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Introduction

A matrix polynomial [44], also known as a polynomial matrix [38] or some-
times as a λ-matrix [70], is a polynomial whose coefficients are matrices; or,
equivalently, a matrix whose elements are polynomials.

Consider the n× n square matrix polynomial of degree k

P (x) =
k∑

j=0

Pjx
j

and let p(x) := detP (x) be a scalar polynomial of degree N ≤ nk.

If P (x) is regular, that is if p(x) is not identically zero, the polynomial
eigenvalue problem (PEP) associated with P (x) is equivalent to the computation
of the roots of the polynomial p(x); such roots are called the eigenvalues of the
regular matrix polynomial P (x). Sometimes, one is also interested in computing
the corresponding (left and right) eigenvectors.

Recently, much literature has been addressed to the polynomial eigenvalue
problem. This line of research is currently very active: the theoretical properties
of PEPs are studied, and fast and numerically stable methods are sought for
their numerical solution. The most commonly encountered case is the one of de-
gree 2 polynomials (see, e.g., [39, 40, 49, 52] and the survey [105]), but there ex-
ist applications where higher degree polynomials appear (see, e.g., [63, 85, 87]).
More generally, PEPs are special cases belonging to the wider class of nonlinear
eigenvalue problems; a survey of nonlinear eigenvalue problem can be found,
e.g., in [46, 85], while in [7] a collection of selected nonlinear eigenproblems is
presented in order to serve as a benchmark to test new algorithms. Amongst
nonlinear eigenvalue problems, rational eigenvalue problems [85] can be imme-
diately conducted to polynomial form, multiplying them by their least common
denominator; truly nonlinear eigenvalue problems may be approximated with
PEPs, truncating some matrix power series, or with rational eigenproblems,
using rational approximants such as Padé approximants.

To approximate numerically the solutions of PEPs, several algorithms have
been introduced based on the technique of linearization where the polynomial
problem is replaced by a linear pencil with larger size and the customary meth-
ods for the generalised eigenvalue problem, like for instance the QZ algorithm
[88], are applied. For more details, see for instance [60, 77, 78, 105] and the
references therein. Some algorithms that have appeared in the literature are
able to avoid the linearization step; we may cite for instance [64, 65, 69, 98].
Also, doubling algorithms such as cyclic reduction [11, 17] or SDA [18, 50] can
be adapted to solve certain kinds of PEPs.
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This thesis is addressed to the design and analysis of algorithms for the
polynomial eigenvalue problem based on a root-finding approach. A root-finder
will be applied to the characteristic equation p(x) = 0. In particular, we will
discuss algorithms that use the Ehrlich-Aberth iteration [1, 14, 27].

The Ehrlich-Aberth iteration (EAI) is a method that simultaneously approx-
imates all the roots of a (scalar) polynomial. It appeared for the first time in
[14]. Subsequently, it has been discovered again independently in [1] and [27].
Its theoretical properties in terms of local convergence order are analysed in the
books [81, 96]. An efficient implementation of the EAI for scalar polynomials,
combined with various techniques based on theoretical results such as the Ger-
schgorin and Rouché theorems, is described in [8, 9]. Applications of the EAI
to tridiagonal eigenvalue problems were presented in [10, 97].

In order to adapt the EAI to the numerical solution of a PEP, we propose a
method based on the Jacobi formula [45]; two implementations of the EAI are
discussed, of which one uses a linearization and the other works directly on the
matrix polynomial. The algorithm that we propose has quadratic computational
complexity with respect to the degree k of the matrix polynomial. This leads
to computational advantage when the ratio k2/n, where n is the dimension of
the matrix coefficients, is large. Cases of this kind can be encountered, for
instance, in the truncation of matrix power series [111]. If k2/n is small, the
EAI can be implemented in such a way that its asymptotic complexity is cubic
(or slightly supercubic) in nk, but QZ-based methods appear to be faster in
this case. Nevertheless, experiments suggest that the EAI can improve the
approximations of the QZ in terms of forward error, so that even when it is not
as fast as other algorithms it is still suitable as a refinement method.

The EAI does not compute the eigenvectors. If they are needed, the EAI
can be combined with other methods such as the SVD or the inverse iteration.
In the experiments we performed, eigenvectors were computed in this way, and
they were approximated with higher accuracy with respect to the QZ.

Another root-finding approach to PEPs, similar to the EAI, is to apply
in sequence the Newton method to each single eigenvalue, using an implicit
deflation of the previously computed roots of the determinant [37, 70] in order
to avoid to approximate twice the same eigenvalue. Our numerical experience
suggests that in terms of efficiency the EAI is superior with respect to the
sequential Newton method with deflation.

Specific attention concerns structured problems where the matrix coefficients
Pj have some additional feature which is reflected on structural properties of
the roots. For instance, in the case of T-palindromic polynomials [71, 100],
where Pj = PT

k−j ∈ Cn×n, the roots are encountered in pairs {x, 1/x}. In this
case the goal is to design algorithms which take advantage of this additional
information about the eigenvalues and deliver approximations to the eigenvalues
which respect these symmetries independently of the rounding errors. Within
this setting, we study polynomials endowed with specific properties like, for
instance, palindromic, T-palindromic, Hamiltonian, symplectic, even/odd, etc.,
whose eigenvalues have special symmetries in the complex plane [30, 71, 75,
77, 83, 86, 87, 100, 107]. In general, we may consider the case of structures
where the roots can be grouped in pairs as {x, f(x)}, where f(x) is any analytic
function such that f(x) = f−1(x) [12, 41].

We propose a unifying treatment of structured polynomials belonging to
this class and show how the EAI can be adapted to deal with them in a very
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effective way. Several structured variants of the EAI are available to this goal:
they are described in this thesis and in [12, 42, 92]. All of such variants enable
us either to compute only a subset of eigenvalues or to solve another PEP
linked to the original one and with fewer eigenvalues. The sought spectrum
is then recovered by means of the symmetries satisfied by the eigenvalues. By
exploiting the structure of the problem, this approach leads to a saving on
the number of floating point operations and provides algorithms which yield
numerical approximations fulfilling the symmetry properties. Our research on
the structured EAI can of course be applied also to scalar polynomials: in the
next future, we plan to exploit our results and design new features for the
software MPSolve [9].

When studying the theoretical properties of the change of variable, useful
to design one of the structured EAI methods, we had the chance to discover
some theorems on the behaviour of the complete eigenstructure of a matrix
polynomial under a rational change of variable [93]. Such results are discussed
in this thesis.

Some, but not all, of the different structured versions of the EAI algorithm
have a drawback: accuracy is lost for eigenvalues that are close to a finite num-
ber of critical values, called exceptional eigenvalues. On the other hand, it turns
out that at least for some specific structures the versions that suffer from this
problem are also the most efficient ones: thus, it is desirable to circumvent the
loss of accuracy. This can be done by the design of a structured refinement
Newton algorithm [41]. Besides its application to structured PEPs, this algo-
rithm can have further application to the computation of the roots of any scalar
polynomial whose roots appear in pairs [48, 73].

In this thesis, we also present the results of several numerical experiments
performed in order to test the effectiveness of our approach in terms of speed and
of accuracy. We have compared the Ehrlich-Aberth iteration with the Matlab1

functions polyeig and quadeig [52]. In the structured case, we have also con-
sidered, when available, other structured methods, say, the URV algorithm by
Schröder [100]. Moreover, the different versions of our algorithm are compared
one with another.

All the numerical experiments discussed in this thesis have been performed
on the same machine, equipped with a CPU Intel Xeon 2.80GHz and a Linux
Debian 6.02 OS.

The structure of the thesis is the following: Chapter describes the notation
that is used throughout the following chapters. In Chapter 1, we recall basic
theoretical properties of polynomials, with specific emphasis on matrix poly-
nomials. In Chapter 2, the EAI for a generic PEP is described and analysed.
Chapter 3 is devoted to the development of some theory on the change of vari-
able for a matrix polynomials: amongst the theoretical results presented there,
there are some that will be used for the construction of one of the three kinds of
structured EAI (SEAI) algorithms that we propose. Such SEAI are the subject
of Chapter 4, while in Chapter 5 a structured Newton method is introduced for
the refinement of those close-to-exceptional eigenvalues that may have suffered
from a loss of accuracy. In Chapter 6 conclusions are drawn and a look is given
towards future research.

Original research contributions from the author of the thesis, as an author

1Matlab is a registered trademark of The MathWorks, Inc.
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or a coauthor, are found in the papers [12, 13, 41, 42, 92, 93].



List of symbols and
notations

We list in the following some notation we will use throughout the thesis.

• Z: a generic ring (with unity).

• 0Z : the identity element of the ring Z with respect to addition.

• 1Z : the identity element of the ring Z with respect to multiplication.

• F, K: generic fields. K is specifically used for algebraically closed fields,
while the closure of a field denoted by the symbol F depends on the con-
text. If α, β ∈ F and β−1 is the multiplicative inverse of β 6= 0F we will
sometimes use the notation α

β := αβ−1 = β−1α.

• F: the algebraic closure of the field F.

• C: the field of complex numbers.

• x∗: the complex conjugate of the complex number x ∈ C.

• R: the field of real numbers.

• Q: the field of rational numbers.

• N: the set of natural numbers and N0 := N− {0}.

• We formally define ∞ := 0−1
F and we write F∗ := F ∪ {∞}.

• Z[[x]]: the ring of formal power series in the variable x with coefficients
in the ring Z.

• Z[x]: the ring of univariate polynomials in the variable x with coefficients
in the ring Z.

• F[x]: the ring of univariate polynomials in the variable x with coefficients
in the field F. Given r1, r2 ∈ F[x] we say that r1 divides r2 and write r1|r2
if there exists an r3 ∈ F[x] such that r2 = r1 · r3.

• F(x): the field of rational fractions with coefficients in the field F.

9
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• Given m,n ∈ N0, Z
m×n: the set of the m×n matrices with entries in the

ring Z. In particular, three commonly encountered cases will be: Fm×n,
the set of the m × n matrices with entries in the field F; (F[x])m×n, the
set of the m × n matrices with entries in the polynomial ring F[x]; and
(F(x))m×n, the set of the m× n matrices with entries in the field F(x).

• Given P (x) ∈ (F[x])m×n and x0 ∈ F, P (x0): the matrix belonging to
Fm×n obtained evaluating each entry in P (x) at x = x0.

• Fm×n[x]: the set of matrix polynomials with coefficients in Fm×n. Such
objects can equivalently be seen as matrices whose entries are polynomials
with coefficients in F, that is Fm×n[x] = (F[x])m×n.

• If A ∈ Zm×n, Aij ∈ Z: the entry in the ith row and jth column of A.
Sometimes the alternative notation A(i, j) is used.

• If A ∈ Zm×n, A(i1 : i2, j1 : j2) ∈ Z(1+i2−i1)×(1+j2−j1): the submatrix of
A with rows from i1 to i2 and columns from j1 to j2.

• Zm: the set of vectors with m elements in Z, denoted by Zm.

• Given some vectors v1, . . . , vs ∈ Zm, span({v1, . . . , vs}) ⊆ Zm: the vector
space of all the vectors w = V c, where V = [v1, . . . , vs] ∈ Zm×s and
c ∈ Zs.

• If A ∈ Fm×n, kerA ⊆ Fn: the vector space of all vectors w such that
Aw = 0Fm .

• AT : the transpose of the matrix A.

• AH : the conjugate transpose of the matrix A.

• Mn(Z) := Zn×n. If Z is commutative, the determinant of A ∈ Mn(Z) is
defined as usually and denoted by detA ∈ Z.

• δij : the Kronecker delta, defined as δij = 1F if i = j and δij = 0F if i 6= j.

• Given n := min(m, p) andD1, . . . , Dn ∈ Z, the matrix diag(D1, . . . , Dn) :=
Diδij ∈ Zm×p. Notice that we use this notation and speak of a diagonal
matrix also whenm 6= p. However, when we do not specify the dimensions,
it is agreed that diag(D1, . . . , Dn) := Diδij ∈ Zn×n.

• In: the identity matrix of dimension n, defined as diag(1F, . . . , 1F).

• 0n: the zero matrix of dimension n, whose n2 entries are all equal to 0F.

• Given A ∈ ZnA×mA , B ∈ ZnB×mB , A ⊕ B ∈ Z(nA+nB)×(mA+mB) is the
direct sum of A and B, defined as the block matrix [A 0

0 B ].

• Given A ∈ ZnA×mA , B ∈ ZnB×mB , A⊗B ∈ Z(nAnB)×(mAmB): the tensor
product (or Kronecker product) of A and B, defined as the matrix such
that (A⊗B)(i−1)nB+k,(j−1)mB+` = Ai,jBk,`.
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• Some Matlab-like notations used inside pseudocode to describe algorithms:
zeros(m,n) calls the m × n zero matrix; eye(n) calls the n × n identity
matrix; ones(m,n) calls an m × n matrix with all elements equal to 1;
given a two-element vector y, planerot(y) returns the 2×2 unitary matrix
M such that My = [?, 0]T where ? is any complex number.
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Chapter 1

Basic facts on polynomials

This chapter is devoted to recalling some definitions that will be important in
the subsequent chapters. We also expose some basic results on polynomials in
general and on matrix polynomials in particular. Some of the facts that we
recall in this chapter are provided without citation, because they are classical
results that are found in algebra textbooks. We mention, for instance, [74, 108].

1.1 Scalar polynomials: degree, grade, greatest
common divisor

Let Z be a ring, and consider a sequence (ai)i ⊂ Z. An element z =
∑∞

i=0 aix
i ∈

Z[[x]] is called a polynomial if either ai = 0Z ∀i, or there exists an index k
such that ak 6= 0Z and ai = 0Z ∀ i > k. In the former case we say that z is
the zero polynomial and write z = 0Z[x]. If on the contrary z 6= 0Z[x] we say
that k is the degree of z, and sometimes write k = deg z. Moreover, we formally
define deg 0Z[x] = −∞ and by convention we agree that −∞ + (−∞) = −∞,
−∞+m = −∞ and −∞ < m ∀m ∈ N; the following properties hold.

Proposition 1.1. If z1, z2 ∈ Z[x], then:

1. (product) deg(z1z2) ≤ deg z1 +deg z2, and deg z1z2 = deg z1 +deg z2 if Z
is a domain (i.e. has neither left nor right divisors of the zero element);

2. (sum) deg(z1 + z2) ≤ max(deg z1,deg z2), and if one also assumes that
deg z1 6= deg z2 then deg(z1 + z2) = max(deg z1,deg z2).

Proof. Suppose first that both z1 and z2 are nonzero. Let k1 = deg z1,
k2 = deg z2, K = k1 + k2 and M = max(k1, k2). Write z1 =

∑∞
i=0 aix

i and
z2 =

∑∞
i=0 bix

i. One has z1 + z2 =
∑∞

i=0 six
i and z1z2 =

∑∞
i=0 pix

i, with

si = ai + bi and pi =
∑i

j=0 ajbi−j . Therefore i > K implies that pi = 0Z , while
if there are no zero divisors then pK = ak1bk2 6= 0Z . Finally, i > M implies
that si = 0Z . If deg z1 = deg z2, then it may be possible that sM = 0Z (if
aM + bM = 0Z); otherwise, this is impossible, since one and only one between
aM and bM is nonzero.

If the two considered polynomials are not both nonzero, suppose without
any loss of generality that z2 = 0Z[x]. Then z1 · 0Z[x] = 0Z[x] · z1 = 0Z[x]

13



14 CHAPTER 1. BASIC FACTS ON POLYNOMIALS

and z1 + 0Z[x] = 0Z[x] + z1 = z1. Recalling the formalism we adopted for the
operations with −∞, this completes the proof.

On the other hand, if z ∈ Z[x] and we pick any g ≥ k = deg z, we can
write z =

∑g
i=0 aix

i. We say that g is the grade [76] of z, and sometimes write
g = grade(z). We underline that the choice of any g ≥ k is arbitrary, and that
g = k if and only if ag 6= 0Z . When not otherwise specified, we also agree by
convention that if z1, z2 ∈ Z[x] and if g1 = grade(z1), g2 = grade(z2), then
grade(z1 · z2) = g1 + g2 and grade(z1 + z2) = max(g1, g2).

Remark 1.1. In some sense, the degree of a polynomial is an intrinsic prop-
erty while the grade depends on its representation. Informally speaking, the
grade depends on how many zero coefficients one wishes to add in front of the
polynomial.

Let now g be the grade of z =
∑g

i=0 aix
i ∈ Z[x]. The reversal of z with

respect to its grade [43, 76] is

Revgz :=

g∑
i=0

ag−ix
i. (1.1)

In the following, the subscript g will sometimes be omitted when the reversal
is taken with respect to the degree of the polynomial, that is Revkz =: Revz.
Notice moreover that, if Z = F is a field and if we think of z as a function
z(x) : F → F, then the reversal with respect to g can be written as

Revgz(x) = xgz(x−1).

If we consider univariate polynomials with coefficients not just in a generic
ring, but in a field F, then F[x] is a principal ideal domain (the reverse impli-
cation is also true, that is Z[x] is a principal ideal domain if and only if Z is
a field). Furthermore, F[x] is also a Euclidean ring. This well-known property
will be crucial in Chapter 3. In particular, the concept of greatest common
divisor can be defined in any principal ideal domain. Take any z ∈ F[x], with
deg z = k. We can still write z =

∑g
i=0 aix

i for any g ≥ k. We say that z is
monic if ak = 1F. Given z1, z2 ∈ F[x], not both zero, we define their greatest
common divisor z3 as the monic polynomial with largest possible degree such
that z3|z1 and z3|z2. We write z3 = GCD(z1, z2). Notice that the requirement
that GCD(z1, z2) is always monic guarantees the uniqueness of the GCD. If
GCD(z1, z2) = 1F[x] we say that z1 and z2 are coprime.

1.2 Matrix polynomials (a.k.a. polynomial ma-
trices)

A matrix polynomial can be informally defined as a polynomial whose coeffi-
cients are matrices.

More formally, let us denote by Zm×n the set of m×n matrices with entries
in the ring Z. We denote by (Zm×n)[x] the set of univariate matrix polynomials
in the variable x with coefficients in Zm×n. The particular case n = 1 is referred
to as polynomial vector, and is denoted simply by Zm[x].
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Notice that Zm×n is a group together with the operation of addition (and,
in particular, it has a zero element) but, in general, it is not a ring (unless
m = n). Nevertheless, many of the concepts introduced in Section 1.1 can be
easily adapted to the matrix case, also for m 6= n.

In particular, the notions of grade and degree of a scalar polynomial can be
extended in a straightforward way to matrix polynomials, by noticing that they
can be seen as matrices whose entries are polynomials: the grade (resp., the
degree) of A ∈ (Zm×p)[x] is defined as max

i,j
grade(Aij) (resp., as max

i,j
degAij).

Analogously, the reversal of a matrix polynomial is defined just as in (1.1), after
replacing ai ∈ Z with Bi ∈ Zm×n.

In this thesis we will be specially concerned with the situation where the un-
derlying ring Z is actually some field F, and in particular to the most commonly
met case of F = C. If A ∈ Fm×n[x] is a matrix polynomial, it can obviously also
be seen as function A(x) : F → Fm×n. Some caution must be used in this sense
when F is a finite field, because it may happen that two different polynomials
coincide as functions over F, e.g. 0 and x2 + x if F = F2.

Remark 1.2. A simple but important observation is that a matrix polynomial
can also be seen as a polynomial matrix, defined as a matrix whose entries are
polynomials. In other words, (Fm×n)[x] = (F[x])m×n. The matrix polynomial
point of view is more useful when working on the numerical solution of polyno-
mial eigenvalue problems, while the polynomial matrix point of view turns out
to be the better tool when dealing with algebraic properties. In this thesis, we
will freely switch between the two.

A matrix polynomial (or, equivalently, a polynomial matrix) is said to be
square ifm = n or rectangular otherwise. The set of square polynomial matrices
of dimension n with elements in a ring Z is denoted my Mn(Z). In particular,
the ring of square polynomial matrices of dimension n with elements in F[x] is
denoted byMn(F[x]). It is a ring when equipped with the operations of addition
and matrix multiplication.

Since a matrix polynomial is also a polynomial matrix, it can be seen as a
matrix with elements in a particular ring. If we introduce the field of fractions
F(x), we can go even further and apply to matrix polynomials all the classical
results in matrix theory for matrices with elements in a field. In particular
the following are valid for matrices whose entries are rational functions and, a
fortiori, for matrix polynomials:

• the function rank, rank : (F(x))m×n → N and the function determinant,
det :Mn(F(x)) → F(x), are defined in the usual sense;

• the operation of transposition is also defined as usually, and it is denoted
by the superscript T , so A(x) ∈ (F(x))m×n ⇔ [A(x)]T ∈ (F(x))n×m;

• if A(x) ∈ Mn(F(x)) has full rank, then there exists a unique inverse,
denoted by (A(x))−1, such that A(x)(A(x))−1 = (A(x))−1A(x) = In,
having defined the n× n identity matrix In := diag(1F(x), . . . , 1F(x)).

The determinant can be more in general defined for any square matrix with
elements in a commutative ring. In particular, it is clear that detP (x) ∈ F[x]
whenever P (x) ∈Mn(F[x]).
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Amatrix polynomial A(x) ∈Mn(F[x]) is said to be regular if detA(x) 6= 0F[x]
and singular otherwise. A(x) is regular if and only if its rank is n. Some authors
use the term “normal rank” when referring to the rank of a polynomial matrix
considered as an element of (F(x))m×n, reserving the word “rank” to constant
matrices, i.e. elements of Fm×n. We underline that in this thesis we do not
make this formal distinction, since it is quite natural to define the rank for
matrices with entries in F(x) and to consider, when necessary, constant matrices
as matrices with entries belonging to the subfield F.

A unimodular matrix polynomial is a square matrix polynomial which is reg-
ular and has constant determinant, i.e. A(x) ∈Mn(F[x]) s.t. 0F 6= detA(x) ∈ F.
Unimodular matrix polynomials allow to introduce the concept of equivalence
[44]. Let P1(x), P2(x) ∈ (F[x])m×n. If there exist two unimodular matrix poly-
nomials A(x) ∈ Mm(F[x]) and B(x) ∈ Mn(F[x]) such that A(x)P1(x)B(x) =
P2(x), then the two matrix polynomials P1(x) and P2(x) are said to be equiva-
lent. Furthermore, if there exist two constant nonsingular matrices A ∈Mm(F)
and B ∈Mn(F) such that AP1(x)B = P2(x), then we say that P1(x) and P2(x)
are strictly equivalent [72]. Notice that the adjugate of a square matrix polyno-
mial is again a matrix polynomial. However, in general, the inverse of a regular
square matrix polynomial, considered as an element of Mn(F(x)), is not a poly-
nomial. Unimodular matrix polynomials are an exception in this sense: they
have a polynomial inverse, since their determinant is a nonzero element of F.
We can thus conclude that both equivalence and strict equivalence are indeed
equivalence relations.

Finally, a polynomial matrix (or, more generally, a matrix with elements
in the field of fractions F(x)), can be thought of as a linear mapping between
two vector spaces. Namely, if A(x) ∈ (F(x))m×n, A(x) is a linear function
from F(x)n to F(x)m. Moreover, kerA(x) is defined as the set of all vectors
v(x) ∈ (F(x))n such that A(x)v(x) = 0.

1.2.1 Complete eigenstructure of a polynomial matrix

In the present subsection we will assume for the sake of simplicity that the
underlying field F is algebraically closed.

Let A ∈ (F [x])m×p, and let ν =: min(m, p). Suppose that there exist
D1, . . . , Dν ∈ F[x] such that Aij = Diδij , where δij is the Kronecker’s delta.
Then we write A = diag(D1, . . . , Dν), and we say that A is diagonal. Notice
that we use the notation indifferently for both square and rectangular polyno-
mial matrices.

An important theoretical result regards the equivalence of any polynomial
matrix to its Smith form [103]. Let us first recall what the Smith form is for a
square polynomial matrix.

Theorem 1.1. Let P (x) ∈Mn(F[x]). Then P (x) is equivalent to

S(x) = diag(d1(x), . . . , dn(x)),

where ∀i ≤ m di(x) ∈ F[x] is monic and di(x)|di+1(x) ∀i ≤ n− 1.

Such an S(x) ∈ Mn(F[x]) is called the Smith form [44] of P (x), and the
di(x) are called its invariant polynomials [38, 44]. The Smith form, and thus the
invariant polynomials, are uniquely determined by P (x). Notice that a square



1.2. MATRIX POLYNOMIALS (A.K.A. POLYNOMIAL MATRICES) 17

polynomial matrix P (x) is singular if and only if at least one of its invariant
polynomials is zero.

Let us consider a factorization of the invariant polynomials over F[x]: di(x) =∏
j [πj,(i)(x)]

kj,(i) , where πj,(i)(x) are monic prime factors. Using the fact that F
is algebraically closed, the factor (πj,(i)(x))

kj,(i) can be written as (x− x0)
kj,(i)

for some x0 ∈ F. Factors of this form are called the elementary divisors of P (x)
[38, 44] corresponding to the characteristic value x0 [38]. The properties of the
invariant polynomials imply that if i < j and (x−x0)

a is an elementary divisor
that is a factor of di(x) than there exists an integer b ≥ a such that (x− x0)

b is
a factor of dj(x).

Theorem 1.1, which in its most general form is due to Frobenius [36], is in
point of fact valid for any matrix, not necessarily square, with entries in any
principal ideal domain [38], [44]. Let us state the Theorem again, this time for
the more general case.

Theorem 1.2. Let P (x) ∈ (F[x])m×p. Then there exist two unimodular A(x) ∈
Mm(F[x]) and B(x) ∈Mp(F[x]) such that

S(x) = A(x)P (x)B(x) = diag(d1(x), . . . , dν(x)),

where ∀i ≤ ν := min(m, p) di(x) ∈ F[x] is monic and di(x)|di+1(x) ∀i ≤ ν − 1.

Once again S(x) is called the Smith form of P (x), and it is always uniquely
determined for any polynomial matrix P (x), either square or rectangular [44].
Therefore, the definitions of invariant polynomials, characteristic values and
elementary divisors given above can be immediately extended also to rectangular
polynomial matrices.

Let now V be a vector subspace of (F(x))m, with dimV = s. Let {vi}i=1,...,s

be a polynomial basis for V with the property deg v1 ≤ · · · ≤ deg vs. Often we
will arrange a polynomial basis in the matrix form V (x) = [v1(x), . . . , vs(x)] ∈
(F[x])m×s. Clearly, polynomial bases always exist, because one may start from
any basis with elements in the (vectorial) field of fractions, and then build a
polynomial basis just by multiplying by the least common denominator. Let
αi := deg vi be the degrees of the vectors of such a polynomial basis; the order
of V (x) is defined [34] as

∑s
i=1 αi. A polynomial basis is called minimal [34] if

its order is minimal amongst all the polynomial bases for V, and the αi are called
its minimal indices [34]. It is possible to prove [34, 38] that, although there is
not a unique minimal basis, the minimal indices are uniquely determined by V.

The right minimal indices [24] of a polynomial matrix P (x) ∈ (F[x])m×n

are defined as the minimal indices of kerP (x). Analogously, the left minimal
indices [24] of P (x) are the minimal indices of kerP (x)T .

Given the grade g of P (x), we say that ∞ is a characteristic value of P (x) if
0F is a characteristic value of RevgP (x). The elementary divisors corresponding
to ∞ are defined [53] as the elementary divisors of RevgP (x) corresponding to
0F; if x

` is an elementary divisor of RevgP (x) we formally write that (x−∞)`

is an infinite elementary divisor of P (x). Notice that the infinite elementary
divisors of a polynomial matrix clearly depend on the arbitrary choice of its
grade. Details are given in Proposition 3.2.

We are now in the position to define the complete eigenstructure [24] of P (x)
as the set of both finite and infinite elementary divisors of P (x) and of its left
and right minimal indices.

We conclude this section with a couple of examples.



18 CHAPTER 1. BASIC FACTS ON POLYNOMIALS

Example 1.1. Let F = Q. Consider the structured (its determinant is in fact a
(−1)-palindromic polynomial with grade of palindromicity 4: see Chapters 4 and
5 for the definition of κ-palindromic polynomials) matrix polynomial of grade 2

P (x) =

[
x x2

−1 4ix2+5x−4i
5

]
;

one has that detP (x) = (2x − i)(x − 2i)(2ix/5): therefore, P (x) is regular.

Moreover, A(x) = [ 0 1
1 x ] and B(x) =

[
−1 4x2−5ix−4

4

0 − 5i
4

]
are unimodular matrix poly-

nomials such that A(x)P (x)B(x) = S(x), where S(x) =
[
1 0
0 x3− 5i

2 x2−x

]
is the

Smith form of P (x). Furthermore, B(−x)TRevP (x)A(−x) = −S(−x), which
implies that

[
1 0
0 −1

]
S(−x) is the Smith form of RevP (x).

The conclusion is that the complete eigenstructure of this matrix polynomial
coincides with the elementary divisors x, x − 2i, x − i/2, x − ∞; we recall that
the latter formal expression means that there is an infinite elementary divisor
of degree 1, or in other words x is an elementary divisor for RevP (x).

Example 1.2. Suppose that F = C and consider the matrix polynomial of grade
2

P (x) =


−2 x+ 3 0 1 −1

2x2 − 2x− 4 6− 2x2 + 3x x 2− x2 x2 − 2
0 x2 − x+ 1 x2 − x x2 − x+ 1 x2 − x

2− 2x2 + 2x 2x2 − 4x− 2 −x x2 − 2x 1− x2

2 −1− x2 x− x2 1− x2 + x 1− x2 + x

 .
In order to investigate what the complete eigenstructure of P (x) is, let us first
notice that rank(P (x)) = 4. Therefore, P (x) is singular, with dimkerP (x) =
1. A right minimal basis is {[1, 0, 2, 0,−2]T }, while a left minimal basis is
{[2x − 4, 3, 2x − 1, 3, 2x − 1]T }. It can be checked that there exist a unimod-
ular polynomial A(x) and a unimodular polynomial B(x) such that S(x) =
A(x)P (x)B(x) = diag(1, 1, x, x4 − x3 − x2 + x, 0). An analogous analysis shows
that RevP (x) is equivalent to diag(1, 1, x, x4−x3−x2+x, 0). We can therefore
conclude that the complete eigenstructure of P (x) is made of the left minimal in-
dex 1, the right minimal index 0, the finite elementary divisors x, x, x+1, (x−1)2,
and the infinite elementary divisors x−∞, x−∞.

1.2.2 Root polynomials

In the present section we assume that the field F is algebraically closed.
Let P (x) ∈ Fm×n[x]. If {u1(x), . . . , us(x)} is a minimal basis for kerP (x),

we define kerx0 P (x) := span ({u1(x0), . . . , us(x0)}) ⊆ Fn. Notice that in
general kerx0 P (x) is a subset of kerP (x0). It is a proper subset when x0 is a
characteristic value of P (x), as is illustrated by the following example in which
F = C.

Example 1.3. Let

P (x) =


x 1 0 0
0 x 1 0
0 0 0 0
0 0 0 x

 .
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Then a right minimal basis for kerP (x) is {[1,−x, x2, 0]T }. Thus, ker0 P (x) =
span({[1, 0, 0, 0]T }). Evaluating the polynomial at 0, we get

P (0) =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 ,
so that kerP (0) = span({[1, 0, 0, 0]T , [0, 0, 0, 1]T }).

Remark 1.3. Notice that a minimal basis is not uniquely determined. Thus, it
may seem that the definition of kerx0 P (x) depends on the choice of the particular
minimal basis of kerP (x) that we have started from. This is not the case: in
fact, let V (x) be any different minimal bases of kerP (x), arranged in matrix
form. Since U(x) and V (x) span the same subspace of F(x)n, we can write
U(x)A(x) = V (x) for some A(x) ∈ F(x)s×s, with rank(A(x)) = s. It is known
[34] that U(x) is minimal if and only if the equation b(x) = U(x)a(x), b(x) ∈
F[x]n, implies a(x) ∈ F[x]s, and deg b(x) = maxi(deg ai(x) + νi). By applying
this lemma to each column of V (x), we find that every column of A(x) must
be a polynomial vector. Therefore, A(x) must be a polynomial matrix. It is
also known [34] that the greatest common divisor of all the s × s minors of a
minimal basis must be 1F. Since the minors of V (x) are equal to the minors of
U(x) multiplied by detA(x), we see that the minimality of both M(x) and N(x)
implies that A(x) must be unimodular.

This means that A(x0) is nonsingular for any x0 ∈ F. Therefore, U(x0) and
V (x0) = U(x0)A(x0) span the same subspace of Fn. Or, equivalently, the space
kerx0 P (x) depends only on P (x) and x0, but not on the choice of the minimal
basis in its definition.

Given w(x) ∈ (F[x])n and x0 ∈ F, suppose that w(x) = (x− x0)
iw(i)(x) for

some w(i)(x) ∈ (F[x])n if and only if i ≤ `. In this instance we say that x0 is a
zero of order ` for w(x).

The following definition [93] slightly modifies a definition given in [44] in
order to extend it to the case of singular and/or rectangular polynomial matri-
ces. A polynomial vector v(x) ∈ (F[x])n is called a root polynomial of order `
corresponding to x0 for P (x) ∈ Fm×n[x] if the following conditions are met:

1. x0 is a zero of order ` for P (x)v(x);

2. v0 := v(x0) 6∈ kerx0 P (x).

Observe that v0 ∈ kerx0 P (x) ⇔ ∃ w(x) ∈ kerP (x) ⊆ (F(x))n : w(x0) = v0.
In fact, let U(x) = [u1(x), . . . , us(x)]. Suppose that w(x) = U(x)c(x) for
some c(x) ∈ (F(x))s and that w(x0) = v0: then v0 = U(x0)c(x0) ∈ kerx0 P (x)

1.
Conversely, write v0 = U(x0)c for some c ∈ Fs and notice that U(x)c ∈ kerP (x).
Hence, condition 2. implies v(x) 6∈ kerP (x).

Root polynomials and Smith forms are related. In [44, Proposition 1.11] it is
shown that given three regular matrix polynomials P (x), A(x), B(x) ∈ Mn(x),
and if x0 is neither a root of detA(x) nor a root of detB(x), then v(x) is a

1To be more precise, we should prove that c(x0) ∈ Fs. So suppose this is false. Then there
exists an integer α ≥ 1 s.t. d(x) := (x−x0)αc(x) and 0 6= d(x0) ∈ Fs, so 0 = (x0−x0)αv(x0) =
U(x0)d(x0), absurd because U(x0) has rank s.
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root polynomial of order ` corresponding to x0 for A(x)P (x)B(x) if and only if
B(x)v(x) is a root polynomial of order ` corresponding to x0 for P (x).

The next theorem [93] shows that the result holds for a generic matrix poly-
nomial.

Theorem 1.3. Let P (x) ∈ Fm×n[x], A(x) ∈ Mm(F[x]) and B(x) ∈ Mn(F[x]).
Suppose that both A(x0) and B(x0), with x0 ∈ F, are full rank matrices. Then
v(x) is a root polynomial of order ` corresponding to x0 for A(x)P (x)B(x) if
and only if B(x)v(x) is a root polynomial of order ` corresponding to x0 for
P (x).

Proof. In [44], root polynomials are defined for regular square polynomial
matrices, so that condition 2. reduces to v(x0) 6= 0. Nevertheless, the proof
given in [44, Proposition 1.11] for condition 1. does not actually use the regu-
larity of P (x), and it is therefore still valid when P (x) is not a regular square
polynomial matrix. To complete the proof: v(x0) ∈ kerx0 A(x)P (x)B(x) ⇔
∃w1(x) ∈ kerA(x)P (x)B(x) : w1(x0) = v(x0) ⇔ ∃w2(x) ∈ kerP (x) : w2(x0) =
B(x0)v(x0) ⇔ B(x0)v(x0) ∈ kerx0 P (x). To build w2(x) from w1(x), simply
put w2(x) = B(x)w1(x) and use the fact that A(x) is regular. To build w1(x)
from w2(x), let (B(x))−1 be the inverse matrix (over F(x)) of B(x), which exists
because B(x) is regular; then, put w1(x) = (B(x))−1w2(x).

We say that the root polynomials corresponding to x0 v1(x), . . . , vs(x) are
x0-independent if v1(x0), . . . , vs(x0) are linearly independent. We now wish to
define a maximal set of x0-independent root polynomials [93]. Let the orders
of the x0-independent root polynomials v1(x), . . . , vs(x) be `1 ≤ · · · ≤ `s: then
they form a maximal set if the following conditions are met.

1. It is not possible to find another root polynomial corresponding to x0, say
vs+1(x), such that v1(x), . . . , vs(x), vs+1(x) are x0-independent; in other
words, there are no (s+ 1)-uples of x0-independent root polynomials cor-
responding to x0.

2. `s is the maximal possible order for the root polynomials of P (x) corre-
sponding to x0.

3. For all j = 1, . . . , s − 1, there does not exist a root polynomial v̂j(x) of

order ˆ̀
j > `j such that v̂j(x), vj+1(x), . . . , vs(x) are x0-independent.

The following theorem relates the elementary divisors and the root polyno-
mials of a given matrix polynomial. Its proof is implicitly contained in [44] for
the square and regular case and appears in [93] for the general case.

Theorem 1.4. P (x) ∈ (F[x])m×n has a maximal set of x0-independent root
polynomials, of orders `1, . . . , `s, if and only if (x−x0)

`1 , . . . , (x−x0)
`s are the

elementary divisors of P (x) associated with x0.

Proof. Let S(x) be the Smith form of P (x), and recall that the inverse of
a unimodular polynomial matrix is still a unimodular polynomial matrix [44].
Thus, in view of Theorem 1.3 and Theorem 1.2, it suffices to prove the thesis
for S(x). If S(x) is the zero matrix, it has neither a root polynomial nor an
elementary divisor, so there is nothing to prove. Otherwise, let ν be the maximal
value of i such that (S(x))ii 6= 0F[x] and for j = 1, . . . , n let ej ∈ (F[x])n be the
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polynomial vector such that (ej)i = δij . If ν < n, E := [eν+1, . . . , en] is a
minimal basis for kerS(x) and, being of order 0, also for kerx0 S(x).

Suppose that {v1(x), . . . , vs(x)} is a maximal set of x0-independent root
polynomials for S(x). Let k ≤ ν be the smallest index such that (vs(x0))k 6= 0F:
there must exist such an index because vs(x0) 6∈ kerx0 S(x). Let (S(x))kk =
(x − x0)

µθ(x), with GCD(x − x0, θ(x)) = 1F[x]. We have that (S(x)vs(x))k =
(x−x0)µθ(x)(vs(x))k. By definition, x0 must be a zero of order greater than or
equal to `s of the latter scalar polynomial. However, notice that its order must
be precisely `s: otherwise, ek would be a root polynomial of order higher than
`s, which is a contradiction because there cannot exist any root polynomials
of higher order than vs(x). Therefore, µ = `j . Then consider vs−1(x), which
by assumption is a root polynomial of maximal order `s−1 between all the root
polynomials that are x0-independent of vs(x). Let k

′ be the smallest index not
equal to k and such that (vs−1(x0))k′ 6= 0F. If such an index does not exist,
then vs−1(x0) is, up to a vector lying in kerx0 S(x), a multiple of ek and thus
`s−1 = `s: in this case, without any loss of generality, replace vs−1(x) with a
suitable linear combination of vs−1(x) and vs(x). Following an argument similar

as above, we can show that (S(x))k′k′ = (x− x0)
`s−1 θ̂(x), GCD(x− x0, θ̂(x)) =

1F[x]. Next, consider the root polynomial vs−2(x) of maximal order `s−2 between
all the root polynomials that are x0-independent of vs(x) and vs−1(x), and so
on until it is proved that the elementary divisors of S(x) associated with x0 are
(x−x0)`1 , . . . , (x−x0)`s . There cannot be other elementary divisors associated
with x0, otherwise dimkerS(x0)−dimkerx0 S(x) ≥ s+1, and therefore it would
be possible to find an (s + 1)-uple of x0-independent root polynomials, which
contradicts the hypothesis.

Conversely, assume that (x−x0)`1 , . . . , (x−x0)`s are the elementary divisors
of P (x) corresponding to x0. This means that we must have (S(x))νν = (x −
x0)

`sφ(x), with GCD(x − x0, φ(x)) = 1F[x]. Clearly, eν is a root polynomial of
order `s corresponding to x0 for S(x), and its order is maximal. Then we go on
with similar arguments, and it can be easily checked that {eν−s+1, . . . , eν} is a
maximal set of x0-independent root polynomials.

1.3 Polynomial eigenvalue problems

Assume now that the underlying field is C. For j = 0, . . . , k let Pj ∈ Cn×n,
Pk 6= 0, be constant matrices and consider the matrix polynomial

P (x) =
k∑

j=0

Pjx
j ∈Mn(C[x]).

Suppose moreover that P (x) is regular. The generalised polynomial eigenprob-
lem (PEP) associated with P (x) is to find an eigenvalue x0 such that there
exists a nonzero vector v0 ∈ Cn satisfying

P (x0)v0 = 0. (1.2)

If x0 is an eigenvalue of P (x), then the set {vj}j=0,...,` is called a Jordan
chain of length ` + 1 associated with x0 if v0 6= 0 and the following relations
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hold [44]:
j∑

i=0

P (j−i)(x0)

(j − i)!
vi = 0, j = 0, . . . , `, (1.3)

where P (k)(x0) denotes the k-th derivative of P (x) evaluated at x = x0. The
case j = 0 corresponds to the definition of an eigenvector.

Remark 1.4. The notion of a Jordan chain can be extended to any matrix
function F : C → Cn×n whose determinant vanishes at x0, as long as F (x) is
analytic in a neighbourhood of x0.

Let g ≥ k be the grade of P (x). It is agreed that, by definition, ∞ is
an eigenvalue of P (x) associated with the Jordan chain v0, . . . , v` if 0 is an
eigenvalue of RevgP (x) associated with the same Jordan chain.

It is easy to show that the eigenvalues are in fact the characteristic values
of P (x), while the eigenvectors and the Jordan vectors are related to the root
polynomials of P (x). The following theorem [44] gives the details.

Theorem 1.5. Let P (x) ∈ Mn(C[x]) be a square regular matrix polynomial,
and let C∗ := C ∪∞. Then

• x0 ∈ C∗ is an eigenvalue of P (x) if and only if it is a characteristic value
of P (x).

• {vj}j=0,...,` is a Jordan chain associated with x0 if and only if v(x) =∑`
j=0 vj(x− x0)

j is a root polynomial of order `+ 1 for P (x).

Proof. x0 can be an eigenvalue of P (x) if and only if P (x0) is singular. By
Theorem 1.2, this happens if and only if x0 is a characteristic value of P (x).

Now expand P (x) =
∑k

j=0 P
(j)(x0)(x − x0)

j . v(x) is a root polynomial of
order `+1 if and only if P (x)v(x) has a root of order `+1 at x0. By equating to
zero the coefficients of (x−x0)j in P (x)v(x) for j = 0, . . . , ` we obtain equations
(1.3).

If x0 is an eigenvalue, an interesting question to ask is what its geometric
multiplicity is, i.e. what is the number ν(x0) of the associated linearly indepen-
dent eigenvectors. Equivalently, ν(x0) is the maximal number of Jordan chains
corresponding to x0 whose eigenvectors are linearly independent. Theorem 1.4
and Theorem 1.5 allow us to deduce that ν(x0) is equal to the number of invari-
ant polynomials of P (x) that are divided by x−x0, or equivalently the number
of elementary divisors of P (x) that have the form (x − x0)

ki . The maximal
length of each of such Jordan chains is given by the values of the exponents
ki (sometimes called the partial multiplicities of P (x) at x0 [44]). If one starts
with a maximal set of x0-independent root polynomials, Theorem 1.5 shows
how to build a set of ν(x0) Jordan chains of maximal length and such that the
eigenvectors are linearly independent. Such a set is sometimes referred to as a
canonical set of Jordan chains [44].

On the other hand, it is clear that the algebraic multiplicity of x0 is equal to∑ν(x0)
i=0 ki. An eigenvalue is said to be semisimple if its algebraic multiplicity is

equal to its geometric multiplicity. If an eigenvalue is not semisimple, it is said
to be defective.
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Remark 1.5. In Chapter 4, we will often use the expression Jordan structure
of P (x) at x0 to refer to the number and maximal length of the Jordan chains
that form a canonical set associated with x0, or equivalently to the number and
the value of all the partial multiplicities at x0. From the discussion above it is
clear that the Jordan structure at x0 is completely determined by the exponents
k1, . . . , kν(x0) that appear in the elementary divisors (x−x0)k1 , . . . , (x−x0)kν(x0) .

A simple corollary of Theorem 1.5 is that x0 ∈ C is an eigenvalue if and only
if it is a root of the characteristic equation

detP (x) = 0. (1.4)

Moreover, by definition, ∞ is an eigenvalue of algebraic multiplicity m if and
only if deg detP (x) = gn −m, where n is the dimension of the square matrix
coefficients of P (x) and g is the grade of P (x). In the following chapters we will
always assume that g = k unless otherwise stated.

Notice that, in contrast to what happens in the classical eigenvalue problem,
eigenvectors corresponding to different eigenvalues are not necessarily all linearly
independent. In fact, an n × n matrix polynomial P (x) of degree k can have
as many as nk eigenvectors, while for obvious dimensional reasons no more
than n vectors can be linearly independent. Not even the Jordan vectors of a
given Jordan chain are necessarily independent. In fact, Jordan vectors are also
allowed to be zero. Moreover, in general they are not uniquely determined. The
following example illustrates this fact.

Example 1.4. Let P (x) =

[
(x− 1)4 x(x− 1)2

0 (x− 1)4

]
. Let us pick grade(P (x)) =

degP (x) = 4.
The only eigenvalue is 1. Since P (1) = 0, any vector in C2 is an eigenvector.

Let us first pick [ 01 ] as an eigenvector. Then {[ 01 ] , [
α
β ]} is a Jordan chain of

length 2 ∀ α, β ∈ C. If we pick the eigenvector [ 10 ], then for any possible choice
of the complex parameters γ, δ, ε, φ, ι, λ, µ the following is a Jordan chain of
length 6: {[ 10 ] , [

γ
0 ] ,

[
δ
−1

]
, [ ε

1−γ ] , [ φι ] ,
[
λ
µ

]
},

Remark 1.6. The notion of eigenvalues can be extended to a singular or a
rectangular P (x), by defining them as numbers x0 such that

kerx0 P (x) 6= kerP (x0).

Equivalently, x0 is an eigenvalue if

rankP (x0) < rankP (x).

The rank in the latter formula is to be interpreted as a function from (C[x])m×n

to N. In the left hand side of the inequality, it coincides of course with the rank
of P (x0) as an element of Cm×n.

As we have defined right eigenvectors and right Jordan chains, it is of course
possible to define left eigenvectors and left Jordan chains. For instance, a
nonzero row vector w ∈ C1×n is a left eigenvector of P (x) corresponding to
the eigenvalue x0 if wP (x0) = 0. Similarly, left Jordan chains can be defined.

We conclude the present subsection by recalling that also the notion of in-
variant subspaces can be generalised to matrix polynomials (or, even more in
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general, to analytic matrix functions). This leads to the concept of standard
pairs and standard triples of a matrix polynomial P (x) ∈Mn(C[x]) of degree k
[44]. Namely, a standard pair (T, V ), T ∈ Mkn(C), V ∈ Cn×nk, is a couple of
matrices such that

1. the nk × nk matrix U :=


V
V T
...

V T k−1

 is nonsingular;

2.
∑k

i=0 PiV T
i = 0.

Moreover, ifW = U−1

 0
...
0
In

, then (T, V,W ) is called a standard triple. A list of

properties of standard pairs and standard triples may be found in [44], while the
study of the special case of standard triples of structured matrix polynomials is
thoroughly pursued in [2]. The reader interested in the further generalization
to the so-called invariant pairs of matrix functions may refer to [57].

1.4 Linearizations

Let Q(x) ∈ (F[x])m×n be a matrix polynomial of grade g. Let M(x) = xX +Y ,
with X,Y ∈ F(m+p)×(n+p), be a matrix polynomial of degree 1 (sometimes
referred to as a pencil). We say that M(x) is a linearization of Q(x) if there
exists a number p ∈ N such that M(x) is equivalent to[

Q(x) 0
0 Ip

]
. (1.5)

Being equivalent to such an embedding of Q(x) in a larger polynomial ma-
trix, it is obvious that a linearization has the same finite elementary divisors
of the linearised polynomial. In fact, if SQ(x) is the Smith form of Q(x), it is
straightforward to show that the Smith form of diag(Q(x), Ip) is diag(Ip, SQ(x)).
Some bounds on the allowed values of the number p, and thus on the dimension
of linearizations, were obtained in [21].

Furthermore, the linearization M(x) is said to be strong whenever its rever-
sal, Rev(M(x)) = xY+X, is a linearization of Revg(Q(x)). Strong linearizations
preserve also infinite elementary divisors of the linearised polynomial. Notice
that the definition we just gave depends on the grade of the matrix polynomial,
which is arbitrary and whose choice change the infinite elementary divisors of
the polynomial (see Proposition 3.2 for more details). Consequently, if g1 and
g2, g1 > g2 ≥ k = degQ(x), are two different possible choices for the grade
of Q(x), then strong linearizations of Q(x) with respect to g1 and strong lin-
earizations of Q(x) with respect to g2 actually have different infinite elementary
divisors. Throughout the thesis, whenever we speak of a strong linearization of
a matrix polynomial without specifying the grade of the polynomial, it is tacitly
agreed that we are referring to a linearization that is strong with respect to the
degree of the matrix polynomial.

In the following, we will be specifically interested in the case F = C, and we
will focus on square regular matrix polynomials. It was proved in [21] that in
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such an instance all strong linearizations must have p = (g − 1)n. Since strong
linearizations provide the most desirable numerical properties, we will use in
the following the next, more restrictive, definition.

Let P (x) ∈ Mn(C[x]) be a regular square matrix polynomial of grade g. A
linearization of P (x) is defined as a pencil L(x) = xX+Y , with X,Y ∈ Cgn×gn,
such that there exist unimodular polynomial matrices E(x) and F (x) for which

E(x)L(x)F (x) =

[
P (x) 0
0 I(g−1)n

]
. (1.6)

Once again, this definition depends on the grade, and unless otherwise stated
we will assume that the grade is equal to the degree.

We will now recall some of the most important classes of linearizations,
starting with the well-known companion forms [44].

If P (x) =
∑g

i=0 Pix
i, the first companion linearization is:

Cf (x) =


In

In
. . .

Pg

x+


0n −In . . . 0n
...

. . .
. . .

...
0n . . . 0n −In
P0 . . . Pg−2 Pg−1

 , (1.7)

while the second companion linearization is

Cs(x) =


In

In
. . .

Pg

x+


0n . . . 0n P0

−In
. . .

...
...

...
. . . 0n Pg−2

0n . . . −In Pg−1

 . (1.8)

Several generalizations of companion pencils exist. Following the work of
[78], in the paper [59] the two (right and left) ansatz vector linearization spaces
are studied: having introduced the vector Λ := [1, x, . . . , xg−1]T , these spaces
are defined as follows:

L̂1 := {L = xX + Y : ∃v ∈ Cgs.t.L · (Λ⊗ In) = v ⊗ P (x)} (1.9)

L̂2 := {L = xX + Y : ∃w ∈ Cgs.t.(ΛT ⊗ In) · L = wT ⊗ P (x)}. (1.10)

Companion pencils (1.7) and (1.8) belong to these spaces.
It is shown in [78] that almost every pencil in L̂1 and L̂2 is a linearization,

while in [59] two binary operations on block matrices, called column shifted
sum and row shifted sum, are first introduced and then used to characterise the
above defined spaces.

In particular the following result [78, Theorem 4.3] holds.

Proposition 1.2. Let L(x) ∈ L̂1 (L̂2) and let P (x) be a regular matrix polyno-
mial. The following properties are equivalent:

• L(x) is a linearization of P (x);

• L(x) is a strong linearization of P (x);
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• L(x) is regular.

The linearization space DL := L̂1∩L̂2, characterised as the space of all block-
symmetric pencils, is also studied in [59, 78]. It has many interesting features,
such as elegant results about eigenvalue condition numbers [60]. Namely, in
[60] it was shown that some specific pencils within DL present particularly nice
properties with respect to conditioning.

Another generalization of companion pencils is realised by Fiedler pencils
and generalised Fiedler pencils. They have been first introduced for scalar
polynomials in [33], and then generalised and further studied in [5, 16, 22,
23]. Fiedler pencils (that include companion pencils as a special case) can also
be defined as linearizations of rectangular matrix polynomials [23]; moreover,
Fiedler linearizations are always strong [23].

Finally, it is possible to consider linearizations in polynomial bases different
than the usual ones. This subject will be analysed in more detail in Chapter 4.

We conclude this brief review on theoretical properties of linearizations by
mentioning that, when singular matrix polynomials are linearised, it is possible
to link the minimal indices of the linearization to the minimal indices of the
linearised polynomials. An extensive study of such properties has been recently
made. See [16, 22, 24].

Linearizations are important in numerical analysis, because the customary
approach for the numerical solution of polynomial eigenproblems consists in
two steps. First the matrix polynomial P (x) is linearised into a matrix pencil
L(x), and then the eigenvalues of L(x) are computed by some iterative solver.
The most common choice is the matrix QZ algorithm, introduced in [88] and
later refined in many ways (see, e.g., [47, 67, 109]). The QZ algorithm applied
to a companion linearization of P (x) is implemented in the Matlab function
polyeig. The use of (1.7) or (1.8), however, may not be the best choice in
terms of eigenvalue condition number [60]. There exist other pieces of software
– e.g. quadeig [52], specifically designed for matrix polynomials of grade 2 –
that we will mention in the thesis, and that also exploit a linearization of the
matrix polynomial.

In this thesis we will propose a different numerical approach, advantageous
in the case of high-degree matrix polynomials, that does not necessarily need a
linearization to compute the sought eigenvalues. If the dimension of the matrix
polynomial is high with respect to its degree, a linearization step is still useful
with our approach in order to achieve a competitive efficiency; yet, we stress
that in contrast to the classical approach this preliminary step is optional. This
allows to avoid any potential problem related to the use of linearizations.



Chapter 2

The Ehrlich-Aberth method
for polynomial eigenvalue
problems

The present chapter introduces a generalization of a root-finding method, known
as the Ehrlich-Aberth iteration, to polynomial eigenvalue problems.

It is based mainly on the paper [12]; the parts dealing with the implemen-
tation of the method via a linearization are taken from [42].

2.1 The Ehrlich-Aberth method for matrix poly-
nomials

Given two positive integers k, n and matrices Pj ∈ Cn×n, j = 0, . . . , k consider
the matrix polynomial

P (x) =
k∑

j=0

Pjx
j (2.1)

where Pk 6= 0, so that P (x) has degree k, and define the scalar polynomial
p(x) = detP (x) of degree N ≤ nk. Assume that P (x) is regular, that is p(x) is
not identically zero.

As we saw in Chapter 1, the polynomial eigenvalue problem associated with
P (x) consists in computing the roots of the polynomial p(x) which are called
the eigenvalues of the matrix polynomial P (x). Observe that, if Pk has not full
rank, then N < nk. In this case, we recall that it is convenient to introduce
nk−N eigenvalues at infinity and say that the matrix polynomial P (x) has nk
eigenvalues including the nk − N eigenvalues at infinity. In other words, the
grade of p(x) is always taken equal to nk.

In the present chapter our interest is addressed to the design and analysis of
efficient algorithms for PEPs based on the Ehrlich-Aberth iteration [1, 14, 27].

The Ehrlich-Aberth iteration (EAI) was historically first mentioned in [14]
and afterwards independently rediscovered many times. It is one of the many
simultaneous iteration techniques available in the literature for the numerical

27
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approximation of polynomial roots [81, 96]. In [8, 9] the EAI has been com-
bined with various techniques like the Rouché theorem, the Newton polygon
technique, and the Gerschgorin inclusion theorems in order to arrive at effi-
cient and robust software implementations. The package Polzeros, designed
in [8], provides a robust and reliable tool for approximating roots of polyno-
mial in floating point arithmetic. The package MPSolve designed in [9] provides
certified approximations to any desired number of digits of the roots of any
polynomial. As an example of application of MPSolve, we point out that in [15]
it has been used to compute the roots of a polynomial of degree 70, 000 with
integer coefficients represented with hundreds digits. The EAI has been used in
[10] to solve the generalised tridiagonal eigenvalue problem where the software
provides effective accelerations in terms of CPU time. It has been used in [97]
for quadratic hyperbolic tridiagonal eigenvalue problems.

Given a vector y(0) ∈ CN of initial guesses for the N roots of the polynomial
p(x), the EAI provides the sequence of simultaneous approximations y(i) given
by

y
(i+1)
j = y

(i)
j −

N (y
(i)
j )

1−N (y
(i)
j )Aj(y(i))

, N (x) =
p(x)

p′(x)

Aj(y
(i)) =

N∑
`=1,` 6=j

1

y
(i)
j − y

(i)
`

(2.2)

where N (x) is the Newton correction.
Besides the Jacobi-style version of EAI we may formulate the Gauss-Seidel

version of EAI, that is

y
(i+1)
j = y

(i)
j −

N (p(y
(i)
j ))

1−N (p(y
(i)
j ))Aj(y(i), y(i+1))

,

Aj(y
(i), y(i+1)) =

j−1∑
`=1

1

y
(i)
j − y

(i+1)
`

+
N∑

`=j+1

1

y
(i)
j − y

(i)
`

.

(2.3)

The above formulae (2.2), (2.3)can be derived [81, 96] by applying Newton’s
method to the rational function

r(x) =
p(x)∏N

`=1,` 6=j(x− ξ`)
,

where ξ` are the roots of p(x). Therefore, the EAI provides a way to implement
the implicit deflation of the roots.

The method, in the Jacobi version, is known to converge cubically for simple
roots and linearly for multiple roots [96]. In the Gauss-Seidel version, conver-
gence is slightly faster. In our implementations of the method, the Gauss-Seidel
EAI is the default choice. In practice, good global convergence properties are
observed; a theoretical analysis of global convergence, though, is still missing
and constitutes an open problem.

With the term vector iteration of the Ehrlich-Aberth method we refer to
the step which provides the vector y(i+1) given the vector y(i). We use the
term scalar iteration to indicate the single step performed on the generic scalar
component of the vector y(i).
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In the case of a scalar polynomial of degree N the cost of a scalar iteration
is O(N) arithmetic operations. In this way, the cost of a vector iteration is at
most O(N2) floating point operations. Yet, the cost is substantially reduced
when most components have been numerically approximated, so that few scalar
iterations must be performed in order to carry out the vector iteration.

The number of scalar iterations needed by the floating point implementation
in order to find approximations which are exact roots of a slightly perturbed
polynomial is, in practice, O(N) if the starting approximations are computed
by means of the Newton polygon technique [8]. This technique is particularly
effective when the polynomial has roots with moduli which are very unbalanced.

Crucial aspects for an effective implementation of the EAI for polynomial
eigenvalue problems are:

1. the computation of the Newton correction p(x)/p′(x) given the value of x
and of the input coefficients Pj , j = 0, . . . , k;

2. a criterion for stopping the iterations;

3. the choice of the initial approximations.

In the following sections, we discuss in further detail each of such issues.

2.2 Newton correction

In the literature, methods based on some factorizations of P (x) were developed
to compute the Newton correction for functions that have the same zeros of
p(x): e.g., the algorithm in [69], later proved to lack theoretical rigour and
corrected in [64], or the method in [65]. Other kinds of Newton-like approaches
were presented in [98].

If one wishes to work with p(x) itself, a naive way to compute the Newton
correction p(x)/p′(x) would be to evaluate first the coefficients of the polyno-
mial p(x), say, by means of the evaluation-interpolation technique, and then to
apply right after the Ehrlich-Aberth method to the scalar equation p(x) = 0.
This approach would however come across numerical problems due to numerical
instability and to overflow and underflow situations encountered in the compu-
tation of determinants.

It is therefore wise to conceive a strategy to avoid the explicit calculation of
the coefficients of p(x).

We propose an effective way to compute the Newton correction for p(x).
It rests upon the well-known Jacobi’s formula [45] for the differential of the
determinant of any invertible square matrix A:

d(ln(detA)) = tr(A−1dA). (2.4)

Two main options are available at this point. The first is to use (2.4) with A =
P (x). The second is to pass through a linearization of the matrix polynomial.
In fact, if L(x) is a linearization of P (x), then detP (x) = const. · detL(x).
Thus, equation (2.4) with A = L(x) is another possibility. In the following
subsections, we will give more detailed comments for each of these two choices.

We mention that, even though we independently formulated it, we found
out later on that the possible use of (2.4) in a numerical method for PEPs had
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been already suggested in [37, 70]. However, in these instances it was proposed
to use it to apply the Newton method to approximate each single eigenvalue in
sequence, mentioning the possibility to use an implicit deflation of previously
found roots [82], in order to avoid that the method converges twice to the same
eigenvalue. This leads to a formula akin to (2.2) and (2.3), with the difference
that the summation in the term Aj is performed only up to the number of roots
that have already been approximated. This is a crucial detail, because such a
sequential implementation of the Newton method does not seem to achieve the
same efficiency that the EAI accomplishes (see Section 2.6).

2.2.1 Computing the Newton correction via a lineariza-
tion

One method for computing the Newton correction p(x)/p′(x) is to evaluate it as
det(L(x))/(det(L(x)))′, where L(x) = xE + F with E,F ∈ Cnk×nk and L(x) is
a linearization of P (x). More specifically, a convenient choice is L(x) = Cf (x)
in (1.7), so that E is block-diagonal and F is block-Hessenberg. This block
structure can be exploited in order to compute the Newton correction.

The formula of Jacobi [45] in this case reads

(det(L(x)))′ = det(L(x))tr(L−1(x)L′(x)) = det(L(x))tr(L−1(x)E)

which reduces the evaluation of det(L(x))/(det(L(x)))′ to computing the trace
of L−1(x) · E. In the sequel we describe a method for finding the block entries
and, a fortiori, the trace of the inverse of L(x) from the LQ factorization of
the matrix. Then we slightly modify the computation to take into account the
contribution due to the matrix E.

We denote as G(θ, ψ) the 2× 2 unitary Givens rotation given by

G(θ, ψ) =
[

θ ψ
−ψ̄ θ̄

]
, |θ|2 + |ψ|2 = 1.

Let L(x) = L̃ ·Q be the (block) LQ factorization of L(x) obtained by means of
Givens rotations so that

L(x)G1 · G2 · · · Gk−1 = L̃, QH = G1 · G2 · · · Gk−1,
Gj = In(j−1) ⊕ (G(θj , ψj)⊗ In)⊕ In(k−1−j).

(2.5)

The action of Gj is to rotate the jth and (j + 1)th block columns of L(x); the
parameters θj and ψj are chosen in such a manner that

0n 0n
...

...
0n 0n
cjIn −In
0n xIn
0n 0n
...

...
0n 0n
? ?


Gj =



0n 0n
...

...
0n 0n
αjIn 0n
βjIn cj+1In
0n 0n
...

...
0n 0n
? ?


,
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where the block elements denoted by the symbol ? are not specified. Hence,
proceeding by induction on j it can be easily proved that the lower triangular
factor L̃ has the following structure

L̃ =


α1In
β1In α2In

. . .
. . .

βk−2In αk−1In
P̂0 P̂1 . . . P̂k−2 P̂k−1

 ,

where αj 6= 0, 1 ≤ j ≤ k− 1. If P̂k−1 and, therefore, L(x) is invertible then the
LQ factorization can be used to find a condensed representation of the inverse
of L(x). Observe that L−1(x) = QH · L̃−1. In order to take into account the
occurrence of the matrix E in the Jacobi formula let us introduce the matrix
P̃k = P̂−1

k−1 · Pk. Then we have the following proposition.

Proposition 2.1. There exist matrices P̃1, . . . , P̃k−1 ∈ Cn×n such that

L−1(x)E =


P̃1 ψ1P̃2 . . . ψ1 · · ·ψk−1P̃k

θ̄1P̃2

. . .

θ̄k−1P̃k

 ,
where the blank entries are not specified.

Proof. The proof basically follows by applying the (block) Schur decompo-
sition (2.5) of QH to the block lower triangular factor L̃−1E. To show it more
formally we can proceed by induction. Let us assume that the the j−th block
row of Gj · · · Gk−1L̃

−1E can be represented as[
? . . . ? P̃j ψjP̃j+1 . . . ψj · · ·ψk−1P̃k

]
,

where P̃j is the diagonal entry and the value of the entries in the strictly lower
triangular part – denoted by ?– is not essential. Then, by applying Gj−1 on the
left of the matrix we find that the (j − 1)− th block row looks like[

? . . . ? P̃j−1 ψj−1P̃j . . . ψj−1 · · ·ψk−1P̃k

]
,

while the diagonal entry in position j becomes θ̄j−1P̃j .
This result says that the block diagonal entries of L−1(x) can be determined

from the entries in its first (block) row. The computation of this row is equivalent
to the solution of the linear system

[In, 0n, . . . , 0n] = [X1, . . . , Xk] · L(x)

or, equivalently,

[In, 0n, . . . , 0n] ·QH = [X1, . . . , Xk] · L̃.

In view of the structure of QH this reduces toθ1, θ2ψ1, . . . , θk−1

k−2∏
j=1

ψj ,
k−1∏
j=1

ψj

⊗ In = [X1, . . . , Xk] · L̃.
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Let D ∈ Cnk×nk be a block diagonal matrix defined by

D = diag(1, ψ1, . . . ,

k−2∏
j=1

ψj ,

k−1∏
j=1

ψj)⊗ In.

Using the matrix D to balance the coefficient matrix yields

[θ1, θ2, . . . , θk−1, 1]⊗ In = [X1, . . . , Xk]D
−1 ·D · L̃ ·D−1.

Observe that[
X̂1, . . . , X̂k

]
:= [X1, . . . , Xk]D

−1 =
[
P̃1, . . . , P̃k−2, P̂

−1
k

]
,

and, therefore, the solution of

[θ1, θ2, . . . , θk−1, 1]⊗ In =
[
X̂1, . . . , X̂k

]
L̂, DL̃D−1 = L̂,

gives the desired unknown matrices P̃1, . . . , P̃k−1. To achieve some computa-
tional savings we rewrite the system as

[θ1, θ2, . . . , θk−1, 1]⊗ P̂k−1 =
[
X̃1, . . . , X̃k

]
L̂

and thus we arrive at the following relation

det(L(x))′/ det(L(x)) = tr(P̂−1
k−1(X̃1 + θ̄1X̃2 + . . .+ θ̄k−2X̃k−1 + θ̄k−1Pk)),

which is used to compute the reciprocal of the Newton correction. The function
trace linearization below implements our resulting algorithm at the cost of
O(n2k + n3) operations.

function trace linearization
Input: P0, . . . , Pk ∈ Cn×n, x ∈ C, (det(P (x)) 6= 0)
Output: the value of η = p′(x)/p(x)

Pk−1 = Pk−1 + xPk;
α = x ones(1, k); β = zeros(1, k − 1);
χ = −ones(1, k);
for j = 1, . . . , k

v = [αj ;χj ]; GT = planerot(v); q(j, : ) = G(1, : ); cj = q(j, 1);

αj = αjG1,1 + χjG2,1; β̃ = βjG1,1 + αj+1G2,1;

αj+1 = βjG1,2 + αj+1G2,2; βj = β̃;

P̃ = G1,1Pj−1 + G2,1Pj ; Pj = G1,2Pj−1 + G2,2Pj ; Pj−1 = M̃ ;
end
for j = 1, . . . , k − 2

βj = βjq(j, 2);
end
s = 1;
for j = k − 1, . . . , 1

s = s · q(j, 2); Pj−1 = sPj−1;
end

X̃k−1 = (ck−1Pk−1 − Pk−2)/αk−1;
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for j = k − 2, . . . , 1

X̃j = (cjPk−1 − Pj−1 − βjX̃j+1)/αj ;
end

P̃ = X̃1;
for j = 1, . . . , k − 2

P̃ = P̃ + c̄jX̃j+1;
end

P̃ = Õ + c̄k−1Pk; P̃ = Pk−1\P̃ ; η = tr(P̃ );

2.2.2 Computing the Newton correction without lineari-
sing

It is also possible to substitute A = P (x) into (2.4). This way, we obtain the
following expression for the derivative p′(x)

p′(x) =
d det(P (x))

dx
= det(P (x)) · tr(P (x)−1 · dP (x)

dx
).

By evaluating numerically the matrix P (x)−1P ′(x), this formula allows us
to evaluate directly the Newton correction p(x)/p′(x), which is the centrepiece
for the EAI, without explicitly calculating p(x):

p(x)

p′(x)
=

1

tr(P (x)−1P ′(x))
. (2.6)

The following function performs an evaluation of P (x) and P ′(x) by means
of Horner’s method [56, 81], followed by a numerical matrix inversion (see [56]
for various considerations on how to perform, or avoid performing, matrix in-
versions).

function horner trace
Input: Coefficients Pj, j = 0, . . . , k; initial approximation x
Output: t, trace of P−1(x) · P ′(x)

px = Pk; pxx = zeros(n);
for i = k − 1:−1: 0

px = xpx+ Pi;
pxx = xpxx+ (i+ 1)Pi+1;

end
aux = pxx/px;
t = trace(aux);

The function horner trace allows to compute the trace of P (x)−1P ′(x) in
O(kn2 + n3) operations.

2.2.3 Linearization method versus Horner’s method

Both the approaches to the computation of Newton’s corrections that we pre-
sented in the last subsections, that is LQ factorization of a linearization in
block-Hessenberg/block-triangular form and Horner’s method applied directly
to the coefficients of the matrix polynomial, have a computational complexity
of O(n3 + kn2) operations per trace computation.
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The overall complexity of the EAI is therefore O(tn3 + tkn2), where t is the
number of scalar iterations needed before convergence, or in other words the
number of times that the algorithm needs to compute the Newton’s correction
as a trace. As we will discuss in Section 2.4, when an appropriate choice of
the initial approximations is made then t grows linearly with the total number
of eigenvalues. Therefore, the complexity of the algorithm is O(kn4 + k2n3)
operations. This is to be compared with the complexities of more traditional
matrix methods, which typically are O(k3n3) operations or higher.

Since the cost of the algorithm we propose grows as n4 but it is only quadratic
in k, we then expect that the EAI is computationally advantageous in terms of
efficiency when the matrix polynomial has high degree and small coefficients, so
that k2/n is large.

It is worth noticing that in the linearization approach the case of large n can
still be treated by means of an Ehrlich-Aberth method in O(n3k3) operations.
The basic observation is that the factor n4 comes from the block structure of
the linearization involved in the computation of the trace. A reduction of the
cost can therefore be achieved by a different strategy where the linearization is
initially converted into scalar triangular-Hessenberg form: say, N(x) = Rx+H
where R is scalar triangular and H is scalar Hessenberg. The task can virtually
be performed by any extension of the fast structured methods for the Hessen-
berg reduction proposed in [20, 28]. These methods preserve the rank structure
which can therefore be exploited also in the triangular-Hessenberg lineariza-
tion. Once the matrices R and H have been determined then the computation
of tr(N(x)) can be performed by the following algorithm which has a cost of
O(n2k2) operations:

1. Perform an RQ decomposition of the Hessenberg matrix N(x), obtaining a
unitary matrix Q represented as product of O(nk) Givens transformations
(Schur decomposition) and a triangular matrix U .

2. Compute the last row of N(x)−1R by solving the linear system wTN(x) =
eTnk, where enk = [0, . . . , 0, 1]T , and then computing wT : = wTR.

3. Recover the diagonal entries of N(x)−1R from the entries of w and the
elements of the Schur decomposition of Q.

This alternative road leads to an algorithm of cost O(n2k2) operations per
scalar iteration; thus, if the total number of needed scalar iteration t is O(nk),
the overall complexity is cubic in nk, just as the customary methods for the
solution of polynomial eigenvalue problems. A more efficient implementation
exploiting the rank structures of the matrices involved is also possible in prin-
ciple, so that the cost in k is subcubic. This is the subject of a future research
project.

This flexibility towards a different method, more suitable in the case of k2 ∼<
n, is the main advantage of using linearizations. On the other hand, linearization
techniques, if not properly used, may lead to an undesired increasing of the
eigenvalue condition numbers [39, 58, 60]. This means that, if the ratio n/k2

is not high enough to completely discourage the Horner’s method approach,
working directly on the matrix polynomials may in some situations be useful in
order to avoid any potential discomfort. Numerical experiments show that the
Horner version of the EAI is able to achieve in many cases higher accuracy than
traditional methods. See Section 2.6 for further details.
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2.3 Stopping criteria

At the generic ith vector iteration it is crucial to decide whether the update of
the jth component of the vector y(i+1) must be performed or the scalar iteration
in that component ought to be halted.

In the following, we discuss and justify the choices of the stopping criterion
that we made in both the implementation of the EAI.

2.3.1 Linearization version

It is worth observing that the LQ-based method pursued for the trace com-
putation also provides an estimate on the backward error for the generalised

eigenvalue problem. From a result in [55] it follows that if y
(i)
j is not an eigen-

value of Cf (x) then

η(y
(i)
j ) =

(
‖ (y

(i)
j E + F )−1 ‖2 (1 + |y(i)j |)

)−1

gives an appropriate measure of the backward error for the approximate eigen-

value y
(i)
j . Since for y

(i)
j E + F = L̃ ·Q we have that

‖ (y
(i)
j E + F )−1 ‖2=‖ L̃−1 ‖2≥‖ P̂−1

k−1 ‖2≥ (
√
n)−1 ‖ P̂−1

k−1 ‖∞,

in our implementation we consider the quantity

η̂(y
(i)
j ) =

√
n/

(
‖ P̂−1

k−1 ‖∞ (1 + |y(i)j |)
)

as an error measure. If η̂(y
(i)
j ) is smaller than a fixed tolerance then y

(i)
j is

taken as an approximate eigenvalue and the corresponding scalar iteration is
stopped. Simultaneously, our algorithm also checks whether the ratio between
the estimated Ehrlich-Aberth correction and the corresponding approximation,

that is |y(i+1)
j − y

(i)
j |/|y(i)j |, is smaller than a given tolerance. If the answer is

positive, the corresponding scalar iteration is halted.

2.3.2 Horner version

Observe that, if ξ is a root of p(x), that is detP (ξ) = 0, then as the approxima-
tion x gets close to ξ the matrix P (x) becomes ill-conditioned. This makes quite
natural to stop the iterations if the reciprocal of the condition number ν(P (x))
is less than a prescribed tolerance τ1. This criterion makes sense if the eigen-
value that we want to approximate is semisimple. In the instance of a defective
eigenvalue λ with Jordan chains of length at most m, in view of the results in
[95], it is more convenient to stop the iterations if the reciprocal of ν(P (x)) is
less than τm1 . This latter condition is hard to implement since it is not easy
to evaluate numerically the maximal length of the Jordan chains of a matrix
polynomial. Using the former stopping criterion may lead to a premature halt
of the algorithm in the case of defective eigenvalues.

As an alternative to the previous stopping condition, one can follow the
same strategy used in the linearization implementation. Following [104], define
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α(x) =
∑k

`=0 |x`|. If y
(i)
j is not an eigenvalue of P (x) then the quantity

η(y
(i)
j ) =

(
‖
(
P (y

(i)
j )

)−1

‖2 (1 + α(y
(i)
j ))

)−1

measures the backward error for the approximation y
(i)
j , and can be cheaply

evaluated during the EAI. The iteration can be halted when η(y
(i)
j ) is smaller

than a given tolerance.
Numerical experiments showed that in the case of multiple eigenvalues the

latter criterion lead to premature stops. For simple eigenvalues, no significant
differences emerged. Therefore, our default choice was in favour of the criterion
based on the condition number.

Similarly to what has been done in the implementation of the EAI via lin-
earization, once again it is also convenient to add, with the “or” logic operator,
the following condition:

|N (y
(i)
j )/(1−N (y

(i)
j )Aj(y

(i), y(i+1))| ≤ τ2|y(i)j |, (2.7)

where τ2 is a given tolerance. This condition says that the computed correction
is too tiny and would not change the significant digits of the current approxi-
mation.

2.4 Initial approximations

In practice, the cost of each vector iteration of the algorithm is strongly de-
pendent on the amount of early convergence occurring for a given problem. In
other words, a critical point to assess the efficiency of the novel method is the
evaluation of the total number t of calls of either the function horner trace or
the function trace linearization (depending on which specific implementation
of the EAI one is using), and of its dependence on the total number N := nk
of the eigenvalues. When the Ehrlich-Aberth method is used to approximate
scalar polynomials roots, experiments show that t depends on the choice of the
starting points.

2.4.1 Rouché theorem and starting points

As pointed out in [1, 8, 51], when there is not any a priori knowledge about the
location of the roots, practically effective choices of initial approximations for
the EAI are complex numbers equally displaced along circles. For instance, in [1]
it is proposed to choose initial approximations displaced along a circle centred at
the origin of sufficiently large radius so that it contains all the roots. In [51] the
radius of the circle is suitably chosen. This strategy does not work effectively
for polynomials having zeros with very large and with very small moduli. In [8]
this drawback is overcome by considering different circles centred at the origin
of suitable radii. The computation of these radii relies on the Rouché theorem.

Here we try to extend this technique to the case of matrix polynomials.
We recall that, according to the Rouché theorem, if s(x) and q(x) are two
polynomials such that

|s(x)| > |q(x)|, for |x| = r,
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then s(x) and s(x) + q(x) have the same number of roots in the open disk {z ∈
C : |x| < r}. Applying this property with s(x) = xm and q(x) = p(x)− s(x),

for 0 ≤ m ≤ N , implies that if rm >
∑N

j=0,j 6=m |aj |rj then the polynomial
p(x) has m roots in the open disk of centre 0 and radius r. This property
is at the basis of the criterion described in [8], based on the Newton polygon
construction, for choosing initial approximations equidistributed along different
circles centred in 0.

In order to extend this criterion to the case of polynomial eigenvalue prob-
lems we need a generalization of the Rouché theorem to matrix polynomials.
We report the following result of [89] which we rephrase in a simpler way better
suited for our problem.

Theorem 2.1. Let S(x) and Q(x) be matrix polynomials and let r be a posi-
tive real. If S(x)HS(x) − Q(x)HQ(x) is positive definite for |x| = r, then the
polynomials detS(x) and det(S(x) + Q(x)) have the same number of roots of
modulus less than r.

The following result is an immediate consequence of the above theorem
applied to the polynomial P (x) of (2.1) with S(x) = xmPm and Q(x) =∑k

i=0, i 6=m xiPi.

Corollary 2.1. Assume that

PH
mPmr

2m − (
k∑

j=0,j 6=m

PH
j (x∗)j)(

k∑
j=0,j 6=m

Pjx
j) � 0, for |x| = r, (2.8)

where A � B means that A−B is positive definite. Then the matrix polynomial
P (x) has mk eigenvalues in the open disk of centre 0 and radius r.

Observe that if detPm = 0 then condition (2.8) cannot be verified. In fact,
the vector v such that Pmv = 0 would be such that

vH(

k∑
j=0,j 6=m

PH
j x̄

j)(

k∑
j=0,j 6=m

Pjx
j)v ≤ 0

which is absurd.
In particular, if detPk 6= 0 the above corollary, applied with m = k, implies

that all the eigenvalues of P (z) are included in the disk of centre 0 and radius
r provided that

r2kPH
k Pk − (

k−1∑
j=0

PH
j x̄

j)(
k−1∑
j=0

Pjx
j) � 0, for |x| = r. (2.9)

Observe that the latter condition is implied by

r2kPH
k Pk �

k−1∑
j=0

rjPH
j Pj + I

∑
j>i

ρ(|Pj |H |Pi|+ |Pi|H |Pj |). (2.10)

Similarly, applying Corollary 2.1 with m = 0 provides a disk where P (x) has
no eigenvalues.
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As an example of application, consider the 5×5 quadratic matrix polynomial
P (x) = Ax2 + Bx + AT , where B is the tridiagonal matrix defined by the en-
tries [1, 2, 1], and A is the matrix with diagonal entries 100, 1, 1/1000, 1/100000,
superdiagonal entries equal to 1 and with zero entries elsewhere. The eigenval-
ues of P (x) have approximate moduli 2.0050e+05, 1.4969e+03, 1.0000e+00,

1.0000e+00, 1.0000e+00, 1.0000e+00, 6.6805e-04, 4.9874e-06. The cri-
terion based on the above corollary in the form (2.8) yields the bound 4.4e− 6 <
|x| < 2.24e5 which is quite good. Applying condition (2.10) yields the bounds
1.96e− 6 < |x| < 5.1e5 which is still good.

Similar results have been obtained in [101] in the framework of tropical
algebras; an ongoing future research project is to extend those results [13].

Another possibility is to choose the radii of the starting circles by applying
the prescriptions of [8] to the scalar polynomial whose coefficients are the norms
of the matrix coefficients of P (x). This option is cheaper, leads to similar results,
and is the default choice in our implementations.

Other options that we considered and that will be analysed in deeper details
in Section 2.6, are:

• to pick points lying on only one circle, for instance the circle |x| = 1;

• to pick points lying on a small number of circles, chosen according to some
criterion;

• to start with randomly chosen points, or more precisely to start with
points whose modulus is generated according to some prescribed proba-
bility distribution (e.g. a log-normal distribution).

2.4.2 A posteriori error bounds

In the case of a scalar polynomial p(x) of degreeN , given a set of approximations
x1, . . . , xN to the roots of p(x) it is possible to prove that [102] the set of disks

Di = D(xi, ri) of centre xi and radius ri = n

∣∣∣∣∣ p(xi)

(pN
∏N

j=1, j 6=i(xi − xj))

∣∣∣∣∣ is such

that

1. the union of the disks contains all the roots of p(x);

2. each connected component formed by the union of, say, c overlapping
disks, contains c roots of p(x).

The set formed by Di, i = 1, . . . , N with the above properties is called set of
inclusion disks.

In the case of a matrix polynomial P (x) where detPk 6= 0, it is quite cheap to
compute a set of inclusion disks. In fact, if P (x) = ΠLU is the PLU factorization
of P (x), then |p(x)| = |detP (x)| =

∏n
j=1 |Ujj |. Moreover, the leading coeffi-

cient pN of detP (x) coincides with detPk which can be computed once for all.
Observe that the LAPACK routine zgesv which solves a linear system with the
matrix P (x), is used to compute the Newton correction 1/trace(P (x)−1P ′(x))
during the EAI. Such routine, applied with x = xi, provides at a negligible cost
also the radius ri.

The availability of a set of inclusion disks enables us to perform a cluster
analysis. In fact, once an isolated disk has been detected, we have isolated
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a single eigenvalue of the matrix polynomial P (x). Once we have detected a
set of c overlapping disks isolated from the remaining inclusion disks, we have
detected a cluster formed by c eigenvalues of P (x).

A different a posteriori error bound can be obtained by using a classical result
(see [54]). The disk of centre xi and radius r̂i = n|p(xi)/p′(xi)| contains a root
of the polynomial p(x). However, the set of disks obtained in this way does not
fulfill properties 1 and 2 of the set of inclusion disks. It is worth pointing out that
the computation of r̂i is inexpensive since the Newton correction p(xi)/p

′(xi) is
computed by the EAI. Moreover, this a posteriori error bound still holds if the
leading coefficient Pk is singular.

2.5 Multiple eigenvalues

Computational difficulties may be encountered in the case of multiple eigen-
values. In fact, the rate of convergence for multiple eigenvalues is linear, with
respect to the cubic behaviour for simple eigenvalues. Moreover, for defective
eigenvalues the standard stop condition may lead to a premature halt. For this
reason, if it is possible to detect a priori multiple eigenvalues, it is advisable
to deflate them; if it is not feasible to spot all of them theoretically, even lower
bounds on the multiplicity are very helpful. If multiple eigenvalues are not pre-
dicted theoretically, one must rely on the cluster analysis to identify them and
modify accordingly the stopping criterion.

A common situation that leads to multiple eigenvalues is met when the ex-
tremal coefficients are singular matrices. In this case, 0 and/or ∞ have algebraic
multiplicity greater than or equal to 1. This situation can be circumvented to
a certain extent.

In the instance of m eigenvalues at infinity, one may just start with an
approximation vector y of length nk −m, acknowledging that the determinant
p(x) has in fact degree nk −m; if there are m zero eigenvalues it is possible to
set to zero m components of the vector y(0) avoiding to update them.

The number of null singular values of P0 provides a lower bound to the
number of null eigenvalues of P (x). Similarly, the number of zero singular values
of Pk provides a bound to the number of eigenvalues at infinity. This way, the
precomputation of the SVD [47] of P0 and Pk may increase the performance of
the EAI. Equivalently, one may perform any rank-revealing factorization (e.g.,
QR) instead of the SVD. Sometimes, the structure of the coefficients allows
to achieve better bounds (this happens when the presence of a Jordan chain
is evident without the need to perform any computation: e.g., if the same
rows/columns of many consecutive coefficients, either at the beginning or at the
end of the sequence P0, . . . , Pk, are zero).

In our implementation, the ranks of the two extremal coefficients are eval-
uated. If rank(P0) < n (resp., rank(Pk) < n), it is also checked if P0 and P1

(resp., Pk and Pk−1) share any common zero row/column. Of course, this kind
of argument is easily extended in order to discover if there are consecutive co-
efficients, at either extremity of the matrix polynomial, sharing the same zero
rows/columns. Thus, any manifest presence of zero and infinite eigenvalues is
exploited, forcing immediate deflation of all the guaranteed roots. Moreover, if
the test detects the presence of eigenvalues at 0 (resp., ∞), in order to avoid
a premature stop for other undetected eigenvalues at 0 (resp., ∞), if any, the
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stopping criterion is made stricter. The stronger stop condition requires that,
for eigenvalues smaller (resp., larger) than a given bound, either the relative
correction criterion (2.7) is satisfied with tolerance τ2 or the relative correction

criterion (2.7) is satisfied with tolerance τ
1/2
2 and, simultaneously, the reciprocal

condition number criterion is satisfied with tolerance τ1. This heuristic device
worked very effectively in our experiments, leading to satisfying results also in
problems with multiple eigenvalues at either zero or infinity. See Section 2.6.

If the leading coefficient Pk is singular and if the degree of p(x) = detP (x)
is not available together with the leading coefficients of p(x), then it is not
possible to generate a set of inclusion disks and to perform a cluster analysis.
However, in this case we may apply an effective technique based on a rational
transformation of the variable x. For instance, the variable x is replaced by the
Möbius function x = x(z) = (αz + β)/(γz + δ) such that αδ − γβ 6= 0, and the
polynomial P (x) is replaced by the polynomial Q(z) = (γz + δ)kP (x(z)). This
way the infinite eigenvalues of P (x) are mapped to the eigenvalues of Q(z) equal
to −δ/γ. Moreover, Q(z) has no eigenvalues at infinity provided that α/γ is not
eigenvalue of P (x). The substitution of variable can be performed implicitly
without actually computing the coefficients of Q(z) except for Qk. We refer the
reader to Chapter 3, Chapter 4, and to [12, 93] for more details on this subject.

2.6 Numerical experiments

A vast literature [9, 81, 96] covers the subject of the application of the EAI to
scalar polynomials. To our knowledge, there has not been a previous applica-
tion of the method to PEPs. Therefore, we have conducted a large number of
numerical experiments in order to verify the goodness of the extension of the
algorithm to the matrix case.

2.6.1 Efficiency: starting points and number of scalar it-
erations

In the scalar case, it is theoretically predicted [62] and heuristically verified [9]
that, when one chooses starting points equally spaced on a circle containing
all the eigenvalues, the path followed by the components of the approximation
vector are quite regular. As the following figures show, this is also the case
when the EAI is applied to polynomial eigenproblems: the left figure refers to
a classical eigenvalue problems of a 50 × 50 matrix whose eigenvalues all have
modulus 1/2 and the starting points lie on the unit circle; the right figure refers
to a random polynomial eigenvalue problem of degree k = 3 and dimension
n = 3, with starting points picked on the circle of radius 4.
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Fig. 1. History of convergence for a classical eigenproblem (left) and a PEP
of degree 3 (right)

The disadvantage of this choice of starting points is the lack of a large enough
amount of scalar iterations that are prematurely stopped due to early conver-
gence (for the sake of brevity, in the following we will refer to this phenomenon
using the word deflation). This drawback leads to a lower efficiency of the
algorithm.

In fact, the complexity of the proposed algorithm is of order tn3 + tkn2,
where t is the total number of times that a trace computation is needed before
(vectorial) convergence. There is empirical evidence that t heavily depends on
the choice of the initial approximation. For the case of scalar polynomials,
the use of suitable strategies based on the Rouché theorem and the Newton
polygonal (see Section 2.4, [8, 9, 13, 101]) leads to a linear dependence of t with
respect to the total number of roots. We have tested several possible strategies
in order to achieve the same result in the matrix case: namely, picking all
roots on the unit circle, adopting a strategy based on the Newton polygonal
as described in Subsection 2.4.1, choosing starting points whose moduli are
distributed according to a given probability distribution, and picking the roots
on several circles (choosing the number and the radii of such circles according to
a “step function” criterion based on the ratio k/n and the product nk; see also
[42] and Section 4.6, where this technique is explained in detail for the special
case of T-palindromic polynomials).

Figure 2 shows the dependence of t on nk for a suit test of random matrix
polynomial with n = 2 and variable k, while in Figure 3 the case of small degree
(k = 2) and variable n is analysed.
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Fig. 2. Dependence of t on k for n = 2
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Fig. 3. Dependence of t on n for k = 2

For the high-degree case, which is the most suitable for being treated with
the EAI, the growth appears to be slightly sublinear for all the tested meth-
ods (a logarithmic fit gave a growth t ' cost.k0.8 in the analysed range of
k). For the high-dimension case, the growth for the unit circle method and
the newton polygonal method is superlinear (from logarithmic fit, the growth
was approximately t ' cost.n1.4 for those two choices of starting points); the
growth is slightly superlinear for the step function method and the probabil-
ity distribution method, which we implemented with a lognormal distribution
(t ' cost.n1.1).
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In contrast with the randomly generated tests, the Newton polygon tech-
nique is always helpful when there is a remarkable unbalancing of the norms
of the matrix coefficients. When n is large and the coefficients are unbalanced,
the best results are obtained by combining the Newton polygon technique and
an ansatz (e.g. the step function criterion) that picks the starting points on
more than one circle whose radii are distributed near the ones computed by
the Newton polygon algorithm. Another possibility, leading to results that are
similar to those of the Newton polygon, is to exploit results recently obtained
with tropical algebra [101]. Ongoing research is being done to investigate the
possibility to extend such results [13].

The experimental results are satisfying for high degree polynomials, but not
completely for high dimension polynomials. Further work is needed to improve
the choice of the starting points in the case of a large ratio n/k2. We mention,
however, that when the polynomial is structured numerical experiments suggest
that enough deflations happen, so that a linear growth of t is achieved in this
case also in the large n region. See Section 4.6.

We complete this subsection giving evidence for the claim we made that
our experimental experience shows that the EAI has superior efficiency with
respect to the sequential application of Newton method to single roots of p(x)
with implicit deflation of the previously approximated eigenvalues.
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Fig. 4. Comparison between the EAI (red) and the method in [37, 70] (blue),
for n = 5

Figure 4 compares the number of trace computation needed by the EAI
(shown in red) and the sequential Newton method with implicit deflations.
Random matrix polynomials with n = 5 and growing degree were formed. The
starting points were chosen with the prescriptions of [37] for the latter method,
and for the EAI on the unit circle. Similar results were obtained for the case of
large n: we conclude that, in general, the sequential Newton method of [37, 70]
is slower than the EAI.
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2.6.2 Efficiency: execution time

Experiments we made with our implementation suggest that t = O(nk) also
when the EAI is applied to a matrix polynomial. In particular, this means that
the computational complexity of the EAI is O(kn4 + k2n3), leading to great
computational advantages for k �

√
n. As noticed in Subsection 2.2.3, if on the

contrary k ∼<
√
n different implementation of the EAI are possible, with cubic

efficiency in kn.
In order to confirm such predictions, we have compared our implementation

of the EAI (Horner version) and Matlab’s QZ implementation polyeig on ran-
dom matrix polynomials of high degree and small dimension. For very large
values of k, we did not actually run polyeig due to the very large forecast com-
putation times, but we extrapolated the times from the other experiments; in
fact, when doubling the value of k we can expect that the running time of the
QZ algorithm grows approximately with a factor 8. Such extrapolated values
are marked with a ∗ in the following tables.

Computation times for n = 2
k EAI polyeig
50 0.018 s 0.015 s
100 0.044 s 0.064 s
200 0.111 s 0.369 s
400 0.360 s 4.35 s
800 1.29 s 51.9 s
1600 4.76 s 437 s
3200 18.4 s O(50 min)∗

Computation times for n = 5
k EAI polyeig
20 0.062 s 0.010 s
40 0.121 s 0.057 s
80 0.312 s 0.370 s
160 0.920 s 4.39 s
320 2.92 s 44.0 s
640 10.3 s 398 s
1280 38.1 s O(50 min)∗

2560 148 s O(7 hours)∗

5120 575 s O(2 days)∗

The values in the tables above are in agreement with our prediction that the
computation time should asymptotically grow as k2. Moreover, the experimen-
tation also confirms that, for a given value of n, the ratio of the time needed by
EAI with respect to the time needed by the QZ algorithm exhibits an asymptotic
growth that is approximately linear in k. This effect is taken to the extreme in
the case n = 5, k = 5120. Had we used Matlab’s polyeig, it would have taken
several days of computation time on our machine to solve such a problem. Our
implementation of the EAI gave the approximated eigenvalues in less than 10
minutes.

2.6.3 Accuracy: a comparison with the QZ algorithm

We will present in this section some experiments on the accuracy of the Horner
version of the EAI.

In order to test the accuracy of our implementation we used the Matlab
toolbox NLEVP[7]. This toolbox has been recently proposed by its authors as
an interesting set of benchmark problems that may be used as a standard test
for new methods for nonlinear eigenvalue problems. It contains data coming
from practical applications as well as model problems known to have peculiar
properties.

Amongst the many nonlinear eigenproblems contained in NLEVP, we have
selected all the square PEPs with n < 25k2. We discarded the problems with
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a larger ratio n/k2 because they could be better dealt with by a different im-
plementation of the EAI, as was discussed in Subsection 2.2.3. The test suite
selected with this criterion consists of 29 problems plus the 2 problems butterfly
and wiresaw1 that, being structured, will be treated in Chapter 4.

In all the parameter-dependent problems in the library the default values of
the parameters were selected. All methods were directly applied to the original
matrices as saved in the library, without preprocessing them with any scaling1.
Forward errors are evaluated by comparing the approximations with either theo-
retically known values, when available, or values computed in variable precision
arithmetic (VPA) with Matlab’s symbolic toolbox.

The graphs below are in logarithmic scale. Whenever the absolute error for
a certain eigenvalue λ appeared to be numerically zero, i.e. it was less than λ
times the machine epsilon ε = 2−52 ' 2.22e− 16, we formally set it equal to
λε
2 . Only absolute errors for the finite eigenvalues are shown in the figures.

For the 3 problems with k ≥ 3, the eigenvalue forward errors where computed
for both the EAI, in its Horner version, and the QZ method (as implemented
in polyeig). Absolute errors for our implementation of the EAI are marked
with a red ∗ symbol, while absolute errors for polyeig are marked with a blue
+ symbol. For this set of experiments, we picked starting points on the unit
circle. In our experience the order of magnitude of the forward error is not
significantly effected by the choice of the starting points, even though for some
problems other choices led to slight improvements (not discussed here).
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Fig. 5. Forward absolute errors for the problem orr sommerfeld

1Although we did not alter the coefficients given in input to the various methods, for
most quadratic problems quadeig has performed a scaling because of its default settings, that
prescribe to follow the technique of [29] under certain conditions; see [52].



46 CHAPTER 2. THE EAI FOR PEPS

0 50 100 150 200 250 300 350 400
−17

−16

−15

−14

−13

−12

−11

Fig. 6. Forward absolute errors for the problem plasma drift
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Fig. 7. Forward absolute errors for the problem relative pose 5pt

For the 26 problems with k = 2, three methods were compared by computing
their forward errors with the same method as above: polyeig (blue + symbol),
EAI (red ∗ symbol) and the software quadeig by S. Hammarling, C. Munro and
F. Tisseur [52], specifically designed for quadratic PEPs (black x symbol).
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Fig. 8. Forward absolute errors for the problems acoustic wave 1d (left) and
acoustic wave 2d (right)
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Fig. 9. Forward absolute errors for the problems bicycle (left) and bilby (right)
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Fig. 10. Forward absolute errors for the problems cd player (left) and closed
loop (right)
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Fig. 11. Forward absolute errors for the problems dirac (left) and gen hyper 2
(right)
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Fig. 12. Forward absolute errors for the problems hospital (left) and
intersection (right)
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Fig. 13. Forward absolute errors for the problems metal strip (left) and
mobile manipulator (right)
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Fig. 14. Forward absolute errors for the problems omnicam1 (left) and
omnicam2 (right)
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Fig. 15. Forward absolute errors for the problems power plant (left) and qep1
(right)
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Fig. 16. Forward absolute errors for the problems qep2 (left) and qep3 (right)
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Fig. 17. Forward absolute errors for the problems relative pose 6pt (left) and
sign1 (right)
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Fig. 18. Forward absolute errors for the problems sign2 (left) and sleeper
(right)
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Fig. 19. Forward absolute errors for the problems spring (left) and spring
dashpot (right)
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Fig. 20. Forward absolute errors for the problems wing (left) and wiresaw2
(right)

As can be seen by the figures above, the approximations of the EAI are
competitive, and often more accurate than the approximations of the QZ. In
some cases, the improvement is remarkable. We report in the following table
the maximal relative error and the average relative error for all the finite (i.e.
neither numerically zero nor numerically infinite) eigenvalues of the 29 consid-
ered problems, and for both the EAI and the QZ. The average relative error is
defined as the geometric mean of all relative errors; numerically zero relative
errors have been counted as relative errors equal to ε/2. The values reported
for the QZ for quadratic problems correspond to the algorithm, picked between
polyeig and quadeig, that achieved the best performance in terms of average
relative error for the given problem; as can be deduced by the above pictures
and coherently with the results on backward errors presented in [52], such best
performance was achieved generally, but not always, by the latter algorithm.
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Problem Rel. errors, EAI Rel. errors, QZ
Max. Avg. Max. Avg.

acoustic wave 1d 1.0e-14 2.1e-16 1.1e-14 1.7e-15
acoustic wave 2d ε/2 ε/2 3.2e-15 7.4e-16

bicycle 1.0e-15 4.0e-16 7.6e-15 1.1e-15
bilby 2.4e-14 3.5e-16 5.1e-15 1.8e-15

cd player 5.3e-16 1.2e-16 4.0e-14 3.3e-16
closed loop ε/2 ε/2 3.4e-16 1.5e-16

dirac 4.1e-14 5.9e-15 1.9e-13 2.9e-14
gen hyper 2 2.5e-14 9.3e-16 2.4e-15 4.9e-16
hospital 2.7e-15 1.6e-16 2.0e-14 1.4e-15

intersection 4.8 e-9 4.5 e-13 1.0 2.4e-8
metal strip 6.3e-16 1.7e-16 2.3e-15 6.7e-16

mobile manipulator ε/2 ε/2 5.1e-16 5.1e-16
omnicam1 9.1e-11 1.2e-12 4.3e-9 6.4e-13
omnicam2 3.9e-10 2.3e-15 4.0e-9 1.2e-13

orr sommerfeld 5.0e-12 9.1e-16 4.8e-5 2.8e-9
plasma drift 3.4e-13 5.1e-16 1.3e-11 4.7e-14
power plant 8.3e-14 1.1e-15 6.1e-11 1.9e-13

qep1 8.9e-16 1.7e-16 1.8e-15 5.1e-16
qep2 5.8e-9 5.3e-11 2.2e-16 1.9e-16
qep3 3.9e-9 1.0e-14 8.0e-10 3.2e-14

relative pose 5pt 2.9e-14 6.8e-15 1.6e-14 6.3e-15
relative pose 6pt 7.5e-14 1.9e-14 1.2e-13 1.4e-14

sign1 3.8e-8 1.1e-10 5.0e-8 3.9e-10
sign2 4.5e-14 2.8e-15 3.1e-13 1.3e-14
sleeper 8.0e-16 2.8e-16 1.8e-15 5.6e-16
spring ε/2 ε/2 1.7e-15 3.5e-16

spring dashpot 5.6e-15 3.1e-16 2.8e-13 1.4e-14
wing ε/2 ε/2 1.2e-15 8.1e-16

wiresaw2 ε/2 ε/2 2.4e-15 9.2e-16

As the results above show, the EAI was generally able to improve the accu-
racy of the approximations with respect to the QZ method. The only problems
where the EAI achieved an average performance worse than the QZ are qep2
(loss of accuracy on the multiple eigenvalue 1 with respect to quadeig; polyeig
has problems as well) and gen hyper 2.

It is worth noticing that for some of the problems the detection of (at least
some) zero or infinite multiple eigenvalues through a rank-revealing factoriza-
tion, as described in Section 2.5, helped improving the performance of the algo-
rithm. The test gave satisfactory results also for the problems in the NLEVP
library that have defective eigenvalues at either zero or infinity.

The problems in the NLEVP database do not have high degree, so the con-
dition k2 � n is not met. Therefore, in contrast with the high degree case, for
those problems using the EAI as a primary algorithm does not bring advan-
tages in term of computation time; on the contrary the Horner method-based
implementation used for the experiments discussed in this section is slower than
the QZ if n � k2. Also, in these cases a linearization-based version of the
EAI would be more efficient than the polynomial-based implementation used
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for the experiments described in the present section. However, it is worth notic-
ing that the numerical experiments showed that very often the EAI improved
the accuracy achieved by polyeig and/or quadeig; in many cases, the EAI
was able to compute correctly all the digits of the eigenvalue up to machine
precision. This suggests that, when k2 ∼< n, it is possible to use the EAI as a
refinement algorithm in order to improve the approximations obtained by the
QZ. Using such values as starting points offers of course a very good choice,
lowering the number of overall scalar iteration needed before convergence and
therefore improving the efficiency of the EAI.

2.6.4 Eigenvectors

As we have just seen, the EAI computes the approximated eigenvalues of a PEP.
In many applications, only the eigenvalues of a PEP are wanted. In such cases,
the implementation of the EAI as described in the previous sections is all that
is needed. However, we must consider that other applications exist where the
eigenvectors are of interest as well. Let us analyse how they can be found when
using the proposed method.

When given a matrix polynomial P (x) as an input the EAI does not compute
itself the eigenvectors; however, it gives as an output quite accurate approxima-
tions of the eigenvalues. Let us call such approximations yi, i = 1, . . . , nk. It
is possible to give yi as an input to other algorithms in order to find the eigen-
vectors in a second moment. We mention, amongst the various possibilities,
the computation of the approximated null space via an SVD decomposition [47]
or the inverse iteration method, that is, the power method applied to P (yi)

−1

[47, 56].
As we have seen, the EAI computes approximations of the eigenvalues in

O(n4k + k2n3) floating point operations, or — via a linearization L(x) and
following the strategy described in Subsection 2.2.3— in O(n3k3). Given the
evaluation of the matrix polynomial P (x) at yi (which is already computed by
the EAI algorithm as a byproduct), both the inverse iteration method or the
SVD decomposition method provide an approximation vi of the corresponding
eigenvector in O(n3) floating point operations per eigenvalue; hence, we see that
all the eigenvectors can be approximated in O(n4k) floating point operations.
When k �

√
n, such cost is negligible with respect to k2n3 and, therefore, the

overall complexity of the algorithm is not affected by the computation of the
eigenvalues. For what concerns the case k �

√
n, the most efficient version of

the EAI computes as a byproduct a Hessenberg-triangular linearization H(x)
(dimension nk) evaluated at each eigenvalue. In this setting, with H(yi) as an
input for i = 1, . . . , nk, the cost of the computation of all the approximated
eigenvectors with the inverse iteration can be reduced to O(n3k3), that is the
same order of magnitude as the approximation of the eigenvalues.

Let us now give some experimental results on the quality of eigenvector
approximation. The first comparison has been made on random polynomi-
als. Eigenvalues and eigenvectors were computed with three different methods:
polyeig, the EAI followed by the inverse power method, and the EAI fol-
lowed by Matlab’s function null that computes the null space of a numerically
singular matrix using the SVD decomposition. Computed eigenvectors were
normalised in order to have unit 2-norm. For each eigencouple (yi, vi) a resid-
ual was computed as ‖P (yi)vi‖2/‖P (yi)‖2. The results for the three methods
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were compared. Figure 21 shows, in a logarithmic scale graph, the residuals for
polyeig (blue + symbol), EAI followed by SVD decomposition (red ∗ symbol)
and EAI followed by inverse iteration (green o symbol) for a random PEP with
n = 5, k = 40.
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Fig. 21. Residuals for eigenvectors in a randomly generated problem
(k = 40, n = 5): polyeig (blue), EAI+SVD (red), and EAI+inverse iteration

(green)

As Figure 21 illustrates, the eigenvector residual on a typical randomly gen-
erated PEP is sensibly lower with respect to the one resulting from the QZ
algorithm as implemented in polyeig, either using the inverse iteration or the
SVD. From what concerns the comparison between the SVD and the inverse it-
eration, the results were comparable in terms of average residual, with a slightly
better result for the SVD; in terms of maximum of the residuals the SVD typi-
cally worked better, as can be seen by Figure 21.

As a second test, the NLEVP [7] problems gen hyper2, qep1 and qep3 have
been solved with the three methods mentioned before and with quadeig [52].
For these problems, the solutions are exactly known and provided within the
Matlab package NLEVP [7]. If vi is the approximated eigenvector and ξi the
corresponding exact eigenvector, a measure of the forward error is the residual
2-norm ‖vi−ξi‖2 (after having normalised both vi and ξi in such a way that they
have norm 1 and that their first nonzero component is a real positive number).
The following table reports the maximal forward error and the geometric mean
of forward errors for each problem and each method. Once again, values less
then the machine precision ε were set equal to ε/2.

Problem EAI+SVD EAI+inv. it.
Max. Avg. Max. Avg.

gen hyper 2 2.5e-13 6.7e-15 2.5e-13 7.0e-15
qep1 3.1e-16 1.3e-16 2.4e-16 1.3e-16
qep3 4.1e-16 1.4e-16 2.3e-16 1.3e-16
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Problem quadeig polyeig
Max. Avg. Max. Avg.

gen hyper 2 2.9e-13 1.6e-14 2.9e-13 1.8e-14
qep1 ε/2 ε/2 8.6e-15 5.8e-16
qep3 7.2e-15 3.7e-16 1.8e-15 2.2e-16

These and other experiments suggest that eigenvector computation can be
attached to the EAI with rather satisfactory outcomes.

2.7 Other simultaneous polynomial root-finders

We review in this section some possible alternatives to the EAI as root-finding
methods that may be applied to the characteristic equation p(x) = 0.

The modified Ehrlich-Aberth iteration (MEAI) [81, 94] is a slight modifica-
tion of the EAI that uses (in the Gauss-Seidel style) the formula

y
(i+1)
j = y

(i)
j −

N (p(y
(i)
j ))

1−N (p(y
(i)
j ))Aj(y(i), y(i+1))

,

Aj(y
(i), y(i+1)) =

j−1∑
`=1

1

y
(i)
j − y

(i+1)
`

N (p(y
(i+1)
` )) +

N∑
`=j+1

1

y
(i)
j − y

(i)
`

N (p(y
(i)
` )).

(2.11)
Of course an analogous formula can be written for the Jacobi style imple-

mentation of the MEAI.
Various authors showed (e.g. [81, 96]) that its order of convergence is 4,

which is higher than the usual EAI. In practice, the order of convergence seems
not to be as important as the speed in reaching the region of fast convergence.
In numerical experiments on efficiency, we did not see a significant improvement
on the total number of scalar iterations when using the MEAI with respect to
the EAI. However, in some test problems the accuracy was improved. Further
work is needed in the future to understand if there exists any class of problems,
possibly with specific properties, for which the MEAI achieves better perfor-
mances.

Another possibility is to design simultaneous root-finding algorithms based
on higher order methods in the Householder class. Consider for instance, instead
of the Newton method x → x − f(x)/f ′(x), the next one in the Householder

family, which is the Halley method: x → 2f(x)f ′(x)

2(f ′(x))2 − f(x)f ′′(x)
. It is possible

to build a Halley-like simultaneous root-finder [96]. In order to apply it to
PEPs, not only the Newton correction p(x)/p′(x), but also a factor p(x)/p′′(x),
is needed. However, also the latter can be computed as a trace.

Notice in fact that

dtr
(
P (x)−1P ′(x)

)
dx

= tr
(
P (x)−1P ′′(x

)
+ tr

(
P ′(x)

dP (x)−1

dx

)
.
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p′′(x)

p(x)
−
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p′(x)

p(x)

)2

= tr
(
P (x)−1P ′′(x)

)
− tr

(
P ′(x)P (x)−1P ′(x)P (x)−1

)
,
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where we have used the identity

0 =
dP (x)P (x)−1

dx
= P (x)

dP (x)−1

dx
+ P ′(x)P (x)−1;

the above formula easily leads to an expression for the Halley correction in terms
of easily computable traces. Also in this case, the investigation on the actual
comparison of the Halley-like iteration with respect to the EAI is ongoing.

We finally mention the Durand-Kerner simultaneous iterative method [81,
96], here expressed in Jacobi style (writing its Gauss-Seidel version is immedi-
ate):

y
(i+1)
j = y

(i)
j −

p(y
(i)
j )∏

6̀=j(y
(i)
j − y

(i)
` )

.

For the Durand-Kerner method, preliminary experiments showed worse per-
formance with respect to the EAI; this is the reason why we mainly focused
on the latter. However, there may be special cases where the Durand-Kerner
method achieves good results, and further investigation is needed.



Chapter 3

The behaviour of complete
eigenstructures under a
rational change of variable

The present chapter deals with the behaviour of the complete eigenstructure of
a matrix polynomial when a rational change of variable comes into play.

It is based on the paper [93], that was motivated by the will to generalise
the partial results derived in [42], where we considered the particular case of a
square and regular polynomial matrix with entries in C[x] and without infinite

elementary divisors, and the Dickson change of variable x(y) = y2+1
y . Moreover,

[93] was also inspired by the possibility to extend the results from D. S. Mackey
and N. Mackey [80], who described the special case of rational transformations
of degree 1, also known as Möbius transformations.

The results exposed in this chapter are rather algebraic. Therefore, the
polynomial matrix point of view is preferred to the matrix polynomial point of
view.

3.1 Introduction to the change of variable prob-
lem

The aim of this chapter is to investigate the link between the complete eigen-
structures of two polynomial matrices P (x) and Q(y) related one to another by
a rational transformation x(y) of the variable. We will give results that hold
for matrix polynomials whose coefficients lay in Fm×p, where F is a generic field
(not necessarily C). For the sake of simplicity, the results are more easily ex-
pressed if F is algebraically closed; we stress however that this is not a necessary
assumption. In point of fact, we will assume in the following that the underly-
ing field is algebraically closed, and then we will explain in Section 3.6 how it
is possible to extend our arguments to the case of a generic field.

The problem of characterising the behaviour of the complete eigenstructure
of a polynomial matrix when a change of variable occurs has an application
in the development of a structured version of the EAI to polynomial eigenvalue

57
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problems whose spectrum is known to have a symmetry such that the eigenvalues
appear in pairs {λ, f(λ)} where f(f(λ)) ≡ λ.

In order to better explain the question we are interested in, let us consider
the following example where F = C.

Example 3.1. Suppose that we have to deal with the polynomial matrix

P (x) =


x2 − 20x 0 0
x− 20 x2 − 20x 0

0 0 x
0 0 x2

0 0 0

 ;

if we choose grade(P (x))= 2, then the complete eigenstructure of P (x) is the
following:

• the elementary divisors of P (x) are (x− 20), x, (x− 20), x2;

• there are no right minimal indices;

• the left minimal indices of P (x) are 0, 1.

The rational change of variable x(y) = 16y2−25
y2−y induces a mapping Φ2 such that

Φ2(P (x)) = (y2 − y)2P ( 16y
2−25

y2−y ) =: Q(y), with grade(Q(y)) = 4 and

Q(y) =


(25− 16y2)(2y − 5)2 0 0
(y − y2)(2y − 5)2 (25− 16y2)(2y − 5)2 0

0 0 (y2 − y)(16y2 − 25)
0 0 (16y2 − 25)2

0 0 0

 .
By studying the complete eigenstructure of Q(y) we find out that

• the elementary divisors of Q(y) are (y − 5
2 )

2, (y − 5
4 ), (y +

5
4 ), (y −

5
2 )

2,
(y − 5

4 )
2, (y + 5

4 )
2;

• there are no right minimal indices;

• the left minimal indices of Q(y) are 0, 2.

Notice that x( 52 ) = 20, x(±5
4 ) = 0, and that y = 5

2 is a root of multiplicity 2 of
the equation x(y) = 20 while y = ±5

4 are roots of multiplicity 1 of the equation
x(y) = 0. We can therefore conjecture that if (x−x0)` is an elementary divisor of
P (x) and y0 is a root of multiplicity m of the equation x(y) = x0 then (y−y0)m·`

is an elementary divisor of Q(y). Moreover, looking to what happened to the
minimal indices, we see that apparently they have been multiplied by a factor 2;
notice that 2 is the degree of the considered rational transformation (that is the
maximum of the degrees of the numerator and the denominator).

The main result of the present chapter is the proof that the conjectures
above, which will be stated more precisely in Section 3.3, are true for every
rational transformation of the variable x(y) and every polynomial matrix P (x).
Moreover, analogous properties hold for infinite elementary divisors and right
minimal indices.
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3.2 Rational transformations of polynomial ma-
trices

Assume that the field F is algebraically closed.
Let n(y), d(y) ∈ F[y] be two nonzero, coprime polynomials. Let us define

N := deg n(y), D := deg d(y), and G := max(N,D). We will always suppose
G ≥ 1, that is n(y) and d(y) are not both elements of F. We denote the
coefficients of n(y) and d(y) as ni ∈ F, i = 0, . . . , N and dj ∈ F, j = 0, . . . , D.

We consider the generic rational function from F∗ to F∗ defined as

x(y) =
n(y)

d(y)
. (3.1)

The function (3.1) induces a mapping Φg,n(y),d(y) : (F[x])m×p → (F[y])m×p

defined as
Φg,n(y),d(y)(P (x)) = Q(y) := [d(y)]gP (x(y)) (3.2)

Here g is the grade of P (x) ∈ (F[x])m×p, so for any choice of g a different
mapping is defined.

Remark 3.1. The reversal of a polynomial matrix is a well-known example of
one such mapping, corresponding in our notation to Φg,1,y.

We will usually omit the functional dependence of Φ on n(y) and d(y) unless
the context allows any possible ambiguity; also, if the grade g is chosen to be
equal to the degree k = degP (x), we will sometimes omit the subscript g, that
is Φ(P (x)) := Φk,n(y),d(y)(P (x)).

Since a polynomial matrix is also a matrix polynomial, we can write P (x) =∑g
i=0 Pix

i for some Pi ∈ Fm×p, i = 0, . . . , g. Notice that following the same
point of view we can also write Q(y) =

∑g
i=0 Pi[n(y)]

i[d(y)]g−i. We have the
following upper bound on the degree of Q(y).

Lemma 3.1. degQ(y) = degΦg(P (x)) ≤ q := gD + maxi:Pi 6=0(iN − iD). If
N 6= D the strict equality degQ(y) = q always holds. Moreover, q ≤ gG.

Proof. Writing Q(y) as above, we can see it as a sum of the k+1 polynomial
matrices Qi(y) = Pi[n(y)]

i[d(y)]g−i, 0 ≤ i ≤ k, with either Qi(y) = Pi = 0 or
degQi(y) = gD+i(N−D). Since the degree of the sum of two polynomials can-
not exceed the greatest of the degrees of the considered polynomials, degQ(y)
cannot be greater than q. Notice that if N = G then gG ≥ q = kG+ (g − k)D
and the maximum is realised by i = k, while otherwise the maximum is realised
by the smallest index j such that Pj 6= 0, and q = (g − j)G+ jN . This means
that if N < G and P0 = 0 then q < gG, while q = gG if N < G but P0 6= 0.

Notice finally that, if i1 6= i2, then Qi1(y) and Qi2(y) have the same degree
if and only if D = N . Since degQi1(y) 6= degQi2(y) ⇒ deg(Qi1(y) +Qi2(y)) =
max(degQi1(y),degQi2(y)), D 6= N is a sufficient condition for degQ(y) = q.

Lemma 3.1 shows that degQ(y) ≤ q ≤ gG. The next proposition describes
the conditions under which the equality degQ(y) = gG holds.

Proposition 3.1. Let Q(y) = Φ(P (x)), P (x) 6= 0. It always holds degQ(y) ≤
gG, and degQ(y) < gG if and only if one of the following is true:



60 CHAPTER 3. EIGENSTRUCTURES AND CHANGE OF VARIABLE

1. N > D and g > k;

2. N ≤ D, and there exist a natural number a ≥ 1 and a polynomial matrix
P̂ (x) ∈ (F[x])m×p such that P (x) = (x − x̂)aP̂ (x), where x̂ := nGd

−1
G if

N = D = G and x̂ := 0F if N < D = G.

Proof. Lemma 3.1 guarantees degQ(y) ≤ gG. To complete the proof, there
are three possible cases to be analysed.

• If G = N > D, we know from Lemma 3.1 that degQ(y) = q, and in this
instance q = gD + kN − kD. Therefore, degQ(y) = gG⇔ g = k.

• If N = D = G and, we get q = gG. Let Q(y) =

gG∑
i=0

Θiy
i: then, degQ(y) <

gG⇔ ΘgG = 0(F[x])m×p . On the other hand ΘgG is the coefficient of ygG in

Q(y) =

g∑
i=0

Pi[n(y)]
i[d(y)]g−i, so ΘgG = dgG

g∑
i=0

Pin
i
Gd

−i
G = dgGP (nGd

−1
G ).

Therefore, ΘgG is zero if and only if every entry of P (nGd
−1
G ) is equal to

0F[x], or in other words if and only if P (x) = (x− nGd
−1
G )aP̂ (x) for some

a ≥ 1 and some suitable polynomial matrix P̂ (x).

• If N < D = G, recalling the proof of Lemma 3.1 we conclude that
degQ(y) < gG if and only if P0 = 0, which is equivalent to P (x) = xaP̂ (x)
for a suitable value of a ≥ 1 and some polynomial matrix P̂ (x).

The grade of Q(y) is of course arbitrary, even though it must be greater than
or equal to its degree. Since degQ(y) ≤ q ≤ gG, we shall define that the grade
of Q(y) is gG. This choice has an influence on the infinite elementary divisors
of Q(y), as they are equal to the elementary divisors corresponding to zero of
the reversal of Q(y) taken with respect to its grade, that is Rev(gG)Q(y).

If one is interested in picking a different choice for the grade of Q(y), the
following proposition explains how the infinite elementary divisors change.

Proposition 3.2. Let P (x) ∈ (F[x])m×p, with k = degP (x). Then the fi-
nite elementary divisors and the minimal indices of P (x) do not depend on
its grade, while the infinite elementary divisors do. Namely, let ν = min(m, p);
xg−kd1(x), . . . , x

g−kdν(x) are the invariant polynomials of RevgP (x) if and only
if d1(x), . . . , dν(x) are the invariant polynomials of RevkP (x), for any choice of
g ≥ k.

Proof. Neither Theorem 1.2 nor the properties of kerP (x) and kerPT (x)
depend on the grade, so minimal indices and finite elementary divisors cannot
be affected by different choices. Let S(x) = A(x)RevkP (x)B(x) be the Smith
form of RevkP (x). We have RevgP (x) = xg−kRevkP (x), which implies that
xg−kS(x) = A(x)RevgP (x)B(x). Clearly di(x)|dj(x) ⇔ xg−kdi(x)|xg−kdj(x),
and therefore we conclude that xg−kS(x) is the Smith form of RevgP (x).

Let α, β, γ, δ ∈ F. If G = 1, Φg,αy+β,γy+δ is clearly invertible and its inverse,

with a little abuse of notation, is Φg,β−δx,γx−α : Q(y) → [γx − α]gQ( β−δx
γx−α ) .

The most general case is analysed below.
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Proposition 3.3. Let us denote by F[x]g the set of the univariate polynomials
in x whose degree is less than or equal to g. Given g, n(y), d(y), the mapping
Φg,n(y),d(y) : (F[x]g)m×p → (F[y](gG))

m×p is always an injective function, but it
is not surjective unless G = 1.

Proof. Notice that Φg can be thought as acting componentwise, sending
P (x)ij to Q(y)ij = Φg(P (x)ij). Thus, it will be sufficient to show that, in
the scalar case Φg : F[x]g → F[y](gG), Φg is surjective if and only if G = 1.
This is true because any polynomial that does not belong to the set Ry :=

{a(y) ∈ F[y] : a(y) =
g∑

i=0

ai[d(y)]
g−i[n(y)]i} cannot belong to the image of Φg,

and Ry = F[y](gG) if and only if G = 1. In fact, if we require that a generic
r ∈ F[y](gG) belongs to Ry, we find out that the g+1 coefficients ai must satisfy
gG+ 1 linear constraints.

To prove injectivity: Φg(P1(x)) = Φg(P2(x)) ⇒ P1(x(y)) = P2(x(y)) ⇒
P1(x) = P2(x).

Proposition 3.3 tells us that, unless G = 1 (the Möbius case), not every Q(y)
is such that Q(y) = Φ(P (x)) for some P (x).

A couple of additional definitions will turn out to be useful in the following.
Let x0 ∈ F∗: we define Tx0 as the preimage of x0 under the rational function
x(y).

Moreover let α, β ∈ F be such that α
β = x0 and α and β are not both zero.

For instance, we can pick (α, β) = (x0, 1F) if x0 6= ∞ and (α, β) = (1F, 0F)
otherwise. Consider the polynomial equation

αd(y) = βn(y). (3.3)

Let S be the degree of the polynomial αd(y) − βn(y). Equation (3.3) cannot
have more than S finite roots. If S < G then we formally say ∞ ∈ Tx0 .

Remark 3.2. Notice that there are three cases that lead to S < G:

1. N = D = G and x0 = nGd
−1
G , so that (3.3) becomes dGn(y) = nGd(y): in

this case, S is the maximum value of i such that ni 6= x0di;

2. N < D = G and x0 = 0F, so that (3.3) becomes n(y) = 0F and S = N ;

3. D < N = G and x0 = ∞, so that (3.3) is d(y) = 0F and S = D.

We now define the multiplicity m0 of any finite y0 ∈ Tx0 as the multiplicity
of y0 as a solution of the polynomial equation (3.3). If ∞ ∈ Tx0 , its multiplicity
is defined to be equal to G − S. Therefore, the sum of the multiplicities of all
the (both finite and infinite) elements of Tx0 is always equal to G, while the
sum of the multiplicities of all the finite elements of Tx0 is S.

The finite elements of Tx0 are characterised by the following proposition.

Proposition 3.4. Let y0 ∈ F and x0 ∈ F∗. Then y0 ∈ Tx0
if and only if y0 is

a solution of (3.3) for α, β : x0 = α
β . Moreover, the two equations α1d(y0) =

β1n(y0) and α2d(y0) = β2n(y0) are simultaneously satisfied if and only if α1

β1
=

α2

β2
.
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Proof. The definition of Tx0 implies the first part of the proposition. The
second part comes from the fact that x(y) is a function.

Proposition 3.4, albeit rather obvious, has the following important implica-
tion:

Corollary 3.1. x0 6= x1 ⇔ Tx0 ∩ Tx1 = ∅. Equivalently, α1β2 6= α2β1 if and
only if [β1n(y)− α1d(y)] and [β2n(y)− α2d(y)] ∈ F[y] are coprime.

In particular, for any finite x0 ∈ F, Φ(x− x0) and d(y) are coprime.

In order to clarify the latter definitions, let us consider an example.

Example 3.2. Let F = C and take n(y) = y4 + y3 − y2 − y + 1, d(y) = y4.
T1 is the set of the solutions of the equation n(y) = d(y), so in this case T1 =
{−1, 1,∞}. Moreover, the multiplicity of −1 and 1 are, respectively, 1 and 2;
since S = 3 and G = 4, the multiplicity of ∞ is by definition G−S = 1. Within
the same example, T∞ = {0}; 0 has multiplicity 4 because it is a root of order 4
of the equation d(y) = 0.

3.3 Main result

We are now ready to state the main result of this chapter.

Theorem 3.1. Given m, p ∈ N0 and n(y), d(y) ∈ F[y], let x0 ∈ F∗ be a char-
acteristic value of P (x) ∈ (F[x])m×p, and let (x − x0)

`1 , . . . , (x − x0)
`j be the

corresponding elementary divisors. Let g be the grade of P (x) and define G =

max(deg n(y),deg d(y)). Let Q(y) = Φg(P (x)) := [d(y)]gP (n(y)d(y) ) ∈ (F[y])m×p

and let gG be the grade of Q(y). Then for any y0 ∈ Tx0 :

• y0 is a characteristic value of Q(y);

• (y − y0)
m0`1 , . . . , (y − y0)

m0`j are the elementary divisors corresponding
to y0 for Q(y), where m0 is the multiplicity of y0.

Conversely, if Q(y) = Φg(P (x)) for some P (x), and if y0 ∈ F∗ is a characteristic
value of Q(y) with corresponding elementary divisors (y−y0)κ1 , . . . , (y−y0)κj :

• x0 = n(y0)
d(y0)

is a characteristic value of P (x);

• m0|κi ∀i ≤ j, where m0 is the multiplicity of y0 as an element of Tx0 , and

(x−x0)m
−1
0 κ1 , . . . , (x−x0)m

−1
0 κj are the elementary divisors correspond-

ing to x0 for P (x).

In addition, the following properties hold:

• the right minimal indices of P (x) are β1, . . . , βs if and only if the right
minimal indices of Q(y) are Gβ1, . . . , Gβs;

• the left minimal indices of P (x) are γ1, . . . , γr if and only if the left
minimal indices of Q(y) are Gγ1, . . . , Gγr.

For any choice of the mapping Φg, Theorem 3.1 gives a thorough description
of the complete eigenstructure of Φg(P (x)) with respect to the complete eigen-
structure of P (x). Notice that if x(y) is a Möbius transformation then m0 ≡ 1
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and G = 1, so the complete eigenstructure is unchanged but for the shift from
one set of characteristic values to another. This is not the case for more general
rational transformations, where other changes do happen.

The structure of the proof of Theorem 3.1, that was given in [93] and will
be recalled in the next sections, is the following: first we shall prove the first
part of the theorem (the statement on elementary divisors). This will be done
dividing the statement in three cases:

1. x0 ∈ F and y0 ∈ F;

2. x0 ∈ F and y0 = ∞;

3. x0 = ∞.

We shall first prove that the statement is true for case 1. Then, we will show
that this implies that it is true for case 2. Finally, the validity of cases 1
and 2 implies case 3. This result can be extended also to fields that are not
algebraically closed: see Section 3.6.

Finally, we shall prove the second part of the theorem (the statement on
minimal indices) with a constructive proof: we shall build a minimal basis of
Q(y) given a minimal basis of P (x), and vice versa.

3.4 Proof of Theorem 3.1: elementary divisors

In this section, we prove the first part of Theorem 3.1. The proof relies on the
following lemma:

Lemma 3.2. Let P (x) ∈ (F[x])m×p and let R(x) = A(x)P (x)B(x) where
A(x) ∈ Mm(F[x]) and B(x) ∈ Mp(F[x]) are both regular, and suppose that
x0 ∈ F is neither a root of detA(x) ∈ F[x] nor a root of detB(x) ∈ F[x]. Then
x0 is a characteristic value of P (x) if and only if it is a characteristic value of
R(x), and (x − x0)

`1 , . . . (x − x0)
`j are the elementary divisors associated with

x0 for R(x) if and only if they are the elementary divisors associated with x0
for P (x).

Proof. From Theorem 1.4, it suffices to prove that P (x) has a maximal set
of j x0-independent root polynomials, whose orders are `1 ≤ · · · ≤ `j , if and
only if R(x) has a maximal set of j x0-independent root polynomials, of order
`1 ≤ · · · ≤ `j . We know from Theorem 1.3 that v(x) is a root polynomial of
order ` corresponding to x0 for R(x) = A(x)P (x)B(x) if and only if B(x)v(x) is
a root polynomial of order ` corresponding to x0 for P (x). Let us prove that x0-
independence is conserved: to this goal, observe that, as long as detB(x0) 6= 0F,
the polynomial vectors v1(x0), . . . , vj(x0) are linearly independent if and only if
the polynomial vectors B(x0)v1(x0), . . . , B(x0)vj(x0) are linearly independent.

In order to complete the proof, we ought to show that {v1(x), . . . , vj(x)}
is a maximal set of x0-independent root polynomials of R(x) if and only if
{B(x)v1(x), . . . , B(x)vj(x)} is a maximal set of x0-independent root polynomi-
als of P (x). Suppose that v1(x), . . . , vj(x) do not form a maximal set; recalling
the definitions that we gave in Chapter 1, we see that there are three cases for
this to happen. In the first case, there exists a root polynomial w(x) of R(x)
corresponding to x0 of order ` > `j : then B(x)w(x) is a root polynomial of
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P (x) of order `. In the second case, there exist x0-independent root polyno-
mials v̂k(x), vk+1(x) . . . , vj(x), such that the order of v̂k(x) is greater than the
order of vk(x), for some 1 ≤ k ≤ j. But this means that the same argument
holds for B(x)v̂k(x) with respect to B(x)vk(x). In the third case, there exists a
root polynomial v(x) such that v1(x), . . . , vj(x), v(x) are x0-independent. This
implies that B(x)v1(x), . . . , B(x)vj(x), B(x)v(x) are x0-independent. In each
of the three cases, we can conclude that B(x)v1(x), . . . , B(x)vj(x) do not form
a maximal set either. The proof of the reverse implication is analogous and is
omitted.

3.4.1 Case 1

Recall first that, if x0 is finite, then for any y0 ∈ Tx0 there must hold d(y0) 6= 0F
because of Corollary 3.1.

Let now P (x) = A(x)T (x)B(x) where A(x) and B(x) are unimodular poly-
nomial matrices, T (x) =: diag(δ1(x), . . . , δν(x)) is the Smith form of P (x). Here
ν := min(m, p) and δi(x) are the invariant polynomials of P (x). We recall
that the Smith form exists and is a diagonal matrix even when P (x) is not
square (we adopt the terminology and the notations introduced in Subsection
1.2.1). Let E(y) := Φ(A(x)), F (y) := Φ(B(x)), S(y) := Φ(T (x)), and define
Q̂(y) := E(y)S(y)F (y). Clearly, Q̂(y) and Q(y) differ only for a multiplicative
factor of the form [d(y)]λ, λ ∈ N. Moreover, observe that both detE(y) and
detF (y) are nonzero whenever d(y) 6= 0F. Therefore, Lemma 3.2 implies that
Q̂(y) and S(y) have the same elementary divisors of Q(y) for any characteristic
value y0 such that d(y0) 6= 0F. This condition is necessarily true because of
Corollary 3.1, and so it will be sufficient to prove the proposition for S(y).

Unfortunately, S(y) may not be the Smith form of Q̂(y), because neither
E(y) nor F (y) are necessarily unimodular and also because Φ(δi(x)) may not

be monic. Nevertheless, it has the form diag([d(y)]k1 δ̂1(y), . . . , [d(y)]
kν δ̂ν(y)),

where k1 ≥ k2 ≥ · · · ≥ kν and δ̂i(y) := Φ(δi(x)). From Corollary 3.1, δ̂i(y) and
d(y) cannot share common roots. To reduce S(y) into a Smith form, we proceed
by steps working on 2× 2 principal submatrices.

In each step, we consider the submatrix
[
[d(y)]γ δ̂i(y) 0

0 [d(y)]φδ̂j(y)

]
, where γ :=

ki and φ := kj , with i < j. If γ = φ, then do nothing; if γ > φ, premultiply

the submatrix by
[

1F 1F
−b(y)q(y) 1F−b(y)q(y)

]
and postmultiply it by

[
a(y) −q(y)

b(y) [d(y)]γ−φ

]
,

where q(y) = δ̂j(y)/δ̂i(y) while a(y) and b(y) are such that a(y)[d(y)]γ δ̂i(y) +

b(y)[d(y)]φδ̂j(y) = [d(y)]φδ̂i(y); the existence of two such polynomials is guar-

anteed by Bezout’s lemma, since [d(y)]φδ̂i(y) is the greatest common divisor of

[d(y)]γ δ̂i(y) and [d(y)]φδ̂j(y). It is easy to check that both matrices are unimod-

ular, and that the result of the matrix multiplications is
[
[d(y)]φδ̂i(y) 0

0 [d(y)]γ δ̂j(y)

]
.

Hence, by subsequent applications of this algorithm it is possible to conclude
what the Smith form of S(y) is. Namely, after having defined a unimodular di-
agonal matrix ∆ ∈ Fν×ν chosen in such a way that the invariant polynomials of
S̃(y) are monic, we see that the Smith form of S(y) is either S̃(y) := Ŝ(y) ·∆ or
S̃(y) := ∆ · Ŝ(y) (whichever of the two matrix product makes sense, depending
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on whether m ≤ p or not), where

Ŝ(y) = diag([d(y)]kν δ̂1(y), . . . , [d(y)]
k1 δ̂ν(y)).

Thus, the ith invariant polynomial of P (x) has a root of multiplicity `i at x0 if
and only if the ith invariant polynomial of Q̂(y) has a root of multiplicity m0`i
at y0 ∈ Tx0 .

3.4.2 Case 2

By definition, the infinite elementary divisors for a given polynomial matrix are
the elementary divisors corresponding to zero of the reversal of such polynomial
matrix. Therefore, in order to prove Theorem 3.1 for the case of y0 = ∞, we
have to analyse the polynomial matrix

Z(y) := Rev(gG)Q(y) = ygG[d(y−1)]gP (x(y−1)),

and find out what its relation to P (x) is, with particular emphasis to its elemen-
tary divisors corresponding to y0 = 0F. Recall Remark 3.2 about the situations
where S < G. From that analysis we see that there are two distinct situations
for which ∞ ∈ Tx0 for a finite x0 ∈ F:

2.1 N = D = G and x0 = nGd
−1
G ;

2.2 N < D = G and x0 = 0F.

We will consider such subcases separately.

Subcase 2.1

We get x(y−1) =
Revn(y)

Revd(y)
and yGd(y−1) = Revd(y); therefore we can write

Z(y) = [Revd(y)]gP (
Revn(y)

Revd(y)
). This means that we can prove analogous re-

sults for Z(y) just by considering this time the new rational transformation

y → x =
Revn(y)

Revd(y)
. Notice also that 0F is a root of multiplicity G − S for

the equation Revn(y) = x0Revd(y); moreover, since we took the reversal with
respect to the degree (or also because of Corollary 3.1), 0F cannot be a root
of Revd(y).Therefore, following the proof given above, one can state that P (x)
has (x− x0)

`1 , . . . , (x− x0)
`j as elementary divisors corresponding to x0 if and

only if Z(y) has the j elementary divisors y(G−S)`1 , . . . , y(G−S)`j corresponding
to 0F. The thesis follows immediately.

Subcase 2.2

This time, we can write x(y−1) =
yG−NRevn(y)

Revd(y)
; therefore, applying the def-

inition of Z(y), we get Z(y) = [Revd(y)]gP (
yG−NRevn(y)

Revd(y)
). It is therefore

sufficient to consider the transformation y → x = yG−N Revn(y)

Revd(y)
.
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In fact, notice that 0F is a solution of multiplicity G − N for the equation
yG−NRevn(y) = 0 (0F is neither a root of Revn(y) nor a root of Revd(y),
because Revn(0F) = nN 6= 0F and Revd(0F) = dD 6= 0F). Thus, using the
correspondence of Smith forms as before and invoking Lemma 3.2, we can state
that P (x) has the j elementary divisors x`1, . . . , x

`
j corresponding to 0F if and

only if Z(y) has the j elementary divisors y(G−N)`1 , . . . , y(G−N)`j corresponding
to 0F, and the thesis follows.

3.4.3 Case 3

By definition, the infinite elementary divisors of P (x) are the elementary di-
visors corresponding to the characteristic value 0F for R(x) = RevgP (x). But
let Ψg,n(y),d(y) = Φg,d(y),n(y) and U(y) = Ψg(R(x)), that is to say U(y) =

[n(y)]gR(
d(y)

n(y)
). A simple calculation gives

U(y) = [n(y)]g[
d(y)

n(y)
]gP ([

d(y)

n(y)
]−1) = [d(y)]gP (

n(y)

d(y)
) = Φg(P (y)) = Q(y).

One can therefore follow the proof as in the previous subsections, but starting
from R(x) and using a different transformation (notice that the equation that
defines T∞ for the old transformation is d(y) = 0F, and it is equal to the equation
that defines T0F for the new transformation).

3.4.4 A corollary on Jordan chains

By Theorem 3.1, we know that the elementary divisors of Q(y) are linked to
the elementary divisors of P (x). On the other hand, Theorem 1.4 tells us that
this fact is linked with the existence of an appropriate maximal set of root
polynomials.

We will now build y0-independent root polynomials of Q(y) starting from
the x0-independent root polynomials of P (x). This approach will allow us to
say something more on Jordan chains.

Let v(x) be a root polynomial of order ` for P (x), corresponding to the
characteristic value x0. We have

P (x)v(x) = (x− x0)
`θ(x), (3.4)

with GCD(x− x0, θ(x)) = 1F[x]. Let kv be the degree of v(x), and notice that,
if x0 is finite, then for any y0 ∈ Tx0 there must hold d(y0) 6= 0F (Corollary 3.1).
If follows that (3.4) is equivalent to

[d(y)]g+kvP (x(y))v(x(y)) = [d(y)]g+kv (x(y)− x0)
`θ(x(y))

or equivalently

Φg(P (x))Φ(v(x)) = Φ((x− x0)
`)Φg+kv−`(θ(x)).

Define w(y) := Φ(v(x)). The last equation then reads

Q(y)w(y) = (y − y0)
m0·`ρ(y),



3.5. PROOF OF THEOREM 3.1: MINIMAL INDICES 67

where

ρ(y) = κ ·

 ∏
yi∈Tx0 ,yi 6=y0

(y − yi)
`·mi

Φg+kv−`(θ(x)).

Here κ ∈ F is a suitable constant, mi is the multiplicity of yi as a root of the
equation (3.3), and we adopt the formal convention y−∞ := 1F in order to deal
with the possibility of infinite yi.

In Section 3.5 we will prove that [v1(x), . . . , vs(x)] is a minimal basis of
kerP (x) if and only if [Φ(v1(x)), . . . ,Φ(vs(x))] is a minimal basis of kerQ(y):
this implies that v(x0) ∈ kerx0 P (x) ⇔ w(y0) ∈ kery0 Q(y). Corollary 3.1 allows
to conclude that w(y) is a root polynomial of order m0` corresponding to y0.

We can repeat the same procedure with a whole maximal set of x0-indepen-
dent root polynomials: we will now show that the resulting root polynomials of
Q(y) are y0-independent. In fact, denote by V (x) the matrix [v1(x), . . . , vj(x)]
formed by the x0-independent root polynomials of P (x), and let us call W (y) =
[Φ(v1(x)), . . . ,Φ(vj(x))]. Since d(y0) 6= 0F, we have that rankW (y0) = rankV (x0).
Hence the x0-independence of the root polynomials of P (x) implies, and is im-
plied by, the y0 independence of the root polynomials of Q(y) built as above.

Finally, by Theorem 1.4 we see that the root polynomials that we have
built must be a maximal set, because they correspond to the exponents of the
elementary divisors of Q(y), which are uniquely determined.

Observe that this explicit construction of the root polynomials allows to
formulate the following Corollary of Theorem 3.1:

Corollary 3.2. If Q(y) = Φg(P (x)) and y0 ∈ Tx0 with multiplicity m0, then
v(x) is a root polynomial of order ` corresponding to x0 for P (x) if and only if
w(y) is a root polynomial of order m0` corresponding to y0 for Q(y), with

v(x) =

`−1∑
i=0

(x− x0)
ivi ⇔ w(y) =

`−1∑
i=0

[d(y)]`−1−i[n(y)− x0d(y)]
ivi, (3.5)

where vi ∈ Fm are suitable constant vectors.

Equation (3.5) contains, via Theorem 1.5, all the information on Jordan
chains.

3.5 Proof of Theorem 3.1: minimal indices

We shall only prove the theorem for right minimal indices. The proof for left
minimal indices follows from the proof for right minimal indices and from the
fact that Φ and the operation of transposition commute, that is Φg(P

T (x)) =
(Φg(P (x)))

T ∀ P (x) ∈ (F[x])m×p.

3.5.1 Necessity

Let dimkerP (x) = s, and V (x) = [v1(x), . . . , vs(x)] be a minimal basis for
kerP (x), with minimal indices βi := deg vi ∀i = 1, . . . , s and order B :=∑s

i=1 βi. For each value of i let us define wi(y) := Φβi(vi(x)); we also de-
fine W (y) := [w1(y), . . . , ws(y)]. Clearly degwi(y) = Gβi. Suppose in fact
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degwi(y) 6= Gβi; applying Proposition 3.1 (in the case g = k = βi), this would
imply that there exists some x0 ∈ F and some polynomial vector u(x) ∈ (F[x])p
such that vi(x) = (x − x0)u(x). Hence, [v1(x), . . . , (x − x0)

−1vi(x), . . . , vs(x)]
would be a polynomial basis of order B− 1 for kerP (x), leading to a contradic-
tion. In order to prove that W (y) is a minimal basis for kerQ(y) we must show
that it is a basis and that it is minimal.

Clearly wi(y) lies in kerQ(y) for all i. In fact, P (x)vi(x) = 0 implies that
Q(y)wi(y) = 0. Moreover, since rank(Q(y)) = rankP (x(y)) = rank(P (x)),
dimkerQ(y) = s. Therefore, it is sufficient to show that W (y), considered as
an element of (F(x))p×s, has rank s.

Notice that W (y) = V (x(y)) · diag([d(y)]β1 , . . . , [d(y)]βs). A well-known
property of the rank is that, if A1 = A2A3 and A3 is square and regular, then
rank(A1) = rank(A2). Therefore rank(W (y)) = rank(V (x(y)), because the
diagonal matrix above is regular. Let V̂ (x) be some regular s× s submatrix of
V (x), which exists because rank(V (x)) = s. By hypothesis, det(V̂ (x)) 6= 0F[x],

which implies det(V̂ (x(y))) 6= 0F(y). Hence s = rank(V (x(y))) = rank(W (y)).
Then W (y) is a basis.

In order to prove that it is minimal, let us introduce the following lemma
whose proof can be found in [34].

Lemma 3.3. Let V be a vector subspace of F(x)p, with dimV = s. Let H =
[h1, . . . , hs] be a polynomial basis of order A for V and define ξi, i = 1, . . . , ( ps )
to be the s× s minors (i.e. determinants of s× s submatrices) of H. Then the
following statements are equivalent:

• H is a minimal basis for V

• The following conditions are both true: (a) GCD(ξ1, . . . , ξr) = 1F[x] and
(b) maxi deg ξi = A.

So let ξi(y) be the s× s minors of W (y). We shall prove that (a) their GCD
is 1F[y] and (b) their maximal degree is GB = G

∑s
i=1 βi. By Lemma 3.3, these

two conditions imply that W (y) is minimal. Recall that wi(y) = Φβi(vi(x)),
that is to say wi(y) = [d(y)]βivi(x(y)). Any s × s submatrix of W (y) is there-
fore obtained from the corresponding s × s submatrix of V (x) by applying
the substitution x = x(y) and then multiplying the ith column by [d(y)]βi for
i = 1, . . . , s. Let us call ζi(x) the s × s minors of V (x). From the proper-
ties of determinants we obtain the relation ξi(y) =

(∏s
i=1[d(y)]

βi
)
ζi(x(y)) =

[d(y)B ]ζi(x(y)) = ΦB(ζi(x)).
Now for each i let γi := deg ζi(x) and δi := deg ξi(y) ≤ maxj≤γi(Nj −

Dj)+DB where the maximum is taken over those values of j such that the jth
coefficient of ξi(y) is nonzero (Lemma 3.1). There are two cases. If N ≤ D = G,
δi ≤ GB, and applying Proposition 3.1 (with g = B), the inequality holds if and
only if if (x− x̂)|ζi(x), where x̂ = 0F if N < D and x̂ = nGd

−1
G if N = D; notice

that there must be at least one value of i for which δi = GB, otherwise (x− x̂)
would be a common factor of all the ζi(x), which is not possible because of
Lemma 3.3 (for the same reason at least one ζi(x) must be nonzero). Finally, if
D < N = G, δi = γiG+(B−γi)D. Since V (x) is minimal we have maxi(γi) = B,
which implies that also in this case maxi(δi) = GB. This proves condition (b).

Notice moreover that ξi(y) = ΦB(ζi(x)) = [d(y)]B−γiΦγi
(ζi(x)), where the

first and the second factor are coprime (because of Corollary 3.1). Let us prove
the following lemma.
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Lemma 3.4. Let p, q, r ∈ F[x] with r monic. Then, GCDF[x](p, q) = r if and
only if GCDF[y](Φdeg p(p),Φdeg q(q)) = κ · Φdeg r(r), where κ ∈ F is such that
κ · Φdeg r(r) is monic.

Proof. Let α, β be two suitable elements of F and let us write the prime
factor decompositions p = α ·

∏
(x− pi)

πi , q = β ·
∏
(x− qi)

θi , r =
∏
(x− ri)

ρi .
Of course we have that (x − ri)

ρi |r if and only if (x − pi)
πi |p, (x − qi)

θi |q and
ρi = min(πi, θi). Applying (3.1), we have that Φdeg p(p) = α·

∏
(n(y)−pid(y))πi ,

Φdeg q(q) = β ·
∏
(n(y)−qid(y))θi and Φdeg r(r) =

∏
(n(y)−rid(y))ρi . The thesis

follows by invoking Corollary 3.1.
Lemma 3.4 implies condition (a). This follows from the equation

GCDi(ξi(y)) = GCDi([d(y)]
B−γi) ·GCDi(Φγi(ζi(x))) = 1F[y] · 1F[y].

The first 1F[y] comes from the fact that maxi(γi) = B, while the second 1F[y]
comes by applying the previous lemma to

GCD(ξ1(y), . . . , ξs(y)) = GCD(GCD(. . .GCD(ξ2(y), ξ1(y)) . . . ))

and from the identity Φ0(1F[x]) = 1F[y].

3.5.2 Sufficiency

To complete the proof, suppose now that Q(y) = Φg(P (x)) for some P (x) ∈ F[x]
and that Ŵ (y) is a minimal basis for kerQ(y), with minimal indices ε1 ≤ · · · ≤
εs. The other implication that we proved in the previous subsection implies that
G|εi ∀ i, so define βi =

εi
G . Suppose that there exists a minimal basis V̂ (x) =

(v̂1(x), . . . , v̂s(x)) for kerP (x); suppose moreover that an index i0 ∈ {1, . . . , s}
exists such that deg v̂i0 6= βi0 . Applying the reverse implication, this would
imply that there is a minimal basis W̃ (y) = (w̃1(y), . . . , w̃s(y)) for kerQ(y)
whose i0th right minimal index is not equal to εi0 . This is absurd because every
minimal basis has the same minimal indices.

3.6 Extension to more relaxed hypotheses

For the sake of convenience in exposition, we have so far assumed that F is
algebraically closed. This assumption is heavily used in the construction of
Smith forms. Nevertheless, it is possible to state analogous results for fields
that are not algebraically closed: to see it, let K be the algebraic closure of F.
Then (F[x])m×p ⊆ (K[x])m×p, so we can use Theorem 3.1 to identify the Smith
forms of P (x) and Q(y) = Φg(P (x)) over the polynomial rings K[x] and K[y].
We can then join back elementary divisors in K[x] and K[y] to form elementary
divisors in F[x] and F[y]. Of course, in this case an elementary divisor is no
more necessarily associated with a characteristic value in F. For instance, if
F = Q, then the elementary divisor x2 + 2 is not associated with any rational
characteristic value, but if we consider the field of complex algebraic numbers
K = Q then we can split it as (x −

√
2i)(x +

√
2i) and associate it to the

characteristic values ±
√
2i. We have used again the fact that F is algebraically

closed somewhere else (e.g., Lemma 3.4), but once again it is straightforward
to extend those results to a generic field F via an immersion into its algebraic
closure K.
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Chapter 4

The Ehrlich-Aberth method
for structured polynomial
eigenproblems

In the present chapter, that relies on the papers [12, 42, 92], we analyse various
possible strategies for the adaptation of the EAI to the solution of structured
PEPs. There are three main strategies that we used to exactly extract the
structure in the spectrum: one is the very simple solution to force the approxi-
mation of the EAI to preserve the structure; the second is to explicitly build a
new matrix polynomials with less distinct eigenvalues than the original one, and
to obtain the sought eigenvalues from such new polynomial; finally, the third
method is to make an implicit change of variable.

The second and the third approach deserve more attention, because they
are more sophisticated and because from experiments they seem to achieve, in
some cases, a better efficiency. We will review the application of both methods
to several kinds of structured PEPs.

4.1 Introduction to structured PEPs

The EAI is particularly suited to deal with matrix polynomials endowed with
specific structures of the matrix coefficients. We are interested in matrix struc-
tures which induce particular symmetries on the location of the eigenvalues.
Polynomials of this kind are encountered in the applications and include, for
instance, palindromic, T-palindromic, even/odd, skew-Hamiltonian and Hamil-
tonian/skew-Hamiltonian polynomials.

Customary PEP-solving algorithms, such as the application of the QZ algo-
rithm to any suitable linearization of the polynomial, are not able to fully catch
these symmetries of the spectrum. In the literature, there are specific matrix
methods that achieve this goal. The EAI enables to exploit the additional in-
formation both in the computation of the Newton correction and in the choice
and in the management of the (initial) approximation of the roots in view of
the structure-induced symmetries. We will often refer to the resulting struc-
tured variants of the Ehrlich-Aberth method as the structured Ehrlich-Aberth

71
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iteration (SEAI).
Assume that the structured PEP is such that the eigenvalues appear in pairs

{x, f(x)}, with f(f(x)) = x ∀x. A naive adaptation of the EAI to this property
would be to apply (2.2) or (2.3) updating only the first half of the components
of the vector y and simultaneously imposing y(i) = f(y(i−nk/2)), i = nk/2 +
1, . . . , nk. From numerical experiments we see that this approach is working
well sometimes, while in other instances it does not seem to be very efficient
in terms of number of scalar iterations needed for numerical convergence. This
motivates the design of more sophisticated structured variants of the EAI, that
we are going to describe in the following. A more detailed comparison of the
efficiencies of the “naive” approach and the “sophisticated” methods is reported
in Section 4.6.

In the following sections, we will analyse various classes of structured matrix
polynomials and describe the design of different adaptations of the EAI that aim
to solve them. Before doing that, let us recall some basic definitions of special
matrices.

An n × n square matrix A ∈ Cn×n is said to be symmetric if AT = A
and skew-symmetric if AT = −A. Let n = 2m. The matrix A is said to be
Hamiltonian if it is such that ATJ = −JA where J is the matrix

[
0 Im

−Im 0

]
;

A is said to be skew-Hamiltonian if it is such that ATJ = JA; A is said to be
symplectic if it is such that ATJA = J .

Remark 4.1. In general, it is possible to give two different definitions [31, 79]
of complex Hamiltonian, skew-Hamiltonian and symplectic matrices, one with
respect to transposition and the other one with respect to conjugate transposition.
In this thesis, we are mainly interested in the former case, and therefore we
always refer to the definitions given above.

Every skew-Hamiltonian matrix can be obtained as the square of a Hamilto-
nian matrix, and conversely the square of a Hamiltonian matrix is always skew-
Hamiltonian[32]. Symplectic matrices are exponentials of Hamiltonian matrices.

4.2 Even-dimensional skew-symmetric and skew-
Hamiltonian PEPs

A skew-symmetric polynomial is a polynomial P (x) whose coefficients Pj , for
j = 0, . . . , k, are skew-symmetric constant matrices. If the coefficients have
even size n = 2m, we say that P (x) is an even-dimensional skew-symmetric
polynomial. A skew-Hamiltonian polynomial is defined as a polynomial whose
coefficients Pj are all skew-Hamiltonian matrices.

Remark 4.2. Classical eigenvalue problems for skew-Hamiltonian matrices
[107] are a special case of skew-Hamiltonian PEPs.

These two classes of polynomials are closely related, because multiplication
by J :=

(
0 Im

−Im 0

)
maps one class onto the other. A common feature is that

the spectrum of any polynomial in these two classes contains only eigenvalues
of even multiplicity. In fact, the determinant of a matrix polynomial P (x)
belonging to these two classes can be written as

p(x) = detP (x) = q(x) · q(x),
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for a suitable polynomial q(x). For the special case of a real skew-symmetric
matrix pencil a proof was given in [72] where a special Kronecker form was
derived. The more general case comes from classical results on determinants
[90]. Let us give here a simple proof of the statement for an even-dimensional
skew-symmetric complex matrix polynomial using modern terminology.

Proposition 4.1. Let P (x) = −P (x)T be a 2m × 2m skew-symmetric matrix
polynomial. Then p(x) = detP (x) = q(x)·q(x) for some scalar polynomial q(x).

Proof. We shall prove the proposition by induction on m. For m = 1 the
statement is obvious.

Suppose now that any (2m − 2) × (2m − 2) skew-symmetric polynomial
has the desired property. Let Π be a 2m × 2m permutation matrix and let
Q(x) := ΠP (x)ΠT . Suppose that Π is such that

Q0(x) := Q(1 : 2, 1 : 2) =:

[
0 r(x)

−r(x) 0

]
is nonsingular, where r(x) is a suitable nonzero scalar polynomial. Notice that
such an assumption can be safely made because if that was false for any Π then
P (x) = 0 so p(x) = 0 and there would be nothing to prove.

Now let Q(x) =
[

Q0(x) A(x)

−A(x)T Q1(x)

]
, where the polynomial matrices A(x) and

Q1(x) have, respectively, dimensions 2 × (2m − 2) and (2m − 2) × (2m − 2);
also, let ρ(x) := r(x)m−1. Define the rational function S(x) := Q1(x) +
1

r(x)A(x)
T
[

0 1
−1 0

]
A(x). Clearly, r(x)S(x) is a (2m−2)×(2m−2) skew-symmetric

matrix polynomial; therefore, by the inductive hypothesis, detS(x) = θ(x)2

ρ(x)2

where θ(x) is a suitable scalar polynomial.

Moreover, S(x) is the Schur complement of Q0(x). Thus, p(x) = r(x)2θ(x)2

ρ(x)2 ,

so p(x) is the square of some scalar rational function q(x) = θ(x)
r(x)m . Since p(x)

is a polynomial, q(x) must be a polynomial as well.
The property that we have just proved is particularly useful, and it can

be fully exploited by the Ehrlich-Aberth method. In fact, instead of applying
the EAI to the polynomial p(x) of degree 2mk, one can apply the EAI to the
polynomial q(x) of degree mk even though q(x) is not explicitly known.

More precisely, since p′(x)/p(x) = 2q′(x)/q(x), one can compute the Newton
correction q(x)/q′(x) by means of

q(x)/q′(x) = 2p(x)/p′(x) = 2/tr(P (x)−1P ′(x)).

This way, the length of the vector of the approximations y in (2.2) or in
(2.3) is reduced from 2mk to mk, moreover, the skew-Hamiltonian or the skew-
symmetric structure of the coefficients can be exploited in the computation of
P (x)−1P ′(x).

4.3 Palindromic PEPs

The polynomial P (x) is called purely palindromic if RevgP (x) = P (x). The
polynomial P (x) is called T-palindromic if RevgP (x) = P (x)T . For instance,
the scalar polynomial x4+2x3+3x2+2x+1 is palindromic (being scalar, there is
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no distinction between purely palindromicity and T-palindromicity). The grade
g, with respect to which the palindromic property holds, is called the grade of
palindromicity [76]; when we introduce palindromic polynomials without further
specifying their grade of palindromicity, in this section and later on in the thesis
we assume that g = k, i.e. the grade of palindromicity is equal to the degree.

It is well-known that the palindromic structure induces certain symmetries
of eigenvalues and eigenvectors: in particular, if x0 is an eigenvalue, v is a right
eigenvector and wT is a left eigenvector then:{

if P is purely palindromic, P ( 1
x0
)v = 0, wTP ( 1

x0
) = 0;

if P is T -palindromic, P ( 1
x0
)w = 0, vTP ( 1

x0
) = 0.

Focusing more specifically on eigenvalues, both these structures induce a
symmetry {x, 1/x} in the spectrum. If nk is odd, all eigenvalues appear in
couples but a single exceptional one, which is guaranteed to be equal to −1.

Remark 4.3. The same structure appears in the standard eigenvalue problem
for a symplectic matrix [30], which can therefore be in some sense included in
the palindromic PEPs class. More in general, matrices in the automorphism
group associated with some bilinear form have the {x, x−1} spectral symmetry
[79].

There is a vast literature on this kind of structure; see, e.g., [71, 75, 77, 100]
and the references given therein. Also, many numerical methods specifically
suited to the exact preservation of the symmetry of the spectrum have been con-
ceived. The construction of T-palindromic linearizations of palindromic eigen-
problems is the subject of [25, 77], whereas numerical methods based on matrix
iterations have been devised in [68, 75, 84, 100] for computing the eigenvalues
of these linearizations by maintaining the palindromic structure throughout the
computation.

Remark 4.4. In principle, many other different kinds of palindromicity can be
defined.

A purely antipalindromic [2] (respectively, anti-T-palindromic) polynomial is
such that RevgP (x) = −P (x) (respectively, RevgP (x) = −P (x)T ). They also
have a symmetry {x, 1/x} in the spectrum, and the methods we are going to
describe in this section are readily adapted to them. For instance, the scalar
polynomial x4 + 2x3 − 2x − 1 is antipalindromic (g = k = 4). See Subsection
4.3.2.

In the literature, palindromicity with respect of complex conjugation or with
respect to conjugation-transposition has been studied. In both these cases the
spectrum has a {x, 1/x∗} symmetry. However, the EAI is best suited to be
applied to structure of the kind {x, f(x)} where f(x) is an analytic function
(the reason is that otherwise the number of special eigenvalues, i.e. eigenvalues
that are fixed points of f , is not a priori determined; see Section 4.5 for further
details and Chapter 6 for comments on possible ways to overcome this limitation
in the near future): therefore we will focus on pure palindromic polynomials and
T-palindromic polynomials as a case study.

Notice that one can easily go further in generalising palindromicity. For in-
stance, let 0 6= κ ∈ C: then purely κ-palindromic (respectively, κ-T-palindromic)
matrix polynomials are defined as matrix polynomials such that RevgP (x) =
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κ−g/2P (κx) (respectively, RevgP (x) = κ−g/2P (κx)T ) where g is the grade of
palindromicity the polynomial (equal to its degree when not otherwise specified).
For instance, the scalar polynomial x4 +2x3 +3x2 − 2x+1 is (−1)-palindromic
(g = k = 4) while the scalar polynomial 2

√
2x3 + (2− 3

√
2)x2 + (

√
2− 3)x+ 1

is (1/2)-palindromic (g = k = 3).
The coefficients of a purely κ-palindromic (respectively, κ-T-palindromic)

polynomial are characterised by the property Pj = κg/2−jPg−j (respectively,
Pj = κg/2−jPT

g−j), where g is the grade of palindromicity, and their spectra
are made of couples {x, κ/x}. Anti-κ-palindromic and anti-κ-T-palindromic
polynomials can also be analogously defined.

Scalar κ-palindromic polynomials are particularly important because the set
of the determinants of a structured PEP with a given even grade g and whose
eigenvalues come all in pairs {x, f(x)}, with f(x) analytic and f(f(x)) ≡ x, is
isomorphic to the set of all the κ-palindromic polynomials of the same grade.
This is proved in Theorem 5.3 in Section 5.

4.3.1 First method: a new polynomial represented in the
Dickson basis

The description of this method consists in three parts. First, we will see a
convenient representation of matrix polynomials in a polynomial basis different
than the usual monomial basis; we will also describe what the equivalent of
the companion linearization is in this setting and give some natural extension
to Laurent polynomials of the theory of Chapter 1. Then, we will apply this
theoretical apparatus to purely palindromic polynomials. Finally, we will deal
with T-palindromic polynomials.

Representing and linearising polynomials in the Dickson basis

In [3] A. Amiraslani, R. M. Corless and P. Lancaster considered linearizations
of a matrix polynomial expressed in some polynomial bases different than the
usual monomial one. Equation (7) in [3] resembles closely the defining equation
of L̂2 (see Section 1.4. The authors themselves stress this analogy, that suggests
an extension of the results of [59] to the case of different polynomial bases. Let
{φi}i=0,...,k be a basis for the polynomials of degree less than or equal to k. In [3]
degree-graded bases that satisfy a three-terms recurrence relation (for instance,
orthogonal polynomials always do so) are considered:

λφj(x) = αjφj+1(x) + βjφj(x) + γjφj−1(x). (4.1)

The αj are obviously linked to the leading-term coefficients of the φj . Specifi-
cally, calling cj such coefficients, one has that cj = αjcj+1.

We wish to consider the expansion of the polynomial P (x) =
∑k

j=0 Pjx
j in

this basis:

P (x) =
k∑

j=0

Ajφj(x). (4.2)

We introduce the vector

Φ := (φ0(x), φ1(x), . . . , φk−1(x))
T .
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By generalising the linearizations studied in [3], for each choice of Φ two new
ansatz vector linearization spaces can be defined:

L1 := {L = xX + Y : ∃v ∈ Cks.t.L · (Φ⊗ In) = ck−1v ⊗ P (x)}; (4.3)

L2 := {L = xX + Y : ∃w ∈ Cks.t.(ΦT ⊗ In) · L = ck−1w
T ⊗ P (x)}. (4.4)

It is worth noticing that it is not strictly necessary for the new basis to be
degree-graded, nor it is to satisfy a three-term recurrence relation. In fact, it is
sufficient that {φi}i=0,...,k−1 are linearly independent and have degree less than
or equal to k − 1, so that there exists an invertible basis change matrix B such
that Φ = BΛ, where Λ is defined as in Section 1.4. The basis is degree-graded
if and only if B is lower triangular.

In the light of the above definitions it is immediately seen that the main
results of [59, 78] remain valid in the case of a more general polynomial basis.
In particular the following result holds.

Proposition 4.2. Let L(x) ∈ L1 (L2), and let P (x) be a regular matrix poly-
nomial. Then the following properties are equivalent:

• L(x) is a linearization of P (x);

• L(x) is a strong linearization of P (x);

• L(x) is regular.

Proof. It is a corollary of Proposition 1.2, that is [78, Theorem 4.3]. In fact,
any L(x) ∈ L1 (resp., L2) can be written as L(x) = ck−1L̂(x) · (B−1 ⊗ In)
(resp., L(x) = ck−1(B

−T ⊗ In)L̂(x)) for some L̂(x) ∈ L̂1 (resp., L̂2). There-
fore, L(x) has each of the three properties above if and only if L̂(x) has the
corresponding property.

This proposition guarantees that almost every (more precisely, all but a
closed nowhere dense set of measure zero) pencil in L1 (L2) is a strong lin-
earization for P . For a proof, see [78, Theorem 4.7]. The eigenvectors of L are
related to those of P . More precisely, (x,Φ⊗v) is an eigenpair for L if and only
if (x, v) is an eigenpair for P . Moreover, if L is a linearization then every eigen-
vector of L is of the form Φ⊗x for some eigenvector x of P . A similar recovery
property holds for the left ansatz vector linearizations. These properties can be
simply proved as in Theorems 3.8 and 3.14 of [78], that demonstrate them for
the special case Φ = Λ.

For the numerical treatment of palindromic generalised eigenproblems a cru-
cial role is played by the so-called Dickson basis [26] {φi}i≥0 defined by

φ0(z) = 2

φ1(z) = z

∀j ≥ 1, zφj(z) = φj+1(z) + φj−1(z).

(4.5)

If we consider the mapping z : = x+x−1 (which we will refer to as the Dickson
transformation or the Dickson change of variable) then xj + x−j = φj(z) for
j = 0, 1, . . .. For x = eiα, we obtain that φj(z) = 2 cos(jα). From [3] by
choosing ek as the ansatz vector we find a suitable strong linearization of P (x)
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represented as in (4.2):


In

In

. . .

In
Ak

λ +



0 −2In
−In 0 −In

−In 0 −In

. . .
. . .

. . .

−In 0 −In
A0 A1 . . . Ak−3 Ak−2 − Ak Ak−1


.

(4.6)

Let us now see how a root-finding eigensolver can be designed for palindromic
matrix polynomials via a transformation to a new polynomial. In the case of
T-palindromic polynomials, the new built polynomial is skew-Hamiltonian.

Remark 4.5. In the present subsection, we will only treat the case of even degree
palindromic matrix polynomials. Notice in fact that an odd degree palindromic
may always be transformed to an even degree palindromic, either by squaring the
variable (x = ξ2) or by multiplication by (x+1)In. Potentially, both actions may
introduce problems: squaring the variable adds an additional symmetry {ξ,−ξ}
to the spectrum while multiplying by x+ 1 increases by n the multiplicity of −1
as an eigenvalue.

However, the first issue may be solved, after passing to Laurent form, by the
use of the change of variable ζ = (ξ+ξ−1)2. See also Remark 4.8 and Subsection
4.3.2.

Regarding the latter issue, since one knows that he is adding n times −1
there is no need to compute it: n of the (n+ 1)k starting points of the Ehrlich-
Aberth iteration shall be set equal to −2, and there they remain with no further
corrections.

The following corollary describes the spectral modifications induced by the
Dickson change of variable that will provide the basic link between palindromic
matrix polynomials and matrix polynomials expressed in the Dickson basis.
The corollary relies on the tools developed in Chapter 3. Since we are now in
the setting where the underlying field is C, we will state it in terms of Jordan
structures (recall Remark 1.5).

Corollary 4.1. Let z(x) = x+ x−1 = x2+1
x and let M(z) be a polynomial in z

of grade g. Let N(x) := Φg,x2+1,x(M(z)) where Φ is the transformation defined
in (3.2), Chapter 3, so that N(x) is a polynomial in x. Let first z0 = x0 + x−1

0 ,
x0 6= ±1, be a finite eigenvalue of M(z). Then the Jordan structure of M(z)
at z0 is equal to the Jordan structure of N(x) at either x0 or 1/x0. If on the
contrary x0 = ±1, then there is a Jordan chain of maximal length ` at M(±2)
if and only if there is a Jordan chain of maximal length 2` at N(±1).

Proof. The corollary describes a special case of Theorem 3.1, proved in
Chapter 3.

For technical reasons, it is now convenient to extend the notion of complete
eigenstructure and of Jordan chains to Laurent polynomials.

The definitions of an eigenvalue and of a Jordan chain (see Section 1.3) can
be easily extended to any matrix function F (x) : C → Cn×n. We say that x0
is an eigenvalue of F (x) if F (x) is analytic in a neighbourhood of x0 and if its
determinant vanishes at x0 ∈ C, and we define Jordan chains just as in (1.3).
In particular, the case of Laurent polynomials is important for our analysis. If
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the principal part of a Laurent polynomial L(x) is a polynomial of degree k ≥ 1
in 1/x, then L̂(x) = xkL(x) is a polynomial. Clearly, L(x) : C → Cn×n is a
meromorphic matrix function, having a pole of order k in 0 and being analytic
anywhere else.

Suppose that 0 6= x0 ∈ C is an eigenvalue for L̂(x) — and, thus, for L(x).
The following lemma relates the Jordan chains of the Laurent polynomial L̂(x)
and those of L(x); recalling Theorem 1.5, it also immediately allows to extend
the definition the complete eigenstructure of a Laurent matrix polynomial cor-
responding to any characteristic value x0 6= 0.

Lemma 4.1. Let L(x) be a (Laurent) polynomial and L̂(x) = xkL(x) for some
natural number k. Then the set {vj} is a Jordan chain of length `+ 1 for L̂(x)
associated with the eigenvalue x0 6= 0 if and only if {vj} is a Jordan chain of
length `+ 1 for L(x) associated with the same eigenvalue.

Proof. The proof is a straightforward application of the product differentia-
tion rule and the definition of Jordan chains (1.3).

The next lemma extends Theorem 1.3 to Laurent polynomials.

Lemma 4.2. Let P1(x), P2(x) be (Laurent) polynomials and A(x), B(x) be two
matrix functions with P2(x) = A(x)P1(x)B(x). Suppose that an open neighbour-
hood Ω of x0 6= 0 exists such that all the considered functions are analytic in
Ω, and also suppose that both A(x0) and B(x0) are invertible. Then x0 is an
eigenvalue for P1 if and only if it is an eigenvalue for P2, and {vi} is a Jordan
chain of length `+1 for P2 at x0 if and only if {wi} is a Jordan chain of length

`+ 1 for P1 at x0, where wi =
∑i

j=0
B(j)(λ0)

j! vi−j.

Proof. If P1(x) and P2(x) are classical polynomials then the thesis follows as
in the proof of [44, Proposition 1.11], after having represented A(x) and B(x) by
their Taylor series expansions. To deal with the Laurent case, let α and β be the
minimal integers such thatQ1(x) := xαP1(x) andQ2(x) := xβP2(x) are classical
polynomials. Just follow the previous proof for Q2(x) = xβ−αA(x)Q1(x)B(x)
and apply Lemma 4.1.

We are now going to apply our machinery to purely palindromic and T-
palindromic polynomials. The former case is much easier and will be described
first.

Purely palindromic polynomials

Let P̂ (x) =
∑2k

j=0 Pjx
j , P2k−j = Pj , be a purely palindromic polynomial of even

degree. It will be more convenient in the following to work with the Laurent
polynomial P (x) = x−kP̂ (x) = P0 +

∑k
j=1 Pj(x

j + x−j).
The most obvious way to deal with this kind of palindromicity is via in-

troduction of the change of variable z = x + x−1, in order to halve the de-
gree of the polynomial. More explicitly, one can define Q(z) := P (x(z)), with
x(z) = (z +

√
z2 − 4)/2 or x(z) = (z −

√
z2 − 4)/2, i.e., x(z) is one of the two

branches of the inverse function of z(x) = x + 1/x. Clearly, the purely palin-
dromic structure of P (x) guarantees that Q(z) is itself a polynomial in the new
variable z. Or in other words, using the language of Chapter 3, the purely
palindromic property can be expressed as

P̂ (x) = Φk,x2+1,x(Q(z))
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for some polynomial Q(z).

The next proposition is a simple application of Corollary 4.1, and it relates
eigenvectors and Jordan chains of the two polynomials:

Proposition 4.3. When x0 6= ±1, the Jordan structure of Q(z) at the eigen-
value z0 = x0 + x−1

0 is equal to the Jordan structure of P (x) at either x0 or
x−1
0 . If x0 = ±1, Q(z) has a Jordan chain of maximal length ` at z0 = ±2 if

and only if P (x) has a Jordan chain of maximal length 2` at x0 = ±1.

In particular, the eigenvectors of Q(z) at z0 are exactly the same of the
eigenvectors of P (x) at x0 (or equivalently at x−1

0 , since they are the same).

Albeit very attractive, from a numerical point of view this trick is not very
suitable as soon as one considers a high degree polynomial. In fact, the matrix
coefficients of Q(z) need to be computed as linear combinations of the ones
of P (x). Since the powers of a binomial are involved, the coefficients of these
linear combinations would exponentially grow with the polynomial degree. To
circumvent this difficulty, we shall make use of the Dickson polynomials (4.5).
The polynomial Q(z) is readily expressed in terms of the φj(z)s since in the
Dickson basis the coefficients are just the old ones and therefore no computation
at all is needed, namely,

Q(z) =
P0

2
φ0 +

k∑
j=1

Pjφj(z). (4.7)

The EAI can be applied to either Q(z) or to the associated linearization
(4.6): in both cases, the number of roots is halved with respect to the original
problem.

Even if one opts to use some matrix method instead of the EAI, the asso-
ciated linearization (4.6) has several computational advantages with respect to
other customary linearizations of P (x). Its size is nk versus 2nk, the spectral
symmetries are preserved and, moreover, the linearization displays a semisepa-
rable structure. More precisely, it is of the form D0 +D1y where D1 is identity
plus low rank while D0 is Hermitian plus low rank. This kind of structure is
preserved under the QZ algorithm and it may be exploited for the design of
an efficient and numerically robust root-finder applied to the algebraic equation
detQ(z) = 0.

T-palindromic polynomials

Consider now a T-palindromic polynomial of even degree 2k, P̂ (x). Let more-
over P (x) = x−kP̂ (x) be the corresponding Laurent T-palindromic polynomial,
and let us write

P (x) =
k∑

j=−k

Pjx
j . (4.8)

The T-palindromic property is then P−j = PT
j ∀j = 0, . . . , k.

Since the symmetry x↔ x−1 is still present in the spectrum, we expect that
the Dickson basis may still play a role. However, unlike the purely palindromic
case, it is not possible to directly express a T-palindromic polynomial as a
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polynomial in the variable z. In fact, splitting P (x) as the sum of its symmetric
part and its skew-symmetric part we obtain that

P (x) = P0 +
k∑

j=1

[
Pj + PT

j

2
(xj + x−j) +

Pj − PT
j

2
(xj − x−j)

]
. (4.9)

If we introduce the new variables z := x + x−1 and w := x − x−1, then P (x)
can be expressed as a bivariate polynomial in w and z which is always linear in
w, that is,

Q(z, w) = P (x(z, w)) =: B(z) + wC(z).

The property follows from (4.9) by substituting

xj + x−j = φj(z), x
j − x−j = w

1 + (−1)j+1

2
+

dj/2e∑
`=1

φj−2`+1(z)

 , j ≥ 1.

Notice moreover that B(z) is a symmetric polynomial (that is to say, every
matrix coefficient is symmetric), C(z) is skew-symmetric, and the operation of
transposition corresponds to changing the sign of w, that is,

QT (z, w) = PT (x(z, w)) = B(z)− wC(z).

In principle one may think of treating Q(z, w) with available techniques for the
bivariate eigenvalue problem (see e.g. [61] and references therein), but actually
z and w are not independent. They are related by the trigonometric dispersion
relation w2 = z2 − 4. This suggests that it is possible to obtain a univariate
polynomial by doubling the dimensions of the matrix coefficients. Let us define

M(z) :=

[
B(z) w2C(z)
C(z) B(z)

]
.

Then M(z) is a polynomial in z of degree k + 1 at most. Moreover, it has
the following property: if x0 and x−1

0 are two distinct (i.e. x0 6= ±1) finite
semisimple eigenvalues of P (x) with multiplicity m, then z0 = x0 + x−1

0 is a
semisimple eigenvalue for M(z) with multiplicity 2m. To see this, notice first
that

M(z) = diag(
√
wIn, 1/

√
wIn)

[
B(z) wC(z)
wC(z) B(z)

]
diag(1/

√
wIn,

√
wIn)

and[
B(z) wC(z)
wC(z) B(z)

]
=

1

2

[
In −In
In In

] [
Q(z, w) 0

0 QT (z, w)

] [
In In
−In In

]
.

Hence, we find that

M(z) = E(w)

[
Q(z, w) 0

0 QT (z, w)

]
E−1(w), E(w) :=

[ √
w
2 −

√
w
2√

1
2w

√
1

2w

]
⊗ In.

Since, as long as the symplectic matrix function E(w) is defined (that is to
say w 6= 0,∞ or x 6= 0,±1,∞), det(E(w)) = 1 then

det(M(z)) = [det(Q(z, w))]2, ∀ (z, w) ∈ C× C. (4.10)
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Therefore, x0 has algebraic multiplicitym for P (x) if and only if z0 has algebraic
multiplicity 2m for M(z). This gives the factorization

det(M(z)) = p(z) · p(z), (4.11)

for a suitable polynomial p(z) having the zero z0 of multiplicity m. Concern-
ing eigenvectors, if x0 is semisimple, then let vj (resp. bj), j = 1, . . . ,m be
the eigenvectors for P (x) (resp. PT (x)) corresponding to x0: it can be easily
checked that {[w0v

T
j , v

T
j ]

T , [−w0b
T
j , b

T
j ]

T }, where w0 = x0 − x−1
0 , are two lin-

early independent eigenvectors for M(z) corresponding to z0. Thus, geometric
multiplicity is also 2m. Indeed, something more can be said in the more gen-
eral case of Jordan chains. In Proposition 4.4 and further on, by the union of
two Jordan structures (say, one made by a canonical set of n1 Jordan chains of
length `1, . . . , `n1 and the other made by a canonical set of n2 Jordan chains
of length µ1, . . . µn2

) we mean a Jordan structure made by a canonical set of
n1 + n2 Jordan chains of length `1, . . . , `n1 , µ1, . . . , µn2 .

Proposition 4.4. Let z0 = x0 + x−1
0 be an eigenvalue of M(z) so that x0 and

x−1
0 are eigenvalues for P (x). If x0 6= 0,±1,∞ then the Jordan structure of
M(z) at z0 is equal to the union of the Jordan structures of P (x) at x0 and at
x−1
0 .

Proof. Since P (x) is T-palindromic, it is clear that the Jordan structure of

R(x) :=

[
P (x) 0
0 PT (x)

]
at either x0 or x−1

0 is the union of the Jordan structures of P (x) at x0 and at
x−1
0 . Define

N(x) := Φk+1,x2+1,x(M(z)) = xk+1M(z(x)).

The analysis of M(z) given above leads to

M(z(x)) = E(w(x))R(x)E−1(w(x)).

The matrix function E(w), defined in the previous page, is analytic everywhere
in the w complex plane but on a branch semiline passing through the origin.
Since by hypothesis w0 6= 0, the branch cut can be always chosen in such a way
that E(w) is analytic in a neighbourhood of w0 = x0−x−1

0 , and thus E(w(x)) is
analytic in a neighbourhood of x0. Then we can apply Lemma 4.2 to conclude
that the Jordan structures of N(x) and R(x) are the same. Application of
Corollary 4.1 completes the proof.

Of course, Proposition 4.4 can equivalently be interpreted (via Theorem
1.5 and Theorem 1.4) in terms of root polynomials or in terms of elemen-
tary divisors. Namely, it tells us that the elementary divisors corresponding
to z0 6= ±2,∞ for M(z) are (z − z0)

`1 , (z − z0)
`1 , . . . , (z − z0)

`j , (z − z0)
`j if

and only if the elementary divisors corresponding to x0 6= ±1, 0,∞ for P (x)
are (x − x0)

`1 , . . . , (x − x0)
`j . Analogous considerations can be made for root

polynomials.

Remark 4.6. Another remarkable property of M(z) is that its coefficients are
all skew-Hamiltonian, that is to say they can be written as JK where J =

[
0 I
−I 0

]
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and K is some skew-symmetric matrix. This consideration immediately explains
the reason why M(z) has all eigenvalues of even multiplicity.

This link between T-palindromic and skew-Hamiltonian polynomials is inter-
esting because it may shed more light on the relation between several polynomial
structures. It is known that one can easily transform a palindromic polynomial
to an even polynomial by a Cayley transformation, and then to a Hermitian
polynomial via a multiplication by i (if one started from a real polynomial) or
to a symmetric polynomial by squaring the matrix coefficients. On the other
hand, Hamiltonian polynomials can lead to skew-Hamiltonian polynomials by
squaring each coefficients, and multiplication by J sends a skew-Hamiltonian
polynomial to a skew-symmetric polynomial. The Dickson change of variable,
followed by doubling the dimension, is able to map T-palindromic polynomials
of even degree to a subset of skew-Hamiltonian polynomials. Unlike some of the
other mentioned maps, this is not a bijection between two classes of structured
polynomials, because what is obtained is actually a subset of skew-Hamiltonian
polynomials. In fact, since the north-west and south-east coefficients of M(z)
are the coefficients of B(z) they must be symmetric and there is a relation be-
tween the north-east and south-west coefficients of M(z). However, a deeper
investigation on this subject is needed in the future.

Equations (4.10) and (4.11) enable the computation of the eigenvalues of
P (x) to be reduced to solving algebraic equations. From Proposition 4.4 it
follows that possible discrepancies in the Jordan structures can be expected for
z0 = ±2 and z0 = ∞ corresponding to x0 = ±1 and x0 = 0,∞, respectively.

When x0 = ±1 not only the proof we gave is not valid (because, since w0 = 0
is a branch point, there is no neighbourhood of analyticity of the matrix function
E), but in fact the proposition itself does not hold. As a counterexample, let
a 6= ± i√

2
and consider the polynomial

P (x) =

[
x− 2 + x−1 ax− ax−1

−ax+ ax−1 x+ x−1

]
.

We have that {[1, 0]T , [0, a]T } is a Jordan chain for P (x) at x = 1. The corre-
sponding M(z) is

M(z) =


z − 2 0 0 az2 − 4a
0 z 4a− az2 0
0 a z − 2 0
−a 0 0 z

 ,
which has a semisimple eigenvalue at z = 2 with the corresponding eigenvectors
[0, 0, 1, 0]

T
and [2, 0, 0, a]

T
.

If the leading coefficient of P (x) is not symmetric (if it is symmetric, the
degree of M(z) drops), then M(z) has 2n extra infinite eigenvalues, where n is
the dimension of the matrix coefficients of P (x). These eigenvalues are defective
since their geometric multiplicity is only n + dimkerCk−1, where Ck−1 is the
leading coefficient of C(z). Notice that these informations on the infinite eigen-
values are known theoretically and, therefore, can be exploited when designing
an EAI specifically suited for M(z).

For the numerical approximation of the roots of p(z) we can exploit again
the properties of the Dickson basis to compute the matrix coefficients ofM(z) =
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∑k+1
j=0 Mjφj(z). The code below computes the matrices Mj ∈ C2n×2n, 0 ≤ j ≤

k − 1, given in input the coefficients Pj of P (x), 0 ≤ j ≤ k, defined as in (4.8).

function Dickson transform
Input: P0, . . . , Pk ∈ Cn×n

Output: M0, . . . ,Mk+1 ∈ C2n×2n

B0 = P0/2; Ĉ0 = 0n;
for j = 1, . . . , k

Bj = (Pj + PT
j )/2; Ĉj = (Pj − PT

j )/2;
end
S0 = 0n, S1 = 0n;
for j = k, . . . , 1

Smod(j,2) = Smod(j,2) + Ĉj

Cj−1 = Smod(j,2);

end

C0 = C0/2; Ck = Ck+1 = 0n; C̃0 = C2

C̃1 = C1 + C3; C̃2 = 2C0 + C4;
for j = 4, . . . , k

C̃j−1 = Cj−3 + Cj+1;
end

C̃k = Ck−2; C̃k+1 = Ck−1;
for j = 1: k + 2

C̃j−1 = C̃j−1 − 2Cj−1;

Mj−1 = [Bj−1, C̃j−1;Cj−1, Bj−1];
end

Remark 4.7. The coefficients of C(z) are linear combinations of Pj − PT
j .

As can be seen by the above algorithm, the coefficients of such combinations
expressed in the Dickson basis remain bounded, the upper bound being 1/2. An
analogous result, with upper bound 1, holds for w2C(z). This is in contrast with
the exponential growth that would have been seen in the purely palindromic case
if one had directly applied the Dickson transformation without the use of the
Dickson basis.

The arithmetic cost is O(n2k) operations. Once the coefficients Mj are
determined, two possibilities exist in order to devise a structured adaptation of
the EAI. The first is to apply the EAI to M(z) following Section 2.2.2. The
second is to follow Section 2.2.1: a linearization ofM(z) of the form (4.6) can be
constructed. The properties of this linearization are investigated in the following
in order to devise an adaptation of the EAI in order to approximate the roots
of p(z) defined by (4.11).

Very few things change when using (4.6) instead of (1.7); it is very easy to
adapt the proof given in Section 2.2.1 to the present case. Namely, let G(θ, ψ)
the 2× 2 unitary Givens rotation given by

G(θ, ψ) =
(

θ ψ
−ψ̄ θ̄

)
, |θ|2 + |ψ|2 = 1.

Let L(z) = L̃ · Q be the block LQ factorization of L(z), where L(z) is a lin-
earization of M(z) in the form (4.6). Such a factorization is obtained by means
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of Givens rotations so that

L(z)G1 · G2 · · · Gk = L̃, QH = G1 · G2 · · · Gk,
Gj = I2n(j−1) ⊕ (G(θj , ψj)⊗ I2n)⊕ I2n(k−j).

(4.12)

The lower triangular factor L̃ is in the form

L̃ =



α1I2n
β1I2n α2I2n

γ1I2n β2I2n
. . .

. . .
. . .

. . .

γk−2I2n βk−1I2n αkI2n
M̂0 M̂1 . . . M̂k−2 M̂k−1 M̂k


,

where αj 6= 0, 1 ≤ j ≤ k. If M̂k is invertible, then also L(z) is invertible,

and L−1(z) = QH · L̃−1. Let now M̃k+1 = M̂−1
k ·Mk+1. Analogously to the

unstructured case, we can prove the following.

Proposition 4.5. There exist matrices M̃1, . . . , M̃k ∈ C2n×2n such that

L−1(z)E =


M̃1 ψ1M̃2 . . . ψ1 · · ·ψkM̃k+1

θ̄1M̃2

. . .

θ̄kM̃k+1

 ,

where the blank entries are not specified.

Following the same procedure that we have already described in Section
2.2.1, we arrive to the following formula for the Newton correction:

det(M(z))′/det(M(z)) = tr(M̂−1
k (X̃1 + θ̄1X̃2 + . . .+ θ̄k−1X̃k + θ̄kMk+1)).

Once the eigenvalues of M(z) are approximated by the EAI, the back trans-
formation x = x(z) is used to obtain the sought eigenvalues of P (x). It is
important to point out that the application z → x = (z ±

√
z2 − 4)/2 is ill

conditioned at z = ±2. Therefore, loss of accuracy is expected near x = ±1. In
this case, a refinement step is advisable. Such a refinement may be implemented
by an unstructured version of the EAI, by the naive structured EAI, or by other
structured refinement methods (see Chapter 5).

Remark 4.8. Notice that a similar technique can be applied to even/odd matrix
polynomials, that is polynomials whose coefficients alternate between symmetric
and skew-symmetric matrices. In this case, on can apply the transformation
z = x2 and use algebraic manipulations, akin to the ones described for the
T-palindromic case, in order to build a new polynomial in z with double dimen-
sions. More details will be given in Section 4.4.

4.3.2 Second method: the implicit Dickson transforma-
tion

In the following, we will show how to avoid the explicit use of the Dickson trans-
formation. This has the advantage that there is no potential loss of accuracy for
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very small/large eigenvalues of P (x), unlike the case of the method previously
described, where the construction of the new matrix polynomial M(z) intro-
duces unwanted defective eigenvalues at infinity which might create numerical
problems (in any instance, such possible losses of accuracy can be amended by
a structured refinement method: see Chapter 5). Let P (x) be either a purely
palindromic or a T-palindromic polynomial of dimension n and degree k, and let
p(x) be its determinant. We will once again rely on the Dickson transformation
z = x+ x−1.

If nk is even, then by means of simple formal manipulations one may show
that q(z) := x(z)−nk/2 · p(x(z)) is a polynomial in z, where once again either
x(z) = (z +

√
z2 − 4)/2 or x(z) = (z −

√
z2 − 4)/2.

Moreover, taking derivatives in the latter equation leads to an explicit ex-
pression for the Newton correction q(z)/q′(z) given in terms of p(x)/p′(x):

q(z)

q′(z)
=

1− 1/x2

p′(x)/p(x)− nk/(2x)
, p′(x)/p(x) = tr(P (x)−1P ′(x)). (4.13)

This equation enables one to apply the EAI to the polynomial q(z) by work-
ing directly on P (x). In fact, p(x)/p′(x) is computed as always be means of the
Jacobi formula, and then (4.13) is applied. In other words, the explicit compu-
tation of a matrix polynomial M(z) whose determinant is (the square of) q(z)
is bypassed with this trick.

Once the roots of q(z), z1, . . . , znk/2 have been computed, the eigenvalues
of P (x) are given by the pairs {xi, 1/xi} which are the roots of the quadratic
polynomial x2 − zix + 1. As the method of the explicit construction of M(z),
also this approach has the advantage to work with an approximation vector of
half the size and to deliver the solution as pairs {x, 1/x}.

If nk is odd, then −1 is necessarily an eigenvalue of the palindromic PEP
and there is no need to approximate it. To calculate approximations of the
remaining nk−1 eigenvalues, there are two possible strategies. We have already
mentioned them in Remark 4.5, but let us consider them again in view of the
implicit method.

As a first possibility, one may consider the new matrix polynomial R(x) =
(x+ 1)P (x) which has even degree. The eigenvalues of R(x) are those of P (x).
The multiplicities are unchanged for every eigenvalue but −1, whose algebraic
multiplicity is increased by n. Therefore, the previously described technique
can be applied. Only nk− 1 roots of det(R(x)) are needed, because n+1 roots
are a priori known to be equal to −1. Thus, one could apply the EAI (2.2) or
(2.3) with an approximation vector y of n(k+1) components of which n+1 are
set equal to −1 in order to immediately achieve implicit deflation of the roots;
or, working in the variable z in order to extract the structure, the SEAI (4.13)
can be used setting (n+ 1)/2 starting points equal to −2.

A second possibility is to set x := w2 and to consider the eigenvalues of
the polynomial Q(w) = P (x(w)). The scalar polynomial q(w) := detQ(w) has
2nk roots, which are the square roots of the solutions of the original equation
p(x) = 0 that we have to solve. In particular only 2nk − 2 roots are to be
determined, since q(w) = 0 has two known solution at w = ±i. It is useful to
set z := (w + 1/w)2 = x+ 1/x+ 2. Defining

q̃(w) :=
q(w)

wnk+1 + wnk−1
,
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it is easy to check that r(z) := q̃(w(z)) is a polynomial in z. Therefore we
may restrict the attention to computing the roots of r(z). Once they have
been computed, the evaluation of the function w(z) at these roots provides the
roots of q(w) . The evaluation of x(w) at these latter roots yields the sought
eigenvalues of P (x). In order to compute the roots of r(z) we may apply the
EAI to the polynomial r(z). The following equations provides a tool to compute
the Newton correction r(z)/r′(z) needed by the EAI.

r(z)

r′(z)
=

2w(1− 1/w4)

q′(w)/q(w)− [(nk + 1)w2 + nk − 1]/(w3 + w)
,

or in terms of the original variable x

r(z)

r′(z)
=

1− 1/x2

p′(x)/p(x)− [(nk + 1)x+ nk − 1]/(2x2 + 2x)
.

At the moment we have no clear elements to say which of the two possibilities
is more convenient. We plan to investigate in this direction.

We conclude this subsection mentioning that also purely antipalindromic and
anti-T-palindromic polynomials have an {x, 1/x} symmetry. Their determinants
are palindromic if n is even and antipalindromic if n is odd [76]. The former
case is exactly the same as above. The latter case is also easy, because a scalar
antipalindromic polynomial is always equal to x− 1 times a scalar palindromic
polynomial. Moreover, it is possible to prove [76] that 1 is always a root of a
scalar antipalindromic polynomial, and −1 is always a root of a scalar even-
grade antipalindromic polynomial, so according to the grade there are either
one or two exceptional eigenvalues with odd multiplicity. Therefore, it is easy
to extend our technique to this class.

4.4 Hamiltonian/skew-Hamiltonian PEPs, even
PEPs and odd PEPs

An even (odd) polynomial P (x) =
∑k

j=0 Pjx
j is such that Pj is symmetric for all

even (odd) values of j and is skew-symmetric for all odd (even) j. Similarly, the
coefficients of a Hamiltonian/skew-Hamiltonian polynomial are, alternatively,
Hamiltonian and skew-Hamiltonian matrices. The classes of even-dimensional
even/odd polynomials are easily mapped onto the classes of Hamiltonian/skew
Hamiltonian polynomials by a multiplication by J . Amongst the huge litera-
ture on these classes of polynomials see, for instance, [83, 86, 87, 100] and the
references therein.

The matrix polynomials belonging to these classes have eigenvalues coming
in pairs {x,−x}. In particular, if nk is odd, then either x = 0 (if P0 is skew-
symmetric) or x = ∞ (if Pk is skew-symmetric) is necessarily an eigenvalue.
Notice that nk cannot be odd for Hamiltonian/skew-Hamiltonian polynomials,
because they are only defined for even n.

Remark 4.9. Classical eigenvalue problems for Hamiltonian matrices [107]
are a special case of Hamiltonian/skew-Hamiltonian PEPs. More in general,
matrices in the Lie algebra associated with some bilinear form have the spectral
structure {x,−x} [79].
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Let z := x2. Just like the T-palindromic case, also for even/odd polynomials
it is possible to follow the ideas exposed in Subsection 4.3.1 and build a new
matrix polynomial M(z) whose determinant is equal to p(x(z)) · p(x(z)). The
following result demonstrates the way it can be done for an even polynomial.

Proposition 4.6. Let P (x) be an n×n even matrix polynomial of degree k, and

let z = x2. Define B(z) := P (x(z))+PT (x(z))
2 and C(z) := 1

x(z)
P (x(z))−PT (x(z))

2 , so

that P (x) = B(x2)+xC(x2). ThenM(z) :=
[
B(z) zC(z)
C(z) B(z)

]
is a matrix polynomial

such that detM(z) = [p(x(z))]2. If 0 6= x0 ∈ C is an eigenvalue for P (x)
associated with a canonical set of Jordan chains of length `1, . . . , `k then x20
is an eigenvalue for M(z) and its Jordan structure is the union of the Jordan
structures of P (x) at x0 and at −x0.

Moreover:

1. concerning eigenvectors associated with any finite nonzero eigenvalue x0,
P (x0)v0 = 0 and P (−x0)w0 = 0 if and only if v1 = [x0v

T
0 , v

T
0 ]

T and
w1 = [−x0wT

0 , w
T
0 ]

T are two linearly independent eigenvectors such that
M(x20)v1 = 0 =M(x20)w1;

2. M(z) is a 2n × 2n matrix polynomial of degree degM = [(k + 1)/2], i.e.
the integer part of (k + 1)/2;

3. writing M(z) =

degM∑
j=0

Mjz
j, the relation Mj =

[
P2j P2j−1

P2j+1 P2j

]
holds for all

0 ≤ j ≤ degM , where Pj = 0 if j < 0 or j > k;

4. if k is odd and n is even (respectively, and n is odd), M(z) has at least n
(respectively, n+ 1) eigenvalues at infinity.

Proof. The proof can be obtained by adapting the arguments used in Sub-
section 4.3.1 for T-palindromic polynomials to the even case, which is in fact
simpler.

More explicitly, let Q(z) := P (x(z)) = B(z) +
√
zC(z), so that QT (z) =

B(z)−
√
zC(z). We get

M(z) = E(x)

[
Q(z) 0
0 QT (z)

]
E−1(x), E(x) :=

[ √
x
2 −

√
x
2√

1
2x

√
1
2x

]
⊗ In.

Just like in Proposition 4.4, E(x) is a symplectic unimodular matrix function
and it is analytic everywhere but on a branch semiline passing through the
origin of the x complex plane. The first part of the Proposition can therefore
be proved following the same kind of arguments of Proposition 4.4.

If k is even, B(z) has degree k/2 and C(z) has degree k/2− 1, so M(z) has
degree k/2 = [(k+1)/2]. If k is odd, both B(z) and C(z) have degree (k−1)/2,
so M(z) has degree (k + 1)/2 = [(k + 1)/2].

The statement on the explicit form of Mj is easily checked by direct inspec-
tion, and so is the statement on eigenvectors.

Finally, if k is odd MdegM =
[
0 Pk
0 0

]
, so its rank is at most n − (−1)n+1+1

2
(odd-dimensional skew-symmetric matrices are always rank deficient), which
completes the proof.
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Remark 4.10. Once again, M(z) is a skew-Hamiltonian polynomial, which
is coherent with having all double eigenvalues. Just as in the T-palindromic
case the eigenvalues ±2 were exceptional, also in this case Proposition 4.6 does
not hold for the special eigenvalue 0. As a simple example consider the scalar
even polynomial p(x) = x2 which has a Jordan chain of length 2 at 0; one gets
M(z) = I2z, and M(z) has a semisimple double eigenvalue at 0 = 02.

Similar results can of course be obtained for odd and Hamiltonian/skew-
Hamiltonian matrix polynomials: for all such classes a new matrix polynomial,
related to the original polynomial eigenvalue problem, can always be built. We
give in the following proposition the result for odd matrix polynomials, omitting
the proof which is analogous to the even case. The results for Hamiltonian/skew-
Hamiltonian matrix polynomials are easily obtained as corollaries, by noticing
that a Hamiltonian (respectively, skew-Hamiltonian) matrix can be obtained
multiplying by J a symmetric (respectively, skew-symmetric) matrix of even
dimension.

Proposition 4.7. Let P (x) be an n×n odd matrix polynomial of degree k, and

let z = x2. Define B(z) := 1
x(z)

P (x(z))+PT (x(z))
2 and C(z) := P (x(z))−PT (x(z))

2 , so

that P (x) = xB(x2)+C(x2). ThenM(z) :=
[
zB(z) C(z)
C(z) B(z)

]
is a matrix polynomial

such that detM(z) = [p(x(z))]2. If 0 6= x0 ∈ C is an eigenvalue for P (x)
associated with a canonical set of Jordan chains of length `1, . . . , `k then x20
is an eigenvalue for M(z) and its Jordan structure is the union of the Jordan
structures of P (x) at x0 and at −x0.

Moreover:

1. concerning eigenvectors associated with any finite nonzero eigenvalue x0,
P (x0)v0 = 0 and P (−x0)w0 = 0 if and only if v1 = [vT0 , x0v

T
0 ]

T and
w1 = [wT

0 ,−x0wT
0 ]

T are two linearly independent eigenvectors such that
M(x20)v1 = 0 =M(x20)w1;

2. M(z) is a 2n × 2n matrix polynomial of degree degM = [(k + 1)/2], i.e.
the integer part of (k + 1)/2;

3. writing M(z) =

degM∑
j=0

Mjz
j, the relation Mj =

[
P2j−1 P2j

P2j P2j+1

]
holds for all

0 ≤ j ≤ degM , where Pj = 0 if j < 0 or j > k;

4. if k is odd M(z) has at least n eigenvalues at infinity; if k is even and n
is odd, M(z) has at least 1 eigenvalue at infinity.

Applying the EAI to M(z) allows us to extract the spectral structure. An
alternative approach, that avoids possible issues about loss of accuracy for very
large eigenvalues (this timeM(z) has extra infinite eigenvalues only if k is odd),
is once again the implicit use of the squaring transformation. Namely, if there
are no uncoupled eigenvalues (e.g. an even polynomial with nk even), then
defining z := x2 one finds that q(z) := p(x(z)) is a polynomial for x(z) =

√
z or

x(z) = −
√
z. Thus, p′(x)/(2xp(x)) = q′(z)/q(z), so that the Newton correction

for the polynomial q(z) is readily available

q(z)/q′(z) = 2xp(x)/p′(x) = 2x/tr(P (x)−1P ′(x))
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and the Ehrlich-Aberth algorithm can be implicitly applied to the polynomial
q(z) in order to compute its roots z1, . . . , znk/2. This way, the roots of p(x) are
readily available in pairs as (

√
zi,−

√
zi).

In other situations, one eigenvalue is necessarily either 0 (if P (x) is odd and
nk is odd) or ∞ (if P (x) is even and nk is odd); thus, there is no need to
approximate it. It may also happen that there is one uncoupled eigenvalue at 0
and one at ∞ (e.g. if P (x) is odd, n is odd and k is even). In the case of an extra
eigenvalue at 0, to approximate the other eigenvalues one can notice that q(z) :=
p(
√
z)/

√
z is a polynomial and that q′(z)/q(z) = (1/2x2)(xp′(x)/p(x)−1). This

yields the Newton correction for q(z) as

q(z)/q′(z) = 2x/(p′(x)/p(x)− 1/x) = 2x/(tr(P (x)−1P ′(x))− 1/x), z = x2,

which enables one to apply the EAI to q(z) by using an approximation vector
of length (nk − 1)/2. As in the palindromic case, there is also the alternative
option to consider the polynomial xP (x) which is even (odd) if P (x) is odd
(even). The new polynomial xP (x) has n additional eigenvalues at 0 that are
known and can therefore be immediately deflated.

For the function x =
√
z, the relative condition number is finite near the

exceptional point z = 0, even though the absolute condition number diverges.
In our experience, small eigenvalues were accurately approximated (see also
Section 4.6). Should difficulties arise in future experiments, we underline that
one may apply a refinement to the exceptional eigenvalues by means of the
unstructured EAI or of structured refinement methods: see [41] and Chapter 5.

4.5 A unified treatment of a whole class of struc-
tured PEPs

More in general, let C∗ := C ∪ {∞} and let f : C∗ → C∗ be any self-inverse
function, that is f(f(x)) = x ∀x ∈ C∗. An example is the subclass of rational
functions f(x) = ax+b

cx−a , which are self-inverse whenever a2 + bc 6= 0. If we
additionally require f to be analytic, having such a form is not only a sufficient
condition, but it is also necessary (unless f(x) = x) for f to be self-inverse.
This follows from the fact that nondegenerate Möbius functions (i.e., rational
functions of degree 1 such that the denominator and the numerator are nonzero
coprimes) are the only automorphisms of C∗.

Suppose that, because of some structure in the coefficients of P (x), all eigen-
values come in pairs {λ, f(λ)}. Eigenvalues such that λ = f(λ) are called ex-
ceptional, and are allowed to appear with any multiplicity.

We refer to a matrix polynomial P (x) with the above properties as to an
f-structured matrix polynomial.

Given a function f(x) and a class of f -structured matrix polynomials, we
assume that the exceptional eigenvalues of odd multiplicity, if any, are known. In
this way it is possible to collect the unknown eigenvalues into pairs. In practice,
this property holds for the most frequently encountered structures associated
with an analytic self-inverse function f(x).

On the contrary, for non analytic f(x) the property is often unsatisfied.
Consider, for instance, the set of matrix polynomial with real cofficients, which
is a subset of f -structured matrix polynomials with f(x) = x∗. The set of
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exceptional eigenvalues is the whole real line and, in general, there is no way to
predict a priori which real eigenvalues, if any, appear with odd multiplicity.

If f is analytic, the implicit change of variable method that we have described
for the special cases f(x) = −x and f(x) = 1/x can be generalised thanks to
the following proposition.

Proposition 4.8. Let P (x) be an f-structured matrix polynomial with f(x) =
ax+b
cx−a , a

2+bc 6= 0. Denote the eigenvalues of P (x) by xi, 1 ≤ i ≤ ng and assume
that there are no eigenvalues with odd multiplicity.

Suppose that a 6= 0, and define z(x) := ax2+bx
cx−a = xf(x). If x(z) denotes any

of the two branches of the inverse function of z(x), then q(z) := p(x(z))
(cx(z)−a)nk/2 is

a polynomial.

If a = 0, let z(x) := cx2+b
cx = x + f(x) and let x(z) be any branch of the

inverse funcion of z(x). Then q(z) := p(x(z))
x(z)nk/2 is a polynomial

Proof. Assume first that a 6= 0.
Since there are no eigenvalues with odd multiplicity, ng must be even. As-

sume first that the eigenvalues xi are such that xi 6= a/c for any i. Observe that

the polynomial p(x) can be written as p(x) =
∏ng/2

i=1 (x− xi)(x− f(xi)). From
the definition of f(x) we have x−f(xi) = (f(x)−xi)(cx−a)/(a−cxi). This way,
each quadratic factor takes the form (xf(x)+x2i −xi(x+f(x))(cx−a)/(a−cxi).
Now, we exploit the property that cxf(x)−a(x+f(x)) = b and we conclude that
p(x) is the product of ng/2 factors of the form (xf(x)+x2i+

b
axi−

c
axixf(x))(cx−

a)/(a− cxi) = (z − xif(xi))(cx− a)/a, where we used the fact z = xf(x).
In the instance xi = a/c, notice that ∞ = f(a/c) is also a root. In other

words, the grade of p(x) is greater than its degree. Therefore, it holds that
p(x) = (cx− a)µ

∏
j∈J (x− xj)(x− f(xj)), where J is the set of indices j such

that xj 6= a/c, 6= f(xj), and µ is the multiplicity of xi = a/c. The proof is
completed noticing that the cardinality of J is ng/2− µ.

If on the contrary a = 0, let z(x) := cx2+b
cx = x + f(x). Assume first that

xi 6= 0,∞, and write p(x) =
∏ng/2

i=1 (x − xi)(x − f(xi)) =
∏ng/2

i=1 (xf(x) + x2i −
xi(x + f(x))(cx)/(−cxi). Since xf(x) = b/c and z = x + f(x), p(x) is the
product of ng/2 factors of the form x(b+ cx2i − xiz)(−cxi)−1, which concludes
the proof.

If there are some zero and infinite eigenvalues, then p(x) = xµ
∏

j∈J (x −
xj)(x − f(xj)), where J is the set of indices j such that xj 6= 0,∞ while µ is
the multiplicity of 0 as a root; the proof is completed because |J | = ng/2− µ.

Therefore, the EAI can be applied to q(z) to find its roots zi; then, the
eigenvalues of P (x) can be found solving the equations z(x) = zi, i = 1, . . . , nk,
for the variable x. If there are eigenvalues with odd multiplicity (e.g. if nk is
odd) then there is only a slight complication: there must be some exceptional
eigenvalues that can be treated with techniques akin to those described for the
special cases considered in the previous sections of this chapter.

Notice that the fixed points of f(x) may lead to computational problems,
since they are double roots in the equation z(x) = ζ. Refinements of some kind
are advisable there. See also [41] and Chapter 5.

The method of the explicit construction of a new skew-Hamiltonian ma-
trix polynomial whose eigenvalues are related to the sought ones may also be
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extended to the general case. This is the subject of a future research project.

4.6 Numerical experiments

As the regular EAI, also the SEAI underwent several tests in order to check its
efficiency and its accuracy.

4.6.1 Efficiency of the SEAI

In Section 2.6, when numerical experiments on the unstructured EAI were pre-
sented, the importance of testing the number of scalar iterations versus the
number of sought eigenvalues was made clear.

Our structured variants of the EAI take advantage by halving the number
of eigenvalues; nevertheless, it is still important to verify whether the number
of scalar iterations grows linearly with nk, where n is the size of the matrix
polynomial and k is its degree.

Let us first introduce the class Hn,k of T-palindromic (Laurent) polynomials.
The polynomials are constructed according to the following rules:

Hn,k =
∑k

j=−k Ajx
j , Aj ∈ Rn×n,

A0 = 0n; Aj = In + ene
T
1 , A−j = AT

j , 1 ≤ j ≤ k.

From

h(x) =
k∑

j=1

xj +
k∑

j=1

x−j =
xk − 1

x− 1

xk+1 + 1

xk
,

we find that most of the eigenvalues lie on the unit circle and for k even x = −1
is a double root of h(x).

Figure 22 describes the convergence history for the SEAI applied to H5,20

with starting values equally spaced on the circle centred in the origin with

radius 4. The curves represented are generated by plotting the sequences {z(i)j },
1 ≤ i ≤ maxit, for j = 1, . . . , nk, where maxit is a fixed number of iterations.

−4 −3 −2 −1 0 1 2 3 4
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0

1
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4

Fig. 22. History of the convergence for the H problem with n = 5 and k = 20
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As happened for the unstructured EAI (UEAI), with starting points evenly
distributed on the unit circle the convergence is quite regular. Once again the
drawback is that with this choice of starting approximations we have observed
that the number of vector iterations is typically of order of nk but there are
not enough early deflations, that is, iterations that are prematurely stopped
due to early convergence. This leads to a superlinear growth of t with respect
to nk. In order to increase the cost savings due to premature deflation in
our program we have employed a slightly refined strategy, which is similar to
the step function method discussed in Section 2.6, but takes also in account
the Dickson transformation of the eigenvalues. Namely, since the method does
not approximate directly the eigenvalues λi but their Dickson transform αi =
λi+λ

−1
i , we have chosen starting points on the Dickson transform of the circles

|z| = ρ, that is points lying on ellipses Re(z)2

(ρ+1/ρ)2 + Im(z)2

(ρ−1/ρ)2 = 1. More precisely,

this is the algorithm we used to pick the starting points:

Input: Number N = nk/2 of eigenvalues to approximate and parameters
a ∈ N and b ∈ N
Output: Starting points zk, k = 1, . . . , N

θ = 2π/N ;
φ=randn;
for j = 1, . . . , N

jj=mod(j, a);
ρ = 1− jj/b;
α = ρ+ 1/ρ;
β = 1/ρ− ρ;
zj = α cos(j ∗ θ + φ) + β sin(j ∗ θ + φ)

end

The integer a determines the number of ellipses whereas b is used to tune
the lengths α and β, defined as above, of their semiaxes. We expect that a good
choice for the parameters a and b depends on the ratio k/n: when k � n we
expect many eigenvalues to lie on or near to the unit circle, while when n � k
we expect a situation more similar to the eigenvalues of a random matrix, with
no particular orientation towards unimodularity. We therefore expect that a
small ratio a/b works well in the former case while on the contrary in the latter
case a ' b should be a better choice. Moreover, we expect that as nk grows it
is helpful to increase the total number a of ellipses as well.

We show here some of the results on random T-palindromic polynomials.
Figure 23 refers to an experiment on small-dimensional, high-degree polynomi-
als: the value of n has been set to 5 while k was variable. The average number
of t over a set of 1000 random polynomials for each value of N = nk is shown
on the graph. The parameters satisfy a ∈ {2, 3} and b ∈ {8, 64} and they are
determined by a = 1 + 2c and b = 8c+1, where the integer c is defined as the
integer part of c = log320N . The graph shows a linear growth of t with respect
to N = nk.
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Fig. 23. Dependence of t on nk for n = 5

Figure 24 refers to an experiment where on the contrary the case of small
k is explored. We have considered here k = 2 and let n vary and we show the
results for t plotted against nk for several choices of a and b. The choice labelled
as “step function” is for a = {6, 11} and b = {6, 12} generated by a = 1 + 5 2c

and b = 6 2c. Once again the experiments suggest that when the starting points
are conveniently chosen t ≤ αN for some constant α and any N in the specified
range, and, moreover, the bound still holds for different reasonable choices of
the parameters a and b. The experimentation with random polynomials gives
α ' 8 as an estimate for the constant.
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Fig. 24. Dependence of t on nk for k = 2

We have reached for the structured case the same conclusions that we drew
for the unstructured EAI: the algorithm can greatly benefit from a smart strat-
egy for the selection of the starting points by increasing the number of early
deflations. The experiments show that as long as the starting points are suitably
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chosen the value of t is proportional to N = nk. Notice that for the structured
palindromic case linearity is achieved also in the region n� k2.

Let us complete this subsection by justifying the claim we made in Section
4.1 by comparing the number of scalar iterations needed before convergence by
the naive approach and the number of scalar iterations needed by the change of
variable approach. The next figures show the average number of scalar iterations
t for n = 2 and various values of k for three methods: the naive approach
(blue), the implicit change of variable method (red) and the explicit change
of variable method (black). Starting points were chosen according to a step
function criterion and the tests were performed on sets of random T-palindromic
polynomials.
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Fig. 25. Average number of scalar iterations for T-palindromic polynomials
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Fig. 26. Average number of scalar iterations for even polynomials

Notice that the naive approach turns out to be slower than the implicit
substitution approach. The effect is more evident for palindromic than for even
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polynomials; moreover, for the palindromic case the explicit substitution method
appears to be the fastest, while for even polynomials it does not look faster than
the naive approach. The reason for these different behaviours is not clear and
deserves further investigation. However, since the (either explicit or implicit)
substitution approach is always at least as efficient as the naive approach, and
in some cases, such as palindromic, it is definitely faster, our advice is to prefer
the former unless either theoretic or heuristic reasons not to do so are identified.

The drawback of the substitution approach is the loss of accuracy for ex-
ceptional eigenvalues, discussed in more details in the next subsection. We
anticipate however that such a shortcoming can be overcome by means of a
structured refinement method that we will present in Chapter 5.

4.6.2 Accuracy of the SEAI

The other important aspect of our solver based on polynomial root-finding con-
cerns the accuracy of computed approximations. In our experience, the unstruc-
tured EAI competes very well in accuracy with the customary QZ-algorithm.
For the SEAI, the accuracy of the computed non-exceptional roots for the ran-
dom polynomials is always at least comparable with the accuracy of the approx-
imation obtained with the QZ method as implemented in polyeig.

Let us give in the following some evidence of this claim by some examples
of the SEAI applied to different structures. The results of other numerical
experiments confirm the robustness of the novel method.

Let us consider first the T-palindromic structure. We will present experi-
ments performed by means of the method of the explicit construction of a new
matrix polynomial M(z), z = x+ x−1 (Subsection 4.3.1). Figure 27 illustrates
the computed eigenvalues for the problem H5,40. Figure 28 also reports the plot
of the absolute error vector |yEA− ỹ| and |yQZ− ỹ|, where ỹ is the vector formed
by the eigenvalues computed in high precision arithmetic by Mathematica1 while
yEA and yQZ are, respectively, the vectors formed from the eigenvalues returned
by the SEAI and suitably sorted by the internal function polyeig.
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Eigenvalues for the H problem with n=5 and  k=40

Fig. 27. Approximations of the eigenvalues of H(5, 40)

1Mathematica is a registered trademark of Wolfram Research, Inc.
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Fig. 28. Absolute errors for the eigenvalues of H(5, 40): polyeig (left) and

SEAI (right)

The numerical results put in evidence the following important aspects:

1. Poor approximations for the exact eigenvalue −1 are in accordance with
the theoretical predictions: in fact the reverse transformation from z =
x + x−1 to x = 1

2 (z ±
√
z2 − 4) is known to be ill-conditioned near z =

±2 (or x = ±1). Since in this example −1 is a defective eigenvalue,
the approximations returned by polyeig have comparable absolute errors
of order 10−8 which are in accordance with the unstructured backward
error estimates given in [55]. On the contrary in problems where −1 is
semisimple, the QZ algorithm achieves approximations with lower forward
error.

2. The accuracy of the remaining approximations is unaffected from the oc-
currence of near-to-critical eigenvalues and is in accordance with the re-
sults returned by polyeig. For most non-exceptional eigenvalues, the ac-
curacy of approximations computed by our method is slightly better.

3. This kind of behaviour is confirmed by many other experiments. Our
method performs similarly to the QZ for non-exceptional eigenvalues and
for defective exceptional eigenvalues, but generally worse than QZ and the
structure-preserving methods [100] for exceptional eigenvalues.

Let us now consider the even/odd structure. We will present for this case
experiments performed on the implicit change of variable. We recall that the
theoretical analysis given in the previous sections suggest the substitution z = x2

for even or odd matrix polynomials.
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Fig. 29. Approximated eigenvalues and absolute errors for a random odd
matrix polynomial

Figure 29 shows the Ehrlich-Aberth approximations of the eigenvalues of
a random odd real matrix polynomial P (x) of degree 50 and size 2. It also
shows the absolute error in terms of distance between the approximated so-
lutions and the exact solutions, computed solving the equation detP (x) = 0
with MPSolve, with the assumption that the randomly generated coefficients
are exact. The worst absolute error turns out to be the one associated with
the largest purely imaginary eigenvalue: for this eigenvalue, the corresponding
approximation calculated by polyeig shows an absolute error about 4 times
larger than our algorithm.

To further test the accuracy of the method, the following example [68] has

been used: let A =

[
0 1−φ 0

φ−1 0 i
0 −i 0

]
and M = [ 2A 0

0 A ]. The exact eigenvalues of

xI6 +M are {0, 0,±w,±2w} with w :=
√
2φ− φ2. As φ→ 0 the unstructured

condition number grows [68], leading to decreasing accuracy for customary ma-
trix algorithms. There exist structured matrix methods that perform much
better [68], so it would be satisfying that the structured variant of Ehrlich-
Aberth outperforms polyeig as well. Experiments have been performed for
several values of k ∈ N and φ = 2−k.
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Fig. 30. Absolute errors in computed eigenvalues of the skew-symmetric
matrix M

Figure 30 shows the absolute errors of the eigenvalues approximated with
three different methods: polyeig (green), SEAI (blue), and SEAI with prelim-
inary deflation of the exactly known eigenvalue 0 (red). The absolute error of
the deflated eigenvalue is not shown, being zero.

Notice that the experiment indicates that there is no loss of accuracy for
near-zero eigenvalues. Even when 0 is not deflated the performance in accuracy
is considerably better than the unstructured matrix method. To explain the
effect, notice that, in contrast with the palindromic structure, for even/odd
polynomials the back transformation is x = ±

√
z, for which only the absolute

condition number, but not the relative condition number, diverges near 0. The
SEAI seems to be very effective for the {λ,−λ} eigenstructure, and this time
exceptional eigenvalues do not suffer from a lower accuracy.

In the NLEVP library [7] there are two structured problems with even/odd
structure. We further verify the reliability of our method by testing it on these
two problems. The next figures compare four algorithms applied to the NLEVP
problems butterfly and wiresaw1, which are even [7]. Forward errors are com-
puted by comparing the approximation with values computed in high precision
arithmetic. The outcome of such computation is shown in logarithmic scale for
four algorithms: polyeig’s QZ (blue + symbol), the UEAI (red ∗ symbol), the
structured matrix method URV applied to an even linearization [100] (black x
symbol), and the SEAI relying on the change of variable z = x2 method (green
o symbol).
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Fig. 32. Forward absolute errors for the problem wiresaw1

It is clear from the figures above that for the problem butterfly the EAI
was more accurate than the two matrix methods, but structured methods did
not improve much the accuracy of each unstructured counterpart. A possible
explanation is that for these matrix polynomials the unstructured condition
numbers for the eigenvalues are not much different from the structured condition
numbers; under such circumstances, structured methods do not improve much
the accuracy, even though they improve the efficiency.

As a final test, we have used the SEAI on a more generic structure such that
the eigenvalues are paired. A matrix polynomial W (x) with n = 2 and k = 10
was built in such a way that its eigenvalues appear in couples of the form
{λ, λ+1

λ−1}. In order to devise a problem not too easy to solve numerically, the

determinant of the polynomial was designed to be Wilkinson-like2: det(W (x)) =

const. ·θ(x) ·θ(x+1
x−1 ), θ(x) = x ·

∏10
j=2(x−j). The next figure shows the absolute

forward errors of the computed approximations with respect to the known exact

2That is, θ(x) mimics the notorious Wilkinson polynomial [110].
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eigenvalues for three methods: QZ (polyeig, blue + symbol), UEAI (red ∗
symbol) and SEAI relying on the change of variable z = x2+x

x−1 (green o symbol).
Numerically zero errors were formally set equal to ε/2.
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Fig. 33. Forward absolute errors for the structured problem detW (x) = 0

The following table reports the relative errors of the three methods con-
sidered above for all the eigenvalues but 0 (all the three algorithms detected
the zero eigenvalue with an absolute error smaller than the machine epsilon).
It also reports the relative error for the Matlab’s function eig (without scal-
ing) applied to a suitable linearization, chosen according to the prescriptions
of [60]. Notice that here all the nonzero eigenvalues have modulus ≥ 1, so
the suggested (near-to-optimal) linearization in the space DL according to [60]
would in principle be the pencil in DL corresponding to the ansatz vector e1
(see [78] for further details). Unluckily, since one eigenvalue is zero, that pencil
is not a linearization at all [78]. Following the suggestions on conditioning of
[60] and the theory on linearizations of [78], we have therefore taken the slightly
perturbed vector e1 + 2−23e10 as an ansatz vector. The factor 2−23 has been
heuristically chosen picking the integer α ≤ 52 that minimises the average rel-
ative error when applying eig to the linearizations in DL associated with the
ansatz vectors e1 + 2−αe10.
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Eigenvalue R. e., polyeig R. e., eig R. e., UEAI R. e., SEAI
-1 4.9e-9 ε/2 ε/2 ε/2

11/9 4.5e-2 4.8e-8 3.5e-9 1.4e-13
5/4 8.1e-2 2.2e-7 1.1e-8 5.7e-13
9/7 8.9e-2 4.2e-7 4.0e-9 1.4e-12
4/3 1.1e-3 4.1e-7 1.1e-8 4.6e-12
7/5 9.9e-2 2.2e-7 7.1e-11 5.1e-12
3/2 8.9e-2 6.3 e-8 3.8e-10 2.5e-12
5/3 3.9e-2 8.9e-9 1.8e-10 1.1e-12
2 1.0e-10 4.9e-10 8.8e-12 5.1e-14
2 7.3e-4 2.3e-12 6.7e-15 4.7e-14
3 4.3e-6 6.3e-12 2.2e-14 6.3e-14
3 6.5e-8 5.8e-12 1.5e-13 6.7e-14
4 9.6e-8 1.5e-10 1.7e-12 2.0e-12
5 1.3e-7 8.1e-10 2.9e-12 5.9e-12
6 3.2e-7 2.2e-9 6.1e-12 1.5e-11
7 3.1e-6 3.3e-9 1.5 e-11 1.6e-11
8 4.6e-6 2.7e-9 1.5e-11 5.5e-12
9 2.9e-6 1.1e-9 1.7e-12 2.5e-12
10 4.2e-6 1.7e-10 3.0e-12 6.9e-13

Average 3.8e-5 9.6e-10 5.5e-12 4.1e-13

We may conclude that on this structured problem the EAI outperforms
the QZ method for what concerns accuracy. Apparently polyeig struggles
quite a bit here, which is coherent with the results of [60]. It is therefore
more appropriate to compare with the strategy of [60], that works better, but
still worse than the EAI. Although there are some approximations that do not
benefit from the use of the structured version of the Ehrlich-Aberth algorithm,
the SEAI has an overall advantage in accuracy over the UEAI, besides the
obvious efficiency advantage. The computation time for the SEAI was about
one third of the computation time for the UEAI.

4.6.3 Conclusions

Let us now summarise the results of the experimentation on the SEAI.

• When the determinant of the matrix polynomial has the property that
its roots appear in pairs (in Chapter 5, we will introduce the adjective
twined to indicate such class of scalar polynomials), a structured EAI can
be applied in order to halve the number of computed approximations, with
an immediate computational advantage.

• Three different strategies are available to this aim: the first one is to force
half of the eigenvalue to respect the known structure, but it is not always as
efficient as the other ones. The other two strategies are more sophisticated:
one may either build a new matrix polynomial whose properties can be
investigated using the tools of Chapter 3, or use an implicit change of
variable.

• All the methods above can be implemented to design efficient algorithms.
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• There are examples for which the accuracy of the approximation benefits
from the use of the SEAI with respect to the UEAI; the SEAI leads to
forward errors that are generally lower than unstructured customary ma-
trix methods, and at least comparable with structure-preserving matrix
methods;

• For some structures, some of the novel methods suffer from a loss of accu-
racy near exceptional eigenvalues; this is not due to less accurate approx-
imations from the EAI, but to the ill-conditioning of back transformation
to the original variable.

• The SEAI would therefore obtain great benefit from a structured refine-
ment of exceptional or near-to-exceptional eigenvalues, in order to over-
come its lower performances when dealing with such roots of the determi-
nant; the development of such a refining method is the subject of the next
chapter.



Chapter 5

A structured Newton
algorithm for the
refinement of roots of
twined scalar polynomials

As we have seen in Chapter 4, in some cases the SEAI leads to some loss of
accuracy for special eigenvalues. This is mainly due to ill-conditioned back
transformations after a change of variable. A refinement method that still pre-
serves the spectral structure is then needed.

In the present chapter, a Newton method for the structured refinement of
such inaccurate approximations is presented. The chapter is based on the results
of [41].

5.1 Introduction

The aim of this section is to briefly review the attributes of structured scalar
polynomials that have the property of having roots that appear in couples. We
will use the term twined polynomials (more formally defined below) to indicate
such special subclass of scalar polynomials.

Let a(z) =
∑n

j=0 ajz
j , be a polynomial of grade n = 2m. Assume that

aj = an−j for all j ≤ n, so that a(z) is a scalar palindromic polynomial. In
the following we will use the acronym egp to refer to the class of even-grade
palindromic polynomials.

Suppose that b, c, d ∈ C, d2+ bc 6= 0, and let f(x) = dx+b
cx−d , so that f(f(x)) ≡

x. We agree that f(∞) := d/c and f(d/c) := ∞. The palindromic property can
be generalised to a(x) = 0 ⇔ a(f(x)) = 0. An even-grade f(x)-twined (f(x)-
egt) polynomial is defined [41] as a polynomial of even grade satisfying such
a symmetry of its roots. Besides palindromic polynomials, other well-known
examples of egt polynomials are even polynomials (f(x) = −x, j odd ⇒ aj = 0)
and odd polynomials (f(x) = −x, j even ⇒ aj = 0)

We have already met even-graded twined polynomials in Chapter 4, as deter-
minants of a class of structured matrix polynomials. Actually, a broader class of

103
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structured PEPs was then discussed: for instance, an anti-T-palindromic matrix
polynomial of grade 3 and dimension 3 has as determinant an odd-graded an-
tipalindromic scalar polynomial p(x), which is neither twined nor even-graded.
Nevertheless, it can always be written as p(x) = (x − 1)q(x), where q(x) is an
even-grade palindromic (and, thus, twined) polynomial. Moreover, the factor-
ization can be exploited by the SEAI.

Such a situation is general. The determinants of the structured PEPs studied
in Chapter 4 can be reconducted, when using the SEAI, to the even-grade case
by the use of some tricks. In the most general case of our interest, they are in fact
the product of an even-grade f(x)-twined polynomial and of a factor that takes
into account exceptional eigenvalues of odd multiplicity. Usually, this latter
factor can be easily dealt with, because it is known a priori from theoretical
considerations. We can therefore focus on the even grade case without any loss
of generality.

Moreover, from the analyses we made in Chapter 4 we know that there
exists a rational function of degree 2, z = z(x), such that the change of variable
from x to z can be exploited in order to design a structured, effective version
of the EAI. Such a change of variable can be performed either implicitly or
explicitly, by building a new matrix polynomial whose eigenvalues αj are such
that αj = z(λj) = z(f(λj)), where the λj are the eigenvalues of the original
PEP. Whatever the choice, the λj are then obtained in a second phase, by
solving a quadratic equation whose coefficients depend on the corresponding
computed approximation of αj . More details have been described in Chapter 4.

Our extensive numerical experience reported in [12, 42, 92] and in Chapter
4 says that the computed approximations of αj are generally very accurate, but
there can be some problems in the second step of the algorithm. A potential
pitfall of such a SEAI is that the reconstruction of {λj , f(λj)} from αj becomes
ill-conditioned as αj approaches z(φ), where φ is a fixed point of f , i. e. f(φ) =
φ. For instance, in the case of T-palindromic PEPs, for which f(x) = 1/x, the
two fixed points of f correspond to the two exceptional eigenvalues ±1; if one

uses the Dickson change of variable z = x2+1
x , then z(±1) = ±2 and the back

transformation becomes numerically ill-conditioned when αj is closed to ±2 so
that the original eigenvalues are near-to-exceptional. Moreover, for the explicit
change of variable implementation of the SEAI numerical difficulties could be
encountered for approximating eigenvalues corresponding to very large values of
αj , due to the presence of extra defective infinite eigenvalues of the new matrix
polynomial.

For T-palindromic polynomials, this loss of accuracy has been discussed in
detail in [42] and in Chapter 4. This motivates the search of numerical methods
for the iterative refinement of the roots of the egp polynomial a(z). Similarly,
the application of root-finders to other structured eigenvalue problems may lead
to the problem of the refinement of certain roots of f(x)-twined polynomials in
correspondence to the fixed points of f(x), as discussed in [12] and Chapter 4.

In the present chapter we develop algorithms for the simultaneous approx-
imation of two symmetric roots of an f(x)-egt polynomial. Besides the above
mentioned application to structured PEPs, there exist other situations where
f(x)-egt polynomials appear: see [48, 73] and the references given therein. For
the sake of concreteness, we will focus in particular on the example of the egp
polynomials; but we will mention also how such algorithms can be easily adapted
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to the more general case. The algorithms can be viewed as a specialization of
the Newton method for f(x)-twined polynomials.

More specifically, we introduce some symmetric division processes for palin-
dromic polynomials by showing that for a given a(z) of grade n = 2m and a
given ξ ∈ Ω, Ω open subset in C, under some mild assumptions there exist a
unique palindromic polynomial q(z) of grade n− 2 and a unique number r ∈ C
such that a(z) = q(z)(z− ξ)(z− ξ−1) + rs(z), where s(z) is a fixed palindromic
polynomial. The Newton method is applied to the solution of the nonlinear
equation r(ξ) = 0, r : Ω → C, yielding our strategy for factoring out palin-
dromic quadratic factors of a(z). Analogous results hold for the more general
case of egt polynomials.

Suitable choices of the polynomial s(z) characterising the division process
lead to iterative methods in the style of the EAI. The computational work
per iteration basically reduces to evaluating the Newton correction a(ξ)/a′(ξ),
ξ ∈ Ω. The cost of the evaluation depends on the representation of a(z). If
the polynomial is implicitly given as the determinant of a matrix polynomial
then the Jacobi formula can be used for computing the Newton correction. If
on the contrary one has to deal directly with a scalar f(x)-egt polynomial, the
evaluation of the Newton correction is cheaper.

5.2 Symmetric Division of Palindromic Polyno-
mials

Specialised division algorithms for polynomials with symmetries have been de-
scribed in several papers: see, e.g., [99] and the references given therein. In
the present section we introduce some novel symmetric division processes for
palindromic polynomials aimed to exploit the symmetric distribution of the co-
efficients and, a fortiori, of the spectrum of the polynomial.

The first division scheme relies upon the following theorem [41].

Theorem 5.1. Let a(z) ∈ C[z] be a palindromic polynomial of even grade n,
i.e., a(z) =

∑n
j=0 ajz

j, n = 2m, aj = an−j for 0 ≤ j ≤ n. For any ξ ∈ C
satisfying ξn−1+ξ 6= 0 there exist uniquely determined a palindromic polynomial
q(z) of grade n− 2 and a scalar r ∈ C such that

a(z) = q(z)(z − ξ)(z − ξ−1) + r(zn−1 + z). (5.1)

Proof. The proof of Theorem 5.1 is constructive. Moreover, it can be trans-
lated into a computational procedure for determining the symmetric quotient
and the remainder.

Let us set q(z) =
∑n−2

j=0 qjz
j , qj = qn−2−j , 0 ≤ j ≤ n−2, and −α = ξ+ ξ−1,

with ξ 6= 0. Relation (5.1) can be translated into the circulant-like linear system

a1
a2
...
a2
a1
2a0


=



α 1 1
1 α 1 0

. . .
. . .

. . .
...

1 α 1 0
1 α 1

1 0 . . . 0 1 0





q0
q1
...
q1
q0
r


. (5.2)
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The tridiagonal Töplitz matrix T , which is the block element (1, 1) of the block

matrix in (5.2), can be diagonalised as T = U ·D · U , where U =

√
2

n
(sin

ijπ

n
)

and D = diag(α+ 2 cos
π

n
, . . . , α+ 2 cos

(n− 1)π

n
). Using the Schur form of T ,

we can reduce the coefficient matrix of (5.2) into arrowhead form. In addition,
from the structure of U and the palindromic property of q = [q0, q1, . . . , q1, q0]

T ,
a = [a1, a2, . . . , a2, a1]

T and e = e1+en−1 we find that the system can be further
compressed, obtaining the equivalent form of size m+ 1[

diag(α+ 2 cos (2[1:m]−1)π
n ) P · Ue

eTU · PT 0

] [
w
r

]
=

[
P · Ua
2a0

]
, (5.3)

where PTw = Uq and P ∈ Rm×(n−1) is the restriction matrix defined by
P = (δ2i−1,j), where δi,j is the Kronecker delta. Thus we deduce that there
exist unique q(z) and r satisfying (5.1) if and only if the coefficient matrix of
the system is nonsingular. If T is invertible then for the determinant d of the
coefficient matrix in (5.3) we find

d = ±s · tm(α/2), s = −eT · T−1e,

where tk(x) denotes the Chebyshev polynomial of the first kind of degree k. By
using the representation of the semiseparable matrix T−1 [19] we find that

d = ±2
um−1(α/2)tm−1(α/2)

um−1(α/2)tm(α/2)
tm(α/2) = ±2tm−1(α/2),

where uk(x) denotes the Chebyshev polynomial of the second kind of degree k.
By continuity, this gives the determinant for any value of α. Hence, we may
finally conclude that the condition for the invertibility is tm−1(α/2) 6= 0 or,
equivalently, ξn−2 + 1 6= 0.

Remark 5.1. The linear system (5.2) can be solved in linear time, using the
QR factorization method. The reduced linear system (5.3) can also be solved
in linear time, but the computation of Ua and q = UPTw costs a bit more,
requiring a sine transform of order n. The advantage of the reduction is that
the structure of q(z) can be computed exactly, by exploiting the symmetries in the
matrix U . It is an interesting problem to devise a linear complexity algorithm
that is able to compute q(z) while preserving the palindromic property of the
coefficients.

The previous result enables the derivation of another symmetric division
scheme for egp polynomials. Observe that 0+z·a(z)+0zn+2 is an egp polynomial
of grade n+ 2. From Theorem 5.1 we obtain that there exist a unique scalar r
and a unique polynomial q(z) = q0 + z · q̂(z) + q0z

n of grade n such that

z · a(z) = q(z)(z − ξ)(z − ξ−1) + r(zn+1 + z).

Since q0 = q(0) = 0, it follows that

a(z) = q̂(z)(z − ξ)(z − ξ−1) + r(zn + 1). (5.4)

We can express this result with the following corollary.
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Corollary 5.1. Let a(z) ∈ C[z] be a palindromic polynomial of even grade n,
i.e., a(z) =

∑n
j=0 ajz

j, an 6= 0, n = 2m, aj = an−j for 0 ≤ j ≤ n. For any

ξ ∈ C satisfying ξn+1 + ξ 6= 0 there exist uniquely determined a palindromic
polynomial q(z) of grade n− 2 and a scalar r ∈ C such that

a(z) = q(z)(z − ξ)(z − ξ−1) + r(zn + 1). (5.5)

This result can be further generalised along two different directions. The
first is to consider remainder polynomials of the form zn−` + z`, 0 ≤ ` ≤ m.
The second, even more interesting, generalization of Corollary 5.1 comes from
the observation that zn + 1 is a palindromic polynomial of degree n which can
be factorised as the product of quadratic factors with pairwise distinct roots.
The following extension is easily proved [41].

Theorem 5.2. Let s(z) =
∏m

j=1(z
2 − αjz + 1), αj 6= αk for j 6= k, be a fixed

polynomial of degree n = 2m. For any palindromic polynomial a(z) of grade
n and any ξ ∈ C satisfying ξ−1 + ξ 6= αj, 1 ≤ j ≤ m, there exist uniquely
determined a palindromic polynomial q(z) of grade n − 2 and a scalar r ∈ C
such that

a(z) = q(z)(z − ξ)(z − ξ−1) + rs(z). (5.6)

Proof. Define t := z + z−1. Let us introduce the functions cj(t) = zj + z−j ,
j ≥ 0. Such functions are monic Chebyshev-like polynomials (that is, they differ
from Chebyshev polynomials only for a linear change of variable and an overall
constant factor) of degree j; thus, they are linearly independent. Moreover, they
satisfy the prosthaphaeresis identities

cj(t)ck(t) = cj+k(t) + c|j−k|(t). (5.7)

The relation (5.6) can be rewritten as

m−1∑
j=0

ajcm−j(t) +
am
2
c0(t) = (c1(t)−

α

2
c0(t))

m−2∑
j=0

qjcm−1−j(t)+

+
qm−1

2
c0(t)) + r

m∏
j=1

(c1(t)−
αj

2
c0(t)

 ,

where α = ξ + ξ−1.
With the use of (5.7) and equating the coefficients of cj(t), j = 0, . . . ,m,

this is equivalent to a linear system of m + 1 equations in m + 1 unknowns.
Therefore the coefficients qj , j = 0, . . . ,m − 1, and the scalar r are uniquely
determined whenever the matrix of such a linear system is nonsingular. An
argument relying on interpolation techniques at the nodes α, α1, . . . , αm can be
used in order to show that this happens whenever α 6= αj ∀ 1 ≤ j ≤ m.

Observe that in principle some αj could also be allowed to be infinite, adopt-
ing the convention z2+∞z+1 := 0z2+z+0 = z(0c0(t)+c1(t)/2). This extends
Theorem 5.2 to a generic s(z) of grade 2m.

All the considered symmetric division processes can be carried out by nu-
merically robust algorithms. For instance, the function symdiv, that follows,
implements the division algorithm described in the proof of Theorem 5.1 by
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solving the reduced system (5.3). Given in input the coefficients of a(z) and
α = −(ξ + ξ−1) it returns as output the coefficients of q(z) and r satisfying
(5.1).

function symdiv
Input: a0, . . . , am−1, am, am−1, . . . , a0, α;
Output: q0, . . . , qm−2, qm−1, qm−2, . . . , q0, r;

n = 2m; n1 = n− 1; q = zeros(n1, 1)
e = zeros(n1, 1); e(1) = e(n1) = 1; d = zeros(n1, 1);
a1 = [a0, . . . , am−1]

T ; F = zeros(m+ 1); U = zeros(n1);
for i = 1 : n1

for j = 1 : n1

U(i, j) = sin
ijπ

n
;

end;

d(i) = m(α+ 2 cos
iπ

n
);

end;
e = UTe;
for i = 1 : m

i1 = i+ 1; F (1, i1) = e(2i− 1);
F (i1, 1) = F (1, i1); F (i1, i1) = d(2i− 1);

end;
a12 = [a1(2 : m); am;a1(m:− 1:2)]; a12 = UTa12;
[r; q1] = F\[2a0;a12(1:2:2m− 1)];
for i = 1 : m

q(2i− 1) = q1(i+ 1);
end;
q = Uq

The procedure turns out to be numerically robust even when α/2 approaches
the roots of tm−1(z). Figure 34 reports the plot of the computed backward error

err =
‖ a− conv(q, [1;α; 1])− r(e2 + en−1) ‖∞

max{1, ‖ q ‖∞}
,

for a = [1: m; 0;m : − 1: 1] and α = 2 cos
π

n− 2
+

√
ε, where ε denotes the

machine precision.
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Fig. 34. Plot of the error err(m)

Concerning the measure of palindromicity pm =
‖q− flipud(q) ‖∞

‖q‖∞
we have

always found pm = 0 in all the experiments performed. The Matlab built-in
function flipud flips the elements of a column vector, generating another vector
of the same size and with the same elements, but in the reverse order.

5.3 Symmetric Division of Twined Polynomials

The present section is devoted to the extension of Theorem 5.2 to the more
general case of f(x)-egt polynomials [41].

The extension from palindromic to generic twined polynomials is done in two
steps. Consider first the following intermediate generalization of a palindromic
polynomial. We recall (Remark 4.4) that, given κ 6= 0, any a(z) =

∑2m
j=0 ajz

j

satisfying aj = κm−ja2m−j is called an even-grade κ-palindromic (egκp) poly-
nomial; its roots come in pairs {λ, κλ}. See also Remark 4.4 for more details.

An analogous division process can be designed for such polynomials. The
following corollary holds.

Corollary 5.2. Let s(z) =
∏m

j=1(z
2 − αjz + κ), αj 6= αk for j 6= k, be a fixed

polynomial of grade n = 2m. For any κ-palindromic polynomial a(z) of grade
n and any ξ ∈ C satisfying κξ−1 + ξ 6= αj, 1 ≤ j ≤ m, there exist uniquely
determined a κ-palindromic polynomial q(z) of grade n − 2 and a scalar r ∈ C
such that

a(z) = q(z)(z − ξ)(z − κξ−1) + rs(z). (5.8)

Proof. The corollary can be proved just as in Theorem 5.2, after defining t :=
z+ κz−1, cj(t) := zj + κjz−j , and observing that they are linearly independent
polynomials satisfying cj(t)ck(t) = cj+k(t) + κmin(j,k)c|j−k|(t).

Given a self-inverse analytic function f(x) = dx+b
cx−d , d

2+bc 6= 0, consider now
the class of the f(x)-egt polynomials a(z), satisfying the property a(λ) = 0 ⇔
a( dλ+b

cλ−d ) = 0.
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Theorem 5.3. Let s(z) =
∏m

j=1(z−ξj)(z−f(ξj)), ξj 6= ξk for j 6= k, be a fixed
f(x)-egt polynomial of grade n = 2m. For any f(x)-egt polynomial a(z) of grade
n and any ξ ∈ C satisfying ξ 6= ξj, 1 ≤ j ≤ m, there exist uniquely determined
an f(x)-egt polynomial q(z) of grade n− 2 and a scalar r ∈ C such that

a(z) = q(z)(z − ξ)(z − f(ξ)) + rs(z). (5.9)

Proof. Let κ = d2 + bc 6= 0. We will provide a group isomorphism between
f(x)-egt polynomials of grade 2m and egκp polynomials of the same grade; the
thesis will then follow from Corollary 5.2. Suppose that there exists a function
g(x) = αx+β

γx+δ , αδ 6= βγ, such that g(f(x))g(x) ≡ κ. Let a(y) =
∏m

j=1(y−ψi)(y−
f(ψi)) be an f(x)-egt; all f(x)-egt, up to a constant factor, can be factorised in
this way adopting the formal convention (y +∞) := (0 · y + 1) in order to deal
with the case of infinite roots. The application

Φ : a(y) → Φδz−β,α−γz(a(y)) := p(z) = [α− γz]grade(a(y))a(g−1(z))

is a bijection between polynomials (Proposition 3.3) that preserves the grade.
To see it, apply Lemma 3.1 and Proposition 3.1 with N = D = G = 1 and
g = grade(a(y)) and recall (Section 3.2) that by definition grade(p(z)) = gG =
grade(a(y)) because G = 1. Moreover, the application above clearly preserves
the group structure since Φ(a1 + a2) = Φ(a1) + Φ(a2) as long as a1, a2 and
a1+ a2 have the same grade. Furthermore, if once again we formally agree that
(z +∞) := (0 · z + 1), then

p(z) = const. ·
m∏
j=1

(α− γz)2(g−1(z)− ψi)(g
−1(z)− f(ψi)) =

= const. ·
m∏
j=1

(z − g(ψi))(z − g(f(ψi))).

Therefore p(z) is egκp if and only if a(y) is f(x)-egt.
The existence of such a g(x) is provided by solving the linear system

d c −κ 0
b −d 0 −κ
−1 0 d c
0 −1 b −d



α
β
γ
δ

 = 0,

which has nontrivial solutions satisfying the additional condition αδ 6= βγ for
any values of b, c, d. For instance, g(x) = cx − d is a solution whenever c 6= 0,
g(x) = dx+b

x is a solution whenever b 6= 0, and g(x) = dx−1
x+1 is a solution if

b = c = 0.
Theorem 5.3 allows to devise division refinement algorithms for any kind of

egt polynomials, providing an antidote to the loss of accuracy near the fixed
points of f(x) in structured root-finders for f(x)-twined polynomials [12]. In
the following section, we focus on the special case of egp polynomials, for which
we extensively tested the structured refinement derived above. More generic
applications of Theorem 5.3 will be tested in future experiments.

The proof that we gave for Theorem 5.3 also shows the fact, not difficult to
see yet interesting, that f(x)-egt polynomials of a given grade are an additive
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group, i.e. the sum of two polynomials (of the same grade) whose roots have the
{x, f(x)} symmetry share the same property with the two addends. Moreover,
if f(x) = dx+b

cx−d , and κ := d2 + bc 6= 0,then the f(x)-egt polynomials of grade g
are isomorphic (as an additive group) to egκp polynomials of the same grade.

As an additional corollary, notice that there is no loss of generality in assum-

ing κ = 1 in the previous proof: it suffices to start from f(x) = dx/
√
κ+b/

√
κ

cx/
√
κ−d/

√
κ
.

Thus, all the f(x)-egt polynomials of grade 2m are isomorphic to egp polynomials
of the same grade.

5.4 An Iterative Refinement Algorithm

The symmetric division processes (5.1), (5.4), (5.6) and (5.5) are at the basis of
iterative methods for the refinement of a quadratic factor of egp polynomials.
For the applications that we have in mind, we are mainly interested in the case
where most of the quadratic factors are known at high accuracy while some
roots are to be refined.

More precisely, given a(z) =
∑n

j=0 ajz
j =

∏m
j=1(z − ξj)(z − ξ−1

j ), with

ξj + ξ−1
j 6= ξk + ξ−1

k for j 6= k and ξj + ξ−1
j 6= 0 for 1 ≤ j ≤ m, suppose that

an approximation p(z) =
∏k

j=1(z − ξ̂j)(z − ξ̂−1
j ), k < m, of a factor of a(z)

is known and then set s(z) = p(z)(zn−2k + 1). Let Ω be the open subset of
C defined by Ω = {z ∈ C : s(z) 6= 0}. From Theorem 5.2 there is defined a
function r = r(ξ) : Ω → C such that

a(z) = q(z)(z − ξ)(z − ξ−1) + rs(z),

which gives

r(ξ) =
a(ξ)

p(ξ)(ξn−2k + 1)
.

Let us now apply the Newton method to pursue the solution of the nonlinear
equation r(ξ) = 0. This yields the iteration

ξ`+1 = ξ` −
a(ξ`)/a

′(ξ`)

1− a(ξ`)

a′(ξ`)

 k∑
j=1

2ξ` + αj

ξ2` + αjξ` + 1
+

m−k∑
j=1

2ξ` + θj
ξ2` + θjξ` + 1

 , ` ≥ 0,

(5.10)

where αj = −(ξ̂j + ξ̂−1
j ) for j = 1, . . . , k, and θj = −2 cos (2j−1)π

j , for j =
1, . . . ,m− k.

The arithmetic cost per step is determined by the evaluation of the Newton
correction N (ξ) = a(ξ)/a′(ξ), which can be performed in several different ways
depending on the representation of the polynomial a(z). If a(z) is not the by-
product of a PEP but it is a genuinely scalar problem, and if it is given by its
coefficients aj with respect to the standard power basis then the Horner method
can be applied with linear complexity. Differently, if a(z) is implicitly specified
as the determinant of a linear matrix polynomial, as it happens in the EAI
algorithm via linearization, say a(z) = det(A + zB), A,B ∈ Cnk×nk, then the
Jacobi formula N(ξ) = (tr((A + ξB)−1 · B))−1 provides the correction at the
cost of computing the trace of the matrix (A + ξB)−1B. The same argument
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applies if, as in the EAI algorithm without linearization, a(z) = detP (z) for a
generic (even-grade or even-dimensional) matrix polynomial.

Several numerical tests have been performed in order to investigate the ro-
bustness and the accuracy of the proposed iteration (5.10) applied for the re-
finement of the solutions of a(ξ) = 0. In particular, we are interested:

• in the behaviour of the iterative method around α = −(ξ + ξ−1) = ±2,
which are critical values for two of the structured polynomial eigenvalue-
finding algorithms devised in Chapter 4;

• in the use of the method for the refinement of both small and large roots,
which in principle may be computed with worse accuracy when the method
of the explicit construction of a new skew-Hamiltonian matrix polynomial
is used (see Chapter 4).

The first example is taken from [68]. The matrix pencil A− zAT , where

A =


1 ρ− 1 0 0

1− ρ 1
√
−1 0

0 −
√
−1 1 0

0 0 0 1

 , 0 < ρ ≤ 1,

has generalised eigenvalues given by

λ1 = λ2 = 1, λ3(ρ) =
1 +

√
2ρ− ρ2

1−
√

2ρ− ρ2
, λ4(ρ) =

1−
√
2ρ− ρ2

1 +
√
2ρ− ρ2

.

As ρ approaches zero the structured eigenvalue condition numbers tend to be-
come smaller than the unstructured ones and, therefore, it can be expected that
the process (5.10) is able to refine the approximations returned by the Matlab
function eig.
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Fig. 35. Plots of the errors er(k) (solid line) and em(k) (dotted line)
computed by using the Gaussian elimination method
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Fig. 36. Plots of the errors er(k) (solid line) and em(k) (dotted line)
computed by using the QR factorization method

Figure 35 shows the plots of the errors em(k) = |λ4(2−k) − λ̂4(2
−k)| and

er(k) = |λ4(2−k)− λ̃4(2
−k)|, 1 ≤ k ≤ 48, where λ̂(ρ) and λ̃(ρ) are the approxi-

mations returned, respectively, by eig and the refinement method (5.10) applied

with initial guess ξ0 = λ̂(ρ) and p(z) = (z − 1)2. Here the Newton correction
N (ξ) = a(ξ)/a′(ξ) is evaluated by means of Gaussian elimination applied to the
pencil A− zAT . The plot of er(k) is comparable with the error plot generated
using the palindromic QR method in [68].

A different scenario is observed if Gaussian elimination is replaced by the
QR factorization process. Figure 36 is the same as Figure 35 with the use of
the QR method for evaluating the Newton correction.

The difference is due to the greater accuracy of the Gaussian elimination
method as compared with the QR factorization method for evaluating the New-
ton correction N(ξ) = a(ξ)/a′(ξ). Figure 37 reports the plots of the absolute
errors computed at the nodes ξk = 1 +

√
ε ei2π(k−1)/48, for 1 ≤ k ≤ 48.
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Fig. 37. Plots of the absolute errors eGE(k) (solid line) and eQR(k) (dotted
line) generated in the computation of the Newton corrections

N(ξk) = a(ξk)/a
′(ξk), 1 ≤ k ≤ 48

The second numerical test is the generalised eigenvalue problem for the ma-
trix pencil A− zAT where

A =


−2/α− 2α 2/α+ 2α 2/α− 2α− 4β 2/α− 2α+ 4β
2/α+ 2α −2/α− 2α −2/α+ 2α− 4β −2/α+ 2α+ 4β

−2/α+ 2α− 4β 2/α− 2α− 4β 2/α+ 2α 2/α+ 2α
−2/α+ 2α+ 4β 2/α− 2α+ 4β 2/α+ 2α 2/α+ 2α

 ,
with α =

√
−1 + r, β = 1 + r, r ∈ R. The exact eigenvalues are

λ1(r) = (1 + r)2, λ2(r) = 1/λ1(r), λ3(r) = (
√
−1 + r)2, λ4(r) = 1/λ3(r).

In our numerical experiments we have simulated a small error on the last digit of
γ(r) = λ1(r)+λ2(r) by setting γ̃(r) = γ(r)+10 ·ε. We have computed an initial
approximation of λ2(r) by solving the quadratic equation z2− γ̃(r)z+1 = 0 and
then we have used (5.10) with p(z) = 1 to refine the value of the root. Figure
38 illustrates the plot of the initial error ei(r) and of the final error er(r) for
r = 4−k, k = 1, . . . , 48.
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Fig. 38. Plots of the errors ei(k) (dotted line) and er(k) (solid line)

The last example regards the approximation of small and large roots. We
first consider the palindromic polynomial a(z) of degree 2k+2 whose coefficient
vector a is generated by the rule a = [

√
ε, 1: k, 0, k : −1: 1,

√
ε], 1 ≤ k ≤ 48. The

polynomial has one root ξ of order 10−8. The SEAI computes approximations

αj , 1 ≤ j ≤ k + 1, such that a(z) '
√
ε

k+1∏
j=1

(z2 − αjz + 1) and αk+1 ' ξ + ξ−1.

Figure 39 shows the absolute error at the end of the iterative process (5.10)

applied with s(z) = (z2 + 1)
k∏

j=1

(z2 − αjz + 1) for the refinement of ξ. The
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starting point is ξ0 = 0 so that the initial absolute error before the application
of our algorithm is of order 10−8 for any value of k.
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Fig. 39. Plots of the absolute errors for the case of one small (large) root

In a different set of experiments the polynomial a(z) has been modified
according to the rule a = [

√
ε, ε, 1: k, 0, k : − 1: 1, ε,

√
ε], 1 ≤ k ≤ 48; it has

now two distinct roots ξ1 and ξ2 of order 10−4. The approximations returned
by the algorithm in Chapter 4 are α1, . . . , αk+2 with αk+1 ' ξ1 + ξ−1

1 and
αk+2 ' ξ2 + ξ−1

2 . Figure 40 shows the error at the end of the iterative process

(5.10) applied with s(z) = (z2 + 1)
∏k+1

j=1 (z
2 − αjz + 1) for the refinement of

ξ2. The starting point is ξ0 = 0 so that the refinement starts with a poor
approximation affected by an absolute error of order 10−4 for any value of k.
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Fig. 40. Plots of the absolute errors for the case of two small (large) roots

In both Figures 39 and 40, numerically zero errors were set equal to 10−24

in order to show them on the graph.
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For comparison, the sequence generated by the classical Newton method
applied to the polynomial a(z) of degree 100 with initial guess ξ0 = 0 exhibits
a divergent behaviour. This is paradigmatic of the problems which can be
encountered by using the Newton method in the occurrence of clustered or even
very large (infinite) eigenvalues. Moreover, a classical refinement approach is
not able to extract the spectral symmetries.

5.5 Remarks

The proposed modification of the Newton method is able to provide a structured
iterative refinement for the roots of a twined polynomial of even grade. When
applied to a PEP, the method seems to work better when Gaussian elimination
is used instead of QR factorization for evaluating the Newton correction.

In the palindromic case, the refinement method relies upon certain symmet-
ric division processes for palindromic polynomials and it generates a quotient
and a remainder with the same property of the coefficients. The performed
experiments show that when the approximations of the roots are known then
the information can be incorporated into the division process, thus leading to
an iterative method in the style of the Ehrlich-Aberth root-finding algorithm.
The refinement differs from the original EAI because of the presence of some
fixed “artificial” roots, as can be seen by comparing (5.10) and (2.2), (2.3). For
egp polynomials, such artificial roots are conveniently chosen as proportional to
Chebyshev nodes. This can be seen once again as an occurrence of the Dick-
son (or, almost equivalently, Chebyshev) basis in the treatment of palindromic
polynomials.

Analogous algorithms can be used to treat κ-palindromic polynomials and,
thanks to the isomorphism described in Theorem 5.3, also for generic f(x)-egt
polynomials.

An important consequence of the results presented in the present chapter is
that the known inconvenience caused by the back-transformation of the vari-
able in some implementations of the SEAI can be effectively amended by these
structured division algorithms, which therefore provide the sought structured
refinement for near-to-exceptional eigenvalues.

We can conclude that the approach resulting from the combination of the
SEAI and the structured division refinement algorithm is very effective and can
reach at least the same level of accuracy that the structure-preserving methods
based on matrix iterations achieve. Moreover, we stress that the structured
division refinement algorithm is independent of the SEAI and can be used to
refine approximations computed with any method. Even more, in principle it
may be used to impose the spectral structure to a set of approximations obtained
by an unstructured algorithm: suppose for instance to use first the UEAI, or
the unstructured QZ, and to sort the obtained approximations. There will be
pairs {λ, µ} with µ ' f(λ); one can thus start with either of the two, say λ,
and apply the structured division refinement algorithm starting from {λ, f(λ)},
until an exactly paired eigencouple {λr, f(λr)} is obtained.

The method achieves good results also in cases where a classical Newton
refinement approach fails.



Chapter 6

Conclusions and future
research

In this chapter we wish to give some final remarks on the analysis made in this
work.

6.1 The EAI for PEPs: an overview

The Ehrlich-Aberth iteration is a root-finding algorithm that can be used as a
tool for a root-finding approach to polynomial eigenvalue problems. The result-
ing algorithm outperforms customary methods in terms of computation time if
the degree of the matrix polynomial is high, while it is slower (although of com-
parable asymptotic complexity) for the large dimension case. To our knowledge,
no proof of global convergence is available. Yet, in practice the method appears
reliable and effective. A comparison with backward stable methods such as the
QZ algorithm show that the EAI compute eigenvalues with forward errors at
least comparable with the ones obtained by robust implementation of the QZ.
Often, the approximations given by the EAI are more accurate. This means
that, also in the situations where it is not faster than the matrix iteration meth-
ods, the EAI could be used as a refinement algorithm to improve the output of
customary algorithms. It is worth to add that the SEAI, in any of its variants
described in this thesis, can also be used in order to impose the right structure
to the output of an unstructured method.

The main weakness of the method at its current stage of development is that,
at least in principle, it may have problems to deal with multiple eigenvalues.
Convergence is slower for multiple eigenvalues, and if they are defective it is
difficult to design an appropriate stopping criterion. If any a priori knowledge
exist on multiple eigenvalues, it should be used to deflate such roots. For the
NLEVP library test problems, the presence of multiple zero or infinite eigenval-
ues could be easily forecast, at least with a lower bound on their number, by the
analysis of the extremal coefficients. The deflation of such eigenvalues helped
improving the efficiency of the algorithm: for those problems, very satisfactory
results were achieved in terms of accuracy despite the presence, in some of them,
of defective eigenvalues.

For the case of a structured matrix polynomial, we have proposed three
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different approaches in order to adapt the EAI and to extract the spectral
structure. A common positive feature of such methods is that, in contrast
with many structured variants of the QZ or other iterative methods that work
on a linearised pencils, the complexity is never increased with respect to the
unstructured algorithm; on the contrary, the number of the sought roots is
halved.

One of the three SEAI methods, the so-called naive approach, is very simply
implemented, and it is the only one that at least in principle could be also used
for non-analytic self-inverse functions f(x) (e.g., a real matrix polynomial with
f(x) = x∗.) Since for non-analytic f(x) there is usually no way to predict a priori
the number of exceptional eigenvalues (e.g. the number of real eigenvalues for
a generic real matrix polynomial), such an application is however possible only
with the support of a multiprecision cluster analysis algorithm, which —at least
at the moment— is only available for the scalar case. Nevertheless, it may lead
in the next future to the design of an improvement of the software MPSolve [9]
in the case of structured scalar polynomials (e.g. real polynomials: in contrast
to what happens now within the software, it could be possible to guarantee that
complex eigenvalues will be paired and real eigenvalues will be computed with
exactly zero imaginary part). The drawback of the naive approach is that for
some class of matrix polynomials (e.g. palindromic) it appears to be slower in
terms of needed scalar iterations.

The other two approaches, i.e. the mapping of the structured PEP to a
related skew-Hamiltonian eigenvalue problem and the implicit change of vari-
able method, are also implemented with the same asymptotic complexity of the
unstructured EAI. Also for these strategies, an implementation within MPSolve

is possible. The weakness of these two more sophisticated approaches is the
possible loss of accuracy for exceptional eigenvalues in the cases where the back
transformation is ill-conditioned. The existence of structured refinement algo-
rithms, such as the Newton refinement method that we have described in this
thesis, is an effective remedy to this problem. As a future research project, we
also plan to extend the refinement method to non-analytic self-inverse functions,
also in the matrix case.

6.2 Future research

We list here some topics that are currently included amongst the future research
projects that either we are currently working on or we plan to work on in the
nearest future.

• The exploitation of our result on the structured case for the development of
new features in MPSolve. This has been discussed in the previous section.

• The generalization of the Newton refinement method to the non-analytic
case (e.g. H-palindromic matrix polynomials). Notice that the ideas de-
veloped in Chapter 5 are in some sense similar to those in Bairstow method
[6], an algorithm that approximates quadratic factors for a real polyno-
mial (f(x) = x∗). Further research is needed to investigate what happens
more in general when the self-inverse function f(x) is not analytic.

• The development of a better strategy to choose starting points. Our cur-
rent strategy is only partially satisfactory, since when n/k2 is high the
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total number of scalar iteration t is slightly superlinear in nk. Some new
results on eigenvalue localization might come using tools from tropical al-
gebra, by generalising the work of [101], or by other techniques. This will
be the subject of the paper [13], in preparation at the moment.

• The implementation of the version of the EAI for high values of n/k2,
with the strategy described in Section 2.2.3.

• The study of the possibility to use different root-finding algorithms. We
have mainly focused on the Ehrlich-Aberth method because in the scalar
case it proved itself the most efficient and stable algorithm to simultane-
ously approximate all the roots. Nevertheless, other choices do exist, e.g.
the Durand-Kerner, the modified EAI and the Halley-like iterations, all
described in Section 2.7. A thorough comparison of such alternatives with
the EAI in the various special cases is ongoing.

• The direct application of the EAI to genuinely nonlinear eigenvalue prob-
lems. Of course, a nonlinear eigenvalue problem can in principle be ap-
proximated with a polynomial eigenvalue problem, or with a rational
eigenvalue problem that can be turned into a PEP after multiplication
by least common denominator. Due to possible numerical issues, some
caution may be needed for the choice of what polynomial or rational ap-
proximant should be used; see for instance discussions in [35, 66] for the
case of an exponential function. Such approximations, however, may have
drawbacks, and the direct approach may give better results. Current re-
search is focused on dealing with the difficulties coming from the possible
infinite number of eigenvalues when the problem is genuinely nonlinear.

Research on polynomial eigenvalue problems can currently be considered one
of the hottest topics in linear algebra. As an example of a recent achievement
in the field, we wish to conclude this chapter mentioning a beautiful result that
very recently appeared in [106]. A result hidden in the proof of [44, Theorem
1.7] was there extended from monic to regular matrix polynomials, showing
that the latter are always triangularisable over C via unimodular equivalence,
i.e. they can be transformed to triangular matrix polynomials of the same
degree. Also, Schur-like theorems are proved. The authors of [106] mention that
their current research is focused on developing algorithms that implement the
triangularization for the quadratic case [91]. If it were possible to triangularise
matrix polynomials, or at least to bring them to Hessenberg form, with a stable
and cheap numerical algorithm also when the degree is high, then it would be
easy to transform a PEP to n independent scalar polynomial equations of high
degree, for which the EAI can be very efficiently implemented.
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