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Conventions

We denote by In a �nite set of indices i ∈ {1, . . . , n}. I denotes an in�nite set of indices, while I0
n = {0, 1, . . . , n}.

With the expression f : U → V is smooth or di�erentiable (where U ∈ Rn, V ∈ Rm) we will always mean that
it is di�erentiable an in�nite number of times in its de�nition domain. A di�erentiable map in U is denoted by
f ∈ S∞(U). A di�eomorphism is a map which is smooth, invertible and such that the inverse map is also smooth.

Let n indicates the dimension of the space considered, which can be a smooth manifold, a linear space, etc.
Italic letters from the middle of the alphabet like i, j, k, . . . are usually referred to real coordinates indices. They
take values in In. Latin letters from the middle of the alphabet like µ, ν, ρ, . . . are usually referred to complex
coordinates indices. Since they are used on complex space, usually there are n coordinates xµ and their complex
conjugates xµ. Then µ takes their values in In but can be referred to two di�erent set of coordinates which
are conjugate among each other. Italian letters from the beginning of the alphabet like a, b, c, . . . are usually
referred to vielbeins directions. They take values in In.

Latin letters from the beginning of the alphabet like α, β, γ are usually referred to open sets. They take
values in I. For example Uα is an open set on a smooth manifold M . Uαβ denotes the overlap Uα ∩ Uβ . More
generally Uα1...αn denotes the overlap of the n open sets Uα1

∩ Uα2
∩ · · · ∩ Uαn .

We will always denote the identity over a generic space X by 1X .

We will always denote the transpose of the matrix A by AT . The transposition of the invertible matrix A−1

is denoted by A−T .
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1
Introduction

String Theory was born in 60's to explain the strong interactions, but it was soon superseded by QCD. The
massless state with spin two which String Theory possesses in its own spectrum has been considered a problem
for a long time.

However since 1974 the two-spin massless state was recognized to have the same properties of the graviton,
String Theory rapidly became the most promising theory in trying to unify all the fundamental interactions in
a unique framework [1, 2].

The introduction of fermionic matter in String Theory brings to consider the supersymmetric extension of
this, also called Superstrings Theory [3]. The number of dimensions in which Superstring Theory is consistently
de�ned is d = 10. The discrepancy with phenomenology, which provides only four dimensions is �lled by one
of the most interesting theoretical aspects of Superstring Theory, that is the compacti�cation of the 6 extra
dimensions.

The most common way to compactify the extra dimensions is a generalization of the dimensional reduction.
This procedure was �rst used by T. Kaluza and O. Klein [4] [5]. They succeded in unifying the gravity and
the electromagnetism in four dimensions by deriving both interactions from a �ve dimensional theory of pure
gravity. The idea is both simple and surprising. As an example let us consider the �ve dimensional action for
a real massless scalar ϕ

S =

∫
d5x ∂µϕ∂

µϕ (1.1)

where we took the �at metric on the �ve dimensional space M . Let us we compactify a direction of M such
that it decomposes as

M = M4 × S1 (1.2)

whereM4 is a four dimensional manifold while S1 is a circle of radius R. Moreover let xµ be the set of cordinates
which locally parametrizeM4, while let x be the coordinate which parametrizes the circle, such that x ∼ x+2π.
Then the Klein-Gordon equation reads

�ϕ = 0 ⇒ ∂µ∂
µϕ+ ∂2

xϕ = 0 (1.3)

so that by using the periodicity in x we can write the Fourier expansion

ϕ(xµ, x) =
1√
2πR

∞∑
n=−∞

ϕn(xµ)e−i
nx
R (1.4)

By substituting in Equation (1.3) we obtain

∂µ∂
µϕn −

n2

R2
ϕn = 0 (1.5)

which includes the actual idea of the compacti�cation procedure: the compacti�ed directions give rise to the
mass term for the real scalar ϕn. In particular a tower of states is obtained, each of which has mass proportional
to n

R . The main point here is that at low energies the only observable states are the massless ones. This amount
to take the limit for R 7→ 0, which is physically amounts to to think about the size of the compact direction
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to be of the order lS ∼ 1
MP

, where MP
∼= 1019Gev is the Planck mass. In this limit only ϕ0 remains light,

while all the other modes ϕn with n 6= 0 become increasingly heavy and can be discarded. The dimensional
reduction is precisely the limit in which only the zero mode is kept. Its name is due to the fact that we would
have obtained the same results by taking ϕ ≡ ϕ(xµ).

This procedure is generalizable to the ten dimensional case [7]. The manifold is decomposed as

M = M4 ⊗K (1.6)

where M4 is a four dimensional maximally symmetric manifold, while K is a six-dimensional manifold called
the internal space. This form of the decomposition is forced by the requirement that the Poincarè invariance is
preserved in four dimensions.

In this Section we will indicate by M,N, . . . indices which refer to the ten-dimensional space, by µ, ν, . . .
indices which refer to the four-dimensional space and by i, j, . . . indices which refer to the internal space.

The dimensional reduction of the �elds in ten dimensions brings to the following results

• A gauge �eld which transforms as a vector in the SO(1, 9) decomposes under SO(1, 3)⊗ SO(6) as

9 = (4,1)⊗ (1,6) (1.7)

so that we can recognize a four-dimensional gauge �eld Aµ and six scalars {Ai}i∈I6 .

• The metric tensor gMN which decomposes in the components gµν , giµ and gij , where gµν is the four-
dimensional metric tensor, while form the four-dimensional point of view giµ are spin one �elds and gij
are scalar �elds.

• The spinor �elds decomposed in a non-trivial way that we will study in Section 3.1.4. They play a key
role since as it is well known they constitute the matter of our Universe.

It's remarkable to probe the consequences of Dirac equation in ten dimensions. Let us denote by ΓM the
ten-dimensional Dirac matrices, and let us consider the Dirac �eld Ψ. The d-dimensional Dirac operator is
denoted by Dd Then we can write

0 = i /D10Ψ = i

10∑
M=1

ΓMDMΨ = i

4∑
µ=1

(ΓµDµΨ) + i

10∑
i=5

ΓiDiΨ ≡ i( /D4 + /D6)Ψ (1.8)

From
i /D4 = − /D6Ψ (1.9)

we can immediately see that the term − /D6Ψ plays the role of a mass operator whose eigenvalues are the masses
as seen in four dimensions. However, as we have mentioned before in the dimensional reduction we have to
neglect the massive terms. This means that the zero modes of the six-dimensional Dirac operator /D6 corre-
sponds to the massless fermions in four dimensions. Massless fermions are those we are interested in, since the
observed fermions are massless in this approssimation. In fact they acquire their small masses as a consequence
of a symmetry breaking.

The fact that observed fermions are expected to correspond to zero modes of the operator /D6 allows us to
say that the way in which �elds appear in the four-dimensional world is strictly related to the topology and
geometry of the internal spaceK. The present work concerns the study of di�erent aspects of the geometry ofK.

As a consequence of what we have just said, phenomenology puts strong constraints on the geometry ofK [7].
The most accredited phenomenological models are currently those which provide for a N = 1 supersymmetric
extension of the Standard model. In fact one of the major concerns of String Theory in the last two decades
has been to �nd a realistic compacti�cation which brings to a Standard model sector in four dimensions at low
energies.

Strikingly, it turns out that the (NS, NS) groundstates of Superstrings Theory are described by a set of
objects, namely (g,H, φ), where g is the Riemannian metric on the internal space, H is a three-form also called
the Neveu-Schwarz �ux, while φ is the dilaton. Moreover, these three objects can be inserted in the Polyakov
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action, which describe exactly the propagation of a string in the background de�ned by (g,H, φ). Compacti-
�cations with vanishing H-�ux have been intensively studied until the �rst half of the '90s, and they brought
to the study of a particular kind of complex manifold, also called Calabi-Yau. Calabi-Yau are simply a kind
of manifolds which admits the existence of a covariantly constant well de�ned spinor. On the contrary, the
geometry of the manifolds involved in compacti�cations with H-�ux turned on has been unknown for long time.

Recently, the interest for compacti�cations with H-�ux turned on has grown since it has been proven that
non-vanishing vev for H can be used to partially break the N = 2 supersymmetry of Calabi-Yau compacti�-
cations to N = 1 [8]. In fact the advent of the so-called G-structures technique (reviewed in Section 2.1.5) to
study complex structures with additional structures has solved many problems. In particular now a complete
classi�cation of this kind of manifolds is given. If the H-�ux is turned on then the internal space geometry is
no longer Kähler : it is called generalized Kähler [10]. The �rst part of the present work is devoted to the
study of the G-structures. In particular we will see that the generalized Kähler structures are SU(3) structures,
and how they can be described in terms of spinors on a manifold.

T-duality is a non-local symmetry of String Theory related to duality with respect to the inversion of the
compacti�cation radius R 7−→ 1

R . In the case of compacti�cations with H �ux, T-duality consists of a map T
which associate to a background (g,H, φ) its dual background (g′, H ′, φ′). At the level of local supergravity
backgrounds, there exists a standard way to �nd the dual background, which is given by what is called the
Buscher rules. These consist in introducing a gauge �eld by gauging the non-linear sigma model de�ned by
(g,H, φ). The dual background can be simply obtained by integrating the gauge �eld out.

One of the aspects of the present work is to understand under which conditions a dual background can be
de�ned in a global manner. C. Hull [11] has furnished general arguments to understand if the non-linear sigma
model associated to a global background can be gauged in a way which de�nes a global dual background. It's
in this context that the double �eld theory was born [12].

In the present work we will explicitly study the non-physical example of the three-torus T3. Even if this
example can't be used as an actual background (its dimension is 3!) it is very useful since it allows us to
highlight the mathematical details of the question. Moreover, even if a global treatment is possible in this
case, we will see explicitly that the results locally agree with those given by Buscher rules. In particular we
will explicitly show that the three-torus represents the simplest example in which an ungaugeable isometry can
actually be gauged by using what is known as the double space technique. In particular, as it was formalized
by P. Bouwknegt, J. Evslin and V. Mathai [13] the topology of the background can change after T-duality. We
will explicitly see this phenomenon in the T3 example.

The main point of the present work is however the systematic study of the Generalized Complex Geometry
[14] [15]. It turns out to be the natural framework to describe generalized Kähler structures. Since it provides a
doubling of the degrees of freedom due to the fact that tangent space and cotangent spaces are merged together,
it can be used to describe the doubled space in a natural way. In particular T-duality map takes a very simple
form when written in terms of generalized structures [16].

There are various versions of Superstring Theory. We will deal only with a couple of these, and we will con-
centrate on the geometric aspects of their backgrounds. It will be shown that Generalized Complex Geometry
provides the right way to describe type II superstrings backgrounds at low energy, and in this context we will
consider two explicit examples which are SU(3) structures. In particular we will study the form of the T-duality
map written in terms of pure spinors for these examples, and we will see explicitly that the local form of such
a map is equivalent to that prescribed by Buscher rules.

Doubtless the most interesting point is to understand if such local dual supergravity backgrounds can be
extended to global Superstring backgrounds. We will see explicitly that the examples considered are T-folds
according to the de�nition given in [11] and we will study the mathematical details which descend from it. In
particular we will concentrate on the generalized geometry consequences for T-folds.

The thesis is organized as follows:

• In Chapter 2 we will give the basic notions in di�erential geometry which are needed to work with
Riemannian manifolds, with �ber bundles and with G structures.

• In Chapter 3 we will review the basics notions on spinors. In particular we will focus on their algebraic
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nature as elements of a Cli�ord algebra and on conditions needed to exist over a smooth manifold.

• In Chapter 4 we will study the complex geometry. The �nal purpose of this Chapter is to describe SU(3)
structures.

• In Chapter 5 we enter the topic of Generalized Complex Geometry. We will focus on aspects which are
useful to study examples in the following Chapter, as for example the de�nition of generalized metric and
vielbeins.

• In Chapter 6 we will study various aspects of T-duality.



2
Geometry background

Real di�erential geometry is the most immediate attempt to generalize our innate geometrical vision of the
world. It is exactly half way between the linear algebra, which talks about lines, plans, etc, and the topology,
which permits us to classify and to study objects of any shape.

Both the linear algebra and the topology are not completely satisfactory to describe the real world. In fact,
if on the one hand the linear algebra is too rigid to describe the enormous variety of objects that make up
the world and their complexity, on the other the topology is too little. Roughly speaking and following the
topological classi�cation, one could say that a bottle is equivalent (homeomorphic) to a couch, since neither has
holes (this is true only in three dimensions). Of course in a large variety of situations this classi�cation turns
out to be too little restrictive, and then it must be avoided.

Real di�erential geometry is just an attempt to strike a balance between the linear algebra and the topology
by mixing them into a single structure: a manifold. It can globally assume any form, but it locally seems like
a real vector space Rn. One of the most important feature of a manifold is that we can de�ne some way to
perform di�erential calculus on it.

In Section 2.1.5 we will introduce the G-structures. They provide a useful tool to describe the mathematical
structures which play a fundamental role in the present work, namely the SU(3)-structures. We will study their
mathematical details in Chapter 4 where we will explain also the physical motivation to introduce them.

In the present Chapter we brie�y recall some basic concepts in di�erential geometry on Riemannian mani-
folds and �ber bundles.

2.1 Basics in real geometry

2.1.1 Real manifolds

Di�erential structures

A smooth manifold is a set which locally looks like a subset of Rn, and in which the gluing of all this kind of
subsets is smooth. More precisely

De�nition 2.1.1. Let U ⊆ M and p ∈ U . Let ϕ : U → ϕ(U) ⊆ Rn be a bijective map, where ϕ(U) is an
open set in Rn. The pair (U,ϕ) is an n-chart over M . Two n-charts (U,ϕ) and (V, ψ) over M are compatible
if U ∩ V = {∅} or if U ∩ V 6= {∅}, the sets ϕ(U ∩ V ) and ψ(U ∩ V ) are open sets in Rn and the map
ψ ◦ ϕ−1 : ϕ(U ∩ V )→ ψ(U ∩ V ) is a di�eomorphism. The map ψ ◦ ϕ−1 is a chart's change, while the inverse
map ϕ−1 : ϕ(U)→ U is a local parametrization.

Since ϕ(U) ⊆ Rn, if we consider the canonical basis of Rn, we can write in coordinates

ϕ(p) = (x1(p), . . . , xn(p)) ≡ xi(p) (2.1)

{xi(p)}i∈In are the local coordinates in the given n-chart (U,ϕ).
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In order to de�ne a smooth manifold we have to consider a set of charts which forms a covering.

De�nition 2.1.2. A collection {(Uα, ϕα)}α∈I of n-charts over a set M is a smooth n-atlas if M =
⋃
α∈I Uα

and if the n-charts are compatible two by two. A smooth n-atlas {(Uα, ϕα)}α∈I is a smooth n-structure if each
n-chart compatible with all the elements in {(Uα, ϕα)}α∈I is already contained in {(Uα, ϕα)}α∈I itself.

One can prove that each smooth atlas is contained in a unique maximal smooth atlas which is the union of
all the charts compatible with the charts given [17]. Eventually

De�nition 2.1.3. Let M be a set endowed with a smooth n-structure. Then M is a smooth manifold of
dimension n, i.e. dim(M) = n.

Needless to say, if a set M allows for a smooth n-structure, it can't admit a smooth m-structure with n 6= m
(Theorem of the invariance of the dimension [17]). From now on we will leave understood the dimension of the
charts and of the manifolds, assuming that it is always equal to n, unless di�erently speci�ed.

It is interesting to notice that in many books the initial requirement is not for an arbitrary set M , but for
a topological space. In that case each set U de�ning a chart has to be an open set in the topology of M and
each map de�ning a chart has to be a homeomorphism with the image. It's amazing to observe that this is an
unnecessary requirement, since each smooth atlas {(Uα, ϕα)}α∈I de�nes uniquely a topological structure over
the set M [17]. In fact it su�ces to state

A ⊆M is an open set ⇔ ∀α ∈ I ϕα(A ∩ Uα) is an open set in Rn

In this way we have de�ned the topology induced by the smooth structure over M . Naturally, if we will de�ne
a smooth structure over a topological space, we will assume that the induced topology be exactly the given
topology.

Although it is clear that given a point on a manifold p ∈M , we can always �nd a neighbourhood containing
p which locally looks like an open set of Rn, the concept which makes a smooth manifold really interesting and
e�cient is the charts' compatibility, which allows us to move among charts smoothly.

Let us give two simple examples of smooth manifolds, which are useful to our purposes.

Example 2.1.1. The circle S1

S1 can be de�ned as a subset of R2

S1 = {(x, y) ∈ R2| x2 + y2 = 1} (2.2)

It can be equipped with a di�erentiable structure in the following way. Let us consider the two open sets
in Figure (2.1). Let us suppose that the length of the circle is equal to 1. Then we can de�ne the local

(a) U1. (b) U2.

Figure 2.1: A covering {U1, U2} for a circle S1.

parametrizations such that

ϕ1 : U1 → (0, 1) ϕ2 : U2 →
(
−1

2
,

1

2

)
(2.3)

There are two connected components for the intersection U12 = U1∩U2. We will call them the upper component
U+

12 and the lower component U−12. It turns out that a convenient choice for the transition functions is

ϕ+
12 : U+

12 → U+
12

x 7→ x (2.4)

and

ϕ−12 : U−12 → U−12

x 7→ x+ 1 (2.5)
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We observe that if M,N are smooth manifolds with dimension respectively dim(M) = m and dim(N) = n,
then M ×N has a natural structure of smooth manifold with dim(M ×N) = m+ n. If A = {(Uα, ϕα)} is an
atlas for M and B = {(Vβ , ψβ)} is an atlas for N , then an atlas for M ×N is simply given by the product atlas

A×B = {(Uα × Vβ , ϕα × ψβ)} (2.6)

where the map ϕα × ψβ : Uα × Vβ → Rm+n is de�ned by

ϕα × ψβ(x, y) = (ϕα(x), ψβ(y)) (2.7)

Example 2.1.2. The n-dimensional torus is de�ned as Tn = S1 × · · · × S1︸ ︷︷ ︸
n times

.

The case n = 3 will be di�usely studied in Chapter 6.

It's natural to generalize the concept of di�erentiability to maps between two smooth manifolds.

De�nition 2.1.4. Let M and N be two smooth manifolds such that dim(M) = m and dim(N) = n. Let
F : M → N be a map. F is di�erentiable or smooth in p ∈M if there exist two charts (U,ϕ) in p ∈M and
(V, ψ) in F (p) ∈ N such that F (U) ⊆ V and there exists a neighborhood of p, U ′ ⊂ U such that the composition
ψ ◦ F ◦ ϕ−1 : U ⊇ U ′ → V is a smooth map. If F is smooth in each p ∈ M then it is smooth over M. A
smooth bijection, with smooth inverse is a di�eomorphism.

It's immediate to notice that a map ϕ de�ning a chart (U,ϕ) over a smooth manifold M is automatically a
di�eomorphism between U and ϕ(U) ⊆ Rn.

The power of De�nition 2.1.4 resides in the fact that the di�erentiability concept is completely independent
of the chosen chart [17, 19]. Moreover, if F : M → N is smooth in some p ∈M , then it is continuous in p [17].
Finally, if F : M → N and G : N → S are two smooth maps between manifolds, then also their composition
G ◦ F : M → S is smooth.

If there exists a di�eomorphism between M and N , they are said to be di�eomorphic. If M is di�eo-
morphic to N then dim(M) = dim(N). Exactly as homeomorphisms classify spaces according to whether it
is possible to continuously deform one of them to the other, in the same way di�eomorphisms classify spaces
according to whether it's possible to smoothly deform one of them to the other: they de�ne an equivalence
class. Smooth functions f : M →M form a group called the di�eomorphism group of M .

Vectors and one-forms

Vectors on a manifold M can be induced from vectors which are tangent to some curve on M [19, 20] as the
intuition suggests us.

Let for example γ : R ⊇ I → M (0 ∈ I) be a smooth curve which intersects a chart (U,ϕ) and such that
p = γ(0) ∈ U . Let {xi}i∈In be the coordinates induced by ϕ on U . The coordinates of γ on U are xi(γ(t)) and
the tangent vector to this curve is de�ned as

d

dt
(xi(γ(t))) (2.8)

Let f ∈ C∞(M) be a smooth map. In t = 0, the change of f is given by

d

dt
(f(γ(t)))

∣∣∣∣
t=0

(2.9)

or, in local coordinates
d(f ◦ ϕ−1)

dxi

∣∣∣∣
xi=ϕ(γ(t))

dxi

dt

∣∣∣∣
t=0

(2.10)

Then de�ning

X = Xi ∂

∂xi

∣∣∣∣
p

where Xi =
dxi(γ(t))

dt

∣∣∣∣
t=0

(2.11)

we obtain
d

dt
f(γ(t))

∣∣∣∣
t=0

= X[f ] (2.12)
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The di�erential operator X is a tangent vector to the manifold at the point p ∈M , since it is the tangent vector
to the curve γ in t = 0. If now we consider the following equivalence class of curves

[γ(t)] =

{
γ̃(t) such that γ̃(0) = γ(0) and

dxi(γ̃(t))

dt
=
dxi(γ(t))

dt

}
(2.13)

All the equivalence classes of curves passing through p ∈ M , namely all tangent vectors at p ∈ M span a
real vector space that is the tangent space TpM. In local coordinates the set of vectors{

∂

∂xi

∣∣∣∣
p

}
i∈In

(2.14)

form the coordinate basis for the tangent space TpM .

However, a basis for TpM doesn't need to be induced by the local coordinates. In fact we can take a set of
matrices {Aii ∈ GL(n,R)} and de�ne a basis for TpM such that ea|p = Aia

∂
∂xi

∣∣
p
which is called a non-coordinate

basis.

It is well known that for each �nite dimensional vector space there exists a relative dual. The dual space of
the tangent space is the cotangent space T∗pM, which is spanned in the coordinate basis by

{dxi|p}i∈In (2.15)

and the non-coordinate basis {ea|p}a∈In can be de�ned in the same way of the tangent space.

A non-degenerate scalar product (, ) : TpM × TpM → R is de�ned on the vector space TpM such that
(ea|p, eb|p) = δab.

The duality relation (which is also denoted by (, )) naturally holds

(ea|p, eb|p) = (eb|p, ea|p) = δab ∀ a, b ∈ In (2.16)

where (, ) is the natural interior product between a vector space and its dual, induced by the map

T ∗pM 3 ea : TpM → R
eb 7→ (ea, eb) = δab (2.17)

A dual vector ω|p = ωae
a|p ∈ T ∗pM , is a one-form on M .

Submanifolds

As it seems to be intuitive we can de�ne the concept of submanifold.

De�nition 2.1.5. Let M,N be smooth manifolds, and p ∈ M , where m = dim(M) and n = dim(N). Let
f : M → N be a smooth map. f induces the di�erential map f∗ if ∀ smooth map g ∈ C∞(N)

f∗ : TpM → Tf(p)(N)

such that
f∗X[g] = X[g ◦ f ] (2.18)

f∗ is a pushforward of vectors. If h : N → L, with L a smooth manifold, then the naturality condition

(h ◦ f)∗ = h∗ ◦ f∗ (2.19)

holds.

If we consider a chart (U,ϕ) in p ∈ M , and a chart (V, ψ) in f(p) ∈ N , which respectively establish the
coordinates {xi}i∈Im and {yi}i∈In , then we can compute the expression in components of the pushforward. In
fact Equation (2.18) means

f∗X[g ◦ ψ−1](y) = X[g ◦ f ◦ ϕ−1](x) (2.20)



2.1 Basics in real geometry 15

where ϕ(p) = x and ψ(f(p)) = y. This gives

f∗X
j ∂

∂yj
[g ◦ ψ−1](y) = Xi ∂

∂xi
[g ◦ f ◦ ϕ−1](x) (2.21)

Now putting g = yj we obtain the expression in components

f∗X
j = Xi ∂y

j

∂xi
(2.22)

Finally we can explore the concept of submanifold.

De�nition 2.1.6. Let f : M → N be a smooth map, and let dim(M) ≤ dim(N). The map f is an immersion
ofM into N if f∗ : TpM → Tf(p)N is an injection, namely if rk(f∗) = dim(M). The map f is an embedding if

f is an injection and an immersion. Usually we will denote an embedding i by
i
↪→. Finally, if i is an embedding,

then i(M) is a submanifold of N , and i(M) is naturally di�eomorphic to M .

2.1.2 Fiber bundles

TpM and T ∗pM characterize the manifold only in a neighborhood of the point p ∈ M . However, if we are
interested in the global properties of a manifold, it's much more convenient to introduce a new object: a bundle.

The simplest example of bundle we can study is the trivial one. In fact we can always endow a smooth
manifold M with a bundle structure simply by taking the product of M with another smooth manifold F . We
have to de�ne also the smooth map

π1 : M × F → M

(p, x) 7→ p ∀ p ∈M, ∀x ∈ F (2.23)

which projects on the �rst factor of the pair (·, ·). Then

De�nition 2.1.7. The quadruple (M × F,M, π1, F ) is a trivial bundle.

De�nition 2.1.7 is introductory to the following

De�nition 2.1.8. The quadruple (E,M, π, F ) is a �ber bundle if the following conditions hold

1. E,M and F are smooth manifolds called the total space, the base space and the standard �ber respectively.
The smooth map π : E →M is surjective and is called the projection.

2. There exists an open covering {Uα}α∈I of M such that ∀α ∈ I there exists a di�eomorphism tα :
π−1(Uα) → Uα × F and a commutative diagram such as in Figure 2.2. The pair (Uα, tα) is a local
trivialization for the bundle. The set of all local trivializations {(Uα, tα)}α∈I is a trivialization for the
bundle.

If the �ber F is a real (complex) vector space then the �ber bundle is a real (complex) vector bundle. The
rank of a vector bundle is the dimension of F as a vector space.

In absence of ambiguities, instead of a quadruple, we will often denote a vector bundle by its projection
π : E →M , leaving F implicit.

Figure 2.2: Local structure of a �ber bundle.

Let {(Uα, ϕα)}α∈I be a smooth atlas for the smooth manifold M , and let π : E →M be a �ber bundle. We
want to underline that it's unnecessary that {Uα}α∈I be the covering of an atlas of the di�erentiable structure
of M . In that case {π−1(Uα)}α∈I would constitute the covering of a di�erentiable atlas on E, called a �ber
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atlas for E, and we will say that the smooth atlas {(Uα, ϕα)} trivializes the �ber bundle π : E → M . We will
always consider smooth atlases which trivialize π : E →M unless di�erently speci�ed.

So far, a �ber bundle seems to be a di�erentiable way to associate a �ber to each point of a manifold.
Locally, the way of doing it is trivial: it's just the topological product. However, the way in which �bers are
glued together is the really interesting point, which clari�es the global topological properties of the bundle.
With this purpose we give the following [17, 18]

Proposition 2.1.1. Let M be a smooth manifold and let E be a set. Let π : E →M be a surjective map. Let
{(Uα, tα)}α∈I be a trivialization of E. If the following conditions hold ∀α, β ∈ I

1. π1 ◦ tα = π|π−1(Uα)

2. ∀Uαβ 6= {∅} there exists a smooth map

gαβ : Uαβ → GL(n,R) (2.24)

such that the composition tα ◦ t−1
β : Uαβ × F → Uαβ × F is of the form

tα ◦ t−1
β (p, x) = (p, gαβ(p)(x)) p ∈ Uαβ , x ∈ F (2.25)

then E admits a unique structure (up to isomorphisms [20]) of �ber bundle, for which {(Uα, tα)}α∈I is a
trivialization.

{gαβ}α,β∈I are the transition functions for the bundle π : E →M . As Equation (2.25) shows, they act on
the �ber by a left translation. {(Uαβ , gαβ)}α,β∈I form a cocycle on M , namely they obey the cocycle conditions:
∀ p ∈ Uαβγ

1. gαα(p) = 1F

2. (gαβ(p))−1 = gβα(p)

3. gαβ(p) ◦ gβγ(p) ◦ gγα(p) = 1F

Naturally, if we can choose all the transition functions of a bundle E to be the identity, then the bundle E is
trivial. Moreover one can show that a �ber bundle over a contractible space is trivial [20].

Every time we introduce a new structure, we have to introduce also a class of maps which preserve the new
structure. With this purpose we give the following

De�nition 2.1.9. Let π1 : E1 →M1 and π2 : E2 →M2 be two �ber bundles. A pair of maps (Φ, φ) such that
Φ : E1 → E2 and φ : M1 →M2 is a bundle morphism if

π2 ◦ Φ = φ ◦ π1 (2.26)

namely if the diagram in Figure 2.3 is commutative. If φ : M1 → M2 is a di�eomorphism, then the bundle
morphism is a strong morphism. If M1 = M2 = M and φ ≡ 1M , then the bundle morphism is a vertical
morphism.

A bundle morphism is a map between bundles which preserves both the di�erentiable structure and the
bundle structure.

Remarkably, if M1 = M2, φ = 1B and Φ is injective, then π1 : E1 →M1 is a subbundle of π2 : E2 →M2.

Figure 2.3: The pair (Φ, φ) represents a bundle morphism between E1 and E2.
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Example 2.1.3. The tangent bundle

Let us try to apply Proposition 2.1.1 to tangent spaces. In particular let M be a smooth manifold such that
dim(M) = n. Let us de�ne

T =
∐
p∈M

TpM (2.27)

where
∐

indicates the disjoint union, and de�ne the natural projection

π : T → M

TpM 7→ p (2.28)

Let us consider, for simplicity, a coordinate basis {xiα}i∈In induced by a smooth atlas {(Uα, ϕα)}α∈I on M .
The trivialization functions tα : π−1(Uα)→ Uα × Rn can be de�ned as follows

tα

(
n∑
i=1

vi
∂

∂xiα

∣∣∣∣
p

)
= (p, v) (2.29)

where v = (v1, . . . , vn) ∈ (Rn)∗, and
{

∂
∂xiα

∣∣∣
p

}
i∈In

is the coordinate basis for TpM . Naturally we can obtain a

non-coordinate basis as described in Section 2.1.1. Then

tα ◦ t−1
β (p, v) = tα

 n∑
i=1

vi
∂

∂xiβ

∣∣∣∣∣
p

 = tα

 n∑
j=1

[
n∑
i=1

∂xjα

∂xiβ
(p) vi

]
∂

∂xjα

∣∣∣∣
p

 =

(
p,

∂xα

∂xβ
(p) v

)
(2.30)

where ∂xα
∂xβ

is the Jacobian matrix of the coordinate change ϕα ◦ ϕ−1
β . Then Proposition 2.1.1 is satis�ed with

transition functions

gαβ =
∂xα
∂xβ

(2.31)

and T has the structure of a vector bundle with rank n. T is the tangent bundle. Where the notation creates
some ambiguities about the base space, we denote the tangent bundle over M by TM .

Example 2.1.4. The cotangent bundle
Let us de�ne

T ∗ =
∐
p∈M

T ∗pM (2.32)

and de�ne the natural projection

π : T ∗ → M

T ∗pM 7→ p (2.33)

Again, for simplicity, consider the coordinate basis induces by a smooth atlas {(Uα, ϕα)} on M . Such a basis
will be dual respect to the tangent space coordinate basis in Example 2.1.3: {dxiα|p}i∈In . Then we can de�ne
trivialization functions on each Uα: tα : π−1(Uα)→ Uα × Rn by imposing

tα

(
n∑
i=1

widx
i
α|p

)
= (p, wT ) (2.34)

where wT ∈ Rn. We obtain

tα ◦ t−1
β (p, wT ) = tα

(
n∑
i=1

widx
i
β |p

)
= tα

 n∑
j=1

[
n∑
i=1

∂xiβ

∂xjα
(p)wi

]
dxjα|p

 =

(
p,

([
∂xβ

∂xα
(p)

])T
wT

)
(2.35)

Thus using Proposition 2.1.1, the transition functions

gαβ =

([
∂xβ
∂xα

])T
(2.36)

de�ne the structure of a vector bundle on T ∗ with rank n. T ∗ is the cotangent bundle. Where the notation
creates some ambiguities about the base space, we denote the cotangent bundle over M by T ∗M .
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Let us observe that given two vector bundles E1, E2 on the same base M the algebraic operations on vector
spaces (see Appendix A) can be extended to de�ne vector bundles such as E1 ⊕ E2, E1 ⊗ E2 [21]. In this way
we can endow a manifold with several useful structures. This observation is crucial for the development of the
Generalized Complex Geometry in Chapter 5.

In fact, recall that ∀x ∈ M the tangent and the cotangent spaces TxM and T ∗xM are vector spaces, and
de�ne

T pq (M) =
∐
x∈M

T pq
∣∣
x
M (2.37)

where
∐
x∈M denotes the disjoint union. Let us de�ne the natural projection π : T pq (M) → M which maps

T pq
∣∣
x
M into x ∈ M . Using Proposition 2.1.2 is straightforward to prove that T pq (M) is a �ber bundle. It is

the
(
p
q

)
-tensor �ber bundle over M . A basis for this �ber bundle is trivially given by making the 6tensor

product of the elements of the basis of TpM and T ∗pM (see Examples 2.1.3 and 2.1.4):{
∂

∂xi1α

∣∣∣∣
p

⊗ · · · ⊗ ∂

∂x
ip
α

∣∣∣∣
p

⊗ dxj1α |p ⊗ · · · ⊗ dxjqα |p

}
ii,jj∈In

(2.38)

Sometimes it's udeful to observe that each element as in Equation (2.38) can be identi�ed as a multilinear map
which acts as follows

T ∗pM |Uα ⊗ · · · ⊗ T ∗pM |Uα ⊗ TpM |Uα ⊗ · · · ⊗ TpM |Uα → R (2.39)

It's extremely useful to introduce a sort of inverse map with respect to the projection π, since it allows us
to interpret tensors as functions on the base space of a bundle.

De�nition 2.1.10. Let E be a �ber bundle, and let U ⊆M be an open set. A smooth map σ : U → π−1(U),
such that π ◦ σ|U = 1U is a local section of π. If U ≡ M then σ is a global section of π or simply a section
of E. The space of local sections de�ned on U is denoted by Γ(U,E), while the space of global sections is
denoted simply by X(E). Moreover we can see smooth functions f : M → R as global sections and write
f ∈ Γ(R) ≡ C∞(M).

Example 2.1.5. Let M be a smooth manifold. It is well known that the tangent bundle π : T → M is a
vector bundle. Γ(T ) ≡ X(M) is the space of smooth vector �elds over M . Similarly we can speak about the
cotangent bundle T ∗ over M . The sections of this bundle Γ(T ∗) ≡ Ω1(M) are the exterior 1-forms over M .
In particular, let (U,ϕ) a chart in p ∈ M which determines the coordinates {xi}i∈In . We can de�ne a set of
local sections of the tangent bundle {∂1, . . . , ∂n} such that

∂i : M → X(M)

p 7→ ∂i(p) ≡
∂

∂xi

∣∣∣∣
p

∈ TpM (2.40)

In particular, if X ∈ X(M), then it is a linear combination of ∂1(p), . . . , ∂n(p), so that we can �nd n functions
X1, . . . , Xn : U → R such that

X(p) =

n∑
l=1

X l(p)∂l(p) (2.41)

An similar reasoning can be repetead for exterior one-forms. Moreover, let (V, ψ) be another chart in p ∈ M ,
and let us denote by {∂̃q, . . . , ∂̃p} the associated local sections of T . We �nd that on U ∩ V

∂̃i =

n∑
j=1

∂xj

∂xi
∂j (2.42)

Since X =
∑
Xj∂j =

∑
X̃k∂̃k we get that

Xi =

n∑
l=1

∂xi

∂xj
X̃j (2.43)

One can �nd that there exists a set of local sections {dx1(p), . . . , dxn(p)} which form a local frame for the
cotangent bundle, and are de�ned as the dual vectors of the basis vectors {∂1(p), . . . , ∂n(p)}.
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Furthermore

De�nition 2.1.11. Smooth sections in Γ(T pq (M)) ≡ T pq are the smooth
(
p
q

)
-tensors on M.

In presence of ambiguities we will write Γ(T pq (M)) ≡ T pqM .

Every construction seen in this Section can be generalized from the tangent bundle T to a generic vector
bundle E, obtaining for example the space of smooth vector �elds on E - X(E)) - or the space of one-forms on
E - Ω1(E) - as well as the space of the

(
p
q

)
-tensor �elds on E, namely T pq E.

2.1.3 Exterior forms

Needless to say, the exterior forms are one of the most powerful tools in di�erential geometry. Since their prin-
cipal feature is the antisymmetry, as we can easily imagine they are strictly related to anticommuting objects
as spinors, as we will see.

Basics

For the linear algebra underlying the present Section we refer to Appendix A.

We can de�ne the exterior algebra over M

Λ(T ∗) =
⊕
p≤n

Λp(T ∗) (2.44)

The space of its smooth sections (namely all forms over M) is denoted by ΛT ∗ ≡ Γ(M,Λ(T ∗)).

It's obviously possible to build up by analogy the space of sections ΛT = Γ(M,Λ(T )), where Λ(T ) =⊕
p≤n Λp(T ) and the elements of Λp(T ) are the alternating p-vectors over M . In general we can repeat the

same constructions of for a general vector bundle E to obtain for example the space of the p-forms ΛpE∗ or the
space of alternating p-multivectors ΛpE (see Section 2.1.2).

Obviously the exterior algebra ΛT ∗ inherits from Λ(V ∗) its algebra structure. In particular, it inherits the
wedge product. We de�ne the exterior product between two forms ω, η ∈ ΛT ∗ as the form

(ω ∧ η)(p) = ω(p) ∧ η(p) ∈ ΛT ∗ ∀ p ∈M (2.45)

The exterior product obeys the following properties ∀ω, η, λ ∈ ΛT ∗, ∀ a ∈ R

1. It is associative, namely (ω ∧ η) ∧ λ = ω ∧ (η ∧ λ).

2. It is distributive with respect to the sum, namely ω ∧ (η ∧ λ) = ω ∧ η + ω ∧ λ.

3. It commutes with the product with scalars ω ∧ (aη) = a(ω ∧ η) = (aω) ∧ η.

4. It is graded, namely if ω ∈ ΛpT ∗ and η ∈ ΛqT ∗ then ω ∧ η ∈ Λp+qT ∗.

5. It is anticommutative, namely ω ∧ η = (−1)pqη ∧ ω.

where we left implicit the point p ∈ M in which the forms take values. Hereafter we will use this convention.
Properties from 1. to 5. mean that ΛT ∗ is a graded, associative and anticommutative algebra.

Needless to say ΛT ∗ inherits an inner product which acts �berwise, from that de�ned in Equation (A.16).

Let us choose a chart (Uα, ϕα) over M which induces coordinates {xiα}i∈In , where dim(M) = n. A r-form
φ ∈ ΛrT ∗ is locally expressed by

φ|Uα(p) =
1

r!

∑
{ii}i∈Ir

φi1...irdx
i1
α ∧ · · · ∧ dxirα (2.46)

where p ∈ Uα ⊆ M and φi1...ir ∈ C∞(Uα). In other words a basis for the exterior algebra ΛpT |∗Uα is simply
given by the set

{dxi1α ∧ · · · ∧ dxipα } (2.47)
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so that the rank of ΛrT ∗ as a vector bundle is given by
(
n
p

)
. Consequently the rank of the whole exterior algebra

is
∑
p

(
n
p

)
. Moreover we get dim(ΛpT ∗) = dim(Λn−pT ∗).

As we have seen, there are some di�culties to transport vector �elds by means of di�erentiable maps between
manifolds. One of the most interesting properties of di�erential forms is that they are easily transportable. In
fact

De�nition 2.1.12. Let M,N be smooth manifolds, and p ∈M . Let F : M → N be a smooth map. F induces
the pullback map F ∗ such that ∀X ∈ TpM, ∀ω ∈ T ∗F (p)M

F ∗ : T ∗F (p)N → T ∗pM (2.48)

such that
(F ∗ω)(X) = ω(F∗X) (2.49)

In components we obtain [20]

F ∗ωi(x) = ωj(y(x))
∂yj

∂xi
(2.50)

where {xi}i∈In are the coordinates on U ⊂M and {yi}i∈In are the coordinates on F (U) ⊂ N .

It's straightforward to generalize the map for generic q-forms. In fact

De�nition 2.1.13. The map F ∗ : ΛqT ∗N → ΛqT ∗M such that

F ∗ω(X1, . . . , Xq) = ω(F∗X1, . . . , F∗Xq) (2.51)

is the pullback of a q-form.

In coordinates we can write

F ∗ωi1...iq (x) = ωj1...jq (y(x))
∂yj1

∂xi1
. . .

∂yjq

∂xiq
(2.52)

Moreover we can sum up some of the main properties of the pullback map F ∗ [20]

1. (G ◦ F )∗ = F ∗ ◦G∗ where F : M → N and G : N → P are smooth maps

2. F ∗(ω ∧ τ) = (F ∗ω) ∧ (F ∗τ) ∀ω ∈ ΛpT ∗, ∀ τ ∈ ΛqT ∗

We have to notice that pushforward is de�ned only for vectors, while pullback is de�ned only for forms. How-
ever if the map which induces them is a di�eomorphism between manifolds, we can de�ne both pushforward
and pullback on vectors and forms. In fact it su�ces to note that in the case of di�eomorphism (F−1)∗ = F ∗

and (F−1)∗ = F∗ [23, 24].

A fundamental tool is given in the following

De�nition 2.1.14. Let X ∈ X(M) be a vector �eld on the smooth manifold M . Let ω ∈ ΛpT ∗. The
contraction C∞(M)-linear map

iX : ΛpT ∗ → Λp−1T ∗ (2.53)

such that
(iXω)(Y1, . . . , Yp−1) = ω(X,Y1, . . . , Yp−1) ∀Y1, . . . , Yp−1 ∈ X(M) (2.54)

for each p ≥ 1, with the convention that iX(Λ0T ∗) = 0.

We can see the map iX as a sort of generalization of the inner product in Equation (2.16).

De�nition 2.1.15. Let M be a smooth manifold such that dim(M) = n and let i : X(M) → End(ΛT ∗) such
that ∀X = Xj ∂

∂xj ∈ X(M)
i(X) = iX (2.55)

iX has the following properties

1. iXf = 0 ∀ f ∈ C∞(M)

2. iXdxj = Xj ∀ dxj ∈ Ω1(M)
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3. i2X = 0 ∀X ∈ X(M)

4. iX(ω ∧ η) = iXω ∧ η + (−1)pω ∧ iXη ∀ω ∈ ΛpT ∗,∀ η ∈ ΛqT ∗

For example if ω ∈ T ∗ we obtain
iXω = Xjωj = ω(X) (2.56)

since we recall that a one-form can be seen as a linear map ω : T → R. If ξ ∈ Λ2T ∗ then

iXξ = iXξij(dx
i ∧ dxj) =

1

2!
ξij
(
Xidxj −Xjdxi

)
= ξ(X) (2.57)

from which we recall that a two-form can be seen as a linear map ξ : T → T ∗. In general if ω ∈ ΛpT ∗

iXω =
1

p!

p∑
i=1

(−1)i−1Xiiωi1...ii...ipdx
i1 ∧ · · · ∧ dx̂ii ∧ · · · ∧ dxip =

=
1

(p− 1)!
Xiiωiii2...ipdx

i2 ∧ · · · ∧ dxip (2.58)

where the hatted index denotes the absence of the element.

At this point it seems quite natural to wonder if there is a map which is the inverse of iX . It turns out that
not only such a map exists, but it is one of the most important tools in the di�erential geometry. In fact

Theorem 1. Let M be a smooth manifold such that dim(M) = n. Then ∃!R−linear map d : ΛT ∗ → ΛT ∗, the
exterior di�erential, such that the following properties

1. d(ΛpT ∗) ⊆ Λp+1T ∗ ∀ p ∈ N

2. If f ∈ Λ0T ∗ ≡ C∞(M), then df ∈ Λ1T ∗ is the di�erential of f

3. If ω ∈ ΛpT ∗, η ∈ ΛqT ∗ then

d(ω ∧ η) = (dω) ∧ η + (−1)pω ∧ (dη) (2.59)

4. d2 = 0

The exterior di�erential is the backbone on which is based the cohomology theory, and it is immediately
related to a series of objects with important geometrical meaning. We will explore these questions in some
details in Sections 2.3. The starting point of the cohomology theory is the de�nition of closed and exact forms

ΛpT ∗ ⊇ Zp(T ∗) = {φ ∈ ΛpT ∗| dφ = 0} = Ker(d) ∀ p ≥ 0 (2.60)

Elements in Zp(T ∗) are the closed p-forms over M, also called the p-cocycles. Also, dΛp−1T ∗ ⊆ Zp(T ∗).
Elements in dΛpT ∗ = Im(d) are the exact p-forms over M, also called the p-coboundary.

The exterior di�erential satis�es several important properties [17], for example ∀ω ∈ ΛT ∗

• d is local, namely if ω = ω′ on the open set U ⊂M then dω|U = dω′|U .

• d commutes with the restriction, namely if U ⊆M is an open set, then d(ω|U ) = (dω)|U .

• d commutes with the pull-back map, namely if F : M → N is a smooth map, then

d(F ∗ω) = F ∗(dω) (2.61)

Sometimes it's useful to speak about a more general class of objects, namely the
(
p
q

)
-tensor valued r-forms.

As it seems intuitive they are simply sections of the bundle T pq (M)⊗ Λr(T ∗), which we denote by

t ∈ T pq ⊗ ΛrT ∗ (2.62)
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Integration

Exterior form provides a useful as well as convenient framework to perform integrations over a smooth manifold
M . For what concerns manifolds with boundaries we refer to Appendix B.

The �rst important concept is that of orientability.

De�nition 2.1.16. Let M be a connected manifold such that dim(M) = n. Then M is orientable if there
exists a smooth atlas {(Uα, ϕα)}α∈I such that the transition functions {ϕα}α∈I have positive jacobian determi-
nant.

The condition of orientability is equivalent to the existence of a consistent choice of oriented basis on the
tangent bundle T . Moreover it is also equivalent to the existence of a nowhere vanishing ν ∈ ΛnT ∗. If there
exists two nowhere vanishing forms ν1, ν2 ∈ ΛnT ∗ and a smooth positive map f ∈ C∞(M) such that ν1 = fν2,
then ν1 and ν2 de�ne the same orientation over M .

De�nition 2.1.17. A nowhere vanishing form ν ∈ ΛnT ∗ is a volume form.

ν is called a volume form because as we will see in the following it allows us to integrate forms on a smooth
manifold.

De�nition 2.1.18. Let ω ∈ ΛT ∗. The closure of the set {p ∈M |ω(p) 6= 0} is the support of ω and is denoted
by supp(ω). A form ω ∈ ΛT ∗ such that supp(ω) ⊂ K ⊂M where K is a compact subset of M is a form with
compact support.

The form with compact support are integrable over a smooth manifold M . In particular it can be shown
[17] that if M is orientable, ω ∈ ΛnT ∗ with compact support contained in the overlap of two charts (U,ϕ) and
(V, ψ), then ∫

ϕ(U)

(ϕ−1)∗ω =

∫
ψ(V )

(ψ−1)∗ω (2.63)

This result allows us to give the following [17]

Proposition 2.1.2. Let M be an orientable smooth manifold. Let {(Uα, ϕα)}α∈I be an oriented atlas and let
{ρα} be a partition of unity subject to this atlas. Then for each ω ∈ ΛnT ∗ with compact support we can de�ne
the integral ∫

M

ω =
∑
α∈I

∫
M

ραω (2.64)

which is independent from both the atlas and the partition of unity.

We can simply generalize the De�nition of an integral over a manifold to a function f ∈ C∞(M). In fact if
j ∈ ΛnT ∗ is a volume form we can write ∫

M

f =

∫
M

fj (2.65)

Eventually, if M is compact we de�ne the j-volume as

volj(M)

∫
M

j (2.66)

volj(M) is always positive.

We can list some useful properties of the integration over a manifold M , in fact

1. Let M be an oriented manifold. Let −M the manifold with opposite orientation. Then∫
−M

ω = −
∫
M

ω (2.67)

2. Let M and N be two oriented manifolds such that dim(M) = dim(N) = n. Let F : M → N be a
di�eomorphism. Let us suppose that F preserves the orientation, then∫

M

F ∗(ω) =

∫
N

ω (2.68)

while if F inverts the orientation ∫
M

F ∗(ω) = −
∫
N

ω (2.69)



2.1 Basics in real geometry 23

Eventually the fundamental

Theorem 2. Stokes' Theorem
LetM be a smooth oriented manifold with boundary such that dim(M) = n, and let ∂M be its n−1-dimensional
boundary. Let ω be a n-form over M . Then ∫

M

dω =

∫
∂M

ω (2.70)

2.1.4 Flows and Lie derivatives

In this Section we want to introduce a way to compare vectors and one-forms lying on di�erent tangent spaces of
the tangent bundle, without using any metric. The Lie derivative is the tool which allow us to compare vectors
(as well as one-forms) computed in di�erent but near points on the manifold. Remarkably, it is an intrinsic
object on a manifold.

Let γ(t, p) : I ×M →M be an integral curve (I ⊆ R and 0 ∈ I) on a smooth manifold M . This means that
it is a curve whose tangent vector is given at each point p ∈M by a vector �eld X ∈ X(M).

We choose a chart (U,ϕ) in p, such that ϕ(p) = x ∈ ϕ(U) ⊆ Rn and coordinates {xi}i∈In . So locally we can
write

dγi(t, x)

dt
= Xi(γ(t, x)) with γi(0, p) = xi (2.71)

γ is the �ow generated by the vector X ∈ X(M). A �ow satis�es the following

Proposition 2.1.3. Let X ∈ X(M). Then ∀ p ∈M ∃ an integral curve, a �ow γ : I×M →M such that γ(t, p)
is a solution of the di�erential Equation (2.71).

Proposition 2.1.4. A �ow satis�es the group property

γ(t, γ(s, p)) = γ(t+ s, p) ∀ t, s ∈ I ⊆ R (2.72)

De�nition 2.1.19. Let γ(t, p) be a �ow over the smooth manifold M . While keeping t �xed, we can rewrite

γ(t, p) ≡ γt(p) (2.73)

The map γt : M → M is a di�eomorphism and represents the commutative one parameter group, which
satis�es

1. γ0 = 1M

2. γ−1
t = γ−t

3. γtγs = γt+s

Choosing the parameter t in�nitesimal, we �nd the in�nitesimal �ow from Equation (2.71)

γit(p) = xi + tXi(p) (2.74)

and X is the in�nitesimal generator of the �ow group γt. Recall that a �nite �ow can be expressed throughout
the exponentiation

γi(t, p) = exp(tX)xi (2.75)

The commutator between two vector �elds is a very common tool among physicists

De�nition 2.1.20. Let X,Y ∈ X(M). The bilinear map [, ] : X(M) × X(M) → X(M) is the Lie bracket or
the commutator. The vector �eld [X,Y ] = XY − Y X is de�ned by

[X,Y ]f = X(Y [f ])− Y (X[f ]) ∀ f ∈ C∞(M) (2.76)

We will say that X and Y commute if [X,Y ] = 0.

Moreover [17]
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Proposition 2.1.5. Let X,Y, Z ∈ X(M), a, b ∈ R, f, g ∈ C∞(M) and F : M → N smooth map. Then

1. [, ] is anticommutative, namely [X,Y ] = −[Y,X]

2. [, ] is R-linear in both the entries, namely

[aX + bY, Z] = a[X,Z] + b[Y, Z] and [X, aY + bZ] = a[X,Y ] + b[X,Z] (2.77)

3. [, ] satis�es the Jacobi identity, namely J(X,Y, Z) = [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

4. [, ] satis�es the following Leibniz rule [fX, gY ] = fg[X,Y ] + f(X[g])Y − g(Y [f ])X

5. The push-forward map F∗ acts naturally on the Lie bracket, namely F∗[X,Y ] = [F∗X,F∗Y ]

6. If (U,ϕ) is a local chart on M which induces coordinates {xi}i∈In on U , then we can locally write

[X,Y ] =

n∑
i,j=1

(
Xi ∂Y

j

∂xi
− Y i ∂X

j

∂xi

)
∂j (2.78)

and in particular [∂i, ∂j ] = 0.

The function J(X,Y, Z) is the Jacobiator.

As we mentioned at the beginning of the Section we are interested in the change of a vector �eld X along
a �ow γ. Since we can't compare vectors in di�erent tangent spaces, thus we have to de�ne an operator which
allows us to quantify the di�erence between vectors. This kind of operator is the Lie derivative.

De�nition 2.1.21. We de�ne the Lie derivative of a vector �eld Y ∈ X(M) along the vector �eld X ∈ X(M)
as

LXY = lim
t→0

1

t
[γ−t∗Y (γt(p))− Y (p)] =

[
Xi ∂Y

j

∂Xi
− Y i ∂X

j

∂xi

]
∂

∂xj
(2.79)

For the last equality see [19, 20]. Then[
Xi ∂Y

j

∂Xi
− Y i ∂X

j

∂xi

]
∂

∂xj
≡ [X,Y ]k

∂

∂xk
(2.80)

and we we can simply write, LXY = [X,Y ]. Moreover, since if Y ∈ X(M) and ω ∈ Ω1(M), then the interior
product (ω, Y ) ∈ C∞(M), and by imposing that LX(ω, Y ) = (LXω, Y ) + (ω,LXY ), we can �nd the action of
the Lie derivative on one-forms.

De�nition 2.1.22. Let ω ∈ ΛqT ∗. The Lie derivative of ω along the vector �eld X ∈ X(M) is de�ned as

LXω = lim
t→0

1

t
[γ∗t ω(γt(p))− ω(p)] ∀ p ∈M (2.81)

Explicitly we �nd

LXω =
1

q!

[
Xj∂jωi1...iq + qωji2...iq∂i1X

j
]
dxi1 ∧ · · · ∧ dxiq (2.82)

In particular, if ω is a one-form
LXω =

[
Xj∂jωi + ωj∂iX

j
]
dxi (2.83)

While if f ∈ Λ0T ∗ ≡ C∞(M), then
LXf = X[f ] (2.84)

It's useful to rewrite the Lie derivative of a q-form ω in a more compact manner as follow

LXω = (iXd+ diX)ω (2.85)

which is the Cartan formula. It is convenient to immediately see an application of the Cartan formula, which
we will use several times in the work

Lemma 2.1.1. Let ω ∈ Ω1(M). Then

dω(X,Y ) = iXω(Y )− iY ω(X)− ω([X,Y ]) ∀X,Y ∈ X(M) (2.86)
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In fact

dω(X,Y ) = iY (iX)dω = iY (LXω)− iY (diXω) =

= LX(iY ω) + i[Y,X]ω − iY (diXω) = diX iY ω + iXdω(Y )− iY dω(X) + i[Y,X]ω =

= iXdω(Y )− iY dω(X)− ω([X,Y ]) (2.87)

where we have used that iX iY ω = 0 and that [iY ,LX ] = i[Y,X], as stated in the Lie derivative properties listed
below.

It's interesting to notice that by knowing the action of the Lie derivative on the tensor product of tensors
T1 ∈ T p1

q1 and T2 ∈ T p2
q2

LX(T1 ⊗ T2) = (LXT1)⊗ T2 + T1 ⊗ (LXT2) (2.88)

one can deduce the action of the Lie derivative on a general tensor T ∈ T pq from its action on smooth functions
f ∈ C∞(M), on vectors X ∈ X(M) and on one-forms ω ∈ Ω1(M).

We can sum up some of the main properties of the Lie derivative, that is ∀ f ∈ C∞, ∀X,Y ∈ X(M) [20]:

1. LXfY = [X, fY ]

2. LfXY = [fX, Y ]

3. [LX , iX ] = 0

4. [LX , d] = 0

5. [LX , iY ] = i[X,Y ]

6. [LX ,LY ] = L[X,Y ]

2.1.5 G-structures

As we will see in Chapter 4, the condition on geometry arising from the supersymmetric compacti�cations can
be successfully studied in terms of G-structures. In the present Section we introduce them.

In physical applications, a �ber bundle often come with a preferred group of transformations, which is a
subgroup of GL(n,R). This is due to the fact that it is often necessary to restrict the allowed transition functions
on the overlappings of an atlas. These restrictions can be encoded by a new structure: the structure group.

De�nition 2.1.23. Let (E,M, π, F ;λ,G) be a sextuple such that

1. (E,M, π, F ) is a �ber bundle. G is a Lie group called the structure group and λ : G → GL(n,R) de�nes
a left action on the standard �ber F .

2. There exists a family of preferred trivializations {(Uα, tα)}α∈I such that the following holds. Let gαβ :
Uαβ → GL(n,R) de�ne transition functions. There exists a family of functions hαβ : Uαβ → G such that
if p ∈ Uαβγ the following relations hold (see Figure 2.4)

• hαα(p) = 1G

• (hαβ(p))
−1

= hβα(p)

• hαβ(p) ◦ hβγ(p) ◦ hγα(p) = 1G

Then (E,M, π, F ;λ,G) is a �ber bundle with structure group G or simply a G-structure. hαβ are
the transition functions with values in G, and depend on the trivializations chosen. The set {(Uαβ , hαβ)}α,β∈I
forms a cocycle with values in G. The preferred trivializations are said to be compatible with the structure.
We will often denote a G-structure simply by specifying the structure group G in addition to its �ber
bundle structure π : E →M .

The diagram in Figure 2.4 explains how a G-structure works. In fact starting from the group G and the
transition functions gαβ , troughout the upper part of the diagram we can manipulate the G-action on the �ber,
for example selecting only a subgroup of G by means of hαβ , and then implementing the action on the �ber
F by means of λ. In this regard, given a G-structure it's possible to make a pair of operations: to enlarge the
structure group, or to reduce it [21]. The latter operation is very common and we have just described it. It's
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Figure 2.4: The structure of a structure bundle with its cocycle.

equivalent to the existence of some extra structure over the base space M . For example in General Relativity
the presence of a metric on a orientable manifold reduces the structure group to SO(n,R).

In many physical applications, it is often necessary to specialize more the structure of a �ber bundle. This
fact brings us to the following

De�nition 2.1.24. Let π : P → M be a G-structure. If the �ber is taken equal to the structure group itself,
then it is a principal bundle.

Remember that, from Proposition 2.1.1, transition functions act locally on the �ber by a left translation. In
the case of the principal bundles, it is also important to de�ne a right action on the �ber. It's intuitive that, if
{(Uα, tα)} is a trivialization for the G-structure π : E →M (with �ber F ), then the right action can be de�ned
locally on tα(π−1(Uα)) as

Rg : tα(π−1(Uα)) → tα(π−1(Uα))

(p, x) 7→ (p, x · g) ∀ p ∈ Uα, ∀x ∈ F,∀ g ∈ G (2.89)

One of the important features of a principal bundle is that the right action is preserved by the transition
functions. This is a natural consequence of the fact that transition functions act by left translations on the
�bers. Thus we have

Proposition 2.1.6. [18] Let π : P → M be a principal bundle with structure group G. There exists a global
right action on RG : P ×G→ P such that ∀ p, q ∈ P

1. Rg is free, i.e. if Rg(p) = p then g = 1

2. Rg is transitive, i.e. if π(p) = π(q) then ∃ g ∈ G such that q = Rg(p)

3. Rg is vertical on the �bers, i.e. π(Rg(p)) = π(p) ∀ p ∈ P

In other words 2. and 3. dictates that the �bers of a principal bundle are the orbits of the group G. The local
expression of Rg is given in Equation (2.89).

One can see that it isn't possible to de�ne a left action preserved by transition functions [18]. Moreover it
can be proved that the existence of global sections is equivalent to a strong constraint over principal bundles.
In fact [19]

Proposition 2.1.7. Let π : P → M be a principal bundle with structure group G. Then it admits global
sections if and only if it is trivial.

In fact let s ∈ Γ(P ) a global section, i.e. a map s : M → P where M is the base space of the bundle. Each
element of the form Rgs(p) where g ∈ G belongs to the �ber in p. Since the right action is free and transitive,
then there exist p ∈ M and g ∈ g such that each element u ∈ P is uniquely written as Rgs(p). Eventually we
can de�ne an homeomorphism

Φ : P → M ×G
Rgs(p) 7→ (p, g) (2.90)

which assures that P ' M × G. Conversely, let us assume that P ' M × G. Then let t : M × G → P be a
trivialization function and let g ∈ G. Then the map

sg : M → P

p 7→ t(p, g) (2.91)
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is a global section. In this sense the principal bundles are di�erent from vector bundles, on which it is always
possible to de�ne at least the global null section.

Again, we have to �x what kind of maps preserve the principal bundle structure.

De�nition 2.1.25. Let π : P →M and π′ : P ′ →M ′ be two principal bundles with structure group respectively
G and G′. Let θ : G → G′ be a Lie group homomorphism. The maps Φ : P → P ′ and φ : P → P ′ form a
principal morphism with respect to θ if

Φ ◦Rθ(g) = Rg ◦ Φ ∀ g ∈ G (2.92)

namely if the diagram in Figure 2.5 is commutative. If G = G′ and θg = 1 then the pair (Φ, φ) is a principal
morphism.

Figure 2.5: Principal morphisms with respect to θG.

A very useful result is the following [17]

Proposition 2.1.8. Let π : P → M a surjection. Let θ : P ×G → M be a free action of the Lie group G on
the manifold M such that the orbits of θ coincide with the �ber of π : P → M . Then π :→ M si a principal
bundle with structure group G.

One of the most important examples of principal bundles is

Example 2.1.6. [18] The frame bundle
Let M be a smooth manifold. A frame at p ∈M

êa(p) = (ê1(p), . . . , ên(p)) (2.93)

is an ordered basis of the tangent space TpM . Let us de�ne

LpM = {êa(p) = {ê1(p), . . . , ên(p)}| êa(p) is a frame at p ∈M}} (2.94)

and then consider the union of every Lp(M)

LM =
⋃
p∈M

LpM (2.95)

We can de�ne a projection in the natural way

π : LM → M

êa(p) 7→ p (2.96)

and in addition we can de�ne a GL(n,R)-right action which acts freely on the elements of LM , that is

LM ×GL(n,R) → LM

êa(p)× h 7→ ê′a(p) = (êah
a

1, . . . , êah
a
n) (2.97)

It can be shown that it is a smoothly varying well de�ned right action, so that π : LM → M is a principal
bundle with structure group G. It is called the frame bundle.

LM represents an immediate way to associate a principal bundle to a vector one like the tangent bundle T .

We can also consider the dual of the frame bundle. It is immediately given by the set of all frames of the
cotangent bundle T ∗, which we can write

ea(p) = (e1(p), . . . , en(p)) (2.98)
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The construction of the coframe bundle is identycal to that of LM , and one can choose the frames such that

ea(eb) = δab (2.99)

so that ea can be interpreted as the inverse of êa. Frame and coframe bundles are crucial since they allow us to
de�ne the vielbein on a manifold, as we will see in Section 3.2.3.

AG-structure can always be interpreted as the result of a reduction of the structure group of the frame bundle,
to one of its subgroups G ⊂ GL(n,R). For example, if it's possible to �nd a global section σ of the frame bundle
LE, then it's possible to choose the local frames {êa(p)} such that σ has the same form everywhere. This brings
to the fact that the only transition function which preserves it is the identity, so that the structure group is the
trivial subgroup of GL(n,R) consisting of only the identity element. In that case the manifold is parallelizable.

In the general case a useful way to describe a G-structure is in terms of one or more G-invariant tensors
(or spinors, as we will see in Chapter 3), which are globally de�ned and non-degenerate. If for example, is is
possible to de�ne a nowhere vanishing, positive de�nite, symmetric tensor g ∈ T 2

0 (that is a Riemannian metric,
as we will see in Section 2.2.1) then we see that the structure group is reduced from GL(n,R) to O(n,R). Let
us work out explicitly this example.

Example 2.1.7. The Riemannian structure

Let T be the tangent bundle, and let g ∈ T 2
0 be a symmetric, positive de�nite and nowhere vanishing tensor.

We require that g be globally de�ned, namely that in each overlap Uαβ we get

gα = gβ (2.100)

where gα and gβ are the restriction of the tensor respectively on Uα and Uβ . This means that

gαij dx
i
α ⊗ dxjα = gβij dx

i
β ⊗ dx

j
β (2.101)

where {xα} and {xβ} are the coordinates respectively on Uα and Uβ . This implies that

gβij = gαkl
∂xkα
∂xiβ

∂xlα

∂xjβ
(2.102)

from which follows that the transition functions U lj = ∂xl

∂xj have to obey

gβ = UT gαU (2.103)

or in other words they have to belong to O(n,R) ⊂ GL(n,R). The principal bundle obtained by reducing the
set of allowed transition functions is the orthonormal frame bundle O(M). If we take g to be de�ned over
a generic vector bundle E instead of to be de�ned on the tangent bundle T , we can repeat the same argument
to obtain the orthonormal frame bundle over E which is denoted by O(E).

If in addition the manifold is orientable, so that we can �nd a globally de�ned volume form j ∈ ΛnT ∗, then
the structure group is further reduced to SO(n,R). The resulting principal bundle is the special orthonormal
frame bundle SO(E).

De�nition 2.1.25 allows us to to enlarge the structure group of a G-structure. Let K(H) be the center of
the Lie group H

K(H) = {h ∈ H| hk = kh ∀ k ∈ H} (2.104)

Then

De�nition 2.1.26. Let f : G → H be a surjective, covering homomorphism such that Ker(f) ⊆ K(H). A
bundle morphism f̂ between π : P → M with structure group G adn π′ : Q→ N with structure group G′ is a
lift of P to Q if it is a principal morphism with respect to f . If f is the universal covering of the Lie group G,
then f̂ is the universal lift of G to H.

Unfortunately it is not always possible to lift a principal bundle, because topological obstructions can occur,
as we will see in Chapter 3.
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Eventually we introduce a tool which is important in the context of spinors, as we will see in Section 3.1.4.
We have seen that the frame bundle can be interpreted as a tool which allows us to associate a principal bundle
to a vector bundle. Now we can see a way to go in the opposite direction. There is in fact a way to canonically
associate a vector bundle to the principal bundle π : P →M with structure group G, provided that a continuous
homomorphism

ρ : G→ GL(n,R) (2.105)

is �xed. If F is a vector space, the map ρ allows us to de�ne a free right action over the bundle P × F in the
following way

Rg(p, f) = (Rg(p), ρ(g−1)f) ∀ (p, f) ∈ P × F (2.106)

and let us denote by
O(p,f) = {Rg(p, f)| g ∈ G} (2.107)

the G-orbit of the point (p, f). Then we can give the following

De�nition 2.1.27. Let (P,G) be a principal bundle and let ρ be a linear representation of G over the n-
dimensional vector space F , as in Equation (2.105). Next de�ne an equivalence relation ∼

(p, f) ∼ (p′, f ′) ⇔ (p′, f ′) ∈ O(p,f) (2.108)

Then the quotient
P ×ρ F = (P × F )�∼ (2.109)

is a �ber bundle, called the associated bundle to P by ρ.

The projection of the associated bundle π′ : P ×ρ F →M is inherited from the projection π : P →M of the
starting bundle P , so that the associated bundle is a bundle over M . If F is a vector space, then the associated
bundle is a vector bundle over M .

2.2 Riemannian geometry

So far we have studied the basics concepts in di�erential geometry, which allow us to de�ne a di�erentiable
structure on a topological manifold, and hence to perform di�erential calculus on it. We have not yet addressed
the question of how to measure the distance between two points on a smooth manifold. This is exactly the
question dealt with by the Riemannian geometry.

2.2.1 Riemannian manifold

In this Section we will set up the whole apparatus of the Riemannian geometry. The �rst principal novelty we
will introduce is the concept of connection, which allows us to give a sort of generalization of the directional
derivative studied in analysis. Next we will start the study of the notion of metric which gives us a way to
compute distances between points on a manifold. The last fundamental object which we will introduce is the
curvature, which tells us how much a space is curved, changing signi�cantly the geometrical intuition suggested
by the Euclidean geometry.

Connections

LetM be a smooth manifold such that dim(M) = n and let π : E →M be a vector bundle of rank dim(E) = r.

De�nition 2.2.1. Let the following map

∇ : X(M)× X(E) → X(E)

(X,V ) 7→ ∇XV (2.110)

obeys the following

1. ∇ is C∞-linear in the �rst argument, namely

∇fX+gY V = f∇Xs+ g∇Y V ∀X,Y ∈ X(M), ∀ f, g ∈ C∞(M), ∀V ∈ X(E) (2.111)
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2. ∇ is R-linear in the second argument, namely

∇X(aV + bV ′) = a∇XV + b∇XV ′ ∀X ∈ X(M), ∀V, V ′ ∈ X(E), ∀ a, b ∈ R (2.112)

Then ∇ is a connection over E.

The section ∇XV ∈ X(E) is the covariant derivative of V along X. Finally, if E ≡ T , ∇ is a linear
connection.

The simplest obvious example is the connection on a trivial bundle E = M × Rn. Let us recall that in this
case, the general section of the vector bundle is of the form V =

∑
j V

jej , where {ej}j∈Ir is the global frame
of the trivial bundle. It's straightforward to see that

∇XV =
∑
j

X[V j ]ej (2.113)

is a connection over E. It is called the �at connection.

The connections over vector bundles obey several interesting properties, and in particular it can be shown
that each vector bundle admits a connection. A curious fact is that the linear combination of connections is far
to be a connection again. It happens to be only in the case of an a�ne linear combination of connections.

However the most important feature on which we shold focus is the local behaviour of the connections,
which is fundamental if one wants to think about connections as a generalization of the directional derivatives.
In particular it can be easily shown [17] that the value of ∇XV (p) depends only on the direction X(p) of the
derivative at p and on the behaviour of the section V restricted to a curve throughout p which has X(p) as
tangent vector in p.

We can give a local characterization of the connection by writing

∇iej =

r∑
k

Γkijek i ∈ In, j ∈ Ir (2.114)

where we have written ∇i instead of ∇∂/∂xi , and {xj}j∈In are the coordinates induced by the local chart. The
functions Γkij ∈ C∞(M) are the Christo�el symbols of ∇ with respect to the local frame and to the local
chart chosen. The Christo�el symbols uniquely determine the connection. In particular we can write

∇XV =

n∑
j

Xj∇j

(
r∑
k

V kek

)
=

r∑
k

X(V k)ek +

n∑
j

r∑
kl

XjV kΓljkel (2.115)

Let us notice that for example the �at connection has vanishing Christo�el symbols.

The signi�cance of the the r.h.s. of Equation (2.115) is evident: the �rst term
∑r
kX[V k]ek indicates the

change of the section V along the direction of the derivative X, while the second term
∑n
j

∑r
klX

jV kΓljlel
measures the change of the section V due to the fact that local frame {ej}j∈Ir change from point to point.

We can associate to each locally de�ned connection a new tensor.

Proposition 2.2.1. Let ∇ be a linear connection over the smooth manifold M . The map τ : X(M)×X(M)→
X(M) such that

τ(X,Y ) = ∇XY −∇YX − [X,Y ] (2.116)

is the torsion of ∇. Then τ is a tensor τ ∈ T 1
2 . ∇ is symmetric if τ = 0.

The following Proposition impose an important constraint on the Christo�el symbols of a symmetric con-
nection

Proposition 2.2.2. ∇ be symmetric if and only if for each choice of the coordinates we have

Γkij = Γkji (2.117)



2.2 Riemannian geometry 31

Next we can introduce the parallel transport. Let X ∈ X(M) and let V ∈ X(E). V is parallel in the
direction of X at p ∈M if

∇XV (p) = 0 (2.118)

If γ : R ⊃ I →M is a smooth curve, then V is parallel along γ if

∇γ̇V (γ(t)) ∀ t ∈ I (2.119)

Moreover, the parallel transport condition in Equation (2.157) can be locally rewritten

d

dt
V k +

n∑
i

r∑
j

ΓkijX
iV k = 0 ∀ k ∈ Ir (2.120)

An interesting point is that the theorem of existence and unicity of the solution of a Cauchy's problem allows
us to extend the local de�nition of parallel trasnport, given in Equation (2.120). In particular one can �nd that
the parallel transport along γ with respect to ∇ is the map [17]

γ̃ : π−1(p) → π−1(q) (2.121)

such that γ̃(v) = V (1). γ̃ is an isomorphism. Moreover if γ : [0, 1] → M is a closed curve, then the map
γ̃ ∈ Aut

(
(π−1(p))

)
. The set of such automorphisms is called the holonomy group of M at p. We will

explore these arguments in detail in the next Section.

An interesting observation is that, given a connection ∇ over a vector bundle E and a smooth curve
γ : I → M , there always exists a local parallel frame, namely a r-ple of sections {ei ∈ X(M)|γ}i∈In , each
of which is parallel along γ and such that {ei(γ(t))}i∈In is a basis for π−1(γ(t)). In fact, it's su�cient to choose
a point t0 ∈ I and a basis {ej} of π−1(t0), and the to use the parallel extension of each element of the basis.

Riemannian metrics

In the present Section we study the consequensces of introducing a tensor such in Example 2.1.7 on a smooth
manifold M . It is called a metric.

De�nition 2.2.2. Let M be a smooth manifold such that dim(M) = n. Let g be a positive de�nite quadratic
form g : X(M)× X(M)→ R, such that

1. g(X,Y ) = g(Y,X) ∀X,Y ∈ X(M)

2. g(X,Y ) > 0 ∀X,Y ∈ X(M)

Then g is said to be a Riemannian metric over M . A manifold on which a Riemannian metric is de�ned is a
Riemaniann manifold. g can be seen also as a

(
0
2

)
-tensor. If g is such that 1. holds, while instead of 2. only

the condition of non-degeneracy holds

2′. g(X,Y ) = 0 ∀X ∈ X(M) ⇒ Y = 0 (2.122)

In this case g is a pseudo-Riemannian metric over M . A σ-manifold is a manifold on which a pseudo-
Riemannian metric with signature σ = (r, s) is de�ned. In particular if σ = (1, n − 1) then we speak of a
Lorentzian manifold.

It can be proved that on each smooth manifold M a Riemannian metric exists [22]. On the contrary, there
may be some topological obstructions which prevent the existence of a pseudo-Riemannian metric on M . For
example a compact n-dimensional smooth manifold M admits the existence of a Lorentzian metric if and only
if its Euler characteristic vanishes. In fact the presence of a Lorentzian metric means that a globally de�ned
and nowhere vanishing vector �eld can be chosen (it refers to the time direction). This condition holds if and
only if the Euler characteristic vanishes. We will deal with these issues also in Section D.

It's important to de�ne the pullback of the metric along a map f : M → N

g′(p) = f∗g(f(p)) (2.123)
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since it is strictly related with symmetries on a smooth manifold M .

Let (U,ϕ) be a chart in p ∈M and (V, ψ) be a chart in f(p) = q. Let be ϕ(p) = xi and ψ(q) = yi. Then we
obtain

g′ij(x) = gkm(y(x))
∂yk(x)

∂xi
∂ym(x)

∂xj
(2.124)

If f : M →M , we can de�ne the isometry group as the group of transformations such that

g(p) = f∗g(f(p)) (2.125)

Isometry transformations preserve the length of the vectors. In particular, if we take as map between manifolds
an in�nitesimal �ow

x′i = xi + tξi (2.126)

where ξ = ξi ∂
∂xi is the vector which generates the �ow, then we can rewrite Equation (2.124) imposing the

isometry condition, and obtain

gij(x) = gkm(x+ tξ)
∂(xk + tξk)

∂xi
∂(xm + tξm)

∂xj
(2.127)

from which, expanding, we can obtain the Killing equation

ξk∂kgij(x) + gkj(x)∂iξ
k + gik(x)∂jξ

k = 0 (2.128)

and its solution ξ = ξi ∂
∂xi is called the Killing vector. Equation (2.128) is central in the study of the isometry

transformations of a manifold. If we remember the De�nition 2.79, we can rewrite the isometry condition in
Equation (2.125) as [23]

LXg(p) = 0 (2.129)

Let us notice that the last consideration is completely independent from the existence of a connection over
the manifold M : we are allowed to speak about isometries over a manifold M , once a metric is de�ned over
it. Further conditions can be imposed such that a compatibility relation between metric and connection is
established. In fact, take a smooth manifold M endowed with a metric g. We can put the restriction that g be
covariantly constant, i.e.

∇l gij = 0 (2.130)

It's easy to �nd [19] that a covariantly constant metric is a metric which keeps the scalar product between
parallel transported vectors constant. Equation (2.130) can be rewritten [19, 23]

∂lgij − Γkligkj − Γlkjgki = 0 (2.131)

The condition in Equation (2.130) is called metric compatibility.

The parallel transport can be strictrly related to the metric by de�ning a geodesic curve γ : R ⊇ I → M
by the following

∇XX = α(γ(t))X (2.132)

where X ∈ X(M) is the tangent vector �eld to the curve γ. In a chart (U,ϕ) which establishes the set of
local coordinates {xi}i∈In , the curve is x(t) and the tangent vector takes the form Xi = dxi

dt . Then after some
manipulations in order to reabsorb α we obtain in components

d2xi

dt2
+ Γijk

dxj

dt

dxk

dt
= 0 (2.133)

which is the geodesic Equation.

As it is well known, the two cornerstones of the Euclidean geometry are that parallel lines never cross and
that the sum of the angles of a triangle always udd up to π. These two statements are consequences of the
implicit Euclidean hypotesis of the space's �atness. However we know that the space can be curved. In fact
let us think about a sphere, which is the most intuitive curved space, and take for example two non coincident
longitudinal lines. When viewed from the equator, they appear to be parallel. But if you follow them in either
direction, they eventually converge at the poles. Moreover, if you take a triangle over the sphere's surface, it's
easy to see that its angles sum up to more that π. This is because the sphere curvature is positive. If the
curvature is taken to be negative (as in the case of a saddle), then the angle of a triangle over its surface sum to
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less that π. Moreover, in an Euclidean space the parallel transport of a vector along two di�erent paths which
end at the same point returns the same vector. We will see that this is not true in general, on a manifold with
non-zero curvature. Let us try to formalize these concepts.

We can introduce

De�nition 2.2.3. Let ∇ be a linear connection, and let M be a smooth manifold. Let X,Y ∈ X(M) and let
p, q ∈ N. The map

RXY : T pq → T pq

RXY = ∇X∇Y −∇Y∇X −∇[X,Y ] (2.134)

is the curvature endomorphism.

It turns out that RXY is C∞-linear with respect to all the entries. Then

De�nition 2.2.4. Let ∇ be a linear connection, and let M be a smooth manifold. The tensor �eld R ∈ T 1
3

such that ∀X,Y, Z ∈ X(M)
R(X,Y, Z) ≡ RXY Z (2.135)

is the curvature tensor.

If ∇ is the Levi-Civita connection of the Riemannian manifold (M, g) then we can consider also the tensor
�eld R ∈ T 0

4 such that ∀X,Y, Z, T ∈ X(M).

R(X,Y, Z, T ) = g(RXY Z, T ) (2.136)

A remarkable point is that the curvature tensor of a Riemannian manifold is invariant under local isometries
[17].

The most important properties of the curvature tensor are listed in the following

Proposition 2.2.3. Let R ∈ T 1
3 be the curvature tensor of a Levi-Civita connection on the smooth manifold

M . If X,Y, Z, T ∈ X(M) then the following properties hold

• R is antysimmetric: RXY = −RY X .

• R satis�es the �rst Bianchi identity

RXY Z +RY ZX +RZXY = 0 (2.137)

and if in particular ∇ is the Levi-Civita connection of a Riemannian manifold, then

• g(RXY Z, T ) = g(Z,RXY T )

• g(RXY Z, T ) = g(RZTX,Y )

In a chart (U,ϕ) onM we can write the local form of the curvature tensor explicitly. Let us �x the coordinate
{xi}i∈In . If we write R∂i∂j∂k = Rlijk∂l, then we can wirte

Rlijk =
∂Γljk
∂xi

− Γlik
∂xj

+ ΓmjkΓkim − ΓmikΓkjm (2.138)

If we write
Rijkl = gmlR

m
ijk (2.139)

then the properties in Proposition 2.2.3 can be rewritten

Rijkl = −Rjikl Rijkl +Rjkil +Rkijl = 0 Rijkl = −Rijlk Rijkl = Rklij (2.140)

Finally we de�ne the Ricci tensor Rij ∈ T 0
2 obtained by contraction of two indices

Rij = Rlilj (2.141)

and the Ricci scalar R
R = gijRij (2.142)
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2.2.2 Geometry of �ber bundles

In order to build up a gauge �eld theory it is not su�cient to limit our geometrical description to the Rieman-
nian geometry over a smooth manifold M . In fact so far we don't know how to describe very general tools as
gauge connections or �eld strenghts, which are very common objects in QFT. In this Section we focus over the
geometry of pricipal bundles. They are central in the study of gauge theories, since the structure group can
immediately be indenti�ed with the gauge group.

Gauge connections

The �rst object that we want to de�ne is a connection over a principal bundle. Since it takes values in the Lie
algebra of the structure group it generalizes the connections studied in the previous Section, and it can be used
to introduce general holonomies on a manifold.

Let π : P → M be a principal bundle with structure group G. Let u ∈ P such that π(u) = p and let us
naturally denote the tangent space in u by TuP . g is the Lie algebra of the Lie group G, and remember that
g ' TeG. Next let A ∈ g, and de�ne the following curve through u ∈ P

γ : R ⊃ I → P

t 7→ Rexp (tA)u (2.143)

where as it is well known if A ∈ g then exp (tA) ∈ G. Since the right action over a principal bundle acts locally
as in Equation (2.89), we can conclude that π(u) = π(Rexp (tA)u) = p and in particular that if f ∈ C∞(P ) then
the one parameter group de�ned by the map t 7→ exp (tA) de�nes the following vector �eld

A]f(u) =
d

dt
f(Rexp (tA)u)

∣∣
t=0

∀A ∈ g (2.144)

which is the fundamental vector �eld. Notice that A] is contained in a subspace of TuP which is parallel to
the �ber G, namely it is tangent to the orbit of G through u. In particular, by varying A ∈ g we obtain the
basis of a vector space VuP such that dim(VuP ) = dim(g). Formally

De�nition 2.2.5. The vector space

VuP = {X ∈ TuP | π∗(X) = 0} ≡ ker(π∗) ⊂ TuP (2.145)

is the vertical subspace. An element X ∈ VuP is a vertical vector �eld. The complement of VuP is
HuP ⊂ TuP in TuP and is called the horizontal subspace. An element X ∈ HuP is a horizontal vector
�eld.

De�nition 2.2.5 is well explained in Figure 2.6. The map ] : g → VuP de�nes an isomorphism g ∼= VuP
which is uniquely de�ned [19, 20]. Moreover the vertical subspace is invariant under the G-action. In fact since
for the transitivity property of Rg we have that π ◦ Rg = π, then from the properties of the pushforward map
we get that π∗ ◦Rg∗ = π∗.

The map ] preserves the Lie algebra structure, namely

[A], B]] = [A,B]] ∀A,B ∈ g. (2.146)

or in other words, the Lie bracket of two vertical vector �elds is in turn a vector �eld. Eventually we arrive at
the

De�nition 2.2.6. Let (P,G) be a principal bundle. A (Ehresmann) connection over P is a unique splitting
of TuP ∀u ∈ P such that

1. TuP = VuP ⊕HuP

2. A smooth vector �eld X ∈ P can be uniquely decomposed as X = XH + XV , where XH ∈ HuP , while
XV ∈ VuP .

3. Rg∗HuP = HRg(u)P ∀u ∈ P, ∀ g ∈ G
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Figure 2.6: VuP is the vertical subspace, while HuP is the horizontal subspace.

Properties 1. and 2. can be resumed by saying that TP = V P ⊕HP where V P and HP are respectively the
collections of all the VuP and HuP , by smoothly varying u ∈ P . They are also called distributions. As shown
in Figure 2.6 and as 3. in the last De�nition dictates, the horizontal subspace obtained from the G-action over
HuP is again a horizontal subspace, HRg(u). In other words the horizontal tangent bundle HP is G-invariant.
Recall that instead, in the vertical case, each vertical subspace VuP is G-invariant.

The following step is to reconnect De�nition 2.2.6 with De�nition 2.2.1 already seen in Section 2.2.1. In
fact, according to those De�nitions, we expect that the connection is representable through a one-form. This is
easily achieved by introducing the following [19]

De�nition 2.2.7. Let ω ∈ g⊗ T ∗P be a Lie algebra valued one-form over P such that

1. ω(A]) = A ∀A ∈ g, A] ∈ VuP

2. R∗gω = Adg−1ω ∀ g ∈ G

ω is the connection one-form.

As we expect De�nition 2.2.7 is equivalent to De�nition 2.2.6. This is easily proven, by noticing that we can
rede�ne the horizontal subspace HuP as

HuP ≡ {X ∈ TuP | ω(X) = 0} = ker(ω) (2.147)

Since from 3. in De�nition 2.2.6 ∀X ∈ HuP then Rg∗X ∈ TRg(u)P , from the De�nition of pullback in Equation
(2.48)

ω(Rg∗X) = R∗gω(X) = Adg−1ω(X) = g−1ω(X)g = 0 (2.148)

because ω(X) = 0 ∀X ∈ HuP . It follows that Rg∗X ∈ HRg(u)P . In this way we have proven that a
connection as de�ned in De�nition 2.2.7 implies the existence of an Ehresmann connection. Now we have to
prove the inverse. Consider a given Ehresmann connection, and a g-valued one-form such that 1. and 2. in
De�nition 2.2.7 hold. If X ∈ HuP then 3. in De�nition 2.2.7 holds trivially. If A] ∈ VuP , then

R∗gω(A]u) = ω(Rg∗A
]
u) = ω

(
(Adg−1A)]Rg(u)

)
= (Adg−1A)Rg(u) = (Adg−1ω(A]))Rg(u) (2.149)

which implies 3. Notice that we have used that the following relation holds

Rg∗A
]
u =

d

dt
Rg(Rexp(tA)(u))

∣∣∣∣
t=0

=
d

dt

(
Rg(u)Adg−1(exp(tA))

)∣∣∣∣
t=0

=

=
d

dt

(
Rg(u) exp(tAdg−1A)

)∣∣∣∣
t=0

=
(
Adg−1A

)
Rg(u)

(2.150)
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It is convenient to pullback the connection ω in order to obtain a connection de�ned over the base space
manifold M of the principal bundle π : P → M with structure group G. Let {Uα}α∈I be a covering of M .
Let us de�ne a set of local sections σα : Uα → P . We will call the set {σα} the canonical trivialization of the
principal bundle if

σα(p) = (p, e) ∀ p ∈M (2.151)

Then each point u ∈ P such that π(u) = p can be reached by using the transitive action of Rg

Rg(σα(p)) = (p, eg) = (p, g) ∀ p ∈M, ∀ g ∈ G (2.152)

Then we can de�ne the local form of the connection or gauge connection

Aα = σ∗α(ω) ∈ g⊗ Λ1T ∗Uα (2.153)

If the whole set of couples {(Uα,Aα)}α∈I is given, then it is possible to reconstruct the Lie algebra valued
one-form ω ∈ g⊗ T ∗P [19].

A remarkable point is that the Lie algebra valued one-forms Aα cannot be de�ned globally, since a principal
bundle cannot have global sections (unless it is trivial) as we have seen in Section 2.1.5. Therefore, in order to
make ω de�ned globally, we have to impose some constraints over the transformation of Aα on the overlappings
Uαβ . Such constraint is the de�ning property of a connection, and it is the analogous of Equation (??)

Aβ = g−1
αβ ◦Aα ◦ gαβ + g−1

αβ ◦ dgαβ (2.154)

where gαβ are the transition functions from Uα and Uβ . Again we stress on the fact that ω carries the global
informations of the principal bundle, as well as the whole set {(Uα,Aα)}α∈I satisfying the compatibility condi-
tion in Equation (2.154).

Holonomy

At this point we can extend the de�nition of parallel transport given in Equation (2.157) by introducing the
following

De�nition 2.2.8. Let π : P →M a principal bundle with structure group G and let γ : [0, 1]→M be a curve
over M . The curve γ̃ : [0, 1]→ P is a horizontal lift of γ if

• π ◦ γ̃ = γ

• d
dt γ̃(t) ∈ Hγ̃(t)P

Let X̃ be a vector tangent to γ̃. If ω ∈ g ⊗ T ∗P is the connection one-form, then ω(X̃) = 0 by de�nition.
An horizontal lift always exists, up to the initial condition. In particular [19]

Proposition 2.2.4. Let γ : [0, 1]→M be a smooth curve and let u0 = π−1(γ(0)). Then there exists a unique
horizontal lift γ̃ in P such that γ̃(0) = u0.

It's interesting to notice the following result

Lemma 2.2.1. Let γ be a smooth curve over the smooth manifold M . Let γ̃, γ̃′ be two horizontal lifts of γ,
such that γ̃′(0) = Rg(γ̃(0)). Then γ̃′(t) = Rg(γ̃(t)) ∀ t ∈ [0, 1].

In fact the map

γ̃g : [0, 1] → P

t 7→ Rg(γ̃)(t) (2.155)

is also a horizontal lift of γ, since the horizontal subspace is invariant under Rg: RgHu = HRg(u). Furthermore,
Proposition 2.2.4 tells us that it is the unique horizontal lift through Rg(γ̃)(0).

We can extend the concept of parallel transport. In fact let γ : [0, 1]→M and let γ̃ and consider the point
u0 ∈ π−1(γ̃(0)). Let (Uα, ϕα) be the chart which contains γ(t). Proposition 2.2.4 tells us that there exists a
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unique horizontal lift γ̃ through u0, and thus a unique point u1 = γ̃(1), which is the parallel transport of u0

along the curve γ̃. We can de�ne a map

Γ(γ̃) : π−1(γ̃(0)) → π−1(γ̃(1))

u0 7→ u1 (2.156)

such that

u1 = σα(γ(1))P exp

{
−
∫ 1

0

Aαi
dxi(γ(t))

dt
dt

}
(2.157)

where P indicates that the integral is path-ordered.

Lemma 2.2.1 allows us to show that

Γ(γ̃) ◦Rg = Rg ◦ Γ(γ̃) (2.158)

In fact let u0 ∈ P . Then Rg ◦ Γ(γ̃)(u0) = Rg(u1) and Γ(γ̃) ◦ Rg(u0) = Γ(γ̃)(Rg(u0)). The curve Rg(γ̃)(t) is a
horizontal lift through Rg(u0) and Rg(u1). Since the horizontal lift through Rg(u0) is unique, from Proposition
2.2.4 we have that Rg(u1) = Γ(γ̃)(Rg(u0)), and then Rg ◦ Γ(γ̃)(U0) = Γ(γ̃) ◦ Rg(u0) ∀u0 ∈ π−1(γ(0)), from
which follows the initial statement in Equation (2.158).

Next consider the parallel transport along a closed curve. Let γ, λ : [0, 1] → M , such that γ(0) = λ(0) = p

and γ(1) = λ(1) = q be two curves. Let γ̃, λ̃ be two horizontal lifts of γ and λ, such that γ̃ = λ̃ = u0. It
turns out that γ̃(1) is not necessarily equal to λ̃(1). Much more, if we consider a loop α, automatically we have
de�ned a transformation

τα : π−1(p) → π−1(p) (2.159)

which is compatible with Rg, that is
τα(Rg(u)) = Rg(τα(u)) (2.160)

as an obvious consequence of Equation (2.158). Let us notice the fundamental point that τγ depends not only
on the loop γ, but also on the connection, as it is evident from Equation (2.157).

Let p ∈M be such that π(u) = p, and consider the set of loops at p, namely

Cp(M) = {α : [0, 1]→M | α(0) = α(1) = p} (2.161)

Then the set
Φu(M) = {gα ∈ G| τα(u) = Rgα(u), α ∈ Cp(M)} ⊆ G (2.162)

is a subset of the structure group G, and is called the holonomy group at u. The family

Φ(M) =
⋃
u∈P

Φu (2.163)

is the holonomy group. The group properties can be derived by noticing that two curves γ, λ : [0, 1] → M
can be "composed" into γ ∗ λ : [0, 1]→M if γ(1) = λ(0). In fact we can write

γ ∗ λ(t) =

{
γ(2t) if 0 ≤ t ≤ 1

2
λ(2t− 1) if 1

2 ≤ t ≤ 1
(2.164)

and obviously γ−1(t) = γ(1− t). Then we also get

Γ(γ̃−1) = Γ−1(γ̃) Γ(γ̃ ∗ λ) = Γ(γ̃)Γ(λ̃) (2.165)

In particular let us notice that two loops α, β at the same base point p ∈M can always be composed. Moreover,
let α, β, γ = α ∗ β be three loops at p ∈M . Then we have τγ = τβ ◦ τα, and thus

τγ(u) = τβ ◦ τα(u) = τβ ◦Rgα(u) = Rgα ◦ τβ(u) = Rgα ◦Rgβ (u) = Rgβgα(u) (2.166)

namely gγ = gβ ◦ gα. Moreover the constant loop c : [0, 1] 7→ p de�nes the identity transformation τc : u 7→ u.
The inverse loop γ−1 induces the inverse transformation τγ−1 = τ−1

γ , and then gγ−1 = g−1
γ .
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Field strenghts

After having introduced a gauge connection we have to study what a �eld strenght is. With this purpose in
mind let de�ne the horizontal projection h : TP → HP over the horizontal distribution, which is a family of
maps

hu(X) =

{
X if X ∈ HuP
0 if X ∈ VuP

(2.167)

The obvious relation
h ◦Rg∗ = Rg∗ ◦ h (2.168)

holds. Moreover we can de�ne h∗ : T ∗P → H∗P such that if φ ∈ ΛrT ∗P

h∗φ(X1, . . . , Xr) = φ(h(X1), . . . , h(X2)) ∀X1, . . . , Xr ∈ TP (2.169)

Let us notice that h∗ is the dual map of h, but it is not the pushforward of any smooth map h : P → P and in
particular it does not commute with the exterior di�erential d, as a pullback map does. A form φ ∈ ΛT ∗ such
that h∗φ = φ is an horizontal form. Finally

De�nition 2.2.9. Let π : P →M be a principal bundle with structure groupG, letHP ⊂ TP be an Ehresmann
connection, and let ω ∈ g⊗ Λ1T ∗P be a connection one-form. Then we de�ne the curvature 2-form as

Ω = h∗dω ∈ g⊗ Λ2T ∗P (2.170)

By De�nition and by Lemma 2.1.1 we get

Ω(X,Y ) = h∗dω(X,Y ) = dω(hX, hY ) =

= ihXω(hY )− ihY ω(hX)− ω([hX, hY ]) = −ω([hX, hY ]) ∀X,Y ∈ TP (2.171)

since ω(hX) = ω(hY ) = 0, for hX, hY ∈ HP . It's evident that Ω(X, ·) = 0 ∀X ∈ V P , because in that case
Ω(X, ·) = h∗dω(X, ·) = dω(hX, h·) = dω(0, h·) = 0. Instead it's really interesting to notice that Ω(X,Y ) = 0 if
and only if [hX, hY ] ∈ HP . In other words the curvature two-form Ω measures the failure of the integrability
of the horizontal distribution HP ⊂ TP .

The curvature 2-form satis�es

• The Cartan structure Equation

Ω = dω +
1

2
[ω, ω] (2.172)

where [ω, ω] = [Ta, Tb]⊗ ωa ∧ ωb

• The Bianchi identity
h∗dΩ = 0 (2.173)

• The transformation rule
R∗gΩ = Adg−1Ω ∀ g ∈ G (2.174)

It's really useful to pullback also the curvature Ω on the base space manifold M . Let {Uα}α∈I be a covering
of M and let us consider the canonical trivialization σα : Uα → P of the principal bundle π : P → M with
structure group G. Then

F = σ∗α(Ω) ∈ g⊗ Λ2T |∗Uα (2.175)

is the local curvature, and can be expressed as

F = dA + A ∧A (2.176)

Moreover we have an analogous of the Cartan structure Equation

F(X,Y ) = dA(X,Y ) + [A(X),A(Y )] ∀X,Y ∈ X(M) (2.177)

Finally, using Equation (2.154) it's straightforward to prove that

Fβ = g−1
αβ ◦ Fα ◦ gαβ (2.178)

where Fα is de�ned on Uα, Fβ is de�ned on Uβ (Uαβ 6= {∅}) and gαβ are the transition functions from Uα to Uβ .
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2.3 de-Rham cohomology

The cohomology group is a natural and intrinsic object which can be constructed over a smooth manifold M .
It arises from the study of the exterior algebra, and it encodes the topological non-triviality of M . Many topo-
logical invariants, such as Chern classes, are elements of the de-Rham cohomology group.

The di�erential operator d induces the de-Rham complex

0
d→ Λ0T ∗ d→ Λ1T ∗ d→ . . .

d→ Λn−1T ∗ d→ ΛnT ∗ d→ 0 (2.179)

And �nally we can de�ne the p-th de Rham cohomology group over M

Hp
d (M) = Zp(T ∗)�dΛp−1T ∗ (2.180)

where H0
d(M) = Z0(T ∗) and Z0(T ∗) is the space of constant functions over connected components of M . The

space

H∗(M) =

n⊕
p=0

Hp
d (M) (2.181)

is a ring with the wedge product ∧ : H∗ → H∗ induced by ∧ : Hp
d (M)×Hq

d(M)→ Hp+q
d (M), ∀ p, q such that

p+ q ≤ n.

Next let us state the fundamental

Lemma 2.3.1. Poincarè Lemma

Let M be a smooth manifold and let U be a contractible open set U ⊂M . Then ∀ω ∈ ΛpT |∗U such that dω = 0
there exists a τ ∈ Λp−1T |∗U such that ω = dτ .

In other words each closed form is locally exact, but the converse is in general not true.

Example 2.3.1. The circle bundle
The circle bundle is a principal bundle with structure group U(1) ∼ S1. Given a covering {Uαβ}α,β∈I of the
base space M the circle bundle can be de�ned as a set of transition functions

gαβ : Uαβ → S1 (2.182)

such that gαα = 1, gαβ = g−1
βα and the cocycle condition is satis�ed in each triple overlap Uαβγ

gαβ ◦ gβγ ◦ gγα = 1 (2.183)

One of the most interesting point is that a circle bundle can be associated to each closed two-form F
2π ∈

H2(M,Z) on the base space. In fact by using the Poincarè Lemma 2.3.1 we can �nd a descent chain of relations

F = dAα Aα ∈ Λ1T |∗Uα (2.184)

Aα −Aβ = dΛαβ Λαβ ∈ C∞(Uαβ) (2.185)

Λαβ + Λβγ + Λγα = dαβγ dαβγ ∈ 2πZ (2.186)

where the last relation is guaranteed from the fact that F
2π ∈ H

2(M,Z) [50]. Equation (2.186) permits us to
exponentiate the transition functions

gαβ = eiΛαβ (2.187)

so that Equation (2.185) takes the nice form

iAα − iAβ = g−1
αβ ◦ dgαβ (2.188)

in which we recognize the transformation rule of the gauge connection for a U(1)-bundle. This means that the
set of local connections {Aα}α∈I de�nes a connection-one-form on the bundle, and that F is the �eld strenght
of the circle bundle. The choices of inequivalent connections with the same curvature are parametrized by the
coset

H1(M,R)�H1(M,Z) (2.189)

An interesting generalization of this Example is given in Section 5.2.1.



40 Geometry background

The Poincarè lemma leads us to investigate the presence of a duality, relating ΛpT ∗ and Λn−pT ∗.

Let ω ∈ ΛpT ∗, let η ∈ Λn−pT ∗, and let M be a smooth manifold such that dim(M) = n. If we note that
ω ∧ η is a volume form, then we can de�ne a bilinear inner product

〈, 〉 : ΛpT ∗ × Λn−pT ∗ → R
〈ω, η〉 =

∫
M
ω ∧ η (2.190)

Since 〈, 〉 is non-degenerate, it de�nes the Poincaré duality between ΛpT ∗ ∼= Λn−pT ∗. It can be naturally
extended to cohomology groups: Hp

d (M) ' Hn−p
d (M).

We can write explicitly the isomorphism given by the Poincarè duality ΛpT ∗ and Λn−pT ∗. Surprisingly it
involves the Riemannian metric, in fact

De�nition 2.3.1. Let ∗ be the map
∗ : ΛpT ∗ → Λn−pT ∗ (2.191)

such that on basis elements

∗(dxj1 ∧ · · · ∧ dxjp) =
1

(n− p)!
√
ggj1k1 . . . gjpkpεk1...kpkp+1...kndx

kp+1 ∧ · · · ∧ dxkn (2.192)

The following relation
∗ ∗ ω = (−1)p(n−p)ω (2.193)

holds, where ω ∈ ΛpT ∗. ∗ is the Hodge star.

An inner product over the space of real forms is automatically de�ned

(, ) : ΛpT ∗ × ΛpT ∗ → R
ω × ξ →

∫
M
ω ∧ ∗ξ (2.194)

It's straightforward to see that (ω, ξ) = (ξ, ω) and that if ω, ξ ∈ ΛpT ∗

(ω, ξ) =
1

p!

∫
ωj1...jpξ

j1...jp
√
gdx1 ∧ · · · ∧ dxn (2.195)

(, ) gives us the chance to de�ne the adjoint of the d operator:

d† : ΛpT ∗ → Λp−1T ∗ (2.196)

such that ∀ω ∈ ΛpT ∗,∀ ξ ∈ Λp−1T ∗

(ω, dξ) = (d†ω, ξ) (2.197)

For boundaryless M (∂M = {∅}) we obtain that d† = (−1)p(n−p+1) ∗ d∗.

A generalization of the concept of the laplacian in real analysis is given simply as follows

De�nition 2.3.2. Let ∆ be the map

∆ : ΛpT ∗ −→ ΛpT ∗

∆ = dd† + d†d (2.198)

We will call this operator laplacian.

And naturally

De�nition 2.3.3. Let ω ∈ ΛpT ∗. If ∆ω = 0, then ω is said to be a harmonic form, and we will denote it by
ω ∈ Υp(M).

It's easy to see that ∆ω = 0 is equivalent to the condition that ω be closed dω = 0 and coclosed d†ω at the
same time [29].

A generic r-form can always be decomposed in a closed form, plus a coclosed form, plus an harmonic one.
In fact
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Theorem 3. Hodge's theorem [29, 19]
Let (M, g) be a compact, boundaryless Riemannian manifold. Then ΛpT ∗ admits a unique orthogonal decom-
position

ΛrT ∗ = dΛr−1T ∗ ⊕ d†Λr+1T ∗ ⊕Υr(M) (2.199)

namely ω ∈ ΛpT ∗ is uniquely expressed as

ω = dα+ d†β + γ (2.200)

where α ∈ Λp−1T ∗, β ∈ Λp+1T ∗, γ ∈ Υp(M).

The last Theorem allows us to de�ne a couple of topological invariants. In fact if we take ω ∈ Hp(M) and
β ∈ Λp+1T ∗, thanks to Theorem 3, we can write

0 = (dω, β) = (dd†β, β) = (d†β, d†β) (2.201)

and then d†β = 0, or in other words ω = dα + γ, where α ∈ Λp−1T ∗ and γ ∈ Υp(M). Repeating the same
reasoning after having chosen ω to be coclosed d† = 0, we obtain ω = d†β + γ, where β ∈ Λp+1T ∗ and
γ ∈ Υp(M). In addition, if ω is harmonic, then we obtain that ω = γ. This implies that it is the harmonic
component of a form which determines its cohomology class and as a consequence there exists an isomorphism

Υp(M) ' Hp(M) (2.202)

Then we can de�ne the Betti numbers

bp = dim(Hp(M)) (2.203)

which represents the number of linearly independent harmonic p-forms. Thanks to Poincaré duality we can
write

bp = bn−p (2.204)

The Betti numbers are topological invariants.

Another topological invariant is the Euler characteristic de�ned as

χ(M) =

n∑
p=0

(−1)pbp =

n∑
p=0

(−1)pdim(Ker(∆p)) (2.205)

If we take a manifold such as M = M1 ×M2 then the cohomology can be decomposed as suggested by the
Künnet formula

Hk(M) =
⊕
p+q=k

[Hp(M1)⊗Hq(M2)] (2.206)

Hence the Betti numbers are related by

bk(M) =
∑
p+q=k

bp(M1)bq(M2) (2.207)

and the Euler characteristic becomes
χ(M) = χ(M1)χ(M2) (2.208)
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3
Spinors

In this Chapter we will try to brie�y build the theory of spinors on curved manifolds, expressing it in the most
useful way for the development of the Generalized Complex Geometry (GCG) in Chapter 5 and to understand
its role in the supersymmetric string theories. Furthermore, we will study some characteristic classes which
feature the topology of a manifold M in terms of e connections.

The spinors have di�erent transformation rules with respect to tensor �elds. In fact we know that under a
coordinate change the components of a real vector �eld X on the real smooth manifold M obey the following
rule

Xi → X ′i =
∂x′i

∂xj
Xj ≡ U ijXj (3.1)

where the matrix U ij = ∂x′i

∂xj ∈ GL(n,R) as we have seen in Example 2.1.3. Since SO(n,R) ⊂ GL(n,R), it is
obvious that properly choosing the U matrices, we can obtain the representations of SO(n,R) as restrictions
of the representations of GL(n,R). Next, using the G-structures technique developed in Section 2.1.5 we can
identify SO(n,R) with the structure group of a G-structure and eventually build up a theory with bosonic �elds
coupled to gij .

A realistic �eld theory must include anticommuting spinor �elds describing objects with half-integer spin and
also the covariance must be preserved. However it is well known that SO(n,R) doesn't allow for the existence
of objects with half-integer spin. In order to obtain such kind of objects we need to use another technique which
we mentioned in Section 2.1.5 - the lift of the structure group - whose peculiarity is to allow for an enlargement
of the structure group. We will explore this in detail.

In addition, it is particularly important to study the spinors since realistic String theories are the super-
symmetric ones. Supersymmetry is a of global symmetry which mixes bosonic and fermionic �elds of a theory.
Moreover, the compacti�cation of six of the dimensions which arise in Superstring theory, together with the
requirement that four-dimensional results are realistic, brings us to some important constraints on the spinor
which can be constructed on the compacti�cation space. We will explore this in Section ??.

3.1 Cli�ord algebras

The idea that led to the study of Cli�ord algebras is the attempt to extend to vectors the multiplication
· : R × R → R operation which is well de�ned for the real numbers. Its main properties are distributivity,
associativity and commutativity. Unfortunately there is no chance of succesfully mantain the request of com-
mutativity in dimension n ≥ 3 so that we have to resort to a generalization of it.

3.1.1 Basic notions

Let V be a vector space over the �eld K (we will consider only K = R or K = C) such that dim(V ) = n. Let
η : V × V → K be an inner product with signature σ = (r, s) (r + s = n) de�ning a quadratic form Q : V → K
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by Q(v) = η(v, v) ∀ v ∈ V . It is well known that for a quadratic form Q the polarization relation

Q(v + w)−Q(v)−Q(w) = 2η(v, w) ∀ v, w ∈ V (3.2)

holds. Let us begin with the

De�nition 3.1.1. Let J(Q) be the bilateral ideal generated in T •(V ) by the elements of the form v⊗v−Q(v)1K,
where v ∈ V ↪→ T •(V ). In other words

J(Q) = {x⊗ (v ⊗ v −Q(v)1K)⊗ y| x, y ∈ T •(V ), v ∈ V } (3.3)

The quotient

C(V ) = T •(V )�J(Q) (3.4)

is the Cli�ord algebra on V generated by Q.

Let us notice that when we write C(V ), we leave understood the data Q. On the other hand once we have
V and Q the Cli�ord algebra C(V ) is entirely de�ned. We can de�ne a projection πQ : T •(V ) → C(V ) such
that ∀x ∈ T •(V ) it acts as x+ J(Q) 7→ x. The map

πQ ◦ i : T k(V )
i
↪→ T •(V )→ C(V ) (3.5)

is an injection only if k ∈ {0, 1} since for k ≥ 2 there are surely elements in T k(V ) which are identi�ed through
elements in J(Q). In this sense we can see V (k = 1) as sitting inside C(V ). For this reason we can write the
images of a scalar λ or of a vector v ∈ V in the Cli�ord algebra C(V ) simply as λ and v respectively. If η = 1V ,
then the Cli�ord algebra simply becomes the exterior algebra Λ(V ), as we adverted in Section 2.1.3. From now
on, in this Section we will write 1K ≡ 1.

The tensor product ⊗ de�ned on T •(V ) induces the Cli�ord product on the Cli�ord algebra C(V )

T •(V ) 3 v ⊗ w πQ◦i7−→ vw ∈ C(V ) (3.6)

Then for example for example that the image of the element v ⊗ v − Q(v)1 ∈ J(Q) is [v2 − Q(v)]. Since by
de�nition [v2 −Q(v)] = [0], then in the Cli�ord algebra we can write

v2 = Q(v) ∀ v ∈ C(V ) (3.7)

The interesting point is that in general, the Cli�ord product of two vectors doesn't return a degree-two object,
as it seems to be intuitive since we are tensoring two vectors, but it operates a splitting (as in Equation due to
the quotient which de�nes the Cli�ord algebra.

The Cli�ord algebra C(V ) is an associative unital K algebra with unity 1. The relation

vw + wv = 2η(v, w) ∀ v, w ∈ V ⊂ C(V ) (3.8)

holds. Let us notice that it is required only the knowledge of Q, since η is uniquely de�ned from Equation (3.2).
Again we see that the Cli�ord algebra C(V ) is uniquely determined by the data V and Q.

It's easy to show that if σ = (0, 1) then the Cli�ord algebra obtained is isomorphic to C, while for example
if σ = (0, 2), then the Cli�ord algebra is isomorphic to the algebra of quaternions [26, 18]. The key point is to
�x the how the map πQ ◦ i works. With this purpose let us choose a basis of the vector space V : {ei}i∈In . We
write η(ei, ej) = ηij = ηji. Next let us de�ne the image of the basis elements under the inclusion map πQ ◦ i
de�ned in Equation (3.5) simply by

πQ ◦ i : V → C(V )

ei 7→ ei (3.9)

Since πQ ◦ i|V is an injection, then the elements ei of the Cli�ord algebra are linearly independent in the image.
Moreover the set of elements ei satisfy the relation

eiej + ejei = 2ηij (3.10)
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This is enough to write down the product of any two elements in {ei}i∈In , in fact for example

eiej = eij + ηij (3.11)

where eij = 1
2 (eiej−ejei). This is a new object, since it can't be reduced by using the Cli�ord algebra's de�ning

relations. If we calculate the product eiejk we need to de�ne another new object eijk. In general we can de�ne

ei1,...,ip =
1

p!

∑
P∈P

sgn(σ)eiP (1)
. . . eiP (p)

(3.12)

where P is the permutation group of the p indices {i1, . . . , ip}. We see that C(V ) is generated by V and the
identity 1, and is the linear span of {1, ei,ij , . . . , ei1...,in}n∈In where n = dim(V ). In particular we see that

dim(C(V )) =

n∑
k=0

(
n

k

)
= 2n (3.13)

Then for example, in the trivial case σ = (0, 0), we obtain that C(V ) is an associative algebra isomorphic to R.
If σ = (0, 1) there is one generator e such that e2 = −1. This fact induces an isomorphism C(V ) ∼= C

C(V ) → C
x1 + ye 7→ x+ iy (3.14)

As another example, we see that if σ = (1, 0), there is a unique generator e such that e2 = 1. It's interesting
to de�ne a pair of projectors p± = 1

2 (1 ± e), such that p+ + p− = 1, p+p− = 0 and p2
± = p±. The induced

isomorphism is C(V ) ∼= R⊕ R, that is

C(V ) → R⊕ R
xp+ + yp− 7→ (x, y) (3.15)

In particular we can easily recover the de�nition of the Cli�ord product in Equation (??). In fact, if σ = (2, 0)
and V = R2 there are 4 generators {1, e1, e2, e12} where {e1, e2} is an orthonormal basis of R2 and e12 = e1e2.
They are such that e2

1 = e2
2 = 1 and e2

12 = −1. Moreover the relation e1e2 + e2e1 = 0 holds. Then take two
generic vectors v1, v2 ∈ R2, which can obviously be written as

v1 = x1e1 + x2e2 v2 = y1e1 + y2e2 (3.16)

Then the Cli�ord product is

v1v2 = (x1e1 + x2e2)(y1e1 + y2e2) = x1y1e
2
1 + x2y2e

2
2 + x1y2e12 + x2y1e21 =

= (x1y1 + x2y2)1 + (x1y2 − x2y1)e12 (3.17)

where we used that e12 = −e21. Then we have recovered the Equation (??), since v1 · v2 = x1y1 + x2y2 and
v1 ∧ v2 = (x1y2 − x2y1)e12 is the bivector which represents the oriented area segment build up with v1 and v2.

As the last two examples let us consider V = R2 and the signatures σ = (0, 2) and σ(1, 1). In the �rst case
there are 4 generators {1, e1, e2, e12} such that e2

1 = e2
2 = −1 and e2

12 = −1. Again the relation e1e2 + e2e1 = 0
holds and it can be easily shown that if σ = (0, 2) the map

G : C(V ) → H

a+ be1 + ce2 + de12 7→ a+ bi+ cj + dk (3.18)

is an algebra isomorphism, where H is the algebra of the quaternions and as usual i2 = j2 = k2 = −1. In the
second case there are always 4 generators {1, e1, e2, e12} such that e2

1 = 1, e2
2 = −1 and e2

12 = 1. It can be easily
shown that if σ = (1, 1) the map

H : C(V ) → M(2,R)

a+ be1 + ce2 + de12 7→
(
a+ b c+ d
−c+ d a− b

)
(3.19)

is an algebra isomorphism, where M(2,R) is the vector space of the 2-dimensional square matrices. Moreover,
it's also easy to prove that also if σ = (2, 0) then C(V ) ∼= M(2,R).
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Eventually we can write that if B = {ei}i∈In is an orthonormal basis of V with respect to η, then a basis
for the Cli�ord algebra is given by the set

BC = {ei1ei2 . . . eik ≡ ei1...ik | i1 ≤ i2 ≤ · · · ≤ ik and ∀ k ∈ I0
n} (3.20)

and in particular the relation in Equation (3.8) holds. Let us notice that the indices run over all ordered sets
of integers k ≤ n, and we set e0 = 1. Since dim(C(V )) = 2n = Λ(V ), we know that a vector space isomorphism
Λ(V ) ∼= C(V ) can be established.

Before to see how this isomorphism works in practice, let us notice that the Cli�ord algebra C(V ) inherits
from the tensor algebra a natural �ltration (see Section (2.1.2)). By placing Cp(V ) = πQ ◦ i(Tp(V )) we get the
Cli�ord algebra �ltration

C0(V ) ⊂ C1(V ) ⊂ C2(V ) ⊂ · · · ⊂ C(V ) (3.21)

which has the obvious property

Cp(V )Cq(V ) ⊆ Cp+q(V ) ∀ p, q ∈ N (3.22)

This makes the Cli�ord a �ltered algebra. Finally we can construct the isomorphism mentioned before, and
notice that it can de�ned in such a way to respect the �ltration structure of the Cli�ord algebra C(V ) [37]

Proposition 3.1.1. There exists a canonical vector space isomorphism I : Λ(V )
∼=→ C(V ) which preserves the

�ltrations, de�ned by the maps

Λk(V ) → C(V )

v1 ∧ · · · ∧ vk 7→ 1

p!

∑
P∈Pp

vP (1) . . . vP (p) (3.23)

where P represents an element of the permutation group P of p-elements {1, . . . , p}.

We understand that the quadratic form Q plays a role in determining the relationship between C(V ) and
Λ(V ) only at the moment in which the product de�ned on the algebra is involved. This is the reason why C(V )
and Λ(V ) are not isomorphic as algebras (unless Q = 0) but they are isomorphic as vector spaces. Moreover,
since the map in Proposition 3.1.1 is canonical [37], we can think about each Λp(V ) as embedded in the Cli�ord
algebra Λp(V ) ⊂ C(V ) ∀ p ∈ N.

An important point is now to de�ne certain kinds of automorphism of the Cli�ord algebra, which allow us
to de�ne the Spin group. For each λ ∈ O(V ) we can de�ne the linear map

jλ : V → C(V )

v 7→ λv (3.24)

is such that (jλ(v))2 = (λv)2 = Q(λv) = Q(v). It can be shown [26] that each map like jλ can be extended to
a K-algebra homomorphism

Jλ : C(V ) → C(V )

v 7→ λv (3.25)

Moreover we get the important result that

Jλ1λ2
= Jλ1

Jλ2
∀λ1, λ2 ∈ O(V ) (3.26)

and that
J1V = 1C(V ) (3.27)

where 1C(V ) is the identity on C(V ). This means that the map

J : O(V ) → Aut(C(V ))

λ 7→ Jλ (3.28)

is an injective group homomorphism.
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An important case of Cli�ord algebra automorphism is for λ = −1V . Firstly we de�ne the inversion

α : C(V ) → C(V )

v1 . . . vn 7→ j−1V (v1) . . . j−1V (vn) (3.29)

Under the action of α the Cli�ord algebra C(V ) decomposes into two eigenspaces

C(V ) = C+(V )⊕ C−(V ) (3.30)

where C+(V ) is said to be generated by even elements of C(V ), namely by elements which remain unchanged
under an α-action. On the contrary C−(V ) is said to be generated by odd elements, that is by elements in
C(V ) which change their sign under an α-action. Naturally dim(C+(V )) = dim(C−(V )) = 2n−1. Moreover
let us notice that since J(Q) isn't homogeneous, then C(V ) is a Z2-graded algebra, which is also called a
superalgebra. This means that C(V ) can be decomposed in the direct sum of subalgebras {Cj}j∈I2 such
that CiCj ⊆ Cij and CjCi ⊆ Cji, where i, j ∈ I2. In this case the decomposition which makes C(V ) into a
superalgebra is exactly that in Equation (3.30).

Next, there is a second involutive anti-automorphism of the Cli�ord algebra, induced by the map

τ : T k(V ) → T k(V )

v1 ⊗ · · · ⊗ vk 7→ vk ⊗ · · · ⊗ v1 (3.31)

and such that τ(x ⊗ y) = τ(y) ⊗ τ(x) ∀x, y ∈ T k(V ). Then we can de�ne the transposition as the map
induced by τ on C(V )

· : C(V ) → C(V )

v1 . . . vk 7→ v1 . . . vk = vk . . . v1 (3.32)

which is obviously an involution and doesnt'n depend on the basis chosen. Finally we can de�ne the composition
of the two involutions as the conjugation

∗ ≡ α : C(V ) → C(V )

v1v2 . . . vk 7→ (v1v2 . . . vk)∗ = (−1)k(vkvk−1 . . . v1) (3.33)

3.1.2 Spin group and Spin algebra

We are able to de�ne an inner product over the Cli�ord algebra C(V ) by using the isomorphism Λ(V ) ∼= C(V )
of Proposition 3.1.1. In fact using the inner product de�ned in Equation (A.16), we can de�ne an inner product
on C(V ) as the unique making the isomorphism Λ(V ) ∼= C(V ) an isometry. More in detail we can de�ne the
bilinear map

(·, ·) : C(V )× C(V ) → R
α× β 7→ (α, β) ≡ (1, αβ) (3.34)

such that (1, 1) = 1. (, ) induces a norm on the Cli�ord algebra in the usual way

|α| =
√

(α, α) ∀α ∈ C(V ) (3.35)

Let us see how this scalar product works. Let {ei}i∈In be an orthonormal basis for V . Let us denote by I
the sequence of indices (i1, . . . , ip). Let us take I 6= J . As we have seen if eI , eJ ∈ Λp(V ) we have (eI , eJ) = 0,
while (eI , eI) = Q(ei1) . . . Q(eip). For the corresponding vectors in the Cli�ord algebra eI , eJ ∈ C(V ) we can
write

(eI , eJ) = (ei1 . . . eip , ej1 . . . ejp) = (1, eip . . . ei1ej1 . . . ejp) = 0 (3.36)

because eip . . . ei1ej1 . . . ejp is not proportional to the identity 1. Otherwise

(eI , eI) = (eip . . . ei1ei1 . . . eip) = Q(ei1) . . . Q(eip)(1, 1) = Q(ei1) . . . Q(eip) (3.37)

Given a Cli�ord algebra C(V ) we can de�ne the multiplicative group of units as the subset

C×(V ) = {ϕ ∈ C(V )| ∃ϕ−1 ∈ C(V ) s. t. ϕ−1ϕ = ϕϕ−1 = 1} (3.38)
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It's evident that the group C×(V ) contains all the vectors v ∈ V
πQ◦i
↪−→ C(V ) such that Q(v) 6= 0. In fact the

inverse for these elements is trivially

v−1 =
v

Q(v)
∀ v ∈ V

πQ◦i
↪−→ C×(V ) (3.39)

This extends to all the other elements of the group of units, namely

ϕ−1 =
ϕ

|ϕ|2
ϕ ∈ C×(V ) (3.40)

The group of units is a Lie group such that dim(C×(V )) = 2n, where as usual dim(V ) = n. It's interesting
to see that the associated Lie algebra is given by the same Cli�ord algebra cl×(V ) = C(V ), where the Lie
bracket is de�ned simply by

[v, w] = vw − wv ∀ v, w ∈ C(V ) ≡ cl×(V ) (3.41)

Moreover, C×(V ) acts naturally as automorphisms of the Cli�ord algebra, that is we can de�ne a homomorphism
called the adjoint representation

Ad : C×(V ) −→ Aut(C(V ))

v 7−→ Adv s.t. Adv(x) = vxv−1 ∀x ∈ C(V ) (3.42)

The associated Lie algebra representation is given by the homomorphism

ad : cl×(V ) → Der(C(V ))

y 7→ ady s.t. ady(x) = [y, x] ∀x ∈ C(V ) (3.43)

where the space Der(C(V )) is the space of derivations of C(V ), i.e. the space of operators ϕ : C(V ) → C(V )
which obey the Leibniz rule, namely

ϕ(xy) = ϕ(x)y + xϕ(y) ∀x, y ∈ C(V ) (3.44)

Let us recall the relation between Ad and ad. It is given by the exponential map

exp : cl×(V ) → C×(V )

x 7→ exp(x) =

∞∑
j=0

1

j!
xj (3.45)

and one can verify that
d

dt
Adexp(ty)(x)

∣∣∣∣
t=0

= ady(x) (3.46)

As we can expect the orthogonal group of transformations

O(V ) = {λ ∈ GL(V )| λ∗Q = Q} (3.47)

has a nice relationship with the group C×(V ). To probe this question, les us �rstly investigate its Lie algebra,
which as it is well known is generated by the skew matrices, namely

so(V ) = {X ∈ C(V )| η(Xv,w) + η(v,Xw) = 0 ∀ v, w ∈ V } (3.48)

The vector space of the skew matrices is isomorphic to Λ2(V ) and such isomorphism can be �xed by the map

Λ2(V ) → so(V )

u ∧ v 7→ uf v (3.49)

where
uf v(x) = η(u, x)v − η(v, x)u ∀x ∈ V (3.50)
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Proposition 3.1.2. Let v ∈ V
πQ◦i
↪→ C(V ) such that Q(v) 6= 0. Then V is invariant under the action of Adv,

namely Adv(V ) = V . In fact, ∀w ∈ V

Adv(w) = 2
η(v, w)

Q(v)
v − w (3.51)

In fact

Equation (3.8) ⇒ vwv−1 + wvv−1 = 2η(v, w)v−1 ∀w ∈ V ⇒

⇒ Adv(w) = 2
η(v, w)

Q(v)
v − w ∀w ∈ V (3.52)

where we have used Equation (3.39) and the fact that Adv(w) = vwv−1.

It's interesting to notice that the transformation Adv preserves the quadratic form Q ∀v ∈ V such that
Q(v) 6= 0, in fact

Ad∗v(Q(w)) = Ad∗v(η(w,w)) = η(Adv(w), Adv(w)) = (3.53)

= η(w,w) + 2
η(v, w)

Q(v)
η(v, w) + 2

η(v, w)

Q(v)
η(v, w)− 4

η(v, w)

Q(v)
η(v, w) = η(w,w) = Q(w) ∀w ∈ V

where we have used the bilinearity of η. Then we get that Adv ∈ O(V ) ∀ v ∈ V such that Q(v) 6= 0.

De�nition 3.1.2. The set Pin(V ) generated by all vectors v ∈ V
πQ◦i
↪→ C(V ) such that v ∈ S(V ) and by the

identity 1 forms a group which is called the Pin group. In other words

Pin(V ) = {v1 . . . vr ∈ C(V )| Q(vi) = η(vi, vi) = ±1 ∀ vi ∈ V ∩ C×(V )} (3.54)

The group structure is immediately given by noticing that the norm induced by η on the Cli�ord algebra
preserves the Cli�ord product, which means that

|ϕρ|2 = |ϕ|2|ρ|2 ∀ϕ, ρ ∈ C(V ) (3.55)

It's now interesting to notice that the r.h.s. of Equation (3.51) is nothing but a re�ection with the wrong
sign. In fact let us de�ne, ∀ v ∈ V ∩ C×(V )

ρv : V → V

w 7→ w − η(v, w)

Q(v)
v (3.56)

ρv(w) is the re�ection of the vector w across the hyperplane v⊥ = {w ∈ V | η(v, w) = 0}. In particular it maps
v in −v. Needless to say ρv ∈ O(V ).

In order to readjust the wrong sign in Equation (3.51), let us de�ne the twisted adjoint representation

λ : C×(V ) → Aut(C(V ))

ϕ 7→ λϕ (3.57)

such that
λϕ(v) = (α(ϕ))vϕ−1 ∀ v ∈ C(V ) (3.58)

Let us notice that if ϕ ∈ C+(V ) then λϕ = Adϕ and that obviously λϕ1ϕ2
= λϕ1

◦ λϕ2
. In fact λϕ1ϕ2

(w) =
(α(ϕ1ϕ2))w(ϕ1ϕ2)−1 = α(ϕ1)α(ϕ2)w(ϕ2)−1(ϕ1)−1 = α(ϕ1)Adϕ2(w)α(ϕ1)−1 = Adϕ1 ◦ Adϕ2(w). In this way,
λv(w) represents exactly the re�ection across v⊥ ∀ v ∈ V ∩ C×(V ), and furthermore Adϕ(w) represents a
composition of re�ections

λϕ(w) = ρv1 ◦ · · · ◦ ρvp ∀ϕ = v1 . . . vp ∈ C(V ) (3.59)

Since the re�ections are orthogonal maps, the restriction of λ to the subgroup Pin(V ) de�nes a homomorphism

λ : Pin(V )→ O(V ) (3.60)

which is surjective due to the following classical result
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Theorem 4. Cartan-Dieudonnè
Let O(v) be the group of orthogonal transformation of the vector space V , endowed with the non-degenerate
quadratic form Q. Then each g ∈ O(V ) can be written as the product of r re�ections

g = ρ1 ◦ · · · ◦ ρr (3.61)

where r ≤ n = dim(V ).

Moreover it can be shown [37] that Ker(λ) = {±1}, and so that we immediately have the following exact
sequence

1 −→ {±1} −→ Pin(V )
λ−→ O(V ) −→ 1 (3.62)

Finally we can de�ne the Spin group Spin(V) as

Spin(V ) = Pin(V ) ∩ C+(V ) (3.63)

or also
Spin(V ) = {v1 . . . v2r ∈ C(V )| Q(vi) = η(vi, vi) = ±1 ∀ vi ∈ V ∩ C×(V )} (3.64)

There is an amazing end for the map λ de�ned in Equation (3.58). In fact let us notice that since a re�ection
ρv ∈ O(v) is such that det(ρv) = −1, then for an element ϕ ∈ Pin(V )

det(λϕ) = 1 ⇔ ϕ ∈ Spin(V ) (3.65)

This means that
Ker(λ) = Spin(V ) (3.66)

so that we immediately have the following exact sequence

1 → {±1} → Spin(V )
λ−→ SO(V ) → 1 (3.67)

which shows us that the map λ : Spin(V )→ SO(V ) is a non-trivial covering of the group SO(V ) (at least for
n ≥ 2).

3.1.3 Cli�ord algebras classi�cation

In order to study spinor representations, it's very useful to give a classi�cation of the Cli�ord algebras. We will
see that they are organized in a very nice vay, since a strong periodicity in the classi�cation appears.

The idea is to classify the real Cli�ord algebras accordingly to the signature of the quadratic form from
which they derive. Let us denote the signature σ = (r, s), where as usual r is the dimension of the maximal
positive de�nite subspace of V , while s is the dimension of the maximal negative de�nite subspace of V and
dim(V ) = n = r + s. In order to avoid confusion, where is needed we will denote the Cli�ord algebra C(V )
generated by the quadratic form with signature σ = (r, s) by C(r, s).

Moreover let us notice that in Section 3.1.1 we have already obtained some useful results, which we can
resume in the following table

r = 0 r = 1 r = 2
s = 0 R R⊕ R M(2,R)
s = 1 C M(2,R)
s = 2 H

Now the purpose is to complete this table for each r, s ≥ 0. The �rst useful result is the following [37]

Proposition 3.1.3. For each r, s ≥ 0 the following isomorphisms

C(0, n)⊗ C(2, 0) = C(n+ 2, 0) (3.68)

C(n, 0)⊗ C(0, 2) = C(0, n+ 2) (3.69)

C(r, s)⊗ C(1, 1) = C(r + 1, s+ 1) (3.70)

hold.
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By using the third relation in Proposition 3.1.3 we can easily obtain each element in the table of the form
C(1 + i, i), C(i, i), C(i, 1 + i), where i ≥ 0. For example C(2, 1) = C(1, 0) ⊗ C(1, 1) ∼= (R ⊕ R) ⊗M(2,R) =
M(2,R)⊕M(2,R). As another example we can notice that C(1, 2) = C(0, 1)⊗C(1, 1) ∼= C⊗M(2,R) = M(2,C).

Moreover by using the rimanent relations in Proposition 3.1.3 we can easily obtain each element in the table
of the form C(n, 0) or C(0, n). Let us give some examples

C(3, 0) = C(0, 1)⊗ C(2, 0) ∼= C⊗M(2,R) ∼= M(2,C) (3.71)

C(4, 0) = C(0, 2)⊗ C(2, 0) ∼= H⊗M(2,R) ∼= M(2,H) (3.72)

C(0, 3) = C(1, 0)⊗ C(0, 2) ∼= (R⊕ R)⊗H ∼= H⊕H (3.73)

C(0, 4) = C(2, 0)⊗ C(0, 2) ∼= M(2,R)⊕H ∼= M(2,H) (3.74)

In this way, by using Proposition 3.1.3 and moving left and right, and then in diagonal on the table, we are
able to obtain each element C(r, s). One of the most interesting results is given in the following

Proposition 3.1.4. For each r, s ≥ 0 the following isomorphisms

• C(n+ 8, 0) ∼= C(n, 0)⊗M(16,R)

• C(0, n+ 8) ∼= C(0, n)⊗M(16,R)

• C(r + 4, s+ 4) ∼= C(r, s)⊗M(16,R)

hold. They are called Bott periodicities.

Thanks to Bott periodicities, we only need a table 8×8 to obtain C(r, s) for each r, s. We give the complete
table

r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7

s = 0 R R ⊕ R R(2) C(2) H(2) H(2) ⊕H(2) H(4) C(8)

s = 1 C R(2) R(2) ⊕ R(2) R(4) C(4) H(4) H(4) ⊕H(4) H(8)

s = 2 H C(2) R(4) R(4) ⊕ R(4) R(8) C(8) H(8) H(8) ⊕H(8)

s = 3 H ⊕H H(2) C(4) R(8) R(8) ⊕ R(8) R(16) C(16) H(16)

s = 4 H(2) H(2) ⊕H(2) H(4) C(8) R(16) R(16) ⊕ R(16) R(32) C(32)

s = 5 C(4) H(4) H(4) ⊕H(4) H(8) C(16) R(32) R(32) ⊕ R(32) R(64)

s = 6 R(8) C(8) H(8) H(8) ⊕H(8) H(16) C(32) R(64) R(64) ⊕ R(64)

s = 7 R(8) ⊕ R(8) R(16) C(16) H(16) H(16) ⊕H(16) H(32) M(64, C) R(128)

where we denoted K(n) ≡M(n,K). Then the following

Theorem 5. Cli�ord algebras classi�cation theorem

The Cli�ord algebras C(r, s) is isomorphic to di�erent real associative algebras as explained in the following
table

(r − s)mod(8) C(r, s)

0, 6 M(2
n
2 ,R)

7 M(2
(n−1)

2 ,R)⊕M(2
(n−1)

2 ,R)

1, 5 M(2
(n−1)

2 ,C)

2, 4 M(2
(n−2)

2 ,H)

3 M(2
(n−3)

2 ,H)⊕M(2
(n−3)

2 ,H)

where n = r + s.

In particular we notice the the case (r, s) = (6, 0) has Cli�ord algebra C(6, 0) which is isomorphic to the
space of real 8× 8 matrices

C(6, 0) ∼= M(8,R) (3.75)

and that the case (r, s) = (6, 6) has instead the Cli�ord algebra C(6, 6) isomorphic to the space of real 64× 64
matrices

C(6, 6) = M(64,R) (3.76)

Finally, in the study of spinor representation, it's important to identify the even subalgebra C+(r, s) of
the Cli�ord algebra C(r, s). Fortunately, C+(r, s) can be determined from the Cli�ord algebra of dimension
r + s− 1, in fact

Proposition 3.1.5. The following isomorphism

C(r, s) ∼= C+(r + 1, s) ∼= C+(r, s+ 1) (3.77)

holds. Moreover C+(r, s) ∼= C+(s, r).
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Then the following Proposition on the classi�cation of the even subalgebras holds

Proposition 3.1.6. The even Cli�ord algebras C+(r, s) is isomorphic to some real associative algebras as
explained in the following table

(r − s)mod(8) C+(r, s)

1, 7 M(2
(n−1)

2 ,R)

0 M(2
(n−2)

2 ,R)⊕M(2
(n−2)

2 ,R)

2, 6 M(2
(n−2)

2 ,C)

3, 5 M(2
(n−3)

2 ,H)

4 M(2
(n−4)

2 ,H)⊕M(2
(n−4)

2 ,H)

In the particular cases which we will study in Chapter 4 and 5 we �nd

C(6, 0) ∼= M(4,C) (3.78)

and
C(6, 6) ∼= M(4,R)⊕M(4,R) (3.79)

3.1.4 Spinor representations

As usual, the usefulness of algebras and groups becomes clear through the study of their representations. In
particular we will be interested in the representations of the Spin group.

Let V be the usual vector space over R, and let Q be the quadratic form with which we endow V . Then

De�nition 3.1.3. Let K ⊇ k be a �eld containing the �eld k. Then a K-representation of the Cli�ord algebra
C(V ) is a k-algebra homomorphism

ρ : C(V )→ HomK(W,W ) (3.80)

where HomK(W,W ) is the algebra of linear transformations of the �nite dimensional vector space W over K.
W is called C(V)-module over K. We will simplify notation by simply writing

ρ(ϕ)(w) ≡ ϕ · w (3.81)

where ϕ ∈ C(V ) and w ∈W . The product ϕ · w is called Cli�ord multiplication.

We recall that a R-algebra homomorphism is a R-linear map ρ such that ρ(ϕψ) = ρ(ϕ)◦ρ(ψ) ∀ϕ,ψ ∈ C(V ).
The following De�nition is a natural extension from the Lie algebras and Lie groups representation theory

De�nition 3.1.4. A K-representation ρ : C(V ) → HomK(W,W ) is said to be reducible if the vector space
W can be written as a non-trivial direct sum

W = W1 ⊕W2 (3.82)

such that Wi are invariant under the ρ-action, namely ρ(ϕ)(W ) ⊆ W ∀ϕ ∈ C(V ). In this case we can write
also

ρ = ρ1 ⊕ ρ2 (3.83)

where ρi = ρ|Wi
for i ∈ J2. A K-representation is irreducible if it is not reducible.

In particular one �nds that every K-representation ρ of a Cli�ord algebra C(V ) can be decomposed into a
direct sum

ρ = ρ1 ⊕ · · · ⊕ ρn (3.84)

and, as usual, if ρ1 and ρ2 are two K-representations ρj : C(V )→ HomK(Wj) where j ∈ J2, they are equivalent
if there exists a K-linear isomorphism F : W1 →W2 such that

F ◦ ρ1(ϕ) ◦ F−1 = ρ2(ϕ) ∀ϕ ∈ C(V ) (3.85)

As it seems to be intuitive, we give

De�nition 3.1.5. A spinor representation of Spin(V) is the restriction to Spin(V ) of an irreducible
representation of C+(V ) ⊂ C(V ).
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It's amazing to see how spinor representations can be deduced only from the Cli�ord algebra classi�cation
and the following

Proposition 3.1.7. 1. Every irreducible R-representations of the real algebra M(n,R) is isomorphic to Rn,
where the representation matrices act on Rn via left multiplication.

2. Every irreducible H-representations of the real algebra M(n,H) is isomorphic to Hn, where the represen-
tation matrices act on Hn via left multiplication.

3. Every irreducible C-representation of the real algebraM(n,C) is isomorphic either to Cn with the natural
action given by the left matrix multiplication or to Cn via the complex conjugate action given by left
matrix multiplication.

As a direct consequence of the last Proposition we can immediately give the next table, which follows from
table in Theorem 5, and indicates the number of inequivalent spinor representations as a function of r and s

r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7
s = 0 1 2 1 2 1 2 1 2
s = 1 2 1 2 1 2 1 2 1
s = 2 1 2 1 2 1 2 1 2
s = 3 2 1 2 1 2 1 2 1
s = 4 1 2 1 2 1 2 1 2
s = 5 2 1 2 1 2 1 2 1
s = 6 1 2 1 2 1 2 1 2
s = 7 2 1 2 1 2 1 2 1

where the cells with two inequivalent representations are associated either to even Cli�ord algebras isomor-
phic toM(n,K)⊗M(n,K) with K equal to R or equal to H or to even Cli�ord algebras isomorphic toM(n,C).
In fact from Proposition 3.1.7 we know that they have automatically two inequivalent representations. We can
also understand better this argument in terms of the volume form. Let us give the following

De�nition 3.1.6. Let us consider the vector space V endowed with a quadratic form with signature σ = (r, s).
Let us consider an orthonormal basis {ei}i∈In of V . The volume form ω associated to C(r, s) is the Cli�ord
product of every element of the orthonormal basis

ω = e1 . . . en (3.86)

Immediately we can give

Proposition 3.1.8. The volume form ω associated to C(r, s), where n = r+ s satis�es the following properties

1. ω2 = (−1)s+
n(n−1)

2

2. If r + s is odd then ω is central.

3. If r + s is even then ∀ v ∈ V we have ωv = −vω.

From 1. it follows that the sign of ω2 depends only on (r − s)mod(4):

ω2 =

{
1 r − s = 0, 3(mod(4))
−1 r − s = 1, 2(mod(4))

(3.87)

Finally using the Bott periodicities we get the spinor representations in terms of (r − s)mod(8). We denote
the spinor representations space by S

1. (r − s) = 0mod(8): S± ∼= R2
n−2

2 . ω2 = 1 and S± are its ±1-eigenspaces.

2. (r − s) = 1mod(8): S ∼= R2
n−1

2 .

3. (r − s) = 2mod(8): S, S ∼= C2
n−2

2 .

4. (r − s) = 3mod(8): S ∼= H2
n−3

2 .

5. (r − s) = 4mod(8): S± ∼= H2
n−4

2 .
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6. (r − s) = 5mod(8): S ∼= H2
n−3

2 .

7. (r − s) = 6mod(8): S, S ∼= C2
n−2

2 .

8. (r − s) = 7mod(8): S ∼= R2
n−1

2 .

Hence we can study in particular the cases (r, s) = (6, 0) and (r, s) = (6, 6). Spin(6, 0) ≡ Spin(6) has spinor
representations

S = C4 S = C4 (3.88)

which means that a (6, 0)-spinor η is simply a vector of C4. The spinor representation allows to see that

Spin(6) ∼= SU(4) (3.89)

In fact the spinor representation ρ : Spin(6) → GL(n,C) since as we have seen S± ∼= C4. ρ is an injective
homomorphism, so that the compactness of Spin(6) has to be preserved. This means that ρ(Spin(6)) ⊂ U(4) ⊂
GL(4,C), since U(4) is the maximal compact subgroup of GL(4,C). The restriction to SU(4) is due to the
simplicity of Spin(6), while the isomorphicity follows by a simple dimensional analysis.

Otherwise, in the case with signature (r, s) = (6, 6) we �nd

S+ = R32 S− = R32 (3.90)

Spinors in this real representation are called Majorana-Weyl spinors.

Finally, let us introduce a concept regarding spinors which will be mostly studied in the case of Generalized
Complex Geometry in Chapter 5

De�nition 3.1.7. Let S be a spinor representation space. A spinor η ∈ S is a pure spinor if it is annihilated
by half the gamma matrices.

Fortunately, it can be shown that in dimension n ≤ 6, every spinor is a pure spinor. In the case (r, s) = (6, 6)
the situation becomes much more involved, and we will see that the pure spinors play a fundamental role in the
description of the geometric structures.

3.2 Spinors

As we have seen to be usual in di�erential geometry, once we have studied the linear formalism of the Cli�ord
algebras, the next step is to transport it over the smooth manifolds. In fact, exactly as natural operations over
linear spaces - such as sum, tensor product or exterior power - can be canonically carried over vector bundles,
in the same way we expect that natural operations over linear spaces endowed with a quadratic form can be
pushed up on vector bundles. However in the case of the Cli�ord algebras and of the Spin groups this step is
far from trivial, due to several topological obstructions which can arise.

With this purpose in mind let us the standard representation on Rn of the special orthogonal group over a
vector space V such that dim(V ) = n, endowed with a quadratic from Q : V × V → R

ρn : SO(V )→ Aut(Rn) (3.91)

As we have seen in Section 3.1.1 ρn induces a representation on the Cli�ord algebra C(V ), which we denote
by

clρn : SO(V )→ Aut(C(Rn)) (3.92)

Then we can give the following

De�nition 3.2.1. Let clρn be the Cli�ord algebra representation induced by the standard representation of
the special orthogonal group SO(V ) on the vector space Rn, where dim(V ) = n. Let SO(M) be the special
orthonormal frame bundle of the vector bundle π : E →M . Then the associated bundle

Cl(E) = SO(E)×clρn C(Rn) (3.93)

is the Cli�ord bundle.
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Since C(Rn) is a vector space, then Cl(E) is a vector bundle, as we have seen in Section 2.1.5. Moreover
it seems quite intuitive that Cl(M) is nothing but a bundle of Cli�ord algebras over the base space M . The
�berwise Cli�ord multiplication in Cl(M) gives to the space of section Γ(Cl(M)) an algebra structure.

It's also quite obvious [37] that each of the intrinsic notion about Cli�ord algebras can be transported over
the Cli�or bundle Cl(M). For example there exists a decomposition

Cl(M) = Cl(M)+ ⊕ Cl(M)− (3.94)

induced by the bundle automorphism
α : Cl(M)→ Cl(M) (3.95)

which extends the bundle morphism α̂ : T → T such that v 7→ −v. This is completely analogous to what al-
ready discuss in the linear framework in Section 3.1.1. In addition, there exists a vector bundle isometry which
provides for a vector bundle isomorphism ΛT ∗ ∼= Cl(M). This bundle isometry, as it is predictable, preserves
both the gradation structure and the �ltration structure of the Cli�ord bundle Cl(M).

So far the procedure seems to be quite straightforward. Unfortunately several complications arise if one asks
for a vector bundle whose �ber is an irreducible module over π−1(p), as we will see in the next Section.

3.2.1 Spin structures

The purpose of the present Section is to �x what are the necessary conditions to build spinors over a vector
bundle π : E → M , where M is a smooth manifold. Let us endow E with a metric g whose signature is σ. In
this Section we will denote the identity on the �ber by 1.

We denote the transition functions of the special orthonormal frame bundle SO(E) by gαβ : Uαβ → SO(V )
(see Example 2.1.6). They have to obey the cocycle condition

gαβ(p) ◦ gβγ(p) ◦ gγα(p) = 1 ∀ p ∈ Uαβγ (3.96)

and in addition the trivial requests

(gαβ(p))−1 = gβα(p) gαα(p) = 1 ∀ p ∈ Uαβ (3.97)

Next recall that the homomorphism we de�ned in Proposition 3.58 λ : Spin(V ) → SO(V ) is a two-fold
covering of the group SO(V ) as we have seen in Equation (3.67). In particular it is its universal covering and we
can lift the orthonormal frame bundle SO(E) to the principal bundle Spin(E), which has Spin(V ) as structure
group. The transition functions can be lifted by �xing the prescription

λ(g̃αβ(p)) = gαβ(p) ∀ p ∈ Uαβ (3.98)

Since Ker(λ) = {±1}, Equation (3.98) brings to a double possible choice of the lifted transition functions, in
fact

λ(±g̃αβ(p)) = gαβ(p) ∀ p ∈ Uαβ (3.99)

Needless to say they must satisfy

(g̃αβ(p))−1 = g̃βα(p) g̃αα(p) = 1 ∀ p ∈ Uαβ (3.100)

Such a lift always exists locally. Moreover, since λ is an homomorphism, it follows that

λ(g̃αβ(p) ◦ g̃βγ(p) ◦ g̃γα(p)) = gαβ(p) ◦ gβγ(p) ◦ gγα(p) = 1 ∀ p ∈ Uαβγ (3.101)

and then we have that g̃αβ(p) ◦ g̃βγ(p) ◦ g̃γα(p) ∈ Ker(λ) = {±1}. However if the transition functions g̃αβ have
to de�ne a bundle, they must obey also the cocycle conditions

g̃αβ(p) ◦ g̃βγ(p) ◦ g̃γα(p) = 1 ∀ p ∈ Uαβγ (3.102)

The bundle de�ned with the lift of the cocycle is the Spin bundle Spin(E), and can be represented as in
Figure 3.1.

Moreover
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Figure 3.1: A Spin bundle.

De�nition 3.2.2. Let π : E → M be a vector bundle, and let Spin(E) be the spin bundle constructed by
lifting the cocycle of the bundle SO(E), with respect to the map de�ned in Equation (3.58). A Spin structure
on E is given by a principal morphism which we also call λ : Spin(E)→ SO(E) with respect to λ.

In dimension 2, the Spin group Spin(V ) has to be replaced by SO(2) ∼= U(1). Finally

De�nition 3.2.3. A Spin manifold is an oriented smooth manifold M endowed with a Spin structure on its
tangent bundle T .

If a lift exists, then it is not unique: a Spin manifold can admit many Spin structures.

3.2.2 Obstructions to Spin structures

A lift may not exist due to topological obstructions. This fact is encoded in the Stiefel-Whitney classes, which
arise in the study of �Cech cohomology.

De�nition 3.2.4. LetM be a smooth manifold and let {Uα}α∈Ir be open sets inM such that U0∩· · ·∩Ur 6= {∅}.
A map f : U0 ∩ · · · ∩ Ur → Z2 is a �Cech r-cochain if ∀P ∈ P, where P denotes the permutation group of the
elements {0, . . . , r}

f(i0, . . . , ir) = f(iP (0), . . . , iP (r)) (3.103)

We will denote the multiplicative group of �Cech r-cochains by Cr(M,Z2).

We can de�ne a coboundary operator δ : Cr(M,Z2)→ Cr+1(M,Z2) such that

(δf)(i0, . . . , ir+1) =

r+1∏
α=0

f(i0, . . . , îα, . . . , ir+1) (3.104)

where as usual the hat denotes the absence of the element. For example

(δf0)(i0, i1) = f0(i1)f0(i0) f0 ∈ C0(M,Z2) (3.105)

(δf1)(i0, i1, i2) = f1(i1, i2)f1(i0i2)f1(i0, i1) f1 ∈ C1(M,Z2) (3.106)

δ is trivially nilpotent, namely δ2f = 1. In fact

(δ2f)(i0, . . . , ir+2) =

r+2∏
j=0

k=r+2∏
k = 0
k 6= j

f(i0, . . . , îk, . . . , îj , . . . , ir+2) = 1 (3.107)

since for each j̄, k̄ such that f(i0, . . . , îk̄, . . . , îj̄ , . . . , ir+2) appears in the product, then also
f(i0, îj̄ , . . . , îk̄, . . . , ir+2) appears in the product. By using the symmetry of Equation (3.103) the latter has the
same sign as the former, and then the �nal result is always +1.

The next step is to de�ne

Zr(M,Z2) = {f ∈ Cr(M,Z2)| δf = 1} (3.108)

Br(M,Z2) = {f ∈ Cr(M,Z2)| ∃ g ∈ Cr+1(M,Z2); f = δg} (3.109)

Zr(M,Z2) is the cocycle group, while Br(M,Z2) is the coboundary group. As usual de�ne the �Cech r-
cohomology group as

Hr(M,Z2) = Zr(M,Z2)�Br(M,Z2) (3.110)
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The Stiefel classes are equivalence classes of the �Cech cohomology group Hr(M,Z2). We will see that the �rst
two of these classes are related to obstructions occurring in the orientability of a smooth manifold and in the
presence of Spin structures.

Now consider an orthonormal frame bundle O(E) over the smooth manifold M (dim(M) = n) endowed
with a metric whose signature is σ. Let {Uα}α∈I be a simple covering of M , namely a covering such that
∀U1 ∩ · · · ∩ Ur 6= {∅} (U1, . . . , Ur ∈ {Uα}α∈I) U1 ∩ · · · ∩ Ur is contractible. Let us denote by {eαa (p)}a∈In a
orthonormal frame in Uα. The transition functions are given as usual by functions gαβ : Uαβ → O(σ,R) such
that eβa(p) = eαb (p)(gαβ(p))ba.

Then we can de�ne the �Cech 1-cochain f as

f(α, β) = det(gαβ) = ±1 (3.111)

Since f(α, β) = f(β, α), then f ∈ C1(M,Z2). Moreover as a consequence of the cocycle condition we �nd

(δf)(α, β, γ) = f(β, γ)f(α, γ)f(α, β) = det(gβγ) det(gαγ) det(gαβ) = det(gαβ ◦ gβγ ◦ gγα) = 1 (3.112)

and then f ∈ Z1(M,Z2) de�nes an equivalence class [f ] = w1(E) ∈ H1(M,Z2), called the �rst Stiefel-
Whitney class of E. It doesn't depend on the choice of the local orthonormal frame {eαa (p)}a∈In in Uα. In
fact let {ẽαa (p)} be another local orthonormal frame in Uα such that ẽαa (p) = eαb (p)(hα)ba where hα ∈ O(σ,R).
Then there exists a set of new transition functions {g̃αβ(p)} such that ẽβa(p) = (g̃αβ(p))a

b
ẽαb (p). By substituting

the expression which gives ẽαa (p) as a function of eαa (p) we get that g̃αβ = (hα)T gαβ(hβ)−T . Now we can de�ne
the 0-cochain f0 simply by f0(α) = det(hα) and then

f̃(α, β) = det((hα)T gαβ(hβ)−T ) = det(hα) det(hβ) det(gαβ) = (δf0)(α, β)f(α, β) (3.113)

where we used the fact that hα, hβ ∈ O(n,R). Since f̃ changes by an exact term δf0 under a change of the local
orthonormal frame, then it de�nes the same cohomology class of f , namely [f ] ∈ H1(M,Z2) [19].

Now we give the important result concerning the �rst Stiefel-Whitney class, which shows us that it is an
obstruction for the orientability of the vector bundle E.

Proposition 3.2.1. Let π : E → M be a vector bundle. Then E is orientable if and only if the �rst Stiefel-
Whitney class is trivial, i.e. w1(E) = 1.

In fact, if the manifold M is orientable the structure group can be reduced to SO(n,R). Then ∀α, β we
have that f(α, β) = det(gαβ) = 1 and we can conclude that w1(M) = 1. Conversely, if the �rst Stiefel-Whitney
class is trivial w1(M) = f(α, β) = 1, then f is a coboundary, namely f = δf0, where f0 has been de�ned above.
Since f0(α) = ±1, we can always choose hα ∈ O(n,R) such that det(hα) = f0(α) for each α. Then if we de�ne
a new local orthonormal frame in each Uα such that ẽαa (p) = eαb (p)(hα)ba, the new transition functions g̃αβ are
such that f̃(α, β) = det(g̃αβ) = +1 for each α, β and then the manifold is orientable.

Moreover it can be shown [37] that if E is orientable, then the distinct orientations on E are in one-to-one cor-
rispondence with elements of H0(M,Z2). This is a general property of �Cech cohomology, as we will check below.

Now let us study when an orientable vector bundle E admits Spin structures. It is well known that the
orientability allows us to reduce the structure group to SO(V ) and then we can consider the special orthonormal
frame bundle SO(E). Next de�ne the �Cech 2-cochain f : Uαβγ → Z2 as

g̃αβ(p) ◦ g̃βγ(p) ◦ g̃γα(p) = f(α, β, γ)1 (3.114)

which is obviously symmetric and 1 represents the identity over the �ber of SO(E). It is also closed, in fact

(δf)(α, β, γ, δ) = f(β, γ, δ)f(α, γ, δ)f(α, β, γ) =

= (g̃βγ(p) ◦ g̃γδ(p) ◦ g̃δβ(p))(g̃αγ(p) ◦ g̃γδ(p) ◦ g̃δα(p))(g̃αβ(p) ◦ g̃βγ(p) ◦ g̃γα(p)) = 1 (3.115)

Then it de�nes an equivalence class [f ] = w2(E) ∈ H2(M,Z2), which is called the second Stiefel-Whitney
class of E. As before, it can be shown that w2(E) is independent from the local orthonormal frame chosen.
The second Stiefel-Whitney class represents an obstruction for a manifold to be a Spin manifold, as stated in
the following [19]
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Proposition 3.2.2. Let π : E → M be an orientable vector bundle. E admits Spin structures if and only if
the second Stiefel-Whitney class is trivial, i.e. w2(E) = 1.

In fact, let us suppose that E admits Spin structures. Then there are transitions functions g̃αβ for each α, β
such that

g̃αβ ◦ g̃βγ ◦ g̃γα = 1 (3.116)

Then the second Stiefel-Whitney class is trivial w2(E) = f(α, β, γ) = g̃αβ ◦ g̃βγ ◦ g̃γα = 1. Conversely, let us
suppose that w2(E) is trivial. Then it is a coboundary, namely

f(α, β, γ) = (δf1)(α, β, γ) = f1(α, β)f1(β, γ)f1(γ, α) (3.117)

where f1 ∈ C2(M,Z2) and f1(α, β) = sign(gαβ). Now let us rede�ne the transition functions as g̃′αβ =
f1(α, β)g̃αβ . Then the second Stiefel-Whitney class takes the form

w2(E) = f(α, β, γ) = ((δf1)(α, β, γ))
2

= +1 (3.118)

and eventually we can conclude that the new transition functions de�ne a Spin bundle.

It's important to notice that the existence of Spin structures on a vector bundle π : E →M doesn't depend
on the presence of a metric on it, but only on its topological properties [37]. In particular, it strongly depends
on the Holonomy of the vector bundle π : E →M .

We conclude this Section by giving the following

De�nition 3.2.5. Let π : E → M be a vector bundle such that w2(E) = 0. A real spinor bundle on E is
the associated bundle

S(M) = Spin(E)×µW (3.119)

where Spin(E) is the Spin bundle over E, W is a left module for C(Rn) and µ : Spin(V ) → SO(W ) is the
representation given by left multiplication by elements of Spin(V ) ⊂ C+(V ).

Similarly a complex spinor bundle on E is the associated bundle

SC(E) = Spin(E)×µ (W × C) (3.120)

where W × C is a complex left module for C(Rn)× C.

3.2.3 Vielbeins

The formalism of spinors developed so far will be used di�usely in the following of the work. However, in order
to perform calculus with spinors it's useful to study also the vielbein formalism. Actually, it is not something new.

Let us consider the frame bundle LM on a smooth manifoldM . We recall that a frame on a smooth manifold
is just a basis of the tangent bundle

êa(p) = {ê1, . . . , ên} (3.121)

and the coframe bundle is just a basis of the coframe bundle

ea(p) = {e1, . . . , en} (3.122)

such that
ea(êb) = δab (3.123)

as we have seen in Example 2.1.6.

Now let us just reduce the structure group of the tangent bundle following the pattern

GL(n,R) ↪→ SO(n,R) (3.124)

so that a Riemannian structure is de�ned on M . Then a vielbein is just a frame like in Equation (2.93) whose
vectors are orthonormal. As we will see in Section 5.3.2, if we consider a generic manifold with structure group
Ĝ for the tangent bundle a vielbein can be obtained by reduction of Ĝ to its compact maximal.
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The Riemannian metric can be easily recovered. We can write

ea(p) = eaidx
i ea(p) = eia

∂

∂xi
(3.125)

and then

g = eT e gij = eaie
b
jδab (3.126)

g−1 = êêT gij = êiaê
j
bδ
ab (3.127)

The introduction of the vielbeins allows us to better handle spinors. In fact we can immediately de�ne the
spin connection via

∇ieaj = ∂ie
a
j − Γkije

a
k + ωaibe

b
j (3.128)

which leads to the following expression for its components

ωi
ab =

1

2
(Ωijk − Ωjki + Ωkij) e

jaekb (3.129)

where
Ωijk = (∂ie

a
j − ∂jeai) eak (3.130)

The vielbeins allows us to de�ne also curved gamma matrices

Γa = eaiΓ
i Γa = ea

iΓi (3.131)

And �nally we ccan give an expression for the covariant derivative of the spinor �elds

∇i = ∂i +
1

4
ωi
abΓab (3.132)

This is very important because it gives us the possibility to de�ne the Killing vectors �elds η such that

∇η = 0 (3.133)

Killing vector �eld are one of the most important objects in studying compacti�cations of Superstring
theories.

3.3 Supersimmetry in Superstrings

It is well known that the realistic String theories are the supersymmetric ones, since they allow for the existence
of fermions in their spectrum.
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4
Complex geometry

In the present Chapter we will give a brief introduction to the complex geometry (CG).

We will analyze some special examples of complex manifolds: the Hermitian manifolds, the Kähler manifolds
and the Calabi-Yau ones. Such classes of complex manifolds are distinguished by some particular constraints
on the metric.

Calabi-Yau manifolds are a subclass of Kählermanifolds, which in turn are a subclass of Hermitian mani-
folds. Needless to say the Calabi-Yau constraints on the metric are more restrictive then the Kähler constraints,
which in turn are more restrictive then the Hermitian ones. We will introduce also the symplectic manifolds.

Kähler and symplectic manifolds are only a subclass of the most important object we will study in the
present Chapter: a SU (3 )-structure. In fact as we will see, the SU(3)-structures allow us to fully classify the
Superstring backgrounds withH-�uxes which preserve four dimensional minimal supersymmetry, namelyN = 1.

It turns out that for all type IIB Superstrings vacua with SU(3) structure, the internal manifold is complex,
while for type IIA Superstrings vacua both complex and symplectic manifolds are allowable. This fact suggests
that it would be far convenient to have a unifying description of these two kind of geometry. This idea leads
naturally to the study of Generalized Complex Geometry in Chapter 5.

4.1 Complex manifolds

In analogy with the smooth case studied in Section 2, a complex manifold is a set which locally looks like an
open set in Cn. This time the gluing of charts has to be holomorphic. In fact

De�nition 4.1.1. LetM be a smooth manifold such that dim(M) = 2n is even (n ∈ N). Let {(Uα, ϕα)}α∈I be
a smooth atlas overM . After having identi�ed R2n ∼= Cn via Equation (C.6), if ∀α, β ∈ I such that Uαβ 6= {∅}
the homeomorphisms

ϕαβ : ϕβ(Uαβ)→ ϕα(Uαβ)

ϕαβ = ϕα ◦ ϕ−1
β (4.1)

are holomorphic maps, {(Uα, ϕα)}α∈I is the holomorphic atlas. IfM admits a holomorphic atlas, it is a complex
manifold. We de�ne dimC(M) = 1

2dim(M) = n [30, 22].

The main di�erence between a smooth manifold of even dimension and a complex manifold is that on a
complex manifold the transition functions ϕαβ are holomorphic maps, while in a smooth manifold they are only
smooth maps. This means that the transition functions don't mix holomorphic coordinates with antiholomor-
phic ones. Needless to say, each complex manifold is also a smooth manifold.

We generalize the concept of holomorphic maps

De�nition 4.1.2. LetM be a complex manifold with holomorphic atlas {(Uα, ϕα)}α∈I . The function f : M →
C is an holomorphic function if ∀α ∈ I the map f ◦ ϕ−1

α is a holomorphic map.
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Needless to say each holomorphic map f : M → C is also a smooth map up to the identi�cation in Equation
(C.6), but the converse is not true.

A remarkable point is that each complex manifold is orientable. Let us study the simple case with dimCM = 1
since the general case is similar and only more complicated from the notational point of view.

Consider two arbitrary charts (U,ϕ) and (V, ψ) of the holomorphic structure on the manifold M , such that
U ∩ V 6= {∅}. Let {x, y} the set of local real coordinates determined by the �rst chart. After the identi�cation
in Equation (C.6) the transition functions are maps between open sets in R2, namely

Φ ≡ ψ ◦ ϕ−1 : ϕ(U ∩ V )→ ϕ(U ∩ V ) (4.2)

If we write Φ(p) = u+ iv, for each p ∈ U ∩ V the di�erential of Φ is given by

dΦ(p) =

(
∂u
∂x |p

∂u
∂y |p

∂v
∂x |p

∂v
∂y |p

)
=

(
∂u
∂x |p

∂u
∂y |p

−∂u∂y |p
∂u
∂x |p

)
(4.3)

for each p ∈ U ∩ V . Then det(dΦ(p)) =
(
∂u
∂x

∣∣
p

)2

+

(
∂u
∂y

∣∣∣
p

)2

> 0, which assures the orientability as we know

from De�nition 2.1.16.

4.1.1 Almost complex structures

An almost complex manifold is an object which is halfway between a smooth manifold and a complex one. It
has the virtue of introducing the almost complex structure, which is one of the most important objects in the
whole CG, even if it needs an integrability condition in order to de�ne a complex structure on a smooth manifold.

De�nition 4.1.3. Let M be a smooth manifold such that dim(M) = n. A tensor J ∈ T 1
1 such that J2 = −1T

is an almost complex structure. If a smooth manifoldM admits an almost complex structure J then (M,J)
is an almost complex manifold.

We can see J as an endomorphism of the tangent bundle J ∈ End(T ), i.e.

J : T → T (4.4)

The condition J2 = −1T means that J is nothing but the transposition over a smooth manifold of the
conjugation map. Moreover it �xes a constraint on the dimension of an almost complex manifold M . In fact it
implies that (det(J))2 = det(J2) = det(−1T ) = (−1)n. Since J is a real tensor we obtain that det(J) has to be
real and then (det(J))2 = (−1)n has to be positive. It follows that n is even.

Next, let us de�ne the almost complex structure J on a chart (U,ϕ) of an almost complex manifold M such
that dim(M) = 2n. It is

J |U = ϕ−1
∗ ◦ j ◦ ϕ∗(X) (4.5)

It's evident that it satis�es J |2U = −1T |U , in fact

J |2U = (ϕ−1
∗ ◦ j ◦ ϕ∗) ◦ (ϕ−1

∗ ◦ j ◦ ϕ∗) =

= ϕ−1
∗ ◦ j ◦ (ϕ∗ ◦ ϕ−1

∗ ) ◦ j ◦ ϕ∗ = ϕ−1
∗ ◦ (j ◦ j) ◦ ϕ∗ =

= −ϕ−1
∗ ◦ ϕ∗ = −1T |U (4.6)

From the form of j we know that J |U isn't diagonalizable over T |U , since each TpM (for each p ∈ U) is a real
vector space. In order to be able to diagonalize J |U we have to complexify T |U and T |∗U , obtaining respectively
T |CU and T |∗U

C. Then the action of J |U can be naturally extended on T |UMC, so that it is still subject to the
constraint J |2U = −1T |CU , but it can now be diagonalized. The only allowed eigenvalues are ±i, and they have
the same multiplicity, so that extendin for all the open sets {Uα} of an atlas, J induces the decomposition

TC = T 1,0 ⊕ T 0,1 (4.7)
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where T 1,0 = {X ∈ TC| J(X) = +iX}, while T 0,1 = {X ∈ TC| J(X) = −iX}. It is evident that the
relations T 1,0 = T 0,1 and T 0,1 = T 1,0 hold. We can naturally de�ne a pair of projectors on the eigenspaces of
J

P 1,0 =
1

2
(1− iJ) P 0,1 =

1

2
(1 + iJ) (4.8)

satisfying
(P 1,0)2 = P 1,0 (P 0,1)2 = P 0,1 P 1,0 + P 0,1 = 1TC P 1,0P 0,1 = 0 (4.9)

Obviously P 1,0 projects elements in the �ber of the tangent bundle T on T 1,0, while P 0,1 projects on T 0,1. El-
ements in X1,0 ≡ X1,0 are called holomorphic vectors, while elements in X0,1 ≡ X0,1 are called antiholomorphic
vectors.

Let us remember that all the last relation are allowed only locally. This means that, for each Uα we can
write the decomposition in Equation (4.7) but that the almost complex structure is de�ned only locally and in
general cannot be patched from a chart to another.

Now we want to write the explicit matrix expression for J |U . We can choose a real basis of T |U{
∂

∂xµ

∣∣∣∣
U

,
∂

∂yµ

∣∣∣∣
U

}
j∈In

(4.10)

such that, as Equation (4.5) suggests

J |U =

(
0 −1
1 0

)
(4.11)

where 0 and 1 represent respectively the null and the identity n× n matrices. If we combine the basis vectors

as in Equation (C.9) obtaining a complex basis of TpM ,
{

∂
∂zµ

∣∣
p
, ∂
∂zµ

∣∣
p

}
µ∈In

, the matrix expression becomes

J |U =

(
i 0
0 −i

)
(4.12)

Again 0 and i represent respectively the null and the i times identity n× n matrices. In other words, Jp takes
the nice forms, respectively in real and complex basis

J |U =
∂

∂yµ
⊗ dxµ − ∂

∂xµ
⊗ dyµ µ ∈ In (4.13)

J |U = i
∂

∂zµ
⊗ dzµ − i ∂

∂zµ
⊗ dzµ µ ∈ In (4.14)

Equation (4.14) shows the standard form of the almost complex structure. Remember that the last properties
are allowed only locally, namely in a given chart. However, if M is a complex manifold, then the almos complex
structure J encode the whole holomorphic structure of M . In fact if (U,ϕ) and (V, ψ) are two charts of M , we
can write

J |U (X) = ϕ−1
∗ ◦ j ◦ ϕ∗(X) = ϕ−1

∗ ◦ j ◦ ϕ∗ ◦
(
ψ−1
∗ ◦ ψ∗

)
(X) =

= ϕ−1
∗ ◦ j ◦

(
ϕ∗ ◦ ψ−1

∗
)
◦ ψ∗(X) = ϕ−1

∗ ◦
(
ϕ∗ ◦ ψ−1

∗
)
◦ j ◦ ψ∗(X) =

= ψ−1
∗ ◦ j ◦ ψ∗(X) = JV (X) (4.15)

where we have used that the transition function ϕ ◦ ψ−1 is a holomorphic map since M is a complex manifold.
In other words we have seen that only if the manifold M is endowed with an holomorphic structure, then the
almost complex structure is patchable to de�ne a tensor on M .

Moreover, the last line shows us that

Proposition 4.1.1. Let M be a complex manifold. Then (M,J) is almost complex.

In fact, it is su�cient to de�ne J in every charts as in Equation (4.11).
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4.1.2 Integrability

What we are going to study is strictly related to a well known problem in General Relativity: the equivalence
principle. In fact if (M, g) is a Riemannian manifold we know from the linear algebra that ∀ p ∈ M , g can be
diagonalized (it is a symmetric tensor). One may wonder whether g can take its standard form (namely the �at
minkowskian metric ηµν) in a whole open neighbour U such that p ∈ U . It is well known that the necessary
and su�cient condition is the vanishing of the curvature tensor R (we have to require also metric compatibility
and vanishing of the torsion [23], which are two standard requirements in General Relativity) in the open set
U . In this case we say that a �at coordinate system can be chosen in U . Coming back to our current task, we
want to determine the necessary condition for M to be a complex manifold. We will see that it is equivalent to
require that the the almost complex structure J can be written in its standard form in a whole open neighbour U .

Let us start with the concept of integrability in the complex case:

De�nition 4.1.4. Let (M,J) be an almost complex manifold with almost complex structure J . If

[X,Y ] ∈ X1,0 ∀X,Y ∈ X1,0 (4.16)

then J is integrable.

De�nition 4.1.5. Let N ∈ T 1
2 . We can see it as a map N : X(M)× X(M)→ X(M), de�ned by

N(X,Y ) = [X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ] ∀X,Y ∈ X(M) (4.17)

N is the Nijenhuis tensor.

We immediately notice that, if the manifold is complex, namely if we can put J in its standard form every-
where, then N vanishes.

Now we will give two important results. The �rst [19, 30] creates a link between the integrability and the
Nijenhuis tensor

Proposition 4.1.2. Let (M,J) be an almost complex manifold with almost complex structure J . Then J is
integrable if and only if N ≡ 0.

In fact, let X,Y ∈ X(M), and let us de�ne Z = [ 1
2 (1 − iJ)X, 1

2 (1 − iJ)Y ]. It's immediate to see that
1
2 (1 + iJ)Z = 1

2 (1 + iJ)N(X,Y ). Then Z ∈ X1,0 if and only if N(X,Y ) = 0 ∀X,Y ∈ X(M).

Finally, the theorem which furnishes the necessary condition for an almost complex structure to be complex

Theorem 6. Newlander-Niremberg theorem

Let (M,J) be an almost complex manifold. J is integrable if and only if M is a complex manifold.

4.1.3 Holomorphic forms

It's quite intuitive that also the cotangent bundle Ω1(M) can be decomposed on a complex manifoldM . In fact
since J ∈ T 1

1 , we can see it as an endomorphism of the tangent bundle (J ∈ End(T )) as well as an endomorphism
of the cotangent bundle, namely J ∈ End(T ∗). As a consequence we can use the projectors in Equation (4.8)
also to project on the cotangent bundle (now the projectors act by right multiplication), and the following
decomposition is given

T ∗C = T ∗ 1,0 ⊕ T ∗ 0,1 (4.18)

The relations T ∗ 1,0 = T ∗ 0,1 and T ∗ 0,1 = T ∗ 1,0 hold. Elements in Γ(T ∗ 1,0) ≡ Ω1,0(M) are called holomorphic
one-forms while elements in Γ(T ∗ 0,1) ≡ Ω0,1(M) are called antiholomorphic one-forms.

Let M be an almost complex manifold such that dim(M) = 2n. The complexi�ed forms are elements
φ ∈ ΛT ∗C where

ΛT ∗C = {φ = ω + iτ | ω, τ ∈ ΛT ∗} ≡
2n⊕
k=0

ΛkT ∗C (4.19)

In particular we can set P 1,0(Λ1T ∗C) = Λ1,0T ∗ and P 0,1(Λ1T ∗C) = Λ0,1T ∗ with the obvious identi�cations
Λ1,0T ∗ ≡ T ∗ 1,0, Λ0,1T ∗ ≡ T ∗ 0,1 and we have that

T ∗C = Λ1T ∗C = Λ1,0T ∗ ⊕ Λ0,1T ∗ (4.20)
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Next we can de�ne

Λk,0T ∗ =

k∧
i=0

Λ1,0T ∗ Λ0,kT ∗ =

k∧
i=0

Λ0,1T ∗ (4.21)

and since the following result holds

Λk(V ⊕W ) ∼=
k∧
i=0

ΛiV ⊗ Λk−iW (4.22)

then we get
ΛkT ∗C ∼=

∧
p+q=k

Λp,qT ∗ (4.23)

If φ ∈ Λp,qT ∗ then φ is a (p,q)-form and Λ0,0T ∗ is the space of smooth functions over M which takes value in
C, namely C∞C (M). Let us notice that the relation Λp,qT ∗ = Λq,pT ∗ holds.

Let (M,J) be a complex manifold such that dimC(M) = n. Let {(Uα, ϕα)}α∈I be a holomorphic atlas
which determines the local coordinates {xµα, yµα}µ∈In . SinceM is a complex manifold we can de�ne the complex
coordinates in each Uα as zµα = xµα+iyµα, z

µ
α = xµα−iyµα and since we have dzµα = dxµα+idyµα and dzµα = dxµα−idyµα

then the sets
{dzµα}µ∈In {dzµα}µ∈In (4.24)

represent respectively a basis of Λ1,0T ∗ and of Λ0,1T ∗. More in general, a basis for Λp,qT ∗ is given by the set

{dzµ1
α ∧ · · · ∧ dzµpα ∧ dzν1

α ∧ · · · ∧ dzνqα }µi,νj∈In (4.25)

and then each φ ∈ Λp,qT ∗ locally on Uα takes the form

φ =
1

p!q!

∑
µi,νj∈In

φµ1...µpν1...νqdz
µ1
α ∧ . . . dzµpα ∧ dzν1 ∧ · · · ∧ dzνq (4.26)

Now we will begin to study how di�erential operators behaves on a complex manifold. Let us give immedi-
ately the following

Proposition 4.1.3. Let (M,J) be an almost complex manifold such that dim(M) = 2n. J is integrable if and
only if dΛ1,0T ∗ ⊂ Λ2,0T ∗ ⊕ Λ1,1T ∗.

In other words, the integrability condition is equivalent to the requirement that the (0, 2)-component of
dω (where ω ∈ Λ1,0T ∗) vanishes, namely if dω(X,Y ) = 0 ∀X,Y ∈ X0,1. It follows from the fact that
dω(X,Y ) = (iXdω)(Y ) = (LXω)(Y ) − d(iXω)(Y ) = LX(ω(Y )) − ω(LXY ) − (iY d)(ω(X)) = (iXd)(ω(Y )) −
ω([X,Y ])− (iY d)ω(X)), from which we �nd that dω(X,Y ) = −ω([X,Y ]) = 0 if and only if [X,Y ] ∈ X0,1, being
ω ∈ Λ1,0T ∗.

Using Proposition 4.1.3 we can de�ne the Dolbeault operators

∂ : Λp,qT ∗ → Λp+1,qT ∗

∂ : Λp,qT ∗ → Λp,q+1T ∗

where
d = ∂ + ∂ (4.27)

The following identities
∂2 = 0 ∂

2
= 0 ∂∂ + ∂∂ = 0 (4.28)

are obvious consequence of the nilpotence of the exterior di�erential operator, in fact

d2 = (∂ + ∂)2 = ∂2 + ∂∂ + ∂∂ + ∂
2

= 0 (4.29)

and the operators ∂2, ∂
2
, ∂∂ + ∂∂ take value respectively in Λp+2,qT ∗, Λp,q+2T ∗, Λp,qT ∗, so that they have to

vanish indipendently. Moreover the following odd Leibniz rule

∂(ω ∧ τ) = (∂ω) ∧ τ + (−1)p+qω ∧ (∂τ) (4.30)

holds, where ω ∈ Λp,qT ∗, τ ∈ Λr,sT ∗.

Finally we can give the analogous of the Poincarè Lemma for the complex case
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Lemma 4.1.1. ∂-Poincarè's lemma

Let ω ∈ Λp,qT ∗ be ∂-closed, namely ∂ω = 0. Then it is ∂-exact. Analogously for a ∂-closed form.

and the important

Lemma 4.1.2. Local ∂∂ lemma

LetM be a complex manifold, and let ω ∈ Λ1,1T ∗∩Λ2T ∗ a real form. Then ω is closed if and only if ∀ p ∈M∃U
open neighbour of p and ∃u ∈ C∞(M) such that ω|U = i∂∂u.

In fact let ω ∈ Λ1,1T ∗ ∩ Λ2T ∗ be a closed real form. Then from the Poincarè's Lemma 4.1.1 we get that
locally exists a real τ ∈ Λ1T ∗ such that ω = dτ . Since we can write the decomposition τ = τ+ + τ−, and since
τ+ = τ− then

ω = dτ = (∂ + ∂)(τ+ + τ−) = ∂τ+ + (∂τ− + ∂τ+) + ∂τ− ∈ Λ1,1T ∗ (4.31)

from which we get that ∂τ− = ∂τ+ = 0, since they respectively belong to Λ0,2T ∗ and Λ2,0T ∗. Moreover we get
that ω = ∂τ−+ ∂τ+. From the ∂-Poincarè Lemma we know that locally exists a function f such that τ− = ∂f .
By complex conjugation we get τ+ = ∂f , and then

ω = ∂∂f + ∂∂f = ∂∂(f − f) = 2i=m(∂∂f) (4.32)

where we have used Equation (4.29). Conversely we have

d(∂∂) = (∂ + ∂)(∂∂) = (∂2∂ + ∂∂∂) = (∂2∂ − ∂∂2
) = 0 (4.33)

4.2 Kähler manifolds

One of the motivations which make the Kählermanifolds worthy to be studied is that their structure allows to
write some of the most important objects de�ned on a complex manifold - such as for example a metric and
the associated curvature - by using a unique function de�ned on the manifold itself. Such a kind of function is
called the Kähler potential.

4.2.1 Symplectic manifolds

We begin with the analysis of symplectic manifold which turn out to be special cases of Kählermanifolds.

De�nition 4.2.1. Let M be a smooth manifold such that dim(M) = n equipped with a nowhere vanishing
two-form ω ∈ Λ2T ∗. Then ω is the presymplectic form and (M,ω) is a presymplectic manifold. If in
addition ω is a closed two-form, then it is a symplectic form and M is a symplectic manifold.

The condition of non-degeneracy is equivalent to the condition that ∀ k ∈ In

ωk ≡
k∧
i=0

ωi (4.34)

is nowhere vanishing.

If now we choose a local chart (U,ϕ), which determines a set of coordinates {xµ}µ∈In , then we can write

ω =

n∑
i,j=1

ωijdx
i ∧ dxj (4.35)

and the non-degeneracy can be written as
det (ωij) 6= 0 (4.36)

ωij is the inverse of ωij
ωikωkj = ωikω

kj = δij (4.37)

ωij is an antisymmetric matrix. Since each invertible antisymmetric matrix has necessarily an even number of
rows and coloumns, then symplectic manifolds are even dimensional.

LetM be a symplectic manifold and let dim(M) = 2n. Since ωn is nowhere vanishing it represents a volume
form for M . This means that each symplectic manifold is orientable.

The following De�nition will be useful later
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De�nition 4.2.2. Let (M,ω) be a symplectic manifold such that dim(M) = 2n. A submanifold L ⊆ M such
that dim(L) = n, is a Lagrangian submanifold if ω|L = 0.

Now we state the result which makes clear the substantial di�erence between symplectic and Riemannian
geometry.

Theorem 7. Darboux theorem

Let (M,ω) be a symplectic manifold such that dim(M) = 2n. Then ∀ p ∈ M there exists a chart (U,ϕ) in p
which determines the set of coordinates {xi, yi}i∈In such that the symplectic form takes its canonical form

ω0 =

n∑
i=0

dxi ∧ dyi (4.38)

Theorem 7 makes manifest the profound di�erence between the Riemannian geometry and the symplectic
one. In fact in the �rst case, as we have seen in Section 2.2.1, we can not in general reduce the metric to the stan-
dard form in an open neighborhood around each point p ∈ M . This is due to the presence of a non-vanishing
curvature, which shifts the metric from its standard value as soon as we move from the point in which we
have diagonalized it. In symplectic geometry instead, there is not an object analogous to the curvature, which
obstructs the symplectic form to remain in its standard form in a whole neighborhood around each point p ∈M .

The symplectic manifolds are the suitable space to build an object which is largely known to physicists,
namely the Poisson bracket. Let us give some preliminary

De�nition 4.2.3. Let (M,ω), (N, τ) be two symplectic manifolds. Let f : M → N be a di�eomorphism such
that

f∗τ = ω (4.39)

Then f is a symplectomorphism.

If (M,ω) = (N, τ), then f leaves the fundamental form invariant. This is the case of classical mechanics,
where symplectomorphisms are di�eomorphisms of the phase space with itself. In that case, symplectomor-
phisms are simply the canonical transformations. Then we have

Proposition 4.2.1. Let (M,ω) be a symplectic manifold. Then every smooth function H : M → R determines
a vector �eld XH ∈ X(M) which generates a symplectomorphism in the sense that

LXHω = 0 (4.40)

The function H is a Hamiltonian, while the vector XH is a Hamiltonian vector �eld. It's straightforward to
notice that the condition in Equation (4.39) is equivalent to the requirement in Equation (4.40).

As one can see in the proof of the Proposition 4.2.1 [30], XH is determined by the relation iXH = dH.

Then we can introduce

De�nition 4.2.4. Let M be a smooth manifold. Let {, } : C∞(M) × C∞(M) → C∞(M) be a bilinear map
such that the following properties hold ∀ a, b, c, d ∈ R, ∀ f, g, h, k ∈ C∞(M)

1. Bilinearity, namely

{af + bg, ch + dk} = ac{f, h} + ad{f, k} + bc{g, h} + bd{g, k} (4.41)

2. Skew symmetry, namely
{f, g} = −{g, f} (4.42)

3. {, } obeys the Jacobi identity

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 (4.43)

4. {, } is a derivation with respect to the �rst argument

{fg, h} = f{g, h}+ {f, h}g (4.44)
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Then {, } is a Poisson bracket.

The set (C∞(M), {, }) is a Poisson algebra, while a smooth manifold equipped with a Poisson algebra is a
Poisson manifold.

In particular one can show that a Poisson manifold is completely determined by a bivector ω ∈ Λ2T .

Then if (M,ω) is a symplectic manifold, as a consequence of the non-degeneracy of its fundamental form
ω ∈ Z2(M), a Poisson manifold structure is naturally de�ned on M . In fact we can de�ne the Poisson bracket
as follows

{f, g} = ω(df, dg) = ωµν
∂f

∂xµ
∂g

∂xν
∀ f, g ∈ C∞(M) (4.45)

where in the last Equation ω represents the bivector built up with the inverse of the fundamental form

ω = ωµν
∂

∂xµ
∂

∂xν
(4.46)

In addition, if f ∈ C∞(M) is a Hamiltonian, then

LXf (g)ω = {g, f} (4.47)

Hence the following Proposition is quite obvious

Proposition 4.2.2. Let (M,ω) be a symplectic manifold. Then (M, {, }) is a Poisson manifold.

On the contrary a Poisson manifold is not always a symplectic manifold, since the bivector ω de�ning the
Poisson bracket doesn't need to be non-degenerate. If it is then it can be used to de�ne the fundamental form
of the symplectic manifold associated to a Poisson one. Moreover [30]

Proposition 4.2.3. Let (M,ω) be a symplectic manifold. Then M is an almost complex manifold.

Finally

De�nition 4.2.5. Let (M,ω) a symplectic manifold. An almost complex structure J is compatible with ω if

ω(JX, JY ) = ω(X,Y ) ω(X, JX) > 0 ∀X,Y ∈ X(M) (4.48)

4.2.2 Hermitian manifolds

An Hermitian manifold can be simply seen as an analog of a Riemannian manifold in the complex case. Its
peculiarity is that an Hermitian scalar product is de�ned on the tangent space TpM for each p of the manifold.

De�nition 4.2.6. Let (M,J) be a complex manifold. Let g be a Riemannian metric over M . If

g(X,Y ) = g(JX, JY ) ∀X,Y ∈ X(M) (4.49)

then g is a Hermitian metric. The pair (M, g) is a Hermitian manifold.

The following important result states that each complex manifold admits a Hermitian metric.

Proposition 4.2.4. LetM a complex manifold with complex structure J . ThenM admits a Hermitian metric.

In fact just note that, if h is a Riemannian metric on M , then also

g(X,Y ) =
1

2
(h(X,Y ) + h(JX, JY )) ∀X,Y ∈ X(M) (4.50)

is, and in addition it is Hermitian.

Moreover the extension by C-linearity to the complexi�ed tangent bundle TC of the Hermitian metric satis�es

1. g(X,Y ) = g(X,Y ) ∀X,Y ∈ Γ(TC)

2. g(X,X) > 0 ∀X ∈ Γ(TC), X 6= 0

3. g(X,Y ) = 0 ∀X,Y ∈ X1,0, ∀X,Y ∈ X0,1
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This fact justi�es the name of the Hermitian metric, since it represents a smoothly varying Hermitian product
on the complexi�ed tangent bundle. It can be shown that every metric satisfying 1., 2., 3. on Γ(TC) induces
by restriction on X(M) a Hermitian metric.

The Hermiticity is a geometric constraint on the metric, not on the manifold [30, 29], as the following results
state.

Proposition 4.2.5. Let (M, g) be an Hermitian manifold. Then holomorphic vectors X ∈ X1,0 are orthogonal
with respect to g.

In fact let X,Y ∈ X1,0. Then g(X,Y ) = g(JX, JY ) = g(iX, iY ) = −g(X,Y ), from which we conclude that
g(X,Y ) = 0. The proof proceeds in the same way for the antiholomorphic vectors X,Y ∈ X0,1.

From now on we will denote by a bar the indices which refer to antiholomorphic coordinates.

Moreover, let us consider a holomorphic atlas {(Uα, ϕα)}α∈I and the induced local coordinates {zµα, zµα}µ,µ∈In .
Since if X,Y ∈ X1,0 then

gµνX
µY ν = g(X,Y ) = g(JX, JY ) = gλρJµ

λJν
ρXµY ν = gλρ(iδ

λ
µ)(iδρν)XµY ν = −gµνXµY ν (4.51)

and we obtain that gµν = 0. More in general, for a Hermitian metric terms with pure indices vanish

gµν = gµν = 0 (4.52)

A Hermitian metric takes the local form in each chart [22]

g = gµν dz
µ
α ⊗ dzνα (4.53)

where the coe�cients gµν ∈ C∞(U) obey the hermiticity condition

gµν = gνµ (4.54)

We can give the following

De�nition 4.2.7. Let (M,J, g) be a Hermitian manifold. The two-form ω such that

ω(X,Y ) = g(JX, Y ) ∀X,Y ∈ X(M) (4.55)

is the fundamental two- form.

In other words
ωµν = Jµ

λgλν (4.56)

Since the non-vanishing metric components are those with mixed indices, it turns out that ω ∈ Λ1,1T ∗C. The
fundamental form is invariant under the action of J , in fact

ω(JX, JY ) = g(J2X, JY ) = g(J2 JX, J2Y ) = g(JX, Y ) = ω(X,Y ) ∀X,Y ∈ X(M) (4.57)

From the form of a Hermitian metric we easily �nd that in a chart (U,ϕ) which determines the local set of
coordinates {zµ, zµ}µ,µ∈In

ω = igµνdz
µ ∧ dzν = −Jµνdzµ ∧ dzν (4.58)

where Jµν = gµρJν
ρ = −igµν . From the last Equation we can �nd that ω is a real form

ω = ω (4.59)

in fact ω = (−i)gµνdzµ ∧ dzν = igνµdz
ν ∧ dzµ = ω.

Finally let us notice that, if dimC(M) = n, then the 2n-form

ωn

n!
= in(−1)n

n−1
2 det(g) dz1 ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ dzn (4.60)

is a good volume form on M .



70 Complex geometry

4.2.3 Kählermanifolds

De�nition 4.2.8. Let (M,J, g, ω) be a Hermitian manifold. If

dω = 0 (4.61)

then (M,J, g, ω) is a Kählermanifold, g is the Kählermetric and ω is the Kähler form.

In other words, we can see a Kähler structure on a smooth manifold as a tern (g, J, ω), where g is a Rie-
mannian metric, J is a complex structure and ω is a symplectic structure such that the diagram in Figure 4.1
commutes.

Figure 4.1: A Kähler structure.

It's important to state the su�cient condition for a manifold to be Kähler , in terms of the complex structure
[24]

Proposition 4.2.6. Let (M, g, J) be a Hermitian manifold. M is a Kählermanifold if and only if ∇J = 0,
where ∇ is the Levi-Civita connection associated to g.

Clearly all the Kählermanifolds are symplectic, since the Kähler form is closed and non-degenerate. In fact
its inverse is simply given by

ωµν = −gµρJρν (4.62)

The converse isn't true in general, but we have the following

Proposition 4.2.7. Let (M,ω, J) be a symplectic manifold with compatible complex structure J . Then M is
a Kählermanifold.

There is an additional feature of the Kählermanifold which makes it worthy to carefully study them. In fact
it is well known that in each point p of a Riemannian manifold M we can de�ne a set of coordinates - called
the normal coordinates - such that the Riemannian metric osculates to the Euclidean one to the order 2 in a
neighborhood of p ∈ M . The nice discovery is that on a Hermitian manifold, the requirement of the existence
of a normal set of coordinates in each point, coincides with the requirement to be a Kählermanifold [24]

Proposition 4.2.8. Let (M,J) be a complex manifold, ad let g be a hermitian metric. Then g is Kähler if and
only if ∀ p ∈M ∃ holomorphic coordinates {zµ, zµ} (zµ = xµ + iyµ) in which g can be written

gµν(p) =
1

2
δµν + εµν(p) (4.63)

where

εµν(p) =
∂εµν
∂xλ

(p) =
∂εµν
∂yλ

(p) = 0 µ, ν, λ ∈ I2n (4.64)

In other words the �rst non-vanishing correction to the standard form of a Hermitian metric is at order two.

The constraint on the fundamental form dω = 0 has important consequences on the geometry of a Kählermanifold.
In fact, if we choose a chart (U,ϕ) which determines the set of local coordinates {zµ, zµ}µ,µ∈In then

dω = (∂ + ∂)ω = i∂ρgµνdz
ρ ∧ dzµ ∧ dzν − i∂ρgµνdzµ ∧ dzρ ∧ dzν = 0 (4.65)
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Each term in the last Equation must vanish indipendently, then

∂[ρgµ]ν = 0 ∂[ρg|µ|ν] = 0 (4.66)

These equations can be translated in the fact that there exists K ≡ K(z, z) ∈ C∞(U), such that

gµν = ∂µ∂νK (4.67)

and then, on U
ω = i∂µ∂νKdz

µ ∧ dzν = i∂∂K (4.68)

The function K is the Kählerpotential. The same result can be achieved using Lemma 4.1.2.

Moreover, since d = ∂ + ∂ and d2 = ∂2 = ∂
2

= 0, we obtain that ∂∂ = − 1
2d(∂− ∂). This fact doesn't assure

that ω is globally exact, because K is only locally de�ned on U . Instead the metric g is globally de�ned, but it
takes the form in Equation (4.67) only in the chart U . Given another chart (V, ϕ), with the associated set of
coordinates {wµ, wµ}µ,µ∈In the Kähler potential doesn't need to be equal in the overlap U ∩ V , but it has to
obey the constraint

K|V (w,w) = K|U (z, z) + f(z) + f(z) (4.69)

where f(z) and f(z) are respectively a holomorphic and an antiholomorphic functions. Equation (4.69) de�nes
the Kähler trasformations.

Finally, it's straightforward to prove that the metric is invariant under Kähler transformations of the
Kähler potential. In fact, let K|U (z, z) 7→ K ′|U (z, z) = K|U + f(z) + g(z). The metric computed with K ′(z, z)
will be

g′µν = ∂µ∂νK
′(z, z) = ∂µ∂ν (K(z, z) + f(z) + g(z)) =

= ∂µ∂νK(z, z) + ∂µ∂νf(z) + ∂µ∂νg(z) = ∂µ∂νK(z, z) = gµν (4.70)

since f(z) is holomorphic and g(z) is antiholomorphic, namely ∂νf(z) = 0 and ∂µg(z) = 0.

Remember that on a smooth manifold a Levi-Civita connection is uniquely de�ned by two requirements:
metric compatibility and vanishing of torsion. On a complex manifold it is natural to require also that the
complex structure must be compatible. This requirement is equivalent to imposing that holomorphic vectors
must remain holomorphic after parallel transport. Let us work in a coordinate basis and de�ne the action of
the covariant derivative on vectors basis

∇µ
∂

∂zν
= Γλµν

∂

∂zλ
∇µ

∂

∂zν
= Γλµν

∂

∂zλ
(4.71)

The relation Γλµν = Γλµν holds and these are the only non-vanishing components of the connection. On the
dual basis, the action of ∇ is

∇µdzν = −Γνµλdz
λ ∇µdzν = −Γνµλdz

λ (4.72)

For example on a holomorphic vector X+ ∈ T 1,0 and on an antiholomorphic vector X− ∈ T 0,1, the action of
∇µ is

∇µX+ = (∂µX
λ +XνΓλµν)

∂

∂zλ
∇µX− = (∂µX

ν)
∂

∂zν
(4.73)

Notice that on a antiholomorphic vector �eld, ∇µ acts exactly as an ordinary derivative. We can work analo-
gously with ∇µ. Requiring also metric compatibility

∇ρgµν = 0 ∇ρgµν = 0 (4.74)

we can rewrite
∂ρgµν − gλνΓλρµ = 0 ∂ρgµν − gµλΓλρν = 0 (4.75)

from which we �nd the explicit expression for the connection components

Γρµν = gλµ∂νgνλ Γρµν = gλρ∂µgνλ (4.76)

De�nition 4.2.9. An a�ne connection compatible with the metric and such that all components with mixed
indices are vanishing, is a Hermitian connection. It is unique by construction.
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It is important that [19]

Proposition 4.2.9. The complex structure J is compatible with the Hermitian connection, i.e.

∇ρJµν = ∇ρJµν = ∇ρJµν = ∇ρJµν = 0 (4.77)

Now de�ne the action of the torsion on a basis of vectors

T

(
∂

∂zµ
,
∂

∂zν

)
= Γρ[µν]

∂

∂zρ

T

(
∂

∂zµ
,
∂

∂zν

)
= T

(
∂

∂zµ
,
∂

∂zν

)
= 0

T

(
∂

∂zµ
,
∂

∂zν

)
= Γρ[µν]

∂

∂zρ
(4.78)

and thus the non-vanishing components are

T ρµν = Γρ[µν] = gλρ(∂[µgν]λ)

T ρµν = Γρ[µν] = gλρ(∂[µgν]λ) (4.79)

Restrictions on the a�ne connection simplify the form of the Riemann tensor. In particular one can �nd that

Rλµlm = Rλµlm = Rlmµλ = Rlmµλ = 0 (4.80)

where the indices l,m can take values from both holomorphic indices and antiholomorphic ones. Thanks to the
trivial symmetry Rλµνρ = −Rλµρν , the only independent components of the Riemann tensor are

Rλµνρ = ∂νΓλρµ = ∂ν(gλα∂ρgµα)

Rλµνρ = ∂νΓλρµ = ∂ν(gαλ∂ρgαµ) (4.81)

Other important features of Riemann tensor are

Rµνρσ = gµλR
λ
νρσ

Rµνρσ = gµλR
λ
νρσ

and the symmetries

Rµνρσ = −Rνµρσ Rµνρσ = Rνµρσ Rµνρσ = Rρνµσ = Rρσµµ (4.82)

After, if we contracting indices of the Riemann tensor, we can de�ne the Ricci tensor Rµν

Rµν = Rλλµν = −∂ν(gλρ∂µgλρ) = −∂ν∂µ log g (4.83)

where g = det gµν , and where we used the equality δg = ggµνδgµν . Rµν is explicitly antisymmetric, then we
can de�ne the Ricci form

R = iRµνdz
µ ∧ dzν = i∂∂ log g (4.84)

From the equality ∂∂ = − 1
2d(∂ − ∂) we �nd that R is closed. But again R isn't globally de�ned. So it isn't

exact and then it de�nes a non trivial cohomology class

c1(M) =

[
R

2π

]
∈ H2(M,R) (4.85)

As we will see in detail, c1(M) is the �rst Chern class of M.

The importance of c1(M) is that it is a topological invariant, i.e. it is invariant under smooth deformations
of the metric gµν → gµν + δgµν . In fact under this kind of deformation we �nd that [29]

δR = i∂∂(gµνδgµν) = − i
2
d[(∂ − ∂)gµνδgµν ] (4.86)

which is exact, being gµνδgµν a coordinate scalar. Thus smooth variations of the metric change R but don't
change c1(M).
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4.2.4 Cohomology of Kählermanifolds

New di�erential objects can be de�ned in the case of complex manifold due to the splitting in Equation 4.27.
Moreover, the Kähler condition in Equation (4.61) imposes very strong conditions on the cohomology of a
Kählermanifold.

Applying De�nition 2.3.1 to a complex form, we obtain that

∗ : Λp,qT ∗ → Λn−q,n−pT ∗ (4.87)

Then the operator
∗ : Λp,qT ∗ → Λn−p,n−qT ∗ (4.88)

let us to de�ne an inner product between two forms α, β ∈ Λp,qT ∗

(α, β) =

∫
α ∧ ∗β (4.89)

Then we can de�ne adjoints of Dolbeault operators

(α, ∂β) = (∂†α, β) (α, ∂β) = (∂
†
α, β) (4.90)

such that
∂† : Λp,qT ∗ → Λp−1,qT ∗ ∂

†
: Λp,qT ∗ → Λp,q−1T ∗ (4.91)

Since a complex manifold is even dimensional if regarded as a real manifold, the relation d† = − ∗ d∗ holds.
Then it's easy to prove that [19]

∂† = − ∗ ∂ ∗ ∂
†

= − ∗ ∂ ∗ (∂†)2 = (∂
†
)2 = 0 (4.92)

After this, we can repeat exactly the same constructions done for the real case. Then de�ne the Laplacian on
a Hermitian manifold

∆∂ = (∂ + ∂†)2 = ∂∂† + ∂†∂ ∆∂ = ∂∂
†

+ ∂
†
∂ (4.93)

De�nition 4.2.10. Let M be a Hermitian manifold. Let ω ∈ Λp,qT ∗. If ∆∂ω = 0 (∆∂ω = 0) then ω is said to
be ∂-harmonic (∂-harmonic) and we will write ω ∈ Υp,q

∂ (M) (ω ∈ Υp,q

∂
(M)).

Naturally, if ∆∂ω = 0 (∆∂ω = 0), then ∂ω = ∂†ω = 0 (∂ω = ∂
†
ω = 0). Moreover

Theorem 8. Hodge's theorem [19]
Let M be a Hermitian manifold. Then Λp,qT ∗ has a unique orthogonal decomposition

Λp,qT ∗ = ∂Λp,q−1T ∗ ⊕ ∂†Λp,q+1T ∗ ⊕Υp,q

∂
(M) (4.94)

namely a form ω ∈ Λp,qT ∗ is uniquely expressed as

ω = ∂α+ ∂
†
β + γ (4.95)

where α ∈ Λp,q−1T ∗, β ∈ Λp,q+1T ∗, γ ∈ Υp,q

∂
(M).

On a Hermitian manifold, ∆∂ , ∆∂ ,∆ don't have particular relationships. On a Kählermanifold instead they
are essentially the same. In fact

Proposition 4.2.10. Let M be a Kählermanifold. Then

∆ = 2∆∂ = 2∆∂ (4.96)

If ω is a holomorphic form, namely ∂ω = 0, then also ∂
†

= 0 because ω doesn't contain factors dzµ in its
expansion. Then we can notice that

∂ω = ∂
†
ω = 0 ⇔ ∆∂ω ⇔ ∆∂ω ⇔ ∂ω = ∂ω = 0 (4.97)

Then, according to Hodge's theorem, if ω is holomorphic, ∆ω = 0 holds, and since the converse is trivially true
[19], then
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ω holomorphic ⇔ ω is harmonic

At this point one can prove that [19]

Proposition 4.2.11. Let M be a Kählermanifold such that dimC(M) = n. Then

1. bk =
∑
k=p+q h

p,q

2. hp,q = hq,p

3. hp,q = hn−p,n−q

and thus the Hodge diamond is symmetric respect to the vertical and the horizontal lines (see Figure 4.2).

Figure 4.2: Hodge diamond for a Kählermanifold.

Due to these new symmetries, the number of independent Hodge's numbers becomes ( 1
2n+ 1)2 if n is even,

while it becomes 1
4 (n+ 1)(n+ 3) if n is odd.

4.3 SU(n) structures

4.3.1 Motivation

4.3.2 Reduction of the structure group

An interesting point is to see how the structures introduced in the development of the complex geometry a�ect
the structure group.

It is well known that the introduction of a Riemannian metric g on a smooth manifoldM such that dim(M) =
n determines the reduction of the structure group following the pattern

GL(n,R) ↪−→ O(n,R) (4.98)

When the tangent bundle is complexi�ed, the dimension doubles, so that the tangent bundle has structure
group GL(2n,R). Let us assume thatM is an almost complex manifold. Due to the splitting in Equation (4.20)
we can construct the canonical bundle

Λn,0T ∗ (4.99)

We will denote by Ω a local section of the canonical bundle which locally in Uα takes the form

Ω = θ1 ∧ · · · ∧ θn ∈ Λn,0T |∗Uα (4.100)

where {θi}i∈In forms a local frame of holomorphic one-forms. A form which can be written as in Equation
(4.100) is called a decomposable form.

Since the splitting depends only on the almost complex structure J , Ω can be build by using only J .
Conversely from Ω ∈ Λn,0T |∗Uα we can build a subbundle as follows

L = {X ∈ T | iXΩ = 0} (4.101)

We can then de�ne J to be the operator such that L is its −i-eigenbundle. Its complement L in T will be the
+i-eigenbundle of the operator J . In this way the almost complex structure J is reconstruct and we have shown
that the information encoded by J itself is also encoded by a section Ω of the canonical bundle Λn,0T ∗.
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It is evident that Ω hides an ambiguity in its de�nition. In fact the one-forms {θi}i∈In are determined up
to a GL(n,C) transformation. In other words Ω is determined up to an overall complex function which can
be encoded by the determinant of the matrix representing a GL(n,C) transformation. Needless to say, this
framework makes explicit that the structure group has been reduced following the pattern

GL(2n,R) ↪−→ GL(n,C) (4.102)

Let us now consider the fundamental form of a Hermitian manifold. Since it is non-degenerate but it doesn't
need to be closed, ω de�nes a Hermitian pre-symplectic structure on M. It is a consequence of Equation
(4.56) that

ω ∈ Λ1,1T ∗ (4.103)

and moreover we know that it is real. The requirement that ω be globally de�ned implies the reduction of the
structure group following the pattern

GL(n,C) ↪−→ U(n) (4.104)

Moreover since ω ∈ Λn,0T ∗ we get that
ω ∧ Ω = 0 (4.105)

If Ω doesn't possess the ambiguity mentioned above the group structure can be further reduced as follows

U(n) ↪−→ SU(n) (4.106)

We can give the following [15]

Proposition 4.3.1. Let (M,J) be an almost complex manifold such that dim(M) = n. Let Ω be a globally
de�ned, decomposable, complex n-form Ω de�ned as in Equation (4.100), which is non-degenerate everywhere,
namely

Ω ∧ Ω 6= 0 (4.107)

Let ω be a pre-symplectic two-form compatible with J . Then the structure group reduces to SU(n).

De�nition 4.3.1. Let (M,J, ω,Ω) be as in Proposition 4.3.1. It is a SU(n)-structure.

Usually the form Ω is normalized in the following way

Ω ∧ Ω =
(−2i)n

n−1
2

n!
ωn (4.108)

With this convention there exists a local frame {θi}i∈In such that

ω = − i
2

∑
i,̄i

θi ∧ θī Ω = θ1 ∧ · · · ∧ θn (4.109)

4.3.3 SU(3) structures

In this Section we will specialize to the case n = 3.

In this particular case Equation (4.108) reduces to

Ω ∧ Ω =
4

3
ω3 (4.110)

We would like to express the SU(3)-structure in terms of spinors.

As we can see in Section 3.1.4, the Spin group Spin(6) has two inequivalent spinor representations spaces

S ∼= S ∼= C4 (4.111)

which are associated to two di�erent chiralities. In particular they are induced from the decomposition in
eigenspaces of the volume form, which in the case (r, s) = (6, 0) is such that γ2

7 = −1. Then we can write each
spinor η as the sum

η = ξ + χ (4.112)
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where the subscript + denotes a positive chirality component such that γ7ξ = iξ, while the subscript − denotes
a negative chirality component such that γ7χ = −iχ. In other words

ξ ∈ S χ ∈ S (4.113)

It's amazing to see that the symplectic form ω and the canonical form Ω of a SU(3) structure can be simply
built by starting from a non-vanishing pure Spin(6) spinor. As we have seen in Section 3.1.4 if the dimension
n ≤ 6 every spinor is a pure spinor, so that we don't have to worry about this requirement. As we know, η± is
a locally a vector of C4. If η is nowhere vanishing, without loss of generality we can write it in a chart as

η+ =


η0

0
0
0

 (4.114)

and it is obvious that the subgroup of SU(4) which leaves invariant η is SU(3). Since it is non-vanishing, we
can normalize η+ so that

η+η+ = 1 (4.115)

Then the SU(3)-structure takes the nice form

ωij = −iη+γijη+ Ωijk = −iη−γijkη+ (4.116)

where η− is the charge conjugate of η+, namely

η− = Cη∗ (4.117)

where the charge-conjugation matrix C is such that

γ∗a = −C−1γaC (4.118)

4.3.4 Holonomy groups

We saw that the Riemann tensor over a Kählermanifold M has only few non-vanishing components. This fact
was mainly due to the Kähler condition, which puts strong constraints on the metric.

We can reformulate these concepts in terms of the Holonomy group Φ(M), which is a more intuitive geo-
metric tool. The fact that non-vanishing connection coe�cients have pure indices, i.e. that parallel transport
preserves the holomorphicity condition, tell us that the Holonomy group of a Kählermanifold is contained in
U(n).

Moreover we recall that the parallel transport of a vector with components X l around an in�nitesimal
parallelogram with sides εm and τn lying along direction ∂

∂xm and ∂
∂xn gives

X ′l = X l +XrRlrmnε
mτn (4.119)

We require that under parallel transport holomorphicity is preserved, which means that the Riemann tensor is
pure in (l, r) indices. Remembering all symmetries of the Riemann tensor, we �nd that the only non-vanishing
components are those in Equation (4.81). The matrices εmτnRlrmn are elements of Φ(M) (see Section 2.2.2)
in�nitesimally closed to the identity, i.e. are in the Lie algebra of U(n), namely u(n). In a neighbour of the
identity we have that

U(n) ' SU(n)× U(1) (4.120)

which translates into the Lie algebras as

u(n) = su(n)⊕ u(1) (4.121)

The Lie algebra su(n) contains the traceless matrices, then the generator of the u(1) part is

Rλλµνε
µτν = −4Rµνε

µτν (4.122)

Thus the Ricci tensor is the generator of the U(1) part of Φ(M). We can now give

Proposition 4.3.2. Let M be a Kähler , Ricci-�at manifold. Then Φ(M) ⊆ SU(n).
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Note that Proposition 4.3.2 isn't a direct consequence of the precedent reasoning, which prove the statement
only locally. For a complete prove we remaind to [29].

There are a lot of ways to de�ne Calabi-Yau manifolds. The �rst we will give is

De�nition 4.3.2. Let M be a Kähler , Ricci-�at manifold. M is a Calabi-Yau manifold.

Let us remember that the condition of Ricci-�atness can be also written in terms of the �rst Chern-class,
since

c1(M) =

[
R

2π

]
∈ H2(M,R) (4.123)
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5
Generalized complex geometry

After having introduced the CG, in this Chapter we will explore the Generalized Complex Geometry (GCG).
This is a new kind of geometry in which we will �nd two fundamental novelties. The �rst is the fact that instead
of the tangent T and the cotangent T ∗ bundles separately, we will consider them as a direct sum T ⊕ T ∗. This
fact leads us to a natural generalization of the Lie bracket, i.e. the Courant bracket. The second innovation is
the fact that the orthogonal group is enlarged by the so called B-action. We will explore this fact in detail.

5.1 Linear algebra of V ⊕ V ∗

Before to analyze the di�erential geometry of the GCG, let us study brie�y the novelties which one obtains by
studying the linear algebra of the direct sum V ⊕ V ∗.

5.1.1 Basic notions

Let V be a vector space such that dim(V ) = n, and let V ∗ be its dual. V ⊕ V ∗ is endowed with the following
natural and symmetric bilinear form [14]

η : V ⊕ V ∗ × V ⊕ V ∗ → R

such that

η(X + ξ, Y + η) =
1

2
(ξ(Y ) + η(X)) ∀X + ξ, Y + η ∈ V ⊕ V ∗ (5.1)

where X ∈ V and η ∈ V ∗. η is clearly symmetric, and its signature is (n, n). We will call it the inner product
on V ⊕ V ∗.

Here and in the rest of the present Chapter, we will indicate with u, v, w elements lying in the direct sum
V ⊕ V ∗, with X,Y, Z elements which belong to the "vector part" of V ⊕ V ∗, and with ξ, η, χ elements wich
belong to the "form" part of V ⊕ V ∗. From the next Section V ⊕ V ∗ will turn into T ⊕ T ∗, but the convention
will remain the same.

The natural pairing between Λ(V ) and Λ(V ∗) given by

(u∗, v) = det(u∗i (vj)) (5.2)

where u∗ = u∗1 ∧ · · · ∧ u∗n ∈ Λn(V ∗) and v = v1 ∧ · · · ∧ vn ∈ Λn(V ), allows us to identify

Λ2n(V ⊕ V ∗) ∼= R (5.3)

In this way, the unity 1 ∈ R de�nes a canonical orientation on V ⊕ V ∗.

The isometry group of V ⊕ V ∗ is the special orthogonal group

SO(V ⊕ V ∗) ∼= SO(n, n) (5.4)
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whose Lie algebra is

so(V ⊕ V ∗) = {T ∈ End(V ⊕ V ∗)| 〈Tv,w〉+ 〈v, Tw〉 = 0 ∀ v, w ∈ V ⊕ V ∗} (5.5)

The group SO(n, n) will play a fundamental role in the developing of the work.

In Section 5.1.1 we have seen that so(V ⊕ V ∗) naturally sits in the Cli�ord algebra C(V ⊕ V ∗), since
so(V ⊕ V ∗) ' Λ2(V ⊕ V ∗). Then we can write the decomposition

so(V ⊕ V ∗) = End(V )⊕ ∧2(V )⊕ ∧2(V ∗) (5.6)

Since dim(V ⊕ V ∗) = dim(End(V )) = n2 we have the isomorphism V ⊕ V ∗ ∼= End(V ).

The decomposition in Equation (5.6) leads us to the conclusion that the most general transformation acting
on V ⊕ V ∗, and leaving the inner product invariant is of the form

T =

(
A β
B −AT

)
(5.7)

By imposing the de�ning property of the so(n, n) Lie algebra it turns out that

B∗ = −B β∗ = −β (5.8)

Let us see how the various components in the decomposition in Equation (5.6) are immersed into so(n, n).

End(V ) ⊂ so(V ⊕ V ∗) acts as follows

A : V ⊕ V ∗ → V ⊕ V ∗

X + ξ 7→ A(X)−AT (ξ) (5.9)

B acts naturally as a map

B : V → V ∗

X 7→ iXB (5.10)

so that it can be seen as B ∈ ∧2(V ∗). Also β acts as the map

β : V ∗ → V

ξ 7→ iξβ (5.11)

and then can be see as a map β ∈ Λ2(V ).

In other words B is a dual bivector and β is a bivector, and we can make the group action explicit by writing

eB : V ⊕ V ∗ → V ⊕ V ∗

X + ξ 7→ X + ξ + iXB (5.12)

and

eβ : V ⊕ V ∗ → V ⊕ V ∗

X + ξ 7→ X + ξ + iξβ (5.13)

We will call the group action of B, β by B-action and β-action. GB is the subgroup of elements which act as in
Equation (5.12). The B-action �xes the direction parallel to V , while it acts by shearing in the V ∗ direction.
Its action is described by the matrix

B =

(
1 0
B 1

)
(5.14)

On the other side we can denote by eA the diagonal group action

eA : V ⊕ V ∗ → V ⊕ V ∗

X + ξ 7→ eAX ⊕ e−A
T

ξ (5.15)

In order to describe spinors on V ⊕ V ∗ it's useful to give the following
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De�nition 5.1.1. Let L ⊆ V ⊕V ∗. If η(v, w) = 0 ∀ v, w ∈ L, then L is an isotropic subspace. As it is well
known from the linear algebra, if dim(L) = n (dim(V ⊕ V ∗) = n), then the isotropic subspace is a maximal
one. A maximal isotropic subspace is also called a linear Dirac structure.

In particular it's important to notice that we can write every linear Dirac structure L in the form [14]

L(E, ε) = {X + ξ ∈ E ⊕ V ∗| ξ|E = ε(X)} (5.16)

where E ⊂ V , and ε ∈ Λ2(E∗). Moreover

De�nition 5.1.2. Let πV : V ⊕ V ∗ → V be the canonical projection on V . Let E ⊆ V ⊕ V ∗ be a linear
subspace and let L(E, ε) the associated linear Dirac structure. Then the integer

t(L) = dim(Ann(E)) = n− dim(πV (L)) (5.17)

is the type of L(E, ε).

The most simple examples of Dirac structures are given by V and its dual V ∗, respectively of type t(V ) = 0
and t(V ∗) = n.

The B-action doesn't a�ect the projection to V , but it only shifts the dual component E ⊕ V ∗ ⊃ X + ξ 7→
X + ξ + iXB. This means that the B-action doesn't a�ect the type t(L) of a linear Dirac structure L(E, ε). In
other words the type of L(E, ε) is an invariant under the B-action and the linear Dirac structure transforms as
follows

eBL(E, ε) = L(E, ε+ i∗B) (5.18)

where i : E ↪→ V is the inclusion map. Moreover, it can be shown that by choosing B and E suitably, we can
obtain every maximal isotropic of a given type as a B-transform of L(E, 0).

On the other side, as we can expect, the β-action modi�es the type of a linear Dirac structure L(E, ε). In
fact, let β : V ∗ → V and let L be a linear Dirac structure. If we de�ne V ∗ ⊃ F = πV ∗L, γ ∈ Λ2(F ∗) and
L(F, γ) = {X + ξ ∈ V ⊕ F | X|F = γ(ξ)}, then

eβL(F, γ) = L(F, γ + i∗β) (5.19)

where now i : F ↪→ V ∗. It can be shown that we can write the dimension of E as a function of γ

dim(E) = dim((L ∩ V ) + rk(γ)) (5.20)

where rk(γ) = dim(Im(γ)). Since γ is an alternating bivector, its rank is even and since a β-action is such that
γ 7→ γ + i∗β (which also has even rank) we obtain that the β-action can be used to change the type of L(E, ε)
by an even number. Finally

De�nition 5.1.3. A linear Dirac structure L(E, ε) whose type is t(L) is said to have even parity if t(L) =
0mod(2), while it has odd parity if t(L) = 1mod(2).

It's intuitive that the generic even linear Dirac structure of even parity is a linear Dirac structure of type 0,
which is V itself, while the generic odd linear Dirac structure is a linear Dirac structure of type 1. From these
we can obtain linear Dirac structures of generic type by β-actions.

5.1.2 Spinors for V ⊕ V ∗

In this Section we want to extend the topics covered in Section 3.1 to the more general context of GCG.

Let us denote the Cli�ord algebra over V ⊕ V ∗ by C(V ⊕ V ∗). The quadratic form which de�nes it is given
in Equation (5.1). as we know it has signature σ = (n, n), where dim(V ) = n. The relation

v2 = η(v, v) ∀ v ∈ V ⊕ V ∗ (5.21)

de�nes C(V ⊕ V ∗) together with the anticommutation relation

vw + wv = 2η(v, w) ∀v, w ∈ V ⊕ V ∗ (5.22)

The Cli�ord algebra has a natural representation on Λ(V ∗) de�ned by

(X + ξ) · ϕ = iXϕ+ ξ ∧ ϕ ∀X + ξ ∈ V ⊕ V ∗, ∀ϕ ∈ Λ(V ∗) (5.23)
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In fact ∀X + ξ, Y + η ∈ V ⊕ V ∗

(X + ξ)2 · ϕ = (X + ξ) (iXϕ+ ξ ∧ ϕ) = iX(iXϕ+ ξ ∧ ϕ) + ξ ∧ (iXϕ+ ξ ∧ ϕ) =

= (iXξ)ϕ− ξ ∧ (iXϕ) + ξ ∧ (iXϕ) = (iXξ) ∧ ϕ = 〈X + ξ,X + ξ〉ϕ (5.24)

and also

[(X + ξ)(Y + η) + (Y + η)(X + ξ)] · ϕ = (X + ξ)(iY ϕ+ η ∧ ϕ) + (Y + η)(iXϕ+ ξ ∧ ϕ) =

= iX iY ϕ+ iX(η ∧ ϕ) + ξ ∧ (iY ϕ) + ξ ∧ η ∧ ϕ+ iY iXϕ+ iY (ξ ∧ ϕ) + η ∧ (iXϕ) + η ∧ ξ ∧ ϕ =

= (iXη)ϕ− η ∧ (iXϕ) + (iY ξ)ϕ− iY (ξ ∧ ϕ) + iY (ξ ∧ ϕ) + η ∧ (iXϕ) =

= 2

(
1

2
(iXη + iY ξ)

)
= 2〈X + ξ, Y + η〉 (5.25)

The decomposition in Equation (3.30) of the Cli�ord algebra C(V ⊕V ∗) immediately induces a decomposition
of the representation space

Λ(V ∗) = Λ+(V ∗)⊕ Λ−(V ∗) (5.26)

where Λ+(V ∗) includes all alternating (dual) multivectors of even order, while on the contrary Λ−(V ∗) includes
all alternating (dual) multivectors of odd order. This splitting isn't preserved by the whole Cli�ord algebra
C(V ⊕ V ∗), but Λ+(V ∗) and Λ−(V ∗) are separately irreducible representations of the Spin group.

We know that so(V ⊕ V ∗) ∼= Λ2(V ⊕ V ∗). The next step is to determine how the Lie algebra components -
namely the actions we studied in Equations (5.12), (5.13) and (5.15) - act on the spin representations.

We start with the B-action. Let {ei}i∈In a basis for V and let {ei}i∈In be its dual basis. As we have seen
in Section 3.1.1, B ∈ Λ2(V ∗) and we can write B = 1

2Bije
i ∧ ej where Bij = −Bji. We recall that

X
B7−→ iXB ∀X ∈ V (5.27)

which means that, on the basis elements

iek(ei ∧ ej) = δike
j − δjkei (5.28)

Moreover, remember Proposition 3.43

adejei(ek) = ejeiek − ekejei = ejeiek + ejeke
i − δjke

i =

= ej(eiek + eke
i)− δjke

i = δike
j − δjke

i (5.29)

where we used the anticommutativity relation in Equation (5.22) and the associativity of the Cli�ord algebra
C(V ⊕ V ∗). Equation (5.29) provide the same result of Equation (5.28). In other words the image of B =
1
2Bije

i ∧ ej in the Cli�ord algebra C(V ⊕ V ∗) is B = 1
2Bije

jei. Its action on the representation space Λ(V ∗) is
then (see Equation (5.23))

B · ϕ =
1

2
Bije

j ∧ (ei ∧ ϕ) = −B ∧ ϕ (5.30)

And the group action is given by exponentiating

e−Bϕ =

(
1−B +

1

2
B ∧B + . . .

)
∧ ϕ (5.31)

As one can expect, since B ∈ so(V ⊕ V ∗), then e−B is an element of the Spin group Spin(V ⊕ V ∗). In fact in
calculating the norm of e−Bϕ one can see that each term of the form

(1, B) (B,B) (B2, B) (B3, B) (B2, B2) (B3, B2) . . . (5.32)

vanishes. In fact, let us consider for simplicity the norm of the �rst order expansion e−B ∼= 1−B. The norm is
given by

(1−B, 1−B) = (1, (1−B)(1−B)) = (1, 1)− (1, B)− (1, B) + (1, BB) = 1 (5.33)

where (1, 1) = 1. The term (1, B) = 1
2Bij(1, e

jei) = 0. Analogously for the term (1, B) = 0. Finally
(1, BB) = 1

4BijBlm(1, eiejelem) = 1
4BijBlm(1, ejeielem) = 0. In fact there is no way to reduce the term ejeielem
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to some multiple of the identity, since the rule in Equation (5.22) tells us that elements in V ∗ anticommute in
the Cli�ord algebra C(V ⊕ V ∗). Consequently

|eB |2 = 1 (5.34)

In addition e−B ∈ Spin0(V ⊕ V ∗), which is the identity component of the Spin group Spin(V ⊕ V ∗).

We can study the β-action case in a similar way. Let β ∈ Λ2(V ), β = 1
2β

ijei ∧ ej be the alternating bivector
which de�nes the β-action

ξ
β7−→ iξβ (5.35)

Its image in the Cli�ord algebra is given by 1
2β

ijejei, and then the action on the representation space Λ(V ∗) is

β · ϕ =
1

2
βijiej (ieiϕ) = iβϕ (5.36)

Therefore, by exponentiating we obtain

eβϕ =

(
1 + iβ +

1

2
i2β + . . .

)
ϕ (5.37)

The case of the GL(V )-action is much more complicate. We will study it in Section ??.

5.1.3 Pure spinors

There exists a pairing between spinors, which behaves well under spinor representations. In fact it remains
invarinat under the action of the identity component of Spin(V ⊕ V ∗).

We de�ne a bilinear form on the spinor representation space by

(, ) : Λ(V ∗)× Λ(V ∗) → detV ∗

(ϕ,ψ) 7→ (ϕ ∧ ψ) |top (5.38)

where (, ) |top denotes that the top degree component of the alternating multivector is taken. It can be shown
[14, 36] that

(v · ϕ, v · ψ) = η(v, v)(ϕ,ψ) ∀ v ∈ V ⊕ V ∗, ∀ϕ,ψ ∈ Λ(V ∗) (5.39)

so that in particular

(g · ϕ, g · ψ) = ±(ϕ,ψ) ∀ g ∈ Spin(V ⊕ V ∗), ∀ϕ,ψ ∈ Λ(V ∗) (5.40)

which brings us to give the following

Proposition 5.1.1. The bilinear form in Equation (5.38) is invariant under the identity component of the Spin
group Spin(V ⊕ V ∗) namely

(x · ϕ, x · ψ) = (ϕ,ψ) ∀x ∈ Spin0(V ⊕ V ∗) (5.41)

For example we have

(eB · ϕ, eB · ψ) = (ϕ,ψ) ∀B ∈ Λ2(V ∗), ∀ϕ,ψ ∈ Λ(V ∗) (5.42)

The bilinear form in Equation (5.38) is non-degenerate and it can be symmetric or skew symmetric depending
on n = dim(V ). In fact

(ϕ,ψ) = (−1)
n(n−1)

2 (ϕ,ψ) ∀ϕ,ψ ∈ Λ(V ∗) (5.43)

Now we are ready to study pure spinors. This concept is the one which allows us to study spinors by
understanding the maximal isotropics. In fact, let ϕ ∈ Λ(V ∗).

De�nition 5.1.4. The subspace Lϕ ⊂ V ⊕ V ∗ de�ned by

Lϕ = {v ∈ V ⊕ V ∗| v · ϕ = 0} (5.44)

is the null space of ϕ.
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Every null spaces are isotropic, in fact

2η(v, w)ϕ = (vw + wv) · ϕ = 0 ∀ v, w ∈ Lϕ ⇒ η(v, w) = 0 ∀ v, w ∈ Lϕ (5.45)

De�nition 5.1.5. A spinor ϕ is a pure spinor if Lϕ is a maximal isotropic, namely if dim(Lϕ) = n.

It's interesting to notice that from a pure spinor we can easily obtain more pure spinors. For example let
1 ∈ Λ(V ∗) be the unit spinor. It's a pure spinor because L1 = {X + ξ ∈ V ⊕ V ∗| (X + ξ) · 1 = (iX + ξ∧)1 =
0} = V = L(V, 0) is a maximal isotropic as we have seen in Section 5.1.1. From this we can obtain more
pure spinors by simply applying a spin transformation to the spinor 1. For example, let B ∈ Λ2(V ∗). Then
ϕ = e−B ∧ 1 = e−B is also a spinor. We can �nd its null space by noticing that, for X ∈ V

(X + iXB) · e−B = (X + iXB) · (1−B + . . . ) =

= −iXB ∧ 1 +B ∧ iX1 + iXB ∧ 1− iXB ∧B ∼=
∼= B ∧ iX1 = B ∧ (X · 1) = 0 (5.46)

where we have used that 1 is annihilated by the maximal isotropic V . We have considered only �rst order terms
in B, but one can verify that this result holds at higher degrees. So we can write the null space

Le−B = {X + iXB| X ∈ V } (5.47)

It's obvious that dim(Le−B ) = n, since there is an indipendent vector for each indipendent X ∈ V . Moreover
it's quite evident that we can recover Le−B by simply shifting the dual component of L(V, 0) with the B-action.
We can eventually write

Le−B = {X + iXB| X ∈ V } = L(V,B) (5.48)

Let us give another simple example. Let ω ∈ V ∗ be a non-zero dual vector. Its null space is given by

Lω = {X + ξ ∈ V ⊕ V ∗| X ∈ Ker(ω) and ξ ∈ Span(ω)} = L(Ker(ω), 0) (5.49)

since we can see iXω as a map ω : X 7→ R, and Span(ω) = {cω ∈ V ∗| c ∈ R}. This is a maximal isotropic,
then ω is a pure spinor and therefore also e−Bω is.

Every maximal isotropic subspace of V ⊕ V ∗ is associated with a line bundle (lying in the representation
space Λ(V ∗)) which is that associated to the respective pure spinor. Let us be more precise

Proposition 5.1.2. Let L(E, 0) = E ⊕ Ann(E) be the maximal isotropic associated with subspace E ⊂ V
such that t(E) = k. Then the data L(E, 0) = E ⊕Ann(E) is equivalent to the pure spinor line bundle

det (Ann(E)) ⊂ Λk(V ∗) (5.50)

In fact, let ϕ = θ1 ∧ · · · ∧ θk be any non-zero element of det (Ann(E)). Then (X + ξ) · ϕ = (iX + ξ∧)ϕ = 0
if and only if X ∈ E and ξ ∈ Ann(E). This is equivalent to say that X + ξ ∈ L(E, 0).

Now, as we have seen in Section 5.1.1, every maximal isotropics can be expressed as the B-transform of
L(E, 0), once one chooses a B ∈ Λ2(V ∗) such that ε = i∗B. Remember that i : E ↪→ V is the natural inclusion,
and then ε ∈ Λ2(E). So, even if ε /∈ Λ2(V ∗), with an abuse of notation we can write

L(E, ε) = eε(L(E, 0)) (5.51)

where ε represents just any B ∈ Λ2(V ∗) such that i∗B = ε. Finally we can give the obvious generalization of
the Proposition 5.1.2

Proposition 5.1.3. Let L(E, ε) be any maximal isotropic. Then the pure spinor line UL de�ning it is

UL = e−ε det (Ann(E)) (5.52)

where, again ε represents any B ∈ Λ2(V ∗) such that i∗B = ε.

In other word, if {θ1, . . . , θk} is a basis for Ann(E), and if B ∈ Λ2(V ∗) such that ε = i∗B, then the pure
spinor associated to the maximal isotropic L(E, ε) is

ϕL = c e−Bθ1 ∧ · · · ∧ θk c ∈ R/{0} (5.53)
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5.1.4 Complexi�cation

We can extend by complexi�cation all the results we have obtained until now in the present Chapter.

First of all we can extend the inner product η to the complexi�ed one

η : (V ⊕ V ∗)C × (V ⊕ V ∗)C → C (5.54)

Let V be a real vector space such that dim(V ) = n. A maximal isotropic subspace L ⊂ (V ⊕ V ∗)C of type
t(L) ∈ I0

n is equivalently speci�ed by

1. A complex subspace L ⊂ (V ⊕ V ∗)C, maximal isotropic with respect to η and such that E = πV CL has
dimC(E) = n− k.

2. A complex subspace E ⊂ V C such that dimC(E) = n−k, together with a complex dual bivector ε ∈ Λ2(E∗).

3. A complex spinor line UL ⊂ Λ(V ∗)C generated by

ϕL = ce−(B+iω)θ1 ∧ · · · ∧ θk c ∈ C/{0} (5.55)

where {θi}i∈Ik are linearly independent complex dual vectors in V ∗C, while B and ω are the real and imaginary
part of a complex dual bivector on Λ2(V ∗)C. As usual, when one complexi�es a space, has to pay attention to
the e�ects of the conjugation on it. The main consequence here is given by the following

De�nition 5.1.6. Let L ⊂ (V ⊕ V ∗)C be a maximal isotropic subspace. Then L ∩L is the complexi�cation of
some real subspace K , namely L ∩ L = KC, where K ∈ V ⊕ V ∗. The number

r(L) = dimC
(
L ∩ L

)
= dim(K) (5.56)

is the real index of the maximal isotropic L.

5.2 Generalized Geometry

As usual in di�erential geometry the next step is to transport the linear algebra of V ⊕V ∗ on a smooth manifold
M . In this perspective we will de�ne the generalized tangent bundle, which as the same name suggests is a
generalization of the tangent bundle T . This is a delicate step, since it's the point in which we introduce an
object which is central in the work, namely the closed three-form H, which plays a fundamental role in the
theory of compacti�cation developed in Chapter 6. Moreover, we have also to study the theory of pure spinors
in the generalized geometry. They are central both in the de�nition of certain important structures on the
generalized tangent bundle and because T-duality takes a particularly simple form if written in terms of pure
spinors.

5.2.1 The generalized tangent bundle

The most immediate way to transport the machinery of V ⊕ V ∗ on a smooth manifold M is to consider the
generalization of the tangent bundle T de�ned as

T ⊕ T ∗ (5.57)

This is a bundle over the smooth manifold M , with trivial projection π : T ⊕T ∗ →M . However, as we will see,
we are interested in incorporating a closed three-form H ∈ H3(M,R) in the construction of the generalization
of the tangent bundle. Such a three form is used to twist the �bration of T ⊕ T ∗, and it plays a fundamental
role in the compacti�cation of the superstring theory with Neveau-Schwarz �ux. Let us probe how it works.

We have seen in Chapter 2 that a closed two-form F ∈ H2(M,R) induces the de�nition of a U(1)-bundle.
In the same way a closed three-form H ∈ H3(M,R) de�nes a more general object which is called a gerbe.

Let M be a smooth manifold, and let {(Uα, ϕα)}α∈I be an atlas of M . Now consider a set of maps de�ned
on triple overlaps

gαβγ : Uαβγ → S1 (5.58)

which satisfy the cocycle conditions

gαβγ = gβγα = gγαβ = g−1
αγβ = g−1

γβα = g−1
βαγ (5.59)
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as well as
gαβγ = gβαδ = gγβδ = gδαγ = 1 (5.60)

in each quadruple overlap Uαβγδ.

The important point however is a consequence of the Poincarè Lemma, which starting from a closed three-
form H ∈ H3(M,R) allows us to to write the following chain of descent relations, also called the connective
structure of a gerbe

H = dBα Bα ∈ Λ2T ∗|Uα (5.61)

Bα −Bβ = dAαβ Aαβ ∈ Λ1T ∗|Uα∩Uβ (5.62)

Aαβ +Aβγ +Aγα = dΛαβγ Λαβγ ∈ C∞(Uαβγ) (5.63)

Λαβγ + Λβαδ + Λγβδ + Λδαγ = dαβγδ dαβγδ ∈ Z (5.64)

From this chain of relations we can see that the transition functions

gαβγ : Uαβγ → S1

p 7→ eiΛαβγ(p) (5.65)

satisfy the cocycle conditions in Equations (5.59), (5.60) and then de�ne a gerbe.

The descent relations in Equation (5.61) are particularly important to us, because their elements can be
used to de�ne the twisted generalized tangent bundle via the extension of the tangent bundle T

0 −→ T ∗ −→ E
π−→ T −→ 0 (5.66)

The �bration is speci�ed by the patchings in the overlaps Uαβ

Xα + ξα 7→ LαβXβ + L−Tαβ ξβ + iLαβXβ (dAαβ) (5.67)

where L ∈ GL(n,R) and Xα + ξα ∈ E|Uα . In other words E is a nontrivial �bration of the cotangent bundle T ∗

over T . In fact the twisting de�ned by the last term in Equation (5.67) must be added to the usual GL(n,R)
action on vectors and one-forms. The twisting term contains the gerbe data dAαβ . Each section of the general-
ized tangent bundle can be written locally as the sum of a vector and a form, and it is called a generalized vector.

It's worthy to notice that if H ∈ B3(M,R), then dAαβ = 0 and then the generalized tangent bundle E can
be reduced to the trivial one T ⊕ T ∗.

The generalized tangent bundle encodes a natural O(n, n) structure, which is inherited by the metric in
Equation (5.1) so that in each open set Uα

η(vα, wα) =
1

2
(ξα(Xα) + ηα(Yα)) (5.68)

where vα, wα ∈ E|Uα and vα = Xα + ξα, wα = Yα + ηα. The central point here is that the O(n, n) structure is
preserved by the patchings in Equation (5.67), in fact one can easily �nd that for each Uαβ

η(vα, wα) = η(vβ , wβ) (5.69)

It follows that the O(n, n) actions which we studied in Section 5.1.1 are well de�ned locally on the �bers
of E, and they preserve the metric η. Moreover, since the patchings in Equation (5.67) are actually GL(n,R)
actions on the �bers, followed by B-actions with a closed B, the structure group of the generalized tangent
bundle E is reduced according to the pattern

O(n, n) −→ Γ(R) (5.70)

where Γ(R) is the semidirect product de�ned by

Γ(R) = G̃B oGL(n,R) (5.71)

where G̃B is the subgroup of O(n, n) of the B-actions with B a closed two-form. The last Equation means that
each element in Γ(R) is the product of two elements in O(n, n) belonging respectively to G̃B and to GL(n,R).
Moreover in the action over the �bers of the generalized tangent bundle, each element of Γ(R) acts �rstly by
multiplication of the GL(n,R) part.

Finally we can de�ne a natural bracket on generalized vectors, which is a generalization of the Lie bracket.
In fact
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De�nition 5.2.1. Let M be a smooth manifold and E the generalized tangent bundle induced by a three-form
H ∈ H3(M,R). The Courant bracket is de�ned as

[X + ξ, Y + η]C = [X,Y ] + LXη − LY ξ −
1

2
d (iXη − iY ξ) ∀X + ξ, Y + η ∈ X(E) (5.72)

It's obvious that the Courant bracket is de�ned locally on sections in X(E), but we will omit the subscript
α, β where this doesn't create confusion.

It's immediate that on vectors the Courant bracket reduces to the Lie bracket [X,Y ], while on forms the
Courant bracket is 0. The Courant bracket isn't really a Lie bracket, since it fails to satisfy the Jacobi identity
[14].

It is particularly important to study the symmetries of the Courant bracket, because as we will see they
encode the di�erential structure of the generalized tangent bundle E. As we saw in Chapter 2, the Lie bracket is
a canonically de�ned structure over a smooth manifold, namely it's invariant under di�eomorphisms. Moreover,
it can be proved that there are no other symmetries of the tangent bundle preserving the Lie bracket.

For the generalzied tangent bundle E the situation is more involved because there is an additional symmetry,
given by the B-transformations seen in Section 5.1.1. In fact

Proposition 5.2.1. The map exp(B) is an automorphism of the Courant bracket, namely

[eBv, eBw]C = eB [v, w]C ∀ v, w ∈ X(E) (5.73)

if and only if B is closed, namely dB = 0.

In fact let X + ξ, Y + η ∈ X(E) and let B ∈ Λ2T ∗. Then

[eB(X + ξ), eB(Y + η)]C = [X + ξ + iXB, Y + η + iYB]C = [X + ξ, Y + η]C + [X, iYB]C + [iXB, Y ]C =

= [X + ξ, Y + η]C + LX iYB − 1
2diX iYB − LY iXB + 1

2diY iXB =

= [X + ξ, Y + η]C + LX iYB − iY LXB + iY iXdB = [X + ξ, Y + η]C + [LX , iYB] + iY iXdB =

= [X + ξ, Y + η]C + i[X,Y ]B + iY iXdB = eB([X + ξ, Y + η]C) + iY iXdB (5.74)

where we have used the de�nition of the Courant bracket and the fact that {iX , iY } = 0. Then exp(B) is an
automorphism of the Courant bracket if and only if

iX iY dB = 0 ∀X,Y ∈ X(M) ⇔ dB = 0 (5.75)

Then the group of transformations which preserve the Courant bracket is the same semi-direct product as
in Equation (5.71). In this way the di�eomorphism group of the tangent bundle is substituted by the geometric
group Γ(R).

In the case of the tangent bundle T , the Lie derivative of a vector �eld is exactly the Lie bracket, which
encodes the in�nitesimal action of the di�eomorphism group. In the same way the in�nitesimal action of the
geometric group Γ(R) is encoded in a generalization of the Lie derivative L. We de�ne the generalized Lie
derivative

Lvw = LXY + Lξη − iY (dξ) (5.76)

where v = X+ξ, w = Y +η ∈ X(E). We notice the misleading fact that the in�nitesimal action of the geometric
group doesn't translate in the action of the natural bracket on the generalized tangent bundle, but it is encoded
in the Dorfman bracket [, ]D de�ned as

[v, w] = LXY + Lξη − iY (dξ) (5.77)

Nevertheless it's easy to see that the Courant bracket isn't but the antisymmetrization of the Dorfman one [48],
so that the information contained in one of them is encoded by the other one too.

5.2.2 Linear generalized complex structures

As the same name suggests, GCG is a generalization of the usual complex geometry seen in Chapter 4. More
precisely is a generalization of the complex and symplectic geometry, which contains them as particular extreme
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cases. As usual, we will begin by studying the linear version of the structures we are going to study on a manifold.

Let V be a vector space, and let V ∗ be its dual space. We have to consider the endomorphisms of the vector
space V ⊕ V ∗. Furthermore, it is important to remember that we can identify the dual space (V ⊕ V ∗)∗ with
V ⊕ V ∗ itself. Then we give

De�nition 5.2.2. Let J : V ⊕V ∗ → V ⊕V ∗. If J is both a complex structure and a symplectic structure, then
J is a generalized complex structure on V .

In other words J is a generalized complex structure if both the following relations hold

J2 = −1 J∗ = −J (5.78)

as we remember from Sections 4.1 and 4.2.1. Moreover

Proposition 5.2.2. J ∈ End(V ⊕V ∗) is a generalized complex structure if and only if J is a complex structure
on V ⊕ V ∗ and it is orthogonal with respect to the inner product η, namely if J∗J = JJ∗ = 1.

In fact, if J is a generalized complex structure then J∗ = −J. Multiplying both sides for J we get JJ∗ =
−J2 = 1, since J is also a complex structure. This tells us that J is orthogonal. Also the converse is quite
obvious, in fact if J is complex and orthogonal then we can write

J∗J = 1 ⇒ J∗J2 = −J∗ = J (5.79)

The usual complex (J ∈ End(T )) and symplectic (ω ∈ End(T ∗)) structures are embedded in the notion of
generalized complex structure in the following way. Consider the endomorphism whose matrix representation
on V ⊕ V ∗ is

JJ =

(
−J 0
0 JT

)
(5.80)

It's straightforward to see that J2
J = −1 and that J∗J = −JJ , namely that JJ is a generalized complex structure.

Consider also the endomorphism

Jω =

(
0 ω−1

−ω 0

)
(5.81)

where ω is the usual symplectic structure. Again, Jω is a generalized complex structure, as can be straightfor-
wardly shown. In other words, the diagonal and the antidiagonal generalized complex structures correspond to
the complex and symplectic structures. As it is intuitive, there is a set of generalized complex structures that
interpolate between these two extremal cases. The next goal is to understand how this mechanism works. The
�rst point that we have to notice is given by the following [14]

Proposition 5.2.3. The speci�cation of a generalized complex structure J is completely equivalent to the
speci�cation of the complexi�cation of a maximal isotropic subspace LJ ⊂ (V ⊕ V ∗)C of real index r(L) = 0.

In fact, if J is a generalized complex structure the condition J2 = −1 implies that (V ⊕ V ∗)C can be de-
composed into the direct sum of a +i-eigenbundle, and a −i-eigenbundle, as in Equation 4.7. Let LJ be the
+i-eigenbundle. Then if v, w ∈ LJ we have that η(v, w) = η(Jv, Jw) = η(iv, iw) = −η(v, w) where we have
used the orthogonality of J as seen in Proposition 5.2.2 and the bilinearity of η. η(v, w) = −η(v, w) implies that
η(v, w) = 0 ∀ v, w ∈ LJ, and then LJ is isotropic. Since the +i-eigenbundle has complex dimension equal to n,
then LJ is a maximal isotropic. Finally, since LJ will be the −i-eigenbundle, then we have that LJ ∩LJ = {0}.
Conversely, given a maximal isotropic LJ such that r(LJ) = 0, we can simply de�ne the generalized complex
structure J as the map which has LJ as the +i-eigenbundle, and LJ as the −i-eigenbundle.

As it seems to be intuitive, a vector space V admits a generalized complex structure if and only if it is even
dimensional. Moreover it can be shown that by equipping the (V ⊕ V ∗)C bundle with a generalized complex
structure is equivalent to make a reduction of its structure group from SO(2n, 2n) to U(n, n) [14]. This seems
to be very similar to what happens when one equips a manifold with a complex structure (see Section 4.3.2).

Now we can see some examples of generalized complex structures [14]

Example 5.2.1. Symplectic type t(LJω ) = 0
The generalized complex structure Jω over (V ⊕ V ∗)C in Equation (5.81) determines a maximal isotropic

LJω = {X + iω(X)| X ∈ V C} (5.82)
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which is also the +i-eigenbundle of the generalized complex structure Jω. In fact using orthogonality of Jω we
have η(X+iω(X), X+iω(X)) = η(Jω(X+iω(X)), Jω(X+iω(X))) = η(iX−ω(X), iX−ω(X)) = −2iω(X,X) =
0 ∀X ∈ V C. Moreover, by using Proposition 5.1.3, we get that the spinor line ULJω

is generated by the spinor

ϕLJω
= e−iω (5.83)

This generalized complex structure has type t(LJω ) = 0, since dim (πV C(L)) = n. Remember that a B-transform
doesn't change the type. Hence we can transform by a B-�eld and obtain another generalized complex structure
of type t = 0. For example

e−BJωe
B =

(
ω−1B ω−1

−ω −Bω−1B −Bω−1

)
(5.84)

eBLJω = {X + (B + iω)(X)| X ∈ V C} (5.85)

ϕeBLJω
= e−B−iω (5.86)

This is a B-symplectic structure. Any generalized complex structure with vanishing type is the B-transform of
a symplectic structure.

Example 5.2.2. Complex type t(LJJ
) = n

The generalized complex structure JJ over (V ⊕ V ∗)C in Equation (5.80) determines a maximal isotropic

LJJ = V 0,1 ⊕ V ∗1,0 (5.87)

which is in the form E⊕Ann(E), where E = V 1,0 ⊂ V and V 0,1 ⊂ V C is the−i-eigenspace of J as we have seen in
Section 4.1.1. In fact, using orthogonality and bilinearity we can easily get η(v, w) = −η(v, w) = 0 ∀ v, w ∈ LJJ .
Moreover, by using Proposition 5.1.3 one gets that the spinor line is obviously generated by det(Ann(V 0,1)),
namely

ϕLJJ
= Ωn,0 (5.88)

where Ωn,0 is a generator of Λn,0(V ∗) and dim(V ) = n. If we make a B-transformation we obtain

e−BJJe
B =

(
−J 0

BJ + JTB JT

)
(5.89)

eBLJJ = {X + ξ + iXB| X + ξ ∈ V 0,1 ⊕ V ∗1,0} (5.90)

ϕeBLJJ
= e−BΩn,0 (5.91)

This generalized complex structure has type t(LJJ ) = n, and it can be shown [14] that any generalized complex
structure of type t = n is the B-�eld transform of a complex structure.

5.2.3 Almost structures and integrability condition

Similarly to what we have seen in Section 4.1.1, if we want to transport linear generalized complex structures
on a manifold, �rstly we have to de�ne an almost generalized complex structure and then we have to specify an
integrability condition for it.

We can introduce the generalization of an almost complex structure in several ways, in fact

De�nition 5.2.3. Let M be a smooth manifold such that dim(M) = 2n. A generalized almost complex
structure is given by the following equivalent data

1. An almost complex structure J on E, which is orthogonal with respect to the metric η, namely

η(Ju, Jv) = η(u, v) ∀u, v ∈ T ⊕ T ∗ (5.92)

or in other words
J∗J = JJ∗ = 1 (5.93)

2. A maximal isotropic subbundle LJ ⊂ (T ⊕ T ∗)C of real index r(LJ) = 0, namely such that LJ ∩ LJ = 0
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Moreover, as we will see in Section 5.3.3, we can de�ne it also by using the pure spinors. From 1. in De�nition
5.2.3 we understand why J is called generalized complex structure, by comparing with De�nitions 4.1.3 and 4.1.4.

Next we can focus on the de�nition of a condition of integrability for a generalized almost complex structure.
As we will see it interpolates between the two integrability conditions which we already know, that is dω = 0
for the symplectic case (where ω is the fundamental form), and [T 1,0, T 1,0] ⊂ T 1,0 for the complex case.

De�nition 5.2.4. The generalized complex structure J is integrable if its +i-eigenbundle LJ ⊂ EC is Courant
involutive. Alternatively, a generalized complex structure is an involutive maximal isotropic with real index
r(LJ) = 0.

Next we can mention one of the most remarkable results of the GCG [14, 15].

Theorem 9. Generalized Darboux Theorem

Let M be a smooth manifold and let E be the generalized tangent bundle induced by the closed three-form
H ∈ H3(M,R). Let M be endowed with a generalized complex structure J over the generalized tangent bundle
E. Then for each p ∈M which is a regular point, there exists a neighborhood U of p which is equivalent to the
product of an open set in Ck and an open set in the symplectic space Rn−2k, de�ned by the standard symplectic
two-form, where k is the type of the generalized complex structure.

Since the portion of the symplectic and complex component of the local product is �xed by the type of the
generalized complex structure, which is constant in a neighborhood of a regular point, but in general can change
on the manifold, a particular phenomenon can arise, called type jumping [14].

5.3 Generalized Kähler geometry

Finally we can generalize the concepts of Kähler and Calabi-Yau manifolds to the generalized complex case.

5.3.1 Generalized metric

The De�nition 4.2 of a Kählermanifold provides for the presence of a Riemannian metric on the manifold
M . Then reasonably we have to de�ne a Riemannian metric on the generalized tangent bundle E, before
to generalize the concept of Kählermanifold to the generalized complex case. The O(n, n) structure of the
generalized tangent bundle E is fundamental, in fact we use the inde�nite metric η on E to give the following

De�nition 5.3.1. The generalized metric is a subbundle C+ ⊂ E such that dim(C+) = n on which the
metric induced by restriction of η is positive de�nite.

After denoting the orthogonal complement of C+ by C− (on which the induced metric by η is negative
de�nite) we obtain that G is a bilinear form on the tangent bundle E de�ned as

G : E × E → R
G ≡ η|C+

− η|C− (5.94)

is positive de�nite and symmetric, since η is. It obeys to the constraints

G2 = 1 G∗ = G (5.95)

which is clearly diagonalizable with eigenvalues ±1, and C± are just its ±1-eigenspaces. We can de�ne the
projectors

P+ =
1

2
(1− G) P− =

1

2
(1 + G) (5.96)

which project respectively on the +1-eigenspace and on the −1-eigenspace.

The de�nition of the generalized metric is equivalent from a topological point of view to the reduction of
the structure group from O(n, n) to O(n)×O(n) [14].

After having complexi�ed the generalized tangent bundle E to obtain

EC (5.97)
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we can make a further reduction to U(n)×U(n) by introducing an almost complex structure which is compatible
with the almost generalized metric G. This requirement translates into the condition

JG = GJ (5.98)

We can observe that
(GJ)2 = −1 (5.99)

in fact (GJ)2 = GJGJ = G(JJ)G = −G2 = −1, so that it de�nes a further generalized complex structure.

The last arguments lead us to the intuition that, as well as for the Kähler geometry a pair structures are
needed to �x the theory - like the complex structure and the fundamental form then also in the generalized
complex case a pair of structures is necessary. These are obviously a pair of generalized complex structures.
This discussion �nds a formalization in the following ultimate [14]

De�nition 5.3.2. A generalized Kähler structure is a pair (J1, J2) of generalized complex structures such
that

1. [J1, J2] = 0.

2. G = −J1J2 is a positive de�nite metric on the generalized tangent bundle E.

Here is evident that 1. is a the most obvious generalization of the invariance of the fundamental form under
the action of the complex structure, in Equation (4.57). On the other hand 2. is the natural generalization of
the fact that, from De�nition 4.2.7, we get

ω = Jg ⇒ Jω = J2g = −g (5.100)

We can recognize the classical Kähler and symplectic structures by studying the following [40, 14]

Example 5.3.1. Let (M, g, J, ω) be a Kählermanifold and consider the trivial generalized tangent bundle
E = T ⊕ T ∗. The de�nition of the generalized complex structures JJ and Jω are given in Equations (5.80) and
(5.81). It is immediate to see that [JJ , Jω] = 0 using the fact that JTω = ωJ−1 = −ωJ . Besides

G = −JJJω =

(
0 g−1

g 0

)
(5.101)

is a positive de�nite metric on T ⊕ T ∗. Hence the pair (JJ , Jω) de�nes a generalized Kähler structure.

It's straightforward to see that we can obtain new generalized Kähler structures from a pair (J1, J2) by
applying B-transforms, for any B-closed forms. In fact the pair (JB1 , J

B
2 ) = (BJ1B

−1,BJ2B
−1) de�nes a new

generalized Kähler structure, since the condition 1. in De�nition 5.3.2 is not modi�ed

[JB1 , J
B
2 ] = [BJ1B

−1,BJ2B
−1] = BJ1B

−1BJ2B
−1 −BJ2B

−1BJ1B
−1 = B[J1, J2]B−1 = 0 (5.102)

and also condition 2. is preserved, since

JB1 JB2 = BJ1B
−1BJ2B

−1 = BJ1J2B
−1 = −BGB−1 = −GB (5.103)

and GB is positive de�nite too, since B is orthogonal, as we have seen in Section 5.1.1.

By applying a B-transformation to (JJ , Jω) we obtain

JBJ =

(
J 0

BJ + JTB −JT
)

JBω =

(
ω−1B −ω−1

ω +Bω−1B −Bω−1

)
(5.104)

and

GB =

(
−g−1B g−1

g −Bg−1B Bg−1

)
(5.105)

where g −Bg−1B is a Riemannian metric for any two form B, restricted to the tangent bundle.

It seems that each metric can be obtained from a Kählermetric by B-action. However this is not always the
case, since when B is not a closed form, the structure obtained are well de�ned only on the generalized tangent
bundle E, whose transition functions encode the non-closed B �eld. In conclusion, a generalized Kähler structure
is not the B-transform of a generalized Kahler structure de�ned on the trivial generalized tangent bundle, but
it can be a more general structure, which encodes highly non-trivial patchings such as those of a generalized
tangent bundle.
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More generally it can be shown [14] that, given any generalized Kähler structure, the generalized metric
takes the form

G =

(
−g−1B g−1

g −Bg−1B Bg−1

)
=

(
1 0
B 1

) (
0 g−1

g 0

) (
1 0
−B 1

)
(5.106)

Namely a generalized Kählermetric is completely determined by a Riemannian metric g together with a two-form
B ∈ Λ2T ∗. Finally it's useful to know that

Proposition 5.3.1. C± is locally the graph of B ± g : T → T ∗.

Proposition 5.3.1 means that if we write the conditions which determine C±, namely

Gv =

(
−g−1B g−1

g −Bg−1B Bg−1

) (
X
ξ

)
=

(
X
ξ

)
= ±v ∀ v ∈ X(E) (5.107)

we obtain for example from the �rst Equation g−1BX + g−1ξ = ±X, or in other words ξ = (B ± g)X. The
second Equation is automatically satis�ed.

5.3.2 Vielbein formalism

Despite of the name, the generalized metric is conveniently seen as an automorphism of the generalized tangent
bundle. We know that G is a symmetric tensor

G = G∗ (5.108)

However, due to the the de�nition of the transpose map ∗, the matrix associated to G in Equation (5.106)
doesn't look actually as a symmetric matrix. This is due to the fact that each block of the matrix represents a
di�erent map, namely

−g−1B : V ∗ → V g−1 : V ∗ 7→ V (5.109)

g −Bg−1B : V 7→ V ∗ Bg−1 : V ∗ 7→ V ∗ (5.110)

and then their transposes are(
−g−1B

)∗
: V → V ∗ (g−1)∗ : V 7→ V ∗ (5.111)

(g −Bg−1B)∗ : V ∗ 7→ V (Bg−1)∗ : V 7→ V (5.112)

In this framework is immediate to recognize that the transposition amounts to transpose the matrix with
respect to the secondary diagonal. This can be easily achieved by noticing that, written in components

G =

(
−(g−1B)ij gij

gij − (Bg−1B)ij (Bg−1)i
j

)
(5.113)

where the top indices act on components of a form, while the bottom indices act on the components of a vector.
For example gij acts on the components of a form ξi and returns the component of a vector. In this framework
it is simple to understand that for example an object such as

Oij : Xj 7→ OijX
j (5.114)

acts on the components of a vector and returns the components of a vector. The same happens for forms

Oj
i : ξi 7→ Oj

iξi (5.115)

While an object which has the indices on the same line, has a transpose in the usual meaning of the term. The
use of index notation which in this case help us to understand why the notion of transposition is not the usual
one, in general is a very useful way to perfom calculus in the generalized complex framework.

In order to achieve the usual meaning of transposition with respect to the primary diagonal of the matrix,
we can simply multiplicate the generalized metric by the inde�nite metric η, which has matrix

η =

(
0 δij
δi
j 0

)
(5.116)
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and then one obtains

H = ηG =

(
g −Bg−1B Bg−1

−g−1B g−1

)
(5.117)

or written in terms of components

H =

(
(g −Bg−1B)ij (Bg−1)i

j

−(g−1B)ij (g−1)ij

)
(5.118)

which is symmetric in the usual sense.

We can introduce two sets of n ordinary vielbein which form two basis respectively for C±

{e±} {ê±} (5.119)

such that ê± are the inverses of e±, namely

ea±iê
i
±b = δab êi±be

b
±j = δij (5.120)

They obey the obvious relations

gij = δabe
a
±ie

b
±j gij = êi±aê

j
±bδ

ab (5.121)

We take e± to be a basis for C±. With this conventions we can build a set of 2n generalized vielbeins {E}
which parametrize the coset

O(n, n)�(O(n)×O(n)) (5.122)

In particular if one explicitly writes

E =
1√
2

(
e+ − êT+B êT+
−e− − êT−B êT−

)
=

1√
2

(
êT+(g −B) êT+
−êT−(g +B) êT−

)
(5.123)

the metrics η and H take the form

η = ET
(

1 0
0 −1

)
E H = ET

(
1 0
0 1

)
E (5.124)

Let us notice that the O(n)×O(n) acts by the left and simply rotates the set of vielbeins with a matrix of
the form

E 7→ KE K =

(
O+ 0
0 O−

)
(5.125)

where O± ∈ O(n).

The action of O(n, n) is much more interesting, since as it can be easily seen by using the indices formalism,
it acts on the generalized metric H as

H 7→ OTHO (5.126)

where

O =

(
a b
c d

)
(5.127)

By using Equation (5.124) and the fact that O ∈ O(n, n) acts on generalized vielbeins by the right

E 7→ EO (5.128)

we immediately �nd the transformation rules for the ordinary vielbeins

ê+ 7→ [dT + bT (B + g)]ê+ ≡ ˆ̃e+ ê− 7→ [dT + bT (B − g)]ê− ≡ ˆ̃e− (5.129)
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5.3.3 Spinor bundle in GCG

The complete machinery of the GCG can be equivalently described in terms of spinors. This alternative de-
scription is very useful for many purposes, since it reduces to work with forms, which are particularly easy to
handle.

We can also transport the machinery developed in Section 5.1.2 on a generalized complex manifold. In
particular the Cli�ord action of a generalized vector is now de�ned locally on forms Φ ∈ ΛT |∗Uα . Its action is
given by

vα · Φ = iXαΦα + ξα ∧ Φα (5.130)

where v = X+ξ. As usual we will drop the subscript α which refers to the open set Uα, where it is unnecessary.
After introducing the Spin(n, n) gamma matrices {Γ̌i, Γ̂i} we can rewrite the last Equation

X · Φ = (XiΓ̌i + ξiΓ̂
i)Φ (5.131)

Since the forms are twisted in the overlaps Uαβ by a two-form dAαβ as described in Equation (5.67), the
requirement for the Cli�ord action in Equation (5.130) to be globally de�ned, Φ±α ∈ S±(E) have to obey the
following patching condition

Φα = edAαβΦβ (5.132)

which means that
ψ = eBαΦ±α = eBβΦ±β (5.133)

is globally de�ned on S±(E).

A crucial point is that the exterior derivative is well de�ned on S±(E), since it is identi�able with Λ±T ∗,
and it maps

d : S±(E) 7−→ S∓(E) (5.134)

As we mentioned at the beginning of the Section, every geometric properties of a generalized complex
manifold can be rewritten in terms of pure spinors. Their De�nition is identical to the linear case, De�nition
5.1.5. Then we can immediately observe that a pure spinor Φ can be associated to each generalized complex
structure J by the relation

LΦ = LJ (5.135)

where Lφ is the maximal isotropic subbundle which de�ne the pure spinor, while LJ is the +i-eigenbundle
associated to the generalized complex structure J.

Using the vielbeins de�ned in Equation (5.123) one can introduce a basis to diagonalize the O(n) × O(n)
structure induced by a generalized metric. In fact(

Γ+

Γ−

)
= E−T

(
Γ̌

Γ̂

)
=

êT+ (Γ̌ + (g −B)Γ̂
)

êT−

(
Γ̌− (g +B)Γ̂

) (5.136)

such that
{Γ+

a ,Γ
−
b } = 0 {Γ+

a ,Γ
+
b } = 2δab {Γ−a ,Γ−b } = −2δab (5.137)

The main point is that one can decompose the Spin(n, n) spinors in representations of Spin(n, 0)×Spin(n, 0).
In fact, if γa are the Spin(n, 0) matrices, then one can write

Γ+
a = γa ⊗ 1 Γ−a = γ7 ⊗ γa (5.138)

where γ7 = γ1 · · · γn is the volume form of the Cli�ord algebra, as de�ned in Equation (3.1.6). Equation (5.138)
is true only in the case in which n is even and n

2 is odd, which is the relevant one to study SU(3) × SU(3)
structures in the next Section.

The corresponding decomposition of Spin(n, n) pure spinors Φ± is written

Φ+ = η1
+ ⊗ η2

+ + η1
− ⊗ η2

− Φ− = η1
+ ⊗ η2

− + η1
− ⊗ η2

+ (5.139)

where η+ is a chiral Spin(6, 0) pure spinor, while η− is a chiral Spin(0, 6) pure spinor. They obey the
relations

−iγ7η± = η± (5.140)

namely they have the same chirality.
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5.3.4 SU(3) × SU(3) structures

The obvious generalization in CGC of the SU(3) structures we mentioned in Section 4.3 is given by a pair of
them. The result is a SU(3)× SU(3) structure.

As we have seen the introduction of both a generalized complex structure J and a compatible generalized
metric G on a smooth manifold M reduces the structure group to U(n)× U(n). One further reduction can be
achieved if one can de�ne a pair of indipendent SU(3) structures

(ω1,Ω1) (ω2,Ω2) (5.141)

as in Section 4.3.

The SU(3) × SU(3) structure can also be determined by a pair of globally de�ned, non vanishing pure
spinors (η1

+, η
2
+). In fact SU(3)× SU(3) is the subgroup of O(6, 6) under which they remain invariant.

The link between the two formulations is given by the relation

J+
ij = −iη1

+γijη
1
+ Ω+

ijk = −iη1
−γijkη

1
+ (5.142)

J−ij = −iη2
+γijη

2
+ Ω−ijk = −iη2

−γijkη
2
+ (5.143)

where ηi− is the charge conjugation of the spinor ηi+, namely

η− = Cη∗ (5.144)

where C is the charge conjugation matrix such that γ∗a = −C−1γaC.

A third way to de�ne a SU(3) × SU(3) structure is to encode the information given by the two invariant
and nowhere vanishing spinors (η1

+, η
2
+) in a pair of Spin(6, 6) pure spinors as in Equation (5.139)

Φ+ = η1
+ ⊗ η2

+ + η1
− ⊗ η2

− Φ− = η1
+ ⊗ η2

− + η1
− ⊗ η2

+ (5.145)

The two SU(3) structures are de�ned respectively on C+ and on C−. We de�ne two sets of vielbeins {ea+}
and {ea−} respectively on C+ and on C−, so that the two SU(3) structures take the nice standard form

ω± = e1
± ∧ e4

± + e2
± ∧ e5

± + e3
± ∧ e6

± (5.146)

Ω± = (e1
± + ie4

±) ∧ (e2
± + ie5

±) ∧ (e3
± + ie6

±) (5.147)

Even if it is not necessary, usually one assumes that e+ = e− for simplicity. Moreover we can introduce the
curved gamma matrices, which are simply de�ned by the relation

γi = eaiγa (5.148)

The main idea to proceed is that the Spin(6) spinors (η1
+, η

2
+) form an angle which is not necessarily constant

throughout the manifold M . Let us denote by η− the charge conjugated of η+. Then we can write in general
the decomposition

η2
+ = eiθ cos(ϕ) +

1

2
zi sin(ϕ)γiη

1
− (5.149)

where the angle ϕ denotes the angle between η1
+ and η2

+, and varies in the interval 0 ≤ ϕ ≤ π
2 . z

i is such that
|z|2 = 2. Now consider the mutually orthogonal spinors

η+ χ+ =
1

2
ziγiη− (5.150)

such that
η+η+ = 1 χ+χ+ = 1 η+χ+ = 0 (5.151)

We can rewrite
η1

+ = ei
θ
2 η+ η2

+ = e−i
θ
2 (cos(ϕ)η+ + sin(ϕ)χ+) (5.152)

Note that at points where sin(ϕ) = 0, the spinor χ doesn't need to be de�ned. In the other points on the
manifold the orthogonal spinors η+ and χ+ de�ne a local SU(2) structure, which is simply described by

zi = η−γ
iχ+ (5.153)
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ωij =
i

2
η+γijη+ −

i

2
χ+γijχ+ (5.154)

Ωij = χ+γijη+ (5.155)

Then in general the pure spinors de�ning a SU(2) local structure take the form

Φ+ = e−φ−B+ 1
2 z∧z̄

(
k||e
−ij − ik⊥ω

)
(5.156)

Φ− = e−φ−Bz
(
k⊥e

−ij + ik||ω
)

(5.157)
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T-duality

6.1 T-duality for the NLSM

We de�ne the NLSM as the theory of maps
φ : Σ→M (6.1)

where Σ is a compact Riemann surface called the worldsheet, while M is a Riemann manifold called the target
space. Let us assume that dim(M) = D ≥ 2. In order to completely de�ne a NLSM we need also some geometric
data about the target space, that is

• A Riemannian metric g.

• A closed three-form H ∈ Λ3T ∗.

The generic action for a NLSM can be written as a sum

S0 = SP + SWZ (6.2)

where SP is the Polyakov action

SP =
1

2

∫
Σ

d2σ
√
hhµνgij(X)∂µX

i∂νX
j

=
1

2

∫
Σ

gijdX
i ∧ ∗dXj (6.3)

and hµν is a pseudo-Riemannian metric on the worldsheet Σ (h = det(hµν)), while {σµ}µ∈I2 are the local
coordinates on the worldsheet Σ. d2σ ≡ dσ1 ∧ dσ2 and in the second expression we note that dXi denotes the
pullback to a worlsheet one-form dXi ≡ φ∗(dXi) = ∂µX

idσµ. The subscript 0 in Equation (6.2) means that
the action in ungauged.

Often we will take hµν to be the �at pseudo-Riemannian metric in two dimensions hµν = ηµν and η00 =
−η11 = 1, so that with this choice of gauge the action becomes

SP =
1

2

∫
Σ

d2σ gij∂µX
i∂µXj (6.4)

Xi are the local coordinates on the target space, which locally describe the map φ. SWZ is the Wess-Zumino
term associated to the three-form H de�ning the NLSM. If H is exact, so that we can write H = db, then SWZ

takes the form

SWZ =
1

2

∫
Σ

d2σ εµνbij(X)∂µX
i∂νX

j

=

∫
Σ

φ∗b (6.5)

where b = 1
2dX

i ∧ dXj . We can rewrite in terms of H

SWZ =
1

3

∫
Ω

d3σ εµνρHijk(X)∂µX
i∂νX

j∂ρX
k

=

∫
Ω

φ∗H (6.6)
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where Ω is any three-manifold such that ∂Ω = Σ, and H = 1
3dX

i ∧ dXj ∧ dXk.

If H is not exact, then the action depends on the choice of Ω, but the di�erence between two di�erent choices
takes the form

SWZ(Ω′)− SWZ(Ω) =

∫
Ω′−Ω

φ∗H =

∫
φ(Ω′−Ω)

H (6.7)

where Ω′ − Ω is the three-manifold obtained by glueing Ω′ to Ω along their common boundary with opposite
orientations. The result is a topological number which depends only on the cohomology class of H and on
the homology class of φ(Ω′ − Ω). Since it is only a number, it doesn't a�ect the classical equations of motion.
However it could lead to an ambiguity in the quantum theory, since the Euclidean functional integral∫

[dX]e−S (6.8)

should be modi�ed by a phase exp
(
i
∫
φ(Ω′−Ω)

H
)
. The ambiguity is eliminated and the functional integral well

de�ned if
1

2π
[H] ∈ H3(M,Z) (6.9)

i.e. if 1
2π [H] is an integral cohomology class.

Let us notice that by introducing the light-cone coordinates σ± = 1√
2

(
σ0 ± σ1

)
we can rewrite

S =

∫
Σ

d2σ Eij∂+X
i∂−X

j (6.10)

where Eij = gij + bij . We assumed that ε01 = 1.

Let us study how a transformation of the �elds of the form

δXi = αlKi
l (6.11)

a�ects the NLSM. For the moment let us consider only global transformations, that is transformation such that
α is a constant. Firstly, let us notice that

δS =

∫
d2σ αl

[
Kk
l ∂kgij + gkj∂iK

k
l + gik∂jK

k
l

]
∂µXi∂µX

j (6.12)

so that δS = 0 if and only if Kk
l ∂kgij + gkj∂iK

k
l + gik∂jK

k
l = 0 ∀ l ∈ Id (d ≤ D), namely if and only if Kl is

a Killing vector for each l.

Since we are studying the context of T-duality, we will deal only with abelian isometry groups. We also
notice that

δSWZ =

∫
Σ

d2σ αlKi
lHijk∂µX

j∂νX
kεµν (6.13)

which is a surface term only if iKlH = Ki
lHijk is an exact two-form. This means that there must be a set of

globally de�ned one-forms vl such that

iKlH = dvl ∀ l ∈ Id (6.14)

The compactness of Σ assures that the transformation in Equation (6.11) leaves invariant both SP and SWZ .

6.1.1 Gauging the NLSM

The gauging of an abelian isometry, as it is well known, is extremely simple. It consists in promoting the
symmetry in Equation (6.11) to a local one, by simply replacing the constant α with a parameter which depends
on x and by introducing a set of connections Cl. As we Know from Chapter 2 the connection transforms as

δCl = dαl (6.15)
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The gauged version of the action SP is trivially provided by the minimal coupling

SGP =
1

2

∫
Σ

d2σ gijDµX
iDνX

j (6.16)

where the covariant derivative is
DµX

i = ∂µX
i − CliKi

l (6.17)

while the �eld-strenght is given by
G l = dCl (6.18)

In order to gauge the Wess-Zumino term we have to proceed to successive additions of terms, each of which
cancels the variation of the previous one. In particular one obtains that the complete gauged Wess-Zumino
term is given by

SGWZ = SWZ + S1 + S2 (6.19)

where

S1 =

∫
Σ

d2σ εµνAlµvli∂νX
i (6.20)

serves to cancel δSWZ . Moreover

S2 = −1

2

∫
Σ

d2σ εµνv[l|i|K
i
m]A

l
µA

m
ν (6.21)

serves to cancel δS1. Fortunately, if the (sub-)group of the isometries which are gauged is anomaly-free (that is
the case of an abelian isometry group in two dimensions) we have that δS2 = 0.

We can rewrite SGWZ in the good-looking way

SGWZ =

∫
Ω

d3σ

{
1

3
HijkDµX

iDνX
jDρX

k + G l
µνvliDρX

i

}
(6.22)

so that the whole action takes the nice form

SG =
1

2

∫
Σ

gijDX
i ∧ ∗DXj +

∫
Ω

{
1

3
HijkDX

i ∧DXj ∧DXk + G l ∧ vliDXi

}
(6.23)

In [46, 47, 11] it is shown that the costraints which are needed for gauging the NLSM are

1. iKlH = dvl for some globally de�ned one-forms va.

2. LKlH = 0.

3. LKlvm = 0.

4. iKliKmH = −dBlm for some antysimmetric, globally de�ned functions Blm = iKlvm.

5. iKliKmiKnH = 0.

We will refer to these contraints as the Gauging Conditions (GC).

The procedure of integrating out the gauge �eld is quite general. It consists in rewriting SG in the following
form

SG = S0 +

∫
Σ

d2σ

(
−ClµJ

µ
l +

1

2
ClµC

m
ν [Glmη

µν +Blmε
µν ]

)
(6.24)

where we have chosen the �at Minkowskian metric hµν = ηµν =

(
1 0
0 −1

)
for the worldsheet. Glm is de�ned

to be
Glm = gijK

i
lK

j
m (6.25)

In the light-cone coordinates σ± = 1√
2

(
σ0 ± σ1

)
the indices are raised and lowered by the metric η+− =

ε+− = 1 we get

SG = S0 +

∫
Σ

d2σ
(
−Cl+J+

l − C
l
−J
−
l + Cl+ElmC

m
−
)

(6.26)
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where
Elm = Glm +Blm Jl± = (Kli ± vli)∂±Xi (6.27)

If Eab is everywhere invertible it's easy to �nd the Equations of motions for the gauge �elds

∂SG

∂Cl+
= −J+

l + ElmC
m
− = 0

∂SG

∂Cl−
= −J−l + Cm+Eml = 0 (6.28)

from which we get

Cl− = (E−1)lmJ−m (6.29)

Cl+ = J+m(E−1)ml (6.30)

By inserting the expression for Cl± into Equation (6.26) we obtain

S′ = S0 −
∫

Σ

d2σ J−l (E−1)lmJ+
m (6.31)

This can be rewritten

S′ =

∫
Σ

d2σ E′ij∂+X
i∂−X

j (6.32)

where
E′ij = Eij − (Kli + vli)(E

−1)lm(Kmj − vmj) (6.33)

It turns out that E is invertible if and only if the isometry group acts without �xed points. Since E is the
object which contains the geometrical informations about the sigma model, gauging the isometries and then
integrating the gauge �elds out amounts to change the geometry of the sigma model from Eij to E′ij .

6.1.2 The geometry of the gauged NLSM

Let us study in some detail the geometry of a gauged NLSM. We consider NLSMs whose isometries are generated
by a set of globally de�ned Killing vector �elds {Kl}l∈Id . Moreover, we will consider only NLSM whose isometry
group G is an abelian group, which acts freely on M . Then the d Killing vector �elds are commuting vectors

[Kl,Km] = 0 ∀ l,m ∈ Id (6.34)

We will always denote the indices which refer to the set of Killing vectors as l,m, n, . . . .

The geometry of a NLSM is completely determined by the data (Σ,M, g,H)

1. The worldsheet Σ.

2. The target space (M, g).

3. The closed three-form H ∈ B3(M).

Consequently, once speci�ed the worldsheet Σ, we will denote each NLSM by (M, g,H).

The action of the isometry group G on M de�nes the space of orbits

N ≡M�G (6.35)

In the case of U(1) actions it turns out that N is a manifold and the natural projection on the space of orbits

π : M → N (6.36)

de�nes a principal bundle whose �ber is G.

In this setup, a form ω is horizontal if
iKlω = 0 (6.37)

while it is invariant if
LKlω = 0 (6.38)
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A form which is both horizontal and invariant is basic. A basic form can be thought as a form on the base space
N (hence the name basic), as it can be shown that it is the pullback with respect to the projection π : M → N
of a form on N .

A metric g is horizontal if
g(Kl, X) = 0 ∀X ∈ TM (6.39)

g is invariant if
LKlg = 0 (6.40)

and it is basic if it is both horizontal and invariant. As before, a basic metric can be thought as a metric on the
base space.

We can de�ne a set of d one-forms {ξl}, which are dual to the Killing vectors, namely

iKlξ
m = δml (6.41)

by writing
ξli = GlmgijK

j
m (6.42)

where Glm is the inverse of Glm de�ned in Equation (6.25). The two-forms

F l = dξl (6.43)

are horizontal. The metric on M can be written as

g = g +Glmξ
l ⊗ ξm (6.44)

where g is basic, while the term Glmξ
l ⊗ ξm encodes the restriction of the metric on the �bers as well as the

mixed matrix elements which connect the base with the �bers.

We can rede�ne the coordinates in each patch to obtain "adapted" coordinates Xi = (Xa, Y µ) in which the
Killing vectors take the nice form

Ki
l

∂

∂Xi
=

∂

∂X l
(6.45)

The Y µ coordinates parametrize the base space N . The set of adapted coordinates induce also the splitting of
the one-forms

ξl = dX l +Al (6.46)

where Al are local connections on N , and are horizontal. By looking at Equation (6.44) we immediately un-
derstand the meaning of the local connections Al. They encode the metric informations in the directions which
connect the base with the �bers. Since F l = dAl, the two-forms F l are the local curvatures.

From 1. and 4. of the GC one can obtain the splitting

vl = ξl −Blmξm (6.47)

where ξl is the basic component of vl. We can de�ne the basic two-form

F̃l = dξl (6.48)

Then the closed three-form H can be expanded as

H = H + (iKlH) ∧ ξl +
1

2
(iKliKmH) ∧ ξl ∧ ξm − 1

6
(iKliKmiKnH) ∧ ξl ∧ ξm ∧ ξn (6.49)

where H is horizontal. After some simple algebra it can be rewritten

H = H + F̃l ∧ ξl + dB (6.50)

where
B =

1

2
Blmξ

l ∧ ξm (6.51)

is a globally de�ned two-form. Since dH = 0, then

H = −F̃l ∧ F l (6.52)



102 T-duality

and H is basic. Moreover locally we can write H = db. It turns out that

b = b+ ξl ∧ ξl +B (6.53)

where as it is intuitive b is a basic two-form.

As we have seen, the new geometry obtained by integrating out the gauge �elds is encoded into E′ij . It turns
out to be

E′ij = Eij − ξliElmξmj + ξli(E
−1)lmξmj − ξliξlj + ξliξlj (6.54)

We extract from E′ij the symmetric and antysimmetric parts, respectively

G̃lm = (E−1)(lm) B̃lm = (E−1)[lm] (6.55)

We can write for the new b-�eld

b′ = b− ξl ∧ ξl − ξliBlmξmj + ξliB̃
lmξmj (6.56)

The new geometry (M, g′, H ′) is given by

g′ = g −Glmξl ⊗ ξm + G̃lmξl ⊗ ξm = g + G̃lmξl ⊗ ξm (6.57)

and by
H ′ = H + ξl ∧ F l + dB̃ (6.58)

where

B̃ =
1

2
B̃lmξl ∧ ξm (6.59)

It's fundamental to notice that both g′ and H ′ are basic with respect to all of the Killing vectors. This implies
that the new NLSM is invariant under the local symmetries as in Equation (6.11).

6.1.3 The NLSM on the trivial T3

In this Section we want to see at work the formalism studied in Sections 6.1.1, 6.1.2. So we consider the simplest
non-trivial example. It turns out to be the three-torus T3.

The three-torus T3

The three-torus T3 is a �at smooth manifold, which can be de�ned as

T3 = S1 × S1 × S1 (6.60)

In Section 2.1.1 we have seen that the smooth structure on T3 is simply de�ned by taking the triple product of
the atlas of the S1 atlas in Example 2.1.1.

It is often convenient to encode the whole smooth structure by the identi�cations

(x, y, z) ∼ (x+ 1, y, z) (6.61)

(x, y, z) ∼ (x, y + 1, z) (x, y, z) ∈ R3 (6.62)

(x, y, z) ∼ (x, y, z + 1) (6.63)

so that T3 can be thought as the quotient of R3 with respect to the above identi�cations. Equations (6.61),
(6.62) and (6.63) tell us that we are considering circles of length 1 or equivalently of radius R = 1

2π .

This means that in each change of charts from Uα to Uβ the coordinates on each of the circles of the torus
T3 are shifted by a combination of the three transformations

xα 7→ xβ = xα + 1 (6.64)

yα 7→ yβ = yα + 1 (6.65)

zα 7→ zβ = zα + 1 (6.66)
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Since these are the transformations de�ning the change of the charts the Jacobian of a combination of the
transformations in Equations (6.64), (6.65), (6.66) tells us that the three torus is an oriented manifold. Then it
is possible to de�ne a global three-form H, which is proportional to the volume form.

Since the above Jacobian is always equal to 1, H is globally de�ned and we can write

H = hdxα ∧ dyα ∧ dzα (6.67)

in each chart Uα which induces coordinates {xα, yα, zα}. We take h ∈ Z for later convenience.

If we take the trivial metric

g =

1 0 0
0 1 0
0 0 1

 (6.68)

then each of the vectors which generate the translations along the �bers

∂

∂xα
∂

∂yα
∂

∂zα
(6.69)

represents a Killing vector since Equation (2.128) is trivially satis�ed. We will consider the action generated by
the Killing vector

Kα =
∂

∂zα
(6.70)

that is the translation along the circle parametrized by zα. From Equations (6.64), (6.65), (6.66) we see that
the Killing vector is globally de�ned since

∂

∂zα
=

∂

∂zβ
(6.71)

and then the solution of the Killing Equation (2.128) can be easily glued in the intersections of the charts.
Moreover the last Equation allows us to denote the Killing vector associated to the third circle simply by K.

The action generated by K allows to reach each point on the third circle by starting from anyone of them.
In fact the �ow associated to it as in Equation 2.126 is

zα 7→ zα + ε (6.72)

Since a circle S1 is di�eomorphic to U(1) we can think to the �ber as a U(1) group and to the Killing action as
the multiplication by a complex number of modulus 1. For this reason we will call the Killing action U(1)-action.

Since it acts freely, we can consider the quotient as in Equation (6.35)

T2 = T3
�U(1) (6.73)

where we have to remember that the U(1)-action is associated to the Killing K. Then T3 can be thought as
the trivial principal bundle

π : T3 → T2 (6.74)

with structure group and �ber di�eomorphic to U(1). This is the reason why this example is often called the
trivial three-torus T3.

The geometry of a NLSM on T3

The main point is now to understand if a NLSM on the three torus is a gaugeable one. In particular we ahve
to check if

iKH (6.75)

is an exact form dv as required by the 1. of the GC.

In the chart Uα we can write
iKH = hdxα ∧ dyα (6.76)
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We can immediately say that this two-form is not exact, since it is a generator of H2(T2,R) as we have seen in
Example ??. We can also see that it is not exact because the Equations

iKH = dvα (6.77)

iKH = dvβ (6.78)

have solutions respectively on Uα and on Uβ

vα = h (axαdyα − byαdxα) (6.79)

vβ = h
(
a′xβdyβ − b′yβdxβ

)
(6.80)

where a, b, a′, b′ ∈ R such that a+ b = 1 and a′ + b′ = 1.

Unfortunately there is no value of the constants a, a′, b, b′ ∈ R such that the one-form v is globally de�ned.
In other words

vα − vβ = dλαβ (6.81)

Now the point is to �nd the right expressions for λαβ . Obviously they strictly depend on the choice of Uα
and Uβ , since as we have seen the transition functions are related with this choice. Let us consider for example
a change of chart from Uα to Uβ which is encoded by the transition functions

xα 7→ xβ = xα + 1

yα 7→ yβ = yα

zα 7→ zβ (6.82)

Then we can write

1
h

(
vα − vβ

)
= axαdyα − byαdxα − a′xβdyβ − b′yβdxβ =

= axαdyα − byαdxα − a′xαdyα − a′dyα + b′yαdxα = (a− a′)xαdyα − (b− b′)yαdxα − a′dyα (6.83)

Since the di�erence between Equations (6.77) and (6.78) gives

d(vα − vβ) = 0 (6.84)

we have that vα − vβ is exact, so that the terms proportional to a− a′ and b− b′ must vanish. This fact implie
that

a = a′ b = b′ (6.85)

and then for the choice of charts which are related by the transition functions in Equations (6.91) we get

λαβ = −ahyα (6.86)

By computing vβ − vα we obtain
vβ − vα = ahyβ = ahyα (6.87)

The interesting point is that
λαβ + λβα = 0 (6.88)

It easy to see that if the transition functions realted to the choice of α and β is given by

xα 7→ xβ = xα

yα 7→ yβ = yα + 1

zα 7→ zβ (6.89)

then the λαβ are given by

λαβ = ahxα λβα = −ahxβ = −ahxα λαβ + λβα = 0 (6.90)

So �nally let us compute the λαβ in the last case in which the transition functions between Uα and Uβ are
given by

xα 7→ xβ = xα + 1

yα 7→ yβ = yα + 1

zα 7→ zβ (6.91)
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Proceeding as before we get that

vα − vβ = −ahdyα + bhdxα = dλαβ

vβ − vα = ahdyβ − bhdxβ = dλβα (6.92)

and then

λαβ = −ahyα + bhxα

λβα = ahyβ − bhxβ = ahyα + ah− bhxα − bh (6.93)

so that
λαβ + λβα = h(a− b) (6.94)

If we want the λαβ to respect the condition in Equation (6.90) we have to require

a = b =
1

2
(6.95)

With this choice is also easy to prove that for each choiche of Uα and Uβ we get

λαβ + λβγ + λγα = 0 (6.96)

so that λαβ form a cocycle.

From Example 2.3.1 we obtain that v is a local connection for a circle bundle M̂ over M , so that we can
add a U(1) �ber to the U(1) principal bundle.

Let π̂ : M̂ → M be the projection of the new circle bundle over M be and let X̂α be the coordinate
which parametrizes the new circle in the chart Uα. M̂ is locally described in Uα by the set of coordinates
XI ≡ (xα, yα, zα, X̂α) and it is called the doubled space because the dimension of the �ber is doubled by
inserting the new �ber related to X̂.

Since X is the �ber coordinate of a circle bundle it satis�es

X̂α − X̂β = −λαβ (6.97)

The main point here is that by using the transition functions of X̂α we can lift the one-form v to a globally
de�ned one

v̂ = dX̂α + vα (6.98)

v̂ is obviously globally de�ned since in the overlap Uαβ

v̂α = dX̂α + vα = dX̂β − dλαβ + vβ + dλαβ = dX̂β + vβ = v̂β (6.99)

We can also lift the metric g and the three form H in the simplest way by pull-back

ĝ = π̂∗g Ĥ = π̂∗H (6.100)

where ĝ and Ĥ have vanishing components in the new direction

ĝ
(

∂
∂X̂
, ·
)

= 0 (6.101)

i ∂
∂X̂
Ĥ = 0 (6.102)

and they remain indipendent from X̂. Then the lifted K, K̂ remains a Killing vector for the lifted metric ĝ.
Moreover Ĥ remains invariant with respect to the Killing vector K̂. The lifted Killing vector K̂ is the same
vector as before, except that now it is thought as a vector of the doubled bundle M̂ .

It's immediate to notice that, because of Equations (6.101) and (6.102) we obtain a new Killing vector for
free

K̃ =
∂

∂X̂
(6.103)
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with respect to which H is invariant. K̃ commutes with K̂ since the two U(1) actions are indipendent of each
other

[K̂, K̃] =
∂

∂z

∂

∂X
− ∂

∂X

∂

∂z
= 0 (6.104)

Then we can de�ne the lift of the one-form in Equation (6.42), which is dual to K̂

ξ̂ = GĝIJK̂
IdXJ = GĝijK̂

idXj = ξ (6.105)

In other words ξ̂ remains the same one-form dual to K which can be de�ned on M , but it can be thought as a
one-form on M̂ with vanishing components on the new direction X. In our particular case, since the metric is
the diagonal one in Equation (6.68), then the local connection A vanishes and the one-form ξ̂ takes in Uα the
form

ξ̂ = dzα (6.106)

Now it's important to �nd a one-form which is dual to K̃. We already have an object which behaves in the
right way, which is v̂. In fact

v̂(K̃) = dX̂

(
∂

∂X̂

)
+ v̂

(
∂

∂X̂

)
= dX̂

(
∂

∂X̂

)
= 1 (6.107)

Then we can rede�ne
ξ̃ = v̂ (6.108)

for writing convenience. As for ξ̂, in general there exists a local connection Ã such that

ξ̃ = dX̂ + Ã (6.109)

and the curvature
F̃ = dÃ (6.110)

Gauging the NLSM on T3

Once we have found a global one-form like v̂ it's possible to gauge the sigma model (M̂, Ĥ, ĝ). The new action
is easily built since the new direction parametrized by X̂ is null both for ĝ and for Ĥ. Then there is only a
slight modi�cation to the gauged action in Equation (6.23)

ŜG =
1

2

∫
Σ

gijDX
i ∧ ∗DXj +

∫
Ω

{
1

3
HijkDX

i ∧DXj ∧DXk + G ∧ v̂IDXI

}
(6.111)

where
Dµx = ∂µx Dµy = ∂µy Dµz = ∂µz − Cµ DµX = ∂µX (6.112)

and we denote

• xl = (x, y)

• xi = (x, y, z)

• x̂i = (x, y, X̂)

• XI = (x, y, z, X̂)

We can easily rewrite

ŜG =

∫
Σ

d2σ

{
1

2
(gij + bij)∂µx

i∂νx
j − CµJµ + Cµε

µν∂νX̂ +
G

2
ηµνCµCν

}
(6.113)

where
Jµ = (Kiη

µν − viεµν)∂νx
i (6.114)

In the T3 example it turns out that Ki = δiz. Moreover v is horizontal so that vz = 0.

We can integrate out the gauge �elds Cµ by �nding its equations of motion

δŜG

δCµ
= −Jµ + εµν∂νX̂ +GCµ = 0 (6.115)
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from which we get

Cµ =
1

G

[
Jµ − εµν∂νX̂

]
(6.116)

By inserting Equation (6.116) into the action we can �nd

ŜG =
∫

Σ

{
1
2 (gij + bij) η

µν∂µx
i∂νx

j−

− 1
G

[
Jµ − ηµρερν∂νX̂

]
Jµ + 1

G

[
Jµ − ηµρερν∂νX̂

]
εµλ∂λX̂+

+ 1
2Gη

µν
[
Jµ − ηµρερτ∂τ X̂

] [
Jν − ηνσεσλ∂λX̂

]}
= (6.117)

=
∫

Σ

{
1
2 (gij + bij) η

µν∂µx
i∂νx

j−
− 1
GJµJ

µ + 1
GJµε

µν∂νX̂ + 1
GJµε

µλ∂λX̂ + 1
Gε

µληλρε
ρν∂νX̂∂µX̂+

+ 1
2GJµJ

µ − 1
2GJµε

µν∂νX̂ − 1
2GJµε

µν∂νX̂ − 1
2Gε

µληλρε
ρν∂µX̂∂νX̂

}
= (6.118)

=
∫

Σ

{
1
2 (gij + bij) η

µν∂µx
i∂νx

j−

− 1
2GJµJ

µ + 1
GJµε

µν∂νX̂ + 1
2Gη

µν∂µX̂∂νX̂
}

= (6.119)

By substituting the expression for Jµ in Equation (6.114), after some simple algebra we get the expressions
for the new geometry. In fact

=
∫

Σ

{
1
2 (gij + bij)∂µx

i∂νx
j − 1

2G [kiη
µν − viεµν ]

[
kjδµ

λ − vjηµρερλ
]
∂νx

i∂λx
j +

+ 1
G [kiδµ

ν − viηµρερν ] εµλ∂νx
i∂λX̂ + 1

2Gη
µν∂µX̂∂νX̂

}
= (6.120)

=
∫

Σ

{
1
2 (gij + bij)∂µx

i∂νx
j − 1

2Gkikjη
µν∂µx

i∂νx
j + 1

2Gkivjε
µν∂µx

i∂νx
j+

+ 1
2Gvikjε

µν∂νx
i∂µx

j + 1
2Gvivjε

µληλρε
ρν∂µx

i∂νx
j + 1

Gkiε
µν∂µx

i∂νX̂+ +

+ 1
Gviε

µληλρε
ρν∂µx

i∂νX̂ + 1
2Gη

µν∂µX̂∂νX̂
}

= (6.121)

=
∫

Σ

{
1
2 (gij + bij)∂µx

i∂νx
j − 1

2η
µν∂µz∂νz + 1

2vjε
µν∂µz∂νx

j+

+ 1
2viε

µν∂νx
i∂µz + 1

2Gvivjη
µν∂µx

i∂νx
j + εµν∂µz∂νX̂+

1
Gviη

µν∂µx
i∂νX̂ + 1

2Gη
µν∂µX̂∂νX̂

}
= (6.122)

=
∫

Σ

{
1
2glm∂µx

l∂νx
m + 1

2ε
µνbij∂µx

i∂νx
j + 1

Gviη
µν∂µx

i∂νX̂ + vjε
µν∂µz∂νx

j+

+εµν∂µz∂νX̂ + 1
2Gvivjη

µν∂µx
i∂νx

j + 1
2Gη

µν∂µX̂∂νX̂
}

= (6.123)

from which we can read the new geometry encoded by

g′ = g −Gdz ⊗ dz + 1
G v̂ ⊗ v̂ (6.124)

b′ = b− v̂ ∧ dz (6.125)

which locally coincides with the result expected by the Buscher rules that is

ĝX̂X̂ =
1

G
ĝX̂l = ĝlX̂ =

vl
G

ĝlm = glm +
vlvm
G

(6.126)

and
b̂X̂l = −b̂lX̂ = 0 b̂lm = blm (6.127)

The term
−dX̂ ∧ dz (6.128)

which comes out by writing explicitly v̂ = dX̂ + v in Equation (6.125) is the price we have to pay for having
adopted a globally well de�ned procedure for the gauging of the NLSM, which involves a doubled space. In
particular it doesn't appear in the Buscher rules, since they exchange one circle with the related dual, without
doubling the �ber degrees of freedom.
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6.1.4 Gauging the ungaugeable

The results reported in the previous Section can be easily extended to the general case with several globally
de�ned Killing vectors {Kl}l∈Id .

The starting point is the assumption of the violation of 1. of the GC, supposing that iKlH is not exact.
Then in each Uα we can �nd a one-form vαl such that

iKlH = dvα (6.129)

In each overlap Uαβ we obtain a set of functions λαβl such that

vα − vβ = dλαβl (6.130)

When each λαβl is such that in each triple overlap Uαβγ the cocycle condition

λαβl + λβγl + λγαl = 0 (6.131)

is satis�ed, then each vαl de�nes the local connection for a U(1) principal bundle over M , π̂ : M̂ → M . We
obtain a torus principal bundle Td over M .

We can choose �ber coordinates Xα
l in each Uα such that

Xα
l −X

β
l = −λαβl (6.132)

and the lifted one-forms
v̂αl = dXα

l + vαl (6.133)

are globally de�ned.

M can be locally described by a set of doubled coordinates

XI = (Y µ, X l, X̂l) (6.134)

and both the metric g and the three-form H can be pull-back on T ∗M̂ using the projection map π̂. They
are transported in the trivial way, so that the only non-vanishing components of the metric ĝ are those of the
original one, and the same is true for Ĥ.

The �rst point which deserves special attention because it is substantially di�erent from the T3 example is
the de�nition of the lift of the Killing vectors. The most general lift provides for a twist described by a set of
functions θlm as follows

K̂l = Kl + θlm
∂

∂X̂m

(6.135)

The requirement that K̂l is a globally de�ned vector implies that

θαlm − θ
β
lm = −iKldλαβm (6.136)

The vectors K̂l are trivially Killing vectors on M̂

L̂Kl ĝ = 0 L̂K̂lĤ = 0 (6.137)

Finally we have a new NLSM (M̂, ĝ, Ĥ). We will immediately see that it is gaugeable.

In fact from Equation (6.135) it turns out that

iK̂l v̂m = iKlvm + θlm (6.138)

and we can de�ne
θlm = Blm − iKlvm (6.139)

with Blm = −Blm, so that
iK̂l v̂m + iK̂m v̂l = 0 (6.140)
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and
iK̂lĤ = dv̂l (6.141)

since dv = dv̂, so that 1. of the GC is obeyed by the new NLSM. The de�nition in Equation (6.139) explains
why in the T3 case the θ function vanish. In fact if the �ber has dimension one, the antysimmetric functions
Blm vanish trivially, while v is horizontal with respect to the unique Killing vector iKv = 0.

It's amazing to notice that in this context, imposing 3. of the GC implies immediately 4. In fact by
computing the action of the Lie derivative

L̂K̂l v̂m = iK̂liK̂mĤ + diK̂l v̂m = iKliKmH + dBlm (6.142)

we obtain that L̂K̂l v̂m = 0 is equivalent to

iKliKmH = −dBlm (6.143)

Moreover it can be shown that [11]

[K̂l, K̂m] = −(iKliKmiKnH)
∂

∂X̂n

(6.144)

so that the whole algebra generated by the Killing vectors is abelian if and only if

iKliKmiKnH = 0 (6.145)

It is intuitive to see that also the vectors

K̃l =
∂

∂X̂l

(6.146)

are Killing vectors preserving the three-form H. This means that the new NLSM (M̂, ĝ, Ĥ) has 2d commuting
Killing vectors. If Glm is everywhere invertible, then the one-forms

ξ̂l = GlmĝIJK̂
I
mdX

J = ξl (6.147)

are lifted trivially. Finally the one-forms ξ̃l such that

v̂l = ξ̃l −Blmξm (6.148)

are horizontal with respect to the lifted Killing vectors K̂l. They are the analogous of the forms ξl de�ned in
Equation (6.47).

We can choose local adapted coordinates on the �bers

XI = (Y µ, X̃ l, X̃l) (6.149)

such that

K̂l =
∂

∂X̃ l
K̃l =

∂

∂X̃l

(6.150)

where X̃ l = X l, while
X̃l = X̂l + fl (6.151)

and fl ≡ fl(X l, Y µ) are such that
∂fl
∂Xm

= −θml (6.152)

The gauge action is slightly modi�ed with respect to Equation (6.23), as we have shown in Equation (6.111).
In this case

DµX̂
I = ∂µX

I − ClµK̂I
l (6.153)

so that
DµX̂l = ∂µX̂l + θlmC

m
µ (6.154)
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As in the case of the three torus T3, the elimination of the gauge �elds Clµ brings by means of the equations
of motion brings to the new geometry. This procedure is in general encoded in a few simple rules. We denote
by a˜the dual objects relative to the original geometry (M, g,H). The T-duality map is

g = g +Glmξ
l ⊗ ξm 7−→ g̃ = g + G̃lmξ̃l ⊗ ξ̃m (6.155)

H = H + F̃l ∧ ξl + dB 7−→ H̃ = ξ̃l ∧ F l + dB̃ (6.156)

where E = G+B and
G̃lm = (E−1)(lm) B̃lm = (E−1)[lm] (6.157)

and

B =
1

2
Blmξ

l ∧ ξm 1

2
B̃lmξ̃l ∧ ξ̃m (6.158)

Moreover
F l = dξl F̃l = dξ̃l (6.159)

while H is such that
dH = −F̃l ∧ F l (6.160)

There are n Killing vectors onM dual to ξl and n Killing vectors K̃l on M̃ dual to ξ̃. In adapted coordinates

Kl =
∂

∂X l
K̃l =

∂

∂X̃l

(6.161)

and
ξl = dX l +Al ξ̃l = dX̃l + Ãl (6.162)

The form H is basic. It represents the component of the H form which doesn't have legs on the �bered
directions. The two-forms F l and F̃l are also basic. They respectively de�ne the Chern class associated to the
l-th circle on the torus and the H-class associated to the l-th dual circle on the dual torus.

The T-duality exchanges the one-forms
ξ 7−→ ξ̃l (6.163)

and the torus moduli
E 7−→ Ẽ ≡ E−1 (6.164)

Also �rst Chern classes and H classes are exchanged

[Fl] 7−→ [F̃ l] (6.165)

6.1.5 Global symmetries

There are a pair of global transformations which act naturally on the set of Killing vectors. These are particu-
larly important, since they preserve the physics of the NLSM.

The �rst one is a GL(n,Z) transformation which acts on the set of Killing vectors {Kl}l∈Id as follows

Kl 7→ K ′l =
∑
m

Ll
mKm (6.166)

where Ll
m ∈ O(n, n), so that Kl transforms in the covector representation. This is because the generic Killing

vector on the smooth manifold M is of the form
∑
lN

lKl. It's necessary to require that N l ∈ Z in order to
preserve the periodicity of the orbits generated by the Killing vectors.

This transformation extend naturally to each tensor with �Killing� indices l,m, n, . . . , such as ξl, vl, Glm,
Blm. They transform under GL(n,Z) in the right representation, that is

ξl 7−→ (L−T )lmξ
m (6.167)

vl 7−→ Ll
mvm (6.168)

Glm 7−→ Ll
nGnp(L

T )pm (6.169)

Blm 7−→ Ll
nBnp(L

T )pm (6.170)
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The action of the NLSM is invariant under these global transformations.

There is an additional well-behaving global transformation which consists in the shift of the functions Blm
by constants Λlm

Blm 7−→ Blm + λlm (6.171)

The classical physics is trivially unchanged, since the constants λlm does not change H. In the quantum theory
we must pay more attention since the action change by an amount

1

2

∫
Σ

λlmdX
l ∧ dXm =

∫
φ(Σ)

λ (6.172)

where φ(Σ) is the embedding via φ of the worldsheet Σ into the target spaceM . This means that its contribution
to the functional integral is

ei
∫
φ(Σ)

λ (6.173)

and that this does not bring to anomalies if and only if

1

2π

∫
φ(Σ)

λ ∈ Z (6.174)

or, by Stoke's Theorem 2 if and only if
[
λ
2π

]
represents an integral cohomology class[

λ

2π

]
∈ H2(M,Z) (6.175)

Then we can say that GL(n,Z) action togheter with a B-shifts preserve a quantum �eld theory de�ned by
a NLSM as in Equation (6.2), since they map the geometry of a background in an equivalent one from the
quantum theory point of view. We have also seen that a T-duality transformation actually does the same. In
fact, when possible, it'su�cient to construct the double space over a principal torus bundle and to apply dual-
ity transformations in Equations (6.167)-(6.171), to obtain a new quantum theory equivalent to the original one.

The next amazing step is to observe that B-shift and GL(n,Z) action get togheter to generate a larger
group which we already encountered. In fact they form a direct subgroup of the orthogonal group O(n, n,Z),
as we observed in Section 5.2.1. Since here we are dealing with group constructed over the �eld of the integer
numbers, we will denote it by Γ(Z). Surprisingly, we are going to see that also T-duality transformations lies
in the O(n, n,Z) group, so that it is also called the T-duality group.

The generic element h ∈ G(n,Z) such that

h =

(
a b
c d

)
(6.176)

acts over tensors with lower or upper �Killing� indices as in Equations (6.166) - (6.170). Obviously each
h ∈ O(n, n,Z) preserves the inde�nite metric

η =

(
0 1
1 0

)
(6.177)

A non-trivial fact is that E doensn't transform as a tensor under a transformation E ∈ O(n, n,Z), but [49]

E 7−→ E′ = Ẽ =
aE + b

cE + d
(6.178)

where a, b, c, d are the n × n matrices de�ned in Equation (6.176). Moreover, the GL(n,Z) subgroup lies in
O(n, n,Z) through the following immersion

GL(n,Z) 3 Llm 7−→
(
Llm 0

0 (L−1)l
m

)
∈ O(n, n,Z) (6.179)

which is the same we have seen in Equation (5.7).
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6.2 T-duality on SU(3)× SU(3) structures

As we have seen in Section ??, if iLKm iLKnH is not a globally de�ned form, so that the we can not use the for-
malism developed in Section 6.1.4 to �nd a globally de�ned dual background, T-duality bring to a non-geometric
dual background. These kind of backgrounds are simply de�ned as manifolds on which the transition functions
for the metric and the B-�eld admit T-duality transformations. Moreover in this case the T-duality map can
be de�ned only locally.

This situation seems to �t perfectly the framework of Generalized Geometry. In fact we will see that in that
context T-duality reduces to a gauge transformation of the generalized metric H as in Equation (5.126).

The striking fact is that the presence of T-folds is simply encoded by the dual pure spinors which describe
the background, as we will see explicitly in Sections 6.2.2, ??.

6.2.1 T-duality in the generalized formalism

In order to achieve T-duality in the generalized formalism we need to generalize the notion of Killing vector.

The Killing condition LKg = 0 for a K which leaves invariant H allows to make a local gauge choice on the
B-�eld. In fact we can always choose B′ = B + dχ such that

LKB
′ = 0 (6.180)

by taking B′ = B + dχ. This would imply that LKB′ = LKB + LKdχ = LKB + diKdχ = LKB − dξ. Since
LvH = 0 means that diKH = diKdB = dLKB = 0 then by the Poincarè lemma LKB is locally exact, and then
we can always choose χ, or more precisely

ξ = −iKdχ+ df (6.181)

such that LKB′ = 0.

So the generic conditions for applying local T-duality are then described by the two Equations

LKg = 0 LKB − dξ = 0 (6.182)

which involves a couple of objects (K, ξ). There is an ambiguity in (K, ξ), since ξ is not actually involved in
Equation (6.182), but dξ is.

It turns out that Equation (6.182) describe the conditions which de�ne a generalization of the Lie derivative,
adapted to the generalized framework. In this framework, it's immediate to interpret the couple (K, ξ) as the
generator of di�eomorphisms on the generalized bundle.

More precisely we can de�ne the generalized Lie derivative on sections v = X + η of the generalized
tangent bundle E, along the generalized vector w = K + ξ ∈ X(E) by the Dorfman bracket already de�ned in
Equation (5.76)

Lwv = [Y,X] + (LY η − iXdξ) (6.183)

Notice that the action of the Dorfman bracket is the most natural one for the bundle structure de�ned in
Equation (5.67). In fact it locally represents the usual di�eomorphism on the vectors and on the one-forms,
supplemented by the term −iXdξ which represents the local twisting due to the action of the B-�eld.

The action of the gereralized Lie derivative on the generalized metric H can be de�ned by analogy with the
action of the Lie derivative on a Riemannian metric g. In particular we require that Lv(φ) = Lv(φ) = ivdφ,
which is the usual requirement for the action of the Lie derivative on a scalar map f ∈ C∞(M).

We get
Lv [H] (w, t) = Lv [H(w, t)] + H [Lvw, t] + H [w, Lvt] (6.184)

where v = V + λ, w = X + ξ, t = Y + η. Then

Lv [H(w, t)] =


Lvg − (LvB − dξ)g−1B−

−B(Lvg
−1B)−Bg−1(LvB − dξ) (LvB − dξ)g−1 +B(Lvg

−1)

−g−1(LvB − dξ)− (Lvg
−1)B Lvg

−1

 (6.185)



6.2 T-duality on SU(3)× SU(3) structures 113

Since it turns out to be
Lvη = 0 (6.186)

then the conditions in Equation (6.182) which are the necessary conditions for T-dualizing a local background
along v ∈ X(E) are equivalent to

LvG = 0 (6.187)

where G is the generalized metric de�ned in Equation (5.106).

We can always use the arbitrariness in the choice of ξ to normalize v

η(v, v) = 1 (6.188)

so that in adapted coordinates we can write V = ∂
∂t . Then, as we know from Equation (6.181) ξ = −ivdχ+ df ,

and by choosing f = t we de�ne v as

v =
∂

∂t
+
(
dt− i ∂

∂t
dχ
)

(6.189)

The element of the O(n, n) group which correspond to T-duality transformation in Equation (??) is

Tv = 1− 2v vT η (6.190)

where

(Tv)
i
j = δij − 2vivkηkj = δij (6.191)

(Tv)
ij = −2vivkη

kj (6.192)

(Tv)ij = −2viv
kηkj (6.193)

(Tv)i
j

= δi
j − 2vivkη

kj (6.194)

since as we know from Section 5.3.2 δij = δij = 0 and ηij = ηi
j = 0.

By making the choice of gauge χ = 0 and by choosing as basis for T ⊕ T ∗{
∂

∂t
, e2, . . . , en, dt, e

2, . . . , en
}

(6.195)

we obtain the explicit expression fot the matrix which represents T-duality transformation

Tv =

(
1−M M
M 1−M

)
(6.196)

where

v =
∂

∂t
+ dt (6.197)

and M is a n× n matrix

M =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 (6.198)

The T-dual generalized metric is a O(n, n) gauge transformation of the generalized metric H, namely

Hβ = TTvHαTv (6.199)

whre α, β are used to label the open set of the covering {Uα}.

From Chapter 5 we immediately know what is the action of T-duality transformation on the Spin(n, n)
spinors, which is given by the Cli�ord action

Φβ = v · Φα = i ∂
∂t

Φα + ξ ∧ Φα (6.200)

This is the property we are going to use in order to �nd the dual backgrounds in the Examples of the
following Sections.
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6.2.2 T-dualities on T2 �brations

In the present Section we will show how the formalism developed in Section (6.2.1) works in a couple of Examples.

The situation considered is that of a T2 �bration π : T6 → T4 with an SU(3)-structure de�ned by the
symplectic and canonical forms

ω = e1 ∧ e4 + e2 ∧ e5 + e3 ∧ e6 Ω = (e1 + ie4) ∧ (e2 + ie5) ∧ (e3 + ie6) (6.201)

where {ea}a∈I6 is a basis of viebeins on the total space T6. We will consider a trivial �bration so that in the
�bered direction i we can write

ei = ridx
i (6.202)

where ri is exactly the radius of the �bered circle in the i direction.

As we know from Section 5.3.4 the pure spinors which describe this structure are given by

Φ+ = e−φ−B−iω Φ− = e−φ−BΩ (6.203)

We will distinguish two cases, since the choice of the B-�eld directions is not equivalent with respect to
the SU(3) structures. In particular we will study what happens if the B-�eld couples or not the symplectic
structure directions.

Coupling the symplectic directions

Let us consider the case of a B �eld whose legs lies in the e1 and e4 directions

B =
b

r1r4
e1 ∧ e4 = b dx1 ∧ dx4 (6.204)

where b is a function of the base. For example if b = hx6 then the B �eld generates the H �ux

H = hdx1 ∧ dx4 ∧ dx6 (6.205)

We will perform two T-dualities along the v1 and v2 directions, where

v1 =
∂

∂x1
+ dx1 v2 =

∂

∂x2
+ dx2 (6.206)

We have to �nd the T-dual pure spinors

Φ̃+ ≡ T(Φ+) Φ̃− = T(Φ−) (6.207)

where
T = Tv1

Tv4
Tvi(Φ

±) = vi · Φ± (6.208)

where as we have seen in Section 6.2.1 Tvi acts on the pure spinor by Cli�ord action.

In performing calculus we will omit the symbol ∧ for writing convenience.

Let us start by computing

e−iω = 1− iω +
(−i)2

2
ω2 +

(−i)3

6
ω3 (6.209)

where

(−i)2

2 ω2 = − 1
2

[
e1e4 + e2e5 + e3e6

] [
e1e4 + e2e5 + e3e6

]
=

= − 1
2

[
e1e4e2e5 + e1e4e3e6 + e2e5e1e4 + e2e5e3e6 + e3e6e1e4 + e3e6e2e5

]
=

= −
[
e1e4e2e5 + e1e4e3e6 + e2e5e3e6

]
(6.210)

then

(−i)3

6 ω3 = (−i)3

6 ω2 ∧ ω =

= i
3

[
e1e4e2e5 + e1e4e3e6 + e2e5e3e6

] [
e1e4 + e2e5 + e3e6

]
=

= ie1e4e2e5e3e6 (6.211)
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Next we can easily �nd that

e−B−iω =
[
1− b

r1r4
e1 ∧ e4

] [
1− ie1e4 − ie2e5 − ie3e6 − e1e4e2e5 − e2e5e3e6 + ie1e4e2e5e3e6

]
=

= 1−
(
i+ b

r1r4

)
e1e4 − ie2e5 − ie3e6 −

(
i ib
r1r4

)
e1e4e2e5 −

(
1− ib

r1r4

)
e1e4e3e6−

−e2e5e3e6 +
(
i+ b

r1r4

)
e1e4e2e5e3e6 =

= 1− (b+ ir1r4)dx1dx4 − ie2e5 − ie3e6 + i(b+ ir1r4)dx1dx4e2e5 + i(b+ ir1r4)dx1dx4e3e6−
−e2e5e3e6 + (b+ ir1r4)dx1dx4e2e5e3e6 (6.212)

Then we can apply the �rst T-duality transformation to e−φ−B−iω along v4

Tv4
(e−B−iω) =

(
∂
∂x4 + dx4

)
· (e−B−iω) =

= (b+ ir1r4)dx1 − i(b+ ir1r4)dx1e2e5 − i(b+ ir1r4)dx1e3e6 − (b+ ir1r4)dx1e2e5e3e6+

+dx4 − idx4e2e5 − idx4e3e6 − dx4e2e5e3e6 (6.213)

and then the second T-duality map Tv1 to obtain

Tv1
(Tv4

(
e−φ−B−iω

)
) = (b+ ir1r4)− i(b+ ir1r4)e2e5 − i(b+ ir1r4)e3e6−

−(b+ ir1r4)e2e5e3e6 + dx1dx4 − idx1dx4e3e6 − dx1dx4e2e5e3e6 =

= (b+ ir1r4) + 1
r1r4

e1e4 − i(b+ ir1r4)e2e5 − i(b+ ir1r4)e3e6−
−(b+ ir1r4)e2e5e3e6 − i

r1r4
e1e4e2e5 − i

r1r4
e1e4e3e6 − 1

r1r4
e1e4e2e5e3e6 =

= (b+ ir1r4)
[
1 + e1e4

r1r4(b+ir1r4) − ie
2e5 − ie3e6 − e2e5e3e6−

− ie1e4e2e5

r1r4(b+ir1r4) −
ie1e4e3e6

r1r4(b+ir1r4) −
e1e4e2e5e3e6

r1r4(b+ir1r4)

]
= (6.214)

= (b+ ir1r4)e−B̃−iω̃ (6.215)

where

ω̃ =
e1 ∧ e4

b2 + r2
1r

2
4

+ e2 ∧ e5 + e3 ∧ e6 (6.216)

B̃ = − b

r1r4(b2 + r2
1r

2
4)
e1 ∧ e4 (6.217)

in fact we can write

e−iω̃ = 1− iω̃ +
(−i)2

2
ω̃2 +

(−i)3

6
ω̃3 = 1− i

b2 + r2
1r

2
4

e1e4 − ie2e5 − ie3e6 −

− 1

b2 + r2
1r

2
4

e1e4e2e5 − 1

b2 + r2
1r

2
4

e1e4e3e6 − e2e5e3e6 +
i

b2 + r2
1r

2
4

e1e4e2e5e3e6 (6.218)

Thus

e−B̃−iω̃ =
[
1 + b

r1r4(b2+r2
1r

2
4)
e1e4

]
e−iω̃ =

= 1− ie1e4

b2+r2
1r

2
4
− ie2e5 − ie3e6 − e1e4e2e5

b2+r2
1r

2
4
− e1e4e3e6

b2+r2
1r

2
4
− e2e5e3e6 + i e

1e4e2e5e3e6

b2+r2
1r

2
4

+

+ b e1e4

r1r4(b2+r2
1r

2
4)
− ib e1e4e2e5

r1r4(b2+r2
1r

2
4)
− ib e1e4e3e6

r1r4(b2+r2
1r

2
4)
− b e1e4e2e5e3e6

r1r4(b2+r2
1r

2
4)

=

= 1 + e1e4

r1r4(b+ir1r4) − ie
2e5 − ie3e6 − e2e5e3e6−

− ie1e4e2e5

r1r4(b+ir1r4) −
ie1e4e3e6

r1r4(b+ir1r4) −
e1e4e2e5e3e6

r1r4(b+ir1r4) (6.219)

which proves the Equation (6.215). Moreover, since the e�ect of the two T-dualities on the dilaton is given by

e−φ 7→ e−φ̃√
b2 + r2

1r
2
4

(6.220)

Then the total trasformation on the pure spinor is given by

T(e−φ̃−B̃−iω̃) =
b+ ir1r4√
b2 + r2

1r
2
4

e−φ̃−B̃−iω̃ = = (cos (θ+) + i sin (θ+)) e−φ̃−B̃−iω̃ = eiθ+e−φ̃−B̃−iω̃
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where

sin(θ+) =
r1r4√
b2 + r2

1r
2
4

cos(θ+) =
b√

b2 + r2
1r

2
4

(6.221)

We can turn to the pure spinor Φ−, and compute

Ω = e1e2e3 + ie1e2e6 + ie1e5e3 + ie4e2e3 − e1e5e6 − e4e2e6 − e4e5e3 − ie4e5e6 =

= r1dx
1e2e3 + ir1dx

1e2e6 + ir1dx
1e5e3 + ir4dx

4e2e3−
−r1dx

1e5e6 − r4dx
4e2e6 − r4dx

4e5e3 − ir4dx
4e5e6 (6.222)

It's obvious that
e−BΩ = Ω (6.223)

since each term in Equation (6.222) contains either a dx1 or a dx4 term. Then

Tv4(Φ−) =
(
∂
∂x4 + dx4

)
· e−BΩ =

= ir4e
2e3 − r4e

2e6 − r4e
5e3 − ir4e

5e6 + r1dx
4dx1e2e3 + ir1dx

4dx1e2e6+

+ir1dx
4dx1e5e3 − r1dx

4dx1e5e6 (6.224)

And then

T(e−φ−B̃Ω) = Tv1(Tv4(Φ−)) =
(
∂
∂x1 + dx1

)
· (Tv4(Φ−)) =

= −r1dx
4e2e3 − ir1dx

4e2e6 − ir1dx
4e5e3 + r1dx

4e5e6+

+ir4dx
1e2e3 − r4dx

1e2e6 − r4dx
1e5e3 − ir4dx

1e5e6 =

= − r1r4 e
4e2e3 − i r1r4 e

4e2e6 − i r1r4 e
4e5e3 + r1

r4
e4e5e6+

+i r4r1 e
1e2e3 − r4

r1
e1e2e6 − r4

r1
e1e5e3 − i r4r1 e

1e5e6 =

(6.225)

After inserting the part with the dilaton we obtain

T(e−φ−B̃Ω) = e−φ̃√
b2+r2

1r
2
4

T(e−BΩ) =

= e−φ̃√
b2+r2

1r
2
4

(
b2+r2

1r
2
4

b2+r2
1r

2
4

)
T(e−BΩ) =

=
(
b2+r2

1r
2
4

b2+r2
1r

2
4

)
ie−φ̃√
b2+r2

1r
2
4

{
r4
r1
e1e2e3 + i r4r1 e

1e2e6 + i r4r1 e
1e5e3+

+i r1r4 e
4e2e3 − r4

r1
e1e5e6 − r1

r4
e4e2e6 − r1

r4
e4e5e3 − i r1r4 e

4e5e6
}

=

=

(
i b+ir1r4√

b2+r2
1r

2
4

)
e−φ̃

(
b−ir1r4
b2+r2

1r
2
4

){
r4
r1
e1e2e3 + i r4r1 e

1e2e6 + i r4r1 e
1e5e3+

+i r1r4 e
4e2e3 − r4

r1
e1e5e6 − r1

r4
e4e2e6 − r1

r4
e4e5e3 − i r1r4 e

4e5e6
}

=

= ieiθ+e−φ̃−B̃Ω̃ = ei(θ++π
2 )e−φ̃−B̃Ω̃ ≡ eiθ−e−φ̃−B̃Ω̃ (6.226)

where

Ω̃ =
b− ir1r4

b2 + r2
1r

2
4

(
r4

r1
e1 + i

r1

r4
e4

)
∧ (e2 + ie5) ∧ (e3 + ie6) (6.227)

and
θ− = θ+ +

π

2
(6.228)

In fact

Ω̃ = b−ir1r4
b2+r2

1r
2
4

(
r4
r1
e1e2e3 + i r4r1 e

1e2e6 + i r4r1 e
1e5e3+

+i r1r4 e
4e2e3 − r4

r1
e1e5e6 − r1

r4
e4e2e6 − r1

r4
e4e5e3 − i r1r4 e

4e5e6
)

(6.229)

One can rewrite these results in the basis of the dual vielbeins obtained from Equation (??). In this way it
can be checked that the dual geometry is again an SU(3) structure.
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Decoupling the symplectic directions

Let us consider the case of a B-�eld whose legs lies in the e2 and e3 directions

B =
b

r2r3
e2 ∧ e3 = b dx2 ∧ dx3 (6.230)

where again b = hx6. The B �eld generates the H �ux

H = hdx2 ∧ dx3 ∧ dx6 (6.231)

We will perform two T-dualities along the v2 and v3 directions, where

v2 =
∂

∂x2
+ dx2 v3 =

∂

∂x3
+ dx3 (6.232)

We have to �nd the T-dual pure spinors

Φ̃+ ≡ T(Φ+) Φ̃− = T(Φ−) (6.233)

where
T = Tv2Tv3 Tvi(Φ

±) = vi · Φ± (6.234)

where as we have seen in Section 6.2.1 Tvi acts on the pure spinor by Cli�ord action.

The calculus is similar to that performed in the case of decoupled simplectic directions, but even longer, so
we prefer to skip it and to give only the results [16]. The dual spinors can be written in the form of Equations
(5.156) and (5.157), where

z̃ = −i(ẽ1
+ + iẽ4

+) (6.235)

j̃ = ẽ2
+ ∧ ẽ5

+ + ẽ3
+ ∧ ẽ6

+ (6.236)

ω̃ = (ẽ2
+ + iẽ5

+) ∧ (ẽ3
+ + iẽ6

+) (6.237)

B̃ = − b
r2r3

ẽ2
+ ∧ ẽ3

+ (6.238)

k⊥ = i r2r3√
b2+r2

2r
2
3

(6.239)

k|| = b
b2+r2

2r
2
3

(6.240)

eφ̃ = e−φ
√
b2 + r2

2r
2
3 (6.241)

and the dual vielbeins can be found from Equation (5.129)

ẽ2
± =

±r3e2−b r2r3 e
3

b2+r2
2r

2
3

= r2
±r2

3dx
2−bdx3

b2+r2
2r

2
3

(6.242)

ẽ3
± =

±r2
2e

3+b
r3
r2
e2

b2r2
2r

2
3

= r3
±r2

2dx
3+bdx2

b2r2
2r

2
3

(6.243)

ẽa± = ea a 6= 2, 3 (6.244)

Equations (6.233) - (6.241) tell us that the dual geometry obtained is an SU(2) structure, which has been
studied in Section 5.3.4. This fact has deep consequences, as we will see in the next Section.

We can check these results by showing that they concide with those suggested by the Buscher rules.

We will denote by α, β, γ, . . . the indices referred to the �ber coordinates x2, x3, while we will denote by
l,m, n, . . . the indices referred to the base coordinates x1, x4, x5, x6. Since in this Section the calculus are always
carried out locally, we are sure not to create confusion with the indices α, β, γ, . . . which are usually employed
to label open sets of a covering.

Since the �bration is trivial the metric takes the nice form in blocks

gαβ =

(
r2 0
0 r3

)
glm =


g11 g14 g15 g16

g41 g44 g45 g46

g51 g54 g55 g56

g61 g64 g65 g66

 (6.245)
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where the �rst 2× 2 matrix is referred to the directions 2 and 3, while the second 4× 4 matrix is referred to the
other coordinates. The triviality of the �bration tells us that all the components which mix the �ber indices
with the base vanish. For the B-�eld we obtain

Bαβ =

(
0 k
−k 0

)
(6.246)

where k ≡ hx6. All the other components of the B-�eld vanish.

So we can de�ne the action of the NLSM associated to the background described by Equations (6.201) as

S =

∫
d2σ ηµν

{
gαβ∂µx

α∂νx
β + glm∂µx

l∂νx
m +Bαβ∂µx

α∂νx
β
}

(6.247)

This time the procedure of gauging proceeds regardless of global issues. We simply introduce abelian gauge
�elds Cα and replace the �ber coordinates by them.

We obtain the following gauged action

SG =

∫
d2σ

{
(gαβ +Bαβ)CαCβ + glm∂+x

l∂−x
m + θα

(
∂+C

α − ∂−Cα
)}

(6.248)

where we are supposing that all the light-cone coordinates indices are contracted in the right way even if we
will not write exlpicitly them for writing convenience. As usual the antisymmetry of the term which includes
the B-�eld is assured by an ε tensor. It turns out that θα are the coordinates of the dual circle.

The equation of motion for Cα and C
α
are

δSG

δCα = (gαβ +Bαβ)C
β

+ ∂−θα = 0 (6.249)
δSG

δC
α = (gαβ −Bαβ)Cβ − ∂+θα = 0 (6.250)

from which one can �nd that

r2
2C2 = ∂+θ2 + bC3 C2 = b

b2+r2
2r

2
3
∂−θ3 − r2

3

b2+r2
2r

2
3
∂−θ2 (6.251)

r2
3A3 = ∂+θ3 − bC2 C4 = − r2

2

b2+r2
2r

2
3
∂−θ3 − b

b2+r2
2r

2
3
∂−θ2 (6.252)

and �nally

C2 =
r2
3

b2+r2
2r

2
3
∂+θ2 + b

b2+r2
2r

2
3
∂+θ3 (6.253)

C4 =
r2
2

b2+r2
2r

2
3
∂+θ3 − b

b2+r2
2r

2
3
∂+θ2 (6.254)

By inserting the solutions of the equations of motion into the terms which appear in the action SG we obtain

r2
2C2C2 = r2

2

[
r2
3

det∂+θ2 + b
det∂+θ3

] [
− r2

3

det∂−θ2 + b
det∂−θ3

]
= − r2

2r
2
3

(det)2 ∂+θ2∂−θ2 + b
(det)2 ∂+θ2∂−θ3 − −br

2
2r

2
3

(det)2 ∂+θ3∂−θ2 +
b2r2

2

(det)2 ∂+θ3∂−θ3 (6.255)

where we put det = b2 + r2
2r

2
3. Analogously

r2
3C3C3 =

b2r2
3

(det)2 ∂+θ2∂−θ2 +
br2

2r
2
3

(det)2 ∂+θ2∂−θ3 − br2
2r

2
3

(det)2 ∂+θ3∂−θ2 − r2
2r

2
3

(det)2 ∂+θ3∂−θ3 (6.256)

B23C
2C

3
= − b2r2

3

(det)2 ∂+θ2∂−θ2 + b3

(det)2 ∂+θ2∂−θ3 +
br2

2r
2
3

(det)2 ∂+θ3∂−θ2 − b2r2
2

(det)2 ∂+θ3∂−θ3 (6.257)

B32C
3C

1
= − b2r2

3

(det)2 ∂+θ2∂−θ2 + b3

(det)2 ∂+θ2∂−θ3 +
br2

2r
2
3

(det)2 ∂+θ3∂−θ2 − b2r2
2

(det)2 ∂+θ3∂−θ3 (6.258)

Moreover we get the terms

−∂+θ2C2 − ∂+θ3C3 =

−b
(det)∂+θ2∂−θ3 +

r2
3

(det)∂+θ2∂−θ2 +
r2
2

(det)∂+θ3∂−θ3 + b
(det)∂+θ3∂−θ3 (6.259)
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∂+θ2C2 + ∂−θ3C3 =

b
(det)∂−θ2∂+θ3 +

r2
3

(det)∂+θ2∂−θ2 +
r2
2

(det)∂+θ3∂−θ3 − b
(det)∂+θ2∂−θ3 (6.260)

After summing all these terms the �nal result is the expected one∫
d2σ

{
r2
3

(det)
∂+θ1∂−θ1 +

r2
2

(det)
∂+θ3∂−θ3 −

b

(det)
∂+θ2∂−θ3 +

b

(det)
∂+θ3∂−θ2

}
(6.261)

from which we get the Buscher rules

B23 = − b

b2 + r2
2r

2
3

= −B32 g22 =
r2
3

b2 + r2
2r

2
3

g33 =
r2
2

b2 + r2
2r

2
3

(6.262)

If we turn to the vielbein basis we obtain for the B-�eld the result

B23 = − b

r2r3(b2 + r2
2r

2
3)

= −B32 (6.263)

which is the same of Equation (6.238), in the basis of the original vielbeins.

The principal observation is that since we have korked in a local chart, we can not recognize in Equation
(6.262) the footprints of non-gometricity. Buscher rules are a local representation of the T-duality map. Strik-
ingly, as we will se in the next Section, the non-geometricity is encoded by the form of the dual pure spinors in
Equations (6.233) - (6.241).
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7
Conclusions

This thesis has been focused on the analysis of some geometrical aspects of Superstring compacti�cation with
H-�ux. This area of String Theory has recently received considerable attention from theorists, since it has been
shown that H-�uxes can be used to partially break the N = 2 supersymmetry in four dimensions to N = 1. A
similar result is particularly important from the phenomenologic point of view, since the current paradigm of
the particle physics provides a N = 1 supersymmetric extension of the Standard model.

Since the present work is focused on geometrical questions arising in performing T-duality, it looked nec-
essary to introduce the whole mathematical apparatus necessary to address the issue. In this perspective, we
want to stress on the deep importance of the use of G-structures, which we introduced in Chapter 2.1.1 and we
used di�usely throughout the thesis. In particular they furnishes a convenient and immediate way to classify
all the compacti�cation backgrounds, as we reviewed in Section 4.3.

It is well known that the local form of the T-duality map is given from the Buscher rules. They are simply
obtained by gauging the the non-linear sigma model arising form a String background and then integrating out
the gauge �elds via their equations of motion. In this way the new action obtained encodes the new geometry
of the dual String background.

We have seen that under certain conditions on the H-�ux, there is a way to perform the gauging of a
non-linear sigma model and the subsequent elimination of the gauge �elds via equations of motion in a globally
well de�ned way. This procedure involves the so called double space. In this context we have analysed an
explicit example, the three-torus T3. Although it is a non-physical case - in fact its dimension is 3, and we
need a six-manifold to compactify a Superstring theory in a signi�cant way - it provides an excellent example
to highlight the mathematical aspects of the issue. In particular we performed explicitly the T-duality on T3,
and we showed that locally the solutions coincides with the results expected form Buscher rules.

The non-geometric String compacti�cations and the role played by the Generalized Geometry in such a kind
of compacti�cations are the two fundamental points of this thesis.

In fact in Section ?? we have seen what happens if we relax the constraints on the H �ux which are needed
to achieve a globally de�ned procedure for T-dualizing the non-linear sigma model, and then to obtain a globally
de�ned String background. It comes out that the dual background is not longer a well de�ned manifold, since the
geometrical objects which de�ne it do not transform as real tensors. In particular they admit B-transformations
as transition functions.

In Chapter 5 we have studied the Generalized Complex Geometry, which was developed in the last decade.
It provides a new approach to complex and symplectic geometry, and it was born precisely in the physical
context of Mirror symmetry, which is a close relative of T-duality. As we have seen in Section 6.2.1, the
same de�nition of the Generalized Geometry encodes in its structure group the group of transformations of
T-duality: O(n, n). Again we stress on the importance of the structure group description of the geometry. We
focused on Hitchin's approach to generalized Geometry, and then on its nature of connective structure of a gerbe.

In this context we have analysed the form of the T-duality map in the Generalized Geometry formalism in
Section 6.2.1, and we also performed explicitly the calculations for �nding the dual backgrounds in a couple of
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examples which are relevant as type II strings backgrounds in Section 6.2.2.

The striking fact is that the arising of the non-geometric backgrounds opens the doors to new surprising
points of view on String and even on �eld theory. In fact it seems that a new kind of non-local transformations
must be put on the same footing as di�eomorphisms and gauge transformations. Di�erent attempts have been
moved in this direction.

C. Hull has tempted to build a new formalism for String Theory, which is called the doubled �eld theory
[11, 12]. Its peculiarity is to provide an action which contains directly the generalized metric as the metric
of a space which is similar to the doubled space that we introduced in Section 6.1.4. The main point of this
approach is that the T-duality is manifest as a gauge symmetry of the theory. Moreover, not all non-geometric
backgrounds are consistent in quantum theory. Conformal, Lorentz and modular invariance on the worldsheet
have to be imposed in order for the theory to be well de�ned.

On the side of the Generalized Complex Geometry, a huge amount of work is still to do. In fact G. Cavalcanti
and M. Gualtieri have recently shown that T-duality can be seen as an isomorphism between Courant algebroids
[42], which are the most immediate generalization of a Lie algebroid, which in turn is a generalization of the
most common Lie algebra. However their work is valid in a case which is even simpler than those studied in
Section 6.1.4, in fact its validity is restricted to the cases in which iKliKmH = 0. Finally V. Mathai and J.
Rosemberg have shown that if the condition iKliKmH = 0 is not satis�ed, T-dual manifolds can be interpreted
as non-commutative spaces [51]. The relation between Generalized Geometry and non-commutative spaces has
yet to be investigated.
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Multilinear algebra

Let us give a brief recall of some basic concepts in multilinear algebra [17].

Let {Vi}i∈In be a set vector spaces over the �eld K such that dim(Vi) = ni and let T be a vector space over
K such that dim(W ) = n.

De�nition A.0.1. A map
f : V1 × · · · × Vp →W (A.1)

which is separately linear in all its variables is a multilinear map, or a p-linear map.

We can enunciate the following

De�nition A.0.2. Let V1, . . . , Vp be vector spaces over the �eld K such that dim(Vi) = ni and let T be
a vector space over K such that dim(T ) = n. The tensor product of V1, . . . , Vp is a pair (T, F ) where
F : V1 × · · · × Vp → T is a p-linear map such that

• ∀W vector space over K and ∀ p-linear map Φ : V1×· · ·×Vp →W ∃! Φ̃ : T →W such that Φ = Φ̃◦F ,
namely such that the diagram in Figure A.1 commutes.

Figure A.1: Tensor product.

If the speci�cation of F is not needed due to the context, usually the space T in De�nition (A.0.2) is denoted
by

V1 ⊗ · · · ⊗ Vp (A.2)

and called the tensor product. An element w ∈ V1⊗· · ·⊗Vp is a tensor. An element of the form F (v1, . . . , vp)
is a indecomposable tensor and is denoted by

v1 ⊗ · · · ⊗ vp (A.3)

In practice a tensor product can be determined by an isomorphism existing between T p(V ) and the p-
multilinear maps, de�ned by the relation

v1 ⊗ · · · ⊗ vp(ϕ1, . . . , ϕp) =

p∏
j=1

ϕj(vj) (A.4)

Now we have the necessary knowledge to develop some further structures starting from a vector space V .
For instance T •(V ) =

⊕
j≥0

T j(V ), where T j(V ) = V ⊗ · · · ⊗ V︸ ︷︷ ︸
j times

, is the contravariant tensor algebra of V.
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T•(V ) =
⊕
j≥0

Tj(V ), where Tj(V ) = V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
j times

, is the covariant tensor algebra of V. Then trivially

T (V ) =
⊕
j,k≥0

T jk (V ) - where T jk (V ) = V ⊗ · · · ⊗ V︸ ︷︷ ︸
j times

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
k times

- is the tensor algebra of V. The product

which makes T (V ) an algebra is obviously ⊗, and the sum + : V ×V → V is extended component by component
to the whole T (V ).

Let us denote Tp(V ) =
∑p
k=0

⊗k
j=1 T

j(V ). It's intuitive that there exists a natural �ltration of the tensor
algebra, that is

T0(V ) ⊂ T1(V ) ⊂ T2(V ) · · · ⊂ T •(V ) (A.5)

such that
Tp ⊗ Tq ⊆ Tp+q ∀ p, q ∈ N (A.6)

This makes the tensor algebra a �ltered algebra.

De�nition A.0.3. Let V,W be two vector spaces on K. Let ϕ ∈M(V, . . . , V ;W ) be a p-linear map. If

ϕ(vP (1), . . . , vP (p)) = sgn(P )ϕ(v1, . . . , vp) (A.7)

for each p-tuple (v1, . . . , vp) ∈ V × · · · × V︸ ︷︷ ︸
p times

and for each permutation P ∈ P, where P is the permutation group

of the elements {1, . . . , p}, then ϕ is a skew-symmetric p-linear map.

The vector space

Λp(V ) = {v1 ⊗ · · · ⊗ vn ∈ T p(V )| v1 ⊗ · · · ⊗ vn is skew-symmetric} (A.8)

is the p-th exterior algebra of V . Elements in Λp(V ) are called alternating p-multivectors. On Λp(V ) we can
de�ne the wedge product of n vectors vi ∈ V as

v1 ∧ · · · ∧ vn =
1

n!

∑
P∈P

vP (1) ⊗ · · · ⊗ vP (n) (A.9)

where P ∈ P and P denotes the permutation group of the elements {1, . . . , n}. It's obvious that n must be less
then or equal to the dimension of V , otherwise the wedge product is equal to 0. For example the wedge product
of two independent vectors v1, v2 ∈ V is

v1 ∧ v2 =
1

2
(v1 ⊗ v2 − v2 ⊗ v1) (A.10)

Moreover we can notice that the wedge product induces a bilinear map

∧ : Λp(V )× Λq(V )→ Λp+q(V ) ∀ p, q s.t p+ q ≤ n (A.11)

The exterior algebra of the vector space V is

Λ(V ) =
⊕

0≤p≤n

Λp(V ) (A.12)

equipped with the wedge product ∧ : Λ(V ) × Λ(V ) induced by the map in Equation (A.11). In Section 3.1.1
we will see the exterior algebra is a special case of a Cli�ord algebra. More speci�cally we can de�ne it as a
quotient of the tensor algebra T (V ) by the bilateral ideal generated by the element

v ⊗ v − 1 (A.13)

As it is immediately evident, whis correspond to eliminate all symmetric tensor product of vectors. In fact, for
example we can write

[0] = [(v + w)⊗ (v + w)] = [v ⊗ v] + [v ⊗ w + w ⊗ v] + [w ⊗ w] = [v ⊗ w + w ⊗ v] (A.14)
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The exterior algebra is an associative, non-commutative algebra with unity 1 ∈ Λ0(V ∗) ≡ R. It is also a
graded algebra, where the gradation means that

Λp(V ) ∧ Λq(V ) ⊆ Λp+q(V ) ∀ p+ q ≤ n (A.15)

and Λp(V ) ∧ Λq(V ) = 0 if p+ q > n. Each Λp(V ) represents the degree p subspace.

The exterior algebra Λ(V ) inherits an inner product from the vector space V , if it is endowed with a scalar
product η : V × V → R. In fact let v = v1 ∧ · · · ∧ vp ∈ Λp(V ) and w = w1 ∧ · · · ∧ wp ∈ Λp(V ). Then we can
de�ne an inner product on Λp(V ) by

(v, w) = det (η(vi, wj)) (A.16)

and extend it bilinearly to all of Λp(V ). It is also necessary to put (v, w) = 0 if v ∈ Λp(V ) and w = Λq(V )
where p 6= q.

The next step is to transport these structures on a smooth manifold M such that dim(M) = n. Let us
consider the space

Λp(T ∗) ≡ Λp(T ∗) =
∐
p∈M

Λp(T ∗pM) (A.17)

where as usual
∐
p∈M denotes the disjoint union. This de�nes a �ber bundle together with the canoni-

cal projection π : Λp(T ∗) → M which maps Λp(T ∗pM) into p ∈ M . The smooth sections of this bundle
ΛpT ∗ ≡ Γ(M,Λp(T ∗)) are the di�erential p-forms over M . Clearly Λp(T ∗) = 0 ∀ p > n and the dimension
is given by dim(Λp(T ∗)) =

(
n
p

)
.
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B
Appendix to the integration of forms

In the present Appendix we will list a pair of concepts needed to de�ne the integration of forms over a smooth
manifold as we did in Section 2.1.3.

Manifolds with boundaries

We de�ne the boundary of the set Rn+ = {x ∈ Rn such that xi ≥ 0 ∀ i ∈ In} as the sets

Rn0 = {x ∈ Rn such that xn = 0} (B.1)

Let U ∈ Rn+ be an open set. We denote by ∂U = U∩Rn0 the boundary of U . We also denote by I(U) = U/∂U
the interior of U .

Let U, V ⊂ Rn+ and let f : U → V . f is smooth if there exist open sets U ⊂ U1, V ⊂ V1 and a smooth map
f1 : U1 → V1 such that f1|U = f .

If f : U → V is a di�eomorphism then it induces a di�eomorphism between I(U) and I(V ) and between ∂U
and ∂V .

Let M be a topological space. The couple (U,ϕ) where U is an open set of M and ϕ : U → ϕ(U) ⊂ Rn+ is a
chart with boundary for M if ϕ is a homeomorphism onto the open set ϕ(U) ⊂ Rn+.

The obvious substitutions into De�nitions 2.1.2, 2.1.3 give us the notions of atlas with boundaries and
manifolds with boundaries.

The boundary of a manifold M is denoted by ∂M and de�ned as the set of points p ∈M such that there
exists a chart with boundary (U,ϕ) and p ∈ U , ϕ(p) ∈ Rn0 . The interior of M is de�ned as I(M) = M/∂M .

A smooth manifold with empty boundary is said to be boundaryless, and in this case we recover the usual
De�nition 2.1.3 of a smooth manifold.

The di�erentiable structure of a manifold with boundary M induces a di�erentaible strucuture both on ∂M
and on I(M). They become smooth manifolds without boundary respectively of dimension n− 1 and n.

Classical examples of manifold with boundaries are the disk, whose boundary is a circle and the three-
dimensional ball, whose boundary is a 2-sphere.
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C
Basics in complex linear algebra

Let V be a real vector space such that dim(V ) = n, and denote
√
−1 = i. A complex vector space is naturally

associated to V : it is the complexi�cation of V

V C = {(v, w) ∈ V ⊕ V | v, w ∈ V } (C.1)

It is convenient to denote the elements of V C in the following way

(v, w) ≡ v + iw ∀ v, w ∈ V (C.2)

A complex vector space structure is immediately given on V C if one de�ne the sum

(v1 + iw1) + (v2 + iw2) = (v1 + v2) + i(w1 + w2) ∀ v1, v2, w1, w2 ∈ In (C.3)

and the scalar multiplication for λ = a+ ib ∈ C and a, b ∈ R

λ(v + iw) ≡ (a+ ib)(v + iw) = (av − bw) + i(aw + bv) ∀ v, w ∈ In (C.4)

Each vector v ∈ V C can be uniquely written as a sum of the form v = v1 + iv2, where v1, v2 ∈ V . We will
denote by <e(v) = v1 and =m(v) = v2 the real and immaginary parts of v.

An important involutive operation is naturally de�ned in V C: the conjugation

· : V C → V C

v 7→ v = <e(v)− i=m(v) (C.5)

The conjugation is an involution, since v = v and it is R-linear but it is not C-linear.

In particular we can identify Cn ∼= R2n via the map

(z1, . . . , zn) 7→ (<e(z1), . . . ,<e(zn),=m(z1), . . . ,=m(zn)) (C.6)

where zi = <e(zi) + i=m(zi) for each i ∈ In. In this framework we can rewrite the conjugation as an endomor-
phism j : R2n → R2n such as

v 7→ v′ = jv (C.7)

where j is the 2n× 2n matrix

j =

(
0 −1n
1n 0

)
(C.8)

Let us now recall some notions of the elementary holomorphic functions. Let U ⊆ Cn be an open set. De�ne
xµ = <e(zµ) and yµ = =m(zµ), where µ ∈ In, so that zµ = xµ + iyµ.

Now consider the set C∞C (U) = {f : U → C| f is smooth}. Then de�ne the operators on C∞C (U)

∂

∂zµ
=

1

2

(
∂

∂xµ
− i ∂

∂yµ

)
∂

∂zµ
=

1

2

(
∂

∂xµ
+ i

∂

∂yµ

)
µ, µ ∈ In (C.9)
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where it is evident that
∂

∂zµ
=

∂

∂zµ
(C.10)

The set {
∂

∂zµ
,
∂

∂zµ

}
µ∈In

(C.11)

contains 2n indipendent vectors.

Let f ≡ f(z, z) ∈ C∞C (U). Then if u = <e(f) and v = =m(f), we can write the Cauchy-Riemann relations
in the simple form

∂f

∂zµ
= 0 ⇔ ∂u

∂xµ
− ∂v

∂yµ
+ i

(
∂v

∂xµ
+

∂u

∂yµ

)
= 0 µ, µ ∈ In

⇔ ∂u

∂xµ
− ∂v

∂yµ
= 0 and

∂v

∂xµ
+

∂u

∂yµ
= 0 µ ∈ In (C.12)

A map f ∈ C∞C such that ∂f
∂zµ = 0 is a holomorphic map and it doesn't depend on zµ. On the contrary a map

f ∈ C∞C such that ∂f
∂zµ = 0 is an antiholomorphic map and it doesn't depend on zµ. Also, the coordinates zµ

are called holomorphic coordinates while the coordinates zµ are called antiholomorphic coordinates.

After having used the identi�cation in Equation (C.6) it's immediate to see that the holomor�city of a
function f : R2n ⊃ U → R2n is equivalent to the condition

j ◦ f∗(z) = f∗(z) ◦ j ∀ z ∈ U (C.13)
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Chern classes

As we have seen, given two smooth manifolds E,M and a �ber F , we can construct many �ber bundles, de-
pending on the choice of the transition functions. Naturally we can ask if there exists a way to measure how
much a generic bundle E is di�erent from the trivial one M × F constructed with the same base manifold M
and the same �ber F of E itself. The needed tool to achieve this purpose are the characteristic classes, namely
suitable subsets of the cohomology classes over the base space M , which precisely measure the non-triviality of
bundles. In this context it is important to notice that a �ber bundle is a topological object since the projection
π which de�nes it is not a di�eomorphism but only a surjiection.

To understand the need for introducing the Chern classes, we need to recall some concept in elementary
geometry. We have already recalled the Euler characteristic in Section ??, which is de�ned, for a polyhedron
as

χ = V − L+ F (D.1)

where V = ] of vertices, L = ] of edges, F = ] of faces. This formula can be extended to general compact smooth
manifolds, since χ turns out to be a combination of the Betti numbers for real manifolds, or a combination
of the Hodge numbers for complex manifolds. One of the main theorems of geometry - the Gauss-Bonnet
Theorem - tells us that the total curvature of a compact manifold is given, for a compact and boundaryless
smooth surface Σ by ∫

Σ

KdΣ = 2πχ(Σ) (D.2)

where K is the Gaussian curvature, i.e. the product of the two principal curvatures (namely the maximum and
the minimum curvatures). The total curvature is an intrinsic object of the surface.

It can be understood by giving some simple examples. Let us consider a �at rectangular sheet of paper.
We expect that its curvature is zero, and in e�ect it is so. Now try to construct a cylinder from the �at sheet
of paper. We can do it simply by identifying the point on two opposite edges of the sheet. The two principal
curvatures will be 0 and 1 (let us construct a cylinder of radius 1). This means that the total curvature of
the cylinder is 0 × 1 = 0. This is surprisingly: the total curvature of the cylinder is zero as well as the total
curvature of the �at sheet of paper.

The geometrical meaning of this puzzling is that the distance between two �xed points on the �at sheet
of paper remains the same both before to roll it (to become a cylinder) and after. Instead a sphere has total
curvature 4π, that means that there is no way to "transform" it into a �at sheet without stretching or twisting
it. In general each continuous transformation keep the total curvature constant.

Moreover it's easy to be computed if one remembers that χ = 2− 2g for a surface, where g is the genus of
the surface (g = 0 for the sphere, while g = 1 for the torus).

The attempt to generalize the Gauss-Bonnet Theorem lead us to the Chern classes. In fact, as we will see,
the higher non-vanishing Chern class (that in the case of complex surfaces is the �rst one) is always the Euler
characteristic.
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In particular we can notice a substantial di�erence between the sphere and the torus, that explains us the
reason why the �rst Chern class of the torus vanishes, while the �rst Chern class of the sphere is di�erent from
0. The reason is that on a sphere it's not possible to de�ne a non-vanishing smooth vector �eld, a notorius fact
(see Figure D.1) which is known as the impossibility to comb the hair on a sphere. For surfaces which present
such a kind of singularities, the �rst Chern class can not vanish. On the other hand, the torus has not such
obstruction like that, as it's evident from Figure D.1. Thus its �rst Chern class is zero.

Figure D.1: You can not comb the hair on a sphere, but you can do it on a torus.

The framework in which we will move in the present Section is given by a complex vector bundle E of rank
rk(E) = n over the base space M whcih is a smooth manifold of dimension dim(M) = m. Its structure group
is naturally GL(n,C). Let us start with the fundamental

De�nition D.0.4. If P (Adg(y1), . . . , Adg(yn)) = P (y1, . . . , yn) with g ∈ G and yj ∈ g ∀ j ∈ In, then it is a
symmetric invariant polynomial. If yj = y ∀ j ∈ In, then P is a invariant polynomial of degree n

P (y, . . . , y) ≡ P (yn) (D.3)

An example of invariant polynomial is immediately given by the symmetrized trace

P (y1, . . . , yn) = str(y1, . . . , yn) =
1

n!

∑
P∈P

tr(yP (1) . . . yP (n)) (D.4)

where P denotes the permutation group of the n elements (1, . . . , n).

Since we are interested in objects as the local connection and the local curvature, we have to extend the
de�nition of invariant polynomial to Lie algebra valued forms. If xj = yj ⊗ ωj ∈ g ⊗ ΛpjT ∗Uα (see Section
2.2.2), then we simply have

P (x1, . . . , xn) = P (y1 ⊗ ω1, . . . , yn ⊗ ωn) = ω1 ∧ · · · ∧ ωn P (y1, . . . , yn) (D.5)

For example we have

str(x1, . . . , xn) = str(y1 ⊗ ω1, . . . , yn ⊗ ωn) = ω ∧ · · · ∧ ω str(y1, . . . yn) (D.6)

Let A be a gauge connection over E and F = dA + A ∧ A be its related local curvature two-form. Let A

and F take their values in the Lie algebra g of the gauge group G, which is in turn a subgroup of the structure
group GL(n,C). The importance of the invariant polynomials resides in the following Proposition

Proposition D.0.1. Let P be an invariant polynomial. The P (F) satis�es

1. dP (F) = 0

2. P (F1)− P (F2) = dQ

where Fj is the curvature two-form associated to the connection one-form Aj . Finally we can give

De�nition D.0.5. The total Chern class of E is

c(E) = det

(
1 +

i

2π
F

)
(D.7)



133

It's evident that c(E) is the direct sum of forms of even degrees. i.e.

c(E) = 1 + c1(E) + c2(E) + . . . (D.8)

Coe�cients ck(E) are the Chern forms. One can prove that Equation (D.7) is an invariant polynomial. Then
from Proposition D.0.1 we get that each term in the development of Equation (D.7) must vanishes indipendently,
so that Chern forms are closed. Consequently they de�ne the Chern classes

[ck(E)] ∈ H2k(M,R) (D.9)

Even if the de�nition of Chern classes relies to a speci�c connection one-form A over E, 2. in Proposition D.0.1
tells us that the di�erence between Chern forms derived from di�erent connections over E is always an exact
form. Then the Chern class isn't modi�ed by a change in the choice of the connection. Obviously di�erent
connections lead to di�erent representatives of the cohomology classes [cj(E)]. Moreover, since F is a two form,
if dim(E) = n, then cj(E) = 0 ∀ 2j > n. In any case, independently of dim(M), the last cj(E) 6= 0 is
ck(E) = det

(
i

2πF
)
, thus cj(E) = 0 ∀ j > k.

Now we will give a method which allow us to �nd explicitly and easily Chern forms for the general complex
vector bundle E. Let F be the curvature two-form, and let g ∈ GL(n,C) be the matrix which diagonalizes F,
i.e.

Adg

(
i

2π
F

)
= diag(x1, . . . , xn) ≡ D (D.10)

where x1, . . . , xn are suitable two-forms. We can write the total Chern class as

c(E) = det

(
1 +

i

2π
F

)
= det(1 +

i

2π
D) = det (diag(1 + x1, . . . , 1 + xn)) =

=

n∏
j=1

(1 + xj) = 1 + (x1 + · · ·+ xn) + (x1x2 + · · ·+ xn−1xn) + · · ·+ (x1x2 . . . xn−1xn) =

= 1 + Tr(A) +
1

2
{(Tr(A)2 − Tr(A2))}+ · · ·+ detA (D.11)

From this expansion we immediately understand why the last ck(E) 6= 0 is det
(
i

2πF
)
. Thus, using that

det (1 + F) is an invariant polynomial and then that det
(
1 + i

2πF
)

= det
(
1 + i

2π gFg
−1
)

= det (1 +D), we get

c0(E) = 1 (D.12)

c1(E) = Tr(D) = Tr

(
i

2π
gFg−1

)
=

i

2π
Tr(F) (D.13)

c2(E) =
1

2
{(Tr(D))2 − Tr(D2)} =

1

2

(
i

2π

)2

{Tr(F) ∧ Tr(F)− Tr(F ∧ F)} (D.14)

...

ck(E) = detD =

(
i

2π

)2

detF (D.15)

Furthermore we can de�ne the Euler characteristic of the bundle E as the top Chern class, namely

ck(E) = χ(E) k is the top index (D.16)

In particular, for Riemann surfaces c1(E) = χ(E), as we mentioned at the beginning of the Section.

Moreover we can give some of the most important features of the Chern classes, namely

Proposition D.0.2. Let E,E′ be two complex vector bundles over the smooth manifold M , with structure
group GL(n,C), and let f : M → N be a smooth map between two smooth manifolds. Then the following
properties hold

1. c(E) = 1 if E is a trivial bundle.

2. c(f∗E) = f∗c(E).

3. c(E ⊕ E′) = c(E) ∧ c(E′).
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