associative unital K algebra with unity 1. The relation
vw + wu = 2n(v, w) Yo,weV cC(V) (3.8)

holds. Let us notice that it is required only the knowledge of @, since 7 is uniquely defined from Equation (3.2).
Again we see that the Clifford algebra C (V') is uniquely determined by the data V and Q.

It’s easy to show that if & = (0,1) then the Clifford algebra obtained is isomorphic to C, while for example
if 0 = (0,2), then the Clifford algebra is isomorphic to the algebra of quaternions [26, [I8]. The key point is to
fix the how the map mg o4 works. With this purpose let us choose a basis of the vector space V: {e;}icr,. We
write 7(e;,e;) = 1;; = 1;5. Next let us define the image of the basis elements under the inclusion map mg o ¢
defined in Equation simply by

mgoi:V — c(V)
€ — € (3.9)

Since g oi|y is an injection, then the elements e; of the Clifford algebra are linearly independent in the image.
Moreover the set of elements e; satisfy the relation

€i€; +eje; = 27]2‘j (310)
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This is enough to write down the product of any two elements in {e;};c,, in fact for example

€i€; = €5 + N (3.11)

where e;; = %(eiEj —eje;). This is a new object, since it can’t be reduced by using the Clifford algebra’s defining
relations. If we calculate the product e;e;, we need to define another new object e;;. In general we can define

1
Cirnin = 71 Z $gN(0)€ip )y - - - Cipy (3.12)
Pep

where P is the permutation group of the p indices {i1,...,4,}. We see that C(V') is generated by V and the
identity 1, and is the linear span of {1,e;,i;,...,€i,.. 4, }ner, Where n = dim(V). In particular we see that

dim(C(V)) = f: (Z) = on (3.13)

k=0

Then for example, in the trivial case o = (0,0), we obtain that C' (V') is an associative algebra isomorphic to R.

~

If o = (0,1) there is one generator e such that e? = —1. This fact induces an isomorphism C(V) = C

c(V) — C

xl 4 ye — T+ 1y (3.14)
As another example, we see that if o = (1,0), there is a unique generator e such that e? = 1. It’s interesting
to define a pair of projectors p4 = %(1 +e), such that p, +p_ =1, pyp_ = 0 and p3 = p+. The induced

isomorphism is C(V) =2 R & R, that is

c(V) — ReR

zpy +yp— =~ (2y) (3.15)
In particular we can easily recover the definition of the Clifford product in Equation (?7?). In fact, if o = (2,0)
and V = R? there are 4 generators {1,e1,ea, €12} where {e;, e} is an orthonormal basis of R? and e15 = ejes.

They are such that e? = €3 = 1 and €2, = —1. Moreover the relation ejes + eze; = 0 holds. Then take two
generic vectors vy, vy € R?, which can obviously be written as

vl = T1€1 + Xaez Vg = Y161 + Y2€2 (3.16)
Then the Clifford product is
v1v2 = (T1€1 + T2e2) (Y161 + Y2e2) = T1Y1€] + Tayaes + T1Yae12 + Toyre21 =
= (2191 + T2y2)1 + (T1Y2 — T2y1)e12 (3.17)

where we used that e;o = —es;. Then we have recovered the Equation (?7?), since vy - vo = x1y1 + z2y2 and
v1 A vy = (Z1y2 — T2y1)e12 is the bivector which represents the oriented area segment build up with v; and vs.

As the last two examples let us consider V = R? and the signatures o = (0,2) and o(1,1). In the first case
there are 4 generators {1,e1,ea, €12} such that €2 = e2 = —1 and €2, = —1. Again the relation ejes + eze; = 0

holds and it can be easily shown that if o = (0,2) the map

G:c(Vv) — H

a+ bey + cea + deqa — a+bi+cj+dk (3.18)
is an algebra isomorphism, where H is the algebra of the quaternions and as usual i2 = j2 = k2 = —1. In the
second case there are always 4 generators {1, ey, ez, e12} such that e? =1, e2 = —1 and e?, = 1. It can be easily

shown that if o = (1, 1) the map
H:C(V) — M(2,R)

b d
a+ b€1 + ceos + d€12 — <_ac—:_ d Z—t b) (319)

is an algebra isomorphism, where M (2, R) is the vector space of the 2-dimensional square matrices. Moreover,
it’s also easy to prove that also if o = (2,0) then C(V) = M (2,R).
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Eventually we can write that if B = {e;}ics, is an orthonormal basis of V' with respect to n, then a basis
for the Clifford algebra is given by the set

Beo = {67;16@‘2 €y = 6i1..-ik-| i1 <ip<---<i4r and Vke I,(r)b} (320)

and in particular the relation in Equation (3.8) holds. Let us notice that the indices run over all ordered sets
of integers k < n, and we set eg = 1. Since dim(C(V')) = 2" = A(V'), we know that a vector space isomorphism
A(V) = C(V) can be established.

Before to see how this isomorphism works in practice, let us notice that the Clifford algebra C(V') inherits
from the tensor algebra a natural filtration (see Section ) By placing CP(V) = g 0 i(TP(V)) we get the
Clifford algebra filtration

OV)ycet(VvycC(V)yc---co(V) (3.21)

which has the obvious property
er(V)CU(V) C ePti(V)  Vp,geN (3.22)

This makes the Clifford a filtered algebra. Finally we can construct the isomorphism mentioned before, and
notice that it can defined in such a way to respect the filtration structure of the Clifford algebra C(V') [37]

Proposition 3.1.1. There exists a canonical vector space isomorphism I : A(V) 5 C(V) which preserves the
filtrations, defined by the maps

AR(V) — c(v)

1
VLA AUk — ]; Z Up(1) - - - UP(p) (323)
PeP,
where P represents an element of the permutation group P of p-elements {1,...,p}.

We understand that the quadratic form @ plays a role in determining the relationship between C(V') and
A(V) only at the moment in which the product defined on the algebra is involved. This is the reason why C(V)
and A(V) are not isomorphic as algebras (unless @) = 0) but they are isomorphic as vector spaces. Moreover,
since the map in Proposition [3.1.1]is canonical [37], we can think about each A?(V) as embedded in the Clifford
algebra AP(V) Cc C(V) VpeN.

An important point is now to define certain kinds of automorphism of the Clifford algebra, which allow us
to define the Spin group. For each A € O(V') we can define the linear map

iV — C(V)
v — Av (3.24)

is such that (j,(v))? = (\v)? = Q(\v) = Q(v). It can be shown [26] that each map like j) can be extended to
a K-algebra homomorphism

h:OW) = o)

v — v (3.25)
Moreover we get the important result that
Iane = Ia I, VA1, A2 € O(V) (3.26)
and that
Jiv = low) (3.27)

where 1¢(y) is the identity on C(V'). This means that the map

J:0(V) = Aut(C(V))
Aoy (3.28)

is an injective group homomorphism.
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An important case of Clifford algebra automorphism is for A = —1y.. Firstly we define the inversion
a:C(V) — c(V)
Vi ... Uy — Jo1y(v1) . g1y (V) (3.29)
Under the action of « the Clifford algebra C (V) decomposes into two eigenspaces
C(V)y=Cct(VyeCc— (V) (3.30)

where CT (V) is said to be generated by even elements of C(V'), namely by elements which remain unchanged
under an a-action. On the contrary C'~ (V) is said to be generated by odd elements, that is by elements in
C(V) which change their sign under an a-action. Naturally dim(C*(V)) = dim(C~(V)) = 2"~1. Moreover
let us notice that since J(Q) isn’t homogeneous, then C(V) is a Zy-graded algebra, which is also called a
superalgebra. This means that C(V) can be decomposed in the direct sum of subalgebras {C;};cr, such
that C;C; C C;; and C;C; € Cj;, where 4,5 € I>. In this case the decomposition which makes C(V) into a
superalgebra is exactly that in Equation (3.30)).

Next, there is a second involutive anti-automorphism of the Clifford algebra, induced by the map
T TRV) = (V)
V1@ @ Uk — VE Q- QU (3.31)

and such that 7(z ® y) = 7(y) @ 7(x) Vaz,y € T*(V). Then we can define the transposition as the map
induced by 7 on C(V)

L CO(V) — c(V)
vl ... Uk — V1. Vg = Uk ...01 (3.32)

which is obviously an involution and doesnt’n depend on the basis chosen. Finally we can define the composition
of the two involutions as the conjugation

=a:C(V) — c(V)
V1V . .. Vg — (v1v .. vp)* = (=1)*(vpvr_1 ... v1) (3.33)

3.1.2 Spin group and Spin algebra

We are able to define an inner product over the Clifford algebra C'(V') by using the isomorphism A(V) = C(V)
of Proposition In fact using the inner product defined in Equation (A.16)), we can define an inner product

~

on C(V) as the unique making the isomorphism A(V) = C(V) an isometry. More in detail we can define the
bilinear map
(,): C(V) x C(V) — R
axB = (@B)=(1,a8) (3.34)

such that (1,1) = 1. (,) induces a norm on the Clifford algebra in the usual way
la] = v/ (o, @) Vae C(V) (3.35)

Let us see how this scalar product works. Let {e;};cs, be an orthonormal basis for V. Let us denote by I
the sequence of indices (i1,...,4,). Let us take I # J. As we have seen if e;,e; € AP(V) we have (er,ey) =0,
while (er,er) = Q(e;,)...Q(e;,). For the corresponding vectors in the Clifford algebra er,e; € C(V) we can
write

(er,eg) = (eiy ... €iprejy.nej,) = (e, ...eqej ...e;,) =0 (3.36)

because e;, ...e; €, ...e;, is not proportional to the identity 1. Otherwise

P

(er,er) = (e, .- -€i€ip ... e5,) = Qeiy) ... Qe;, )(1,1) = Qes,) ... Qles,) (3.37)

Given a Clifford algebra C(V') we can define the multiplicative group of units as the subset

C*V)={pecC(V)| FoteCV) s t. plop=pp =1} (3.38)
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It’s evident that the group C* (V') contains all the vectors v € V HiiN C (V) such that Q(v) # 0. In fact the
inverse for these elements is trivially

_1 v TQOT x
=— YVoeV — C*(V 3.39
o0 v) (3:39)
This extends to all the other elements of the group of units, namely
-1_ P x
= PE peC*(V) (3.40)

The group of units is a Lie group such that dim(C*(V)) = 2", where as usual dim(V) = n. It’s interesting
to see that the associated Lie algebra is given by the same Clifford algebra c[* (V) = C(V), where the Lie
bracket is defined simply by

[v,w] =vw—wv  Yo,we C(V)=c*(V) (3.41)

Moreover, C* (V) acts naturally as automorphisms of the Clifford algebra, that is we can define a homomorphism
called the adjoint representation

Ad : C*(V) — Aut(C(V))
v — Ad, st Ady(z) = vav? VeeC(V) (3.42)

The associated Lie algebra representation is given by the homomorphism

ad : ™ (V) — Der(C(V))
Y — ad, st. ady(z)=[y,z] YxelC(V) (3.43)

where the space Der(C(V)) is the space of derivations of C'(V), i.e. the space of operators ¢ : C(V) — C(V)
which obey the Leibniz rule, namely

p(ry) = p(z)y +xply)  Va,ye CV) (3.44)
Let us recall the relation between Ad and ad. It is given by the exponential map

exp : (V) — cC*(V)

x — exp(x) = Z -’ (3.45)
— ]
7=0
and one can verify that
d
%Adeacp(ty) (:L’) —o = ady(x) (346)
As we can expect the orthogonal group of transformations
oWV)={XeGL(V)| \XQ=Q} (3.47)

has a nice relationship with the group C* (V). To probe this question, les us firstly investigate its Lie algebra,
which as it is well known is generated by the skew matrices, namely

so(V)={X e C(V)| n(Xv,w)+nv,Xw)=0 Vo,weV} (3.48)
The vector space of the skew matrices is isomorphic to A%(V) and such isomorphism can be fixed by the map

AV = so(V)
uAv — uAv (3.49)

where
uAv(z) =nlu,x)v —nv,z)u VeV (3.50)
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Proposition 3.1.2. Let v € V e C(V) such that Q(v) # 0. Then V is invariant under the action of Ad,,
namely Ad,(V)=V. In fact, Vw e V

Ady(w) = 2700 (3.51)

In fact

Equation (3.8) = owv ™' +wvv™! =2(v,w)v™t YweV =

=  Ady(w) = 277((;(’5)])1) —w YweV (3.52)

where we have used Equation (3.39) and the fact that Ad,(w) = vwv~1!.

It’s interesting to notice that the transformation Ad, preserves the quadratic form ¢ Vv € V such that

Q(v) # 0, in fact

Ady(Q(w)) = Adyy(n(w, w)) = n(Ad,(w), Ady(w)) = (3.53)
= n(w,w) + 2778(’;;))77(11,11}) + 2778](’;;))7](1),11}) — 4778}(’;;))77(11,111) =n(w,w) =Q(w) YweV

where we have used the bilinearity of . Then we get that Ad, € O(V) Vv €V such that Q(v) # 0.

Definition 3.1.2. The set Pin(V) generated by all vectors v € V e C(V) such that v € S(V) and by the
identity 1 forms a group which is called the Pin group. In other words

Pin(V)=A{v1...v, € C(V)| Q(v;) =n(vi,v;) ==+1 Vv, € VNC*(V)} (3.54)

The group structure is immediately given by noticing that the norm induced by 7 on the Clifford algebra
preserves the Clifford product, which means that

lonl? = lePlpl*  Ye,peC(V) (3.55)

It’s now interesting to notice that the r.h.s. of Equation (3.51) is nothing but a reflection with the wrong
sign. In fact let us define, Yo € VN C*(V)

pv: V — 1%
n(v, w)
Q)

pu(w) is the reflection of the vector w across the hyperplane v+ = {w € V| n(v,w) = 0}. In particular it maps
v in —v. Needless to say p, € O(V).

w — w —

(3.56)

In order to readjust the wrong sign in Equation (3.51), let us define the twisted adjoint representation
A:C*(V) — Aut(C(V))
2 = Ap (3.57)

such that
M) = (al@)ve™  Yve (V) (3.58)

Let us notice that if ¢ € CT(V) then A\, = Ad, and that obviously Ay, = Ay, 0 Ap,. In fact Ay, o, (w) =

(a(prp2))w(prp) ™ = alpr)a(e)w(p2) " p1) ™ = alpr)Ady, (w)a(er) ™" = Ady, o Ady, (w). In this way,
Ay (w) represents exactly the reflection across v+ Vo € V N C*(V), and furthermore Ad,(w) represents a
composition of reflections

Ap(W) = py, 0+ 0 py, Vo=uv1...v, € C(V) (3.59)
Since the reflections are orthogonal maps, the restriction of A to the subgroup Pin(V') defines a homomorphism

A: Pin(V) = O(V) (3.60)

which is surjective due to the following classical result



50 Spinors

Theorem 4. Cartan-Dieudonneé
Let O(v) be the group of orthogonal transformation of the vector space V, endowed with the non-degenerate
quadratic form Q. Then each g € O(V') can be written as the product of r reflections

g=pio--op, (3.61)
where r < n = dim(V).

Moreover it can be shown [37] that Ker(\) = {£1}, and so that we immediately have the following exact
sequence

1 — {£1} — Pin(V) = OV) — 1 (3.62)
Finally we can define the Spin group Spin(V) as
Spin(V) = Pin(V)NCT(V) (3.63)
or also
Spin(V) ={v1...v9, € C(V)| Q(vi) =n(v;,v;) =+1 Vo, e VNC*(V)} (3.64)

There is an amazing end for the map A defined in Equation (3.58]). In fact let us notice that since a reflection
py € O(v) is such that det(p,) = —1, then for an element ¢ € Pin(V)

det(Ap) =1 & e Spin(V) (3.65)

This means that
Ker(\) = Spin(V) (3.66)

so that we immediately have the following exact sequence
1 = {F1} = Spin(V) 2 SoV) — 1 (3.67)

which shows us that the map X : Spin(V) — SO(V) is a non-trivial covering of the group SO(V') (at least for
n > 2).

3.1.3 Clifford algebras classification

In order to study spinor representations, it’s very useful to give a classification of the Clifford algebras. We will
see that they are organized in a very nice vay, since a strong periodicity in the classification appears.

The idea is to classify the real Clifford algebras accordingly to the signature of the quadratic form from
which they derive. Let us denote the signature o = (r,s), where as usual r is the dimension of the maximal
positive definite subspace of V', while s is the dimension of the maximal negative definite subspace of V' and
dim(V) = n = r + s. In order to avoid confusion, where is needed we will denote the Clifford algebra C(V)
generated by the quadratic form with signature o = (r,s) by C(r, s).

Moreover let us notice that in Section we have already obtained some useful results, which we can
resume in the following table

r=20 r=1 r=2
s=0 R ReR | M(2,R)
s=1 C M(2,R)
§=2 H

Now the purpose is to complete this table for each r, s > 0. The first useful result is the following [37]

Proposition 3.1.3. For each r,s > 0 the following isomorphisms

C(0,n) ® C(2,0) = C(n+2,0) (3.68)
C(n,0) ® C(0,2) = C(0,n + 2) (3.69)
C(r,s)®@C(1,1)=C(r+1,s+1) (3.70)

hold.
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By using the third relation in Proposition [3.1.3| we can easily obtain each element in the table of the form
C(1+1i,1), C(i,i), C(i,1 + 7), where ¢ > 0. For example C(2,1) = C(1,0) ® C(1,1) 2 (R®R) ® M(2,R) =
M(2,R)&M(2,R). As another example we can notice that C'(1,2) = C(0,1)®C(1,1) X CoM(2,R) = M(2,C).

Moreover by using the rimanent relations in Proposition [3.1.3| we can easily obtain each element in the table
of the form C(n,0) or C(0,n). Let us give some examples

C(3,0) = C(0,1) ® C(2,0) =~ C ® M(2,R) = M(2,C) (3.71)
C(4,0) = C(0,2) ® C(2,0) 2 H® M(2,R) = M(2,H) (3.72)
C(0,3) =C(1,0)®C(0,2) 2 (ReR) o H=H®H (3.73)
C(0,4) = C(2,0) ® C(0,2) = M(2,R) & H = M (2, H) (3.74)

In this way, by using Proposition [3.1.3] and moving left and right, and then in diagonal on the table, we are
able to obtain each element C(r,s). One of the most interesting results is given in the following

Proposition 3.1.4. For each r, s > 0 the following isomorphisms
e C(n+38,0) =
e C(0,n+8)

C(n,0) ® M(16,R)
C(0,n) ® M(16,R)
o C(r+4,5s+4)=C(r,s) ® M(16,R)
hold. They are called Bott periodicities.

Thanks to Bott periodicities, we only need a table 8 x 8 to obtain C(r, s) for each r, s. We give the complete
table

T =0 r=1 T =2 r =3 T =4 r=5 T =6 T =7
5=0 R R &R R(2) T(2) H(2) H(2) ® H(2) H(4) C(®)
s=1 T R(2) R(2) @ R(2) R(4) T(1) H(4) H(4) ® H(4) H(3)

s =2 H T(2) R(4) R(4) & R(4) R(3) T(8) H(8) H(8) & H(3)
s =3 HoH H(2) C(4) R(8) R(8) @ R(8) R(16) C(16) H(16)
s=4 H(2) H(2) & H(2) F(4) T(3) R(16) R(16) ® R(16) R(32) T(32)
s=5 T(4) H(4) H(4) @ H(4) H(3) T(16) R(32) R(32) ® R(32) R(64)
s=6 R(3) T(8) F(8) H(8) ® H(3) TH(16) T(32) R(64) R(64) @ R(64)
s =7 | R(B) @ R(®B) R(16) C(16) H(16) H(16) ® H(16) H(32) M (64, C) R(128)

where we denoted K(n) = M (n,K). Then the following

Theorem 5. Clifford algebras classification theorem

The Clifford algebras C(r,s) is isomorphic to different real associative algebras as explained in the following

table
(r — s)mod(8) C(r,s)
0,6 M(27 R)
7 MY R) @ M(2 R)
1,5 Mm%, C)
2,4 MY H)
(n—=3) (n—=3)
3 M2z ,H)® M(2 H)

where n = r + s.

In particular we notice the the case (r,s) = (6,0) has Clifford algebra C(6,0) which is isomorphic to the

space of real 8 x 8 matrices
C(6,0) = M(8,R) (3.75)

and that the case (r,s) = (6,6) has instead the Clifford algebra C(6,6) isomorphic to the space of real 64 x 64

matrices

C(6,6)

Finally, in the study of spinor representation, it’s important to identify the even subalgebra CT(r,s) of
the Clifford algebra C(r,s). Fortunately, C*(r,s) can be determined from the Clifford algebra of dimension
r+s—1, in fact

= M(64,R) (3.76)

Proposition 3.1.5. The following isomorphism

C(r,s) =CT(r+1,5)=Ct(r,s+1) (3.77)

holds. Moreover C*(r,s) & C*(s,r).
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Then the following Proposition on the classification of the even subalgebras holds

Proposition 3.1.6. The even Clifford algebras C'(r,s) is isomorphic to some real associative algebras as
explained in the following table

(r — s)mod(8) CT(r,s)
1,7 MY R)
=2 (=)
0 MY R) o M2V, R)
2,6 MY, C)
3,5 M5 H)
(n—4) (n—4)
4 MeYF H) o M5 H)

In the particular cases which we will study in Chapter [ and [5] we find
C(6,0) = M(4,C) (3.78)
and
C(6,6) = M(4,R) ® M(4,R) (3.79)
3.1.4 Spinor representations

As usual, the usefulness of algebras and groups becomes clear through the study of their representations. In
particular we will be interested in the representations of the Spin group.

Let V be the usual vector space over R, and let () be the quadratic form with which we endow V. Then

Definition 3.1.3. Let K D k be a field containing the field k. Then a K-representation of the Clifford algebra
C(V) is a k-algebra homomorphism
p:C(V)— Homg(W,W) (3.80)

where Homg (W, W) is the algebra of linear transformations of the finite dimensional vector space W over K.
W is called C(V)-module over K. We will simplify notation by simply writing

plp)(w) =¢-w (3.81)
where ¢ € C(V) and w € W. The product ¢ - w is called Clifford multiplication.

We recall that a R-algebra homomorphism is a R-linear map p such that p(py) = p(@)op(vp) Ve, € C(V).
The following Definition is a natural extension from the Lie algebras and Lie groups representation theory

Definition 3.1.4. A K-representation p : C(V) — Homg (W, W) is said to be reducible if the vector space
W can be written as a non-trivial direct sum

W =W, ® Wy (382)

such that W; are invariant under the p-action, namely p(¢)(W) C W V¢ € C(V). In this case we can write
also

p=p1Dp2 (3-83)

where p; = p|w, for i € Jo. A K-representation is irreducible if it is not reducible.

In particular one finds that every K-representation p of a Clifford algebra C(V') can be decomposed into a
direct sum
pP=p1DDpn (3.84)

and, as usual, if p; and p, are two K-representations p; : C(V) — Homg(W,) where j € Jo, they are equivalent
if there exists a K-linear isomorphism F': W; — W5 such that

Fopi(p)o Ft=py(p)  VpeC(V) (3.85)
As it seems to be intuitive, we give

Definition 3.1.5. A spinor representation of Spin(V) is the restriction to Spin(V) of an irreducible
representation of CT (V) c C(V).
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It’s amazing to see how spinor representations can be deduced only from the Clifford algebra classification
and the following

Proposition 3.1.7. 1. Every irreducible R-representations of the real algebra M (n, R) is isomorphic to R™,
where the representation matrices act on R"™ via left multiplication.

2. Every irreducible H-representations of the real algebra M (n, H) is isomorphic to H", where the represen-
tation matrices act on H™ via left multiplication.

3. Every irreducible C-representation of the real algebra M (n, C) is isomorphic either to C™ with the natural
action given by the left matrix multiplication or to C" via the complex conjugate action given by left
matrix multiplication.

As a direct consequence of the last Proposition we can immediately give the next table, which follows from
table in Theorem [5] and indicates the number of inequivalent spinor representations as a function of 7 and s

r=0|r=1|r=2|r=3|r=4|r=5|r=6|r=7
s=20 1 2 1 2 1 2 1 2
s = 2 1 2 1 2 1 2 1
s —2 1 2 1 2 1 2 1 2
s =3 2 1 2 1 2 1 2 1
s — 1 2 1 2 1 2 1 2
s — 2 1 2 1 2 1 2 1
s=26 1 2 1 2 1 2 1 2
s=17 2 1 2 1 2 1 2 1

where the cells with two inequivalent representations are associated either to even Clifford algebras isomor-
phic to M(n,K)® M (n,K) with K equal to R or equal to H or to even Clifford algebras isomorphic to M (n, C).
In fact from Proposition [3.1.7| we know that they have automatically two inequivalent representations. We can
also understand better this argument in terms of the volume form. Let us give the following

Definition 3.1.6. Let us consider the vector space V endowed with a quadratic form with signature o = (r, s).
Let us consider an orthonormal basis {e;}ics, of V. The volume form w associated to C(r, s) is the Clifford
product of every element of the orthonormal basis

w=e1...6n (3.86)
Immediately we can give
Proposition 3.1.8. The volume form w associated to C(r, s), where n = r + s satisfies the following properties
1 w? = (—1)s+=5
2. If r + s is odd then w is central.

3. If r + s is even then Vv € V we have wv = —vw.

From 1. it follows that the sign of w? depends only on (r — s)mod(4):

) { 1 r—s=0,3(mod(4)) (3.87)

w” = -1 r—s= 1,2(m0d(4))

Finally using the Bott periodicities we get the spinor representations in terms of (r — s)mod(8). We denote
the spinor representations space by S

n—2
1. (r—s) =0mod(8): S+ 2R? * . w? =1 and Sy are its +1-eigenspaces.

n—1

2. (r—s)=1mod(8): S =R? *
3. (r—s) =2mod(8): S,S = 7

4. (r—s) =3mod(8): S=H? *

5. (r—s) =4mod(8): Sy = H2?
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6. (r—s)=5mod(8): S H2® .

n—2

7. (r—s) =6mod(8): S,S=C? * .

8. (r—s)="7mod(8): S R2Z .

Hence we can study in particular the cases (r,s) = (6,0) and (r, s) = (6,6). Spin(6,0) = Spin(6) has spinor
representations
S =c* S=c* (3.88)

which means that a (6, 0)-spinor 7 is simply a vector of C*. The spinor representation allows to see that
Spin(6) = SU(4) (3.89)

In fact the spinor representation p : Spin(6) — GL(n,C) since as we have seen Sy = C*. p is an injective
homomorphism, so that the compactness of Spin(6) has to be preserved. This means that p(Spin(6)) C U(4) C
GL(4,C), since U(4) is the maximal compact subgroup of GL(4,C). The restriction to SU(4) is due to the
simplicity of Spin(6), while the isomorphicity follows by a simple dimensional analysis.

Otherwise, in the case with signature (r,s) = (6,6) we find
S, =R*? S_ =R* (3.90)
Spinors in this real representation are called Majorana-Weyl spinors.

Finally, let us introduce a concept regarding spinors which will be mostly studied in the case of Generalized
Complex Geometry in Chapter

Definition 3.1.7. Let S be a spinor representation space. A spinor 7 € S is a pure spinor if it is annihilated
by half the gamma matrices.

Fortunately, it can be shown that in dimension n < 6, every spinor is a pure spinor. In the case (r, s) = (6, 6)
the situation becomes much more involved, and we will see that the pure spinors play a fundamental role in the
description of the geometric structures.

3.2 Spinors

As we have seen to be usual in differential geometry, once we have studied the linear formalism of the Clifford
algebras, the next step is to transport it over the smooth manifolds. In fact, exactly as natural operations over
linear spaces - such as sum, tensor product or exterior power - can be canonically carried over vector bundles,
in the same way we expect that natural operations over linear spaces endowed with a quadratic form can be
pushed up on vector bundles. However in the case of the Clifford algebras and of the Spin groups this step is
far from trivial, due to several topological obstructions which can arise.

With this purpose in mind let us the standard representation on R™ of the special orthogonal group over a
vector space V' such that dim(V) = n, endowed with a quadratic from Q : V xV = R

pn : SO(V) = Aut(R™) (3.91)

As we have seen in Section pr induces a representation on the Clifford algebra C'(V'), which we denote
by
cly, : SO(V) — Aut(C(R"™)) (3.92)

Then we can give the following

Definition 3.2.1. Let cl,, be the Clifford algebra representation induced by the standard representation of
the special orthogonal group SO(V') on the vector space R"™, where dim(V) = n. Let SO(M) be the special
orthonormal frame bundle of the vector bundle 7 : E — M. Then the associated bundle

CI(E) = SO(E) x, C(R") (3.93)

is the Clifford bundle.
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Since C'(R™) is a vector space, then CI(F) is a vector bundle, as we have seen in Section Moreover
it seems quite intuitive that CI(M) is nothing but a bundle of Clifford algebras over the base space M. The
fiberwise Clifford multiplication in CI(M) gives to the space of section I'(CI(M)) an algebra structure.

It’s also quite obvious [37] that each of the intrinsic notion about Clifford algebras can be transported over
the Cliffor bundle CI(M). For example there exists a decomposition

CU(M) = CUM)™ @ CU(M)~ (3.94)

induced by the bundle automorphism
a:Cl(M)— Cl(M) (3.95)

which extends the bundle morphism & : T" — T such that v — —wv. This is completely analogous to what al-
ready discuss in the linear framework in Section In addition, there exists a vector bundle isometry which
provides for a vector bundle isomorphism AT* 2 CI(M). This bundle isometry, as it is predictable, preserves
both the gradation structure and the filtration structure of the Clifford bundle CI(M).

So far the procedure seems to be quite straightforward. Unfortunately several complications arise if one asks
for a vector bundle whose fiber is an irreducible module over 7~!(p), as we will see in the next Section.

3.2.1 Spin structures

The purpose of the present Section is to fix what are the necessary conditions to build spinors over a vector
bundle 7 : E — M, where M is a smooth manifold. Let us endow F with a metric g whose signature is o. In
this Section we will denote the identity on the fiber by 1.

We denote the transition functions of the special orthonormal frame bundle SO(E) by gag : Uag — SO(V)
(see Example [2.1.6). They have to obey the cocycle condition

9ap(P) ©gsy(pP) © gra(p) =1 Vp € Uapy (3.96)

and in addition the trivial requests

(905(0) " = 98a(P)  Gaa(p) =1 Vp€Uas (3.97)

Next recall that the homomorphism we defined in Proposition Az Spin(V) — SO(V) is a two-fold
covering of the group SO(V') as we have seen in Equation . In particular it is its universal covering and we
can lift the orthonormal frame bundle SO(E) to the principal bundle Spin(E), which has Spin(V') as structure
group. The transition functions can be lifted by fixing the prescription

AGas(P)) = gap(p)  Vp € Uqsp (3.98)

Since Ker(A) = {£1}, Equation (3.98) brings to a double possible choice of the lifted transition functions, in
fact

AN£9as(P)) = gap(p)  Vp € Uagp (3.99)
Needless to say they must satisfy

(Gas ()" =Gpa(d)  Gaalp) =1  VpEUap (3.100)
Such a lift always exists locally. Moreover, since A is an homomorphism, it follows that
A(gap(P) © Gp(P) © Gra(p)) = 9ap(p) © 9+ (P) © g1a(p) =1 Vp € Uapy (3.101)

and then we have that g.s(p) © gs,(p) © gya(p) € Ker(A) = {£1}. However if the transition functions g,s have
to define a bundle, they must obey also the cocycle conditions

9as(P) ©Gpy(P) © Gra(p) =1 Vp € Uap, (3.102)

The bundle defined with the lift of the cocycle is the Spin bundle Spin(E), and can be represented as in

Figure 3.1}

Moreover
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Spin(E) L SO(E)

~

M

Figure 3.1: A Spin bundle.

Definition 3.2.2. Let 7 : E — M be a vector bundle, and let Spin(E) be the spin bundle constructed by
lifting the cocycle of the bundle SO(F), with respect to the map defined in Equation (3.58)). A Spin structure
on E is given by a principal morphism which we also call A : Spin(E) — SO(FE) with respect to .

In dimension 2, the Spin group Spin(V') has to be replaced by SO(2) 2 U(1). Finally

Definition 3.2.3. A Spin manifold is an oriented smooth manifold M endowed with a Spin structure on its
tangent bundle 7.

If a lift exists, then it is not unique: a Spin manifold can admit many Spin structures.

3.2.2 Obstructions to Spin structures

A lift may not exist due to topological obstructions. This fact is encoded in the Stiefel- Whitney classes, which
arise in the study of Cech cohomology.

Definition 3.2.4. Let M be a smooth manifold and let {U, }qc1,. be open sets in M such that UpN- - -NU, # {@}.
Amap f:UpnN---NU, — Zy is a Cechr-cochain if V P € P, where P denotes the permutation group of the
elements {0,...,r}

flio, ... yir) = flip@y, - ip)) (3.103)
We will denote the multiplicative group of Cech r-cochains by C” (M, Zs).
We can define a coboundary operator & : C"(M, Zy) — C™ (M, Zs3) such that

r+1
0oy vir1) = ] flios- - ias- o irga) (3.104)
a=0
where as usual the hat denotes the absence of the element. For example
(0.f0) (0, i1) = fo(ir) folio)  fo € CO(M,Zy) (3.105)
(6f1)(i0,71,12) = f1(i1,42) f1(i0i2) f1(%0,71) f1€ CH(M,Zy) (3.106)

§ is trivially nilpotent, namely §%2f = 1. In fact

r+2 k=r+2
O )ios .- vivs2) = [T T flos--ovinsorijeennyinga) =1 (3.107)
Jj=0 k=0
k#j
since for each j, k such that f(io,. .. ,%,;, . ,%3, ...,ir42) appears in the product, then also

f (o, %3, . 7%7@7 ...,ir+2) appears in the product. By using the symmetry of Equation (3.103) the latter has the
same sign as the former, and then the final result is always +1.

The next step is to define

Z"(M,Zy) = {f € C"(M,Zy)| &f =1} (3.108)
B"(M,Zy) = {f € C"(M,Zy)| 3g€C™'(M,Zy); f[=dg} (3.109)

Z7(M,Zy) is the cocycle group, while B"(M,Zs) is the coboundary group. As usual define the Cech r-
cohomology group as

H"™(M,Z,) = 2" (M, ZQ)/BT(M, Z,) (3.110)
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The Stiefel classes are equivalence classes of the Cech cohomology group H” (M, Zs). We will see that the first
two of these classes are related to obstructions occurring in the orientability of a smooth manifold and in the
presence of Spin structures.

Now consider an orthonormal frame bundle O(E) over the smooth manifold M (dim(M) = n) endowed
with a metric whose signature is 0. Let {Uy}aer be a simple covering of M, namely a covering such that
VUL N---NU, # {2} (Ui,...,U, € {Us}taer) U1 N---N U, is contractible. Let us denote by {e%(p)}acr, @
orthonormal frame in U,. The transition functions are given as usual by functions gog : Uag — O(o, R) such

that eg (p) = ¢f (p)(9as(p))",-
Then we can define the Cech 1-cochain f as

f(Oé, 6) = det(gaﬁ) ==+l (3.111)

Since f(a,8) = f(B, ), then f € CY(M,Zy). Moreover as a consequence of the cocycle condition we find

(6f)(a, B, ’7) = f(ﬂa V)f(av V)f(av B) = det(gﬁ'y) det(ga'y) det(gaﬁ) = det(gaﬁ ©4gp~ © g'yoz) =1 (3'112)

and then f € Z'(M,Zy) defines an equivalence class [f] = wi(FE) € H'(M,Zs), called the first Stiefel-
Whitney class of E. It doesn’t depend on the choice of the local orthonormal frame {e%(p)}aer, in Uy. In
fact let {€2(p)} be another local orthonormal frame in U, such that ¢¥(p) = eg(p)(h®)®, where h® € O(o,R).
Then there exists a set of new transition functions {g.s(p)} such that é”(p) = (Ea/g(p))abég“ (p). By substituting
the expression which gives ¢%(p) as a function of e2(p) we get that Gos = (%) gas(h?)~1. Now we can define
the O-cochain fy simply by fo(a) = det(h,) and then

F(a, B) = det(h®) gas(h*)~T) = det(h*) det(h) det(gag) = (8Jo)(cv, B) f (e B) (3.113)

where we used the fact that h*, h? € O(n,R). Since fchanges by an exact term § fy under a change of the local
orthonormal frame, then it defines the same cohomology class of f, namely [f] € H*(M, Z) [19].

Now we give the important result concerning the first Stiefel-Whitney class, which shows us that it is an
obstruction for the orientability of the vector bundle E.

Proposition 3.2.1. Let 7 : E — M be a vector bundle. Then FE is orientable if and only if the first Stiefel-
Whitney class is trivial, i.e. wy(E) = 1.

In fact, if the manifold M is orientable the structure group can be reduced to SO(n,R). Then Vo, we
have that f(a, 8) = det(gap) = 1 and we can conclude that wy (M) = 1. Conversely, if the first Stiefel-Whitney
class is trivial wy (M) = f(«, 8) = 1, then f is a coboundary, namely f = § fy, where fy has been defined above.
Since fo(a) = %1, we can always choose h, € O(n,R) such that det(h,) = fo(«) for each a. Then if we define
a new local orthonormal frame in each U, such that é%(p) = eg'(p)(h*),, the new transition functions g,z are

such that f(a, 8) = det(gop) = +1 for each «, 8 and then the manifold is orientable.

Moreover it can be shown [37] that if E is orientable, then the distinct orientations on F are in one-to-one cor-
rispondence with elements of H(M, Z,). This is a general property of Cech cohomology, as we will check below.

Now let us study when an orientable vector bundle E admits Spin structures. It is well known that the
orientability allows us to reduce the structure group to SO(V) and then we can consider the special orthonormal
frame bundle SO(E). Next define the Cech 2-cochain f : Uypy — Zga as

gaﬁ(p) © gﬂ’y(p) © §7a (p) = f(aa B, 7)1 (3'114)

which is obviously symmetric and 1 represents the identity over the fiber of SO(E). It is also closed, in fact

(0f) (e, B,7,0) = f(B,7,0) f(e,7,0) f(ex, B,7) =
= (95+(P) © G5 (P) © G55 (P)) (Gar (P) © G5(P) © F50(P)) (G (P) © G5+ (P) © Gra(p)) = 1 (3.115)

Then it defines an equivalence class [f] = wa(E) € H%(M,Zy), which is called the second Stiefel-Whitney
class of E. As before, it can be shown that wq(FE) is independent from the local orthonormal frame chosen.
The second Stiefel-Whitney class represents an obstruction for a manifold to be a Spin manifold, as stated in
the following [19]
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Proposition 3.2.2. Let 7 : E — M be an orientable vector bundle. £ admits Spin structures if and only if
the second Stiefel-Whitney class is trivial, i.e. wo(E) = 1.

In fact, let us suppose that £ admits Spin structures. Then there are transitions functions g,g for each a, 8
such that

%5 o Eﬁ'y o g'ya =1 (3.116)

Then the second Stiefel-Whitney class is trivial wa(E) = f(o, 8,7) = Jap © g8y © Gya = 1. Conversely, let us
suppose that wo(FE) is trivial. Then it is a coboundary, namely

fla,B,7) = (6f1)(e, B,7) = file, B) f1(B,7) fr(y, @) (3.117)

where fi € C*(M,Zy) and fi(a,8) = sign(gas). Now let us redefine the transition functions as g, =
fi(a, B)gap. Then the second Stiefel-Whitney class takes the form

wy(E) = f(a, B,7) = ((6f1) (e, 8,7))* = +1 (3.118)

and eventually we can conclude that the new transition functions define a Spin bundle.

It’s important to notice that the existence of Spin structures on a vector bundle 7 : E — M doesn’t depend
on the presence of a metric on it, but only on its topological properties [37]. In particular, it strongly depends
on the Holonomy of the vector bundle 7 : £ — M.

We conclude this Section by giving the following

Definition 3.2.5. Let 7 : E — M be a vector bundle such that wy(F) = 0. A real spinor bundle on E is
the associated bundle
S(M) = Spin(E) x, W (3.119)

where Spin(E) is the Spin bundle over E, W is a left module for C(R™) and u : Spin(V) — SO(W) is the
representation given by left multiplication by elements of Spin(V) c C* (V).

Similarly a complex spinor bundle on E is the associated bundle
Sc(E) = Spin(E) x, (W x C) (3.120)

where W x C is a complex left module for C(R™) x C.

3.2.3 Vielbeins

The formalism of spinors developed so far will be used diffusely in the following of the work. However, in order
to perform calculus with spinors it’s useful to study also the vielbein formalism. Actually, it is not something new.

Let us consider the frame bundle LM on a smooth manifold M. We recall that a frame on a smooth manifold
is just a basis of the tangent bundle

éa(p) ={é1,...,6n} (3.121)
and the coframe bundle is just a basis of the coframe bundle
e*(p) = {e*,...,e"} (3.122)
such that
e“(éb) = 5ab (3123)

as we have seen in Example

Now let us just reduce the structure group of the tangent bundle following the pattern
GL(n,R) < SO(n,R) (3.124)

so that a Riemannian structure is defined on M. Then a vielbein is just a frame like in Equation (2.93) whose
vectors are orthonormal. As we will see in Section [5.3.2] if we consider a generic manifold with structure group
G for the tangent bundle a vielbein can be obtained by reduction of G to its compact maximal.
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The Riemannian metric can be easily recovered. We can write

, )
e*(p) = e%ida’  ealp) =€y 5 (3.125)

and then
g=c"e  gij=c"e"iba (3.126)
g l=eeT g =¢lels (3.127)

The introduction of the vielbeins allows us to better handle spinors. In fact we can immediately define the
spin connection via
Vie“j = aie“j — Fkijeak + w“ibebj (3128)

which leads to the following expression for its components

1 .
w; " = 3 (Qijr — Qi + Quij) 2% (3.129)
where
Qijie = (9ie”; — 0j€%;) ea (3.130)

The vielbeins allows us to define also curved gamma matrices
* = eI I, =e,'T; (3.131)
And finally we ccan give an expression for the covariant derivative of the spinor fields
Vi=0;+ iwi‘“’Fab (3.132)
This is very important because it gives us the possibility to define the Killing vectors fields 7 such that
Vn=20 (3.133)

Killing vector field are one of the most important objects in studying compactifications of Superstring
theories.

3.3 Supersimmetry in Superstrings

It is well known that the realistic String theories are the supersymmetric ones, since they allow for the existence
of fermions in their spectrum.
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Complex geometry

In the present Chapter we will give a brief introduction to the complex geometry (CG).

We will analyze some special examples of complex manifolds: the Hermitian manifolds, the Kédhler manifolds
and the Calabi-Yau ones. Such classes of complex manifolds are distinguished by some particular constraints
on the metric.

Calabi-Yau manifolds are a subclass of Kahler manifolds, which in turn are a subclass of Hermitian mani-
folds. Needless to say the Calabi-Yau constraints on the metric are more restrictive then the Kéhler constraints,
which in turn are more restrictive then the Hermitian ones. We will introduce also the symplectic manifolds.

Kahler and symplectic manifolds are only a subclass of the most important object we will study in the
present Chapter: a SU(3)-structure. In fact as we will see, the SU(3)-structures allow us to fully classify the
Superstring backgrounds with H-fluxes which preserve four dimensional minimal supersymmetry, namely N = 1.

It turns out that for all type IIB Superstrings vacua with SU(3) structure, the internal manifold is complex,
while for type ITA Superstrings vacua both complex and symplectic manifolds are allowable. This fact suggests
that it would be far convenient to have a unifying description of these two kind of geometry. This idea leads
naturally to the study of Generalized Complex Geometry in Chapter

4.1 Complex manifolds

In analogy with the smooth case studied in Section [2] a complex manifold is a set which locally looks like an
open set in C™. This time the gluing of charts has to be holomorphic. In fact

Definition 4.1.1. Let M be a smooth manifold such that dim(M) = 2n is even (n € N). Let {(Uq, ¥a)}acr be
a smooth atlas over M. After having identified R*" = C" via Equation (C.6)), if V«, 3 € I such that U,z # {2}
the homeomorphisms

Pap : 08(Uap) = Pa(Uags)

PaB = Pa © gogl (4.1)
are holomorphic maps, {(Uy, ¢a) tacr is the holomorphic atlas. If M admits a holomorphic atlas, it is a complex
manifold. We define dimc(M) = $dim(M) = n [30, 22].

The main difference between a smooth manifold of even dimension and a complex manifold is that on a
complex manifold the transition functions ¢,g are holomorphic maps, while in a smooth manifold they are only
smooth maps. This means that the transition functions don’t mix holomorphic coordinates with antiholomor-
phic ones. Needless to say, each complex manifold is also a smooth manifold.

We generalize the concept of holomorphic maps

Definition 4.1.2. Let M be a complex manifold with holomorphic atlas {(Uy, ¢a)}acr- The function f: M —
C is an holomorphic function if Vo € I the map f o ¢! is a holomorphic map.
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Needless to say each holomorphic map f: M — C is also a smooth map up to the identification in Equation
(C.6), but the converse is not true.

A remarkable point is that each complex manifold is orientable. Let us study the simple case with dimcM =1
since the general case is similar and only more complicated from the notational point of view.

Consider two arbitrary charts (U, ¢) and (V,4) of the holomorphic structure on the manifold M, such that
UNV # {@}. Let {x,y} the set of local real coordinates determined by the first chart. After the identification
in Equation (C.6) the transition functions are maps between open sets in R?, namely

d=rpopt:pUNV)—=UNV) (4.2)
If we write ®(p) = u + iv, for each p € U NV the differential of ® is given by

@| QJ| rlu| tlu|
dq)(p) — (68'57 P oy p) — ( oz 1P oy p) (43)

ov ou ou
oz ‘p aT,|p _Fy|p %|p

2
for each p € UNV. Then det(d®(p)) = (% p) + (3“

2

ay ) > 0, which assures the orientability as we know
p

from Definition 2.1.16]

4.1.1 Almost complex structures

An almost complex manifold is an object which is halfway between a smooth manifold and a complex one. It
has the virtue of introducing the almost complex structure, which is one of the most important objects in the
whole CG, even if it needs an integrability condition in order to define a complex structure on a smooth manifold.

Definition 4.1.3. Let M be a smooth manifold such that dim(M) =n. A tensor J € T} such that J? = —1p
is an almost complex structure. If a smooth manifold M admits an almost complex structure J then (M, J)
is an almost complex manifold.

We can see J as an endomorphism of the tangent bundle J € End(T), i.e.
J:T =T (4.4)

The condition J? = —17 means that J is nothing but the transposition over a smooth manifold of the
conjugation map. Moreover it fixes a constraint on the dimension of an almost complex manifold M. In fact it
implies that (det(J))? = det(J?) = det(—17) = (—1)". Since J is a real tensor we obtain that det(J) has to be
real and then (det(J))? = (—1)" has to be positive. It follows that n is even.

Next, let us define the almost complex structure J on a chart (U, ) of an almost complex manifold M such
that dim(M) = 2n. It is

Ju =@  ojop(X) (4.5)

It’s evident that it satisfies J|3, = —17,, in fact

JIE = (pitojops)o(prtojop,) =
=g lojo(peopi)ojop.,=p to(joj)op, =
= —@;1 0 Yy = 71T|U (46)

From the form of j we know that J|y isn’t diagonalizable over T'|y, since each T, M (for each p € U) is a real
vector space. In order to be able to diagonalize J|; we have to complexify T'|¢; and T'};, obtaining respectively
T|S and T|;}C. Then the action of J|y can be naturally extended on T|y M€, so that it is still subject to the
constraint J \%] = flT‘% , but it can now be diagonalized. The only allowed eigenvalues are +i, and they have
the same multiplicity, so that extendin for all the open sets {U,} of an atlas, J induces the decomposition

TC =T"0 ¢ 1% (4.7)
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where 710 = {X € T®| J(X) = +iX}, while T%! = {X € T®| J(X) = —iX}. It is evident that the

relations 71,0 = T%! and 701 = T10 hold. We can naturally define a pair of projectors on the eigenspaces of
J

1 1
PhO = §(1 —iJ) P%= 5(1 +iJ) (4.8)

satisfying
(P1,0)2 — PLO (PO,l)Q — PO,I PI,O + PO,l — 1TC Pl,OPO,l — 0 (49)
Obviously P10 projects elements in the fiber of the tangent bundle T on T1°, while P%! projects on T%!. El-

ements in X9 = X140 are called holomorphic vectors, while elements in X% = X%1 are called antiholomorphic
vectors.

Let us remember that all the last relation are allowed only locally. This means that, for each U, we can
write the decomposition in Equation (4.7) but that the almost complex structure is defined only locally and in

general cannot be patched from a chart to another.

Now we want to write the explicit matrix expression for J|y. We can choose a real basis of Ty

{ 9 } (4.10)
Dt UJjer,

Jluy = ((1) _01> (4.11)

where 0 and 1 represent respectively the null and the identity n x n matrices. If we combine the basis vectors
£

9
v Oy*

such that, as Equation (4.5)) suggests

as in Equation (C.9)) obtaining a complex basis of T, M, { %

, 8% , the matrix expression becomes
p 2 p NEI

n

o = (é fz> (4.12)

Again 0 and ¢ represent respectively the null and the 7 times identity n x n matrices. In other words, J, takes
the nice forms, respectively in real and complex basis

s, d
_ o K I, 4.1
Jlu oy ® dx D ® dy e (4.13)
T =i-2 @ da - '—38 ® dz" el (4.14)
v=ig o @dd —igg @dz wel, .

Equation (4.14) shows the standard form of the almost complex structure. Remember that the last properties
are allowed only locally, namely in a given chart. However, if M is a complex manifold, then the almos complex
structure J encode the whole holomorphic structure of M. In fact if (U, ¢) and (V, 1)) are two charts of M, we
can write

Ju(X) =¢itojop.(X)=pitojop.o (o) (X) =
:@:1 ojo (W*°¢:1) 01, (X) :S";l o (@*Ow*_l) 0j ot (X) =
=yt ojou(X) = Jv(X) (4.15)

where we have used that the transition function ¢ o4 ~! is a holomorphic map since M is a complex manifold.

In other words we have seen that only if the manifold M is endowed with an holomorphic structure, then the
almost complex structure is patchable to define a tensor on M.

Moreover, the last line shows us that
Proposition 4.1.1. Let M be a complex manifold. Then (M, J) is almost complex.

In fact, it is sufficient to define J in every charts as in Equation (4.11)).
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4.1.2 Integrability

What we are going to study is strictly related to a well known problem in General Relativity: the equivalence
principle. In fact if (M, g) is a Riemannian manifold we know from the linear algebra that Vp € M, g can be
diagonalized (it is a symmetric tensor). One may wonder whether g can take its standard form (namely the flat
minkowskian metric 7,,) in a whole open neighbour U such that p € U. It is well known that the necessary
and sufficient condition is the vanishing of the curvature tensor R (we have to require also metric compatibility
and vanishing of the torsion [23], which are two standard requirements in General Relativity) in the open set
U. In this case we say that a flat coordinate system can be chosen in U. Coming back to our current task, we
want to determine the necessary condition for M to be a complex manifold. We will see that it is equivalent to
require that the the almost complex structure J can be written in its standard form in a whole open neighbour U.

Let us start with the concept of integrability in the complex case:

Definition 4.1.4. Let (M, J) be an almost complex manifold with almost complex structure J. If

(X, Y]ex® vXvyexh (4.16)
then J is integrable.
Definition 4.1.5. Let N € T.}. We can see it as a map N : X(M) x X(M) — X(M), defined by

NX, V) =[X, Y|+ J[JX, Y]+ JX,JY] - [JX,JY] VX,V € X(M) (4.17)
N is the Nijenhuis tensor.

We immediately notice that, if the manifold is complex, namely if we can put J in its standard form every-
where, then N vanishes.

Now we will give two important results. The first [19] [B0] creates a link between the integrability and the
Nijenhuis tensor

Proposition 4.1.2. Let (M, J) be an almost complex manifold with almost complex structure J. Then J is
integrable if and only if N = 0.

In fact, let X,V € X(M), and let us define Z = [§(1 — iJ)X, (1 —iJ)Y]. It’s immediate to see that
L(1+iJ)Z = L(1+iJ)N(X,Y). Then Z € 0 if and only if N(X,Y) =0 VYX,Y € X(M).

Finally, the theorem which furnishes the necessary condition for an almost complex structure to be complex

Theorem 6. Newlander-Niremberg theorem
Let (M, J) be an almost complex manifold. J is integrable if and only if M is a complex manifold.

4.1.3 Holomorphic forms

It’s quite intuitive that also the cotangent bundle Q! (M) can be decomposed on a complex manifold M. In fact
since J € T}, we can see it as an endomorphism of the tangent bundle (J € End(T)) as well as an endomorphism
of the cotangent bundle, namely J € End(T*). As a consequence we can use the projectors in Equation (4.8)
also to project on the cotangent bundle (now the projectors act by right multiplication), and the following
decomposition is given

T*C — T 1,0 @T*O’l (418)

The relations 7% 1.0 = T*%1 and T*0.1 = T*1.0 hold. Elements in I'(T* %) = QL0(M) are called holomorphic
one-forms while elements in I'(7*%!) = Q%1(M) are called antiholomorphic one-forms.

Let M be an almost complex manifold such that dim(M) = 2n. The complexified forms are elements

¢ € AT*C where
2n

AT ={p=w+ir| w,reAT"}=PATE (4.19)
k=0
In particular we can set PLO(A'T*C) = ALOT* and POY(A!T*C) = A%'T* with the obvious identifications
ALOT* = 71,0 AOIT* = 7*0.1 and we have that

T*C = A'T*C = ALOT* @ A% T (4.20)
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Next we can define

k k
AROT = A AVOTE DR = A\ AOIT (4.21)
i=0 i=0
and since the following result holds
k . .
ANvew) = ANV e AW (4.22)
i=0
then we get
AT C = N\ APaT (4.23)
p+q=k

If $ € AP9T* then ¢ is a (p, q)-form and A%°T™* is the space of smooth functions over M which takes value in
C, namely C2°(M). Let us notice that the relation AP-4T* = A%PT™* holds.

Let (M, J) be a complex manifold such that dimc(M) = n. Let {(Us, ¥a)}acr be a holomorphic atlas
which determines the local coordinates {z*,y*},cr, . Since M is a complex manifold we can define the complex
coordinates in each U, as z& = o +iyk, zh = xk —iy# and since we have dz/ = daf +idy* and dzh = dxt —idy”
then the sets

{d8hher, {42} uer, (4.24)

represent respectively a basis of AMOT* and of A%'T*. More in general, a basis for AP¢T* is given by the set
{d2t A N2t NAE A NdZ Y e, (4.25)
and then each ¢ € AP9T™* locally on U, takes the form
1

= plq!

> G 2 A dZh NAEA - A dE (4.26)

Hiv’/jeln

Now we will begin to study how differential operators behaves on a complex manifold. Let us give immedi-
ately the following

Proposition 4.1.3. Let (M, J) be an almost complex manifold such that dim(M) = 2n. J is integrable if and
only if dAVOT* C A20T* @ AYIT™,

In other words, the integrability condition is equivalent to the requirement that the (0,2)-component of
dw (where w € AM0T*) vanishes, namely if dw(X,Y) = 0 VX,Y € X% Tt follows from the fact that
dw(X,Y) = (ixdw)(Y) = (Exw)(Y) — d(ixw)(Y) = Lx(w(Y)) — w(&xY) — (ivd)(w(X)) = (ixd)(w(Y)) —
w([X,Y]) — (iyd)w(X)), from which we find that dw(X,Y) = —w([X,Y]) = 0 if and only if [X,Y] € X!, being
w e ALOT*,

Using Proposition we can define the Dolbeault operators

8 APIT* Ap+1,qT*
9 : APIT* — AP

where
d=0+0 (4.27)

The following identities
#=0 T =0 00+d9=0 (4.28)
are obvious consequence of the nilpotence of the exterior differential operator, in fact

P =(0+0)2=0>+00+00+0 =0 (4.29)

and the operators 92, 52, 90 + 00 take value respectively in APT2:4T* AP:a+2T* AP:AT* 5o that they have to
vanish indipendently. Moreover the following odd Leibniz rule

AwAT) = (0w) AT+ (=1)PT9w A (O7) (4.30)
holds, where w € APIT* 7 € A™T*,

Finally we can give the analogous of the Poincaré Lemma for the complex case
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Lemma 4.1.1. 9-Poincaré’s lemma B
Let w € AP9T* be O-closed, namely 0w = 0. Then it is 0-exact. Analogously for a 0-closed form.

and the important

Lemma 4.1.2. Local 00 lemma
Let M be a complex manifold, and let w € AL1T*NA2T* a real form. Then w s closed if and only if Vp € M3U
open neighbour of p and Ju € C°(M) such that w|y = i00u.

In fact let w € AMMT* N A2T* be a closed real form. Then from the Poincaré’s Lemma we get that
locally exists a real 7 € A'T* such that w = dr. Since we can write the decomposition 7 = 7+ 4 77, and since
7+ =7~ then

w=dr=0+0)(rT +77)=0r" + (@1 +0r) + 07 € AM'T* (4.31)

from which we get that or~ = 8j+ = 0, since they respectively belong to A%2T* and A%9T*. Moreover we get
that w = 07~ +07". From the 0-Poincaré Lemma we know that locally exists a function f such that 7= = 9f.
By complex conjugation we get 7+ = 0f, and then

w=00f +00f = 00(f — f) = 2iIm(90f) (4.32)
where we have used Equation (4.29). Conversely we have

d(99) = (9 + 9)(90) = (828 + 09d) = (9*0 — 9D") =0 (4.33)

4.2 Kahler manifolds

One of the motivations which make the K&hler manifolds worthy to be studied is that their structure allows to
write some of the most important objects defined on a complex manifold - such as for example a metric and
the associated curvature - by using a unique function defined on the manifold itself. Such a kind of function is
called the Kahler potential.

4.2.1 Symplectic manifolds
We begin with the analysis of symplectic manifold which turn out to be special cases of Kdhler manifolds.

Definition 4.2.1. Let M be a smooth manifold such that dim(M) = n equipped with a nowhere vanishing
two-form w € A2T*. Then w is the presymplectic form and (M,w) is a presymplectic manifold. If in
addition w is a closed two-form, then it is a symplectic form and M is a symplectic manifold.

The condition of non-degeneracy is equivalent to the condition that Vk € I,
wh= Ao (4.34)
is nowhere vanishing.

If now we choose a local chart (U, ¢), which determines a set of coordinates {z"},¢1,, then we can write

w= Y widx' Ada’ (4.35)
i,j=1
and the non-degeneracy can be written as
w¥ is the inverse of Wij . ' 4
w““wkj = wywh = 45 (4.37)

wi; is an antisymmetric matrix. Since each invertible antisymmetric matrix has necessarily an even number of
rows and coloumns, then symplectic manifolds are even dimensional.

Let M be a symplectic manifold and let dim(M) = 2n. Since w™ is nowhere vanishing it represents a volume
form for M. This means that each symplectic manifold is orientable.

The following Definition will be useful later
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Definition 4.2.2. Let (M, w) be a symplectic manifold such that dim(M) = 2n. A submanifold L C M such
that dim(L) = n, is a Lagrangian submanifold if w|;, = 0.

Now we state the result which makes clear the substantial difference between symplectic and Riemannian
geometry.

Theorem 7. Darboux theorem
Let (M,w) be a symplectic manifold such that dim(M) = 2n. Then Vp € M there exists a chart (U, o) in p
which determines the set of coordinates {x®,y'};c;. such that the symplectic form takes its canonical form

wy = Z dz' A dy' (4.38)
i=0

Theorem [7] makes manifest the profound difference between the Riemannian geometry and the symplectic
one. In fact in the first case, as we have seen in Section [2.2.1] we can not in general reduce the metric to the stan-
dard form in an open neighborhood around each point p € M. This is due to the presence of a non-vanishing
curvature, which shifts the metric from its standard value as soon as we move from the point in which we
have diagonalized it. In symplectic geometry instead, there is not an object analogous to the curvature, which
obstructs the symplectic form to remain in its standard form in a whole neighborhood around each point p € M.

The symplectic manifolds are the suitable space to build an object which is largely known to physicists,
namely the Poisson bracket. Let us give some preliminary

Definition 4.2.3. Let (M,w), (N, 7) be two symplectic manifolds. Let f : M — N be a diffeomorphism such
that
ffr=w (4.39)

Then f is a symplectomorphism.

If (M,w) = (N,7), then f leaves the fundamental form invariant. This is the case of classical mechanics,
where symplectomorphisms are diffeomorphisms of the phase space with itself. In that case, symplectomor-
phisms are simply the canonical transformations. Then we have

Proposition 4.2.1. Let (M, w) be a symplectic manifold. Then every smooth function H : M — R determines
a vector field Xy € X(M) which generates a symplectomorphism in the sense that

Lxpw =0 (4.40)

The function H is a Hamiltonian, while the vector Xy is a Hamiltonian vector field. 1t’s straightforward to
notice that the condition in Equation (4.39) is equivalent to the requirement in Equation (4.40).

As one can see in the proof of the Proposition [30], X is determined by the relation ix,, = dH.

Then we can introduce

Definition 4.2.4. Let M be a smooth manifold. Let {,} : C®°(M) x C*®°(M) — C*°(M) be a bilinear map
such that the following properties hold Va,b,c,d € R, V f,g,h,k € C°(M)

1. Bilinearity, namely

{af + bg,ch + dk} = ac{f,h} + ad{f k} + bc{g,h} + bd{g,k} (4.41)
2. Skew symmetry, namely
{f,9} =g, f} (4.42)
3. {,} obeys the Jacobi identity
{f,{g,h}}+{g, {haf}}+{hv{fag}}:0 (443)

4. {,} is a derivation with respect to the first argument

{fg,n} = f{g,h} +{f hig (4.44)
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Then {, } is a Poisson bracket.

The set (C°°(M),{,}) is a Poisson algebra, while a smooth manifold equipped with a Poisson algebra is a
Poisson manifold.

In particular one can show that a Poisson manifold is completely determined by a bivector w € A%T.

Then if (M,w) is a symplectic manifold, as a consequence of the non-degeneracy of its fundamental form
w € Z%(M), a Poisson manifold structure is naturally defined on M. In fact we can define the Poisson bracket

as follows of o
_ 777 g
{f,g}—w(df,dg)—w 533"8%”

where in the last Equation w represents the bivector built up with the inverse of the fundamental form

0 9
oxt Oxv

YV f,g € C>(M) (4.45)

w = wh”

(4.46)

In addition, if f € C*°(M) is a Hamiltonian, then

Lx, (9w = {9, f} (4.47)
Hence the following Proposition is quite obvious
Proposition 4.2.2. Let (M,w) be a symplectic manifold. Then (M, {,}) is a Poisson manifold.

On the contrary a Poisson manifold is not always a symplectic manifold, since the bivector w defining the
Poisson bracket doesn’t need to be non-degenerate. If it is then it can be used to define the fundamental form
of the symplectic manifold associated to a Poisson one. Moreover [30]

Proposition 4.2.3. Let (M,w) be a symplectic manifold. Then M is an almost complex manifold.
Finally

Definition 4.2.5. Let (M, w) a symplectic manifold. An almost complex structure .J is compatible with w if

wlJX,JY)=w(X,Y) w(X,JX)>0 VX,YeX(M) (4.48)

4.2.2 Hermitian manifolds

An Hermitian manifold can be simply seen as an analog of a Riemannian manifold in the complex case. Its
peculiarity is that an Hermitian scalar product is defined on the tangent space 1), M for each p of the manifold.
Definition 4.2.6. Let (M, J) be a complex manifold. Let g be a Riemannian metric over M. If
9g(X,Y)=9g(JX,JY) VXY € X(M) (4.49)
then ¢ is a Hermitian metric. The pair (M, g) is a Hermitian manifold.
The following important result states that each complex manifold admits a Hermitian metric.
Proposition 4.2.4. Let M a complex manifold with complex structure J. Then M admits a Hermitian metric.

In fact just note that, if h is a Riemannian metric on M, then also
1
9(X,)Y) = §(h(X,Y) + h(JX,JY)) VXY € X(M) (4.50)
is, and in addition it is Hermitian.

Moreover the extension by C-linearity to the complexified tangent bundle T'C of the Hermitian metric satisfies

1. g(X,)Y)=g(X,Y) VX, YeI(TY
2. g(X,X)>0 VXel(T%, X#0
3.9(X,Y)=0 VX, Y e XM VXY € x0!
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This fact justifies the name of the Hermitian metric, since it represents a smoothly varying Hermitian product
on the complexified tangent bundle. It can be shown that every metric satisfying 1., 2., 3. on I'(T°) induces
by restriction on X(M) a Hermitian metric.

The Hermiticity is a geometric constraint on the metric, not on the manifold [30} [29], as the following results
state.

Proposition 4.2.5. Let (M, g) be an Hermitian manifold. Then holomorphic vectors X € X1° are orthogonal
with respect to g.

In fact let X,Y € X10. Then g(X,Y) = g(JX,JY) = g(iX,iY) = —g(X,Y), from which we conclude that
g(X,Y) = 0. The proof proceeds in the same way for the antiholomorphic vectors X,Y € X%

From now on we will denote by a bar the indices which refer to antiholomorphic coordinates.

Moreover, let us consider a holomorphic atlas {(Uy, ¢a) }acr and the induced local coordinates {z4,z" },, zer,. -
Since if X,Y € XY then

G XPYY = g(X,Y) = g(JX,JY) = gr,J, P XHYY = g,\p(iéﬁ)(iéﬁ)X”Y” = —guX"Y" (4.51)
and we obtain that g,, = 0. More in general, for a Hermitian metric terms with pure indices vanish
G = g =0 (4.52)
A Hermitian metric takes the local form in each chart [22]
g = guwdzh ® dz, (4.53)
where the coefficients g, € C*°(U) obey the hermiticity condition
9uv = Yum (4.54)
We can give the following
Definition 4.2.7. Let (M, J, g) be a Hermitian manifold. The two-form w such that
w(X,Y)=g(JX,Y) VXY € X(M) (4.55)
is the fundamental two- form.

In other words
Wuv = J,u/\g)\u (456)

Since the non-vanishing metric components are those with mixed indices, it turns out that w € ALIT*C. The
fundamental form is invariant under the action of J, in fact

wWIJX,JY) =g(J?X,JY) =g(J?JX,J?Y) =g(JX,Y) =w(X,Y) VX,Y cX(M) (4.57)

From the form of a Hermitian metric we easily find that in a chart (U, ) which determines the local set of
coordinates {z*,Z"}, zer,

w = ig,pdz" AdzZ¥ = —J,pdz" A dZ” (4.58)
where J,; = g@Jgﬁ = —iguw. From the last Equation we can find that w is a real form
W=w (4.59)

in fact W = (—i)gp,dz" N dz" = igypdz” N dZF = w.

Finally let us notice that, if dimc(M) = n, then the 2n-form

w" n

= (1)

— 1 n 1 n
— T det(g) dz  A---AdZ"ANdZAN---ANdZ (4.60)
n!

is a good volume form on M.
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4.2.3 Kahler manifolds
Definition 4.2.8. Let (M, J, g,w) be a Hermitian manifold. If

dw =0 (4.61)
then (M, J, g,w) is a Kahler manifold, g is the Kahler metric and w is the Kahler form.

In other words, we can see a K&hler structure on a smooth manifold as a tern (g, J,w), where g is a Rie-
mannian metric, J is a complex structure and w is a symplectic structure such that the diagram in Figure 1]
commutes.

Figure 4.1: A Kahler structure.

It’s important to state the sufficient condition for a manifold to be Kahler , in terms of the complex structure
[24]

Proposition 4.2.6. Let (M, g,J) be a Hermitian manifold. M is a Kdhler manifold if and only if VJ = 0,
where V is the Levi-Civita connection associated to g.

Clearly all the Kahler manifolds are symplectic, since the Kéhler form is closed and non-degenerate. In fact
its inverse is simply given by
wh = —ghPJ," (4.62)

The converse isn’t true in general, but we have the following

Proposition 4.2.7. Let (M,w,J) be a symplectic manifold with compatible complex structure J. Then M is
a Kahler manifold.

There is an additional feature of the Kahler manifold which makes it worthy to carefully study them. In fact
it is well known that in each point p of a Riemannian manifold M we can define a set of coordinates - called
the normal coordinates - such that the Riemannian metric osculates to the Euclidean one to the order 2 in a
neighborhood of p € M. The nice discovery is that on a Hermitian manifold, the requirement of the existence
of a normal set of coordinates in each point, coincides with the requirement to be a Kéahler manifold [24]

Proposition 4.2.8. Let (M, J) be a complex manifold, ad let g be a hermitian metric. Then g is Kahler if and
only if Vp € M 3 holomorphic coordinates {z#,z"} (z* = x* + iy*) in which g can be written

1
9uw(p) = 55;5 + €,5(p) (4.63)
where 5 5
€uv €uv _
eur(p) = 55 (p) = 87;&(29) =0  wyAE, (4.64)

In other words the first non-vanishing correction to the standard form of a Hermitian metric is at order two.

The constraint on the fundamental form dw = 0 has important consequences on the geometry of a Kéhler manifold.
In fact, if we choose a chart (U, ¢) which determines the set of local coordinates {z*,z"}, zer, then

dw = (0 + 9)w = i0,9,mdz" N dz" N dz" — i05g,7d2" NdzP N dz" =0 (4.65)
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Each term in the last Equation must vanish indipendently, then
9w =0 Opglum) =0 (4.66)
These equations can be translated in the fact that there exists K = K(z,z) € C*°(U), such that
Guv = 6uaﬁK (467)

and then, on U B B
w = 10,05 Kdz* N dz¥ = 100K (4.68)

The function K is the Kahler potential. The same result can be achieved using Lemma [4.1.2]

Moreover, since d = § + 0 and d? = 9% = 7 = 0, we obtain that 99 = —3d(0 — ). This fact doesn’t assure
that w is globally exact, because K is only locally defined on U. Instead the metric g is globally defined, but it
takes the form in Equation only in the chart U. Given another chart (V, ), with the associated set of
coordinates {w*, w"} umel, the Kéhler potential doesn’t need to be equal in the overlap U NV, but it has to
obey the constraint

Ky (w,) = Klu(2,%) + £(2) + F(2) (4.69)

where f(z) and f(Z) are respectively a holomorphic and an antiholomorphic functions. Equation 1) defines
the Kédhler trasformations.

Finally, it’s straightforward to prove that the metric is invariant under Kahler transformations of the
Kahler potential. In fact, let K|y (z,z) — K'|y(2,Z) = K|v + f(2) + ¢g(Z). The metric computed with K'(z,Z%)
will be

G = OuOrK'(2,%) = 0,07 (K(2,2) + f(2) + 9(2)) =
= 0u0rK(2,%) + 0,07 (2) + 0,059 (%) = 0,07K(2,%) = guw (4.70)

since f(z) is holomorphic and g(%) is antiholomorphic, namely d5f(z) = 0 and 0,9(%Z) = 0.

Remember that on a smooth manifold a Levi-Civita connection is uniquely defined by two requirements:
metric compatibility and vanishing of torsion. On a complex manifold it is natural to require also that the
complex structure must be compatible. This requirement is equivalent to imposing that holomorphic vectors
must remain holomorphic after parallel transport. Let us work in a coordinate basis and define the action of
the covariant derivative on vectors basis
0 v 0 0 5 O

K ozv V2 V“(’?z” v

(4.71)

The relation I'*,,, = I‘XW holds and these are the only non-vanishing components of the connection. On the
dual basis, the action of V is

Vadz = TV zdz®  Vids” = —I7 5dz> (4.72)

For example on a holomorphic vector X+ € T° and on an antiholomorphic vector X~ € T%!, the action of
V, is

0 0
A VA
V#XJ’_ = (aﬂX + X'T #y)@ 07

Notice that on a antiholomorphic vector field, V,, acts exactly as an ordinary derivative. We can work analo-
gously with V5. Requiring also metric compatibility

VX~ =(0,X") (4.73)

vpgpf =0 vﬁgpﬁ =0 (474)
we can rewrite _
0pg7 — 9T ou =0 Opguw — 515w = 0 (4.75)
from which we find the explicit expression for the connection components

I = g"0,9,5 T = g 0ugm (4.76)

Definition 4.2.9. An affine connection compatible with the metric and such that all components with mixed
indices are vanishing, is a Hermitian connection. It is unique by construction.
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It is important that [19]

Proposition 4.2.9. The complex structure J is compatible with the Hermitian connection, i.e.
Vod =Vgl, =V,J5" =V~ =0 (4.77)

Now define the action of the torsion on a basis of vectors

o 0 0
- — TP _
r <az“’ 82”) Nz DzP
o 0 o 0
T (a 82”) =1 (a azu> =0
o 0 9
- — TP,
T (azu’ azv> Ui 5.7 (4.78)

and thus the non-vanishing components are

X
TP =T’y = 97" (019,%)
Tﬁw = Fﬁ[w} = g)\ﬁ(a[ﬁgP]A) (4.79)
Restrictions on the affine connection simplify the form of the Riemann tensor. In particular one can find that

R)\ﬁlm = qulm = leu)\ = Rl =0 (480)

mox
where the indices [, m can take values from both holomorphic indices and antiholomorphic ones. Thanks to the
trivial symmetry R/\Wp =R upv, the only independent components of the Riemann tensor are

RAME/) = %FA/);L = aﬁ(gAaapgua)
R = 0,15 = 0,(9*590m) (4.81)
Other important features of Riemann tensor are
R,Twﬁa = gﬁ/\R)\uﬁa
R;mpﬁ = QHXRAWE
and the symmetries
Ruvse = —Ruppo R,wp5 = Roppe Rype = Rppuz = Rooun (4.82)
After, if we contracting indices of the Riemann tensor, we can define the Ricci tensor R,
m#? = RA)\;LE = _aﬁ(g/\ﬁaug)\ﬁ) = _aﬁa,u IOgg (483)

where g = det g5, and where we used the equality dg = g¢g"”dg,5. R,w is explicitly antisymmetric, then we
can define the Ricci form B B
R =R, pdz" ANdz¥ =1i00logyg (4.84)

From the equality 00 = f%d(a — 0) we find that 2R is closed. But again R isn’t globally defined. So it isn’t
exact and then it defines a non trivial cohomology class

c1(M) = Bﬂ € H*(M,R) (4.85)

As we will see in detail, ¢; (M) is the first Chern class of M.

The importance of ¢; (M) is that it is a topological invariant, i.e. it is invariant under smooth deformations
of the metric g, = guw + 0g,. In fact under this kind of deformation we find that [29]

SR = i00(g""5g,7) = —%d[(a —9)g"6g,5] (4.86)

which is exact, being ¢"”dg,7 a coordinate scalar. Thus smooth variations of the metric change 9t but don’t
change ¢ (M).
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4.2.4 Cohomology of Kahler manifolds

New differential objects can be defined in the case of complex manifold due to the splitting in Equation [£:27]
Moreover, the Kéhler condition in Equation (4.61) imposes very strong conditions on the cohomology of a
Kahler manifold.

Applying Definition to a complex form, we obtain that
x : APIT* — APT9TTPT (4.87)

Then the operator
¥ APAT* — AP AT (4.88)

let us to define an inner product between two forms «, 5 € AP9T*

(o, B) = /a T} (4.89)
Then we can define adjoints of Dolbeault operators
= =t
(@,08) = (', 8) (2, 88) = (9 a, ) (4.90)
such that _
A« APaT* 5 AP~Lap* d'  APAT* 5 AP (4.91)
Since a complex manifold is even dimensional if regarded as a real manifold, the relation df = — % dx holds.
Then it’s easy to prove that [19]
ol = — %0 9 = %0« ()% = (ET)2 =0 (4.92)

After this, we can repeat exactly the same constructions done for the real case. Then define the Laplacian on
a Hermitian manifold IV
Np=(0+0")?=00"+0"0 A;=00"+00 (4.93)

Definition 4.2.10. Let M be a Hermitian manifold. Let w € A”9T*. If Ajw = 0 (Azw = 0) then w is said to
be d-harmonic (d-harmonic) and we will write w € YH(M) (w € T2(M)).

+

Naturally, if Agw = 0 (Azw = 0), then dw = d'w =0 (Jw = 0 w = 0). Moreover

Theorem 8. Hodge’s theorem [19]
Let M be a Hermitian manifold. Then AP9T* has a unique orthogonal decomposition

APIT* = DAPIAT @ D APOTIT™ @ TRI(M) (4.94)
namely a form w € AP4T™* is uniquely expressed as
w=0a+0 B+ (4.95)

where o € APATIT, 3 € APTHIT*, y € TRI(M),

On a Hermitian manifold, Ay, Az, A don’t have particular relationships. On a Kéahler manifold instead they
are essentially the same. In fact

Proposition 4.2.10. Let M be a Ké&hler manifold. Then

A =27, =275 (4.96)

If w is a holomorphic form, namely dw = 0, then also 3" = 0 because w doesn’t contain factors dz* in its
expansion. Then we can notice that

w=0w=0 o Azw & Apw & Jw=0w=0 (4.97)

Then, according to Hodge’s theorem, if w is holomorphic, Aw = 0 holds, and since the converse is trivially true
[19], then
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w holomorphic < w is harmonic
At this point one can prove that [19]
Proposition 4.2.11. Let M be a Kéhler manifold such that dim¢(M) = n. Then
1. bk = D kmpig PP
2. hP? = poP
3. hP4 = pn—pPn—a

and thus the Hodge diamond is symmetric respect to the vertical and the horizontal lines (see Figure [4.2]).

I]'?_PJLIH

hm—l.m o IEI'Im—I.m

0 SR 2 Rl

hm—]_m < h,m_"m

]?,.HLJ‘J?

Figure 4.2: Hodge diamond for a Kihler manifold.

Due to these new symmetries, the number of independent Hodge’s numbers becomes (%n +1)% if n is even,
while it becomes 1(n + 1)(n + 3) if n is odd.

4.3 SU(n) structures

4.3.1 Motivation
4.3.2 Reduction of the structure group

An interesting point is to see how the structures introduced in the development of the complex geometry affect
the structure group.

It is well known that the introduction of a Riemannian metric g on a smooth manifold M such that dim(M) =
n determines the reduction of the structure group following the pattern

GL(n,R) — O(n,R) (4.98)

When the tangent bundle is complexified, the dimension doubles, so that the tangent bundle has structure
group GL(2n,R). Let us assume that M is an almost complex manifold. Due to the splitting in Equation
we can construct the canonical bundle

A™OT™ (4.99)

We will denote by €2 a local section of the canonical bundle which locally in U, takes the form
Q=0"A-NO" € AT} (4.100)

where {6'};c; forms a local frame of holomorphic one-forms. A form which can be written as in Equation

(4.100) is called a decomposable form.

Since the splitting depends only on the almost complex structure J, 2 can be build by using only J.
Conversely from © € A™ T, we can build a subbundle as follows

L={XeT| ixQ=0} (4.101)

We can then define J to be the operator such that L is its —i-eigenbundle. Its complement L in T will be the
+i-eigenbundle of the operator J. In this way the almost complex structure J is reconstruct and we have shown
that the information encoded by .J itself is also encoded by a section 2 of the canonical bundle A™0T*,
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It is evident that  hides an ambiguity in its definition. In fact the one-forms {6'},c;, are determined up
to a GL(n,C) transformation. In other words ) is determined up to an overall complex function which can
be encoded by the determinant of the matrix representing a GL(n,C) transformation. Needless to say, this
framework makes explicit that the structure group has been reduced following the pattern

GL(2n,R) < GL(n,C) (4.102)

Let us now consider the fundamental form of a Hermitian manifold. Since it is non-degenerate but it doesn’t
need to be closed, w defines a Hermitian pre-symplectic structure on M. It is a consequence of Equation

(4.56) that
we AT (4.103)

and moreover we know that it is real. The requirement that w be globally defined implies the reduction of the
structure group following the pattern
GL(n,C) < U(n) (4.104)

Moreover since w € A™9T* we get that
WwAQ=0 (4.105)

If © doesn’t possess the ambiguity mentioned above the group structure can be further reduced as follows
Un) <= SU(n) (4.106)
We can give the following [15]

Proposition 4.3.1. Let (M, J) be an almost complex manifold such that dim(M) = n. Let Q be a globally
defined, decomposable, complex n-form €2 defined as in Equation (4.100), which is non-degenerate everywhere,

namely
QANQ#0 (4.107)

Let w be a pre-symplectic two-form compatible with J. Then the structure group reduces to SU(n).
Definition 4.3.1. Let (M, J,w,?) be as in Proposition It is a SU(n)-structure.
Usually the form €2 is normalized in the following way

n—1
n=3

ONQ = %w” (4.108)

n!

With this convention there exists a local frame {6"};c;, such that

w——529 AD Q=0"N---AO (4.109)

4.3.3 SU(3) structures
In this Section we will specialize to the case n = 3.

In this particular case Equation (4.108]) reduces to

QANQ = %ws (4.110)

We would like to express the SU(3)-structure in terms of spinors.

As we can see in Section [3.1.4] the Spin group Spin(6) has two inequivalent spinor representations spaces

S

II2

S~ct (4.111)

which are associated to two different chiralities. In particular they are induced from the decomposition in
eigenspaces of the volume form, which in the case (r,s) = (6,0) is such that 2 = —1. Then we can write each
spinor 7 as the sum

n=&+x (4.112)
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where the subscript + denotes a positive chirality component such that vz = i€, while the subscript — denotes
a negative chirality component such that v;x = —ix. In other words

EesS x€S (4.113)

It’s amazing to see that the symplectic form w and the canonical form 2 of a SU(3) structure can be simply
built by starting from a non-vanishing pure Spin(6) spinor. As we have seen in Section if the dimension
n < 6 every spinor is a pure spinor, so that we don’t have to worry about this requirement. As we know, 74 is
a locally a vector of C*. If 1 is nowhere vanishing, without loss of generality we can write it in a chart as

(4.114)

cooF

and it is obvious that the subgroup of SU(4) which leaves invariant 5 is SU(3). Since it is non-vanishing, we
can normalize 74 so that

niney =1 (4.115)
Then the SU(3)-structure takes the nice form
Wij = — T4 VijN+ Qijk = —1M_%Yijen+ (4.116)
where 7)_ is the charge conjugate of 7, namely
n-=Cn" (4.117)

where the charge-conjugation matrix C' is such that

vE=—-C 1,0 (4.118)

4.3.4 Holonomy groups

We saw that the Riemann tensor over a Kihler manifold M has only few non-vanishing components. This fact
was mainly due to the Kahler condition, which puts strong constraints on the metric.

We can reformulate these concepts in terms of the Holonomy group ®(M), which is a more intuitive geo-
metric tool. The fact that non-vanishing connection coefficients have pure indices, i.e. that parallel transport
preserves the holomorphicity condition, tell us that the Holonomy group of a K&hler manifold is contained in

U(n).

Moreover we recall that the parallel transport of a vector with components X' around an infinitesimal

parallelogram with sides €™ and 7" lying along direction a%m and &% gives
X" = X"+ X"Rl €™ " (4.119)

We require that under parallel transport holomorphicity is preserved, which means that the Riemann tensor is
pure in (I,7) indices. Remembering all symmetries of the Riemann tensor, we find that the only non-vanishing
components are those in Equation (4.81). The matrices ¢™7"R!,,,, are elements of ®(M) (see Section
infinitesimally closed to the identity, i.e. are in the Lie algebra of U(n), namely u(n). In a neighbour of the
identity we have that

U(n) ~SU(n) x U(1) (4.120)

which translates into the Lie algebras as
u(n) = su(n) & u(1) (4.121)
The Lie algebra su(n) contains the traceless matrices, then the generator of the u(1) part is
R\ me'T7 = —AR, pet T (4.122)
Thus the Ricci tensor is the generator of the U(1) part of ®(M). We can now give
Proposition 4.3.2. Let M be a Kahler, Ricci-flat manifold. Then ®(M) C SU(n).
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Note that Proposition [£:3:2]isn’t a direct consequence of the precedent reasoning, which prove the statement
only locally. For a complete prove we remaind to [29].

There are a lot of ways to define Calabi-Yau manifolds. The first we will give is
Definition 4.3.2. Let M be a Kéhler, Ricci-flat manifold. M is a Calabi-Yau manifold.

Let us remember that the condition of Ricci-flatness can be also written in terms of the first Chern-class,
since

ci(M) = B:] H?*(M,R) (4.123)
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Generalized complex geometry

After having introduced the CG, in this Chapter we will explore the Generalized Complex Geometry (GCGQ).
This is a new kind of geometry in which we will find two fundamental novelties. The first is the fact that instead
of the tangent 7" and the cotangent 7™ bundles separately, we will consider them as a direct sum 7' & T*. This
fact leads us to a natural generalization of the Lie bracket, i.e. the Courant bracket. The second innovation is
the fact that the orthogonal group is enlarged by the so called B-action. We will explore this fact in detail.

5.1 Linear algebra of V ¢ V*

Before to analyze the differential geometry of the GCG, let us study briefly the novelties which one obtains by
studying the linear algebra of the direct sum V @ V*.

5.1.1 Basic notions

Let V' be a vector space such that dim(V) = n, and let V* be its dual. V @ V* is endowed with the following
natural and symmetric bilinear form [14]

n: VeV xVeV* — R

such that
n(X+§,Y+n):%(§(Y)+n(X)) VX+EY+neVaeVr® (5.1)

where X € V and n € V*. n is clearly symmetric, and its signature is (n,n). We will call it the inner product
onVaV*.

Here and in the rest of the present Chapter, we will indicate with u, v, w elements lying in the direct sum
V & V* with XY, Z elements which belong to the "vector part" of V & V*, and with &, 7, x elements wich
belong to the "form" part of V & V*. From the next Section V & V* will turn into T"® T, but the convention
will remain the same.
The natural pairing between A(V') and A(V*) given by
(u*,v) = det(u; (v;)) (5.2)
where u* =uj A~ Aul € A"(V*)and v =v1 A+ Av, € A*(V), allows us to identify
A"(VeV*) =R (5.3)
In this way, the unity 1 € R defines a canonical orientation on V @ V*.

The isometry group of V & V* is the special orthogonal group

SO(V @& V*) = SO(n,n) (5.4)
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whose Lie algebra is
so(VaV)={TecEnd(Vae V") (Tv,w)+ (v,Tw)y=0 Vo,weVadV*} (5.5)

The group SO(n,n) will play a fundamental role in the developing of the work.

In Section we have seen that so(V @ V*) naturally sits in the Clifford algebra C(V @& V*), since
s50(V @ V*) ~ A%(V @& V*). Then we can write the decomposition

so(Ve V) =End(V)o A (V)@ A2 (V) (5.6)
Since dim(V @& V*) = dim(End(V)) = n? we have the isomorphism V & V* = End(V).

The decomposition in Equation (5.6)) leads us to the conclusion that the most general transformation acting
on V @ V* and leaving the inner product invariant is of the form

_(A B
(4 %) o
By imposing the defining property of the so(n,n) Lie algebra it turns out that
B*=-B g =-p (5.8)

Let us see how the various components in the decomposition in Equation (5.6) are immersed into so(n,n).

End(V) C so(V @ V*) acts as follows

A: VoV — VeV
D A(X) — AT(¢) (5.9)
B acts naturally as a map

B: V — v
X = ixB (5.10)

so that it can be seen as B € A2(V*). Also 3 acts as the map
Bg: V* — \%
& o i (5.11)

and then can be see as a map 3 € A%(V).

In other words B is a dual bivector and f is a bivector, and we can make the group action explicit by writing
P VeVt o VeVr
X+¢ — X+E&+1ixB (5.12)
and
el vevr - VeVr
X+¢ — X +E+48 (5.13)

We will call the group action of B, 8 by B-action and S-action. Gp is the subgroup of elements which act as in
Equation (5.12)). The B-action fixes the direction parallel to V', while it acts by shearing in the V* direction.
Its action is described by the matrix
1 0
B = < B 1) (5.14)

On the other side we can denote by e the diagonal group action

A Vv - VeV
X+¢6 =  eXaete (5.15)

In order to describe spinors on V @ V* it’s useful to give the following
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Definition 5.1.1. Let LC V@ V*. If n(v,w) =0 Vwv,w € L, then L is an isotropic subspace. As it is well
known from the linear algebra, if dim(L) = n (dim(V @ V*) = n), then the isotropic subspace is a maximal
one. A maximal isotropic subspace is also called a linear Dirac structure.

In particular it’s important to notice that we can write every linear Dirac structure L in the form [14]
L(E,e) ={X+{c Ea V" {p=€¢X)} (5.16)
where E C V, and € € A*(E*). Moreover

Definition 5.1.2. Let 7y : V @ V* — V be the canonical projection on V. Let E C V & V* be a linear
subspace and let L(E, €) the associated linear Dirac structure. Then the integer

t(L) = dim(Ann(E)) = n — dim(my (L)) (5.17)
is the type of L(E,¢).
The most simple examples of Dirac structures are given by V and its dual V*, respectively of type t(V) =0

and t(V*) = n.

The B-action doesn’t affect the projection to V, but it only shifts the dual component E @ V* O X + £ —

X + &+ ixB. This means that the B-action doesn’t affect the type ¢(L) of a linear Dirac structure L(F,¢€). In

other words the type of L(E,¢) is an invariant under the B-action and the linear Dirac structure transforms as
follows

ePL(E,¢) = L(E, e +i*B) (5.18)

where 7 : E < V is the inclusion map. Moreover, it can be shown that by choosing B and FE suitably, we can
obtain every maximal isotropic of a given type as a B-transform of L(F,0).

On the other side, as we can expect, the S-action modifies the type of a linear Dirac structure L(E,¢). In
fact, let B8 : V* — V and let L be a linear Dirac structure. If we define V* D F = my-L, v € A%(F*) and
L(F,y)={X+¢eVaF| X|r=v()} then

P L(F,y) = L(F,y +i*f) (5.19)
where now ¢ : F' — V*. It can be shown that we can write the dimension of F as a function of v
dim(E) = dim((LNV) + rk(y)) (5.20)

where rk(y) = dim(Im(y)). Since v is an alternating bivector, its rank is even and since a S-action is such that
v+ v+ ¢*8 (which also has even rank) we obtain that the S-action can be used to change the type of L(E,¢)
by an even number. Finally

Definition 5.1.3. A linear Dirac structure L(F,¢€) whose type is t(L) is said to have even parity if t(L) =
0mod(2), while it has odd parity if t(L) = 1 mod(2).

It’s intuitive that the generic even linear Dirac structure of even parity is a linear Dirac structure of type 0,
which is V itself, while the generic odd linear Dirac structure is a linear Dirac structure of type 1. From these
we can obtain linear Dirac structures of generic type by S-actions.

5.1.2 Spinors for V ¢ V*

In this Section we want to extend the topics covered in Section [3.1] to the more general context of GCG.

Let us denote the Clifford algebra over V @ V* by C(V @ V*). The quadratic form which defines it is given
in Equation (5.1). as we know it has signature o = (n,n), where dim(V) = n. The relation

v? = n(v,v) VoeVaV* (5.21)
defines C(V @ V*) together with the anticommutation relation
vw + wv = 2n(v, w) Yo,we Ve V* (5.22)
The Clifford algebra has a natural representation on A(V*) defined by

(X+& -po=ixp+EANgp VX+EeVAVY, VeeAV) (5.23)
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Infact VX + &Y +neVaVr

(X4 o=(X+8(ixp+ENp) =ix(ixp+ENQ) +EA(Ixp+ENQ) =
= (ix§)e — &N (ixp) +EN(ixp) = (ixE) A= (X +EX + 8y (5.24)

and also

(X +)Y +n)+ Y +n)(X +]- o= (X +&Eve+nAe)+ (Y +n)ixp+ENp) =
=ixiyp+ix(MA @) +EA(ive) +EANTN e +ivixp +iy(EAQ) +nA(ixe) +nAENp =
= (ixn)e —nA(ixe) + (iv§)e —iv(EN @) +iv(EA @) +n A (ixe) =

9 <;(ixﬂ+iY€)) _oXtEY 4 (5.25)

The decomposition in Equation (3.30)) of the Clifford algebra C(V @& V*) immediately induces a decomposition
of the representation space
AV = AT (Ve A~ (V) (5.26)

where AT (V*) includes all alternating (dual) multivectors of even order, while on the contrary A~ (V*) includes
all alternating (dual) multivectors of odd order. This splitting isn’t preserved by the whole Clifford algebra
C(V @ V*), but AT(V*) and A=(V*) are separately irreducible representations of the Spin group.

We know that so(V @ V*) 2 A%(V @ V*). The next step is to determine how the Lie algebra components -
namely the actions we studied in Equations ((5.12]), (5.13)) and (5.15]) - act on the spin representations.

We start with the B-action. Let {e;};cs, a basis for V and let {e'},cs, be its dual basis. As we have seen
in Section B € A*(V*) and we can write B = $B;;e’ A el where B;; = —Bj;. We recall that

x & ixB VXeV (5.27)
which means that, on the basis elements
ey (€5 Aej) = 0he? — dle; (5.28)

Moreover, remember Proposition [3.43]

adgiei(er) = elele, — epele’ = eleley + elepe’ — 6iei =
= el (eley + epe’) — 6iei =0iel — (5iei (5.29)
where we used the anticommutativity relation in Equation (5.22)) and the associativity of the Clifford algebra
C(V @ V*). Equation (5.29) provide the same result of Equation (5.28)). In other words the image of B =

1B;je' A el in the Clifford algebra C(V & V*) is B = 1B;jele’. Its action on the representation space A(V*) is
then (see Equation (5.23)))

1 . .
B-p= §Bije] AN(e'Np)=—BAyp (5.30)

And the group action is given by exponentiating

1
e_Bnp:<1—B+QB/\B—|—...)/\<p (5.31)

As one can expect, since B € so(V @ V*), then e~ P is an element of the Spin group Spin(V @ V*). In fact in

calculating the norm of e~y one can see that each term of the form
(1L,B) (B,B) (B%B) (B.B) (BLB (B%BY) ... (5.32)

vanishes. In fact, let us consider for simplicity the norm of the first order expansion e~ ? = 1 — B. The norm is
given by

(1-B1-B)=(1,0-B)1-B)=(1,1)-1,B)-(1,B)+(1LLBB) =1 (5.33)

= (
where (1,1) = 1. The term (1,B) = 1B;;(1,e/e’) = 0. Analogously for the term (1,B) = 0. Finally
(1, BB) = 1B;jBim(1,eteiele™) = 1 B;; By (1, ee’ele™) = 0. In fact there is no way to reduce the term e/eiele™
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to some multiple of the identity, since the rule in Equation (5.22)) tells us that elements in V* anticommute in
the Clifford algebra C(V @ V*). Consequently

PP =1 (5.34)
In addition e=# € Sping(V @ V*), which is the identity component of the Spin group Spin(V @& V*).

We can study the -action case in a similar way. Let 8 € A%(V), B = £7¢; Ae; be the alternating bivector
which defines the $-action

¢ 2 B (5.35)
Its image in the Clifford algebra is given by %Bij eje;, and then the action on the representation space A(V*) is
1 . .
By =5, (ie, ) = igy (5.36)
Therefore, by exponentiating we obtain
8 . Lo
ePp= 1—|—25+§z,3+... © (5.37)

The case of the GL(V)-action is much more complicate. We will study it in Section ?7?.

5.1.3 Pure spinors

There exists a pairing between spinors, which behaves well under spinor representations. In fact it remains
invarinat under the action of the identity component of Spin(V @& V*).

We define a bilinear form on the spinor representation space by

()i AV XAV = detV*
(g, ¥) = @A) liop (5.38)

where () |,,, denotes that the top degree component of the alternating multivector is taken. It can be shown
[14] 36] that
(v-p,v-9) =nv,v)(ph)  VYveVaV', VeoeAVT) (5.39)
so that in particular
(g-0,9-9) ==£(p,h)  VgeSpin(Va V™), Ve ¢eAVT) (5.40)

which brings us to give the following

Proposition 5.1.1. The bilinear form in Equation (5.38) is invariant under the identity component of the Spin
group Spin(V @ V*) namely

(- p,x-1) = (p,7) Va € Sping(Vae V") (5.41)

For example we have
(€. y)=(p9)  VBeA(VY), Yo veAV) (5.42)
The bilinear form in Equation is non-degenerate and it can be symmetric or skew symmetric depending

on n = dim(V). In fact

n(n—1)

Now we are ready to study pure spinors. This concept is the one which allows us to study spinors by
understanding the maximal isotropics. In fact, let ¢ € A(V*).

Definition 5.1.4. The subspace L, C V & V* defined by
L,={veVaV* v-p=0} (5.44)

is the null space of ¢.
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Every null spaces are isotropic, in fact
(v, w)p =(vw+wv) - =0 Yowel, = nvw) =0 Yvwel, (5.45)
Definition 5.1.5. A spinor ¢ is a pure spinor if L, is a maximal isotropic, namely if dim(L,) = n.

It’s interesting to notice that from a pure spinor we can easily obtain more pure spinors. For example let
1 € A(V*) be the unit spinor. It’s a pure spinor because L1 = {X + € Ve V* (X +&) - -1=(ix +&AN)1=
0} = V = L(V,0) is a maximal isotropic as we have seen in Section From this we can obtain more
pure spinors by simply applying a spin transformation to the spinor 1. For example, let B € A?(V*). Then
p=e"BA1l=e"Pisalso a spinor. We can find its null space by noticing that, for X € V

(X+ixB)-eP=(X+ixB)-(1-B+...)=
=—ixBAN14+BAixl+ixBAN1—ixBANBZ=
~BAixl1=BA(X-1)=0 (5.46)

where we have used that 1 is annihilated by the maximal isotropic V. We have considered only first order terms
in B, but one can verify that this result holds at higher degrees. So we can write the null space

Los ={X+ixB| XeV} (5.47)

It’s obvious that dim(L,-z) = n, since there is an indipendent vector for each indipendent X € V. Moreover
it’s quite evident that we can recover L,z by simply shifting the dual component of L(V,0) with the B-action.
We can eventually write

L,-s={X+ixB| XeV}=L(V,B) (5.48)

Let us give another simple example. Let w € V* be a non-zero dual vector. Its null space is given by
L,={X+¢cVaV" XecKer(w) and &€ Span(w)} = L(Ker(w),0) (5.49)

since we can see ixw as a map w : X — R, and Span(w) = {cw € V*| ¢ € R}. This is a maximal isotropic,
then w is a pure spinor and therefore also e Bw is.

Every maximal isotropic subspace of V & V* is associated with a line bundle (lying in the representation
space A(V*)) which is that associated to the respective pure spinor. Let us be more precise

Proposition 5.1.2. Let L(E,0) = E @ Ann(FE) be the maximal isotropic associated with subspace E C V
such that ¢(F) = k. Then the data L(E,0) = E ® Ann(F) is equivalent to the pure spinor line bundle

det (Ann(E)) c A¥(V*) (5.50)

In fact, let ¢ = 61 A --- A 6) be any non-zero element of det (Ann(FE)). Then (X +&)- ¢ = (ix +{N)p =0
if and only if X € F and £ € Ann(E). This is equivalent to say that X + £ € L(E,0).

Now, as we have seen in Section [5.1.1] every maximal isotropics can be expressed as the B-transform of
L(E,0), once one chooses a B € A%2(V*) such that € = i* B. Remember that i : E — V is the natural inclusion,
and then ¢ € A%2(E). So, even if ¢ ¢ A2(V*), with an abuse of notation we can write

L(E,¢) = ¢“(L(E,0)) (5.51)

where ¢ represents just any B € A?(V*) such that i*B = e. Finally we can give the obvious generalization of
the Proposition [5.1.2

Proposition 5.1.3. Let L(F,¢) be any maximal isotropic. Then the pure spinor line U;, defining it is
UL = e “det (Ann(E)) (5.52)
where, again € represents any B € A?(V*) such that i*B = e.

In other word, if {61,...,0x} is a basis for Ann(E), and if B € A%(V*) such that ¢ = i*B, then the pure
spinor associated to the maximal isotropic L(F, €) is

or=ce PO A NO c e R/{0} (5.53)
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5.1.4 Complexification

We can extend by complexification all the results we have obtained until now in the present Chapter.

First of all we can extend the inner product 7 to the complexified one
n:(Vavex Vaev)tscC (5.54)

Let V be a real vector space such that dim(V) = n. A maximal isotropic subspace L C (V @ V*)€ of type
t(L) € I? is equivalently specified by

1. A complex subspace L C (V @ V*)C, maximal isotropic with respect to  and such that E = mcL has
dimc(E) =n — k.

2. A complex subspace E C V® such that dimc(E) = n—k, together with a complex dual bivector e € A?(E*).
3. A complex spinor line U, C A(V*)® generated by
op =ce”BHWg A A0, ceC/{0} (5.55)

where {0; }icr, are linearly independent complex dual vectors in V*, while B and w are the real and imaginary
part of a complex dual bivector on A%(V*)C. As usual, when one complexifies a space, has to pay attention to
the effects of the conjugation on it. The main consequence here is given by the following

Definition 5.1.6. Let L C (V & V*l‘c be a maximal isotropic subspace. Then LN L is the complexification of
some real subspace K , namely LN L = K€, where K € V @ V*. The number

r(L) = dimc (LNL) = dim(K) (5.56)

is the real index of the maximal isotropic L.

5.2 Generalized Geometry

As usual in differential geometry the next step is to transport the linear algebra of V& V* on a smooth manifold
M. 1In this perspective we will define the generalized tangent bundle, which as the same name suggests is a
generalization of the tangent bundle 7. This is a delicate step, since it’s the point in which we introduce an
object which is central in the work, namely the closed three-form H, which plays a fundamental role in the
theory of compactification developed in Chapter 6} Moreover, we have also to study the theory of pure spinors
in the generalized geometry. They are central both in the definition of certain important structures on the
generalized tangent bundle and because T-duality takes a particularly simple form if written in terms of pure
spinors.

5.2.1 The generalized tangent bundle

The most immediate way to transport the machinery of V & V* on a smooth manifold M is to consider the
generalization of the tangent bundle T" defined as

TerT: (5.57)

This is a bundle over the smooth manifold M, with trivial projection 7 : T & T* — M. However, as we will see,
we are interested in incorporating a closed three-form H € H3(M,R) in the construction of the generalization
of the tangent bundle. Such a three form is used to twist the fibration of T'@® T, and it plays a fundamental
role in the compactification of the superstring theory with Neveau-Schwarz flux. Let us probe how it works.

We have seen in Chapter [2| that a closed two-form F € H?(M,R) induces the definition of a U(1)-bundle.
In the same way a closed three-form H € H?(M,R) defines a more general object which is called a gerbe.

Let M be a smooth manifold, and let {(Uy, ¢a)}acr be an atlas of M. Now consider a set of maps defined
on triple overlaps
Gapy i Uapy = S (5.58)

which satisfy the cocycle conditions

-1 -1 -1
Gapy = 9Bya = GyaB = ga'yﬁ = g’yﬁa = gﬁa’y (559)
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as well as
Japy = 9Bas = G5 = Ysay = 1 (5.60)
in each quadruple overlap Uqg-s.

The important point however is a consequence of the Poincaré Lemma, which starting from a closed three-
form H € H?*(M,R) allows us to to write the following chain of descent relations, also called the connective
structure of a gerbe

H =dB, B, € NPTy, (5.61)

Bo — Bs = dAup Aup € M T v, v, (5.62)

Aag + ABW + AVO‘ = dAagA/ Aoéﬁ7 S Coo(Uagw) (5.63)

Aapy + Agas + Aygs + Asay = dagys dagys € Z (5.64)

From this chain of relations we can see that the transition functions
9apy : Uapy - S5
p s ethasy(P) (5.65)
satisfy the cocycle conditions in Equations (5.59)), (5.60) and then define a gerbe.

The descent relations in Equation (5.61) are particularly important to us, because their elements can be
used to define the twisted generalized tangent bundle via the extension of the tangent bundle T’

0O — T — E & T — 0 (5.66)
The fibration is specified by the patchings in the overlaps Uqg
Xo+&a = LapXp + Log&s + ir,,x,(dAap) (5.67)

where L € GL(n,R) and X, +¢&, € E|y,. In other words E is a nontrivial fibration of the cotangent bundle T*
over T. In fact the twisting defined by the last term in Equation must be added to the usual GL(n,R)
action on vectors and one-forms. The twisting term contains the gerbe data dA,s3. Each section of the general-
ized tangent bundle can be written locally as the sum of a vector and a form, and it is called a generalized vector.

It’s worthy to notice that if H € B3*(M,R), then dA,s = 0 and then the generalized tangent bundle F can
be reduced to the trivial one 7' T*.

The generalized tangent bundle encodes a natural O(n,n) structure, which is inherited by the metric in
Equation (5.1) so that in each open set U,

Mt ) = 3 (€a(Xa) + 70 (¥2)) (5.69)

where v,, Wy, € E|y, and v, = X4 + &ay wa = Yo + 1o. The central point here is that the O(n, n) structure is
preserved by the patchings in Equation (5.67)), in fact one can easily find that for each Ug,g

N(va, wa) = n(vg, wps) (5.69)
It follows that the O(n,n) actions which we studied in Section are well defined locally on the fibers
of E, and they preserve the metric . Moreover, since the patchings in Equation (5.67) are actually GL(n,R)

actions on the fibers, followed by B-actions with a closed B, the structure group of the generalized tangent
bundle E is reduced according to the pattern

O(n,n) — T(R) (5.70)
where I'(R) is the semidirect product defined by
I'(R) = Gp x GL(n,R) (5.71)

where G p is the subgroup of O(n,n) of the B-actions with B a closed two-form. The last Equation means that
cach element in I(R) is the product of two elements in O(n, n) belonging respectively to Gp and to GL(n,R).
Moreover in the action over the fibers of the generalized tangent bundle, each element of T'(R) acts firstly by
multiplication of the GL(n,R) part.

Finally we can define a natural bracket on generalized vectors, which is a generalization of the Lie bracket.
In fact
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Definition 5.2.1. Let M be a smooth manifold and F the generalized tangent bundle induced by a three-form
H € H3(M,R). The Courant bracket is defined as

(X +&Y 4+nc=[X,Y]+Lxn— Ly - %d(ixn —iy§) VX +EY+neX(E) (5.72)

It’s obvious that the Courant bracket is defined locally on sections in X(FE), but we will omit the subscript
«, B where this doesn’t create confusion.

It’s immediate that on vectors the Courant bracket reduces to the Lie bracket [X,Y], while on forms the
Courant bracket is 0. The Courant bracket isn’t really a Lie bracket, since it fails to satisfy the Jacobi identity
[14].

It is particularly important to study the symmetries of the Courant bracket, because as we will see they
encode the differential structure of the generalized tangent bundle E. As we saw in Chapter[2] the Lie bracket is
a canonically defined structure over a smooth manifold, namely it’s invariant under diffeomorphisms. Moreover,
it can be proved that there are no other symmetries of the tangent bundle preserving the Lie bracket.

For the generalzied tangent bundle E the situation is more involved because there is an additional symmetry,
given by the B-transformations seen in Section In fact

Proposition 5.2.1. The map exp(B) is an automorphism of the Courant bracket, namely
[eBv, ePuw)c = eP v, w]c Vo,we X(F) (5.73)
if and only if B is closed, namely dB = 0.

In fact let X +&,Y +n € X(E) and let B € AT*. Then

[GB(X —|—§),eB(Y—|—77)]C = [X +&+1xB,Y +1n +iYB]C = [X + &Y +77}C + [X, iYB]C + [ixB,Y}C =
= [X +&Y +n)c+ LxiyB — idixiyB — Lyix B + idiyix B =
=[X+&Y +nlc+ LxiyB —iy&xB +iyixdB = [X + &Y +n)c + [x,iyB] +iyixdB =
=[X+&Y +1)c +ix,y)B +iyixdB = eB([X +&Y +nle) +ivixdB (5.74)

where we have used the definition of the Courant bracket and the fact that {ix,iy} = 0. Then exp(B) is an
automorphism of the Courant bracket if and only if

ixiydB=0 VX,Ye€X(M) & dB=0 (5.75)

Then the group of transformations which preserve the Courant bracket is the same semi-direct product as
in Equation (5.71). In this way the diffeomorphism group of the tangent bundle is substituted by the geometric
group I'(R).

In the case of the tangent bundle T, the Lie derivative of a vector field is exactly the Lie bracket, which
encodes the infinitesimal action of the diffeomorphism group. In the same way the infinitesimal action of the
geometric group I'(R) is encoded in a generalization of the Lie derivative £. We define the generalized Lie
derivative

Low=LxY + 257] - Zy(df) (576)

where v = X +&,w =Y +n € X(F). We notice the misleading fact that the infinitesimal action of the geometric
group doesn’t translate in the action of the natural bracket on the generalized tangent bundle, but it is encoded
in the Dorfman bracket [,|p defined as

[v,w] = £xY + Len — iy (d€) (5.77)

Nevertheless it’s easy to see that the Courant bracket isn’t but the antisymmetrization of the Dorfman one [4§],
so that the information contained in one of them is encoded by the other one too.

5.2.2 Linear generalized complex structures

As the same name suggests, GCG is a generalization of the usual complex geometry seen in Chapter [4f More
precisely is a generalization of the complex and symplectic geometry, which contains them as particular extreme
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cases. Asusual, we will begin by studying the linear version of the structures we are going to study on a manifold.

Let V be a vector space, and let V* be its dual space. We have to consider the endomorphisms of the vector
space V @ V*. Furthermore, it is important to remember that we can identify the dual space (V @ V*)" with
V @ V* itself. Then we give

Definition 5.2.2. Let J: Vo V* - V@ V*. If Jis both a complex structure and a symplectic structure, then
J is a generalized complex structure on V.

In other words J is a generalized complex structure if both the following relations hold
P=-1 F=-3 (5.78)
as we remember from Sections [4.1] and 2271 Moreover

Proposition 5.2.2. J € End(V & V™) is a generalized complex structure if and only if J is a complex structure
on V @ V* and it is orthogonal with respect to the inner product 7, namely if J*J = JJ* = 1.

In fact, if J is a generalized complex structure then J* = —J. Multiplying both sides for J we get JJ* =
—3J% = 1, since J is also a complex structure. This tells us that J is orthogonal. Also the converse is quite
obvious, in fact if J is complex and orthogonal then we can write

II=1 = FP=-3=3 (5.79)

The usual complex (J € End(T)) and symplectic (w € End(T*)) structures are embedded in the notion of
generalized complex structure in the following way. Consider the endomorphism whose matrix representation

on VoV*is
. (-] 0
u=(3 ) (5.50)

It’s straightforward to see that 33 = —1 and that J% = —J s, namely that J; is a generalized complex structure.
Consider also the endomorphism

~ 0 w!

=0 %) (58)

where w is the usual symplectic structure. Again, J, is a generalized complex structure, as can be straightfor-
wardly shown. In other words, the diagonal and the antidiagonal generalized complex structures correspond to
the complex and symplectic structures. As it is intuitive, there is a set of generalized complex structures that
interpolate between these two extremal cases. The next goal is to understand how this mechanism works. The
first point that we have to notice is given by the following [14]

Proposition 5.2.3. The specification of a generalized complex structure J is completely equivalent to the
specification of the complexification of a maximal isotropic subspace Ly C (V @ V*)C of real index r(L) = 0.

In fact, if J is a generalized complex structure the condition J2 = —1 implies that (V @ V*)C can be de-
composed into the direct sum of a +i-eigenbundle, and a —i-eigenbundle, as in Equation [f.7] Let Lz be the
+i-eigenbundle. Then if v,w € Ly we have that n(v,w) = n(Jv,Jw) = n(iv,iw) = —n(v,w) where we have
used the orthogonality of J as seen in Proposition and the bilinearity of 7. n(v,w) = —n(v,w) implies that
n(v,w) =0 Vwv,w € Ly, and then Lj is isotropic. Since the +i-eigenbundle has complex dimension equal to n,
then Ly is a maximal isotropic. Finally, since Ly will be the —i-eigenbundle, then we have that Ly N Ly = {0}.
Conversely, given a maximal isotropic Ly such that (L) = 0, we can simply define the generalized complex
structure J as the map which has Ly as the +i-eigenbundle, and Ly as the —i-eigenbundle.

As it seems to be intuitive, a vector space V admits a generalized complex structure if and only if it is even
dimensional. Moreover it can be shown that by equipping the (V @ V*)C bundle with a generalized complex
structure is equivalent to make a reduction of its structure group from SO(2n,2n) to U(n,n) [14]. This seems
to be very similar to what happens when one equips a manifold with a complex structure (see Section .

Now we can see some examples of generalized complex structures [14]

Example 5.2.1. Symplectic type t(L;, ) =0
The generalized complex structure J,, over (V @ V*)C in Equation (5.81) determines a maximal isotropic

Ly, = {X +iw(X)] X eV®} (5.82)
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which is also the +i-eigenbundle of the generalized complex structure J,. In fact using orthogonality of J, we
have (X +iw(X), X +iw(X)) = n(Ju (X +iw(X)), Ju (X +iw(X))) = n(iX —w(X),iX —w(X)) = —2iw(X, X) =
0 VX € VC. Moreover, by using Proposition , we get that the spinor line Up;  is generated by the spinor

oL, =e ™ (5.83)

This generalized complex structure has type t(L3_) = 0, since dim (myc(L)) = n. Remember that a B-transform
doesn’t change the type. Hence we can transform by a B-field and obtain another generalized complex structure
of type ¢t = 0. For example

_BA wlB w L
e P Jue” = (—w — Bw™'B —Bw‘1> (5.84)
ePLy = {X+ (B+iw)(X) XeV® (5.85)
Pepp, =€ DY (5.86)

This is a B-symplectic structure. Any generalized complex structure with vanishing type is the B-transform of
a symplectic structure.

Example 5.2.2. Complex type t(Lj,) =n
The generalized complex structure J; over (V @ V*)C in Equation (5.80) determines a maximal isotropic

Ly, =V ev+to (5.87)

which is in the form E®Ann(E), where E = V10 € V and V! ¢ VCis the —i-eigenspace of .J as we have seen in
Section In fact, using orthogonality and bilinearity we can easily get n(v, w) = —n(v,w) =0 Vov,w € Ly,.
Moreover, by using Proposition one gets that the spinor line is obviously generated by det(Ann(V01)),
namely

or,, =Q° (5.88)

where Q™0 is a generator of A™%(V*) and dim(V) = n. If we make a B-transformation we obtain

B~ B _ —J 0
e e = (BJ+ B gt (5.89)
eBLy, ={X+&6+ixB| X+¢eVilgy (5.90)
PeBL,, = e B0 (5.91)

This generalized complex structure has type t(L3,) = n, and it can be shown [14] that any generalized complex
structure of type t = n is the B-field transform of a complex structure.

5.2.3 Almost structures and integrability condition

Similarly to what we have seen in Section [£.1.1] if we want to transport linear generalized complex structures
on a manifold, firstly we have to define an almost generalized complex structure and then we have to specify an
integrability condition for it.

We can introduce the generalization of an almost complex structure in several ways, in fact

Definition 5.2.3. Let M be a smooth manifold such that dim(M) = 2n. A generalized almost complex
structure is given by the following equivalent data

1. An almost complex structure J on E, which is orthogonal with respect to the metric 7, namely
n(Ju, Jv) = n(u,v) Vu,ve T HT* (5.92)

or in other words
JI3=33"=1 (5.93)

2. A maximal isotropic subbundle Ly C (T @ T*)C of real index r(L3) = 0, namely such that Ly N Ly = 0
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Moreover, as we will see in Section [5.3.3] we can define it also by using the pure spinors. From 1. in Definition
we understand why J is called generalized complex structure, by comparing with Definitions and

Next we can focus on the definition of a condition of integrability for a generalized almost complex structure.
As we will see it interpolates between the two integrability conditions which we already know, that is dw = 0
for the symplectic case (where w is the fundamental form), and [T1°, 719 c T10 for the complex case.

Definition 5.2.4. The generalized complex structure J is integrable if its +i-eigenbundle Ly C E€ is Courant
involutive. Alternatively, a generalized complex structure is an involutive maximal isotropic with real index
T(L3) = 0.

Next we can mention one of the most remarkable results of the GCG [14] 15].

Theorem 9. Generalized Darboux Theorem

Let M be a smooth manifold and let E be the generalized tangent bundle induced by the closed three-form
H € H3(M,R). Let M be endowed with a generalized complex structure J over the generalized tangent bundle
E. Then for each p € M which is a regular point, there exists a neighborhood U of p which is equivalent to the
product of an open set in C* and an open set in the symplectic space R"2%, defined by the standard symplectic
two-form, where k is the type of the generalized complex structure.

Since the portion of the symplectic and complex component of the local product is fixed by the type of the
generalized complex structure, which is constant in a neighborhood of a regular point, but in general can change
on the manifold, a particular phenomenon can arise, called type jumping [14].

5.3 Generalized Kahler geometry

Finally we can generalize the concepts of Kihler and Calabi-Yau manifolds to the generalized complex case.

5.3.1 Generalized metric

The Definition of a Kahler manifold provides for the presence of a Riemannian metric on the manifold
M. Then reasonably we have to define a Riemannian metric on the generalized tangent bundle E, before
to generalize the concept of Kéhler manifold to the generalized complex case. The O(n,n) structure of the
generalized tangent bundle F is fundamental, in fact we use the indefinite metric 7 on E to give the following

Definition 5.3.1. The generalized metric is a subbundle Cy C E such that dim(C;) = n on which the
metric induced by restriction of 7 is positive definite.

After denoting the orthogonal complement of C; by C_ (on which the induced metric by 71 is negative
definite) we obtain that G is a bilinear form on the tangent bundle E defined as

G:ExE — R
R (5.94)

is positive definite and symmetric, since 7 is. It obeys to the constraints
GP=1 G'=6G (5.95)

which is clearly diagonalizable with eigenvalues £1, and Cy are just its +1-eigenspaces. We can define the

projectors

P = %(1 ¢ P - %(1 +6) (5.96)

which project respectively on the +1-eigenspace and on the —1-eigenspace.

The definition of the generalized metric is equivalent from a topological point of view to the reduction of
the structure group from O(n,n) to O(n) x O(n) [14].

After having complexified the generalized tangent bundle E to obtain

E€ (5.97)
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we can make a further reduction to U(n) x U(n) by introducing an almost complex structure which is compatible
with the almost generalized metric G. This requirement translates into the condition

IG=GJ (5.98)

We can observe that
(GI)? =-1 (5.99)

in fact (GJ)? = GIGJ = G(JJ)G = —G% = —1, so that it defines a further generalized complex structure.

The last arguments lead us to the intuition that, as well as for the K&hler geometry a pair structures are
needed to fix the theory - like the complex structure and the fundamental form then also in the generalized
complex case a pair of structures is necessary. These are obviously a pair of generalized complex structures.
This discussion finds a formalization in the following ultimate [14]

Definition 5.3.2. A generalized Kahler structure is a pair (J1,J2) of generalized complex structures such

that
1- [31732} = O
2. G = —J13J, is a positive definite metric on the generalized tangent bundle F.

Here is evident that 1. is a the most obvious generalization of the invariance of the fundamental form under
the action of the complex structure, in Equation (4.57). On the other hand 2. is the natural generalization of
the fact that, from Definition [£.2.7] we get

w=Jg = Juw=Jg=—g (5.100)
We can recognize the classical Kahler and symplectic structures by studying the following [40, [14]

Example 5.3.1. Let (M,g,J,w) be a Kahler manifold and consider the trivial generalized tangent bundle
E =T @®T*. The definition of the generalized complex structures J; and J,, are given in Equations (5.80) and
(5.81). It is immediate to see that [J7,J.] = 0 using the fact that JTw = wJ~! = —w.J. Besides

-1

_ ~~n (0 g
G=-Js3w= (g 0 ) (5.101)

is a positive definite metric on 7' @ T*. Hence the pair (Js,J.) defines a generalized Kéhler structure.

It’s straightforward to see that we can obtain new generalized Kéahlerstructures from a pair (J1,J2) by
applying B-transforms, for any B-closed forms. In fact the pair (J7,32) = (BJ1 B!, BI2B 1) defines a new
generalized Ké&hler structure, since the condition 1. in Definition [5.3.2]is not modified

38,38 = [B31B 7, B3B ] = BB B3B! — BB 'BH B! =B[§,3.]B =0 (5.102)
and also condition 2. is preserved, since
P38 = BH B IBIB T = By 3B = —BGB~! = —GP (5.103)
and G® is positive definite too, since B is orthogonal, as we have seen in Section

By applying a B-transformation to (Js,J.) we obtain

J 0 w B _w-t
~B __ ~B
JJ - (BJ+ JTB _JT> L‘w - (W + Bw_lB —Bw‘l) (5104)
and ) 1
B _ -9 B '
G" = <g_ Bg'B Bg_l) (5.105)

where g — Bg~!' B is a Riemannian metric for any two form B, restricted to the tangent bundle.

It seems that each metric can be obtained from a Kahler metric by B-action. However this is not always the
case, since when B is not a closed form, the structure obtained are well defined only on the generalized tangent
bundle E, whose transition functions encode the non-closed B field. In conclusion, a generalized Kéhler structure
is not the B-transform of a generalized Kahler structure defined on the trivial generalized tangent bundle, but
it can be a more general structure, which encodes highly non-trivial patchings such as those of a generalized
tangent bundle.
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More generally it can be shown [14] that, given any generalized Kahler structure, the generalized metric

takes the form
—1 —1 —1
_ —-g B g . 1 0 0 g 1 0
= <g _Bg—'B Bgl> = (B 1) (g o)\ 1 (5.106)

Namely a generalized Kahler metric is completely determined by a Riemannian metric g together with a two-form
B € AT*. Finally it’s useful to know that

Proposition 5.3.1. C is locally the graph of B+ g¢g: T — T*.
Proposition means that if we write the conditions which determine C, namely

-1 -1
“( B EIQ-() e o

we obtain for example from the first Equation ¢g7!BX + g~ '¢ = £X, or in other words £ = (B 4+ ¢g)X. The
second Equation is automatically satisfied.

5.3.2 Vielbein formalism

Despite of the name, the generalized metric is conveniently seen as an automorphism of the generalized tangent
bundle. We know that G is a symmetric tensor

G=G" (5.108)

However, due to the the definition of the transpose map *, the matrix associated to G in Equation ({5.106]
doesn’t look actually as a symmetric matrix. This is due to the fact that each block of the matrix represents a
different map, namely

g 'B: V' - Vgt VY sV (5.109)
g—Bg'B: V — V* Bg™l: V' — V* (5.110)
and then their transposes are
(~g7'B)": V. = V' (g VeV (5.111)
(9—Bg™'B)*: V* = V  (BgY): V = V (5.112)

In this framework is immediate to recognize that the transposition amounts to transpose the matrix with
respect to the secondary diagonal. This can be easily achieved by noticing that, written in components

_( ~W'B) 97
€= (!h‘j — (Bg™'B);; (Bg—l)if> (5.113)

where the top indices act on components of a form, while the bottom indices act on the components of a vector.
For example g% acts on the components of a form &; and returns the component of a vector. In this framework
it is simple to understand that for example an object such as

04 X1 = 05X (5.114)
acts on the components of a vector and returns the components of a vector. The same happens for forms
0,': & = 0% (5.115)

While an object which has the indices on the same line, has a transpose in the usual meaning of the term. The
use of index notation which in this case help us to understand why the notion of transposition is not the usual
one, in general is a very useful way to perfom calculus in the generalized complex framework.

In order to achieve the usual meaning of transposition with respect to the primary diagonal of the matrix,
we can simply multiplicate the generalized metric by the indefinite metric 7, which has matrix

_ (0 &'
n= (5/ 0 ) (5.116)
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and then one obtains
9— By 'B Bgl)
H=nG= = - 5.117
n < —g 1B g 1 ( )
or written in terms of components
— Bg~'B);; (Bg—l),j
g— (g 9™ Bij g )i (5.118)
( —(g7'B); (6=)Y

which is symmetric in the usual sense.

We can introduce two sets of n ordinary vielbein which form two basis respectively for C.

{ex}  {éx} (5.119)
such that é4 are the inverses of e, namely
el ey =07 eel. =0 (5.120)
They obey the obvious relations
(5.121)

i = §abe‘j:iebij g” = éi‘:aéib(sab
We take ex to be a basis for C.. With this conventions we can build a set of 2n generalized vielbeins {E}

(5.122)

which parametrize the coset
O(n,n)
7(0(n) x O(n)

In particular if one explicitly writes

1 (e —¢élB el 1 (eT(g-B oT
RV (—e+ T ﬁ) s (_ST(‘Z(]H;) ﬁ) (5.123)

the metrics 77 and H take the form

_ T 1 0 T 1 0
n=E (0 ) E =67, )F (5.124)
Let us notice that the O(n) x O(n) acts by the left and simply rotates the set of vielbeins with a matrix of
the form
(O 0
Ew KE K = ( ) 0> (5.125)

where O1 € O(n).
The action of O(n,n) is much more interesting, since as it can be easily seen by using the indices formalism,

it acts on the generalized metric H as
H — OTHO (5.126)
where
a b
0= <c d> (5.127)

By using Equation (5.124) and the fact that O € O(n,n) acts on generalized vielbeins by the right
E +— EO (5.128)

we immediately find the transformation rules for the ordinary vielbeins
ep > [dT+b0T(B+g)les=¢y e [dT +bT(B—g)lée- =c_ (5.129)
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5.3.3 Spinor bundle in GCG

The complete machinery of the GCG can be equivalently described in terms of spinors. This alternative de-

scription is very useful for many purposes, since it reduces to work with forms, which are particularly easy to
handle.

We can also transport the machinery developed in Section [5.1.2] on a generalized complex manifold. In
particular the Clifford action of a generalized vector is now defined locally on forms ® € ATy, . Its action is
given by

Vo - @ =ix,Po + & N Py (5.130)
where v = X +£. As usual we will drop the subscript o which refers to the open set U,, where it is unnecessary.
After introducing the Spin(n,n) gamma matrices {I';, I} we can rewrite the last Equation

X-®=(XT;+ 600 (5.131)

Since the forms are twisted in the overlaps U,g by a two-form dA,g as described in Equation (5.67)), the
requirement for the Clifford action in Equation to be globally defined, ®* € S*(E) have to obey the
following patching condition

D, = eMer @y (5.132)

which means that
=P ol =P oy (5.133)
is globally defined on S*(E).

A crucial point is that the exterior derivative is well defined on S*(F), since it is identifiable with AT,

and it maps
d: STE) — ST(E) (5.134)

As we mentioned at the beginning of the Section, every geometric properties of a generalized complex
manifold can be rewritten in terms of pure spinors. Their Definition is identical to the linear case, Definition
b.1.5 Then we can immediately observe that a pure spinor ® can be associated to each generalized complex
structure J by the relation

Ly =Ly (5.135)

where L¢ is the maximal isotropic subbundle which define the pure spinor, while Ly is the +i-eigenbundle
associated to the generalized complex structure J.

Using the vielbeins defined in Equation (5.123) one can introduce a basis to diagonalize the O(n) x O(n)
structure induced by a generalized metric. In fact

+ [ eT (I'+(g— B
<F> _ET (F> _ [\ e= BT (5.136)
r I eT (T —(g+ B
such that

(TH Ty =0  {TH T/} =26,  {T;,T;} = —20u (5.137)

The main point is that one can decompose the Spin(n, n) spinors in representations of Spin(n,0)x Spin(n, 0).
In fact, if -, are the Spin(n,0) matrices, then one can write

I =y ®1 Do =7®7 (5.138)

where 7 = 71 - - - ¥, is the volume form of the Clifford algebra, as defined in Equation (3.1.6). Equation ([5.138)
is true only in the case in which n is even and % is odd, which is the relevant one to study SU(3) x SU(3)
structures in the next Section.

The corresponding decomposition of Spin(n,n) pure spinors ®* is written
Pt=nieni+ntent o =plent+nleont (5.139)

where 74 is a chiral Spin(6,0) pure spinor, while n_ is a chiral Spin(0,6) pure spinor. They obey the
relations
—iyrne =Nyt (5.140)

namely they have the same chirality.
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5.3.4 SU(3) x SU(3) structures

The obvious generalization in CGC of the SU(3) structures we mentioned in Section is given by a pair of
them. The result is a SU(3) x SU(3) structure.

As we have seen the introduction of both a generalized complex structure J and a compatible generalized
metric G on a smooth manifold M reduces the structure group to U(n) x U(n). One further reduction can be
achieved if one can define a pair of indipendent SU(3) structures

(w1, ) (wa, Q2) (5.141)

as in Section (.3

The SU(3) x SU(3) structure can also be determined by a pair of globally defined, non vanishing pure
spinors (n},n%). In fact SU(3) x SU(3) is the subgroup of O(6,6) under which they remain invariant.

The link between the two formulations is given by the relation
3% =~y Ofy = =it yienk (5.142)
Tig = =137 Qp =~ Yigurly (5.143)
where 7’ is the charge conjugation of the spinor ni, namely
n- =Cn* (5.144)

where C is the charge conjugation matrix such that v = —C~1v,C.

A third way to define a SU(3) x SU(3) structure is to encode the information given by the two invariant
and nowhere vanishing spinors (771+7 ni) in a pair of Spin(6,6) pure spinors as in Equation (5.139)

dt=pienl+nlent o =nlent +nlon} (5.145)

The two SU(3) structures are defined respectively on Cy and on C_. We define two sets of vielbeins {e{ }
and {e® } respectively on C; and on C_, so that the two SU(3) structures take the nice standard form

wr =el Nel+edl nel +ed nel (5.146)

Qx = (el +iel) A (e +iel) A (el +iel) (5.147)

Even if it is not necessary, usually one assumes that e, = e_ for simplicity. Moreover we can introduce the
curved gamma matrices, which are simply defined by the relation

i = v (5.148)

The main idea to proceed is that the Spin(6) spinors (nL, %) form an angle which is not necessarily constant
throughout the manifold M. Let us denote by n_ the charge conjugated of 1. Then we can write in general
the decomposition

0

, 1.
n3 = e cos(p) + iz’ sin(g)yint (5.149)

where the angle ¢ denotes the angle between 7} and 73, and varies in the interval 0 < ¢ < Z. z* is such that
|z|? = 2. Now consider the mutually orthogonal spinors

1 .
e X+ = 52— (5.150)
such that
NNt =1 Xix+ =1 Nyx+ =0 (5.151)
We can rewrite
nh=efne ol = e (cos(p)ny +sin(@)x4) (5.152)

Note that at points where sin(p) = 0, the spinor x doesn’t need to be defined. In the other points on the
manifold the orthogonal spinors 7, and x4 define a local SU(2) structure, which is simply described by

2 =T_7"x4 (5.153)
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i _ i_
Wij = i T 5 X Yig X+

Qij =X Viin+

Then in general the pure spinors defining a SU(2) local structure take the form

O+ = ¢ BHENE (o= iE W)

O = B, (kleﬂ‘j + ikHw)

(5.154)

(5.155)

(5.156)

(5.157)



T-duality

6.1 T-duality for the NLSM
We define the NLSM as the theory of maps
p:X—M (6.1)

where Y is a compact Riemann surface called the worldsheet, while M is a Riemann manifold called the target
space. Let us assume that dim(M) = D > 2. In order to completely define a NLSM we need also some geometric
data about the target space, that is

e A Riemannian metric g.
e A closed three-form H € A3T™.

The generic action for a NLSM can be written as a sum

So=8Sp+Swz (6.2)
where Sp is the Polyakov action
1 . .
Sp = 5/ d*oc Vhh" gi;(X)9,X'9, X’
b
1 . ,
= - / gijXm A xd X7 (63)
2Js

and hy, is a pseudo-Riemannian metric on the worldsheet ¥ (h = det(h,,)), while {o#},c1, are the local
coordinates on the worldsheet 3. d?0 = do! A do? and in the second expression we note that dX* denotes the
pullback to a worlsheet one-form dX* = ¢*(dX") = 9,X"do". The subscript 0 in Equation means that
the action in ungauged.

Often we will take h,, to be the flat pseudo-Riemannian metric in two dimensions h,, = 7., and 1y =
—n11 = 1, so that with this choice of gauge the action becomes

1 . )
Sp = 5/ d20' gijaqua“XJ (64)
b

X7 are the local coordinates on the target space, which locally describe the map ¢. Sy 7 is the Wess-Zumino
term associated to the three-form H defining the NLSM. If H is exact, so that we can write H = db, then Sy z
takes the form

1 -
Swz= 3 / Ao "bi;(X)0, X0, X

b
_ /E b (6.5)

where b = %dXi A dX7. We can rewrite in terms of H

1 . .
Swy= L / Bo P H(X)0,X0,X79,Xk

3 Ja
- / 6 H (6.6)
Q
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where € is any three-manifold such that 0Q = ¥, and H = £dX* A dXJ A dX*.

If H is not exact, then the action depends on the choice of €2, but the difference between two different choices
takes the form

Swa(®) = Swa@ = [ o= /¢ oot (6.7)

where ' — Q is the three-manifold obtained by glueing Q' to © along their common boundary with opposite
orientations. The result is a topological number which depends only on the cohomology class of H and on
the homology class of ¢(2' — Q). Since it is only a number, it doesn’t affect the classical equations of motion.
However it could lead to an ambiguity in the quantum theory, since the Euclidean functional integral

/ [dX]e=S (6.8)

should be modified by a phase exp (z / S(—Q) H ) The ambiguity is eliminated and the functional integral well

defined if )

—[H] € H3(M,Z .
L (H] € B (1.2) ©9)
i.e. if 5-[H] is an integral cohomology class.
Let us notice that by introducing the light-cone coordinates 0* = —= (¢” £ o) we can rewrite
S = / d?c €0+ X'0_X7 (6.10)
)
where €;; = ¢i; + b;j. We assumed that Ol =1.

Let us study how a transformation of the fields of the form
X' =d'K} (6.11)

affects the NLSM. For the moment let us consider only global transformations, that is transformation such that
« is a constant. Firstly, let us notice that

68 = / d*oc ol [K[Okgij + gijOi K} + gin0; K[ 0" X9, X7 (6.12)

so that 65 = 0 if and only if Klkakgij + gkjaiKlk +gikajKlk =0 VIel;(d<D), namely if and only if K; is
a Killing vector for each I.

Since we are studying the context of T-duality, we will deal only with abelian isometry groups. We also
notice that

5Swz = / d?0 o'K}H;;1,0,X70,X*e (6.13)
2

which is a surface term only if i, H = KliHijk is an exact two-form. This means that there must be a set of
globally defined one-forms v; such that

iKIH =du; Viel, (614)

The compactness of X assures that the transformation in Equation (6.11)) leaves invariant both Sp and Sy z.

6.1.1 Gauging the NLSM

The gauging of an abelian isometry, as it is well known, is extremely simple. It consists in promoting the
symmetry in Equation (6.11)) to a local one, by simply replacing the constant « with a parameter which depends
on z and by introducing a set of connections C!. As we Know from Chapter [2| the connection transforms as

6C! = do! (6.15)
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The gauged version of the action Sp is trivially provided by the minimal coupling

1 , ,
SG = 3 / d*c  gi;D,X"'D, X7 (6.16)
b
where the covariant derivative is ‘ ‘ ‘
D, X'=09,X"-C!K} (6.17)
while the field-strenght is given by
@' = ac' (6.18)

In order to gauge the Wess-Zumino term we have to proceed to successive additions of terms, each of which
cancels the variation of the previous one. In particular one obtains that the complete gauged Wess-Zumino
term is given by

SG, = Swz + S1+ So (6.19)
where
S1 = / d*o e‘“’ALvliayXi (6.20)
b
serves to cancel .Sy 7. Moreover
1 v .
Sy = 3 /E d’c e ’Umi‘Kfn]ALAT (6.21)

serves to cancel §.51. Fortunately, if the (sub-)group of the isometries which are gauged is anomaly-free (that is
the case of an abelian isometry group in two dimensions) we have that §Ss = 0.

We can rewrite SS,, in the good-looking way
1 . A ,
SG 4 = /Q do {SHijkDﬂXZD,,XJDPX’“ + %fwv”DpX’} (6.22)
so that the whole action takes the nice form

1 ) .
5S¢ = 5/ 9i; DX AN *DXI +/
P

1 . , _
{3H¢jkDXZ ADXIANDXF + 4" A UMDXZ} (6.23)
Q

In [46] [47], [TT] it is shown that the costraints which are needed for gauging the NLSM are

1. ix, H = dv; for some globally defined one-forms v,.

2. L, H =0.
3. ’Q’Kl Um = 0.
4. ig,ik, H = —dB, for some antysimmetric, globally defined functions By, = ik, V.

5. ixik, ix, H=0.

We will refer to these contraints as the Gauging Conditions (GC).

The procedure of integrating out the gauge field is quite general. It consists in rewriting S in the following
form

1
SY =Sy + /E d’c (—CLJ# + 50,50;” [Grmn™ + Blme’w]> (6.24)
where we have chosen the flat Minkowskian metric h,, = 1, = <(1) _01> for the worldsheet. G, is defined
to be o
In the light-cone coordinates o* = % (O’O + 01) the indices are raised and lowered by the metric n™= =
€™ =1 we get

S¢ =8y + /Z d*o (=CYJ;" — CLJ + CLE,C™) (6.26)
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where .
Eiry, = Gy + Bim Jir = (K £ )0+ X (6.27)

If E,; is everywhere invertible it’s easy to find the Equations of motions for the gauge fields

057 = —J + EymC™ =0

ack
57 = —J; + CP By =0 (6.28)
from which we get
Cl =(E~YHimJ_, (6.29)
CL = Jpm(E~ )™ (6.30)

By inserting the expression for C!, into Equation (6.26) we obtain

S =Sy — / d*oc  J7(ETHmTh (6.31)
b
This can be rewritten
S = / d*c €0, X'0_X’ (6.32)
b
where
&y = Eij — (K + i) (B~ (Kpmj — Umj) (6.33)

It turns out that FE is invertible if and only if the isometry group acts without fixed points. Since € is the
object which contains the geometrical informations about the sigma model, gauging the isometries and then
integrating the gauge fields out amounts to change the geometry of the sigma model from &;; to S’ij.

6.1.2 The geometry of the gauged NLSM

Let us study in some detail the geometry of a gauged NLSM. We consider NLSMs whose isometries are generated
by a set of globally defined Killing vector fields { K;};cr,. Moreover, we will consider only NLSM whose isometry
group G is an abelian group, which acts freely on M. Then the d Killing vector fields are commuting vectors

(K, K] =0 Vi,me I (6.34)
We will always denote the indices which refer to the set of Killing vectors as I,m,n,. ...
The geometry of a NLSM is completely determined by the data (X, M, g, H)
1. The worldsheet X.
2. The target space (M, g).
3. The closed three-form H € B3(M).

Consequently, once specified the worldsheet ¥, we will denote each NLSM by (M, g, H).
The action of the isometry group G on M defines the space of orbits
N=Ms (6.35)
In the case of U(1) actions it turns out that N is a manifold and the natural projection on the space of orbits
m:M— N (6.36)
defines a principal bundle whose fiber is G.

In this setup, a form w is horizontal if
ig,w =0 (6.37)

while it is ‘nvariant if
Lrw=0 (6.38)
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A form which is both horizontal and invariant is basic. A basic form can be thought as a form on the base space
N (hence the name basic), as it can be shown that it is the pullback with respect to the projection 7 : M — N
of a form on N.

A metric g is horizontal if
g(K;,X)=0 VX eTM (6.39)

g is invariant if
SKlg =0 (6.40)
and it is basic if it is both horizontal and invariant. As before, a basic metric can be thought as a metric on the

base space.

We can define a set of d one-forms {¢'}, which are dual to the Killing vectors, namely
i, " = 0" (6.41)
by writing
& =Gy K], (6.42)
where G is the inverse of Gy, defined in Equation (6.25). The two-forms
F! = d¢! (6.43)
are horizontal. The metric on M can be written as
9=9+Gmé @™ (6.44)
where § is basic, while the term G, ® €™ encodes the restriction of the metric on the fibers as well as the

mixed matrix elements which connect the base with the fibers.

We can redefine the coordinates in each patch to obtain "adapted" coordinates X = (X¢, Y*) in which the

Killing vectors take the nice form
.0 0
K - = —— A4
Poxi  ox! (6.45)
The Y# coordinates parametrize the base space N. The set of adapted coordinates induce also the splitting of
the one-forms

g =dxt+ A (6.46)

where A! are local connections on N, and are horizontal. By looking at Equation (6.44) we immediately un-
derstand the meaning of the local connections A'. They encode the metric informations in the directions which
connect the base with the fibers. Since F' = dA!, the two-forms F' are the local curvatures.

From 1. and 4. of the GC one can obtain the splitting
v = El — Bim&™ (6.47)
where ¢, is the basic component of v;. We can define the basic two-form
F, = d¢, (6.48)

Then the closed three-form H can be expanded as

o 1 P m o
H=H+(ZKLH)/\fl—F§(ZKIZKmH)/\§l/\§ —é(zKlszanH)/\gl/\g NE (6.49)

where H is horizontal. After some simple algebra it can be rewritten

H=H+F A +dB (6.50)
where )
B = 5Blmgl AE™ (6.51)

is a globally defined two-form. Since dH = 0, then
H=-FAF' (6.52)
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and H is basic. Moreover locally we can write H = db. It turns out that
b=b+¢AE+B (6.53)
where as it is intuitive b is a basic two-form.

As we have seen, the new geometry obtained by integrating out the gauge fields is encoded into 8;j. It turns
out to be

& = &ij — nglmﬁ;” + Eli(Efl)lmgmj - Eliéé' + le'glj (6.54)
We extract from 8;]- the symmetric and antysimmetric parts, respectively
G = (g~H)m  Bim — (gl (6.55)
We can write for the new b-field
V=b—§NE = EBm&" +§,B™E, (6.56)

The new geometry (M, g’, H') is given by

g =9 Gt 0" +G"E R, =g+GM 0L, (6.57)
and by o _
H =H+§AF' +dB (6.58)
where )
B= 55“”51 AE,, (6.59)

It’s fundamental to notice that both ¢’ and H’ are basic with respect to all of the Killing vectors. This implies
that the new NLSM is invariant under the local symmetries as in Equation (6.11)).

6.1.3 The NLSM on the trivial T?

In this Section we want to see at work the formalism studied in Sections So we consider the simplest
non-trivial example. It turns out to be the three-torus T3.

The three-torus T3

The three-torus T2 is a flat smooth manifold, which can be defined as
T3 =8 x St x &t (6.60)

In Section we have seen that the smooth structure on T2 is simply defined by taking the triple product of
the atlas of the S! atlas in Example

It is often convenient to encode the whole smooth structure by the identifications

(x,y,2) ~ (x + 1,9, 2) (6.61)
(z,y,2) ~ (z,y +1,2) (,y,2) € R? (6.62)
(:C’yv Z) ~ (LE, Y, 2+ 1) (663)

so that T3 can be thought as the quotient of R? with respect to the above identifications. Equations (6.61]),
(6.62) and (6.63) tell us that we are considering circles of length 1 or equivalently of radius R = 3-.

This means that in each change of charts from U, to Us the coordinates on each of the circles of the torus
T3 are shifted by a combination of the three transformations

e

= 2P =241 (6.64)

y* =y =y 1 (6.65)
22 = =241 (6.66)
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Since these are the transformations defining the change of the charts the Jacobian of a combination of the
transformations in Equations (6.64)), (6.65]), (6.66) tells us that the three torus is an oriented manifold. Then it
is possible to define a global three-form H, which is proportional to the volume form.

Since the above Jacobian is always equal to 1, H is globally defined and we can write
H = hdx® A dy® N dz® (6.67)
in each chart U, which induces coordinates {z*, y®, z*}. We take h € Z for later convenience.

If we take the trivial metric

1 0 0
g=10 1 0 (6.68)
0o 0 1

then each of the vectors which generate the translations along the fibers

0 0 0

represents a Killing vector since Equation ([2.128]) is trivially satisfied. We will consider the action generated by

the Killing vector
0

e
that is the translation along the circle parametrized by z®. From Equations (6.64), (6.65), (6.66) we see that
the Killing vector is globally defined since

K (6.70)

0 0

and then the solution of the Killing Equation (2.128]) can be easily glued in the intersections of the charts.
Moreover the last Equation allows us to denote the Killing vector associated to the third circle simply by K.

The action generated by K allows to reach each point on the third circle by starting from anyone of them.
In fact the flow associated to it as in Equation [2.126] is

z% = 2%+ (6.72)

Since a circle S! is diffeomorphic to U(1) we can think to the fiber as a U(1) group and to the Killing action as
the multiplication by a complex number of modulus 1. For this reason we will call the Killing action U(1)-action.

Since it acts freely, we can consider the quotient as in Equation (6.35)

T2 = TB/U(l) (6.73)

where we have to remember that the U(1)-action is associated to the Killing K. Then T3 can be thought as
the trivial principal bundle
7T = T? (6.74)

with structure group and fiber diffeomorphic to U(1). This is the reason why this example is often called the
trivial three-torus T3.

The geometry of a NLSM on T3

The main point is now to understand if a NLSM on the three torus is a gaugeable one. In particular we ahve
to check if
ixH (6.75)

is an exact form dv as required by the 1. of the GC.

In the chart U, we can write
ixH = hdz® A dy® (6.76)
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We can immediately say that this two-form is not exact, since it is a generator of H?(T2,R) as we have seen in
Example ?7. We can also see that it is not exact because the Equations

ixH = dv® (6.77)
ixH = dv® (6.78)
have solutions respectively on U, and on Ug
v® = h (az®dy® — by*dz®) (6.79)
v? = h (a/zPdyP — b'yPda”) (6.80)

where a,b,a’,b’ € R such that a +b=1and o’ +V' = 1.

Unfortunately there is no value of the constants a,a’,b,b € R such that the one-form v is globally defined.
In other words

v — P = d\*P (6.81)

Now the point is to find the right expressions for A*?. Obviously they strictly depend on the choice of U,
and Ug, since as we have seen the transition functions are related with this choice. Let us consider for example
a change of chart from U, to Ug which is encoded by the transition functions

x = P =22 +1
Y =y =y
2% = 2P (6.82)

Then we can write
+ (v = P) = az®dy® — by“dz™ — a’zPdyP — by da’P =
= az®dy® — by*dz® — a’x*dy® — d'dy® + V'y*dz® = (a — a’)z*dy* — (b — V' )y*dz® — a'dy®  (6.83)
Since the difference between Equations and gives
d(v® —vP) =0 (6.84)

we have that v® — v? is exact, so that the terms proportional to a — a’ and b — ¥’ must vanish. This fact implie
that

a=ad b=10 (6.85)
and then for the choice of charts which are related by the transition functions in Equations (6.91]) we get
AP = —ahy® (6.86)
By computing v? — v® we obtain
0P — 0 = ahy? = ahy® (6.87)
The interesting point is that
A L AP =0 (6.88)
It easy to see that if the transition functions realted to the choice of o and f is given by
x® = P =2
y* =y =yt 41
2 = 2P (6.89)
then the A\*? are given by
AP =qahz® M= —gha® = —ahz® AP 4N =0 (6.90)

So finally let us compute the A*? in the last case in which the transition functions between U, and Ug are
given by

(0%

T P =241
y =yl =yt
z% N (6.91)
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Proceeding as before we get that

v® — 0P = —ahdy® + bhdz® = d\*P

vP —v® = ahdy” — bhdx” = d\** (6.92)
and then
B = —ahy® + bha
N = ahy® — bha? = ahy® + ah — bha® — bh (6.93)
so that
A% L NP = h(a — b) (6.94)

If we want the A*? to respect the condition in Equation we have to require

1
a=b=y (6.95)

With this choice is also easy to prove that for each choiche of U, and Ug we get
AP LMY L e = (6.96)

so that A\ form a cocycle.

From Example we obtain that v is a local connection for a circle bundle M over M, so that we can
add a U(1) fiber to the U(1) principal bundle.

Let # : M — M be the projection of the new circle bundle over M be and let X2 be the coordinate
which parametrizes the new circle in the chart U,. M is locally described in U, by the set of coordinates
X = (2,92, 2%, X“) and it is called the doubled space because the dimension of the fiber is doubled by
inserting the new fiber related to X.

Since X is the fiber coordinate of a circle bundle it satisfies
Xo—XP =)o (6.97)

The main point here is that by using the transition functions of X we can lift the one-form v to a globally
defined one

b =dX +v® (6.98)
¥ is obviously globally defined since in the overlap Uyg
0 = dX® + 0% = dXP — d\*P + 0% + A\ = dXP +0° =oF (6.99)
We can also lift the metric g and the three form H in the simplest way by pull-back

§=7"g H=#H (6.100)

where ¢ and H have vanishing components in the new direction

g (ng’ ) =0 (6.101)
() ] = .
o H =0 6.102
X

and they remain indipendent from X. Then the lifted K, K remains a Killing vector for the lifted metric g.
Moreover H remains invariant with respect to the Killing vector K. The lifted Killing vector K is the same
vector as before, except that now it is thought as a vector of the doubled bundle M.

It’s immediate to notice that, because of Equations (6.101f) and (6.102)) we obtain a new Killing vector for
free

r— (6.103)
0X
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with respect to which H is invariant. K commutes with K since the two U(1) actions are indipendent of each
other

990 9.0 _
020X 0X 0z
Then we can define the lift of the one-form in Equation (6.42), which is dual to K

K,K] = 0 (6.104)

£ =G KldX’ = G4, K'dX7 = ¢ (6.105)

In other words £ remains the same one-form dual to K which can be defined on M, but it can be thought as a
one-form on M with vanishing components on the new direction X. In our particular case, since the metric is
the diagonal one in Equation 1} then the local connection A vanishes and the one-form ¢ takes in U, the
form

£=dz" (6.106)

Now it’s important to find a one-form which is dual to K. We already have an object which behaves in the

right way, which is 9. In fact
ﬁ(ff):df(( 8A)+@<8A>:df(( aA) =1 (6.107)
0X 0X 0X

£=1 (6.108)

Then we can redefine

for writing convenience. As for £, in general there exists a local connection A such that
E=dX+A (6.109)

and the curvature
F=dA (6.110)

Gauging the NLSM on T3

Once we have found a global one-form like 9 it’s possible to gauge the sigma model (M, H, §). The new action
is easily built since the new direction parametrized by X is null both for § and for H. Then there is only a
slight modification to the gauged action in Equation (6.23)

A 1 ) . 1 ) .
S6 = 5/ gijDX" AN+xDX7 +/ {SHijkDXz ADXIANDX* +9 A ﬁIDXI} (6.111)
by Q
where
D=0, Dyw=0,y Dyz=0,2-C, D, X=0,X (6.112)
and we denote
o ol = (2,y)

o z' = (x,y,2)
o il =(z,y,X)
hd XI = (xayvzaX)

We can easily rewrite
oG 2 1 7 j v % G v
SY = [ d°c §(gij +bi;)0ux' 02! — CJ" + Ce" 0, X + 517” c,.C, (6.113)
b

where .
JH = (K" — v;e")d,a’ (6.114)

In the T3 example it turns out that K; = §;,. Moreover v is horizontal so that v, = 0.

We can integrate out the gauge fields C, by finding its equations of motion

5S¢ .
= = JF+ Y, X +GCH =0 (6.115)
5C,,
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from which we get
1 N
or =~ [Jﬂ - e#”ayX} (6.116)
G
By inserting Equation (6.116]) into the action we can find
fz { (gij + bij) " 9, x" 0,27 —
—é {JM — nupep”(‘),,X] JH 4 6 {JM — nupep”a,,X] e’”‘@,\f(—i—

+%77’W {JM - nﬂpem—&r-}q [Jv - nvaea/\aAX} } = (6.117)

= fz { (94 + bij) 0" O Opa? —
—L 200+ L0, 0, X + LT e X + Ler e 0, X0, X+
o Tl = P T 0, X — g0, X — gher e 9, X0,X | = (6.118)

= [5 {3 (gij + bij) " 9,2 0,7 —
s T+ & T 0, X + 59, %0,X b = (6.119)

By substituting the expression for J,, in Equation (6.114)), after some simple algebra we get the expressions
for the new geometry. In fact

= fz: {% 9ij +bij) 0z Oy’ — 55 [k/’ M — vet] [k‘jéu/\ - anupe’»‘} O,x 07 +
4L K6, = vinpupe?] 20,2105 X + S0, X0, X} (6.120)
= fz{ (9ij + bij)0px' Oy a? — lck kint 0,20,z + 3 k 0, €M 0, 0y 3T +

vlk o,z 8 i + 5 vzvj m\pep”ﬁﬂxlayxj + 5k¢6“”3#z28VX+ +
+§Ui6“ n,\pep”(?umzal,f( + %n”’@”f(&,f(} = (6.121)

= fz{ (gij + bij) 0,z Oyx? — fn“yﬁuz(? z+ Uje“”a 20, x7 +
—1—5111-6“”8,,:616#,2 + %vivjn ”aﬂxla,,xf + d“’aﬂza,,X—i-
évm““@uxi&,f( + %n“’jaﬂf(&,)&} = (6.122)

= fE {%glmauxl&,xm + %e“”bijauxi&,xj + évm““@,ﬂci&,f( + vjel“’auz&,xj—i—

—1-6“”8#2(9,,)2' + %vivjn“’jaumi&,xj + %77””8“)281,)2} = (6.123)

from which we can read the new geometry encoded by
g =9-Gdz®@dz+ 50®0 (6.124)
bV =b—9Adz (6.125)

which locally coincides with the result expected by the Buscher rules that is

N 1 . R v R VU,
9xx = a 91 = 9% = é Jim = Ggim + lG (6.126)
and ) A A
by =-bx =0 bim=bim (6.127)
The term R
—dX Ndz (6.128)

which comes out by writing explicitly v = dX + v in Equation is the price we have to pay for having
adopted a globally well defined procedure for the gauging of the NLSM, which involves a doubled space. In
particular it doesn’t appear in the Buscher rules, since they exchange one circle with the related dual, without
doubling the fiber degrees of freedom.



108 T-duality

6.1.4 Gauging the ungaugeable

The results reported in the previous Section can be easily extended to the general case with several globally
defined Killing vectors { K }ier,-

The starting point is the assumption of the violation of 1. of the GC, supposing that ix, H is not exact.
Then in each U, we can find a one-form v;* such that

ig, H = dv® (6.129)
In each overlap U, we obtain a set of functions /\?B such that
v — 0P = d\MP (6.130)
When each )\?B is such that in each triple overlap U,g~ the cocycle condition
AN N =0 (6.131)

is satisfied, then each v} defines the local connection for a U(1) principal bundle over M, 7 : M — M. We
obtain a torus principal bundle T¢ over M.

We can choose fiber coordinates X* in each U, such that
X - X[ =-2\F (6.132)

and the lifted one-forms
of =dX[ 4+ v (6.133)

are globally defined.

M can be locally described by a set of doubled coordinates
X' =" X' X)) (6.134)

and both the metric g and the three-form H can be pull-back on T*M using the projection map #. They
are transported in the trivial way, so that the only non-vanishing components of the metric g are those of the
original one, and the same is true for H.

The first point which deserves special attention because it is substantially different from the T3 example is
the definition of the lift of the Killing vectors. The most general lift provides for a twist described by a set of
functions 6,,,, as follows

: 0
Ky =K+ Opp—— 6.135
l l l ox ( )

m

The requirement that K is a globally defined vector implies that
05, — 07 = —ir,d\oP (6.136)
The vectors K; are trivially Killing vectors on M
Lx,5=0 L. H=0 (6.137)
Finally we have a new NLSM (M,g, ﬁ) We will immediately see that it is gaugeable.

In fact from Equation (6.135)) it turns out that
ifqﬁm =K, Um + Oim (6.138)

and we can define
Ot = B, — iKl Um (6139)

with By, = —Bpm, so that
ikl’f)m + if(mﬁl =0 (6.140)
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and
if(lH = di; (6.141)

since dv = do, so that 1. of the GC is obeyed by the new NLSM. The definition in Equation (6.139]) explains
why in the T3 case the 6 function vanish. In fact if the fiber has dimension one, the antysimmetric functions
By, vanish trivially, while v is horizontal with respect to the unique Killing vector ixv = 0.

It’s amazing to notice that in this context, imposing 3. of the GC implies immediately 4. In fact by
computing the action of the Lie derivative

S5 0m = ig,ig, H+dig bm = ix i, H + B, (6.142)
we obtain that £ &, 0m =018 equivalent to
i i, H=—dBpy, (6.143)

Moreover it can be shown that [1I]

N o o
(K1, K] = *(ZKZZKMZK”H)E (6.144)

so that the whole algebra generated by the Killing vectors is abelian if and only if

1Kk, 'Kk, H=0 (6.145)
It is intuitive to see that also the vectors
g2 (6.146)
0X;

are Killing vectors preserving the three-form H. This means that the new NLSM (M , 0, H ) has 2d commuting
Killing vectors. If Gy, is everywhere invertible, then the one-forms

=Gy KLdx/ = ¢ (6.147)
are lifted trivially. Finally the one-forms El such that
i =& — Bim€™ (6.148)

are horizontal with respect to the lifted Killing vectors K;. They are the analogous of the forms &, defined in
Equation (6.47)).

We can choose local adapted coordinates on the fibers

X' = (v X' X)) (6.149)
such that 5 5
K =— K= _—— (6.150)
ox! 0X,
where X! = X!, while
Xi=Xi+fi (6.151)
and f; = f;(X!,Y*) are such that
afi
=0, 6.152
R (6152)

The gauge action is slightly modified with respect to Equation (6.23)), as we have shown in Equation (6.111]).
In this case

D, X'=09,Xx" - Cl K]/ (6.153)

so that
D, X1 = 0, X, + 01 C7 (6.154)
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As in the case of the three torus T2, the elimination of the gauge fields C’L brings by means of the equations
of motion brings to the new geometry. This procedure is in general encoded in a few simple rules. We denote
by a~the dual objects relative to the original geometry (M, g, H). The T-duality map is

9=G+GCmE ®E"  — G=7+G"E® &, (6.155)
H=H+FAN+dB +s H=AF +dB (6.156)
where £ = G + B and
élm _ (E—l)(lm) Elm _ (E—l)[lm] (6.157)
and ) )
B= §Blm§l AE™ 55””5 Aém (6.158)
Moreover - -
Fl=d¢t F=dg (6.159)
while H is such that N
dH = —F; A F! (6.160)

There are n Killing vectors on M dual to ¢ and n Killing vectors K!on M dual to 5 In adapted coordinates

9 ~ 9
K =— K= — 6.161
T oxt 0X, ( )
and - - ~
g=axt+ A g =dX,+ A (6.162)

The form H is basic. It represents the component of the H form which doesn’t have legs on the fibered
directions. The two-forms F' and F} are also basic. They respectively define the Chern class associated to the
[-th circle on the torus and the H-class associated to the I-th dual circle on the dual torus.

The T-duality exchanges the one-forms B
& — & (6.163)

and the torus moduli ~
E +» FE=E! (6.164)

Also first Chern classes and H classes are exchanged

[F] — [ (6.165)

6.1.5 Global symmetries

There are a pair of global transformations which act naturally on the set of Killing vectors. These are particu-
larly important, since they preserve the physics of the NLSM.

The first one is a GL(n,Z) transformation which acts on the set of Killing vectors {K;};cs, as follows

K K=Y L™Ky (6.166)

where L;"" € O(n,n), so that K transforms in the covector representation. This is because the generic Killing
vector on the smooth manifold M is of the form ), N'K;. Tt’s necessary to require that N' € Z in order to
preserve the periodicity of the orbits generated by the Killing vectors.

This transformation extend naturally to each tensor with “Killing” indices I, m,n, ..., such as &, v;, G,
By,,. They transform under GL(n,Z) in the right representation, that is
S (A L (6.167)
(o) — le’Um (6168)
Gim >  L"Gup(LT) (6.169)
By v L"By, (LT, (6.170)
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The action of the NLSM is invariant under these global transformations.

There is an additional well-behaving global transformation which consists in the shift of the functions By,
by constants A;,,

By +—— B+ A\im (6.171)

The classical physics is trivially unchanged, since the constants \;,, does not change H. In the quantum theory
we must pay more attention since the action change by an amount

1
7/ )\ldel/\de:/ A (6.172)
2 Js ()

where ¢(X) is the embedding via ¢ of the worldsheet ¥ into the target space M. This means that its contribution
to the functional integral is

et Joem) A (6.173)
and that this does not bring to anomalies if and only if

1
— AEZ (6.174)

21 Jo(z)

or, by Stoke’s Theorem [2|if and only if [%] represents an integral cohomology class
Ale H*(M,Z) (6.175)
27 ’ '

Then we can say that GL(n, Z) action togheter with a B-shifts preserve a quantum field theory defined by
a NLSM as in Equation , since they map the geometry of a background in an equivalent one from the
quantum theory point of view. We have also seen that a T-duality transformation actually does the same. In
fact, when possible, it’sufficient to construct the double space over a principal torus bundle and to apply dual-
ity transformations in Equations —, to obtain a new quantum theory equivalent to the original one.

The next amazing step is to observe that B-shift and GL(n,Z) action get togheter to generate a larger
group which we already encountered. In fact they form a direct subgroup of the orthogonal group O(n,n,Z),
as we observed in Section [5.2.1] Since here we are dealing with group constructed over the field of the integer
numbers, we will denote it by I'(Z). Surprisingly, we are going to see that also T-duality transformations lies
in the O(n,n,Z) group, so that it is also called the T-duality group.

The generic element h € G(n,Z) such that

a b
h= (c d) (6.176)
acts over tensors with lower or upper “Killing” indices as in Equations (6.166)) - (6.170). Obviously each
h € O(n,n,Z) preserves the indefinite metric
0 1
n= (1 O) (6.177)
A non-trivial fact is that E doensn’t transform as a tensor under a transformation E € O(n,n,Z), but [49]
~ aE+Db
E — FE=FE-= 6.178
cE+d ( )

where a,b,c,d are the n x n matrices defined in Equation (6.176). Moreover, the GL(n,Z) subgroup lies in
O(n,n,Z) through the following immersion

L, 0

l
GL(n,Z)> L', +—> (o (1"

) € O(n,n,7) (6.179)

which is the same we have seen in Equation (5.7)).
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6.2 T-duality on SU(3) x SU(3) structures

As we have seen in Section ??, if ig, ig¢, H is not a globally defined form, so that the we can not use the for-
malism developed in Section [6.1.4] to find a globally defined dual background, T-duality bring to a non-geometric
dual background. These kind of backgrounds are simply defined as manifolds on which the transition functions
for the metric and the B-field admit T-duality transformations. Moreover in this case the T-duality map can
be defined only locally.

This situation seems to fit perfectly the framework of Generalized Geometry. In fact we will see that in that
context T-duality reduces to a gauge transformation of the generalized metric H as in Equation (5.126)).

The striking fact is that the presence of T-folds is simply encoded by the dual pure spinors which describe
the background, as we will see explicitly in Sections[6.2.2] 77.

6.2.1 T-duality in the generalized formalism

In order to achieve T-duality in the generalized formalism we need to generalize the notion of Killing vector.

The Killing condition £xg = 0 for a K which leaves invariant H allows to make a local gauge choice on the
B-field. In fact we can always choose B’ = B + dx such that

£xB =0 (6.180)

by taking B’ = B + dx. This would imply that £x B’ = £x B + £xdx = £k B + digdx = £x B — d§. Since
£,H = 0 means that dig H = dixgdB = d£x B = 0 then by the Poincaré lemma £x B is locally exact, and then
we can always choose , or more precisely

&= —igdy +df (6.181)
such that £x B’ = 0.

So the generic conditions for applying local T-duality are then described by the two Equations
EKg =0 ,QKB - d{ =0 (6.182)

which involves a couple of objects (K, ). There is an ambiguity in (K, &), since £ is not actually involved in

Equation (6.182), but d¢ is.

It turns out that Equation (6.182) describe the conditions which define a generalization of the Lie derivative,
adapted to the generalized framework. In this framework, it’s immediate to interpret the couple (K, &) as the
generator of diffeomorphisms on the generalized bundle.

More precisely we can define the generalized Lie derivative on sections v = X + n of the generalized
tangent bundle E, along the generalized vector w = K + £ € X(E) by the Dorfman bracket already defined in

Equation (5.76)
Lwv = [Y, X] + (£yn — ixdf) (6.183)

Notice that the action of the Dorfman bracket is the most natural one for the bundle structure defined in
Equation (5.67). In fact it locally represents the usual diffeomorphism on the vectors and on the one-forms,
supplemented by the term —ixd€ which represents the local twisting due to the action of the B-field.

The action of the gereralized Lie derivative on the generalized metric H can be defined by analogy with the
action of the Lie derivative on a Riemannian metric g. In particular we require that L,(¢) = £,(¢) = i,do,
which is the usual requirement for the action of the Lie derivative on a scalar map f € C*°(M).

We get
Ly [H] (w,t) = L, [H(w,t)] + H [Lyw, t] + H [w, L] (6.184)

wherev=V + A\ w=X+¢ t=Y +n. Then
L,9— (L,B —d&)g~' B

_B<£ugilB) - Bgil(sz - dé) (QvB - df)971 + B(Svgil)

L, [H(w, )] = (6.185)

_g_l(EvB - d§) - (Svg_l)B Evg_l
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Since it turns out to be
L,n=20 (6.186)

then the conditions in Equation (6.182)) which are the necessary conditions for T-dualizing a local background

along v € X(F) are equivalent to
L,G =0 (6.187)

where G is the generalized metric defined in Equation (5.106).
We can always use the arbitrariness in the choice of £ to normalize v
n(v,v) =1 (6.188)
so that in adapted coordinates we can write V = %. Then, as we know from Equation & = —iydx +df,

and by choosing f =t we define v as

P ,
v= (dt - z%dx) (6.189)

The element of the O(n,n) group which correspond to T-duality transformation in Equation (?7?) is

T,=1-2vv"yp (6.190)
where
(To); = 6% — 2v'v¥ny; = &7 (6.191)
(Ty)¥ = —2viopnti (6.192)
(To)ij = —20;0" Ny, (6.193)
(Tv)zj = 5ij - 2'U1Uk77kj (6.194)
since as we know from Section 69 =6y =0 and n'; =0/ = 0.
By making the choice of gauge x = 0 and by choosing as basis for T' @& T*
9 . en, dt, e? e" (6.195)
8t7 23"" ny ) A .
we obtain the explicit expression fot the matrix which represents T-duality transformation
1-M M
T, = ( M 1— M) (6.196)
where 9
=—+4dt 6.197
V=t (6.197)
and M is a n X n matrix
1 0 0
0 0 e 0
M= i ] ) (6.198)
0 0 e 0

The T-dual generalized metric is a O(n, n) gauge transformation of the generalized metric H, namely
Hp = TIH,T, (6.199)
whre «, 8 are used to label the open set of the covering {U, }.

From Chapter [5| we immediately know what is the action of T-duality transformation on the Spin(n,n)
spinors, which is given by the Clifford action

By =v- Dy =ioPy+END, (6.200)

This is the property we are going to use in order to find the dual backgrounds in the Examples of the
following Sections.
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6.2.2 T-dualities on T? fibrations
In the present Section we will show how the formalism developed in Section (6.2.1]) works in a couple of Examples.

The situation considered is that of a T2 fibration 7 : T® — T* with an SU(3)-structure defined by the
symplectic and canonical forms

w=e'Net+e2ne +edned Q= (e +iet) A (e* +ie®) A (e* +ied) (6.201)

where {e%},cy, is a basis of viebeins on the total space T®. We will consider a trivial fibration so that in the
fibered direction ¢ we can write ‘ '
e’ = r;dz’ (6.202)

where r; is exactly the radius of the fibered circle in the 4 direction.
As we know from Section the pure spinors which describe this structure are given by
Pt = g ¢ Biw - =e ?7BQ (6.203)

We will distinguish two cases, since the choice of the B-field directions is not equivalent with respect to
the SU(3) structures. In particular we will study what happens if the B-field couples or not the symplectic
structure directions.

Coupling the symplectic directions

Let us consider the case of a B field whose legs lies in the e! and e* directions

b
B=—-¢e'net =bda! Adat (6.204)
174

where b is a function of the base. For example if b = ha® then the B field generates the H flux
H = hdz' A\ dz* A da (6.205)

We will perform two T-dualities along the v; and vs directions, where

v = % + dat = ai@ + da® (6.206)
We have to find the T-dual pure spinors
ot =T(oH) P =T(®) (6.207)
where
T=T,Ts, T, (%) =v;-dF (6.208)

where as we have seen in Section @ T,, acts on the pure spinor by Clifford action.
In performing calculus we will omit the symbol A for writing convenience.

Let us start by computing

2 \3
; . —1 —1
e*“’:l—zw+( ) w2+( ) w? (6.209)
2 6
where
2
(—21) W2 = _% [61€4+€265 +63€6] [6164+6265 +€3€6] _
_ _% [61646265+61646366+62656164+€2€56366+63€6€164+€3€6€265] —
= — [elete?e® + eletedel 4 e2ededel] (6.210)
then
N3 N3
(*60 w3 = (*g) W AW =
= % [61646265 + eletedel + 62656366] [6164 +e%ed + 6366] =

= ielete?edeel (6.211)
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Next we can easily find that

e~ B-iw — [1 — ﬁel A 84] [1 —delet —ie2e® —iedeb — elete?e® — e2ePe3eb + i61€4€2€5€3€6] =
=1- (z + L) elet —je2ed® — jedel — (2A> lede2ed — (1 — l) ledeBeb—
r1T4 T17T4 T1T4

26536 1 <z i ﬁ) elede2e5e3e6 —
=1— (b+irira)dztdat —ie?ed —ie3el +i(b + iriry)datdre?ed +i(b + iryry)dotdzte3eb—
—e2eSe3el + (b + iryry)dztdrte?edeed (6.212)

Then we can apply the first T-duality transformation to e~¢~5~% along vy
To, (e—B—iw) _ (% + d$4) . (e—B—iw) —
= (b+iryrq)dzt —i(b+iryry)date?ed —i(b +iriry)dxte3eS — (b +iryry)dzte?ededebf+

+dzt —idzte?e® — idrtedeS — drte?ededel (6.213)
and then the second T-duality map T,, to obtain
Ty, (To, (e"b’B*i”)) = (b+iriry) —i(b+iriry)e?e® —i(b+iriry)e3eb—
—(b+iriry)e?e’e3eb + dxtdrt — idatdatedeS — duldate?e’edel =
_ ; 1 1,4 . 2.5 _ : 3.6_
= (b+iriry) + oetet —i(b+irira)ete’ —i(b +irira)e’e
—(b4iriry)e?e’eed — —oelete?ed — —teletedel — L elete?ededel =
T1T4 T1T4 T1T4
1_4
_ : e e 52,5 3,6 _ 2.5,.3,6__
= (b4 irirs) [1 T ey —lete” —iete® —ele’ele
ielete?e® ieletedel elete?ee3ef _
7‘17‘4(b+i7‘17‘4) 7‘1T4(b+i7‘17‘4) 7‘1T4(b+i7‘17‘4) - (6'214)
= (b+iryry)e B~ (6.215)
where L
~ e Ne
w=m+62/\65+63/\66 (6.216)
b +riry
B = —*e1 Aet (6.217)
rira(b%2 + rird)
in fact we can write
. 2 . 3 .
e . —3)% _ —3)° _ ) ) .
e“":lfszr( )w2+( )w3:1772 2261647262657163667
2 6 b% + riry
1 i
—mele‘leQe‘r’ — ﬁelezle‘?e6 —eefedel 4 mele‘leQe%geG (6.218)
b2 + riry b% + riry b riTy
Thus
—B—i& _ b 14| —ie _
e = [1 TGy L } emwW =
-1 4 1.4 2 5 1.4_3 6 1.4 .2 5_3_6
_ 1 _ _tde’e 52,5 ;3.6 _ eee‘e’  eee’e _ ,2,5.3.6 ;e e"e“e’e’e
=1 27 lete’ —iete R wn eeete +1 R
+ belet __dbelete?e® ibelete®e® b elete?ele®eb
rira(b2+riry) rira(b2+riry) rira(b2+rir$) rira(b24+riry)
_ ele* - 2.5 .36 2.5,3,6
=14+ (i) T leTe’ —iete” —efetete’—
_ ielete?e® _ ieletede® _ eteteZe®e3e® (6 219)
r17ra(b+iriry) rira(b+iriry) rira(b+iriry) .

which proves the Equation (6.215). Moreover, since the effect of the two T-dualities on the dilaton is given by

-3
et o < (6.220)

Vb2 +rirg

Then the total trasformation on the pure spinor is given by

I b R B
T(€_¢_B_W) _ ot e~$7B-w — — (cos (04) +isin (04)) e

N rirs
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where b
e cos(04) =

b2 +rir? Vb2 +rird

sin(6,) = (6.221)

We can turn to the pure spinor ®~, and compute

O = ele2ed +ieleel +ieleded +ieteed — elePel — ete?el — etede?® — jetedel =
= ridzte?ed® + irdxte?el + iridzte®ed + irgdrte?ed—
LeSeb 4e2e8 — rydatede® —irydatede® (6.222)

—ridx —radx

It’s obvious that
e Ba=0 (6.223)
since each term in Equation (6.222) contains either a dx' or a dz* term. Then
T (87) = (g + o) o0 =
= iryeed —rpe?e® — ryede® — irge®ed + ridetdate?e® + iridatdate?eb+
+irydrtdrtede® — ridrtdate®es (6.224)
And then

—¢—B _ —\\ — (.0 1\ . ) —
T(e Q) =Ty, (T, (7)) = (azl +dx ) (Tv4(q) )) =
= —rydzte?ed — irpdateel — irjdate®e® + ridatedeb+

+irgdzle?ed — rydxte?e — rydxle®ed — irydrteded =
= —Tete2e3 _ jTlete2e0 _ jTLede5e3 | Tledebeby
T4 T4 T4 T4
filiele2ed — Tiple2e6 _ Tipleded _ jTapledel —
T1 1 T1 T1

(6.225)

After inserting the part with the dilaton we obtain

T(e*‘ﬁ*EQ) =—=_—_T(e

-3 b2 22 g
J— € 174 J—
= Jerae (k) T ) =

— (PArird) _ie? ra 1,2,3 | ira 1 2,6 4 ;74 15,3
= (b2+r§r§ Nz R e et rerete’ g teeen+

+iTtede2ed — Tipleheb _ T1pdp206 _ T1pdpbe3 ir—le4e5e6} =
T4 T1 T4 T4 T4

. btirirg —¢ [ b—iriTy r4,1,2,3 | ;714,1,2,6 4 ;Ta,1,5,3
(lm e e pe:d € €€ —|—zrleee +lrleee+

+i%€4€2€3 - %616566 — %646266 - %646563 - i%€4€5€6} =

= jeif+e=9=BQ) = ¢i0++3)e=9-B() = ¢if- —9-BQ) (6.226)
where

~ b— iT1T4 T4 1
= —e
™ T4

T1 4 2, .5 3, .6
T —He)/\(e +1ie’) A (e +ie”) (6.227)
and
T

9_294,_-‘1-2

(6.228)
In fact

O _ b—iriry (ra 1,23 | ;141,26 | ;ra 1,53

Q=g (Tleee +irtele?el filteledel+

4illete2e3 _ TagleBeb _ 1140206 _ m1 4503 _ i1 45,6 (6.229)
T4 71 T4 T4 T4

One can rewrite these results in the basis of the dual vielbeins obtained from Equation (??). In this way it
can be checked that the dual geometry is again an SU(3) structure.
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Decoupling the symplectic directions

Let us consider the case of a B-field whose legs lies in the e? and e3 directions

b
B=—¢*Ned =bda® Ada? (6.230)
roT3

where again b = hz®. The B field generates the H flux
H = hdz® A dx® A da® (6.231)

We will perform two T-dualities along the vy and v3 directions, where

_ 9 2 _ 9 3

We have to find the T-dual pure spinors
ot = T(ot) o =T(®) (6.233)

where
T= Tvavs T'U'L' ((I)i) =V (I)i (6234)

where as we have seen in Section T,, acts on the pure spinor by Clifford action.

The calculus is similar to that performed in the case of decoupled simplectic directions, but even longer, so
we prefer to skip it and to give only the results [16]. The dual spinors can be written in the form of Equations

(5.156) and (5.157)), where

z = —i(el +ie}) (6.235)
j= NS+ nel (6.236)
&= (62 +id5) A (83 +iéd) (6.237)
B=--t-é& anél (6.238)
_ b
kH = Pae (6.240)
e = e ?\/b% + rZr2 (6.241)
and the dual vielbeins can be found from Equation (5.129))

. Erze’—b2e’ +r2dz? —bda®
el = 22+r§r§ =T (6.242)

. Erie’+bide? +r2da®+bda?
e = 2b2r§r§2 =13 2b2r3r§ (6.243)
€4 =e* a#2,3 (6.244)

Equations (6.233]) - (6.241) tell us that the dual geometry obtained is an SU(2) structure, which has been
studied in Section This fact has deep consequences, as we will see in the next Section.
We can check these results by showing that they concide with those suggested by the Buscher rules.

We will denote by a, 3,7, ... the indices referred to the fiber coordinates x2, 23, while we will denote by
I,m,n,... the indices referred to the base coordinates =, z*, 2%, 25, Since in this Section the calculus are always
carried out locally, we are sure not to create confusion with the indices «, 8,7, ... which are usually employed

to label open sets of a covering.

Since the fibration is trivial the metric takes the nice form in blocks

g11 914 Gi5 Jie

re 0 941 gaa 945 Y46
= = 6.245
Job < 0 r 3) Jim 951 954  gss  Gs6 ( )

ge1 Jesa ges Jee
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where the first 2 x 2 matrix is referred to the directions 2 and 3, while the second 4 x 4 matrix is referred to the
other coordinates. The triviality of the fibration tells us that all the components which mix the fiber indices
with the base vanish. For the B-field we obtain

Bus = (_Ok ’8) (6.246)
where k& = haS. All the other components of the B-field vanish.

So we can define the action of the NLSM associated to the background described by Equations (6.201) as
S = /d20 ntv {ga,ga“mo‘ﬁyxﬁ + glmﬁumlauxm + Ba,gﬁ,ta:aaymﬁ} (6.247)

This time the procedure of gauging proceeds regardless of global issues. We simply introduce abelian gauge
fields C'* and replace the fiber coordinates by them.

We obtain the following gauged action
G _ /d% {(g0s + Bag)C*C® + qundya'o o™ + 6, (0,07~ 0*) } (6.248)
where we are supposing that all the light-cone coordinates indices are contracted in the right way even if we
will not write exlpicitly them for writing convenience. As usual the antisymmetry of the term which includes

the B-field is assured by an € tensor. It turns out that 6, are the coordinates of the dual circle.

The equation of motion for C* and C* are

957 — (gogp + Bap)C' +0_60 =0 (6.249)
85w = (gos — Bap)C? — 040 =0 (6.250)

from which one can find that

— 2
T%CQ = 8+92 + bC3 CQ = M%afeg - 1)24:%8792 (6251)
T§A3 = 8+93 — bCQ 64 = b2+r2r2a 93 b2+?*§r§ 6792 (6252)

and finally
Cy = b2+r2r2 8—1-92 + b2+r2r2 a—&-93 (6253)
Cy= b2+r2rz 0403 — b2+rz gz 0+ 02 (6.254)

By inserting the solutions of the equations of motion into the terms which appear in the action S we obtain

730262 =13 [750402 + 50,05 [~ 350-0; + :0-65)

= 80,0200y + (glya04020_05 — TR0, 0306y + (ot 04030_s (6.255)
where we put det = b? + r3r3. Analogously
r2C3C3 = det)28+6‘28 0y + (djt38+928 03 — b;j; 04.050_05 — det)28+938 05 (6.256)
By3C2C° = — ‘;32&926 02 + (M)zmoga b3+ 20, 03005 — 50,0506 (6.257)
—1 T3TS 5
B3203O (d t)g 8+028 0y + (d t)g 6+928 03 + (bdet)28+93a 0y — Zt 84_038 03 (6258)

Moreover we get the terms

—84_9262 - 8+9363 =
ﬁm%&es + (aop 0+020-02 + (525 0+030_05 + ﬁmega,eg (6.259)
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0405Co 4+ 0_03C3 =
%a,ezmag + (aopy 0+020-02 + (5250103005 — M—gt)maQa,e;; (6.260)

After summing all these terms the final result is the expected one

/d% {(g)&rala_ol + (Cg)mega_eg - (dl;t)6+928_03 + (dit)&roga_%} (6.261)
from which we get the Buscher rules
2 2
Bos = _szrbr%rg =—Bs»  gn= IJQIW 933 = Zﬁ;ﬁﬁ (6.262)
If we turn to the vielbein basis we obtain for the B-field the result
Bas = b —Bsg (6.263)

rors (b2 + r3r2) -

which is the same of Equation (6.238)), in the basis of the original vielbeins.

The principal observation is that since we have korked in a local chart, we can not recognize in Equation
(16.262) the footprints of non-gometricity. Buscher rules are a local representation of the T-duality map. Strik-
ingly, as we will se in the next Section, the non-geometricity is encoded by the form of the dual pure spinors in

Equations (6.233) - (6.241).
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Conclusions

This thesis has been focused on the analysis of some geometrical aspects of Superstring compactification with
H-flux. This area of String Theory has recently received considerable attention from theorists, since it has been
shown that H-fluxes can be used to partially break the N = 2 supersymmetry in four dimensions to N = 1. A
similar result is particularly important from the phenomenologic point of view, since the current paradigm of
the particle physics provides a N = 1 supersymmetric extension of the Standard model.

Since the present work is focused on geometrical questions arising in performing T-duality, it looked nec-
essary to introduce the whole mathematical apparatus necessary to address the issue. In this perspective, we
want to stress on the deep importance of the use of G-structures, which we introduced in Chapter and we
used diffusely throughout the thesis. In particular they furnishes a convenient and immediate way to classify
all the compactification backgrounds, as we reviewed in Section [.3]

It is well known that the local form of the T-duality map is given from the Buscher rules. They are simply
obtained by gauging the the non-linear sigma model arising form a String background and then integrating out
the gauge fields via their equations of motion. In this way the new action obtained encodes the new geometry
of the dual String background.

We have seen that under certain conditions on the H-flux, there is a way to perform the gauging of a
non-linear sigma model and the subsequent elimination of the gauge fields via equations of motion in a globally
well defined way. This procedure involves the so called double space. In this context we have analysed an
explicit example, the three-torus T>. Although it is a non-physical case - in fact its dimension is 3, and we
need a six-manifold to compactify a Superstring theory in a significant way - it provides an excellent example
to highlight the mathematical aspects of the issue. In particular we performed explicitly the T-duality on T3,
and we showed that locally the solutions coincides with the results expected form Buscher rules.

The non-geometric String compactifications and the role played by the Generalized Geometry in such a kind
of compactifications are the two fundamental points of this thesis.

In fact in Section ?? we have seen what happens if we relax the constraints on the H flux which are needed
to achieve a globally defined procedure for T-dualizing the non-linear sigma model, and then to obtain a globally
defined String background. It comes out that the dual background is not longer a well defined manifold, since the
geometrical objects which define it do not transform as real tensors. In particular they admit B-transformations
as transition functions.

In Chapter |5| we have studied the Generalized Complex Geometry, which was developed in the last decade.
It provides a new approach to complex and symplectic geometry, and it was born precisely in the physical
context of Mirror symmetry, which is a close relative of T-duality. As we have seen in Section the
same definition of the Generalized Geometry encodes in its structure group the group of transformations of
T-duality: O(n,n). Again we stress on the importance of the structure group description of the geometry. We
focused on Hitchin’s approach to generalized Geometry, and then on its nature of connective structure of a gerbe.

In this context we have analysed the form of the T-duality map in the Generalized Geometry formalism in
Section and we also performed explicitly the calculations for finding the dual backgrounds in a couple of
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examples which are relevant as type II strings backgrounds in Section |6.2.2

The striking fact is that the arising of the non-geometric backgrounds opens the doors to new surprising
points of view on String and even on field theory. In fact it seems that a new kind of non-local transformations
must be put on the same footing as diffeomorphisms and gauge transformations. Different attempts have been
moved in this direction.

C. Hull has tempted to build a new formalism for String Theory, which is called the doubled field theory
[11, 12]. Its peculiarity is to provide an action which contains directly the generalized metric as the metric
of a space which is similar to the doubled space that we introduced in Section [6.1.41 The main point of this
approach is that the T-duality is manifest as a gauge symmetry of the theory. Moreover, not all non-geometric
backgrounds are consistent in quantum theory. Conformal, Lorentz and modular invariance on the worldsheet
have to be imposed in order for the theory to be well defined.

On the side of the Generalized Complex Geometry, a huge amount of work is still to do. In fact G. Cavalcanti
and M. Gualtieri have recently shown that T-duality can be seen as an isomorphism between Courant algebroids
[42], which are the most immediate generalization of a Lie algebroid, which in turn is a generalization of the
most common Lie algebra. However their work is valid in a case which is even simpler than those studied in
Section [6.1.4] in fact its validity is restricted to the cases in which ig,ix,, H = 0. Finally V. Mathai and J.
Rosemberg have shown that if the condition ik, ik, H = 0 is not satisfied, T-dual manifolds can be interpreted
as non-commutative spaces [51]. The relation between Generalized Geometry and non-commutative spaces has
yet to be investigated.



Multilinear algebra

Let us give a brief recall of some basic concepts in multilinear algebra [17].
Let {Vi}ier, be a set vector spaces over the field K such that dim(V;) = n; and let T be a vector space over
K such that dim(W) = n.

Definition A.0.1. A map
feVix - xV,=>W (A1)

which is separately linear in all its variables is a multilinear map, or a p-linear map.
We can enunciate the following

Definition A.0.2. Let Vi,...,V, be vector spaces over the field K such that dim(V;) = n; and let T be
a vector space over K such that dim(T)) = n. The tensor product of Vi,..., V), is a pair (T, F) where
F:V; x---xV,—=Tis aplinear map such that

o VW vector space over K and Vp-linear map ® : Vi x---xV, = W d! & : T — W such that ® = (f)oF,
namely such that the diagram in Figure [A1] commutes.

le---prLW

FJ/

T

Figure A.1: Tensor product.

If the specification of F is not needed due to the context, usually the space T in Definition (A.0.2) is denoted
by
e, (A.2)

and called the tensor product. An element w € V1 ®---®V,, is a tensor. An element of the form F(v1,...,vp)
is a indecomposable tensor and is denoted by

VIR Qv (A.3)

In practice a tensor product can be determined by an isomorphism existing between T7(V) and the p-
multilinear maps, defined by the relation

p
’U1®"'®IUP(3017"'7SOP):H(pj(vj) (A4)
j=1

Now we have the necessary knowledge to develop some further structures starting from a vector space V.

For instance T*(V) = @T?(V), where T/(V) = V®---® V, is the contravariant tensor algebra of V.
Jj=0 i
j times
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T (V) = @T;(V), where T;(V) = V*®---®@ V™, is the covariant tensor algebra of V. Then trivially
— ——

Jj=0 .
j times
TV)= @ T}(V)-where T}(V)=V® - -@V@V*"®---® V" - is the tensor algebra of V. The product
J:k=>0 - )
j times k times

which makes T'(V') an algebra is obviously ®, and the sum 4 : V xV — V is extended component by component
to the whole T'(V).

Let us denote T7(V) =Y 7 _, ®§:1 T7(V). It’s intuitive that there exists a natural filtration of the tensor
algebra, that is
TOV)cTHV) CcT2HV)--- CcT*(V) (A.5)

such that
TP @ 79 C JPte Vp,q €N (A.6)

This makes the tensor algebra a filtered algebra.

Definition A.0.3. Let V, W be two vector spaces on K. Let ¢ € M(V,...,V; W) be a p-linear map. If

o(vpay, - Vp@p)) = sgn(P)o(vi, ..., vp) (A.7)
for each p-tuple (vy,...,vp) € V x --- x V and for each permutation P € P, where P is the permutation group
of the elements {1,...,p}, then @piglnz;eZkew—symmetric p-linear map.

The vector space
ANV)={n1® - Quv, e TP(V)| v1® - Q vy,is skew-symmetric} (A.8)

is the p-th exterior algebra of V. Elements in AP(V') are called alternating p-multivectors. On AP(V) we can
define the wedge product of n vectors v; € V as

1
vl/\-n/\vnzmva(1)®---®vp(n) (A9)
Pe?
where P € P and P denotes the permutation group of the elements {1,...,n}. It’s obvious that n must be less

then or equal to the dimension of V', otherwise the wedge product is equal to 0. For example the wedge product
of two independent vectors vi,vy € V is

1
v1 A Vg = 5(1}1 ® Vg — Uy @ V1) (A.10)

Moreover we can notice that the wedge product induces a bilinear map
A AP(V) x A1(V) — APTI(V) Vp,q st p+qg<n (A.11)

The exterior algebra of the vector space V is

AV)= € A7(V) (A.12)

0<p<n

equipped with the wedge product A : A(V) x A(V) induced by the map in Equation (A.11). In Section
we will see the exterior algebra is a special case of a Clifford algebra. More specifically we can define it as a
quotient of the tensor algebra T'(V') by the bilateral ideal generated by the element

vv—1 (A.13)

As it is immediately evident, whis correspond to eliminate all symmetric tensor product of vectors. In fact, for
example we can write

O=[v+w)@v+w))=vRu+pRuw+wev]+[wRw =[vw+wx ] (A.14)
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The exterior algebra is an associative, non-commutative algebra with unity 1 € A°(V*) = R. It is also a
graded algebra, where the gradation means that

AP(VYAAYV) CAPTYV)  Vp+qg<n (A.15)
and AP(V) AAY(V) =0if p+ ¢ > n. Each AP(V) represents the degree p subspace.

The exterior algebra A(V') inherits an inner product from the vector space V, if it is endowed with a scalar
product n: V xV — R. Infactlet v =v1 A--- Av, € AP(V) and w = wy A--- Aw, € AP(V). Then we can
define an inner product on AP(V') by

(v, w) = det (n(vy, w;)) (A.16)

and extend it bilinearly to all of A?(V). It is also necessary to put (v,w) = 0if v € AP(V) and w = A%(V)
where p # q.

The next step is to transport these structures on a smooth manifold M such that dim(M) = n. Let us
consider the space
AP(T*) = AV(T%) = ] AP(T; M) (A.17)
peM

where as usual [],.,, denotes the disjoint union. This defines a fiber bundle together with the canoni-
cal projection 7 : AP(T™) — M which maps AP(T;M) into p € M. The smooth sections of this bundle
APT* =T (M, AP(T™)) are the differential p-forms over M. Clearly AP(T*) =0 V p > n and the dimension

is given by dim(AP(T*)) = (Z)
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Appendix to the integration of forms

In the present Appendix we will list a pair of concepts needed to define the integration of forms over a smooth
manifold as we did in Section 2.1.3

Manifolds with boundaries

We define the boundary of the set R%. = {x € R” such that 2'>0 Vi€ I,} as the sets
¢ ={x eR, suchthat z" =0} (B.1)

Let U € R} be an open set. We denote by OU = UNR{ the boundary of U. We also denote by I(U) = U/oU
the interior of U.

Let U,V C R} and let f:U — V. f is smooth if there exist open sets U C Uy, V C V; and a smooth map
f1 : U1 — V1 such that f1|U = f

If f: U — V is a diffeomorphism then it induces a diffeomorphism between I(U) and I(V') and between OU
and OV.

Let M be a topological space. The couple (U, ) where U is an open set of M and ¢ : U — ¢(U) C R is a
chart with boundary for M if ¢ is a homeomorphism onto the open set ¢(U) C R.

The obvious substitutions into Definitions [2.1.2] give us the notions of atlas with boundaries and

manifolds with boundaries.

The boundary of a manifold M is denoted by O0M and defined as the set of points p € M such that there
exists a chart with boundary (U, ¢) and p € U, ¢(p) € Rj. The interior of M is defined as I(M) = M/OM.

A smooth manifold with empty boundary is said to be boundaryless, and in this case we recover the usual
Definition R.1.3] of a smooth manifold.

The differentiable structure of a manifold with boundary M induces a differentaible strucuture both on M
and on I(M). They become smooth manifolds without boundary respectively of dimension n — 1 and n.

Classical examples of manifold with boundaries are the disk, whose boundary is a circle and the three-
dimensional ball, whose boundary is a 2-sphere.
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Basics in complex linear algebra

Let V be a real vector space such that dim(V) = n, and denote v/—1 = 4. A complex vector space is naturally
associated to V: it is the complezification of V

VE={(w,w)eVaV| vweV} (C.1)
It is convenient to denote the elements of V< in the following way
(v,w)=v+iw Yo,weV (C.2)
A complex vector space structure is immediately given on V' if one define the sum
(v1 + twy) + (v2 +iwe) = (v1 + v2) + i(wy +ws) Vwvy,ve,wy,ws € I, (C.3)
and the scalar multiplication for A = a +ib € C and a,b € R
A +iw) = (a+ ) (v + iw) = (av — bw) + i(aw + bv) Yo,we I, (C.4)

Each vector v € VC can be uniquely written as a sum of the form v = v; + ivy, where v, vy € V. We will
denote by Re(v) = v; and Sm(v) = vy the real and immaginary parts of v.

An important involutive operation is naturally defined in VC: the conjugation

B VA — Ve
v — 7 = Re(v) — iSm(v) (C.5)
The conjugation is an involution, since v = v and it is R-linear but it is not C-linear.
In particular we can identify C" =2 R?" via the map
(z1,---,2n) +—  (Re(z1),...,Re(zn), Sm(z1),...,Sm(zn)) (C.6)
where z; = Re(z;) + iSm(z;) for each i € I,,. In this framework we can rewrite the conjugation as an endomor-

phism j : R?® — R2?" such as
v v =gv (C.7)

= (1(1 511) (C.8)

Let us now recall some notions of the elementary holomorphic functions. Let U C C™ be an open set. Define
zt = Re(z#) and y* = Im(z*), where p € I,,, so that z# = ¥ + iy*.

where j is the 2n x 2n matrix

Now consider the set C°(U) = {f :U — C| f issmooth}. Then define the operators on CZ*(U)

0 1 0 .0 1o} 1 0 .0 _
a2<axay) 82<8x+8y> SURE (€9
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where it is evident that

0 0
The set o 5
— (C.11)
{83“ ozH }ueln

contains 2n indipendent vectors.

Let f = f(2,%2) € Cg°(U). Then if u = Re(f) and v = Im(f), we can write the Cauchy-Riemann relations
in the simple form

of ou dv . [ Ov ou '\ _
o7 0 T o og Z<8x“+8y“)_0 o et
ou ov v ou
dar " ogr " W G Ty T HED 1

A map f € CF such that 882’; =
f € Cg° such that or —

OzH

0 is a holomorphic map and it doesn’t depend on z*. On the contrary a map

0 is an antiholomorphic map and it doesn’t depend on z*. Also, the coordinates z*
are called holomorphic coordinates while the coordinates zZ# are called antiholomorphic coordinates.

After having used the identification in Equation (C.6) it’s immediate to see that the holomorficity of a
function f : R?® D U — R?" is equivalent to the condition

jofu(z)=fu(z)oj VzeU (C.13)



Chern classes

As we have seen, given two smooth manifolds £, M and a fiber F, we can construct many fiber bundles, de-
pending on the choice of the transition functions. Naturally we can ask if there exists a way to measure how
much a generic bundle F is different from the trivial one M x F' constructed with the same base manifold M
and the same fiber F' of F itself. The needed tool to achieve this purpose are the characteristic classes, namely
suitable subsets of the cohomology classes over the base space M, which precisely measure the non-triviality of
bundles. In this context it is important to notice that a fiber bundle is a topological object since the projection
7w which defines it is not a diffeomorphism but only a surjiection.

To understand the need for introducing the Chern classes, we need to recall some concept in elementary
geometry. We have already recalled the Euler characteristic in Section ??, which is defined, for a polyhedron
as

X=V—-L+F (D.1)

where V' = { of vertices, L = § of edges, F' = f§ of faces. This formula can be extended to general compact smooth
manifolds, since x turns out to be a combination of the Betti numbers for real manifolds, or a combination
of the Hodge numbers for complex manifolds. One of the main theorems of geometry - the Gauss-Bonnet
Theorem - tells us that the total curvature of a compact manifold is given, for a compact and boundaryless
smooth surface ¥ by

/ Kd¥ =2nx(%) (D.2)
)

where K is the Gaussian curvature, i.e. the product of the two principal curvatures (namely the maximum and
the minimum curvatures). The total curvature is an intrinsic object of the surface.

It can be understood by giving some simple examples. Let us consider a flat rectangular sheet of paper.
We expect that its curvature is zero, and in effect it is so. Now try to construct a cylinder from the flat sheet
of paper. We can do it simply by identifying the point on two opposite edges of the sheet. The two principal
curvatures will be 0 and 1 (let us construct a cylinder of radius 1). This means that the total curvature of
the cylinder is 0 x 1 = 0. This is surprisingly: the total curvature of the cylinder is zero as well as the total
curvature of the flat sheet of paper.

The geometrical meaning of this puzzling is that the distance between two fixed points on the flat sheet
of paper remains the same both before to roll it (to become a cylinder) and after. Instead a sphere has total
curvature 47, that means that there is no way to "transform" it into a flat sheet without stretching or twisting
it. In general each continuous transformation keep the total curvature constant.

Moreover it’s easy to be computed if one remembers that y = 2 — 2g for a surface, where g is the genus of
the surface (g = 0 for the sphere, while g = 1 for the torus).

The attempt to generalize the Gauss-Bonnet Theorem lead us to the Chern classes. In fact, as we will see,
the higher non-vanishing Chern class (that in the case of complex surfaces is the first one) is always the Euler
characteristic.
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In particular we can notice a substantial difference between the sphere and the torus, that explains us the
reason why the first Chern class of the torus vanishes, while the first Chern class of the sphere is different from
0. The reason is that on a sphere it’s not possible to define a non-vanishing smooth vector field, a notorius fact
(see Figure which is known as the impossibility to comb the hair on a sphere. For surfaces which present
such a kind of singularities, the first Chern class can not vanish. On the other hand, the torus has not such
obstruction like that, as it’s evident from Figure Thus its first Chern class is zero.
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Figure D.1: You can not comb the hair on a sphere, but you can do it on a torus.

The framework in which we will move in the present Section is given by a complex vector bundle E of rank
rk(E) = n over the base space M whcih is a smooth manifold of dimension dim(M) = m. Its structure group
is naturally GL(n,C). Let us start with the fundamental

Definition D.0.4. If P(Ady(y1),...,Ady(yn)) = P(y1,...,yn) with g€ Gand y; € g Vj € I,, then it is a
symmetric invariant polynomial. If y; =y Vj € I,,, then P is a invariant polynomial of degree n

P(y,...,y) = P@") (D.3)

An example of invariant polynomial is immediately given by the symmetrized trace

1
P(y17 s 7yn) = Str(yla s 7y7l) = E Z t’/’(yp(l) cee yP(n)) (D4)
Pe?
where P denotes the permutation group of the n elements (1,...,n).

Since we are interested in objects as the local connection and the local curvature, we have to extend the
definition of invariant polynomial to Lie algebra valued forms. If z; = y; @ w; € g ® APIT*U, (see Section

2.2.2), then we simply have

P(z1,...,2n) = Py1 QWi ..o, Yn @wp) = w1 A=+ Awp P(Y1,. .., Yn) (D.5)
For example we have

Str(xy, ..., Xp) = Sr(Y1 Q@ W1,y Yn QWp) = WA -~ Awstr(y1,...Yn) (D.6)

Let A be a gauge connection over £ and F = dA + A A A be its related local curvature two-form. Let A
and JF take their values in the Lie algebra g of the gauge group G, which is in turn a subgroup of the structure
group GL(n,C). The importance of the invariant polynomials resides in the following Proposition

Proposition D.0.1. Let P be an invariant polynomial. The P(JF) satisfies
1. dP(F) =0
2. P(F1) — P(F3) =dQ
where J; is the curvature two-form associated to the connection one-form A;. Finally we can give

Definition D.0.5. The total Chern class of F is

o(E) = det <1 + 225) (D.7)

™
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It’s evident that ¢(F) is the direct sum of forms of even degrees. i.e.
c(E)=1+4c1(E)+co(E)+... (D.8)

Coefficients ¢, (F) are the Chern forms. One can prove that Equation (D.7) is an invariant polynomial. Then
from Proposition we get that each term in the development of Equation (D.7]) must vanishes indipendently,
so that Chern forms are closed. Consequently they define the Chern classes

[er(E)] € H?*(M,R) (D.9)

Even if the definition of Chern classes relies to a specific connection one-form A over E, 2. in Proposition
tells us that the difference between Chern forms derived from different connections over £ is always an exact
form. Then the Chern class isn’t modified by a change in the choice of the connection. Obviously different
connections lead to different representatives of the cohomology classes [c;(E)]. Moreover, since F is a two form,
if dim(E) = n, then ¢;j(E) = 0 V2j > n. In any case, independently of dim(M), the last ¢;(E) # 0 is
ci(E) = det (3=5), thus ¢;(E) =0 Vj > k.

Now we will give a method which allow us to find explicitly and easily Chern forms for the general complex
vector bundle E. Let F be the curvature two-form, and let g € GL(n,C) be the matrix which diagonalizes ¥,
ie.

Ad, (2;3) = diag(z1,...,2n) = D (D.10)

where x1,...,x, are suitable two-forms. We can write the total Chern class as

c(E) = det <1 + ;3’) = det(1 + %D) = det (diag(1 + z1,...,1+x,)) =
T 77

QI4z) =1+ (@14 +xn) + (@122 + -+ Zp_12n) + -+ (T12T2 ... Tpo1Tp) =
1

n

J

1
=1+Tr(A)+ 5{(Tr(A)2 —Tr(A*)} + -+ +detA (D.11)
From this expansion we immediately understand why the last ci(E) # 0 is det (3=9). Thus, using that
det (1 + ) is an invariant polynomial and then that det (1 + 5=F) = det (1 + 5=gFg~') = det (1 + D), we get
co(E) =1 (D.12)
_ _ A1) b

a(E)=Tr(D)=Tr (27Tgrfg > 27TTT(&") (D.13)

1 1/’
c2(E) = 5{(Tr(D))2 —Tr(D*)} = 3 (2) {Tr(F)NTr(F) —Tr(FAF)} (D.14)

™
i\ 2

cx(E)=detD = (2> det F (D.15)

T

Furthermore we can define the Euler characteristic of the bundle E as the top Chern class, namely
ek (E) = x(E) kis the top index (D.16)

In particular, for Riemann surfaces ¢;(E) = x(E), as we mentioned at the beginning of the Section.

Moreover we can give some of the most important features of the Chern classes, namely

Proposition D.0.2. Let E, E’ be two complex vector bundles over the smooth manifold M, with structure
group GL(n,C), and let f : M — N be a smooth map between two smooth manifolds. Then the following
properties hold

1. ¢(E) =1if F is a trivial bundle.

2. ¢(f*E) = f*c(E).
3. ¢c(E®E)=c(E)ANc(E).
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