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Abstract

Due to the rapid growth of wireless networks and the dearth of the electromagnetic spectrum, more in-
terference is imposed to the wireless terminals which constrains their performance. In order to mitigate
such performance degradation, this paper proposes a novel experimentally verified surrogate model based
cognitive decision engine which aims at performance optimization of IEEE 802.11 links. The surrogate
model takes the current state and configuration of the network as input and makes a prediction of the QoS
parameter that would assist the decision engine to steer the network towards the optimal configuration.
The decision engine was applied in two realistic interference scenarios where in both cases, utilization of the
cognitive decision engine significantly outperformed the case where the decision engine was not deployed.

Keywords: Cognitive Decision Engine, Surrogate Modeling, Interference Management, Dynamic Spectrum

Access, WiFi, WLAN

1. Introduction

With the increasing demand of the scarce elec-
tromagnetic spectrum and rising interference effects,
cognitive radios (CR) have become a promising so-
lution to address spectrum over-utilization. To this
end, cognitive solutions are of paramount importance
in wireless networks to ensure that their performance
is not degraded by the external interference, ensuring
continuous connectivity and providing a good Qual-
ity of Service (QoS). A well-established component
that targets optimal network communication is the
Cognitive Decision Engine (CDE). The CDE is an
intelligent module that aims to optimize network per-
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formance objectives (QoS) by making informed deci-
sions upon changes in the wireless environment.

Three important aspects of a CDE comprise: (1)
observation, (2) reconfiguration or adaptability and,
(3) cognition which includes awareness, reasoning
and learning [1]. In literature, these three character-
istics have been addressed using various approaches,
e.g. rule-based [2], case-based [3, 4, 5], search-based
[6], knowledge-based [4] reasoning systems and many
others. Such methods often require a certain set of
representative cases or domain expert knowledge [7]
to derive important analytical formulas or rules that
steer the decision making process. The reader is re-
ferred to [1] for a detailed survey.

In this paper, a real-time CDE is developed that
is based on surrogate modeling of the QoS. More-
over, the surrogate model is built dynamically, unlike
in the machine learning approach where the models
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are static. Further, the CDE performance is exper-
imentally tested. Specifically, the developed surro-
gate model-based CDE reconfigures the transmission
parameters of a wireless LAN system in response to
measured changes in the environment, with the goal
to maximize the QoS at all times. The experimental
demonstration and validation is done via two realis-
tic use cases in a wireless testbed where the proposed
algorithm is shown to optimize the performance of
wireless links by changing various transmission pa-
rameters of the wireless terminals using surrogate
model predictions. To the authors’ knowledge, this
paper is the first to describe, develop, and experi-
mentally test such dynamical surrogate model-based
CDE.

This paper is organized as follows: after review-
ing the current literature in Section 2, Section 3 de-
scribes the CDE. This includes a description of the
architecture and a discussion on the two main com-
ponents: the surrogate model and the optimization
algorithm. In Section 4, two real-life examples are
provided in which experiments are performed in a
wireless testbed to show the applicability and perfor-
mance of the proposed CDE. Section 5 concludes this
article.

2. Related works

In the context of cognitive frameworks that address
efficient interoperability of homo/heterogeneous
wireless networks, spectrum monitoring and decision
making are the central topics addressed by the au-
thors in the current literature. Radio environment
maps (REMSs) [8] play a key role for environment
monitoring in many cognitive radio solutions. REMs
represent an integrated database providing informa-
tion such as spectrum availability, regulations, and
also the degree of channel utilization [8].

The decision making mechanisms in the present lit-
erature exploit a multitude of Artificial Intelligence
(AI) algorithms to derive proper decisions for opera-
tion of the cognitive wireless network. Artificial Neu-
ral Networks (ANN) have been used for radio param-
eter adaptation in CR [9, 10]. The ANN determines
radio parameters for given channel states with three
optimization goals, including meeting the bit error

rate (BER), maximizing the throughput and mini-
mizing the transmit power. In [11], it is proposed
to use the ANN to characterize the real-time achiev-
able communication performance in CR. Since the
characterization is based on runtime measurements,
it provides a certain learning capability that can be
exploited by the cognitive engine. The simulation re-
sults demonstrate good modeling accuracy and flex-
ibility in various applications and scenarios. More-
over, in [12], the authors propose two ANN-based
learning schemes which aim at optimizing the end
user’s data rate in dynamic environments by chang-
ing certain input parameters such as the radio ac-
cess technology and its corresponding frequency. The
two schemes are validated by two (unseen) data sets
which are different to the two (seen) data sets which
were used in the learning phase. The validation re-
sults shows that the ANN-based learning schemes pay
off in maintaining the data rate of the end user in a
cognitive radio network.

Game theory techniques have also been widely used
in the context of cognitive radios. In [13], population
game theory has been applied to model the spec-
trum access problem and develop distributed spec-
trum access policies based on imitation, a behavior
rule widely applied in human societies consisting of
imitating successful behaviors. In [14], the authors
study the spectrum access problem in cognitive radio
networks from a game-theoretical perspective. The
problem is modeled as a non-cooperative spectrum
access game where secondary users simultaneously
access multiple spectrum bands left available by pri-
mary users, optimizing their objective function which
takes into account the congestion level observed on
the available spectrum bands.

Apart from all aforementioned Al methods, there
are also methods in literature that are based upon
ranking the channels in order of their capacity. The
ranking is done by characterizing the channel activ-
ities and making estimations of the capacity accord-
ingly. In particular, the authors in [15] propose a
spectrum decision framework for cognitive radio net-
works which addresses QoS management of the sec-
ondary users in response to certain events such as ap-
pearance of a primary user or degradation of the QoS.
Thus their proposed framework not only accounts for



consideration of primary users, but also maintains
the QoS delivered to the secondary users by making
spectrum decision according to the channel activities.
The current paper is therefore a logical continuance
and extension of the work on (ANN) model based
learning schemes [12] where we share a common ar-
chitecture with [15] in tackling interference and opti-
mizing the QoS. We extend the concept by bringing
cognitive radio techniques for QoS management to
the Industrial Scientific Medical (ISM) band WLANs
as well as incorporating REMs and surrogate model-
ing based decision making to the framework.

3. Cognitive Decision Engine

3.1. Architecture
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Figure 1: A high-level schematic of the cognitive decision strat-
egy

A schematic overview of the decision engine is
shown in Figure 1. The System under test is the
wireless system that needs to be optimized in a dy-
namically changing environment. The Radio Envi-
ronment Map (REM) is a map that continuously
aggregates all information that is monitored from
the environment through spectrum sensing, network
sniffing, and benchmarking tests [16]. Based on the
REM map, a set of meters or measurable parameters

(MP) can be extracted that allow the CDE to iden-
tify the current state of the environment. The Cog-
nitive decision engine (CDE) is a self-learning
decision engine that uses a surrogate model to opti-
mize the QoS by defining suitable cognitive actions
in response to the MP parameters that are derived
from REM. These actions are enforced by tuning of a
set of knobs or control/transmission parameters (CP)
that specify the configuration of the wireless system.
By storing the outcome of each action, the algorithm
collects data samples that quantify the QoS behavior
of the wireless system. The surrogate model is an
analytical black- box model that characterizes and
approximates this behavior. It is an input-output
mathematical function that models the relation be-
tween the MP and CP parameters as inputs on one
hand, and the resulting QoS performance of the wire-
less system that would be observed as an output on
the other hand. Rather than building a static set of
models upfront, a self-learning modeling strategy is
thus adopted, limiting the set of a priori experiments.
The outcome of the actions that were executed by the
optimization process are used in an online feedback
loop to update/improve the accuracy of surrogate
model during its operation (online). The predictive
surrogate model generalizes the obtained knowledge
towards environmental conditions and configurations
that are different from those that were observed dur-
ing training by means of interpolation. This system
allows a real-time optimization of the QoS perfor-
mance by tuning the CP parameters of the wireless
system according to the MP parameters that are ob-
tained from the REM. A more detailed explanation
of these components will be provided in the later sec-
tions.

3.2. Surrogate Model
3.2.1. Notational conventions

In order to model the QoS performance of the wire-
less system, a set of data samples must be collected
by performing a limited set of k = 1,..., K experi-
ments on a wireless testbed (w-iLab.t) as described
in Section 4. Each experiment k is defined by a vec-
tor of ¢ = 1,...,n. knobs spanning the control space
C, = {Ci}, and a vector of j = 1,...,n,, span-

ning the meter space My = {M]}. As mentioned



in the previous section, the Cj space comprises the
control parameters that must be configured by the
decision engine, whereas the My space comprises a
set of features that are extracted from the REM. The
union of the control space C and the meter space M
is called the parameter space. The outcome of each
experiment k corresponds to a resulting QoS perfor-
mance value. Depending on the ultimate usage of the
wireless network, the target QoS parameter may be
throughput, delay, jitter, or a combinatorial metric
such as audio or video quality. Each experiment k is
referred to as a data sample and will be represented
by a tuple: {Cj, Mg, QoS(Cy, Mg)}.

3.2.2. Surrogate model type

All experiments that are performed constitute a
dataset that will be used to build a surrogate model
f such that f(Cg, My) = QoSk. As surrogate models
must be built and updated in real time, it is impor-
tant to select an interpolation strategy that is simple
and fast. It should 1) not require a lot of model
tweaking; 2) be able to build models that are suffi-
ciently accurate; 3) be robust towards noise and im-
perfections in the data; 4) have acceptable running
times. In literature, many modeling algorithms are
described, such as e.g. kriging [17], artificial neural
networks [18, 19], radial basis function [20], etc. Most
of the time, they require a trial-and-error approach
for selecting a suitable set of hyperparameters (e.g.,
the number of neurons, the number of hidden layers,
the model complexity, etc.). Also the model selec-
tion and cross-validation process can be very time
consuming. With these considerations in mind, it
is preferable to consider local interpolation schemes
such as multi-linear interpolation [21], tesselation-
based simplicial interpolation [22] and Shepard’s in-
terpolation [23, 24]. The Shepard interpolation algo-
rithm was found to be the most adequate approach
because of the simplicity of the underlying principle,
and the speed in calculation. By using Shepard’s
interpolation, a model is built that exactly predicts
the QoS performance for experiments that were per-
formed previously, and approximates the QoS for ex-
periments that have not yet been performed (i.e. dif-
ferent values of C and M), based on a distance-based
similarity measure and an appropriate normalization

of the parameter space.

3.2.3. Model Building

In order to build the surrogate model, a represen-
tative set of data samples must be collected to build
a model having sufficient accuracy to make reliable
predictions of the QoS. Data samples are collected
in such a way that the model accuracy can be max-
imized while minimizing the number of experiments
needed. This happens in an online training phase
that is executed prior to the deployment of the de-
cision engine. In sequential steps, a well-chosen set
of experiments are performed by making a balanced
trade-off between two different criteria, namely ex-
ploration and exploitation.

Ezxploration phase. In the exploration phase, differ-
ent settings of the knobs C are explored in order
to cover the parameter space as evenly as possible.
The idea is that the most informative experiments
are those that are as different as possible from those
that were performed previously. Thereto, a distance-
based exploration criterion is used to let the dataset
grow over time. First, a large set of candidate set-
tings is generated using a Monte Carlo method for
the knobs in such a way that they cover the entire
control space. For all the candidate settings of the
knobs C, the distance of each candidate point to all
other data samples in the set is calculated and the
farthest point is selected. So, if an n.-dimensional
control space with d = 1,..., D discrete candidate
settings for the knobs is considered, then the pro-
posed setting of the knobs is the one that maximizes
the minimum distance to the available data samples
k=1,....K.

dbest

(1)

= argmax [min hg]
d k
where hg represents the Euclidean distance between
data sample k in the dataset and candidate setting d.
The values of the meters are set to those at current
time M = Mcyrrent -
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Once this exploratory setting d”s* of the knobs is ap-
plied on the system under test, the resulting QoS is
evaluated and the outcome is added as an additional
data sample to the dataset. As the environment
changes over time, the meters Mcypreny Will change
dynamically over time and sequentially data samples
are added to the dataset. This leads to more accurate
predictions of the surrogate model built from it.

Exploitation phase. As the algorithm collects more
data samples, it can also exploit data from previ-
ous experiments to make the model more accurate in
those regions where the optimum configurations (i.e.
those with higher QoS values) are located. To this
end, the output of the intermediate surrogate mod-
els can be used to identify these settings. Just like
in the exploration phase, the meters are monitored
and a large set of candidate settings for the knobs
are generated using Monte Carlo in such a way that
they cover the entire control space. For all discrete
candidate settings d of the knobs C, the surrogate
model is evaluated and the setting C°P' is chosen
for which the Shepard’s model predicts the highest
PQoS = f(Cgq, Mcurrent) value.

Copt = argmax f(Cd7 Mcurrent) (3)
d

The values of meters Meyrrent in (3) are again set
to those at the current time. Once the optimal set-
ting C°P! of the knobs is applied on the system, the
resulting QoS (C°PY Mcyrrens) value is evaluated and
the outcome is compared to the predicted PQoS =
F(C°P* M urrens) of the surrogate model.

|f<C0pt, Mcurrent) - QOS(COptv Mcurrent)| <7 <4)

If the discrepancy of the outcome is larger than a pre-
defined threshold 7, then the prediction of the model
was not sufficiently accurate and a corresponding
data sample {C°P* Mcyrrent, @0S(CPY Meyrrent ) } 18
added to the dataset. If the surrogate model predic-
tion was sufficiently accurate, then the experiment
can be discarded. This step improves the accuracy
of the surrogate model in regions where optima are
located.

3.8. Optimization algorithm

Once a surrogate model is considered to be suf-
ficiently accurate, it can be deployed in the cogni-
tive decision framework for real-time optimization.
The optimization algorithm (see Fig. 1) continuously
monitors the QoS performance and the values of M
that are changing dynamically over time. If a net-
work performance degradation is detected, a genetic
algorithm can be used to solve (3) and to determine
the optimum value C°P' of the knobs [25]. For use-
cases with a relatively small number of parameters,
one can generate a large set of candidate settings for
the knobs using Monte Carlo in such a way that they
cover the entire control space, from which the opti-
mum configuration can be chosen. This takes only a
fraction of a second because the Shepard model is an
analytical function that is fast to evaluate. The use
of genetic algorithms is a possible way to economize
on the number of function evaluations and to speed-
up the optimization in the case of complex networks
with many parameters. In cases where the result of
the optimization step was unsuccessful in predicting
the QoS, the outcome of the experiment can be added
as additional data to improve the model predictions
in an online fashion.

4. Experimental Examples: Practical Case

studies

4.1. Setup configuration

All practical case studies are conducted in a
pseudo-shielded testbed environment w-iLab.t [26]
in Ghent, Belgium. The nodes in the testbed are
mounted in an open room (66 m x 20.5 m) in a grid
configuration with an x-separation of 6 m and a y-
separation of 3.6 m. Figure 2 shows the ground plan
of the test lab with an indication of the location of the
nodes. Each node has two Wi-Fi interfaces (Spark-
lan WPEA-110N/E/11n mini PCle 2T2R chipset:
AR9280). Furthermore, a ZigBee sensor node and
a USB 2.0 Bluetooth interface (Micro CI2v3.0 EDR)
are incorporated into each node.

The CDE is implemented in MATLAB and runs on
a separate computer. It writes settings for control-
or transmission parameters into an SQL database. A



Table 1: Mean Opinion Score.

MOS | Quality | Impairment
1 bad very annoying
2 poor annoying
3 fair slightly annoying
4 good perceptible, not annoying
5 excellent | imperceptible

Java program then continuously polls the database
for input, transforms the command into an OMF
script which is executed as an experiment on the
testbed and writes the outcome (i.e., a QoS metric)
back into the SQL database which can be queried by
the CDE. Hence, the main overhead is computational
power on the computer that runs the CDE.

Depending on the ultimate usage of the wireless
network, the target QoS parameter may be through-
put, delay, jitter, or a combinatorial metric such as
audio or video quality. This surrogate modelling ap-
proach requires a target metric that changes continu-
ously and can be modeled by an analytical function.
The conflicting nature of different QoS parameters in-
fluencing the audio/video quality such as throughput
and latency [27], requires using scalar metrics such as
the audio Mean Opinion Score (MOS) [28] which is
represented by a scalar value in between 1 and 5 (see
Table 1). For a given audio stream, the MOS value
is easily calculated by feeding the ITU G107 E model
[28] with the values of throughput and jitter. Note
that, since MOS scores are bounded in between 1 to
5, a value of 7 = 0.5 is proposed in this paper.

For each experiment that is configured, the sender
node will stream an audio file to its receiver(s) over
a short period of time. At the same time, exter-
nal interference is generated by a collocated pair of
IEEE802.11 compliant nodes by means of iperf [29]
data generator. We refer to these two nodes as the
interference generating group, abbreviated as INT.
These nodes generate a continuous interference traf-
fic on a different channel. The effect of this external
interference on the QoS performance of the wireless
system is highly unpredictable in nature, so this ex-
periment can be seen as an analogy to real-life oper-

ation of the system.

4.2. Scenario I: Single-link optimization of MOS

The setup that was considered is a typical scenario
of two IEEE 802.11 standard compliant nodes, oper-
ating in infrastructure mode with 802.11g standard
and generating traffic on down-link. We refer to these
two nodes as the System Under Test (SUT). In this
scenario, the sender of the SUT is located at node
48 and the location of the receiver node of the SUT
(knob 1) can be changed over a fixed range of discrete
positions, varying from node 56 to 60. In addition
to this parameter, the transmit power (Pry) of the
sender node of the SUT (knob 2) can also be varied
in-between 1 and 20 dBm. The aim of the CDE is
to tune these 2 parameters such that the MOS over
the corresponding link is maximized over the period
of audio streaming between the SUT sender and re-
ceiver. Each time step is set to 12 seconds which is
the duration of a normal English sentence audio file
that is streamed over the link.
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Figure 3: Layout of testbed for Scenario I.

In addition to the SUT, the sender node and the
receiver node of the interference generating group
(INT) are located at nodes 40 and 41, respectively.
As mentioned earlier, these nodes generate a contin-
uous amount of interference on channel 12, which is
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Figure 2: Layout of the W-iLab.t living lab test environment (66m x 20.5m) with indication of the node numbers.

nearby the channel 10 of the SUT. Previous experi-
mental results in [30] have shown that INT is more
likely to negatively impact the QoS on the SUT link
if they are operating on overlapping channels (due to
the malfunctioning of the Carrier Sense Multiple Ac-
cess/ Collision Avoidance (CSMA/CA) mechanisms
of the IEEE 802.11 terminals on overlapping chan-
nels). The layout of the testbed for this scenario is
visualized in Figure 3.

In addition to the knobs, also some meters must
be derived to assess the current state of the environ-
ment. To this end, RSSI (Received Signal Strength
Indication) information of INT at the SUT sender can
be derived from the REM. This meter provides ad-
ditional information about the interference pattern.
Hence, the CDE should monitor those values and op-
timize both the location of the receiver as well as the
Tx power of the sender of the SUT accordingly, in
such a way that the MOS score is maximized. Table
2 lists the parameters that are considered during the
cognitive decision making.

4.2.1. Model building

Since a real-time response of the CDE is desired,
the engine is first subjected to a learning phase where
the surrogate model is built. During this phase, an
initial set of experiments are performed to learn the
resulting MOS score over the SUT link as a function
of 3 parameters listed in Table 2. In order to create
a dynamic environment, the transmit power of the
INT is switched from a low value (e.g. 5 dBm) to a

higher value (e.g. 20 dBm) after a certain number
of time steps. This creates an interference pattern
that is changing over time. As such, it exposes the
algorithm to different levels of interference. While
the measured RSSI values are changing, multiple ex-
periments are performed by changing the knobs in
such a way that the parameter space is well covered,
i.e. A balanced trade-off is made between exploration
and exploitation of the design space. Inbetween the
first and the last sample of the training set, the ratio
between both criteria decreases (increases) linearly
from 100%-0% to 0%-100% respectively. Alterna-
tive balancing schemes can also be used as described
in [31]. The 45 experiments that were performed dur-
ing model building are shown in Figure 4.

Using these selected samples, an interpolation
model is built by the CDE with the aim of mak-
ing MOS score predictions over the parameter space.
The prediction of this model can guide the switching
between different wireless configurations over time in
order to maximize the MOS score.

4.2.2. Model deployment

A hold-out set of 10 experiments is used to validate
the accuracy of the surrogate model, as shown in Fig-
ure 5. In the ideal case, all data samples (marked by a
red dot) are located close to the linear solid line which
indicates a perfect agreement. Taking into account
stochastic variability of the testbed, it is found that
all experiments lie with a narrow boundary (marked



Table 2: Overview of parameter list considered for Scenario I.

Sl. No. | Type Name Values Unit
1 Knob Position Rx node for SUT [56, 57, 58,59, 60] -
2 Knob Tx Power of Sender SUT [1,2,...,20] dBm
3 Meter | Interference RSSI at SUT sender - dBm
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the model accuracy threshold 7 as chosen in (4). sk ]
Figure 6 shows the predicted MOS score of the sur-
rogate model when the SUT receiver node is fixed at 1 . ) s . P " " s
Actual MOS

node 58, while evaluating the model for any possible
value of the interference RSSI (meter) and Tx power
of the SUT sender (knob), see vertical slice in Fig-
ure 7. As expected, it is seen that a better MOS
can be obtained for lower RSSI values from the ex-
ternal interference and higher values of the Tx power
of SUT. Note that the model is only locally accurate
(i.e. it is trained within the operating ranges of the
meters that were encountered during model building
to make the algorithm scalable), however the inter-
polation routine aims to generalize this to other in-
terference levels.

In order to assess the performance of the CDE

Figure 5: Scenario I: Actual MOS versus predicted MOS for
10 experiments.
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in this scenario, the resulting MOS score over the
SUT link is compared to several static cases where
the knobs are set to a fixed configuration (no cogni-
tive tuning). As an example, 10 different experiments
were performed and the resulting MOS scores are vi-
sualized in Figure 8. This figure shows the obtained
MOS score as a function of the measured RSSI value
of INT at the SUT. Note that the RSSI values for
each case are slightly different because this parame-
ter is subject to stochastic variability. The RSSI is
also not constant, because the interference pattern of
INT changes over time. Recall that the sender of the
INT switches its Tx power from a low value (5 dBm)
to a high value (20 dBm) after 4 time steps in order
to create a dynamically changing environment. When
compared to several other static configurations, it is
found that the CDE gives MOS score of 3.5 or higher
(which is in-between the subjective rating of “fair”
and “excellent”). If the same experiment is repeated
without cognitive tuning, the QoS may degrade sig-
nificantly (i.e., MOS score of 1, which is “bad”). A
more systematic quantification of the CDE perfor-
mance is given in Table 3, where the resulting MOS
score is averaged over the 10 experiments. It is shown
that the cognitive solution can lead to an improve-



Table 3: Performance evaluation of CDE for Scenario I. Imp.
is an abbreviation for relative improvement.

Experiment Avg. MOS | Tmp. (%)
CDE 4.16
Node:56, Tx Power=10 3.55 17.12
Node:56, Tx Power=15 3.77 10.14
Node:56, Tx Power=20 3.55 17.14 g
Node:58, Tx Power=10 2.74 51.84 3
Node:58, Tx Power=15 3.85 8.00 g
Node:58, Tx Power=20 3.64 14.41
Node:60, Tx Power=10 3.25 28.19
Node:60, Tx Power=15 3.74 11.34
Node:60, Tx Power=20 3.41 22.12

39

ment in-between 8.00% and 51.84% when compared
to the static configurations. As expected, it is found
that configurations with a low Tx power of the SUT
sender and a large distance between sender and re-
ceiver of the SUT give more room for improvement
than other configurations. Also, it is found that the
cognitive solution (which adaptively tunes the knobs)
performs better than any of the static configurations.

Finally, the bracketed values in Figure 9 comprise

5
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the values of knob 1 and knob 2 respectively as chosen
by the CDE, which corresponds to the decisions taken
during 10 deployment experiments. The MOS score
is shown as a function of the measured RSSI value of |
INT at sender SUT for the different experiments. It
is seen that, when the RSSI values are relatively high i
for the INT, the CDE switches to node 56, which is
located close to the sender SUT. It is also observed
that the CDE does not necessarily pick the highest
possible transmit power for the SUT sender for good
performance. sl
The resulting MOS score of the cognitive solution
is also compared to the performance of a static con- 39
figuration over time in Figure 10. For the static case, ,,
both Tx power of the SUT and the location of the '

g
§39-
® 3
Q

2

37

—#— CDE (cognitive)
- -o - Fixed knobs:
Tx Power=15 dBm, Node=#658

.
L

Rx node are set to some middle values. In the case of
low external interference, both configurations give ac-
ceptable results, however once the interference level is
increased (after 4 time steps), the cognitive solution
is able to enforce more optimal choices that lead to an

10

7 8 9 10

Figure 10: Scenario I: QoS performance of cognitive vs. static
configuration. Each time step is 12 seconds.

Figure 9: Scenario I: CDE decisions as a function of the meter

reading (INT RSSI). Each decision is characterized with [Node
number, Tx Power].



increase of the MOS. Hence, for high interference lev-
els, the CDE is able to give significant improvements,
compared to the static case.

4.8. Scenario II: Multiple-link optimization of MOS

This scenario describes a more complex case where
7 nodes are involved: 1 SUT sender (located at node
48) is surrounded by 4 SUT receivers (located at the
nodes 37, 39, 55 and 57 respectively). Similarly as
in the previous scenario, an INT sender-receiver pair
(located at nodes 40-41) is again acting as an in-
terferer on the SUT. A visualization of the network
topology is provided in Figure 11.
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Figure 11: Layout of testbed for Scenario II.

4.3.1. Building the surrogate model

The aim of this experiment is to maximize the
worst-case MOS score over all 4 SUT links simul-
taneously. The time step is again set to 12 seconds.
Three parameters can be tuned by the CDE:

(i) Tx power of the SUT sender
(ii) Tx rate of the SUT sender
(iii) Frequency channel of the SUT

To this end, the following 2 meters must be moni-
tored:

11

(i) RSSI information at SUT sender
(ii) Channel information of the INT

An overview of the parameters is given in Table 4.
In order to create a dynamic environment, the chan-
nel of the INT is switched between different frequen-
cies, leading to more abrupt (non-smooth) changes in
the MOS score.

Similarly, for the model building phase of the al-
gorithm 87 experiments were performed according
to the exploration/exploitation trade-off in order to
compute a surrogate model of the MOS score.

4.8.2. Model deployment

Using this model, the CDE can optimize the worst-
case MOS score over all the links by enforcing certain
actions. Figure 12 compares the predicted MOS score
of the surrogate model to the actual MOS score ob-
tained after executing some validation experiments
and it is found that a very good agreement is again
obtained.

5 T

4.5

35

Predicted MOS

2.5

3

3 35
Actual MOS

4.5

Figure 12: Scenario II: Actual MOS versus predicted MOS for
15 experiments.

Figure 13 visualizes the worst-case MOS score as
a function of measured RSSI values at SUT in a dy-
namic environment where the interferer switches from



Table 4: Overview of parameter list considered for Scenario II.

Sl. No. | Type Name Values Unit
1 Knob Tx Power of Sender SUT [1,2,...,20] | dBm
2 Knob Tx Rate of Sender SUT [1,2,...,11] | Mbps
3 Knob Frequency channel of SUT 1,2,...,12] -
4 Meter | Interference RSSI at SUT sender - dBm
5 Meter Frequency channel of INT - -

Table 5: Performance evaluation of CDE for Scenario II.

Experiment Avg. worst-case MOS | Improvement (%)
with CDE 4.28

no CDE, Channel=11, Tx Power=20, Tx Rate=11M 3.69 15.99

no CDE, Channel=4, Tx Power=20, Tx Rate=11M 3.85 11.17

channel 2 to 7 and then to 12 after a certain number
of time steps. In the static configurations, the chan-
nel, Tx power and Tx rate of the SUT sender are set
to fixed values. The CDE on the other hand, opti-
mizes the parameters in a cognitive way. The worst-
case MOS scores when averaged over 15 experiments
are listed in Table 5. It is clear that the CDE yields
a significant QoS performance gain when compared
to other static solutions.

The resulting MOS score of the cognitive solution
(CDE) is also compared to the performance of the
static configurations in Figure 14.a. For the static
case, both Tx power of the SUT and the location of
the Rx node are set to the values listed in Table 5.
The channel of the INT is changed as shown in Fig-
ure 14.b. Hence, in a dynamic environment where
the INT pattern changes, neither fixed configuration
(Case 1 and Case 2 in the figure) turns out to be opti-
mal in the general case. The CDE algorithm detects
that the INT changes to a different channel, and is
able to adjust the knobs of the SUT in such a way
that a good MOS score (> 3.9) is preserved.

5. Conclusion

A novel approach for decision making is presented
in the context of cognitive ISM band WLANSs where
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Figure 13: Scenario II: MOS score versus interference RSSI at
SUT sender.
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Figure 14: Scenario II: (a) QoS performance of cognitive vs.
static configuration, (b) Channel of INT. each time step is 12
seconds.

all users have equal regulatory status in terms of spec-
trum utilization. The method incorporates surrogate
models for predicting the performance of the net-
work by monitoring environmental parameters and
transmission parameters. It improves the models
by following the accuracy of its predictions in real
time. The generic design of the algorithm is bene-
ficial for different scenarios with different set of pa-
rameters. As proof of concept, two use cases were
experimentally investigated to verify the efficiency of
this method in optimizing the performance of wireless
networks. In the first use case, by changing the lo-
cation of the receiver node, the average audio Mean
Opinion Score (MOS) of an IEEE 802.11g compli-
ant link was optimized by a factor of 30% compared
to the same fixed configuration. In the second use
case, by changing the transmission power, transmis-
sion rate and frequency channel of the sender in an
audio conferencing scenario (with multicast traffic),
the worst case MOS was improved by a factor of 50%
compared to the static configuration.

In order to handle large networks with many pa-
rameters, the CDE can be extended with additional
modules that contain expert rules or domain knowl-

edge. This way, one can relax the assumption of
a self-learning, black-box algorithm that no prior
knowledge about the network behaviour is available.
It is expected that this will significantly improve scal-
ability of the approach and reduce the overall training
times. Large scale implementation of the algorithm in
different environments such as home, office, industry,
etc. would therefore be the topic of future research.
Finding the most appropriate set of meters and knobs
in different scenarios on the one hand, and, coupling
the model-based predictions with heuristic decision
making methods on the other hand, would lead to
useful endeavors aiming at improving the current al-
gorithm.
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