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Introduction

Since the late nineties, the theory of optimal transport has been applied to the
study of parabolic PDEs (see [11], [14]). The idea is that, if an equation is mass
preserving and positivity preserving, then for every ρ0 ≥ 0 such that

∫
Rn ρ0 = 1,

one can interpret ρt as the density of a probability measure. It turned out that for
some important equations, like the Fokker-Planck equation, the resulting “flow of
probability measures” can be thought as the “gradient flow” of a suitable functional.
The prototype of this kind of correspondences is the identification of the heat flow
in Rn with the gradient flow of entropy at the level of probability measures: in some
sense, heat diffusion tends to decrease entropy “as fast as possible”.

To speak properly of gradient flows, however, we need a “Riemannian-like”
structure on (a subset of) the space of probability measures P(Rn). This is possible
in the framework of optimal transport, which provides first of all the “right” distance
W2 between probability measures. Moreover, Benmaou-Brenier’s theorem gives an
interpretation of W 2

2 (µ, ν) as the minimum of
∫ 1

0 ‖vt‖
2
L2(µt)

dt among the curves
joining µ to ν, where vt is a “tangent” velocity field.

This formulation shares much with the classical definition of Riemannian dis-
tance, except for the fact that we are not able to put a differentiable atlas on the
space of probability measures, and so we will have to define the “tangent” velocity
to a curve (µt) as the solution vt of the continuity equation

d

dt
µt +∇ · (vtµt) = 0 (CE)

such that ‖vt‖L2(µt)
is minimal for a.e. t.

As we noted above, the structure which we will put on the space of probability
measures is not Riemannian in the proper sense of the term; but it behaves as if
it were, allowing for instance a definition of (sub)differential of a functional which
retains, in suitable senses, all the good properties of a gradient.

The theory we are speaking about is remarkable for elegance and deepness, but
exploits crucially the structure of the underlying space Rn. In particular, it appears
to lose sense when Rn is replaced by a non-geodesic space: most evidently, when
the underlying space is discrete. Nevertheless, in 2011, Jan Maas’s paper [12] has
reproduced on finite spaces many of the results true in the Euclidean setting. In the
absence of a differentiable structure on the base space X, Maas uses an irreducible
Markov kernel to build the structure of P(X). The Markov kernel provides both a
natural reference measure (the invariant probability measure) with respect to which
entropy may be calculated, and a classical definition of heat flow: hence, one can
wonder if the heat flow is still the gradient flow of entropy in some sense.
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vi INTRODUCTION

The answer is positive if one defines a new distance W 6= W2 via a discrete
analogous of Benamou-Brenier’s formula. In order to do this, the crucial point
is to find a proper discrete counterpart of (CE): while the concepts of discrete
gradient of a vector and discrete divergence of a matrix arise quite naturally, it
is not immediately clear what should play the role of the term vtµt. An explicit
computation when X has only two points will suggest the matrix(

θ(ρ(x), ρ(y))Vt(x, y)
)
x,y∈X ,

where θ(ρ(x), ρ(y)) may intuitively represent the amount of mass effectively affected
by the velocity Vt(x, y). If we want the heat flow to coincide with the gradient flow
of entropy, the right θ turns out to be the so-called logarithmic mean, but it is
worth developing the theory for quite general functions θ. This time, the resulting
structure on the relevant sets of probability measures will be truly Riemannian.

The purpose of this thesis is to to illustrate in a parallel and fairly complete way
the two theories. In our intention, the set of Chapters 1 and 2 is a self-contained
introduction to the theory of optimal transport and “Otto calculus”, complete in
its proofs but not indulging in the maximum generality (especially in Chapter 2);
while the set of Chapters 2 and 3 is a comparison between the Euclidean and discrete
theories introduced above. The arrival point of both chapters is the correspondence
between heat flow and gradient flow of entropy.

We tried to follow a parallel order of exposition as far as we could: though a
unified treatment seems presently not possible, the correspondence is conceptually
transparent, and sometimes even allowed the reproduction of the proofs with minor
modifications. We think that one theory can enlighten the other: till now, the
Euclidean theory has been the model for the discrete one, but one can imagine
that in the future new problems might be firstly approached in the simpler discrete
context.



Notation

The meaning of each symbol used in the text, unless otherwise stated, is the one
specified in the following list.

LHS, RHS left hand side, right hand side (of an equation).
l.s.c. lower semicontinuous.
IE indicator function of the set E.
Sn permutations of {1, . . . , n}.
C0(Rn) continuous functions on Rn infinitesimal at infinity.
c lower semicontinuous nonnegative cost function, see Problem 1.1.1.
X,Y in Chapter 1, Polish spaces; in Chapter 3, finite sets.
d distance function.
P(X) probability measures on X (for Chapter 3, see also equation (3.1.1)).
Cb(X) continuous bounded functions on X.
⇀ narrow convergence of probability measures (i.e. in duality with Cb(X)).
µxE measure µ(· ∩ E).
px, py canonical projections of X × Y .
Γ(µ, ν) transport plans from µ to ν, see Definition 1.1.5.
Γo(µ, ν) optimal plans from µ to ν, see Problem 1.1.6.
supp(π) support of the measure π: supp(π) := {x : π(Br(x)) > 0 ∀r > 0}.
φc c-transform of the function φ, see Definition 1.2.5.
πy ⊗ ν measure on X × Y s.t.

∫
X×Y f d(πy ⊗ ν) =

∫
Y ν(dy)

∫
X f(x, y)πy(dx).

Lip(φ) Lipschitz constant of the function φ.
L n Lebesgue measure on Rn.
Pp(X) {µ ∈P(X) :

∫
d(x, x̄)pdµ(x) <∞ for some x̄ ∈ X}.

Pa(Rn) {µ ∈P(Rn) : µ� L n}.
Pa

p(Rn) Pa(Rn) ∩Pp(Rn).

Int(A) interior of the set A.
Dom(f) set where the function f is defined and finite.
Wp p-Wassertein distance, see Definition 1.3.1.
AC(I;X) absolutely continuous functions I → X, see Definition 1.3.12.
|f ′| metric derivative, see Proposition 1.3.13.
len(f) lenght of the curve f , see Definition 1.3.15.
Ap(γ) p-action of the AC curve γ, see Remark 1.3.18. (p = 2 if omitted.)
Geo(X) constant speed geodesics (0, 1)→ X, see page 15.
et evaluation map γ 7→ γ(t).
OptGeo(µ, ν) optimal geodesic plans from µ to ν, see Remark 1.3.22.
vt in Chapter 2, velocity field satisfying Hypothesis 2.1.8.

vii



viii NOTATION

Xt(x) maximal solution of the characteristic equation, see Theorem 2.1.6.
Xt(x, s) maximal solution starting from x at time s, see Remark 2.1.7.
Tanµ P2(Rn) tangent space to P2(Rn) at µ, see Definition 2.1.19.
|∇E| slope, see Definition 2.2.1.
T νµ unique optimal map from µ ∈Pa(Rn) to ν ∈P(Rn).

∇WE Wasserstein differential of E, see Definition 2.2.6.
∂WE Wasserstein subdifferential of E, see Definition 2.2.8.
∂oE “minimal” subdifferential, see Remark 2.2.16.
V, V potential energy and potential:

for Chapter 2, see Definition 2.2.18;
for Chapter 3, see Definition 3.3.1.

U , U internal energy and the function defining it:
for Chapter 2, see Definition 2.2.23;
for Chapter 3, see Definition 3.3.3.

LU Legendre transform of U , see Remark 2.2.29.
K in Chapter 3, irreducible Markov kernel on X.

(Reversible after Hypothesis 3.1.18.)
π invariant probability vector of K.
∇ψ,∇ ·Ψ in Chapter 3, discrete gradient and divergence:

see Definition 3.1.1.
∆ψ in Chapter 3, discrete Laplacian ∇ · ∇ψ.
〈φ, ψ〉π, ‖φ‖π see Definition 3.1.1.
〈Φ,Ψ〉K , ‖Φ‖K see Definition 3.1.1.
〈Φ,Ψ〉ρ̂, ‖Φ‖ρ̂ see page 70.

A •B componentwise multiplication of two matrices.
ρ̂, θ see Hypothesis 3.1.2 (and then Hypothesis 3.1.32).
ρβ see equation (3.1.2).
Wp,q distance on the 2-point space defined in Theorem 3.1.14.
W new distance on P(X) if X is finite, see Definition 3.1.16.
dg graph distance associated to K, see Definition 3.1.20.
dTV (ρ, σ) total variation distance, i.e. ‖ρ− σ‖L1(π).

‖θ‖′∞ see page 73.
Cd doubling constant of θ, see Hypothesis 3.1.32.
Cθ finiteness parameter, see equation (3.1.18).
x ∼ρ y see Definition 3.1.37.
A(ρ), B(ρ) matrices defined in equations (3.2.1) and (3.2.2).
Π diagonal matrix with diagonal entries π(x).
Pσ(X) {ρ ∈P(X) :W(ρ, σ) <∞}.
P ′

σ(X) see page 87.

Pb
σ(X)

{
ρ ∈P ′

σ(X) : ρ(x) ≥ b ∀x ∈ supp(σ)
}

.
P∗(X) {ρ ∈P(X) : ρ(x) > 0 ∀x ∈ X}.
Bρ restriction of B(ρ) to RanA(ρ).
Tρ “tangent space” to P ′

σ(X) at ρ, see Theorem 3.2.7.
Iρ see Theorem 3.2.7.
Dtρ tangent velocity field to (ρt) ⊆P ′

σ(X), see Theorem 3.2.7.

ProjH orthogonal projection on the subspace H ⊆ RX .



Chapter 1

Optimal transport

In this chapter we briefly review the basic concepts of the theory of optimal trans-
port. For the sake of completeness, we will also give a sketch of the proofs; but we
will omit many details and verifications, which may be performed by the interested
reader. A rich reference book on the topic is [17].

1.1 Statement of the problem

Our starting point is the following variational problem.

Problem 1.1.1 (Monge, 1781, generalized). Given two distributions of mass on
two measurable spaces X,Y , represented by two probability measures µ and ν, and
a measurable function c : X ×Y → [0,∞] representing the “cost of transport”, find
a transport map T : X → Y , i.e. a map such that T#µ = ν, realizing

inf
T#µ=ν

∫
X
c(x, T (x))dµ(x). (M)

Hypothesis 1.1.2. From now on, unless otherwise specified, X,Y will be Polish
spaces (i.e. metric, separable and complete), endowed with their Borel σ-algebra;
c will be lower semicontinuous (one of the main reasons is that we want Theo-
rem 1.1.10 below to hold); P(X) will denote the space of Borel probability mea-
sures on X, endowed with the topology of narrow convergence (i.e. the topology
obtained via duality with Cb(X)). Convergence in this topology will be denoted
by ⇀.

Remark 1.1.3 (Ill-posedness). The problem in general is ill-posed, for various rea-
sons:

• Sometimes no admissible T exists: take a, b ∈ X such that a 6= b, µ = δa,
ν = 1

2(δa + δb).

• The infimum might not be attained:

Example 1.1.4 (inf not attained). On X = Y = R2 with c(x, y) = |x− y|2, take

µ = H1x({0} × [0, 1]), ν =
1

2
H1x({−1} × [0, 1]) +

1

2
H1x({1} × [0, 1]),

1



2 CHAPTER 1. OPTIMAL TRANSPORT

and observe that |T (x) − x| ≥ 1 µ-a.s., and having a.s. equality is impossible.
However it is quite easy to construct transport maps whose cost is arbitrarily close
to 1.

So, we choose to extend the problem: we look for a “transport plan” possi-
bly sending part of the mass at the same point to different points. For a precise
formulation, let us denote by px, py the canonical projections of X × Y .

Definition 1.1.5 (Transport plan). π ∈ P(X × Y ) is called a transport plan
from µ to ν if (px)#π = µ and (py)#π = ν. The set of such measures π will be
denoted by Γ(µ, ν). (Note that µ× ν ∈ Γ(µ, ν), which therefore is nonempty.)

π(A×B) represents the amount of mass from A sent into B.

Problem 1.1.6 (Kantorovich). Given µ ∈ P(X), ν ∈ P(Y ), and a cost function
c : X × Y → [0,∞], find a transport plan realizing the minimum cost:

inf
π∈Γ(µ,ν)

∫
X×Y

c(x, y)dπ(x, y). (K)

Such a plan is said to be optimal. The set of optimal plans will be denoted by
Γo(µ, ν).

Remark 1.1.7. Transport maps can be seen as special transport plans, in the sense
that for every transport map T we can define the induced plan (Id× T )#µ ∈ Γ(µ, ν)
which has (Kantorovich) cost exactly equal to the (Monge) cost of T .

More precisely:

Proposition 1.1.8 (Plans induced by maps). π ∈ Γ(µ, ν) is induced by a Borel
transport map if and only if it is concentrated on a π-measurable graph Γ.

Proof. For the nontrivial implication, let Γ0,Γ1 be Borel subsets of X×Y such that
Γ0 ⊆ Γ ⊆ Γ1 and π(Γ1 \ Γ0) = 0. Using Ulam’s lemma take compact sets Kn ↑ Γ0

π-a.s.; each Kn is the graph of a continuous function fn (in fact, px(Kn) is compact
and hence measurable; the continuity follows from the compactness of Kn). We
conclude noting that for any φ Borel and bounded∫
X×Y

φ(x, y)dπ(x, y) =

∫
X×Y

φ(x, T (x))dπ(x, y) =

∫
X
φ(x, y)d [(Id× T )#µ] (x, y).

In particular, inf(K)≤ inf(M). The inequality may be strict:

Example 1.1.9. (inf(K)< inf(M)) Take the measures of Example 1.1.4, but with
the cost equal to 1 if the two points’ second coordinates coincide, 2 otherwise. It is
easy to verify that the set on which x and T (x) have the same second coordinate
must be µ-negligible to have T#µ = ν.

Theorem 1.1.10 (Existence of optimal plans). Γo(µ, ν) is nonempty, convex and
compact (with respect to the narrow topology).
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Note. Sequential compactness or compactness are in fact the same concept, because
if X is metric, then P(X) with narrow topology is metrizable: see Remark 1.3.7
below.

Proof. Convexity is evident. Consider Γ(µ, ν) with the narrow topology. We use
Prokhorov’s theorem to see that it is compact. It is obviously closed. It is tight: if
H,K are compact sets such that µ(X \ H) < ε and ν(Y \ K) < ε (they exist by
Ulam’s lemma), then every admissible plan π satisfies π((X×Y )\(H×K)) < 2 ε. We
conclude observing that π 7→

∫
c dπ is lower semicontinuous: take cn ↑ c continuous

bounded functions and note that our map is the supremum of the continuous maps
π 7→

∫
cn dπ.

Remark 1.1.11. If we have µh⇀µ, νh⇀ν and πh ∈ Γ(µh, νh), then (πh) has narrow
limit points (which obviously belong to Γ(µ, ν)). In fact the argument showing
compactness of Γ(µ, ν) in the previous proof, can be used to prove that the tightness
of the sequences (µh), (νh) implies the tightness of (πh). For a discussion of the
optimality of the limit, see Theorem 1.2.21 below.

1.2 Duality and Brenier’s theorem

A property intuitively desirable for the support of a candidate optimal plan is the
following one:

Definition 1.2.1 (c-monotonicity). A set Γ ⊆ X × Y is said to be c-monotone
if whenever (xi, yi) ∈ Γ for i = 1, . . . , n, if σ ∈ Sn is any permutation, it holds
that

∑n
i=1 c(xi, yi) ≤

∑n
i=1 c(xi, yσ(i)). Since every permutation is represantable as

a product of cycles, it is sufficient that the inequality is true for cyclic permutations.

Lemma 1.2.2 (c-monotonicity of supp(π) for c continuous). If c is continuous and
π ∈ Γo(µ, ν), then supp(π) is c-monotone. (See also Remark 1.2.15.)

Proof. By contradiction

n∑
i=1

c(xi, yi) >

n∑
i=1

c(xi, yσ(i)) for some σ ∈ Sn, (xi, yi)i=1,...,n ⊆ supp(π).

By continuity
∑n

i=1 c(ui, vi) >
∑n

i=1 c(ui, vσ(i)) for (ui, vi) ∈ Ui×Vi neighbourhoods

of (xi, yi). By definition of support we have that πi := 1
π(Ui×Vi)πx(Ui × Vi) is well

defined. Now take Li = (zi, wi) random variables on a common probability space
with law πi with respect to the probability measure P, and put

η := α
[∑

(zi, wσ(i))# P−
∑

(zi, wi)# P
]

with 0 < α < mini(π(Ui × Vi)) so that π + η is a positive measure. Note that
(px)#η = 0, (py)#η = 0 and

∫
c dν < 0, hence π + η contradicts the minimality

of π.
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Example 1.2.3. Suppose that X = Y = Rn and c(x, y) = 1
2 |x − y|2, and take

an optimal plan induced by a map T . We now know that supp((Id × T )#µ) is
c-monotone: this reduces to the classical concept of monotonicity of a map,
i.e. the existence of a µ-null set N such that 〈T (x) − T (y), x − y〉 ≥ 0 for every
x, y ∈ X \N .

The fundamental Theorem below shows that there is a “dual problem” which is
equivalent to Kantorovich’s problem (K):

Theorem 1.2.4 (Kantorovich’s duality). Consider the problem

sup

{∫
φ dµ+

∫
ψ dν : φ ∈ L1(µ), ψ ∈ L1(ν), φ(x) + ψ(y) ≤ c(x, y) ∀x, y

}
. (D)

Then sup (D) = min (K).

For the proof of this Theorem we need the following concepts:

Definition 1.2.5. The c-transform of a function φ : X → R̄ is the function
φc : Y → R̄ given by φc(y) := infx(c(x, y) − φ(x)) (let us decide in this case that
+∞−∞ = +∞). It is the greatest ψ such that φ(x) + ψ(y) ≤ c(x, y) ∀x, y.

A function ψ is c-concave if there exists a φ such that ψ = φc. It is easy to see
that a function of the form ψ(y) = infi∈I(c(xi, y) + αi) is c-concave.

A function ψ is c-convex if −ψ is c-concave.

Remark 1.2.6. Using the fact that φcc ≥ φ we get immediately that φccc = φc. In
particular φ is c-concave if and only if φcc = φ.

Remark 1.2.7. One inequality in the theorem is trivial: for all φ ∈ L1(µ), ψ ∈ L1(ν)
with φ(x) + ψ(y) ≤ c(x, y) ∀x, y, and for all π ∈ Γ(µ, ν), it holds∫

φ dµ+

∫
ψ dν =

∫
(φ(x) + ψ(y)) dπ(x, y) ≤

∫
c dπ. (1.2.1)

Note that the chain of inequalities makes sense even if we only know that φ and ψ
are upper semi-integrable.

Remark 1.2.8. Suppose now in addition that for some φ measurable and > −∞
a.s., it holds that φ(x) + φc(y) = c(x, y) π-a.s.; then we can prove that φc is mea-
surable. To this aim, disintegrate π as πy ⊗ ν, so that πy is concentrated on the
set {(x, y) : φ(x) + φc(y) = c(x, y)} for ν-a.e. y: then it suffices to observe that
φc(y) =

∫
(c(x, y)− φ(x))dπy(x) for ν-a.e. y.

We note that if φ and φc are upper semi-integrable, then we can put ψ = φc in
equation (1.2.1), and moreover all the inequalities become equalities: so, a posteri-
ori, φ ∈ L1(µ) and φc ∈ L1(ν), and (φ, φc) realizes the equality in the Kantorovich’s
duality. We also deduce that π is optimal with finite cost.

Note that without loss of generality we can suppose that φ is c-concave, because
our assumption implies that φ = φcc π-a.s..

With this in mind, we give the following definition:

Definition 1.2.9. Given π ∈P(X×X) with first marginal µ, a function φ ∈ L1(µ)
will be called a Kantorovich potential if it is c-concave and φ(x)+φc(y) = c(x, y)
π-a.s..
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Here is a general sufficient condition for the existence of a Kantorovich potential:

Theorem 1.2.10 (When c-monotonicity implies optimality). Let c be a finite cost.
Let π ∈ Γ(µ, ν) be concentrated on a Borel c-monotone set.

1. If min (K) <∞, then π is optimal and Kantorovich’s duality holds.

2. If µ
{
x :

∫
c(x, y)dν(y) < ∞

}
> 0 and ν

{
x :

∫
c(x, y)dµ(x) < ∞

}
> 0,

then there exists a measurable c-concave Kantorovich potential φ, such that
φ(x) + φc(y) = c(x, y) π-a.s.; as a consequence, π is optimal with finite cost
and the equality in Kantorovich’s duality is achieved.

For a converse, see Corollary 1.2.14.

Remark 1.2.11. The conditions of part 2. are satisfied if
∫
c d(µ × ν) < ∞; for

instance, if c(x, y) ≤ a(x) + b(y) where a ∈ L1(µ), b ∈ L1(ν).

Proof. Let Γ be a c-monotone set on which π is concentrated; combining Lusin’s
theorem and Ulam’s lemma we can suppose the existence of compact sets Γk ↑ Γ
such that c|Γk is continuous.

Fix (x0, y0) ∈ Γ1 and take

φ(x) := inf

{
c(x, yp)−

p∑
i=0

c(xi, yi) +

p∑
i=1

c(xi, yi−1) : p ∈ N, (xi, yi)i=1,...,p ⊆ Γ

}
.

We claim that φ(x) + φc(y) = c(x, y) on Γ (and so π-a.s.): the nontrivial inequality
is

φ(x′) ≤ φ(x) + c(x′, y)− c(x, y) ∀x′ ∈ X,∀(x, y) ∈ Γ (1.2.2)

which is evident by definition of φ. Obviously, φ(x0) = 0; then, using (1.2.2) with
x′ = x0, we see that φ > −∞ on px(Γ) (σ-compact and hence measurable), therefore
µ-a.s..

We claim that φ is measurable. In fact take cl ↑ c continuous functions, and for
every p,m, l put

φp,m,l(x) := inf

{
cl(x, yp)−

p∑
i=0

c(xi, yi) +

p∑
i=1

cl(xi, yi−1) : (xi, yi)i=1,...,p ⊆ Γm

}
,

which is u.s.c. because it is an infimum of continuous functions. It is easily proven
that if fl ↑ f are defined on a compact set and fl are continuous then min fl → min f :
hence φp,m,l → φp,m, where φp,m is defined as φp,m,l but with cl replaced by c. The
conclusion follows noting that φ = limp→∞ limm→∞ φp,m.

We now show that if (x, y) ∈ Γ then φc(y) = c(x, y) − φ(x) : we have to prove
that c(x′, y)− φ(x′) ≥ c(x, y)− φ(x) for every x′ ∈ X, i.e. that

φ(x′) ≤ inf

{
c(x, yp)−

p∑
i=0

c(xi, yi) +

p∑
i=1

c(xi, yi−1) : p ∈ N, (xi, yi)i=1,...,p ⊆ Γ

}
+ c(x′, y)− c(x, y)
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which is immediate by definition of φ.

Therefore, as a consequence of Remark 1.2.8, ψ := φc is measurable.

We consider the functions φn := (φ∧n)∨ (−n), ψn := (ψ ∧n)∨ (−n); note that
φn(x) + ψn(y) ≤ c(x, y). Hence

∫
(φn(x) + ψn(y))dπ ≤ sup (D) by definition.

We observe that π{φ(x) + ψ(y) = c(x, y) ≥ 0} = 1. We claim that on this
set φn(x) + ψn(y) ↑ φ(x) + ψ(y): in fact until n is such that φ or ψ is less or
equal than (−n), then the other one is greater or equal than n and so φn(x) +
ψn(y) = 0; while for greater values of n, φn(x) + ψn(y) = φ(x) ∧ n + ψ(y) ∧ n
which evidently increases to φ(x) + ψ(y). From this monotonicity we also get that
φn(x) + ψn(y) ≥ φ0(x) + ψ0(y) = 0. To sum up, we are in the position to apply the
monotone convergence theorem: we get

∫
c dπ = limn(

∫
φndµ+

∫
ψndν) ≤ sup (D),

so that π satisfies the nontrivial inequality in Kantorovich’s duality, and hence is
optimal.

With the hypotheses of 2., instead, we can prove that ψ+ itself is ν-integrable:
in fact we can choose x̄ ∈ X such that

∫
c(x̄, y)dν(y) < ∞ and φ(x̄) > −∞, so

ψ ≤ c(x̄, ·)− φ(x̄) concludes. By the same argument, φ is µ-upper semi-integrable.
Now Remark 1.2.8 gives the conclusion.

Example 1.2.12. When c(x, y) = d(x, y), it is straightforward to prove that φ is c-
concave if and only if it is 1-Lipschitz; for such a φ we have φc = −φ. We can apply
part 2. of the previous Theorem if

∫
d(x̄, x)dµ(x) <∞ for any x̄ ∈ X (in particular,

if X is bounded): in this case we conclude that min (K) = maxLip(φ)≤1

∫
φ d(µ−ν).

Example 1.2.13. When c(x, y) = 1
2 |x− y|

2 in Rn, the definition of c-concavity of

a function φ reduces to requiring that φ(x)− |x|
2

2 is an infimum of affine functions,

that is to say, that φ(x)− |x|
2

2 is concave and upper semicontinuous.

Proof of Kantorovich’s duality. For c ∈ Cb it is an immediate consequence of the
Theorem above, because we already know that supp(π) is c-monotone for every π
optimal.

In general take continuous and bounded cost functions cn ↑ c and πn optimal
plans relative to them; by Remark 1.1.11, without loss of generality πn⇀π for a
certain π. We know that

∫
cn dπn = sup

{∫
φdµ+

∫
ψdν : φ(x) + ψ(y) ≤ cn(x, y)

}
≤

≤ sup

{∫
φdµ+

∫
ψdν : φ(x) + ψ(y) ≤ c(x, y)

}
.

Therefore we would conclude if we were able to prove that
∫
c dπ ≤ lim infn

∫
cndπn.

Fix l ∈ N and a subsequence n(k) which realizes lim infn
∫
cndπn.∫

cldπ = lim
k→∞

∫
cldπn(k)

cl≤cn(k) for k�1

≤ lim inf
k→∞

∫
cn(k)dπn(k) = lim inf

n→∞

∫
cndπn.

Letting l→∞, the claim is proved.
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Corollary 1.2.14 (c-monotonicity vs. optimality). Every optimal plan is concen-
trated on a c-monotone set. In particular, in the hypotheses of part 1. or part 2. of
Theorem 1.2.10, optimality is equivalent to concentration on a c-monotone set.

Proof. For π optimal plan, let φn ∈ L1(µ), ψn ∈ L1(ν) be such that

φn(x) + ψn(y) ≤ c(x, y) ∀x, y, and

∫
φndµ+

∫
ψndν ↑

∫
c dπ;

put gn(x, y) := c(x, y)−φ(x)−ψ(y) ≥ 0, and note that we are saying that gn
L1(π)−−−→ 0;

possibly passing to a subsequence we can assume that they converge π-a.s. too. Call
Γ a set on which gn → 0 pointwise and such that π(Γ) = 1. We conclude noting
that Γ is c-monotone: in fact if (xi, yi)i=1,...,n ⊆ Γ, and σ ∈ Sn, we have

n∑
i=1

c(xi, yσ(i)) ≥
n∑
i=1

(
φk(xi)+ψk(yσ(i))

)
=

n∑
i=1

(
φk(xi)+ψk(yi)

)
k→∞−−−→

n∑
i=1

c(xi, yi).

Remark 1.2.15. If c is continuous, then the closure of a c-monotone set is c-monotone:
as a consequence, supp(π) is c-monotone for every π ∈ Γo(µ, ν) (as we already knew
by Lemma 1.2.2). We can even find a c-monotone closed set on which all the
optimal plans are concentrated. First of all, if we find any set with this prop-
erty, we conclude taking the closure. To complete the argument, consider the set⋃
π∈Γo(µ,ν) supp(π). By definition of c-monotonicity, it is sufficient to prove that⋃k
i=1 supp(πi) is c-monotone for every π1, . . . , πk ∈ Γo(µ, ν); this is true because

that finite union coincides with supp( 1
k

∑k
i=1 πi), support of an optimal plan.

Remark 1.2.16. We cannot state in full generality that c-monotonicity of the support
(or of any π-full set) is equivalent to optimality: take X = Y = [0, 1], µ = ν = L 1,
α ∈ [0, 1] \Q, and put c(x, x) = 1; c(x, x+ α (mod 1)) = 2; c(x, y) = +∞ in every
other case. Obviously T (x) := x + α (mod 1) is not optimal; but it is not difficult
to show that the support of (Id× T )#µ is c-monotone.

Remark 1.2.17 (On uniqueness of optimal plans). In general the optimal plan is not
unique; there can even be different maps solving Kantorovich’s problem, as shown
by the following “book shifting” example. Let X = Y = R, c(x, y) = |x − y|,
µ = 1

nI[0,n] L
1, ν = 1

nI[1,n+1] L
1. Then Example 1.2.12, applied to the 1-Lipschitz

function −t, gives that the minimum of (K) is at least 1; which is attained by the
two different maps T1(x) := x+ 1 and T2(x) := x+ nI[0,1](x).

On the other hand, if every optimal plan is induced by a map, then there is
uniqueness. In fact if π = (Id×T )#µ and π′ = (Id×T ′)#µ are both optimal, then
so is π′′ = 1

2(π + π′) which is of the form µ ⊗ 1
2(δT (x) + δT ′(x)): by hypothesis it is

induced by a map, so 1
2(δT (x) + δT ′(x)) is a delta µ-a.s.: therefore T = T ′ µ-a.s..

Remark 1.2.18 (Invertibility of optimal maps). Suppose in addition that also the
optimal transport from ν to µ is induced by a map (uniqueness is obvious by
symmetry of (K)). Then the unique element of Γo(µ, ν) is concentrated both on
{(x, T (x)) : x ∈ E} and on {(S(y), y) : y ∈ F}, where µ(E) = 1 and ν(F ) = 1.
From this, one easily deduces that S ◦ T = Id µ-a.s. and T ◦ S = Id ν-a.s..
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We now study an important case in which we know that the optimal plan is
unique and induced by a transport.

Notation. For p ∈ [1,∞), we will use the notations:

Pp(X) := {µ ∈P(X) :
∫
d(x, x̄)pdµ(x) <∞ for some, and hence all, x̄ ∈ X}.

Pa(Rn) := {µ ∈P(Rn) : µ� L n}.
Pa

p(Rn) := Pa(Rn) ∩Pp(Rn).

Theorem 1.2.19 (Brenier). Given µ, ν ∈P2(Rn), µ � L n, c(x, y) := 1
2 |x− y|

2,
then:

1. The optimal plan is unique and induced by a map T ;

2. T = ∇f for some f : Rn → R∪{+∞} convex l.s.c. such that µ is concentrated
on Int(Dom(f)).

Conversely, if µ ∈ Pa
2(Rn), f is convex l.s.c., µ is concentrated on Dom(f), and

T := ∇f is an element of L2(µ), then T induces the unique optimal plan from µ to
T#µ.

Remark 1.2.20. A convex l.s.c. function f is locally Lipschitz (and hence differen-
tiable at a.e. point by Rademacher’s theorem) in the interior of its domain. First
of all, it is locally bounded: take any closed hypercube in Int(Dom(f)) and ob-
serve that the values in it are bounded from below by lower semicontinuity; and
from above by the values at the vertices. Then, using the monotonicity of the
difference quotients of a convex function R → R, it is easy to prove that, calling
Osc(f,BR(x)) := sup

y,z∈BR(x)
|f(y)− f(z)|, it holds

LipBr(x)(f) ≤ Osc(f,BR(x))

R− r
whenever Br(x) ⊂ BR(x) ⊂ Int(Dom(f)).

Proof (Brenier). Denote by π an optimal plan. Note that c(x, y) ≤ |x|2+|y|2 sum of
an L1(µ) and an L1(ν) function, so there exists a c-concave Kantorovich potential
φ by Remark 1.2.11; we also know that, with this cost, c-concavity means that

f(x) := |x|2
2 − φ(x) is convex lower semicontinuous. We observe that ∂(Dom(f))

is always L n negligible (since the boundary of a convex set is always locally a
Lipschitz graph), and f is differentiable a.e. in Int(Dom(f)) by the previous Remark;
from µ � L n we deduce that µ is concentrated on a set on which f is finite and
differentiable.

To sum up, without loss of generality π is concentrated on Γ c-monotone such
that f (and hence φ) is differentiable on px(Γ) and φ(x) + φc(y) = c(x, y) for every
(x, y) ∈ Γ. The latter statement means that for every (x, y) ∈ Γ, 1

2 |x
′ − y|2 − φ(x′)

attains its minimum in x′ = x; by the differentiability assumption we get that
x− y −∇φ(x) = 0, i.e. y = ∇f(x).

Conversely, T ∈ L2 means that ν := T#µ is an element of P2(Rn), so that,
as above, optimality is equivalent to concentration on a c-monotone set. This c-
monotonicity is easily proved using that the gradient of a convex function is mono-
tone, i.e. 〈∇f(x)−∇f(y), x− y〉 ≥ 0 ∀x, y.
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Note. It is not really difficult to adapt the proof of the first part to a cost of the
form h(x − y) with h strictly convex (typically, h(x, y) = |x − y|p with p > 1);
roughly speaking, one replaces the gradient of | · |2 with the subdifferential of h.
For the details, see [3]. However, we do not have the nice characterisation of the
potentials obtained in Example 1.2.13, so part 2 of the above theorem is typical of
the quadratic cost.

On the other hand, McCann generalized both parts of the theorem replacing Rn
with a Riemannian manifold and L n with the Riemannian volume measure: see
[13].

Theorem 1.2.21 (Stability of optimal plans).

1. Let ch be finite continuous costs uniformly converging to c. Suppose that
µh⇀µ in P(X), νh⇀ν in P(Y ), πh ∈ Γo(µh, νh) with respect to the cost
ch.

If πh⇀π with lim infh
∫
chdπh <∞, then π ∈ Γo(µ, ν) with respect to c, with

finite cost
∫
c dπ ≤ lim infh

∫
chdπh. (Recall that (πh) always has limit points

by Remark 1.1.11.)

2. In the setting of the previous point, take Y = Rn, µh ≡ µ. Suppose that
πh, π are induced by maps Th, T (true for example if X = Rn and µ� L n).
Assume that there is a compact set K such that supp(νh) ⊆ K for every h.

Then Th
Lp(µ)−−−→ T for every p ∈ [1,∞).

Note. For a setting in which the hypothesis of existence of K can be dropped, see
Proposition 1.3.9.

Proof. 1. Obviously π ∈ Γ(µ, ν). Fix ε > 0. Since c is continuous and nonnegative,

then π 7→
∫
c dπ is l.s.c.: so, for k large we have∫

c dπ ≤ ε+

∫
c dπk ≤ 2 ε+

∫
ck dπk.

Letting k → ∞ along an appropriate subsequence, we get the desired inequality.
In particular

∫
c dπ < ∞, so that to conclude it suffices to prove that supp(π) is

c-monotone.
To this aim, take (xi, yi)i=1,...,n ⊆ supp(π); a simple fact about narrow conver-

gence tells that for i = 1, . . . , n there are
(
x

(h)
i , y

(h)
i

)
∈ supp(πh) converging to

(xi, yi) as h→∞. Hence

n∑
i=1

[
c (xi, yi)− c

(
xi, yσ(i)

)] h�1
≤ ε+

n∑
i=1

[
c
(
x

(h)
i , y

(h)
i

)
− c

(
x

(h)
i , y

(h)
σ(i)

)]
≤

h�1
≤ 2 ε+

n∑
i=1

[
ch

(
x

(h)
i , y

(h)
i

)
− ch

(
x

(h)
i , y

(h)
σ(i)

)]
≤ 2 ε

because we know that supp(πh) is ch-monotone. Letting ε→ 0 the c-monotonicity
follows.
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2. We prove that if |Th| ≤M <∞ and (Id×Th)#µ⇀(Id×T )#µ, then Th → T in
Lp(µ) for every p ∈ [1,∞); thanks to the boundedness of Th we only have to prove
convergence in µ-measure.

To this aim, fix ε > 0 and find by Lusin’s theorem a continuous function T̃ such
that T̃ ≤M and µ{T 6= T̃} < ε

2M . Putting φ(x, y) := 2M ∧ |y − T̃ (x)|, this means
that

∫
φ d(Id× T )#µ ≤ ε and so limh

∫
φ d(Id× Th)#µ ≤ ε. This implies

lim sup
h→∞

∫
{T=T̃}

(|Th(x)− T (x)| ∧ 2M) dµ(x) ≤ ε;

but the argument of the lim sup is
∫
{T=T̃} |Th(x) − T (x)| dµ(x), from which we

deduce that lim suph µ{T = T̃ , |Th − T | >
√
ε} ≤

√
ε. We conclude that

lim sup
h→∞

µ{|Th − T | >
√
ε} ≤ ε+

√
ε.

1.3 The Wasserstein distance

The theory of optimal transport permits to give to Pp(X) a natural structure of
metric space.

Definition 1.3.1. For p ∈ [1,∞), consider the cost c(x, y) := d(x, y)p. For
µ, ν ∈Pp(X), take an optimal plan πo. Then the p-Wasserstein distance be-
tween the two measures is Wp(µ, ν) := (

∫
d(x, y)pdπo)

1/p.

Remark 1.3.2 (Comparison). Evidently Wp ≤ Wq if p ≤ q; if X is bounded one
immediately gets that the two distances are equivalent.

Proposition 1.3.3. Wp is a distance on Pp(X).

Proof. The triangular inequality can be proved taking a “3-plan” such that the
marginal on the first two coordinates is optimal from µ1 and µ2 and the marginal
on the last two coordinates is optimal between µ2 and µ3 (such a probability measure
can be built by disintegration with respect to the second coordinate).

Using the triangle inequality with a Dirac mass as intermediate measure, we see
that Wp is always finite by the very definition of Pp(X). All the other properties
of a distance are obvious.

Proposition 1.3.4 (Separability). If X is any separable metric space, then also
(Pp(X),Wp) is separable.

Proof. Let (xn)n≥1 be a dense sequence in X; we claim that

D :=

{
N∑
i=1

aiδxi : N ∈ N, (ai) ∈ QN , ai ≥ 0 ∀i,
N∑
i=1

ai = 1

}

is dense in Pp(X). By an obvious verification, it is surely dense in D̃ defined as D
but allowing (ai) ∈ RN : so we only have to approximate a generic µ ∈P(X) with
elements of D̃.
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We note that, for every ε > 0 fixed, the balls Bi := B(xi, ε) cover X: therefore
there exists N such that ∫

(∪Ni=1Bi)
c

d(x, x0)pdµ ≤ ε .

Then, if we define T (x) to be equal to x0 if x /∈ ∪Ni=1Bi, and otherwise equal to the
minimal i such that x ∈ Bi, we have that T is measurable, T#µ ∈ D̃, and

W p
p (µ, T#µ) ≤

∫
(∪Ni=1Bi)

c

d(x, x0)pdµ+ εp ≤ ε+ εp .

Proposition 1.3.5 (Completeness). If X is any complete metric space, then also
(Pp(X),Wp) is complete.

Proof. Take a sequence in Pp(X) such that
∑∞

i=1Wp(µi, µi+1) <∞. Put Λ1 := µ1.
Generalizing inductively the construction sketched in the proof of the triangular
inequality, we can build for every h ≥ 2 a probability Λh on Xh such that its
marginal on the first h − 1 coordinates is Λh−1 and its marginal on the last two
coordinates is optimal between µh−1 and µh. By Kolmogorov’s extension theorem
we have a probability Λ on XN whose marginal on the first h coordinates if Λh.
Denote by pn : XN → X the n-th canonical projection: then one easily sees that
‖d(ph, ph+1)‖Lp(Λ) = Wp(µh, µh+1) summable by hypothesis: hence (ph)h≥1 has a
limit in Lp(Λ), which we call p∞. To conclude, put µ∞ := (p∞)#Λ: it is immediate
to see that Wp(µn, µ∞) ≤ ‖d(pn, p∞)‖Lp(Λ) → 0.

Theorem 1.3.6 (Characterisation of convergence). The following conditions are
equivalent:

1. µn
Wp−−→ µ;

2. µn⇀µ and
∫
d(x, x0)pdµn →

∫
d(x, x0)pdµ for one/every x0 ∈ X (conver-

gence of moments).

In particular, if X is bounded, then the second condition is redundant and Wp

metrizes the narrow convergence (hence if X is compact then (Pp(X),Wp) is com-
pact as well).

Remark 1.3.7 (Narrow convergence is metrizable). One can always put on X the
bounded metric d̃(x, y) := d(x, y) ∧ 1, which has the same convergent and Cauchy
sequences of d. So the concept of narrow convergence is the same, and (X, d)
is complete (resp. separable) if and only if (X, d̃) is complete (resp. separable).
We conclude that even for unbounded X, there exists a distance on P(X) which
metrizes the narrow convergence, which is complete (resp. separable) if X is com-
plete (resp. separable).
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Proof. 1⇒ 2 The convergence of moments is simply W2(µn, δx0)2 →W2(µ, δx0)2.
For φ bounded and Lipschitz, denoting by πn an element of Γo(µn, µ), we have∣∣∣∣∣
∫
φ d(µn − µ)

∣∣∣∣∣ =

∣∣∣∣∣
∫

(φ(x)− φ(y)) dπn(x, y)

∣∣∣∣∣ ≤ Lip(φ)

∫
d(x, y)dπn(x, y) ≤

≤ Lip(φ)

(∫
d(x, y)pdπn(x, y)

)1/p

= Lip(φ)Wp(µn, µ)→ 0.

For general φ ∈ Cb, take φn, φ
n Lipschitz functions such that φn ↑ φ, φn ↓ φ and

−‖φ‖∞ ≤ φn ≤ φ ≤ φn ≤ ‖φ‖∞. The conclusion follows noting that∫
φdµ = sup

n

∫
φndµ = sup

n
lim
m

∫
φndµm ≤ lim inf

m
sup
n

∫
φndµm = lim inf

m

∫
φdµm,∫

φdµ = inf
n

∫
φndµ = inf

n
lim
m

∫
φndµm ≥ lim sup

m
inf
n

∫
φndµm = lim sup

m

∫
φdµm.

2⇒ 1, X compact For the remarked equivalence of the various Wasserstein met-

rics in this case, it is sufficient to prove that W1(µn, µ) → 0. We know that
W1(µn, µ) = maxLip(φ)≤1

∫
φ d(µn − µ) (see Example 1.2.12); of course we can

restrict the supremum to E := {φ : Lip(φ) ≤ 1 and φ(x0) = 0}, which is compact
by Ascoli-Arzelà’s theorem.

Define on E the functional Ln : φ 7→
∫
φ d(µ− µn). Ln are equicontinuous and

equibounded (easy) and their pointwise limit is 0, therefore they converge uniformly
to 0, which is what we need.

2⇒ 1, X general Fix x0 such that 2. holds. We only need to prove that {µn}n is

relatively compact in Pp(X), because then by the proven implication all the limit
points must be µ. We note that σn := d(·, x0)pµn⇀d(·, x0)pµ =: σ: in fact the
measure of the whole space converges by hypothesis, and the measure of an open
set A satisfies σ(A) ≤ lim infn σn(A) as easily proven taking continuous functions
φm ↑ IAd(·, x0)p (they exist by lower semicontinuity). Then by Prokhorov’s theorem
for every ε > 0 there is Kε compact such that σn(X \ Kε) < ε for all n. Put
µn,ε := IKεµn + (1 − µn(Kε))δx0 , relatively compact (with ε fixed) thanks to the
case “X compact”. With a diagonal argument we find a subsequence such that
µn(l),1/k Wp-converges for l→∞ for every k ∈ N0.

Thanks to the completeness of Pp(X) we must only show that µn(l) is a Cauchy
sequence. But by the triangular inequality

lim sup
l,l′→∞

Wp(µn(l), µn(l′)) ≤ 2 lim sup
l→∞

Wp(µn(l), µn(l),1/k).

Finally, we estimate the latter lim sup using the plan from µn to µn,1/k that keeps
the mass in K1/k fixed and moves the rest to x0: we conclude

RHS ≤ 2 lim sup
l→∞

∫
X\K1/k

d(x, x0)p dµn(l) = 2 lim sup
l→∞

σn(l)(X \K1/k) ≤
2

k
.
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Remark 1.3.8 (Two other characterisations). Suppose that (µn) ⊆Pp(X) converges

narrowly to µ ∈ Pp(X). Then µn
Wp−−→ µ if and only if one of the following holds

(for one/every x0):

a.
∫
d(x, x0)pdµn(x)→

∫
d(x, x0)pdµ(x);

b. lim
R→∞

lim sup
n→∞

∫
X\BR(x0) d(x, x0)pdµn = 0;

c. d(·, x0)pµn⇀d(·, x0)pµ.

In fact a. is known by the Theorem above; a.⇒c. was seen in its proof; c.⇒b. because
every narrowly convergent sequence is tight; and b.⇒a. taking φR ∈ Cb equal to
d(·, x0)p in BR(x0) and to 0 out of BR+1(x0), so that

∫
φRdµn →

∫
φRdµ gives the

thesis for R→∞.

Using b., with the same argument, we get even more. Namely, take a con-
tinuous function with p-growth, i.e. such that |f(x)| ≤ C(1 + d(x, x0)p). Then∫
f dµn →

∫
f dµ.

With this concept of convergence, we can improve the result about stability of
optimal plans stated in Theorem 1.2.21.

Proposition 1.3.9 (Stability of optimal maps). Let µ, ν ∈ Pp(Rd) be such that
there is an unique optimal plan from µ to ν, induced by a transport map T . Suppose
also that νn → ν and that Tn is an optimal transport map from µ to νn. Then
Tn → T in Lp(µ).

Proof. We already know that (Id×Tn)#µ⇀(Id×T )#µ. We note that νn → ν gives
immediately the convergence of the p-moments of (Id× Tn)#µ to the p-moment of
(Id× T )#µ, so that (Id× Tn)#µ→ (Id× T )#µ in Pp(Rd).

The convergence of moments of (νn) yields also that ‖Tn‖Lp(µ) → ‖T‖Lp(µ): in
particular, these norms are bounded, so that every subsequence of (Tn) has weak
limit points in Lp(µ) (thought as the dual of Lp

′
(µ); recall that p > 1).

We now observe that for for every ζ ∈ Cb(Rd), and calling (ei)i=1,...,d the canon-
ical basis of Rd, the function f : (Rd)2 → R defined by f(x, y) := ζ(x)〈y, ei〉 has
p-growth, so that applying the previous Remark to (Id× Tn)#µ→ (Id× T )#µ we
get ∫

Rd
ζ(x)〈Tn(x), ei〉 dµ(x)→

∫
Rd
ζ(x)〈T (x), ei〉 dµ(x)

so that any weak limit point of (Tn) is forced to be T . To sum up, Tn⇀T in Lp(µ)
with converging norms, hence Tn → T in Lp(µ)-norm.

Remark 1.3.10 (Lower semicontinuity of Wp). Even when X has infinite diameter,
Wp is lower semicontinuous with respect to narrow convergence: this is an immediate
consequence of the stability of optimal plans (Theorem 1.2.21).

Remark 1.3.11. Unlike compactness, local compactness does not pass from X to
Pp(X): in fact Pp(Rn) is not locally compact. To see this, take µn := (1−εn)δ0 +
εn δxn with εn → 0 so that µn⇀δ0, but such that εn |xn|2 = c > 0 constant so that
Wp(µn, δ0) does not go to zero.
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1.3.1 Absolute continuity in metric spaces

In order to give an useful reformulation of Kantorovich’s problem, we need to develop
a theory of absolutely continuous curves with values in a general metric space.

Definition 1.3.12 (AC in metric spaces). For I ⊆ R interval, f : I → X is called
an absolutely continuous curve if there exists g ∈ L1(I) such that

d(f(s), f(t)) ≤
∫ t

s
g(r) dr ∀[s, t] ⊆ I. (1.3.1)

We write f ∈ AC(I;X).

Proposition 1.3.13 (Existence of the metric derivative). Let f ∈ AC(I;X). Then
for a.e. t ∈ I there exists the limit

lim
h→0

d(f(t+ h), f(t))

|h|
=: |f ′|(t)

called metric derivative of f . Moreover, |f ′| is the smallest g (up to negligible
sets) satisfying (1.3.1).

Proof. Without loss of generality I is bounded, so by uniform continuity f(I)
is precompact; take in it a dense sequence (xn) and put φn(t) := d(f(t), xn),
which is in AC(I;R) and so satisfies φn(t) − φn(s) =

∫ t
s φ
′(r) dr. We note that

|φn(t)− φn(s)| ≤ d(f(s), f(t)) for all s, t ∈ I, so |φ′n| ≤ g for every g satisfying
(1.3.1). Hence |f ′|(t) := supn |φ′n(t)| is smaller than g. Note that if t0 is a differen-
tiability point of φn for every n, then

lim inf
h→0

d(f(t0), f(t0 + h))

|h|
≥ lim inf

h→0

|φn(t0)− φn(t0 + h)|
|h|

= |φ′n(t)| :

the supremum on n gives one inequality of the thesis.
For the converse, |φn(s) − φn(t)| ≤

∫ t
s |φ

′
n(r)|dr ≤

∫ t
s |f

′|(r) dr, and by density
the left hand side is arbitrarily close to d(f(s), f(t)). As a consequence,

d(f(t), f(t+ h))

|h|
≤ 1

|h|

∣∣∣∫ t+h

t
|f ′|(r) dr

∣∣∣ :

if t is a Lebesgue point of |f ′|, for h→ 0 we get the desired inequality.

Remark 1.3.14. As in the real case, it can be proven that a curve is AC if and only if
∀ ε > 0 ∃δ > 0 such that for every collection {(ai, bi)}i=1,...,n of disjoint subintervals
of I satisfying

∑
i(bi − ai) < δ, it holds

∑
i d(f(ai), f(bi)) < ε.

Definition 1.3.15. The length of f ∈ AC((a, b);X) is len(f) :=
∫ b
a |f

′|(s) ds.

Remark 1.3.16. Length is invariant by reparametrisation, and d(f(a), f(b)) ≤ len(f).
If for every pair of points we have d(x, y) = inff(0)=x,f(1)=y len(f), we say that X
is a length space; if in addition the infimum is attained, that X is geodesic, and
every minimizing f is called a minimizing geodesic. From now on, we will omit
the word “minimizing” when it is clear that we are not speaking of geodesics in the
classical differential sense.
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Lemma 1.3.17 (Reparametrisation by arclength). Given f ∈ AC((a, b);X) with
len(f) = L, there exist a 1-Lipschitz curve f̃ : [0, L] → X and an AC nondecreas-
ing reparametrisation σ which maps [a, b] onto [0, L], such that |f̃ ′| = 1 a.e. and
f = f̃ ◦ σ.

Proof. Put σ(t) :=
∫ t
a |f

′|(r) dr, τ(s) := min{t ∈ [a, b] : σ(t) = s}, so that
σ(τ(s)) = s and τ(σ(t)) ≤ t. Note that f(τ ◦ σ(t)) = f(t) since

d(f(t), f(τ ◦ σ(t))) ≤
∫ t

τ◦σ(t))
|f ′|(r) dr = σ(t)− σ(τ ◦ σ(t)) = 0.

Take f̃ := f ◦ τ : it is 1-Lipschitz (and so |f ′| exists a.e. and is at most 1) because

d(f ◦ τ(s1), f ◦ τ(s2)) ≤
∫ τ(s2)

τ(s1)
|f ′|(r) dr = σ(τ(s2))− σ(τ(s1)) = s2 − s1.

On the other hand, it is easily seen that for a composition of AC curves the chain
rule holds, so that |f ′|(t) = |f̃ ′|(σ(t))σ′(t) a.e.: hence with a change of variables∫ L

0
|f̃ ′|(s) ds =

∫ b

a
|f̃ ′|(σ(t))σ′(t) dt =

∫ b

a
|f ′|(t) dt = L

which gives that |f̃ ′| = 1 a.e..

Remark 1.3.18. For p ∈ (1,∞) fixed and γ ∈ ACp((0, 1);X), we note that the

action Ap(γ) :=
∫ 1

0 |γ
′|(s)p ds is greater or equal than len(γ)p by Hölder’s inequality,

with equality if and only if |γ′| is constant: thanks to the Lemma above,

inf
γ∈AC((0,1);X)
γ(0)=a,γ(1)=b

len(γ) = inf
γ∈AC((0,1);X)
γ(0)=a,γ(1)=b

Ap(γ)1/p.

If a geodesic exists, we can reparametrise it by arclength obtaining a constant
speed geodesic. Note that the following are equivalent:

1. γ is a constant speed geodesic;

2. d(γ(s), γ(t)) = |t− s|d(γ(0), γ(1)) ∀s, t ∈ [0, 1];

3. d(γ(s), γ(t)) ≤ |t− s|d(γ(0), γ(1)) ∀s, t ∈ [0, 1].

1.⇒ 2. because for every s < t and every geodesic d(γ(s), γ(t)) =
∫ t
s |γ
′|(r) dr:

otherwise we would have d(γ(0), γ(1)) >
∫ 1

0 |γ
′|(r) dr;

2.⇒ 1.: just divide by |t− s| and let s→ t;
2.⇔ 3. because if for some s < t we had the strict inequality, summing it to the

weak inequality in [0, s] and in [t, 1] we would get the contradictory
d(γ(0), γ(1)) < (s+ (t− s) + (1− t))d(γ(0), γ(1)).

Notation.
Geo(X) := {γ ∈ AC((0, 1);X) : γ is a constant speed geodesic}.
A(γ) := A2(γ) for brevity.
et : AC((0, 1);X)→ X evaluation map γ 7→ γ(t).



16 CHAPTER 1. OPTIMAL TRANSPORT

Note. For the sake of clarity, in the sequel we will restrict to the case p = 2.
The results of this section are quite easily generalized to p > 1 generic; but the
generalisation of the results of the next chapter is much subtler, see [3].

Proposition 1.3.19 (Formula for the action). If γ : [0, 1] → X is a continuous
curve, then the two quantities

A1 := sup
n≥1

n

n∑
i=1

d2
(
γ
( i− 1

n

)
, γ
( i
n

))
, A2 := lim sup

n→∞
n

n∑
i=1

d2
(
γ
( i− 1

n

)
, γ
( i
n

))
coincide; they are finite if and only if γ ∈ AC2((0, 1);X), and in this case they are
equal to A(γ). As a corollary, A is lower semicontinuous with respect to uniform
convergence.

The proof of the Proposition requires the following Lemma.

Lemma 1.3.20 (Semicontinuity of the Lp relative norm). Let p ∈ (1,∞], µn⇀µ
probability measures on X, νn = fnµn finite measures, supn ‖fn‖Lp(µn) < ∞.
Then (νn) has narrow limit points, and each limit point is of the form fµ where
‖f‖Lp(µ) ≤ lim supn ‖fn‖Lp(µn).

Proof. For g ∈ Cb(X) we have that

|〈νn, g〉| =

∣∣∣∣∣
∫
gfn dµn

∣∣∣∣∣ ≤ ‖fn‖Lp(µn) ‖g‖Lp′ (µn) (1.3.2)

Since RHS ≤ ‖fn‖Lp(µn) ‖g‖∞, we have that νn are equibounded measures and so
have limit points.

Now it is sufficient to prove the statement when νn⇀ν. We observe that
‖g‖Lp′ (µn) → ‖g‖Lp′ (µ), so that letting n→∞ in (1.3.2) we get

|〈ν, g〉| ≤ lim inf
n
‖fn‖Lp(µn) ‖g‖Lp′ (µ) ∀g ∈ Cb(X),

i.e. 〈ν, ·〉 is the restriction to Cb(X) of a linear continuous functional on Lp
′
(µ) with

norm less or equal than lim infn ‖fn‖Lp(µn): hence it can be represented by a function
f ∈ Lp(µ) with ‖f‖Lp(µ) ≤ lim infn ‖fn‖Lp(µn), and the conclusion follows.

Proof of the Proposition. If γ ∈ AC2((0, 1);X) then

d
(
γ
( i− 1

n

)
, γ
( i
n

))
≤
∫ i

n

i−1
n

|γ′|(s) ds
Hölder
≤ 1√

n

(∫ i
n

i−1
n

|γ′|2(s) ds

) 1
2

,

so that, squaring and summing on i, we get A1 ≤ A(γ).
Conversely, suppose that A2 <∞. Put

µn :=
1

n

n∑
i=1

δi/n⇀I[0,1] L
1, νn :=

n∑
i=1

d
(
γ
( i− 1

n

)
, γ
( i
n

))
δi/n.

Note that
∫ 1

0

∣∣ dνn
dµn

∣∣2 dµn = n
∑n

i=1 d
2
(
γ
(
i−1
n

)
, γ
(
i
n

))
. So we can apply the Lemma,

obtaining a subsequence νn(k)⇀f L 1 with
∫ 1

0 f
2(t) dt ≤ A2. We conclude if we
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prove that |γ′| ≤ f , i.e. d(γ(s), γ(t)) ≤
∫ t
s f(r) dr for all s < t. To this purpose,

take in(k), jn(k) ∈ N such that
in(k)

n(k)
↓ s,

jn(k)

n(k)
↑ t, so that

d(γ(s), γ(t)) = lim
k→∞

d

(
γ

(
in(k)

n(k)

)
, γ

(
jn(k)

n(k)

))
Def νn
≤

≤ lim sup
k→∞

νn(k)

([
in(k)

n(k)
,
jn(k)

n(k)

])
≤ νn(k)([s, t])

νn⇀ν
≤

∫ t

s
f(r) dr.

1.3.2 Dynamical couplings

In this section we switch point of view: instead of prescribing only the amount of
mass sent from a set A to a set B, we take care also of the path along which the
mass is moved.

Note. We consider on AC2([0, 1];X) the measurable structure inherited from the
space C([0, 1];X).

Problem 1.3.21 (Minimal action). Given µ, ν ∈P2(X), a dynamical coupling
of µ and ν is Λ ∈P(AC2([0, 1];X)) such that (e0)#Λ = µ and (e1)#Λ = ν. In this
class of Λ, we seek

inf
Λ

∫
AC2([0,1];X)

A(γ) dΛ(γ). (MA)

Remark 1.3.22 (inf (MA) = min (K) if the space is geodesic). Note that∫
AC2

A dΛ ≥
∫
AC2

d2(γ(0), γ(1))dΛ(γ) =

∫
X2

d2(x, y) d(e0, e1)#Λ(x, y) ≥W 2
2 (µ, ν)

so that inf (MA) ≥ min (K). Moreover, the inequalities above are equalities if and
only if Λ is concentrated on Geo(X) and (e0, e1)#Λ ∈ Γo(µ, ν). By a standard
measurable selection argument we get that if X is geodesic, then there is at least
an optimal geodesic plan Λ realizing the equality min (MA) = min (K): indeed,
it suffices to choose measurably for every couple (x, y) ∈ X ×X a constant speed
geodesic Φ(x, y) from x to y, and to put Λ := Φ#π where π is any optimal plan
from µ to ν. We will denote by OptGeo(µ, ν) the set of all optimal geodesic plans
from µ to ν.

More generally, one sees that in a length space inf (MA) = min (K).

Theorem 1.3.23 (Geo(P2(X)) ↔ optimal geodesic plans). Let X be a geodesic
space. Then (µt)t∈[0,1] ⊆ P2(X) is a constant speed geodesic if and only if it is
of the form µt = (et)#Λ for some Λ ∈ OptGeo(µ0, µ1). In particular, P2(X) is
geodesic too.
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Proof of the Theorem, “if” part (which does not use that X is geodesic). Thanks to
the previous Remark,

W 2
2

(
(et)#Λ, (es)#Λ

)
≤
∫

Geo(X)
d2
(
γ(s), γ(t)

)
dΛ(γ) =

= |t− s|2
∫

Geo(X)
d2
(
γ(0), γ(1)

)
dΛ(γ) = |t− s|2W 2

2

(
(e0)#Λ, (e1)#Λ

)
which implies that

(
(et)#Λ

)
t
∈ Geo(P2(X)) (see Remark 1.3.18).

For the converse implication we need two lemmas:

Lemma 1.3.24 (Ascoli-Arzelà in AC2). Let K ⊆ AC2([0, 1];X) satisfy

1. sup
γ∈K

A(γ) <∞;

2. For every n ≥ 1 there are compact sets X1,n, . . . , Xn,n ⊆ X such that
γ
(
i
n

)
∈ Xi,n for every γ ∈ K and for every i = 1, . . . , n.

Then K is relatively compact with respect to uniform convergence.

Proof. Given any sequence (γh)h∈N ⊆ K, using 2. and a diagonal argument we can
find a subsequence h(k) such that

(
γh(k)

(
i
n

))
k∈N converges ∀n ≥ 1,∀i = 1, . . . , n.

But 1. implies that K is equi-1
2 -Hölder, which gives uniform convergence on [0, 1]

by a standard argument.

Lemma 1.3.25 (tightness in P(AC2)). Let F ⊆P(AC2([0, 1];X)) satisfy

1. supΛ∈F

∫
A(γ)dΛ(γ) <∞;

2. {(et)#Λ}Λ∈F is tight in P(X) for every t ∈ [0, 1].

Then F is tight.

Proof. Fix ε > 0, put K1 := {γ ∈ AC2 : A(γ) ≤ M} for some M > 0. Thanks to
1., we have that

Λ(AC2 \K1) ≤ 1

M

∫
A(γ)dΛ(γ) <

ε

2

for an appropriate M � 1 independent of Λ ∈ F .
In addition, using 2., for every n > 0 and every i = 0, . . . , n there is a compact

set Ki,n ⊆ X such that

(ei/n)#Λ
(
X \Ki,n

)
≤ 2−i−12−n−1 ε ∀Λ ∈ F

or, in other terms, Λ
{
γ : γ

(
i
n) /∈ Ki,n

}
≤ 2−i−12−n−1 ε for all Λ ∈ F .

We conclude defining the closed set

K := K1 ∩
∞⋂
n=1

n⋂
i=1

{
γ : γ

( i
n

)
∈ Ki,n

}
which is compact by the previous Lemma, and observing that

Λ(AC2 \K) ≤ Λ(AC2 \K1) +

∞∑
n=1

n∑
i=1

Λ
{
γ : γ

( i
n

)
/∈ Ki,n

}
≤ ε .
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Proof of the Theorem, “only if” part.

For every n ≥ 2, build, as in the proof of Theorem 1.3.5, θn ∈ P(Xn+1) such
that (pi−1, pi)#θn ∈ Γo(µ(i−1)/n, µi/n) for i = 1, . . . , n. With a measurable selection
argument, find a measurable map Xn+1 → AC2([0, 1];X) such that (x0, . . . , xn) is
mapped to a curve which on each interval

[
i−1
n , in

]
is a constant speed geodesic from

xi−1 to xi. Call Λn ∈P(AC2([0, 1];X)) the law of this map under θn.

We prove that (Λn) ⊆ P(AC2) is tight using the previous lemma. As for
condition 1.,

∫
AC2

A(γ)dΛn(γ) =

∫
AC2

n∑
i=1

n · d2
(
γ
( i− 1

n

)
, γ
( i
n

))
dΛn(γ)

Def Λn=

=

n∑
i=1

n ·W 2
2 (µ(i−1)/n, µi/n))

(µt)∈Geo
= W 2

2 (µ0, µ1). (1.3.3)

To prove that also 2. holds, we fix t and prove a little more, namely that
{(et)#Λn}n is precompact in P2(X). Note first that the family

{(
ebntc/n

)
#

Λn
}
n

is

a subfamily of {µt}t∈[0,1], which is compact as continuous image of [0, 1]. Now, as
observed many times above,

W 2
2

((
ebntc/n

)
#

Λn, (et)#Λn

)
≤
∫
AC2

(
t− bntc

n

)∫ t

bntc/n
|γ′|2(s) ds dΛn(γ)

which can be estimated

≤ 1

n

∫
AC2

∫ dnte
n

bntc
n

|γ′|2(s) ds dΛn(γ) = W 2
2

(
µbntc/n, µdnte/n

)
→ 0

by uniform continuity of t 7→ µt. To sum up, for every ε > 0 the sequence
(
(et)#Λn

)
n

is (definitively) in an ε-neighbourhood of a compact set, hence it is precompact.

Finally, take a subsequence Λn(k)⇀Λ. By the lower semicontinuity of the action,
(1.3.3) implies

∫
A(γ)dΛ(γ) ≤ W 2

2 (µ0, µ1), hence Λ is optimal. Consider now the
equality

(
ebntc/n

)
#

Λn = µbntc/n, evaluate it at n = n(k) and let k →∞. RHS→ µt
obviously.

As for the left hand side, we first note that we can equivalently compute the

limit of (et)#Λn(k) since we have shown above thatW2

((
ebntc/n

)
#

Λn, (et)#Λn

)
→ 0.

But the narrow limit of (et)#Λn(k) is (et)#Λ, since (et)# is continuous with re-
spect to narrow convergence. In conclusion, passing to the limit as k → ∞ we get
(et)#Λ = µt.

Remark 1.3.26 (Non uniqueness of the geodesic). Unfortunately, even in the simplest
case X = Rn, there may be more than one geodesic between two elements of P2(X).
As an example, take

X = R2, µ0 =
1

2
δ(−1,1) +

1

2
δ(1,−1), µ1 =

1

2
δ(1,1) +

1

2
δ(−1,−1)

which can be connected by either a “horizontal” or a “vertical” movement.
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Definition 1.3.27 (Non-branching). A metric space X is non-branching if for
all t ∈ (0, 1) the map (e0, et) : Geo(X)→ X2 is injective.

Remark 1.3.28. It means that two minimizing geodesics can meet again only at the
final point. From this, it is easy to see that X is non-branching if and only if (e0, et̄)
is injective for some t̄ ∈ (0, 1).

Theorem 1.3.29. Let X be non-branching. Then:

1. P2(X) is non-branching;

2. If (µs)s∈[0,1] ∈ Geo(P2(X)), then for every t > 0 the optimal geodesic plan
from µt to µ1 is unique;

3. For every (µs)s∈[0,1] ∈ Geo(P2(X)), the optimal geodesic plan Λ such that
(et)#Λ = µt for every t ∈ [0, 1] is unique.

Proof. Denote by GeoI(X) the set of constant speed geodesic defined on the interval
I, so that Geo(X) = Geo[0,1](X). Call resI : Geo(X) → GeoI(X) the restriction
map; note that res[0,t] is injective by hypothesis and so it has a left inverse extt.

Take any Λ1 ∈ P(Geo[0,t](X)) optimal geodesic plan from µ0 to µt rescaled in
the time interval [0, t], and Λ2 ∈P(Geo[t,1](X)) optimal geodesic plan from µt and
µ1 rescaled in [t, 1]. We want to build a “concatenated” plan. To this aim, disinte-

grate both Λi with respect to (et), finding Λi = Λ
(x)
i ⊗µt where Λ

(x)
i is concentrated

on the curves γ such that γ(t) = x. Denote by Λ(x) ∈ P(AC2([0, 1];X)) the law

under Λ
(x)
1 ×Λ

(x)
2 of the concatenation of curves: under it, γ(t) = x a.s. too. Finally,

put Λ := Λ(x) ⊗ µt, which clearly satisfies (res[0,t])#Λ = Λ1, (res[t,1])#Λ = Λ2, and
in particular is a dynamical coupling of µ0 and µ1. We claim that Λ is an optimal
geodesic plan.

Note that(∫
d2(γ(0), γ(1))dΛ(γ)

) 1
2

≤

(∫ [
d(γ(0), γ(t)) + d(γ(t), γ(1))

]2
dΛ(γ)

) 1
2

Minkowski
≤

(∫
d2(γ(0), γ(t))dΛ(γ)

) 1
2

+

(∫
d2(γ(t), γ(1))dΛ(γ)

) 1
2

.

But in the last expression, the two integrals can be equivalently computed with
respect to the measures Λ1 and Λ2 respectively, which are optimal (rescaled), yield-
ing

RHS = W2(µ0, µt) +W2(µt, µ1) = W2(µ0, µ1).

Therefore (e0, e1)#Λ ∈ Γo(µ0, µ1); moreover, a posteriori, all the inequalities are
equalities, so that d(γ(0), γ(1)) = d(γ(0), γ(t)) + d(γ(t), γ(1)) for Λ-a.e. γ; since
Λ-a.e. γ is a geodesic both in [0, t] and in [t, 1], we conclude that γ ∈ Geo(X) Λ-a.s.,
which concludes by the characterisation of optimal geodesic plans.

By the non-branching hypothesis, γ ∈ Geo(X) implies that γ = extt(γ|[0,t]),
hence Λ = (extt)#Λ1, and in particular Λ2 (which was taken any optimal geodesic
plan from µt to µ1) is uniquely determined: 2. is proved.
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A fortiori, the geodesic from µt to µ1 is determined too. By symmetry of the
problem, also the geodesic from µt and µ0 is determined, and 1. follows.

To prove 3., take Λ ∈ P(Geo(X)) optimal such that (et)#Λ = µt for every
t ∈ [0, 1]. Put Λt := (res[t,1])#Λ: it is optimal, since it is concentrated on geodesics
and ∫

d2(γ(t), γ(1))dΛt(γ) = (1− t)2

∫
d2(γ(0), γ(1))dΛ(γ) = W 2

2 (µt, µ1)

Point 2. implies that Λt is determined ∀t > 0. We claim that Λ is determined by
(Λt)t>0; it is sufficient that the measure of every element of a countable basis of the
topology is determined, but this is true because{
γ : ‖γ − γi‖∞ < ai, i = 1, . . . , n

}
=
⋂
n

{
γ :
∥∥(γ − γi)|[1/n,1]

∥∥
∞ < ai, i = 1, . . . , n

}
where the right hand side can be computed using the measures Λ1/n: the conclusion
follows.
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Chapter 2

Differential structure of P2(Rn)

In this chapter, we fix the space Rn and the cost c(x, y) := 1
2 |x − y|

2, and show
that there is a natural concept of velocity field tangent to a curve in P2(Rn).
This will suggest the construction of a Riemannian-like structure in P2(Rn); with
respect to this structure, many important functionals are (sub)differentiable, and
their gradient flow can be identified with the solution of some well known parabolic
PDEs.

2.1 Velocity fields and AC curves

Let µ0, µ1 ∈ P2(Rn), Λ ∈ OptGeo(µ0, µ1). We know that (e0, e1)#Λ =: γ is an
element of Γo(µ0, µ1); since Λ is concentrated on Geo(Rn), and the unique constant
speed geodesic between two points x, y ∈ Rn is t 7→ gt(x, y) := (1 − t)x + ty, we
conclude that Λ = g#γ, and so (et)#Λ = (gt)#γ. To sum up, the generic constant
speed geodesic between µ0 and µ1 is µt := ((1− t)px + tpy)#γ with γ ∈ Γo(µ0, µ1)
and px, py : (Rn)2 → Rn canonical projections.

Remark 2.1.1. With the same argument, if in addition µ0 � L n, and T is the opti-
mal transport map from µ0 to µ1 (given by Brenier’s theorem), then
µt = ((1 − t)Id + tT )#µ0. Put Tt := (1 − t)Id + tT . Since (a suitable version of)
T is the gradient of a convex function, then (for this choice) 〈Tx − Ty, x − y〉 ≥ 0
and so 〈Ttx − Tty, x − y〉 ≥ (1 − t)|x − y|2: as a consequence, Tt is injective with
Lipschitz inverse. In particular µt � L n: in fact

L n(B) = 0⇒ L n(T−1
t (B)) = 0⇒ µ0(T−1

t (B)) = 0⇒ µt(B) = 0.

For every (µt) ∈ Geo(P2(Rn)), we can give a description of the evolution of µt
in terms of a “velocity field”:

Proposition 2.1.2. Let (µt)t∈[0,1] be a constant speed geodesic in P2(Rn), and let
Λ ∈ OptGeo(µ0, µ1) be such that µt = (et)#Λ. Put γ := (e0, e1)#Λ. Then:

1. µt satisfies in (0, 1)× Rn the so called “continuity equation”

d

dt
µt +∇ · (vtµt) = 0 (in distributional sense: see the Definition below)

23
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for a velocity field vt : Rn → Rn defined implicitly by vtµt = (gt)#(py − px)γ.
Moreover, ∫

Rn
|vt|2 dµt ≤W 2

2 (µ0, µ1) ∀t ∈ [0, 1]. (2.1.1)

2. Suppose in addition that µ0 � L n; call φ1 a Kantorovich potential for the
couple (µ0, µ1) with respect to the cost c(x, y) = 1

2 |x − y|
2 (see the proof of

Brenier’s theorem). Then φt := tφ1 is a Kantorovich potential for (µ0, µt);
moreover, putting ψt := φct , the vt defined in the first part of the Theorem is

equal to
∇ψt
t

for every t ∈ (0, 1).

Note. Benamou-Brenier’s theorem (Theorem 2.1.15 below) will imply that (2.1.1)
is in fact an equality for a.e. t; while Proposition 2.1.18 will tell us that even the vt
of part 1. is “almost a gradient”.

Proof. 1. First of all, vt is well defined, because (py − px)γ � γ implies that
(gt)#(py − px)γ � (gt)#γ = µt. By this argument we also easily get that∫

|vt|2 dµt ≤
∫
|y − x|2 dγ(x, y) = W 2

2 (µ0, µ1).

To prove that (CE) is satisfied, just observe that for every φ ∈ C∞c ((0, 1)×Rn)
it holds

∫ 1

0

∫
Rn
∂tφ(t, x) dµt(x)dt =

∫ 1

0

∫
Rn
∂tφ(t, gt(x, y)) dγ(x, y)dt =

=

∫ 1

0

∫
Rn

{
d

dt

[
φ(gt(x, y), t)

]
−
〈
∇xφ(gt(x, y), t), y − x

〉}
dγ(x, y)dt

where the integral of the total derivative is zero thanks to the compactness of the
support, so the last expression is

= −
∫ 1

0

∫
Rn
∇xφ(z, t) · vt(z)dµt(z)dt

as we wanted.

2. We still denote by T the optimal transport map from µ0 to µ1, and by Tt the
function (1− t)Id+ tT .

Fix t ∈ (0, 1). Recall that T = ∇f with f convex; in the proof of Brenier’s
theorem we also saw that ∇f(x) = x−∇φ1(x). Since Tt is the gradient of a convex
function (it inherits this property from T ), then it is optimal thanks to Brenier’s
theorem, and again Tt(x) = x−∇φt(x): this implies ∇φt = t∇φ1, from which the
first assertion.

We have seen that µt � L n, which implies that St(y) = y − ∇ψt(y) is the
optimal transport map from µt to µ0; it satisfies Tt◦St = Id µ0-a.s. (Remark 1.2.18).
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To conclude, take any ξ bounded and Borel, and observe that∫
ξvtdµt =

∫
ξ((1− t)x+ ty)(y − x)[d(Id× T )#µ0](x, y) =

=

∫
ξ((1− t)x+ tT (x))(T (x)− x)dµ0(x) =

∫
ξ(Tt(x))

Tt(x)− x
t

d(St)#µt(x) =

=

∫
ξ(y)

y − St(y)

t
dµt(y) =

∫
ξ
∇ψt
t
dµt.

Remark 2.1.3 (Eulerian description of geodesics). By definition of c-transform, the
ψt defined in the second part of the previous Theorem satisfies

ψt(y)

t
= inf

x

(
|x− y|2

2t
− φ1(x)

)
.

The right hand side is the so-called Hopf-Lax formula for the solution of the
Hamilton-Jacobi equation {

∂tut + 1
2 |∇ut|

2 = 0
u0 = −φ1.

(A complete treatment of this kind of PDE can be found in [9].)
To sum up, we have proven that also Pa

2(Rn) is a geodesic space, and that its
constant speed geodesics satisfy the equations

d
dtµt +∇ · (vtµt) = 0
vt = ∇ψ(t, ·)
∂tψ + 1

2 |∇ψ|
2 = 0.

(2.1.2)

This fact is sometimes referred to as the Eulerian description of geodesics. For
a formal variational argument suggesting it, see Remark 2.1.24 below.

In order to continue the analysis of the curves in P2(Rn), we have to study the
solutions of the continuity equation in some detail.

2.1.1 The continuity equation

Definition 2.1.4. Given (µt)t∈[t0,T ] ⊆ P(Rn), and (x, t) 7→ vt(x) ∈ Rn a Borel
“velocity field” defined for (t, x) ∈ [t0, T ] × Rn, we say that (µt, vt)t∈[t0,T ] satisfies

the continuity equation in [t0, T ] if
∫ T
t0

∫
Rn |vt| dµt dt <∞, and

d

dt
µt +∇ · (vtµt) = 0 (CE)

holds in the sense of distributions in (t0, T )× Rn; i.e., if it holds∫ T

t0

∫
Rn

(
∂tφ(x, t) + 〈vt(x),∇xφ(x, t)〉

)
dµt dt = 0 ∀φ ∈ C∞c ((t0, T )× Rn).

(Then by density it is true also for φ ∈ C1.)
If t 7→ µt is narrowly continuous, we will call (µt) a continuous solution of (CE).
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Remark 2.1.5 (Time reparametrisation). Of course by a translation we can always
assume that t0 = 0. Moreover, if τ : [t′0, T

′] → [t0, T ] is a C1 diffeomorphism (a
“time reparametrisation”), it is easy to see that (µt, vt) satisfies (CE) in [t0, T ] if
and only if (µτ(t), τ̇(t)vτ(t))t satisfies (CE) in [t′0, T

′]: just change variables in the
distributional version of the equation.

Natural solutions of (CE) are described via the so called characteristic
equation, which is the ordinary differential equation u′(t) = vt(u(t)). We need
a slight extension of the classical Cauchy-Lipschitz theorem:

Theorem 2.1.6 (“Cauchy-Lipschitz”). Consider the Cauchy problem{
u′(t) = vt(u(t))
u(0) = x

and call solution of the problem in [0, T ] any u ∈ ACloc[0, T ) such that u(0) = x
and the first equality is satisfied for a.e. t ∈ (0, T ).

1. Let vt : Rn → Rn be Borel for every t ∈ [0, T ] and satisfy

S :=

∫ T

0

(
sup
Rn
|vt|+ Lip(vt)

)
dt <∞.

Then for every initial condition x ∈ Rn, the solution of the Cauchy problem
in [0, T ] exists unique. Moreover, if Xt(x) is this solution, then Lip(Xt) ≤ eS
for every t ∈ [0, T ].

2. Let vt satisfy only∫ T

0

(
sup
B
|vt|+ Lip(vt, B)

)
dt <∞ ∀B ⊂⊂ Rn .

Then for every initial condition x ∈ Rn, the Cauchy problem above has a
solution for t in a right neighbourhood of 0.

Moreover, for every x there exists a maximal solution Xt(x), defined on a rela-
tively open subinterval of [0, T ], such that every other solution u(t) is extended
by Xt(x). We denote by τ(x) the supremum of the domain of the maximal
solution.

Finally, if Xt(x) is bounded for t ∈ (0, τ(x)), then Xt(x) is defined globally,
i.e. for every t ∈ [0, T ].

Proof. Identical to the classical case. For the first part, prove that the map
F : C([0, t̄];Rn) → C([0, t̄];Rn) given by Fu(t) := x +

∫ t
0 vs(u(s))ds is well de-

fined, and a contraction if t̄ satisfies
∫ t̄

0 Lip(vs) ds < 1. Conclude that the solution
in [0, t̄] exists unique, and by a finite number of iterations of this argument get global
existence and uniqueness. The bound on the Lipschitz constant is an immediate
application of Gronwall’s lemma.

For the second part, take ṽt(x) equal to vt(x) in BR(x) and to vt

(
x
|x|R

)
oth-

erwise, and consider the ODE with ṽ in the place of v. To this apply the first
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part. Observe that the solution to this ODE starting from x is also a solution of
the original Cauchy problem for t in a right neighbourhood of 0: hence a solution
exists. On the other hand, two solutions which coincide for some t coincide in a
neighbourhood of that t (because locally they are solutions for a suitable ṽ to which
the first part applies): uniqueness follows. The existence of a maximal solution is a
straightforward construction; this solution is defined on a relatively open set since
otherwise it could be extended.

Finally, if a solution u defined on [0, t̃) is bounded, then there is a sequence tn ↑ t̃
such that u(tn) converges to a certain y. The hypothesis on the supremum of v easily

implies that u(t)→ y as t ↑ t̃. To the limit, one sees that y = u(0) +
∫ t̃

0 vs(u(s)) ds,
so that putting u(t̃) = y we have a solution on the closed set [0, t̃]; if t̃ < T it can
be extended, from which the thesis follows.

Remark 2.1.7 (Internal initial conditions). More generally, without changing the
hypotheses, given s ∈ (0, T ) one has existence and uniqueness (resp. global and
local) of a solution such that u(s) = x. The maximal solution with this “initial”
condition will be denoted byXt(x, s). In case 1., the bound on the Lipschitz constant
remains true as well.

Hypothesis 2.1.8. From now on, vt will at least satisfy the hypotheses of part 2. of
the previous Theorem, and Xt will denote the maximal solution of the characteristic
equation.

Proposition 2.1.9 (An explicit solution). Let µ0 ∈ P(Rn), t̄ > 0, and suppose
that Xt(x) is defined in [0, t̄] for µ0-a.e. x. For t ∈ [0, t̄], put µt := (Xt)#µ0, and

suppose to know a priori that
∫ T

0

∫
Rn |vt| dµt dt < ∞. Then (µt) is a continuous

solution of (CE) in [0, t̄].

Proof. µt is continuous: if ζ ∈ Cb(Rn) then

lim
s→t

∫
ζdµs = lim

s→t

∫
ζ(Xs(x)) dµ0(x)

Lebesgue
=

∫
ζ(Xt(x)) dµ0(x) =

∫
ζdµt.

Take φ ∈ C∞c (Rn×(0, t̄)). We note that t → φx(t) := φ(Xt(x), t) is absolutely
continuous with derivative φ̇x(t) = ∂tφ(Xt(x), t) + 〈∇φ(Xt(x), t), vt(Xt(x))〉, hence

0
compact supp

=

∫
Rn

(φx(t̄)− φx(0)) dµ0(x) =

∫
Rn

(∫ t̄

0
φ̇x(t)dt

)
dµ0(x)

and if we could apply Fubini’s theorem we would get:

=

∫ t̄

0

∫
Rn

(∂tφ+ 〈∇φ, v〉)(Xt(x), t) dµ0(x)dt =

∫ t̄

0

∫
Rn

(∂tφ+ 〈∇φ, v〉)(x, t) dµt(x)dt

hence this expression would be equal to 0, as desired. Fubini can be applied because∫ t̄

0

∫
Rn
|∂tφ+〈∇φ, v〉|(x, t) dµt(x)dt ≤ Lip(φ)T+

∫ T

0

∫
Rn

Lip(φ)|vt(x)| dµt(x)dt <∞.
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Lemma 2.1.10 (Test functions nonzero at the extremes). Let (µt)t∈[0,T ] be a contin-
uous solution of (CE). Then for every φ ∈ C1

c (Rn×[0, T ]) and every [t1, t2] ⊆ [0, T ]
it holds∫

Rn
φ(x, t2) dµt2 −

∫
Rn
φ(x, t1) dµt1 =

∫ t2

t1

∫
Rn

(∂tφ+ 〈∇xφ, v〉)(x, t) dµt(x)dt.

Proof. Take ηε ∈ C∞c (0, T ) with values in [0, 1], converging pointwise to I(t1,t2) with
η′εdt⇀δt2 − δt1 , use ηε(t)φ(x, t) as a test function for (CE), and let ε→ 0.

Corollary 2.1.11. If (µt) is a continuous solution of (CE) in [0, t] and in [t, T ],
then it is a solution in [0, T ].

Proof. Take any test function for (CE) in [0, T ]; apply the Lemma in [0, t] and in
[t, T ]; and sum the two equalities.

Remark 2.1.12 (Transport equation). The quantity ∂tφ + 〈∇xφ, v〉, at least with
smoothness hypotheses, can be made into any function ψ. Precisely, the classical
(backward) transport equation{

∂tφ(x, t) + 〈∇xφ(x, t), vt(x)〉 = ψ(x, t) ∀t ∈ (0, T ) ∀x ∈ Rn
φ(x, T ) = φT (x) ∀x ∈ Rn

has existence and uniqueness of solutions at least when φT is C1, ψ is Cb, and Xt(x)
is globally defined and satisfies d

dtXt(x) = vt(Xt(x)) for all t, x.

In fact, if φ is a solution, then d
dtφ(Xt(x), t) = ψ(Xt(x), t), or integrating,

φ(XT (x), T ) − φ(Xt(x), t) =
∫ T
t ψ(Xs(x), s) ds. This, replacing x with X0(x, t),

becomes

φ(x, t) = φT (XT (x, t))−
∫ T

t
ψ(Xs(x, t), s) ds. (2.1.3)

Conversely, taking this as the definition of φ, it is straightforward to verify that φ
satisfies the transport equation.

Theorem 2.1.13 (Comparison and uniqueness). Let (σt)t∈[0,T ] be a continuous
family of signed measures such that∫ T

0

∫
Rn
|vt| d|σt| dt <∞

and
∫ T

0 |σt|(B) dt <∞ for every B ⊂⊂ Rn. Suppose that (σt, vt) satisfies (CE).
Then σ0 ≤ 0 implies σt ≤ 0 ∀t. As a consequence, given vt, there is at most

one continuous family of probability measures starting from a given µ0 and solving
(CE) in [0, T ].

Proof. It is sufficient to prove that
∫
ψ dσt dt ≤ 0 for every ψ ∈ C∞c (Rn×(0, T ))

nonnegative (for homogeneity, we can also suppose ψ ≤ 1). In fact, in this case, for
ψ(x, t) = f(x)g(t), we would get∫ T

0

(∫
Rn
f(x) dσt(x)

)
g(t)dt ≤ 0 ∀f, g ≥ 0
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where the quantity in parentheses is continuous in t: for arbitrariness of g, this
quantity would be nonpositive for every f ≥ 0, and we would conclude.

The idea to prove the claim is to apply Lemma 2.1.10 to a function φ such
that (∂tφ + 〈∇φ, v〉)(x, t) = ψ and φ(·, T ) ≡ 0, which would give immediately the
conclusion. By the previous Remark we know that such a φ exists if vt is regular,
so rigorously we need an approximation argument.

To understand what kind of approximation we need, we suppose that we have
functions vk ∈ C∞c (Rn×[0, T ]) which tend to v in some sense to be established later;
we call φk the solution of the transport equation{

∂tφ
k(x, t) + 〈∇xφk(x, t), vkt (x)〉 = ψ(x, t) ∀t ∈ (0, T ) ∀x ∈ Rn

φk(x, T ) = 0 ∀x ∈ Rn

which is C∞ and has values in [−T, 0] by the previous Remark.
We want to mimic the computation we would do in the regular case; but since

we cannot expect good convergence on the whole Rn, we fix R > 0 and introduce a
cut-off function ξR equal to 1 on BR(0) and to 0 out of B2R(0), such that |∇ξR| ≤ 2

R .
Now we compute

0 ≥ −
∫
φkξRdσ0

Lemma 2.1.10
=

∫ T

0

∫
Rn

{
ξR∂tφ

k + 〈vt, ξR∇φk + φk∇ξR〉
}
dσt dt =

=

∫ T

0

∫
Rn
ξRψ dσt dt+

∫ T

0

∫
Rn
ξR〈vt−vkt ,∇φk〉dσt dt+

∫ T

0

∫
Rn
φk〈vt,∇ξR〉dσt dt.

The first integral is the term we wanted; the third is bounded by∫ T

0

∫
Rn
T |vt|

2

R
d|σt| dt

R→∞−−−−→ 0;

so, if we had that ∫ T

0

∫
Rn
ξR〈vt − vkt ,∇φk〉dσt dt

k→∞−−−→ 0, (2.1.4)

letting first k →∞ and then R→∞ we would get
∫ T

0

∫
Rn ψ dσt dt ≤ 0 as desired.

It remains to find an approximating sequence vk such that (2.1.4) holds.
Firstly, we note that (2.1.4) does not depend on the values of vt(x) for x out of

B2R(0), so we can suppose that vt(x) is zero out of a large ball and that∫ T

0

(
sup
Rn
|vt|+ Lip(vt)

)
dt <∞.

Secondly, we observe that the two following properties would be sufficient:

a. vk → v in L1(B2R(0)× [0, T ], σt ⊗ dt);

b. ∇φk is equibounded in B2R(0).

Moreover, by the explicit representation (2.1.3) of φk, b. is true if
(
∇Xk

s

)
k

are

equibounded; equivalently, if Lip(Xk
s (t, ·)) is bounded by a constant independent of

k, t. We obtain this from the “Cauchy-Lipschitz” theorem above if it holds:
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b’.

∫ T

0

(
sup
Rn
|vkt |+ Lip(vkt )

)
dt ≤ C <∞.

Eventually, the existence of vk ∈ C∞c (Rn×[0, T ]) satisfying a. and b’. follows by a
standard mollification argument.

Theorem 2.1.14 (Characterisation of solutions). Let (µt)t∈[0,T ] be continuous fam-
ily of probability measures on Rn which solves (CE). Then for µ0-a.e. initial condi-
tion x ∈ Rn, the maximal solution Xt(x) to the associated ODE is defined globally,
and µt = (Xt)#µ0.

Proof. Call τ(x) the maximum t ∈ [0, T ] such that the maximal solution is defined
in [0, τ(x)). We want to prove that the solution is µ0-a.s. bounded in (0, τ(x)), so
that it is globally defined in [0, T ] thanks to Theorem 2.1.6. Since we know that
in this case (Xt)#µ0 solves (CE) (Proposition 2.1.9), the uniqueness of the solution
will then give the desired result.

For s ∈ [0, T ], put Es := {x ∈ Rn : τ(x) > s} and consider ν
(s)
t := (Xt)#(IEsµ0),

which satisfies (CE) in [0, s] with the velocity field vt thanks to Proposition 2.1.9.

The comparison theorem gives that ν
(s)
t ≤ µt for every t ∈ [0, s]. Hence∫

Rn
sup

t∈(0,τ(x))
|Xt(x)− x| dµ0(x) ≤

∫
Rn

∫ τ(x)

0
|vt|(Xt(x)) dt dµ0(x)

Fubini
=

=

∫ T

0

∫
Et

|vt|(Xt(x)) dµ0(x) dt =

∫ T

0

∫
Rn
|vt| dν(t)

t dt ≤
∫ T

0

∫
Rn
|vt| dµt dt <∞

by hypothesis. The conclusion follows.

2.1.2 Benamou-Brenier’s theorem and tangent fields

The following theorem gives a “time dependent” interpretation of the W2 distance.

Theorem 2.1.15 (Benamou-Brenier). For every µ, ν ∈P2(Rn), it holds:

W 2
2 (µ, ν) = min

{∫ 1

0

∫
Rn
|vt|2 dµt :

d

dt
µt +∇ · (vtµt) = 0, µ0 = µ, µ1 = ν

}
. (BB)

Proof. At the very beginning of the chapter we found a solution (µt, vt)t of (CE)
with µ0 = µ, µ1 = ν generic elements of P2(Rn), such that

∫
|vt|2 dµt ≤W 2

2 (µ0, µ1):
hence we only need to prove the inequality ≤.

Take any admissible couple (µt, vt); we can assume that
∫ 1

0 |vt|
2dµt dt < ∞,

since otherwise the inequality is trivial. We want to use the characterisation of the
solutions of (CE) in terms of the associated ODE; however, we do not know that
vt satisfies Hypothesis 2.1.8, hence we will use a regularisation argument.

Precisely, take a strictly positive convolution kernel ρ ∈ C∞(Rn); for instance,

ρ(x) := (2π)−n/2 exp
(
− |x|

2

2

)
. Put ρε(x) := ε−n ρ

(
x
ε

)
, µεt := µt ∗ ρε. Acting by

convolution on the continuity equation for (µt, vt), we get that

d

dt
µεt +∇ · ((vtµt) ∗ ρε) = 0
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which is of the form d
dtµ

ε
t +∇ · (vεtµεt ) if we can define vεt implicitly by the relation

vεtµ
ε
t = (vtµt) ∗ ρε. This can be done because both (vtµt) ∗ ρε and µεt are absolutely

continuous with respect to L n, so that identifying them with their densities (which
we will do in the sequel of the proof), it is sufficient to put

vεt =
(vtµt) ∗ ρε

µεt

where the denominator is nonzero because µt 6= 0 and ρ is strictly positive.

Step 1 We prove that ∫
Rn
|vεt |2 dµεt ≤

∫
Rn
|vt|2 dµt (2.1.5)

To do this, we compute

|vεt (x)|2µεt (x) =

∣∣∣∣∣
∫
vt(y)ρε(x− y)dµt(y)∫
ρε(x− y)dµt(y)

∣∣∣∣∣
2 ∫

ρε(x− y)dµt(y).

Now we apply Jensen’s inequality to the function t 7→ t2 and the probability measure
obtained normalizing ρε(x− ·)µt: we get that the latter expression is

≤
∫
|vt(y)|2ρε(x− y)dµt(y).

Integration in dx gives the desired inequality.

Step 2 Fix ε > 0. We claim that µεt = (Xε
t )#µ

ε
0 where Xε

t (x) is the maximal

solution of u′(t) = vεt (u(t)) with u(0) = x. We want to apply Theorem 2.1.14. Note
that by Jensen

∫ 1
0

∫
|vt| dµt dt ≤ (

∫ 1
0

∫
|vt|2 dµt dt)1/2 < ∞, so we only have to

verify Hypothesis 2.1.8.

In order to do this, we prove that supx∈B |vεt (x)| and supx∈B |∇vεt (x)| (which
estimates the Lipschitz constant at least when B is a ball) are summable functions
of t for every B ⊂⊂ Rn. After expanding the derivative of the quotient that defines
vεt , this follows from the remarks:

• supRn |(vtµt) ∗ ρε| ≤ ‖vtµt‖1 ‖ρε‖∞ is summable in t because we made the

initial assumption
∫ 1

0 ‖vtµt‖1 dt <∞;

• supRn |∇((vtµt) ∗ ρε)| = supRn |(vtµt) ∗ ∇ρε| ≤ ‖vtµt‖1 ‖∇ρε‖∞ is summable
in t for the same reason;

• For every B ⊂⊂ Rn there exist c, C ∈ R such that 0 < c < µt ∗ ρε < C <∞ ,
because µt∗ρε is a continuous strictly positive function of (t, x) in the compact
set [0, 1]× B̄;

• supRn |∇(µt ∗ ρε)| = supRn |µt ∗ ∇ρε| ≤ ‖µt‖1 ‖∇ρε‖∞ = ‖∇ρε‖∞ which is a
constant.
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Conclusion By lower semicontinuity, W 2
2 (µ, ν) ≤ lim inf

ε→0
W 2

2 (µε0, µ
ε
1). Therefore, if

we could show that W 2
2 (µε0, µ

ε
1) ≤

∫ 1
0

∫
Rn |v

ε
t |2 dµεt dt, then the thesis would follow

using (2.1.5). But

W 2
2 (µε0, µ

ε
1) ≤

∫
Rn
|Xε

1(x)− x|2dµε0(x) =

∫
Rn

∣∣∣∣∫ 1

0
vεt (X

ε
t (x)) dt

∣∣∣∣2dµε0(x)
Jensen
≤

≤
∫
Rn

∫ 1

0
|vεt |2(Xε

t (x)) dt dµε0(x) =

∫ 1

0

∫
Rn
|vεt |2(y) dµεt (y) dt

and the proof is complete.

The next theorem gives more insight in the meaning of Benamou-Brenier’s theorem:

Theorem 2.1.16 (Description of AC2(P2(Rn))).

1. Let (µt, vt)t∈[0,1] be a solution of (CE) with µt ∈ P2(Rn) for every t, and

suppose that
∫ 1

0 |vt|
2dµtdt < ∞. Then (µt)t∈[0,1] is an AC2 curve in P2(Rn)

and |µ′t| ≤ ‖vt‖L2(µt)
for a.e. t ∈ [0, 1].

2. Conversely, if (µt)t∈[0,1] is an AC2 curve in P2(Rn), then it satisfies (CE) for
some vt such that ‖vt‖L2(µt)

= |µ′t| for a.e. t ∈ [0, 1] (the least possible value,
according to part 1.). Moreover, two such vt coincide for a.e. t.

Proof.

1. Take (ai, bi) disjoint subintervals of (0, 1) with
∑

i(bi − ai) < ε. Then

∑
i

W2(µai , µbi)
(BB)

≤
∑
i

√
bi − ai

√∫ bi

ai

|vt|2dµtdt ≤
∑
i

1

2

[
(bi − ai) +

∫ bi

ai

|vt|2dµtdt
]

which goes to 0 as ε→ 0: the absolute continuity is proven.

To show that |µ′t| ≤ ‖vt‖L2(µt)
for a.e. t, we just note that

W 2
2 (µt, µt+h)

h2

(BB)

≤ 1

h

∫ t+h

t
‖vs‖2L2(µs)

ds

which for h→ 0 gives the desired inequality if t is a point of metric differentiability
for t 7→ µt, and a Lebesgue point for t 7→ ‖vt‖2L2(µt)

.

2. For every m ∈ N, we approximate µt with a curve µmt such that µt(
i
m) = µmt ( i

m)
for i = 0, . . . ,m, and µmt is a constant speed geodesic on each interval of the form
[ im ,

i+1
m ]. For constant speed geodesics we already know that there is a velocity field

satisfying our thesis (Proposition 2.1.2). Gluing these velocity fields, we get a vmt
such that (µmt , v

m
t ) solves (CE) (in each interval, hence in [0, 1] by Corollary 2.1.11).

We also get that for every t ∈ [ im ,
i+1
m ] it holds

∫
|vmt |2 dµmt ≤ m2W 2

2 (µi/m, µ(i+1)/m) ≤ m2

(∫ i+1
m

i
m

|µ′s|ds

)2

≤ m
∫ i+1

m

i
m

|µ′s|2ds.
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Integrating with respect to t in [ im ,
i+1
m ] and summing on i one concludes∫ 1

0

∫
Rn
|vmt |2 dµmt dt ≤

∫ 1

0
|µ′t|2dt (2.1.6)

which is finite by hypothesis.
We note that µmt → µt in P2(Rn), hence narrowly; from this, using the def-

inition of narrow convergence and Lebesgue’s theorem, one immediately gets that
µmt ⊗ dt⇀µt ⊗ dt. The inequality (2.1.6) and the semicontinuity of the L2 relative
norm (Lemma 1.3.20) imply the existence of a subsequence (m(k)) and of a function

vt such that v
m(k)
t µ

m(k)
t ⊗ dt⇀vtµt ⊗ dt and∫ 1

0

∫
Rn
|vt|2 dµtdt ≤

∫ 1

0
|µ′t|2dt. (2.1.7)

Now (µt, vt) is a solution of (CE): just write the definition of the fact that (µmt , v
m
t )

solves (CE) in distributional sense, and let m→∞ along the subsequence (m(k)).
As a consequence, the first part of the Theorem tells us that |µ′t| ≤ ‖vt‖L2(µt)

for
a.e. t ∈ [0, 1], which combined with (2.1.7) concludes the proof of existence.

To prove uniqueness, take vt, wt velocity fields such that (µt) satisfies (CE) and
‖vt‖L2(µt)

= ‖wt‖L2(µt)
= |µ′t| for a.e. t. Then defining ut := 1

2(vt+wt), part 1. yields

|µ′t| ≤ ‖ut‖L2(µt)
for a.e. t; which implies that vt = wt for a.e. t by strict convexity

of the L2 norm.

Definition 2.1.17. The velocity field vt whose existence and uniqueness was proven
in the second part of the previous Theorem, will be said tangent to the curve (µt).
(See also Remark 2.1.20.)

Proposition 2.1.18 (Characterisation of the tangent field). Let (µt)t∈[0,1] be an
AC2 curve in P2(Rn), and suppose that (µt, vt) satisfy (CE). Then vt is tangent to
(µt) if and only if, for a.e. t, vt is in the L2(µt;Rn)-closure of {∇φ : φ ∈ C∞c (Rn)}.

Proof. Note that (vt + wt, µt) satisfies (CE) if and only if for a.e. t, ∇ · (wtµt) = 0,
which by the very definition of divergence means wt ∈ {∇φ : φ ∈ C∞c (Rn)}⊥ in
the Hilbert space L2(µt). The element of smallest norm among these vt +wt is the
projection of vt onto {∇φ : φ ∈ C∞c (Rn)}⊥⊥, and the conclusion follows.

With this Proposition in mind, we give the following Definition:

Definition 2.1.19. The tangent space to P2(Rn) at a point µ ∈ P2(Rn) is
the set

Tanµ P2(Rn) := {∇φ : φ ∈ C∞c (Rn)}L
2(µ;Rn)

.

Remark 2.1.20 (Tangent field to generic AC curves). If (µt) is any absolutely contin-
uous curve in P2(Rn), we can always reparametrise it in such a way that it becomes
an AC2 curve, and since the continuity equation is invariant under reparametrisa-
tion, we find by Theorem 2.1.16 that there exist vt ∈ L2(µt;Rn) such that (µt, vt)
satisfies (CE). By projection (as in Proposition 2.1.18), we see that we can take
vt ∈ Tanµt P2(Rn) for a.e. t, and that this determines one precise velocity field (vt)
(up to a negligible set of t). Extending Definition 2.1.17, we will say that this vt is
the tangent velocity field to (µt).
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There are more “constructive” results which indicate vt as the “tangent” vector
to the curve:

Theorem 2.1.21 (Characterisation of vt). Let (µt) ⊆ P2(Rn) be an AC curve
and vt be its tangent velocity field. Then for a.e. t, denoting by γh any element of
Γo(µt, µt+h), it holds(

px,
1

h
(py − px)

)
#

γh
h→0−−−→ (Id× vt)#µt in P2((Rn)2). (2.1.8)

Moreover, the above relation implies

lim
h→0

W2

(
µt+h, (Id+ hvt)# µt

)
|h|

= 0. (2.1.9)

Finally, for a.e. t such that µt � L n, if T t+ht denotes the optimal map from µt to
µt+h, then

1

h
(T t+ht − Id)

h→0−−−→ vt in L2(µt).

Proof. For simplicity of notation, we denote the measures
(
px,

1
h(py − px)

)
#
γh as

νh. We call ν0 := limi→∞ νh(i) any limit point of (νh) for h → 0 in the sense of
duality with C0((Rn)2). (A priori, the mass of ν0 might be less than 1.) The first
marginal of νh is µt for every h, from which one easily proves that the first marginal
of ν0 is a constant multiple of µt: so we can disintegrate ν0 as µt ⊗ ν0x. Our first
goal is to show that ν0x = δvt(x) for a.e. t, which will give ν0 = (Id× vt)#µt.

Fix φ ∈ C∞c (Rn). On the one hand

∫
φ dµt+h −

∫
φ dµt =

∫
(φ(y)− φ(x))dγh(x, y) =

=

∫
(φ(x+ hy)− φ(x))dνh = h

∫
〈∇φ(x), y〉dνh(x, y) + o(h)

where we used that the error in the Taylor formula has an uniform estimate because
φ is C∞c .

On the other hand

1

h

(∫
φ dµt+h −

∫
φ dµt

)
h→0−−−→

∫
Rn
〈∇φ, vt〉dµt

for a.e. t (see Lemma 2.1.10).

Putting ṽt(x) :=
∫
y dν0,x(y), we have proven that for a.e. t it holds∫

〈∇φ, vt〉dµt =

∫
〈∇φ, ṽt〉dµt;

using this equation for φ varying in a countable dense subset of C∞c (Rn) we conclude
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that ∇ · ((ṽt − vt)µt) = 0 for a.e. t, so that (µt, ṽt) solves (CE) too. But

‖ṽt‖2L2(µt)
=

∫
Rn

(∫
Rn
y dν0x(y)

)2

dµt(x) ≤
∫
Rn
ν0x(Rn)

∫
Rn
|y|2dν0x(y) dµt(x) ≤

≤
∫

(Rn)2

|y|2dν0(x, y) ≤ lim inf
i→∞

∫
(Rn)2

|y|2dνh(i)(x, y) =

= lim inf
i→∞

∫
(Rn)2

|y − x|2

h(i)2
dγh(i)(x, y) = lim inf

i→∞

W 2
2 (µt, µt+h(i))

h(i)2
= |µ′t|2

for a.e. t; we know that the converse inequality holds for a.e. t for every solution of
(CE), so that we have equality and ṽt = vt for a.e. t (by definition of vt).

Note that the chain of (in)equalities holds also replacing h(i) with the subse-
quence of h(i) realising lim sup

i→∞

∫
(Rn)2 |y|2dνh(i)(x, y): from which we deduce that∫

(Rn)2

|y|2dν0(x, y) = lim
i→∞

∫
(Rn)2

|y|2dνh(i)(x, y) = |µ′t|2 for a.e. t.

If we combine this with the fact that the first marginal of νh is constant, we easily
deduce that the sequence νh(i) is tight, and so ν0 is a probability measure and the
convergence is narrow. As a consequence, (px)#ν0 = µt.

Now both
∫

(Rn)2 |x|2dνh(i)(x, y) and
∫

(Rn)2 |x|2dν0(x, y) are equal to the constant

finite quantity
∫
Rn |x|

2dµt(x), so we have shown that the second moments of νh(i)

converge to the second moment of ν0. By the basic criterion of convergence in P2,
we conclude that νh(i) → ν0 in W2 distance.

We observe that to have equality in all the inequalities above, it is necessary
that for µt-a.e. x, ν0x is a Dirac mass. In this case, the definition of ṽt forces this
Dirac mass to be in ṽt = vt, and the first part of the Theorem is proved.

As for (2.1.9), we disintegrate γh as γh,x⊗µt and consider the probability measure
on (Rn)3 given by

(
γh,x × δx+hvt(x)

)
⊗µt: since two of its marginals are respectively

µt+h and (Id+ hvt)#µt, then we can estimate

W 2
2

(
µt+h, (Id+ hvt)# µt

)
h2

≤
∫

(Rn)2

1

h2
|x+ hvt(x)− y|2dγh(x, y) =

=

∫
(Rn)2

|vt(x)− y|2dνh(x, y)

by definition of νh. We claim that (2.1.8) implies that this quantity is infinitesimal.
In fact, for every ε > 0 fixed, we can take by density vε ∈ Cc(Rn) such that∫
|vt − vε|2dµt < ε, and estimate∫

(Rn)2

|vt(x)− y|2dνh(x, y) ≤ 2

∫
|vt − vε|2dµt + 2

∫
(Rn)2

|vε(x)− y|2dνh(x, y)

where |vε(x) − y|2 has 2-growth (see Remark 1.3.8), and so for h � 1 the second
integral is less then

2

∫
(Rn)2

|vε(x)− y|2dν0(x, y) + ε = 2

∫
|vt − vε|2dµt + ε .
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To sum up, we have proven that
W 2

2 (µt+h,(Id+hvt)#µt)
h2 ≤ 5 ε for h � 1, which is

(2.1.9) for arbitrariness of ε.
Finally, in the case in which µt � L n, (2.1.8) reduces to(

Id× 1

h

(
T t+ht − Id

))
#

µt → (Id× vt)# µt.

A direct consequence of the definitions is that if (Id × fh)#µ⇀(Id × f)#µ, then
fhµ⇀fµ: therefore 1

h(T t+ht − Id)µt⇀vtµt. But∥∥∥∥1

h
(T t+ht − Id)

∥∥∥∥
L2(µt)

=
1

h
W2(µt, µt+h)→ |µ′t| = ‖vt‖L2(µt)

for a.e. t.

In particular the L2(µt) norms of 1
h(T t+ht − Id) are bounded, hence the sequence

of this functions is weakly sequentially compact in L2(µt); but any L2(µt)-weak
limit for h → 0 is forced to be vt, from which we conclude that 1

h(T t+ht − Id)
converges to vt weakly in L2(µt). Since the norms converge, the convergence is also
in L2(µt)-norm.

Proposition 2.1.22. For µ ∈Pa
2(Rn), ν ∈P2(Rn), let T νµ be the unique optimal

transport map from µ to ν. Then (T νµ − Id) ∈ Tanµ P2(Rn).

Proof. Suppose first that ν has compact support. Brenier’s theorem tells us that
T νµ is of the form ∇φ with φ convex and µ concentrated on Int(Dom(φ)). It is
straightforward to prove that ∇φ is continuous on its domain: simply observe that
the graph of the subdifferential of a convex function is closed. Hence by truncation
and mollification there exist φk ∈ C∞c (Rn) such that (∇φk)k∈N is bounded and con-
verges a.e. to ∇φ on Int(Dom(φ)); since µ is concentrated on this set and µ� L n,
they converge also µ-a.e.. By dominated convergence we conclude that ∇φk → ∇φ
in L2(µ).

For general ν, take νk compact supported and such that νk → ν, and use the
stability of optimal maps (Proposition 1.3.9).

Remark 2.1.23 (Tangent space to µ ∈Pa
2(Rn)). The proposition shows that

{λ(T νµ − Id) : λ ∈ R, ν ∈P2(Rn)}L
2(µ;Rn) ⊆ Tanµ P2(Rn).

This is actually an equality: in fact, for any φ ∈ C∞c (Rn), we can take λ� 1 such
that 1

2 |x|
2 +λ−1φ(x) is convex, from which Id+λ−1∇φ is an optimal trasport map

T νµ by Brenier’s theorem.

Remark 2.1.24 (Hamilton-Jacobi equation, variational argument). With a formal
variational argument, we can obtain in a new way the equations of geodesics (2.1.2).

In fact, let (µt)t∈[0,1] be a constant speed geodesic, with µ0, µ1 � L n. From
part 2. of Proposition 2.1.2 we know that the tangent velocity field is of the form
∇ψt, and that µt � Rn for every t; put ρt := dµt

dL n .
Now take (σt)t∈[0,1] any AC2 curve in Pa

2(Rn) from µ0 to µ1, and wt the corre-

sponding tangent field. Put st := dσt
dL n . For ε ∈ R, define

µεt := (1− ε)µt + ε σt = ((1− ε)ρt + ε st) L n =: ρεt L n
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and suppose that this is an element of P2(Rn) for every t ∈ [0, 1] and every ε
sufficiently small. (This is not obvious for ε < 0; but it is true for instance if st is
bounded and st 6= 0 only on a set where ρt is bounded from below by a positive
constant.) It clearly holds

d

dt
µεt +∇ · ((1− ε)µtvt + ε σtwt) = 0

which is of the form (CE) if vεt is defined by

vεt :=
(1− ε)ρtvt + ε stwt

(1− ε)ρt + ε st
.

where we use the convention 0
0 = 0. Now

∫ 1

0

∫
Rn
|vεt |2(x)ρεt (x)dx dt =

∫ 1

0

∫
Rn

|(1− ε)ρtvt + ε stwt|2

(1− ε)ρt + ε st
dL n dt

attains a local minimum at ε = 0; hopefully, we can differentiate under the integral
sign and impose the result to be zero. The derivative of the integrand with respect
to ε is

2
(1− ε)ρtvt + ε stwt

(1− ε)ρt + ε st
· [stwt − ρtvt]−

[
(1− ε)ρtvt + ε stwt

(1− ε)ρt + ε st

]2

[st − ρt]

so that in ε = 0 we obtain the condition

0 =

∫ 1

0

∫
Rn

2vt · [stwt − ρtvt]dL n dt+

∫ 1

0

∫
Rn
|vt|2[ρt − st]dL n dt.

Now note that vt = ∇ψt: hence, using that∇·(σtwt−µtvt) = µ̇t−σ̇t (and neglecting
issues of regularity of ψ), we can rewrite the first addend as

−2

∫ 1

0

∫
Rn
∂tψtd(σt − µt)dt.

To sum up, the condition is∫ 1

0

∫
Rn

(
2∂tψt + |∇ψt|2

)
d(µt − σt)dt = 0 (2.1.10)

whenever (σt)t∈[0,1] is an AC2 curve from µ0 to µ1 (satisfying some technical as-
sumptions). We cannot expect that this implies that the integrand is 0: the only
constraint on ψt in the argument above is the value of its gradient, so we can for
instance add to ψt a constant function f(t). However, we can hope that, with
a suitable additive perturbation to ψt, we can find a potential which solves the
Hamilton-Jacobi equation. In the setting of Chapter 3, the discrete counterpart of
this statement will be given a formal justification: see Remark 3.1.42.
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2.2 Differentials in P2(Rn)

We define a couple of concepts, meaningful in generic metric spaces, which will be
useful in the sequel.

Definition 2.2.1 (Slope). Let (X, d) be a metric space. The slope of a function
E : X → R∪{+∞} in a point x ∈ X such that E(x) <∞ is the quantity

|∇E|(x) := lim sup
y→x

(E(x)− E(y))+

d(x, y)
.

By definition, it is the smallest s ∈ [0,∞] such that E(y) ≥ E(x) − s · d(x, y) +
o(d(x, y)). We will use the notations

Dom(E) =: {x ∈ X : E(x) <∞}, Dom(|∇E|) := {x ∈ Dom(E) : |∇E|(x) <∞}.

Definition 2.2.2 (λ-convexity). Let (X, d) be a geodesic metric space, λ ∈ R. A
function E : X → R∪{+∞} is geodesically λ-convex (resp. λ-concave) if for
every x, y ∈ X there exists a constant speed geodesic γ : [0, 1] → X from x to y
such that

E(γ(t)) ≤ (1− t)E(γ(0)) + tE(γ(1))− λ

2
t(1− t)d2(γ(0), γ(1)) (resp. ≥).

When there is no possibility of confusion (for instance, when there is no linear
structure on X), we will simply say that E is λ-convex (resp. λ-concave).

Example 2.2.3 (Hilbert spaces). If X is a Hilbert space, a direct verification shows
that E is λ-convex if and only if x 7→ E(x)− λ

2 |x|
2 is convex.

Moreover, given any functional E, there is a classical object denoted with∇E(x):
precisely, the element of minimal norm in the subdifferential of E in x (when this
subdifferential is nonempty). The nontrivial fact is that, at least if E is λ-convex,
the notation introduced above is coherent with this, i.e. that |∇E(x)| is the slope
of E in x.

One inequality does not need convexity:

E(y) ≥ E(x) + 〈∇E(x), y − x〉+ o(|x− y|) ≥ E(x)− |∇E(x)||y − x|+ o(|x− y|)

implies that |∇E(x)| is greater or equal than the slope.
For the converse inequality, we firstly note that E(y) ≥ E(x)−s|x−y|+o(|x−y|)

is equivalent to

E(y) ≥ E(x)− s|x− y|+ λ

2
|x− y|2 ∀y

(the proof is simple; the same ideas will be used in the proofs of Lemma 2.2.4 and
Proposition 2.2.10). Then, in H × R, the convex sets

A :=

{
(y, t) : E(y)− E(x)− λ

2
|x− y|2 < t

}
, B := {(y, t) : t < −s|x− y|}

can be separated by Hahn-Banach’s theorem, and from this it is not difficult to
conclude.

Much of what seen in this example, in a suitable sense, will be valid replacing
H with P2(Rn).
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Lemma 2.2.4 (Global formula for the slope). If E is λ-convex and x ∈ Dom(E),
then

|∇E|(x) = sup
y 6=x

[
E(x)− E(y)

d(x, y)
+
λ

2
d(x, y)

]+

.

Proof. The inequality ≤ is obvious. Conversely, given any y ∈ X, we apply the
definition of λ-convexity to find a geodesic γ from x to y such that

E(γ(t))− E(x) ≤ t(E(y)− E(x))− λ

2
t(1− t)d(x, y).

Now it is sufficient to divide this relation by the equality d(x, γ(t)) = t · d(x, y) and
let t ↓ 0.

Corollary 2.2.5. If E is λ-convex and lower semicontinuous, then |∇E| is lower
semicontinuous on Dom(E) (as it is a supremum of lower semicontinuous function-
als).

Notation. For µ, ν ∈ P2(Rn), µ � L n, we will denote by T νµ the unique optimal
transport map from µ to ν.

In analogy with the classical concepts from differential calculus, we give the
following definitions:

Definition 2.2.6. For µ ∈ Dom(|∇E|)∩Pa
2(Rn), we will say that ξ ∈ Tanµ P2(Rn)

is the Wasserstein differential of E, and write ξ = ∇WE(µ), if

E(ν)− E(µ) =

∫
Rn
〈ξ(x), T νµ (x)− x〉 dµ(x) + o(W2(µ, ν)).

Remark 2.2.7 (Uniqueness of the differential). The Wasserstein differential is unique:
in fact for every ν ∈P2(Rn), take the unique constant speed geodesic from µ to ν,
namely µt := (Id+ t(T νµ − Id))#µ (see the beginning of the chapter); observe that
W2(µ, µt) = tW2(µ, ν) and Tµtµ = Id+ t(T νµ − Id), and conclude from the definition
that the value of

∫
Rn〈ξ(x), T νµ (x)− x〉 dµ(x) is uniquely determined. For arbitrari-

ness of ν, and using the characterisation of the tangent space seen in Remark 2.1.23,
ξ is determined.

Definition 2.2.8. For µ ∈ Dom(|∇E|) ∩Pa
2(Rn), we will say that ξ ∈ L2(µ;Rn)

is in the Wasserstein subdifferential of E, and write ξ ∈ ∂WE(µ), if

lim inf
ν→µ

E(ν)− E(µ)−
∫
Rn〈ξ(x), T νµ (x)− x〉 dµ(x)

W2(µ, ν)
≥ 0.

Remark 2.2.9. Once we have a ξ ∈ L2(µ;Rn) satisfying the inequality of the defini-
tion above, we can find an element of the subdifferential belonging to Tanµ P2(Rn)
by projection, thanks to the fact that (T νµ − Id) ∈ Tanµ P2(Rn) for every ν by
Proposition 2.1.22. Note that the projected subdifferential has a strictly smaller L2

norm, unless ξ was already tangent.

In the λ-convex case, we have the global characterisation:
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Proposition 2.2.10 (λ-convex case). Suppose that E is λ-convex, and consider
µ ∈ Dom(|∇E|) ∩Pa

2(Rn). Then ξ ∈ L2(µ;Rn) is in ∂WE(µ) if and only if

E(ν)− E(µ) ≥
∫
〈ξ(x), T νµ (x)− x〉 dµ(x) +

λ

2
W 2

2 (µ, ν) ∀ν ∈ Dom(E). (2.2.1)

Proof. For the nontrivial implication, take the unique constant speed geodesic from
µ to ν, namely µt := (Id + t(T νµ − Id))#µ (see the beginning of the chapter). The
hypothesis gives

E(µt)− E(µ) ≤ −tE(µ) + tE(ν)− λ

2
t(1− t)W 2

2 (µ, ν) (2.2.2)

Since W2(µ, µt) = tW2(µ, ν) and Tµtµ = Id+ t(T νµ − Id), the definition of subdiffer-
ential gives

lim inf
t→0+

E(µt)− E(µ)

t
≥ lim inf

t→0+

1

t

∫
〈ξ(x), Tµtµ (x)−x〉 dµ(x) =

∫
〈ξ(x), T νµ (x)−x〉 dµ(x).

Dividing (2.2.2) by t, taking the lim inf for t → 0+, and using the relation just
obtained, gives the desired inequality.

Proposition 2.2.11 (Closure). Suppose that E is λ-convex and lower semicontin-
uous, and let µk → µ in Pa

2(Rn). Assume that ξk ∈ ∂WE(µk), ξ ∈ L1(µ) satisfy
ξkµk → ξµ in the sense of distributions, and that supk

∫
|ξk|2dµk < ∞. Then

ξ ∈ ∂WE(µ).

Proof. For every ν fixed and every µk, we rewrite (2.2.1) using the probability
measure Pk := (Id× ξk × T νµk)#µk ∈P((Rn)3), as

E(ν) ≥ E(µk) +

∫
(Rn)3

〈x2, x3 − x1〉 dPk(x1, x2, x3) +
λ

2
W 2

2 (µk, ν). (2.2.3)

We note that the second moments
∫

(Rn)3

(
|x1|2 + |x2|2 + |x3|2

)
dPk(x1, x2, x3) are

equibounded by hypothesis, and so the sequence (Pk) is tight: by Prohorov’s the-
orem, there exists a subsequence Pk(h) narrowly converging to some probability
P . Note that |〈x2, x3 − x1〉| ≤ C

(
|x1|2 + |x2|2 + |x3|2

)
whose integrals in dPk are

equibounded, so a standard truncation argument gives∫
(Rn)3

〈x2, x3 − x1〉 dPk(h)(x1, x2, x3)
h→∞−−−→

∫
(Rn)3

〈x2, x3 − x1〉 dP (x1, x2, x3).

The marginals of Pk(h) obviously converge: in particular (p1,3)# P is optimal from
µ to ν (Theorem 1.2.21), i.e. (p1,3)# P = (Id × T νµ )#µ. So, calling γ := (p1,2)# P
and disintegrating P with respect to x2, it is immediate to prove that∫

f(x1, x2, x3) dP (x1, x2, x3) =

∫
f
(
x1, x2, T

ν
µ (x1)

)
dγ(x1, x2)

whenever any of the two makes sense.
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Using all the observations above, if we let k → ∞ in (2.2.3) along the subse-
quence k(h), and recall the semicontinuity of E, we get

E(ν) ≥ E(µ) +

∫
(Rn)2

〈x2, T
ν
µ (x1)− x1〉 dγ(x1, x2) +

λ

2
W 2

2 (µ, ν).

If we disintegrate γ as γ(x1) ⊗ µ, and put γ̄(x1) :=
∫
x2 dγ

(x1)(x2) (well defined:
x2 ∈ L2(γ)), we therefore find

E(ν) ≥ E(µ) +

∫
(Rn)2

〈γ̄(x1), T νµ (x1)− x1〉 dµ(x1) +
λ

2
W 2

2 (µ, ν)

and our last task is to prove that γ̄ = ξ µ-a.s.. Since γ̄, ξ ∈ L2(µ;Rn), then
it is sufficient to verify that for every test function F ∈ C∞c (Rn;Rn) we have∫
〈F, γ̄〉dµ =

∫
〈F, ξ〉dµ. This is true because∫

〈F (x1), γ̄(x1)〉dµ(x1) =

∫
〈F (x1), x2〉dγ(x1, x2) =

= lim
h→∞

∫
〈F (x1), x2〉dPk(h)(x1, x2, x3) = lim

h→∞

∫
〈F, ξk(h)〉dµk(h) =

∫
〈F, ξ〉dµ

by the assumed distributional convergence.

Remark 2.2.12. (Subdifferentiability vs. finite slope) If ξ ∈ ∂WE(µ), then the slope
of E clearly satisfies |∇E|(µ) ≤ ‖ξ‖L2 . We wonder if a converse holds, namely if the
finiteness of the slope is equivalent to ∂WE(µ) 6= ∅. The main tool to find elements
of the subdifferential is to solve a variational problem (the idea is: “in a minimum
point, zero is in the subdifferential”). Hence, we will often need the hypothesis:

Hypothesis 2.2.13.

1. There exists τ∗ > 0 such that for every τ ∈ (0, τ∗) and every µ ∈ P2(Rn),
the functional ΦE(τ, µ; ·) : P2(Rn)→ (−∞,+∞] defined by

ΦE(τ, µ; ν) :=
1

2τ
W 2

2 (µ, ν) + E(ν)

admits at least a minimum point µτ ∈ Dom(E).

2. Dom(|∇E|) ⊆Pa
2(Rn).

Proposition 2.2.14. Let µτ ∈ Dom(E) be a minimum point of ΦE(τ, µ; ·). Then
µτ ∈ Dom(|∇E|). If moreover µτ ∈ Pa

2(Rn) (for instance, if the second part of
Hypothesis 2.2.13 holds), then 1

τ (Tµµτ − Id) ∈ ∂WE(µτ ).

Proof. The minimality reads

E(ν)− E(µτ ) ≥ 1

2τ

(
W 2

2 (µτ , µ)−W 2
2 (ν, µ)

)
∀ν ∈P2(Rn) (2.2.4)
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and since∣∣W 2
2 (µτ , µ)−W 2

2 (ν, µ)
∣∣ = |W2(µτ , µ)−W2(ν, µ)| · |W2(µτ , µ) +W2(ν, µ)| ≤

≤W2(µτ , ν) · (2W2(µτ , µ) +W2(µτ , ν)) = sW2(µτ , ν) + o(W2(µτ , ν))

we see that µτ ∈ Dom(|∇E|).
If µτ ∈Pa

2(Rn) then we have

W 2
2 (µτ , µ) =

∫
|Tµµτ (x)− x|2 dµτ (x), W 2

2 (ν, µ) ≤
∫
|T νµτ (x)− Tµµτ (x)|2 dµτ (x).

We insert these relations in inequality (2.2.4), and use the elementary identity
1
2 |a|

2 − 1
2 |b|

2 = 〈a, a− b〉 − 1
2 |a− b|

2, to get

E(ν)− E(µτ ) ≥ 1

2τ

∫ (
|Tµµτ (x)− x|2 − |T νµτ (x)− Tµµτ (x)|2

)
dµτ (x) =

=

∫ 〈
1

τ

(
Tµµτ (x)− x

)
, T νµτ (x)− x

〉
dµτ (x)− 1

2τ

∫ ∣∣T νµτ (x)− x
∣∣2 dµτ (x);

recognising that the second integral is W 2
2 (µτ , ν), we conclude as desired that

1
τ (Tµµτ − Id) ∈ ∂WE(µτ ).

With the help of our additional hypothesis, we can now answer positively to our
question about finiteness of slope:

Proposition 2.2.15 (Finiteness of slope). Let E be λ-convex and lower semi-
continuous, and suppose that Hypothesis 2.2.13 holds. Let µ ∈ Dom(E). Then
µ ∈ Dom(|∇E|) if and only if ∂WE(µ) 6= ∅.

Proof. If ξ ∈ ∂WE(µ), then clearly |∇E|(µ) ≤ ‖ξ‖L2(µ;Rn). Conversely, suppose
that |∇E|(µ) < ∞, and consider the minimizer µτ whose existence is granted by
Hypothesis 2.2.13. Putting ξτ := 1

τ (Tµµτ − Id), we now know that ξτ ∈ ∂WE(µτ );

moreover, by definition,
∫
|ξτ |2dµτ =

W 2
2 (µ,µτ )
τ2 .

To estimate this quantity, we note that

−|∇E|(µ)W2(µ, µτ ) +
λ

2
W 2

2 (µ, µτ ) ≤ E(µτ )− E(µ) ≤ − 1

2τ
W 2

2 (µ, µτ )

and so
W2(µ, µτ )

τ
≤ 2|∇E|(µ)

1 + τλ
(in particular µτ → µ).

Hence we have

lim sup
τ→0

∫
|ξτ |2dµτ ≤ 4|∇E|(µ)2 <∞.

Thanks to the semicontinuity of the relative L2 norm (Lemma 1.3.20), there exists a
sequence τk ↓ 0 such that ξτkµτk narrowly converges to some measure of the form ξµ.
The “closure” of the subdifferential (Proposition 2.2.11) yields the conclusion.
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Remark 2.2.16. One can actually say more: in the same hypotheses and when
any of the two equivalent conditions in the theorem holds, if we call ∂oE(µ) the
element of minimal L2 norm in ∂WE(µ) (it exists unique since ∂WE(µ) is convex
and closed), then |∇E|(µ) = ‖∂oE(µ)‖L2(µ;Rn), in perfect analogy with the Hilbert
case. However, we will never use this fact: we therefore skip the proof, to avoid
an inappropriate digression into the purely metric theory of slope. The interested
reader may refer to [3]. Anyway, for the example of greatest interest for this thesis,
i.e. internal energy, the result is directly proven in Theorem 2.2.32 below. Moreover,
we will obtain incidentally that this equality is true at least a.e. along the trajectory
of gradient flows: see Remark 2.3.10.

Finally, we see another situation in which our differential behaves like the clas-
sical gradient in ordinary calculus:

Proposition 2.2.17 (Chain rule). Let (µt)t∈(a,b) be an AC curve contained in
Dom(E) ⊆P2(Rn), with tangent velocity field vt. Consider a point t̄ ∈ (a, b) such
that

1. µt̄ � L n, and ∂WE(µt̄) is nonempty: we call ξt̄ any of its elements;

2. E ◦ µ : (a, b)→ R is differentiable in t̄;

3. limh→0
1
h

(
T
µt̄+h
µt̄ − Id

)
= vt̄ in L2(µt̄) (this holds for a.e. t ∈ (a, b) thanks to

Theorem 2.1.21);

4. limh→0
W2(µt̄,µt̄+h)

h = O(h) (this also holds for a.e. t: it is true in every point
of metric differentiability of µ).

Then
d

dt

∣∣∣∣
t=t̄

[E ◦ µ] =

∫
〈ξt̄, vt̄〉 dµt̄.

Proof. Using the hypothesis
(
T
µt̄+h
µt̄ − Id

)
= h · vt̄ + o(h) in L2(µt̄), we get from the

definition of ∂WE(µt̄) that

E(µt̄+h)− E(µt̄) ≥ h
∫
〈ξt̄, vt̄〉 dµt̄ + o(h) + o(W2(µt̄, µt̄+h))

where the last term is o(h) too by hypothesis. If one considers separately the cases
h > 0 and h < 0, and in both cases divides the above inequality by h, the result is

d+

dt

∣∣∣∣
t=t̄

[E ◦ µ] ≥
∫
〈ξt̄, vt̄〉 dµt̄,

d−

dt

∣∣∣∣
t=t̄

[E ◦ µ] ≤
∫
〈ξt̄, vt̄〉 dµt̄,

and since the right and left derivatives of E ◦ µ (exist and) coincide by hypothesis,
the conclusion follows.

Our next intention is to study two special kind of functionals: potential energy
and internal energy.
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2.2.1 Potential energy

Definition 2.2.18. Given a lower semicontinuous “potential” V : Rn → R∪{+∞}
bounded from below, the potential energy functional is V(µ) :=

∫
V dµ.

Remark 2.2.19 (Semicontinuity). The hypotheses on V obviously guarantee that
the functional is well defined and lower semicontinuous on P2(Rn).

Proposition 2.2.20 (λ-convexity). V is λ-convex if and only if V is λ-convex. In
this case, it is λ-convex along every geodesic.

Proof. One implication follows considering Dirac masses. For the converse, consider
a generic geodesic µt := ((1− t)px + tpy)#γ, where γ ∈ Γo(µ0, µ1), and note

V(µt) =

∫
Rn
V dµt =

∫
(Rn)2

V ((1− t)x+ ty)dγ(x, y)

which, applying λ-convexity of V , gives immediately the result.

Remark 2.2.21 (Candidate differential). Suppose that V is C1. Then

V(ν)− V(µ) =

∫
Rn

[
V (T νµ (x))− V (x)

]
dµ(x) =

=

∫
Rn
〈∇V (x), T νµ (x)− x〉 dµ(x) +

∫
Rn
ωx(T νµ (x))|T νµ (x)− x|dµ(x) (2.2.5)

where ωx(y)→ 0 as y → x, so we can hope that under suitable hypotheses the second
integral becomes small as ν → µ. But if the second integral were o(W2(µ, ν)), we
would be very close to the statement that ∇WV ≡ ∇V . However, to hope that such
a relation is true, of course we need that ∇V ∈ L2(µ;Rn). The most natural (and
simplest) condition which ensures this is |∇V (x)| ≤ C(1 + |x|). This is sufficient:

Theorem 2.2.22 (Differentiability). If V is C1 and there exists C > 0 such that
|∇V (x)| ≤ C(1 + |x|), then V is Wasserstein-differentiable at every µ ∈ Pa

2(Rn)
with differential ∇V .

Proof. First of all, we prove that the second integral in (2.2.5) is o(W2(µ, ν)). We
note that this integral is less or equal than(∫

ωx(T νµ (x))2dµ(x)

) 1
2
(∫
|T νµ (x)− x|2dµ(x)

) 1
2

where the second factor is precisely W2(µ, ν), so it is sufficient to prove that the
first factor is infinitesimal as ν → µ.

Let νn be any sequence tending to µ in P2(Rn), and call Tn := T νnµ . We know
by the stability of optimal maps (Proposition 1.3.9) that Tn → Id in L2(µ). In
particular, every subsequence has a sub-subsequence which converges µ-a.s.; if we
could prove that the limit is zero along these subsequences, we would conclude by a
standard argument, so let us suppose that the whole sequence Tn converges µ-a.s..
Thanks to the elementary Lagrange theorem, we see that ωx(·) is continuous, and
that

|ωx(y)| ≤ sup
B|x|+|y|

|∇V | ≤ C(1 + |x|+ |y|).
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With this in mind, we split∫
ωx(Tn(x))2dµ(x) ≤

∫
|x|+|Tn(x)|≤R

ωx(Tn(x))2dµ(x)+

+

∫
|x|>R

2

C̃(1 + |x|2 + |Tn(x)|2)dµ(x) +

∫
|Tn(x)|>R

2

C̃(1 + |x|2 + |Tn(x)|2)dµ(x) =

=: I + II + III. (2.2.6)

With R fixed, I is infinitesimal by dominated convergence. II is less or equal than
a constant times ∫

|x|>R
2

(1 + 2|x|2)dµ(x) +

∫
Rn
|Tn(x)− x|2dµ(x)

where the first addend is infinitesimal for R → ∞ (independently of n), and the
second addend for n→∞ (independently on R). Finally, III is less or equal than
a constant times∫

|Tn(x)|>R
2

(1 + 2|x|2)dµ(x) +

∫
Rn
|Tn(x)− x|2dµ(x);

the second addend is infinitesimal as above. As for the first,

µ

{
|Tn| >

R

2

}
≤ µ

{
x : |x| > R

2
− 1

}
+ µ {x : |Tn(x)− x| ≥ 1}

and the convergence of Tn to Id in µ-measure implies that the second contribution
is infinitesimal for n → ∞. Since (1 + |x|2) ∈ L1(µ), then the first addend is
infinitesimal too (by absolute continuity of the integral). To sum up, choosing a
sufficiently large R and then a sufficiently large n, we can make (2.2.6) as small as
we wish.

To conclude, we need only that ∇V is an element of Tanµ P2(Rn). To prove
this, we find by mollification φε ∈ C∞c (Rn) such that ‖φε − V ‖C1(B2R) < ε. We call

ζR a cutoff function which is 1 in B̄R, 0 out of B2R, and such that 0 ≤ ζR ≤ 1,
|∇ζR| ≤ 2

R . Now
∫
Rn |∇V −∇(φεζR)|2dµ is less or equal than∫

B̄R

|∇V −∇φε|2dµ+ c

∫
B̄2R\B̄R

[
|∇V |2 + |φε|2

4

R2
+ |∇φε|2

]
dµ+

∫
B̄c2R

|∇V |2dµ.

The first integral is less then ε; the second is less than

c′
∫
B̄2R\B̄R

[
V 2

R2
+ |∇V |2 + ε2

]
dµ ≤

≤ c′′
∫
B̄2R\B̄R

[
V (0)2

R2
+
C2(1 + |x|)2|x|2

R2
+ C2(1 + |x|)2 + ε2

]
dµ(x)

which is arbitrarily small if ε� 1, R� 1. Finally, the third integral is infinitesimal
as R→∞, since

∫
|∇V |2dµ <∞ by the hypothesis on the growth of ∇V .
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2.2.2 Internal energy

Definition 2.2.23. Let U : [0,∞)→ R∪{+∞} be a convex lower semicontinuous
function such that

U(0) = 0, lim inf
s→0+

U(s)

sα
> −∞ for some α >

n

n+ 2
. (2.2.7)

Then the internal energy is the functional

U(µ) :=

{∫
Rn U(ρ(x))dx, if µ = ρ ·L n

+∞, otherwise.

Remark 2.2.24. Condition (2.2.7) is made in such a way that the functional is well
defined (and > −∞). In fact, by convexity we have that the graph of U lies above a
straight line, and so evidently there exist s0, c1 > 0 such that U−(s) ≤ c1s for every
s > s0; while (2.2.7) gives U−(s) ≤ c2s

α for every s ∈ [0, s0]. If α > 1, this is also
≤ c′1s, from which U−(ρ) ∈ L1; otherwise, the same conclusion follows observing∫

ρ(x)αdx
Hölder, 1

p
=α

≤
(∫

ρ(x)(1 + |x|2)dx

)α(∫ 1

(1 + |x|2)αp′
dx

)1−α
<∞

(2.2.8)
because ρL n ∈P2(Rn) and 2αp′ > n (the latter follows by (2.2.7)).

Theorem 2.2.25 (Semicontinuity). If lim
s→+∞

U(s)
s = +∞, then U is lower semicon-

tinuous in P2(Rn).

Proof. For every R > 0 and ρ ∈ L1(BR), we define

ΦR(ρ) :=

∫
BR

U(ρ) dL n .

As a functional on L1(BR), ΦR is obviously convex. It is also lower semicontinuous:
in fact, U is the supremum of a family of affine functions Ui, and so ΦR = sup Φi

R

is a supremum of continuous functionals.
Let us take µk → µ in P2(Rn). Our aim is to prove that if U(µk) ≤ C <∞, then

U(µ) ≤ lim inf U(µk). Thanks to the finiteness of U(µk) we can write µk := ρk L n.
We observe that, since the second moment of µk is bounded independently

of k, then (2.2.8) gives an uniform estimate on
∫
U−(ρk) dL

n, which combined
with U(µk) ≤ C yields that for any R > 0 the quantity ΦR(µk) is bounded above
independently of k. The hypothesis on the growth of U is exactly the one which
enables the use of Dunford-Pettis’s compactness theorem: so, we can suppose that
(ρk) converges weakly in L1(BR) to some function ρ(R). But ρk L n⇀µ: hence µ
has a density ρ(R) on each ball BR, and by arbitrariness of R we conclude that
µ = ρL n.

By the semicontinuity in L1(BR), we have∫
BR

U(ρ) dL n ≤ lim inf
k→∞

∫
BR

U(ρk) dL
n ≤

≤ lim inf
k→∞

[∫
Rn
U(ρk) dL

n−
∫
BcR

U+(ρk) dL
n

]
+ lim sup

k→∞

∫
BcR

U−(ρk) dL
n.

(2.2.9)
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We note that, arguing as in Remark 2.2.24, the quantity
∫
BcR

U−(ρk) dL
n can be

estimated by

c1

∫
BcR

ρk(x)dx+ I[0,1](α) · c2

(∫
BcR

ρk(x)(1 + |x|2)dx

)α(∫
BcR

1

(1 + |x|2)αp′
dx

)1−α

which is infinitesimal for R→∞ uniformly in k, since:

•
∫
BcR

ρk(x)dx = µk(B
c
R) which tends to zero uniformly in k thanks to the

tightness of the narrowly converging sequence µk;

•
∫
BcR

ρk(x)(1 + |x|2)dx is uniformly bounded since so are the second moments

of the measures µk;

•
∫
BcR

1
(1+|x|2)αp′

dx→ 0 as R→∞ since the integrand is an L1 function.

Therefore, if we let R→∞ in (2.2.9), we get∫
Rn
U(ρ) dL n ≤ lim inf

R→∞
lim inf
k→∞

[∫
Rn
U(ρk) dL

n−
∫
BcR

U+(ρk) dL
n

]
=

= sup
R

lim inf
k→∞

[∫
Rn
U(ρk) dL

n−
∫
BcR

U+(ρk) dL
n

]
≤

≤ lim inf
k→∞

sup
R

[∫
Rn
U(ρk) dL

n−
∫
BcR

U+(ρk) dL
n

]
= lim inf

k→∞

∫
Rn
U(ρk) dL n

and semicontinuity is proven.

Theorem 2.2.26 (Convexity). Suppose that U satisfies McCann’s condition:

s 7→ snU(s−n) is convex and nonincreasing for s ∈ (0,∞). (MC)

Then U is convex along every geodesic of P2(Rn).

Remark 2.2.27 ((MC) implies convexity). McCann’s condition is stronger than con-
vexity of U . Firstly, the required monotonicity can be equivalently stated saying
that z 7→ z−1U(z) is nondecreasing: recalling that U(0) = 0, this gives the con-
vexity inequality when one of the two extremes is 0. Secondly, we observe that
Φ(z) := zU(z−1) is a convex function of z, as composition of a convex nonincreasing
map with the concave map z 7→ z1/n. Then, for every a, b > 0 and every t ∈ [0, 1],
we call s ∈ [0, 1] the real number such that (1 − s)a−1 + sb−1 = [(1 − t)a + tb]−1;
i.e. s = tb[(1− t)a+ tb]−1. We have

U((1− t)a+ tb) = Φ
(
[(1− t)a+ tb]−1

)
[(1− t)a+ tb] =

Φ
(
(1− s)a−1 + sb−1

)
(1− s)a−1 + sb−1

≤

≤
(1− s)Φ

(
a−1
)

+ sΦ
(
b−1
)

(1− s)a−1 + sb−1
=

(1− s)a−1U(a) + sb−1U(b)

(1− s)a−1 + sb−1

which, substituting s = tb[(1−t)a+tb]−1, after a little algebra turns out to be equal
to (1− t)U(a) + tU(b).
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To prove the theorem, we first establish an “explicit” formula for U along a
geodesic:

Proposition 2.2.28. Let µ0, µ1 ∈ Pa
2(Rn), µ0 = ρ0 L n. Call T the optimal

transport map from µ0 to µ1, and Tt := (1 − t)Id + tT , so that the constant speed
geodesic between µ0 and µ1 is µt = (Tt)#µ0. Recall that we can put T1 = ∇f where
f is convex. Then there exists a µ0-full set Σ such that for every t ∈ [0, 1] the
following hold:

1. µt � L n, and Tt is injective on Σ;

2. On Σ, besides being injective, Tt is differentiable with ∇Tt symmetric and

JTt := det∇Tt > 0. Moreover, it holds
dµt
dL n =

[(
ρ0

JTt

)
◦ T−1

t

]
· ITt(Σ);

3. U(µt) =

∫
Σ
U

(
ρ0

JTt

)
JTt dt.

Proof of the Proposition.
1. In Remark 2.1.1 we already proved that, for t ∈ [0, 1), µt � L n and Tt is

injective on the set of differentiability points of f , which is a µ0-full set. The
(essential) injectivity of T1 is a consequence of the (essential) invertibility of the
optimal map T1 (see Remark 1.2.18).
2. Aleksandrov’s theorem (see [10]) tells us that T1 = ∇f is a.e. differentiable on its

domain (hence, µ0-a.s. in Rn), with ∇T1 = ∇2f a symmetric positive semidefinite
matrix. Note that JT1 > 0 µ0-a.s.: in fact µ0{JT1 = 0} ≤ µ1(T1{JT1 = 0}) which
is zero since L n(T1{JT1 = 0}) = 0 by the area formula.

Hence, ∇Tt = t∇T1 + (1 − t)Id exists and is simmetric positive definite on the
same µ0-full set. To sum up, there exists a µ0-full set Σ on which Tt is injective and
differentiable with JTt > 0. But then, by the change of variables formula, for every
ψ ≥ 0 it holds∫

Rn
ψ dµt =

∫
Σ

(ψ ◦ Tt(x))ρ0(x)dx =

∫
Σ
ψ(Tt(x))

ρ0(x)

JTt(x)
JTt(x)dy =

=

∫
Tt(Σ)

ψ(y)
ρ0

JTt
◦ T−1

t (y)dy

from which the conclusion follows.
3. By the previous point, and changing variables once again,

U(µt) =

∫
Tt(Σ)

U

(
ρ0

JTt
◦ T−1

t (y)

)
dy

y:=Tt(x)
=

∫
Σ
U

(
ρ0(x)

JTt(x)

)
JTt(x) dx.

Proof of Theorem 2.2.26. The convexity inequality is trivial unless µ0, µ1 � L n. In

view of the Proposition, it is sufficient to prove the convexity of t 7→ U
(
ρ0(x)
JTt(x)

)
JTt(x)

for every x fixed.
Note that, as a function of t, this is the composition of the affine function

t 7→ tT − (1 − t)Id, the map A 7→ (detA)1/n, and the convex nonincreasing map
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s 7→ snU(s−nρ0(x)). Using again that a ◦ b is convex if a is convex nonincreasing
and b is concave, it is sufficient to prove that A 7→ (detA)1/n is concave at least for

A ∈ Symn×n
+ := {symmetric positive definite n× n matrices}.

First of all, let us prove that

[det((1− t)A+ tId)]1/n ≥ (1− t)[det(A)]1/n + t. ∀A ∈ Symn×n
+ . (2.2.10)

With a change of basis, we can suppose that A is diagonal with diagonal elements
λi > 0. The thesis becomes

(1− t)
n∏
i=1

λ
1/n
i

[(1− t)λi + t]1/n
+ t

n∏
i=1

1

[(1− t)λi + t]1/n
≤ 1.

But estimating the two geometric means which appear at the left hand side with
the corresponding arithmetic means, we get precisely that

LHS ≤ 1

n

n∑
i=1

[
λi(1− t)

(1− t)λi + t
+

t

(1− t)λi + t

]
= 1.

Finally, for every A,B ∈ Symn×n
+ , we have

det((1− t)A+ tB) = det(B) det((1− t)AB−1 + tId),

so (2.2.10) implies the concavity inequality.

Remark 2.2.29 (Candidate subdifferential). Let us perform a heuristic formal com-
putation: if (ρt L

n, vt) satisfies the continuity equation (CE), then hopefully

d

dt
U(ρt L

n) =

∫
Rn
U ′(ρt(x))

d

dt
ρt(x)dx =

∫
Rn
〈∇[U ′ ◦ ρt], vt〉ρtdL n .

Hence, the chain rule suggests that that ∂WU(ρ0 L n) contains the element∇[U ′◦ρ0].

Note that, defining the Legendre transform of U by LU (z) := zU ′(z)−U(z),

our candidate subdifferential may be written as ∇[LU◦ρ]
ρ . (We will conventionally

put LU (0) = 0 and 0
0 = 0.) To make the above intuition into a formal theorem, we

will need some technical hypotheses: one of them is the following.

Definition 2.2.30. The potential U satisfies the doubling condition if there
exists C > 0 such that U(2z) ≤ C(1 + U(z)) for every z ≥ 0.

Remark 2.2.31. Since U is convex and U(0) = 0, then U(tz) ≤ tU(z) for every
t ∈ [0, 1]; combining this with the doubling condition, we immediately obtain that
for every R there exists M such that U+(rz) ≤ M(1 + U+(z)) for every r ∈ [0, R]
and every z.

Moreover, writing U(x + y) = U(2x+y
2 ) and using first the doubling condition

and then convexity, we see that U(x + y) ≤ C ′(1 + U(x) + U(y)) for some other
constant C ′.
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Theorem 2.2.32 (Subdifferentiability). Suppose that the potential U is C1(0,∞)
and satisfies the doubling condition just defined. Let µ := ρL n be such that
U(µ) <∞. Consider the two conditions:

1. The slope |∇U|(µ) is finite;

2. [LU ◦ ρ] ∈W 1,1
loc (Rn) and ∇[LU◦ρ]

ρ ∈ L2(µ;Rn) (with the convention 0
0 = 0).

Then 1 ⇒ 2. Moreover, if in addition U satisfies McCann’s condition (MC), then

1. and 2. are equivalent, and they imply ∂WU(µ) ∩ Tanµ P2(Rn) =

{
∇[LU ◦ ρ]

ρ

}
.

Proof of 1⇒ 2. Take any ψ ∈ C∞c (Rn;Rn), call Tε := Id + εψ and consider µε :=
(Tε)#µ. Note that JTε > 0 everywhere if ε is sufficiently small, so arguing as in

Proposition 2.2.28 we get that U(µε) =
∫
ρ>0 U

(
ρ
JTε

)
JTε. By direct computation,

the derivative of the integrand with respect to ε is

I(ε, x) := −LU
(

ρ

JTε

)
d

d ε
JTε.

We would like to pass the derivative in ε = 0 under the integral sign; this is correct
because:

Claim. I(ε, x) is controlled by an integrable function of x, independently of ε in a
neighbourhood of 0.

This is a tedious verification; however, since it is the point where the doubling
hypothesis plays its role, we will perform it. But before, let us see how the claim is
used to conclude the proof.

Passing the derivative under the integral sign, and since by elementary calculus
d
d ε

∣∣
ε=0

JTε = div(ψ), we get

U(µε)− U(µ) = − ε
∫
LU (ρ)div(ψ) dx+ o(ε).

But the left hand side, by definition of slope, is greater or equal than

−|∇U|(µ)W2(µ, µε)+o(W2(µ, µε))
definition of W2

≥ −|∇U|(µ) ε

(∫
|ψ|2ρ dx

)1/2

+o(ε),

so we can conclude that∫
LU (ρ)div(ψ) dx ≤ |∇U|(µ)

(∫
|ψ|2ρ dx

)1/2

;

since this is true also for −ψ, we deduce that∣∣∣∣∫ LU (ρ)div(ψ) dx

∣∣∣∣ ≤ |∇U|(µ)

(∫
|ψ|2ρ dx

)1/2

.

This relation means that ψ 7→
∫
LU (ρ)div(ψ)dx is the restriction to C∞c (Rn;Rn)

of a continuous functional on L2(µ;Rn), with norm less or equal than |∇U|(µ).
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So, by Riesz’s theorem, we conclude that there exists g ∈ L2(µ;Rn) such that
‖g‖L2(µ;Rn) ≤ |∇U|(µ) and∫

LU (ρ)div(ψ) dx =

∫
g · ψ dµ =

∫
(gρ) · ψ dx

for every ψ ∈ C∞c (Rn;Rn); i.e. gρ is the distributional derivative of LU ◦ ρ. The

fact that g ∈ L2(µ;Rn) translates exactly into ∇[LU◦ρ]
ρ ∈ L2(µ;Rn). We emphasise

for future use that ∥∥∥∥∇[LU ◦ ρ]

ρ

∥∥∥∥
L2(µ;Rn)

≤ |∇U|(µ). (2.2.11)

Moreover, since L1(µ) ⊆ L2(µ), we have that
∫ ∣∣∣∇[LU◦ρ]

ρ

∣∣∣ ρ dx < ∞, and therefore

∇[LU ◦ ρ] ∈ L1(L n).

Finally, we prove that [LU ◦ ρ] ∈ L1
loc(L

n). In fact, by convexity

U(z) = U(z)− U(0) ≤ U ′(z)z ≤ U(2z)− U(z) ≤ C(1 + U(z))− U(z),

from which 0 ≤ LU (z) ≤ C ′(1 + |U(z)|), and since U ◦ ρ ∈ L1(L n) by hypothesis,
then the conclusion follows.

Proof of the Claim. Firstly, we note that for every ε, I(ε, x) = 0 if x is outside the
compact set K := supp(ψ). Secondly, we can exploit the just proved inequalities
0 ≤ LU (z) ≤ C ′(1 + |U(z)|) to infer

|I(ε, ·)| ≤ C ′
[
1 + U+

(
ρ

JTε

)
+ U−

(
ρ

JTε

)]
·
∣∣∣∣ dd εJTε

∣∣∣∣ .
Let us choose ε0 > 0 such that 1

2 ≤ JTε(x) ≤ 3
2 for (x, ε) in the compact set

K × [− ε0, ε0]; then the desired estimate follows, because:

• U+
(

ρ
JTε

)
≤M(1+U+(ρ)) by Remark 2.2.31, and U+(ρ) is integrable because

U(µ) <∞;

• As we saw in Remark 2.2.24,

U−
(

ρ

JTε

)
≤ c1

(
ρ

JTε

)
+ I[0,1](α) c2

(
ρ

JTε

)α
≤ C̃

(
I[0,1](α)ρα + ρ

)
which is integrable;

• d
d εJTε(x) is equibounded for (x, ε) in the compact set K × [− ε0, ε0].

For the remaining part of the proof, we need an approximation lemma.

Lemma 2.2.33. Suppose that U satisfies the doubling condition, and consider a
probability measure ν ∈Pa

2(Rn) such that U(ν) < ∞. Then there exist compactly
supported νk ∈Pa

2(Rn) W2-converging to ν and such that U(νk)→ U(ν).
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Proof. If ν = ρL n, we take νk := 1
zk
ρIBk L n where zk ↑ 1 are normalizing con-

stants. The convergence νk → ν in P2 is immediate using the basic criterion (Theo-
rem 1.3.6). Moreover, the densities converge in L1, and so the argument in the proof
of semicontinuity (Theorem (2.2.25), from equation (2.2.9)) can be repeated literally
to get U(ν) ≤ lim inf U(νk). It remains only to prove that lim supU(νk) ≤ U(ν).

We note that, since U(0) = 0, from the definition of convexity one deduces easily
that U+ is nondecreasing. Fix any β ∈ (1, 2): since 1

βzk
< 1 if k � 1, then

lim sup
k→∞

U(νk) = lim sup
k→∞

∫
Bk

U

(
ρ

zk

)
dL n

convexity
≤ lim sup

k→∞

1

βzk

∫
Bk

U(βρ)dL n .

If we knew that U+(2ρ) is integrable, then thanks to U+(βρ) ≤ U+(2ρ) we could
apply Fatou’s lemma and get

lim sup
k→∞

U(νk) ≤
1

β

∫
Rn
U(βρ)dL n

and another application of Fatou’s lemma, this time for β ↓ 1, would yield the
desired inequality.

Hence, we must only show that U+(2ρ) is integrable. If U+ ≡ 0, this is trivial.
Otherwise, take z0 > 0 such that U+(z0) > 0: then U+(z) ≥ U+(z0) for every
z ≥ z0, so the doubling condition implies

U+(2z) ≤ C(1 + U+(z)) ≤ C
(
U+(z)

U+(z0)
+ U+(z)

)
≤ C̄U+(z) ∀z ≥ z0,

and since U(z) ≤ z

z0
U(z0) for every z ≤ z0, we conclude∫

Rn
U+(2ρ)dL n ≤

∫
Rn
C̃(ρ+ U+(ρ))dL n <∞.

Proof of Theorem 2.2.32, second part. Suppose that (MC) holds. Defining

w :=
∇[LU ◦ ρ]

ρ
,

we firstly want to prove that

U(ν)− U(µ) ≥
∫
〈w, T νµ − Id〉dµ ∀ν ∈P2(Rn) (2.2.12)

and of course we can suppose that U(ν) < ∞. Thanks to the Lemma, we immedi-
ately reduce to the case in which supp(ν) is compact. We write T instead of T νµ for
brevity, and put Tt := (1− t)Id+ tT , νt := (Tt)#µ as usual.

In the proof of Theorem 2.2.26 we saw that U(νt) =
∫

Σ U
(

ρ
JTt

)
JTt dL

n where

Σ is a µ-full set and that the integrand is a convex function of t. Therefore the

difference quotients 1
t

[
U
(

ρ
JTt

)
JTt − U(ρ)

]
decrease as t ↓ 0 to the value

d

dt

∣∣∣∣
t=0

[
U

(
ρ

JTt

)
JTt

]
= −LU (ρ)

d

dt

∣∣∣∣
t=0

JTt = −LU (ρ) · div(T − Id)
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where div denotes pointwise divergence. Therefore

U(ν)− U(µ) =

∫ [
U

(
ρ

JT1

)
JT1 − U(ρ)

]
dL n ≥

∫
LU (ρ) · div(Id− T ) dL n .

(2.2.13)
If we could integrate by parts, we would immediately obtain (2.2.12). However we
cannot, both because the divergence is not distributional, and because the supports
are not compact.

As for the first problem, we recall that by Brenier’s theorem T = ∇f with f
convex, so it is not difficult to see that the distributional derivative DT is positive
semidefinite; therefore the distributional divergence Div(T ) is nonnegative, and so
it is greater or equal than its absolutely continuous part div(T ). We will use this
in a moment.

Now we try to solve the issue of the support choosing compactly supported
cutoff functions ηk ∈ W 1,∞(Rn) such that 0 ≤ ηk ↑ 1 for k → ∞. Recall that
LU ◦ ρ ∈W 1,1

loc (Rn): therefore ηk · (LU ◦ ρ) ∈W 1,1(Rn) with

∇[ηk · (LU ◦ ρ)] = (∇ηk) · (LU ◦ ρ) + ηk∇[LU ◦ ρ].

Note that for g ∈ C∞c (Rn) nonnegative,∫
g · div(Id) dL n = −

∫
〈∇g, Id〉 dL n,

−
∫
g · div(T ) dL n ≥ −

∫
g ·Div(T ) dL n =

∫
〈∇g, T 〉 dL n .

Summing the two relations above,∫
g · div(Id− T ) dL n ≥

∫
〈∇g, T − Id〉 dL n . (2.2.14)

We claim that if gh → g a.e. and in W 1,1, gh ≥ 0, and the supports of gh, g are all
contained in a common bounded subset B of supp(µ), then this inequality goes to
the limit. In fact:

•
∫
gh · div(Id) dL n = n

∫
gh dL

n obviously goes to the limit, and this limit is
finite;

•
∫
g · div(T ) dL n ≤ lim infh

∫
gh · div(T ) dL n by Fatou’s lemma (recall that

gh, div(T ) ≥ 0);

• The right hand side goes to the limit because ∇gh
L1

−→ ∇g, and T − Id is
bounded on B thanks to compactness of the support of ν.

Therefore we can put g = LU ◦ ρ in (2.2.14): the result is∫
ηkLU (ρ) · div(Id− T ) dL n ≥

≥
∫
ηk〈∇[LU ◦ ρ], T − Id〉 dL n +

∫
LU (ρ)〈∇ηk, T − Id〉 dL n. (2.2.15)



54 CHAPTER 2. DIFFERENTIAL STRUCTURE OF P2(RN )

Letting k → ∞, the left hand side tends to
∫
LU (ρ) · div(Id − T ), as we see using

twice the monotone convergence theorem (recall that LU ≥ 0). The first integral
at the right hand side converges to

∫
〈∇[LU ◦ ρ], T − Id〉 =

∫
〈w, T − Id〉 dµ by

dominated convergence: in fact 〈∇[LU ◦ ρ], T − Id〉 ∈ L1(L n), since this is equiv-
alent to 〈w, T − Id〉 ∈ L1(µ) which is true by Cauchy-Schwarz’s inequality because
T, Id ∈ L2(µ;Rn) (as µ, ν ∈P2(Rn)) and w ∈ L2(µ,Rn) by hypothesis.

So, if we could neglect the second integral at the right hand side of (2.2.15),
we would get exactly the desired (2.2.12). Let us choose ηk(x) := φk(|x|) where
φk : [0,∞) → R is the only continuous function equal to 1 on [0, k − 1], affine on
[k − 1, k], and equal to 0 on [k,∞). The function ηk is concave on the ball Bk, and
so for x ∈ Bk we have

〈∇ηk(x), T (x)− x〉 ≥ ηk(T (x))− ηk(x).

But the support of ν is compact: hence, for k sufficiently large, ηk(T (x)) = 1 for
µ-a.e. x. So we have proven 〈∇ηk(x), T (x) − x〉 ≥ 0 for µ-a.e. x (in Bk, but also
outside since there the inequality is trivial). Therefore, the last integral in (2.2.15)
is nonnegative, as we wanted.

To resume, till now we have proven (2.2.12), i.e. that w ∈ ∂WU(µ). This obvi-
ously yields the finiteness of the slope; more precisely, if w̃ is any element of ∂WU(µ),
then |∇U|(µ) ≤ ‖w̃‖L2(µ;Rn). But the finiteness of the slope allows the use of the first
part of the theorem; and during its proof we obtained that ‖w‖L2(µ;Rn) ≤ |∇U|(µ)

(equation (2.2.11)). Therefore, the L2 norm of w is minimal in ∂WU(µ), and so by
Remark 2.2.9 we conclude that w ∈ Tanµ P2(Rn).

Eventually, suppose that w′ ∈ Tanµ P2(Rn) ∩ ∂WU(µ). Take any φ ∈ C∞c (Rn),
and consider Tt := Id + t∇φ: for t small this is the gradient of a convex function,
and as such it is optimal by Brenier’s theorem. So, at least for small values of t, we
still have the representation formula

1

t
[U(νt)− U(µ)] =

∫
1

t

[
U

(
ρ

JTt

)
JTt − U(ρ)

]
dL n

in which the left hand side is by hypothesis greater or equal than
∫
〈w′,∇φ〉 dµ+o(1),

while the right hand side decreasingly converges to

−
∫
LU (ρ) · div(∇φ) dL n =

∫
〈∇[LU ◦ ρ],∇φ〉 dL n =

∫
〈w,∇φ〉 dµ.

In conclusion, ∫
〈w′ − w,∇φ〉 dµ ≤ 0 ∀φ ∈ C∞c (Rn);

using this inequality for both φ and −φ we see that in fact∫
〈w′ − w,∇φ〉 dµ = 0 ∀φ ∈ C∞c (Rn),

i.e. w′ − w ⊥ {∇φ : φ ∈ C∞c (Rn)} in L2(µ;Rn). But w − w′ ∈ Tanµ P2(Rn), and
recalling the definition of this space this forces w − w′ = 0.

Example 2.2.34 (Entropy). All the above results can be applied to the poten-
tial U(z) := z log z. The resulting functional is called entropy, and is therefore
geodesically convex and lower semicontinuous in P2(Rn).
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2.3 Gradient flows

We want to adapt to our context the following concept from classical analysis:

Definition 2.3.1. Let H be a Hilbert space, and F : H → (−∞,+∞] be a func-
tional; denote by ∂F the subdifferential of F . Then u ∈ ACloc((0,∞);H) is a
gradient flow of F if u′(t) ∈ −∂F (u(t)) for a.e. t (in particular, u(t) ∈ Dom(F )
for a.e. t). If lim

t→0
u(t) = x̄, then we will say that the gradient flow starts from x̄.

Example 2.3.2 (Heat flow). Take H := L2(Rn) and put

F (u) :=

{
1
2

∫
Rn |∇u|

2dL n, if u ∈W 1,2(Rn)

+∞, otherwise,

which is obviously convex. In the sequel, ∆ will denote the distributional Laplacian.
We claim that ∂F (u) 6= ∅ if and only if ∆u ∈ L2(Rn), and that in this case
∂F (u) = {−∆u}: so, the gradient flow equation for F reduces to the heat equation
∂u
∂t (t, x) = ∆xu(t, x).

In fact, if ∆u ∈ L2(Rn), then for every φ ∈W 1,2(Rn) we have

F (u+ φ) = F (u) +

∫
〈∇u,∇φ〉dL n +

∫
|∇φ|2dL n ≥ F (u) + 〈−∆u, φ〉L2 ;

for φ /∈ W 1,2(Rn) the inequality is trivially true, so we conclude −∆u ∈ ∂F (u).
Conversely, if ξ ∈ ∂F (u), then by convexity F (u + ε φ) − F (u) ≥ ε〈ξ, φ〉L2 , which
for φ ∈W 1,2(Rn) means

1

2
ε2

∫
|∇φ|2dL n + ε

∫
〈∇u,∇φ〉dL n ≥ ε

∫
φξ dL n .

For ε ↓ 0 we get ∫
〈∇u,∇φ〉dL n ≥

∫
φξ dL n ∀φ ∈W 1,2(Rn)

and since this is true both for φ and for −φ, in fact there is equality. From this, by
definition of distributional Laplacian, we get exactly ∆u = −ξ.

One of the main goals of this section is to show that, in a suitable sense, the
heat flow can be seen as a gradient flow also in P2(Rn) (of course, the functional
will be different).

Since we have a concept of subdifferential also in P2(Rn), it is natural to define:

Definition 2.3.3. Let and E : P2(Rn) → (−∞,+∞] be a functional such that
Dom(|∇E|) ⊆Pa

2(Rn). Then (µt) ∈ ACloc((0,∞); P2(Rn)) is a gradient flow of
E if its tangent velocity field vt satisfies

vt ∈ −∂WE(µt) for a.e. t

(in particular, µt ∈Pa
2(Rn) for a.e. t). If lim

t→0
u(t) = µ̄ in P2(Rn), then we will say

that the gradient flow starts from µ̄.
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Another approach would be to look for a purely metric generalisation of the
concept of gradient flow. There is a variety of possible definitions: the detailed
study of them, also in connection with the differential one given above, is the subject
of the monograph [3]. We will only introduce one of the strongest definitions, and
prove its equivalence with the differential one in our setting: our motivation for
this digression is that some of the properties we are going to deal with are more
transparently proved forgetting the rich additional structure we endowed P2(Rn)
with.

The basic remark is that in a Hilbert space H, u ∈ ACloc((0,∞);H) is a gradient
flow of the λ-convex functional F if and only if

F (y)− F (u(t)) ≥ −〈u′(t), y − u(t)〉+
λ

2
|y − u(t)|2 ∀y ∈ H for a.e. t.

But the right hand side can be written as 1
2
d
dt |y − u(t)|2 + λ

2 |y − u(t)|2, involving
only the distance and not the scalar product. This suggests the following definition.

Definition 2.3.4. Let (X, d) be a metric space and F : X → (−∞,+∞] be a
functional. Then u ∈ ACloc((0,∞);X) is an EVI(λ)-gradient flow of F if

1

2

d

dt
d2(u(t), y) + F (u(t)) +

λ

2
d2(u(t), y) ≤ F (y) ∀y ∈ X for a.e. t. (EVI)

(EVI stands for “evolution variational inequality”.)

The equivalence of the two formulations, in the Hilbert setting, is an immediate
consequence of the expression for the derivative d

dtd
2(u(t), y). Analogously, the

equivalence in P2(Rn) relies on the following:

Theorem 2.3.5 (Derivative of W2). Let (µt) be an AC curve in P2(Rn) and call
(vt) its tangent velocity field. Then for a.e. t it holds

d

dt
W 2

2 (µt, σ) = 2

∫
(Rn)2

〈x− y, vt(x)〉dγ(x, y) ∀σ ∈P2(Rn) ∀γ ∈ Γo(µt, σ).

Proof. We will prove that the equality is true (for a certain σ and every γ) if (2.1.9)
holds in t and t is a differentiability point of t 7→ W2(µt, σ). Note that for a.e. t,
this is true for all σ ∈P2(Rn): in fact, if (σn)n∈N ⊆P2(Rn) is any sequence, then
t 7→W 2(µt, σn) is differentiable for every n, for every t out of null-set N ; and from
this, if (σn) is dense (recall that P2(Rn) is separable by Proposition 1.3.4), it is
easy to prove that (

W2(µt+h, σ)−W2(µt, σ)

h

)
h

is Cauchy for h→ 0 for every σ ∈P2(Rn) and every t /∈ N .

Property (2.1.9) implies that W2(µt+h, σ) −W2((Id + hvt)#µt, σ) = o(h), and
so the limit which defines d

dtW
2
2 (µt, σ) can be computed as

lim
h→0

W 2
2 ((Id+ hvt)#µt, σ)−W 2

2 (µt, σ)

h
.
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Denoting as usual with px, py : (Rn)2 → Rn the canonical projections, we can
estimate W 2

2 ((Id+ hvt)#µt, σ) using the plan η := (px + hvt ◦ px, py)#γ: we obtain

W 2
2 ((Id+hvt)#µt, σ) ≤

∫
(Rn)2

|x−y|2dη(x, y) =

∫
(Rn)2

|x+hvt(x)−y|2dγ(x, y) =

=

∫
(Rn)2

|x− y|2dγ(x, y) + 2h

∫
(Rn)2

〈x− y, vt(x)〉dγ(x, y) + o(h) =

= W 2
2 (µt, σ) + 2h

∫
(Rn)2

〈x− y, vt(x)〉dγ(x, y) + o(h).

Considering separately the cases h > 0 and h < 0, we divide the above inequality
by h to get

lim
h→0+

W 2
2 ((Id+ hvt)#µt, σ)−W 2

2 (µt, σ)

h
≤ 2

∫
(Rn)2

〈x− y, vt(x)〉dγ(x, y),

lim
h→0−

W 2
2 ((Id+ hvt)#µt, σ)−W 2

2 (µt, σ)

h
≥ 2

∫
(Rn)2

〈x− y, vt(x)〉dγ(x, y).

But we saw that these limits coincide with d
dtW

2
2 (µt, σ): the proof is complete.

Corollary 2.3.6 (Equivalence of gradient flow formulations). Consider a λ-convex
functional E : P2(Rn)→ (−∞,+∞] such that Dom(|∇E|) ⊆Pa

2(Rn). Then u is a
gradient flow of E in the “differential” sense if and only if it is an EVI(λ)-gradient
flow of E with respect to W2.

Proof. Firstly, we prove that if u is an EVI-gradient flow, then u(t) ∈ Dom(|∇E|)
for almost every t > 0 (in fact, it is true in general metric spaces, but the proof
is more involved: see Theorem 2.3.9). From the theorem above, we can rewrite
EVI(λ) as

E(u(t))− E(y) ≤ −
∫

(Rn)2

〈x− y, vt(x)〉dγ(x, y)− λ

2
W 2

2 (u(t), σ)

∀σ ∈P2(Rn) ∀γ ∈ Γo(u(t), σ), for a.e. t, (2.3.1)

where vt is the tangent field to u. The integral part, by Cauchy-Schwarz’s inequal-
ity, is less or equal than W2(u(t), σ) ‖vt‖L2 , from which we immediately deduce
|∇E|(u(t)) ≤ ‖vt‖L2 <∞.

Now in expression (2.3.1), which is equivalent to EVI(λ), we can substitute

γ :=
(
Id× T σu(t)

)
#
u(t); the result, recalling the characterisation of ∂WE when E

is λ-convex (Proposition 2.2.10), is precisely vt ∈ −∂WE(u(t)).

Theorem 2.3.7 (Uniqueness and contractivity). Let u, v ∈ ACloc((0,∞);Rn) be
EVI(λ)-gradient flows of a functional F . Then d(u(t), v(t)) ≤ e−λ(t−s)d(u(s), v(s))
for every t ≥ s > 0. As a consequence, two gradient flows with the same starting
point coincide for every t.
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To prove this, we want to estimate the derivative of d2(u(t), v(t)) knowing
bounds on ∂

∂s [d
2(u(s), v(t))] and ∂

∂t [d
2(u(s), v(t))]. Therefore, the following lemma

is useful.

Lemma 2.3.8. Let f(s, t) : (a, b)2 → R be a map, and suppose that there exists
w ∈ ACloc((a, b)) such that

|f(s, t)−f(s′, t)| ≤ |w(s)−w(s′)|, |f(s, t)−f(s, t′)| ≤ |w(t)−w(t′)| ∀s, s′, t, t′ ∈ (a, b).

Call φ(t) := f(t, t). Then φ ∈ ACloc((0, 1)) and

dφ

dt
≤ lim sup

h→0+

f(t, t)− f(t− h, t)
h

+ lim sup
h→0+

f(t, t+ h)− f(t, t)

h
a.e. in (a, b).

Proof. Translating and rescaling, we can suppose (a, b) = (0, 1).
From |φ(t)−φ(s)| ≤ 2|w(t)−w(s)| we see that φ is locally absolutely continuous.

Therefore, it is sufficient to estimate its distributional derivative: let us take any
ζ ∈ C∞c ((0, 1)), ζ ≥ 0, and compute∫ 1

0
φ′(t)ζ(t)dt = −

∫ 1

0
φ(t)ζ ′(t)dt = − lim

h→0+

∫ 1

0
φ(t)

ζ(t+ h)− ζ(t)

h
dt =

= lim
h→0+

∫ 1

0

φ(t)− φ(t− h)

h
ζ(t)dt ≤ lim sup

h→0+

∫ 1

0

f(t, t)− f(t− h, t)
h

ζ(t)dt+

+ lim sup
h→0+

∫ 1

0

f(t− h, t)− f(t− h, t− h)

h
ζ(t)dt =

= lim sup
h→0+

∫ 1

0

f(t, t)− f(t− h, t)
h

ζ(t)dt+lim sup
h→0+

∫ 1

0

f(t, t+ h)− f(t, t)

h
ζ(t+h)dt.

We want to pass the lim sup inside the integrals; a classical extension of Fatou’s
lemma allows this if we know that the integrands are uniformly integrable. But

h−1|f(t− h, t)− f(t− h, t− h)| · |ζ(t)| ≤ h−1|w(t)− w(t− h)| · C · Isupp ζ(t)

which is uniformly integrable since h−1|w(t)−w(t− h)| → |w′(t)| in L1
loc((0, 1)): in

fact the difference quotients of any g ∈ AC((a, b)) always converge in L1, because
they converge a.e. and are uniformly integrable.
(The latter can be seen noting that h−1[g(x)− g(x− h)] = (g′ ∗ h−1I[0,h])(x) and so∫
E h
−1|g(x)− g(x− h)|dx ≤

∫
E |g

′(x)|dx
∫ h

0 h
−1dx→ 0 as |E| → 0.)

The same argument applies to the second integrand.

Proof of the Theorem. We can apply the lemma to f(s, t) := d2(u(s), v(t)) on every
(a, b) ⊂⊂ (0,∞). (EVI) tells us that for a.e. t

lim
h→0+

d2(u(t), v(t))− d2(u(t− h), v(t))

h
≤ −λd2(u(t), v(t)) + 2F (v(t))− 2F (u(t)),

lim
h→0+

d2(u(t), v(t+ h))− d2(u(t), v(t))

h
≤ −λd2(u(t), v(t)) + 2F (u(t))− 2F (v(t)).

So, the lemma yields that d2(u(t), v(t)) is locally absolutely continuous and satisfies
d
dt [d

2(u(t), v(t))] ≤ −2λd2(u(t), v(t)), i.e. d
dt [e

2λtd2(u(t), v(t))] ≤ 0: this means that
[eλtd(u(t), v(t))]2 is nonincreasing, and so eλtd(u(t), v(t)) is nonincreasing as well,
which gives the conclusion.
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The next theorem shows that an EVI-gradient flow u of F is such that F ◦ u
decreases “as fast as possible”. In a Hilbert setting and if F is λ-convex, this will
allow to write the gradient flow “equation” (which in the definition is an inclusion)
as a true equality, precisely the familiar u′ = −∇F (u). Finally, this classical result
will suggest an analogous statement in the P2(Rn) setting.

Theorem 2.3.9. Let u : (0,∞)→ X be an EVI(λ)-gradient flow of F , and suppose
that F is lower semicontinuous. Then:

1. u and F ◦ u are locally Lipschitz and satisfy

d

dt
(F ◦ u)(t) = −|u′|(t)2 = −|∇F |(u(t))2 for a.e. t;

2. If (X, d) is a Hilbert space and F is λ-convex, then u′(t) = −(∇F )(u(t)) for
a.e. t (for the notation, see Example 2.2.3);

3. If (X, d) = (P2(Rn),W2) and F is λ-convex, calling vt the tangent velocity
field to u(t) and ∂oF (u(t)) the element of minimal norm in ∂WF (u(t)) (see
Remark 2.2.16), then vt = −∂oF (u(t)) for a.e. t.

Proof.

1. Since t 7→ u(t + h) is a gradient flow as well, then the contractivity estimates
yield d(u(t), u(t + h)) ≤ e−λ(t−s)d(u(s), u(s + h)) for every t ≥ s > 0, and so
|u′|(t) ≥ e−λ(t−s)|u′|(s) for a.e. t ≥ s if s is a point of metric differentiability of u:
hence |u′| ∈ L∞((ε,M)) whenever 0 < ε < M < ∞, and so u is locally Lipschitz.
For a.e. t, we have that for all y ∈ X

F (u(t))− F (y) ≤ −1

2

d

dt
d2(u(t), y)− λ

2
d2(u(t), y) ≤ d(u(t), y)|u′|(t)− λ

2
d2(u(t), y),

(2.3.2)
as is readily verified using the definition of |u′|(t) as a limit. Dividing by d(u(t), y)
and letting y → u(t), we deduce that

|∇F |(u(t)) ≤ |u′|(t) for a.e. t. (2.3.3)

If we put y := u(s) in (2.3.2), instead, and we recall that u is locally Lipschitz,
we get that for s ∈ [ε,M ] it holds

F (u(t))− F (u(s)) ≤ d(u(t), u(s))|u′|(t)− λ

2
d2(u(t), u(s)) ≤ (L+ C)d(u(t), u(s))

(d2(u(t), u(s)) ≤ C for t, s ∈ [ε,M ] by continuity), and so

F (u(t))− F (u(s)) ≤ L̃ d(u(t), u(s)) ∀s ∈ [ε,M ], for a.e. t ∈ [ε,M ].

By lower semicontinuity, the inequality is true for all t ∈ [ε,M ]. Now the roles
of s and t are symmetric, so we can exchange them to get also the inequality
F (u(s))−F (u(t)) ≤ L̃ d(u(t), u(s)): the local Lipschitz property of F ◦u is proven.

Let t be any point of differentiability for F ◦u and of metric differentiability for
u. We write (EVI) in integral form: for all h > 0 and y ∈ X, it holds∫ t+h

t

[
F (u(r))− F (y) +

λ

2
d2(u(r), y)

]
dr ≤ 1

2
d2(u(t), y)− 1

2
d2(u(t+ h), y).
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For y := u(t), we can write F (u(r)) = F (u(t)) + (F ◦ u)′(t)(r − t) + o((r − t)2) and
d(u(r), u(t)) = (r − t)|u′|(t) + o((r − t)2): the above inequality reduces to

h2

2
(F ◦ u)′(t) + o(h2) ≤ −1

2
|u′|(t)2h2 + o(h2)

from which (F ◦ u)′(t) ≤ −|u′|(t)2.
But from the definitions (F ◦ u)′(t) ≥ −|∇F |(u(t))|u′|(t) whenever the two

members are defined: combining this with the inequality just proven, we deduce
that −|∇F |(u(t))|u′(t)| ≤ −|u′|(t)2 and therefore |∇F |(u(t)) ≥ |u′|(t) for a.e. t.
Since in (2.3.3) we showed the converse, we conclude that |∇F |(u(t)) = |u′|(t) for
a.e. t. In light of this, the proven inequalities

−|∇F |(u(t))|u′|(t) ≤ (F ◦ u)′(t) ≤ −|u′|(t)2 for a.e. t

yield the desired chain of equalities.

2. For λ-convex functionals, we have the equivalent differential formulation
u′(t) ∈ −∂F (u(t)) for a.e. t. But we now know that |u′(t)| = |∇F |(u(t)) which
is the least possible value for the norm of an element in the subdifferential, and so
by definition of ∇F we have that u′(t) = −∇F (u(t)) for a.e. t.

3. Exactly as above, we can use the equivalent differential formulation to get
vt ∈ −∂WF (u(t)) for a.e. t. But ‖vt‖L2(u(t)) = |u′|(t) = |∇F |(u(t)) which is the
least possible value for the norm of an element in the subdifferential: we conclude
that u′(t) = −∂oF (u(t)) for a.e. t.

Remark 2.3.10. The proof of point 3. shows incidentally, a.e along the trajectory of
u, the cited general equality |∇F | = ‖∂oF‖L2 .

Here is the fundamental example of gradient flow in P2(Rn).

Theorem 2.3.11 (Heat flow as gradient flow of entropy). Let µ0 ∈ P2(Rn) be of
the form ρ0 L n. Then there exists an unique gradient flow starting from µ0 of the
entropy functional

Ent(µ) :=

{∫
Rn ρ(x) log ρ(x)dx, if µ = ρ ·L n

+∞, otherwise,

and it is given by µt = ut L
n, where ut is the solution of the heat equation d

dtut = ∆ut
“starting” from ρ0 (see the following Remark).

Remark 2.3.12 (Representation formula for the heat equation). We recall the ele-
mentary fact that for every u0 ∈ L1(Rn), there exists a unique (classical) solution in
(0,∞) of the heat equation “starting” from u0, i.e. such that ut converges to u0 in
the sense of distributions as t ↓ 0. Moreover , ut is given by the convolution formula

ut(x) =
1

(4πt)n/2

∫
Rn
ρ0(y)e−

|x−y|2
4t dy (2.3.4)

(as one might directly verify).
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Proof of the Theorem. We apply the characterisation of the subdifferential of the
internal energy (Theorem 2.2.32) with potential U(z) = z log z: since LU (z) = z,
we get that µt is a gradient flow of the entropy functional if and only if µt = ρt L

n

where

1. ρt ∈W 1,1
loc (Rn) and |∇ρt|2ρt ∈ L1(Rn) for a.e. t;

2.
d

dt
(ρt L

n)− div

[
∇ρt
ρt

(ρt L
n)

]
= 0 (in distributional sense).

(The second equation is very close to d
dtρt = ∆ρt.) Elementary results about the

heat equation in Rn show that the solution (ut)t≥0 starting from ρ0 is such that for
every t > 0 it holds

ut ≥ 0,

∫
ut(x)dx = 1, ut ∈ C∞(Rn), ut, |∇ut| ∈ L∞(Rn) :

these are all immediate consequences of the representation formula (2.3.4).
Therefore µt := ut L

n satisfies conditions 1. and 2. above: to show that it is
a gradient flow of Ent starting from µ0, it remains to prove that (µt)t∈(0,∞) is in
ACloc((0,∞); P2(Rn)) and that µt → µ0 in P2(Rn) as t ↓ 0.

The latter is true because for t > 0 the second moment of µt is∫
Rn
|x|2ut(x)

Fubini
=

∫
Rn
ρ0(y)

1

(4πt)n/2

∫
Rn
|x|2e−

|x−y|2
4t dx dy =

∫
Rn
ρ0(y)(2nt+|y|2)dy

(the second equality is evident if is seen as the calculation of the second moment of
a Gaussian random variable). With the usual argument, we deduce from this that
the family (µt)t>0 is tight, and therefore has narrow limit points for t ↓ 0; but every
narrow limit point is a distributional limit point, and therefore must coincide with
ρ0 L n. To sum up, µt⇀µ0 as t ↓ 0 with converging second moments: i.e., µt → µ0

in P2(Rn).
Eventually, we have to prove the local absolute continuity of t 7→ µt ∈P2(Rn).

From the characterisation of AC2(P2(Rn)) (Theorem 2.1.16), it is sufficient to see
that for every (a, b) ⊂⊂ (0,∞) it holds∫ b

a

∥∥∥∥∇utut

∥∥∥∥
L2(ut L n)

dt <∞.

But the left hand side is
∫ b
a

∫
Rn |∇ut(x)|2ut(x) dx dt, which is finite since |∇ut(x)|

is equibounded (for example, by the representation formula).

Remark 2.3.13. The identifiability between the heat flow and the gradient flow of
entropy seems to be a very deep relationship: in Chapter 3 we will see that it
holds, in a suitable sense, also in a discrete setting (Theorem 3.3.7). In a different
direction, the above result is even true in generic metric measure spaces, perhaps
the most general setting in which one may think about both gradient flows and
entropy: this was shown in [4] ([5] is a more readable simplified account). The
development of the theory needed to state and prove this result is far beyond the
scope of this thesis; it shares little with the “differential” proof given above, which
therefore retains its independent interest.
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In a similar way, the solution of some other parabolic PDEs can be identified with
a gradient flow in P2(Rn). Without any pretensions to rigorousness, we mention
the two most classical examples, which motivated two fundamental papers in this
field (respectively [11] and [14]).

Example 2.3.14 (Fokker-Planck). We consider on P2(Rn) a functional of the form
E := Ent +V, obtained adding to entropy a potential energy V(µ) :=

∫
V dµ. We

know that (under suitable hypotheses) ∂WE(ρL n) = ∇ρ
ρ +∇V : arguing as at the

beginning of the above proof, we see that the gradient flow equation (under the
identification of measures and densities) is formally equivalent to

d

dt
ρt − div(∇ρt + ρtV ) = 0

which is the Fokker-Planck equation.

Example 2.3.15 (Porous medium). We consider the internal energy with potential
U(z) := 1

m−1z
m, where m 6= 1 is a real number. Straightforward computations

show that U is convex and satisfies McCann’s condition for every m ≥ 1 − 1
n ,

m 6= 1 (note that for m → 1, U(z) tends to z log z, which defines the entropy
functional. . . ). Therefore, we can apply the characterisation of the subdifferential
of the the internal energy: since LU (z) = zm, the formal equivalent of the gradient
flow equation becomes d

dtρt − div∇((ρt)
m) = 0, i.e.

d

dt
ρt = ∆[(ρt)

m]

which is the porous medium equation.



Chapter 3

A new distance on discrete
spaces

Following [12], we define a new “transport” distance on a finite set endowed with
a Markov irreducible kernel, in such a way that the gradient flow of the entropy is
still identifiable with what in this context is called heat flow. The definition turns
out to be a discrete analogous of Benamou-Brenier’s formula. We will exploit this
analogy to “translate” the continuous theory in this setting; we will try to stress
the similarities, following a parallel order of exposition as far as this is possible.

3.1 The new distance

3.1.1 Setting and continuity equation

Our space X will be a finite set.

K will be an irreducible Markov kernel on X: given x, y ∈ X, K(x, y) will be
the probability of the transition from x to y.

By irreducibility, there is an unique probability measure on X invariant for K,
which we will denote by π: this means that πTK = πT .

We will say that K is reversible if the detailed balance equations hold:
π(x)K(x, y) = π(y)K(y, x) for every x, y ∈ X. This means that, with starting
distribution π, the mass going from x to y is equal to the mass going in the opposite
direction.

Since by irreducibility π(x) > 0 for every x ∈ X, every measure on X has a
density with respect to π. We will always identify the measure with its density: in
particular we will think

P(X) ≡

{
ρ : X → [0,∞) :

∑
x∈X

ρ(x)π(x) = 1

}
. (3.1.1)

We need discrete versions of the concepts of gradient and divergence:

Definition 3.1.1. Given ψ : X → R, its gradient is the function ∇ψ : X×X → R
defined by ∇ψ(x, y) := ψ(x)− ψ(y).

63
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For φ, ψ : X → R and Φ,Ψ : X ×X → R, we will use the notations:

〈φ, ψ〉π :=
∑
x∈X

φ(x)ψ(x)π(x), 〈Φ,Ψ〉K :=
1

2

∑
x,y∈X

Φ(x, y)Ψ(x, y)K(x, y)π(x).

(Which, apart from the factor 1
2 which is inserted for future convenience, are the

natural “scalar products” on RX and RX×X , given the Markov structure.)

In the usual way, we define ‖φ‖π :=
√
〈φ, φ〉π and ‖Φ‖K :=

√
〈Φ,Φ〉K .

Given Ψ : X × X → R, its divergence (∇ · Ψ) : X → R is defined in such a
way that 〈∇ψ,Ψ〉K = −〈ψ,∇ ·Ψ〉π. Direct computations lead to

(∇ ·Ψ)(x) =
1

2

∑
y∈X

[
−K(x, y)Ψ(x, y) +K(y, x)

π(y)

π(x)
Ψ(y, x)

]

which if K is reversible reduces to 1
2

∑
y∈X K(x, y)[Ψ(y, x)−Ψ(x, y)].

Notation. Given two matrices A,B with the same dimensions, A•B will denote the
matrix obtained by componentwise multiplication: (A •B)ij := AijBij .

We are tempted to use this discrete divergence to define a formal analogous
of the continuity equation. The role of the velocity field, in this context, will be
played by a matrix Vt ∈ RX×X , defined for t ∈ [0, T ]. The naivest generalisation of
(CE) would be ρ̇t + ∇ · ((ρt(x)Vt(x, y))x,y) = 0. However, we will see in the next
paragraph that some more freedom is desirable: so, we substitute (ρt(x)Vt(x, y))x,y
with ρ̂t • Vt, where ρ̂t ∈ RX×X is a nonnegative symmetric matrix depending only
on ρt; intuitively, ρ̂t(x, y) may represent the amount of mass effectively affected by
the velocity Vt(x, y). Reasonable hypotheses on ρ̂ are:

Hypothesis 3.1.2. For every ρ ∈P(X), we will put ρ̂(x, y) = θ(ρ(x), ρ(y)), where
θ : [0,∞)× [0,∞)→ [0,∞) is a fixed continuous function such that

1. θ(r, s) = θ(s, r) (symmetry);

2. θ(r, s) ≥ 0 for every r, s, with equality if and only if either r = 0 or s = 0;

3. θ(r, ·) and θ(·, s) are nondecreasing functions for every r, s.

In fact, when we will study the Riemannian structure of P(X), it will be useful to
assume that θ is at least C1((0,∞)2).

Definition 3.1.3. Given (ρt) ∈ AC([0, T ];RX) and (Vt)t∈[0,T ] ⊆ RX×X Borel, we
say that (ρt, Vt)t solves the continuity equation if

ρ̇t +∇ · (ρ̂t • Vt) = 0 for a.e. t. (CE’)

Remark 3.1.4 (Time reparametrisation). Suppose that (ρt, Vt)t∈[0,T ] solves (CE’),
and let τ : [0, T ′] → [0, T ] be an increasing AC reparametrisation. Then it is
staightforward to see that s 7→ ρτ(s) is AC, and that (ρτ(s), Vτ(s)τ

′(s))s∈[0,T ′] solves
(CE’) as well.
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Remark 3.1.5 (Total mass is preserved). The total mass
∑

x∈X π(x)ρt(x) of a so-
lution of the continuity equation has zero derivative (immediate verification), and
hence is constant. However, in general, some of the components of the solution ρt
might become negative.

Remark 3.1.6 (On existence and uniqueness of solutions). Given Vt and θ, the
continuity equation for ρt is a system of ordinary differential equations. Thanks to
“generalised Cauchy-Lipschitz theorem” (Theorem 2.1.6), given an initial condition
ρ0, we have local existence and uniqueness of the solution ρt at least if∫ T

0
|Vt|(x, y)dt <∞ ∀x, y ∈ X.

If the maximal solution is always nonnegative, then it is also bounded by the previ-
ous Remark, from which we deduce global existence in [0, T ]. (For a case in which
this is known a priori, see Remark 3.1.41 below.)

Finally, in the setting of reversible Markov chains, there is a natural concept of
heat flow. The analytic way to justify its definition is to note the following:

Definition 3.1.7. Let K be a reversible Markov kernel. Given f : X → R, its
Laplacian is the function ∆f : X → R defined by ∆f = ∇ · (∇f). An immediate
calculation gives that the operator ∆ is simply left multiplication by the matrix
K− I: with the usual identification of matrices and operators, we write ∆ = K− I.

We will say that a C1 function (ft)t∈[0,T ] with values in RX satisfies the heat
equation if ∂tft = ∆ft for every t. The flow of this ordinary differential equation,
namely

(t, f0) 7→ H(t)f0 := et∆f0,

will be called the heat flow; and (H(t))t will be called the heat semigroup.

Remark 3.1.8 (Probabilistic interpretation). There is also a probabilistic meaning of
the name “heat flow”. Recall that the transition semigroup of a continuous-time
Markov kernel (Nt(x, ·))t≥0,x∈Y ⊆P(Y ) on a measurable space Y is set of functions
(H(t))t mapping every φ bounded and Borel to (H(t)φ)(x) :=

∫
Y φ(y)Nt(x, dy). The

transition semigroup of the n-dimensional Brownian kernel is therefore

(H(t)φ)(x) =
1

(2πt)n/2

∫
Rn
φ(y)e−

|y−x|2
2t dy

which is the solution of ∂tf = ∆
2 f with initial condition φ. In conclusion, the

transition semigroup of the n-dimensional Brownian kernel (up to a rescaling of
time) is the heat semigroup on Rn.

The natural concept of “random walk” in our discrete setting is the continuous
time Markov process associated to the discrete Markov kernel K: that is to say,
the piecewise constant Markov process which, starting from x ∈ X, waits a random
exponentially distributed time, and then jumps to y with probability K(x, y). A
classical result says that its transition semigroup is given by H(t) = e(K−I)t, from
which the definition above is coherent with this interpretation of the heat semigroup.
The book [7] is entirely devoted to this topic.
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3.1.2 The 2-point space

Note. Unlike in most of the other paragraphs of this thesis, here we prefer to intro-
duce the hypotheses one by one where we need them, and to perform the compu-
tations before the statement of the result. Perhaps this makes the exposition less
ordered; but we desire to show a sensible way in which the results can be guessed.
Otherwise, the definition of the new distance, and the fact that “it works so well”,
would look incomprehensible and rather magical. However, the relevant hypotheses
and the main results are summarized at the end, in Theorem 3.1.14.

We consider the simplest case: X = {a, b}. Call K(a, b) = p,K(b, a) = q: by
irreducibility p, q > 0. It is immediate to verify that the invariant probability is
given by π(a) = q

p+q , π(b) = p
p+q . Obviously, the Markov kernel is reversible.

The probability measures on X are of the form 1
2(1 − β)δa + 1

2(1 + β)δb where
β ∈ [−1, 1] is a convenient parameter. The corresponding density ρβ is

ρβ(a) =
p+ q

q

1− β
2

, ρβ(b) =
p+ q

p

1 + β

2
. (3.1.2)

As for the heat flow, a straightforward calculation gives that

H(t) =
1

p+ q

([
q p
q p

]
+ e−(p+q)t

[
p −p
−q q

])
.

In terms of the parameter β, a direct computation shows that H(t)ρβ := ρβt where

βt =
p− q
p+ q

(1− e−(p+q)t) + βe−(p+q)t

which is the solution of the Cauchy problem{
β̇t = p(1− βt)− q(1 + βt)
β0 = β.

(3.1.3)

Remark 3.1.9 (Inadequacy of W2). If our aim is to study absolutely continuous
curves and gradient flows in P(X), then W2 is not the right distance. In fact
W2(ρα, ρβ) = d(a, b)

√
|β − α|, and a classical exercise tells us that in R with the

distance
√
|x− y|, the only AC curves are constant.

We wonder whether there exists a distance on P(X) which, as in the continuous
case, gives to P(X) a “Riemannian” structure such that the heat flow at the level
of densities is the gradient flow at the level of measures of the entropy (relative to π)

H(ρ) =
∑
x∈X

ρ(x) log(ρ(x))π(x) =:
∑
x∈X

U(ρ(x))π(x)

where we defined for brevity U(s) := s log s.

We expect P(X) to have dimension 1, because it is parametrised by β ∈ [−1, 1].
Therefore, we proceed heuristically and look for a distance given by an isometry
J : ρβ 7→ φ(β) ∈ R. Any metric concept of gradient flow is obviously invariant
by isometry; but on R and for C1 functionals, any formulation is implied by the
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classical differential one. So, it is sufficient to find φ such that d
dtφ(βt) = −H̃′(φ(βt))

where H̃ := H ◦ J−1.
Now it is a matter of calculus. First of all

H̃(φ(α)) = H(ρα) =
q

p+ q
U(ρα(a)) +

p

p+ q
U(ρα(b))

and if φ is differentiable we deduce

H̃′(φ(α))φ′(α) =
q

p+ q
U ′(ρα(a))

d

dα
ρα(a)+

p

p+ q
U ′(ρα(b))

d

dα
ρα(b) =

U ′(ρα(b))− U ′(ρα(a))

2
.

If φ′ > 0, we can divide by φ′(α), so that what we want is that that the flow of the
equation

d

dt
φ(βt) =

−U ′(ρβt(b)) + U ′(ρβt(a))

2φ′(βt)

is the heat flow. Rewriting the equation in the the form

β̇t =
U ′(ρβt(a))− U ′(ρβt(b))

2φ′(βt)2

and recalling (3.1.3), it is sufficient to impose

U ′(ρβ(a))− U ′(ρβ(b))

2φ′(β)2
= p(1− β)− q(1 + β)

or equivalently

φ′(β)2 =
U ′(ρβ(a))− U ′(ρβ(b))

2[p(1− β)− q(1 + β)]
=
p+ q

4pq

U ′(ρβ(a))− U ′(ρβ(b))

ρβ(a)− ρβ(b)
.

To be precise, we have a problem if ρβ(a) = ρβ(b), which is not a serious issue since
this happens only for one value β̄, where RHS can be extended by continuity with
value U ′′(ρβ̄(a)). With this convention, and noting that U ′′ > 0, we have that the
right hand side is strictly positive, so we can conclude that

φ(β) :=
1

2

√
1

p
+

1

q

∫ β

0

√
U ′(ρr(a))− U ′(ρr(b))

ρr(a)− ρr(b)
dr =:

1

2

√
1

p
+

1

q

∫ β

0

1√
h(r)

dr,

if finite, is a solution to our problem. For β ∈ (−1, 1), finiteness is obvious; if we
allow β to take the values ±1, then φ may take the values ±∞. (In fact this will
not be the case for U(x) = x log x, but in a moment we will wish to choose U
differently.)

Hence, with this definition of φ, and for α, β ∈ [−1, 1], we define the extended
distance (“extended” because it can take the value ∞):

W(ρα, ρβ) := |φ(α)− φ(β)| = 1

2

√
1

p
+

1

q

∣∣∣∣∣
∫ β

α

1√
h(r)

dr

∣∣∣∣∣ , (3.1.4)

h(r) :=
ρr(a)− ρr(b)

U ′(ρr(a))− U ′(ρr(b))
. (3.1.5)
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In fact, definition (3.1.4) makes sense for every function h : (−1, 1) → (0,∞),
no matter whether it is defined by the relation (3.1.5) or not.

If we denote by P∗(X) := {ρβ : β ∈ (−1, 1)} the space of (probability measures
with) strictly positive densities, we have just proven:

Proposition 3.1.10. (P∗(X),W) is a one-dimensional Riemannian manifold on
which the gradient flow of entropy is the heat flow.

Remark 3.1.11 (More general functionals). We never used that U(x) = x log x: ev-
erything (even in the sequel) works replacingH with an “internal energy” functional

U(ρ) :=
∑
x∈X

U(ρ(x))π(x)

where U ∈ C2((0,∞)) is such that U ′′ > 0.

We can obtain a different characterisation of W using the following classical
observation:

Lemma 3.1.12. Let h : (−1, 1)→ (0,∞) be continuous. Then for −1 ≤ α ≤ β ≤ 1,
it holds(∫ β

α

1√
h(r)

dr

)2

= min
γ(0)=α,γ(1)=β

∫ 1

0

γ̇(t)2

h(γ(t))
dt (possibly infinite)

where γ runs over all AC functions [0, 1] → [−1, 1]; the minimum is attained by a
C1 function.

Proof. Firstly, by Jensen’s inequality, for every admissible γ

∫ 1

0

γ̇(t)2

h(γ(t))
dt ≥

(∫ 1

0

γ̇(t)√
h(γ(t))

dt

)2

which with a change of variables gives one inequality of our thesis.

The converse inequality is nontrivial only if
∫ β
α

1√
h(r)

dr < ∞. Take now any γ

admissible, C1 and strictly increasing (for instance, the constant speed parametri-
sation of the segment [α, β]). For t ∈ [0, 1], put

σ(t) :=

∫ t
0

γ̇(r)√
h(γ(r))

dr∫ 1
0

γ̇(r)√
h(γ(r))

dr

where the denominator is equal to
∫ β
α

1√
h(r)

dr, which is finite by hypothesis. Observe

that σ ∈ C1((0, 1)) ∩ C([0, 1]) has strictly positive derivative in (0, 1), hence it has
a C1((0, 1)) ∩ C([0, 1]) inverse τ satisfying

τ̇(s) =

(∫ β

α

1√
h(r)

dr

)(
γ̇(τ(s))√
h(γ ◦ τ(s))

)−1

.
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To conclude, we define γ̃ := γ ◦ τ and note that∫ 1

0

˙̃γ(s)2

h(γ̃(s))
ds =

∫ 1

0

γ̇(τ(s))2τ̇(s)2

h(γ ◦ τ(s))
dt =

(∫ β

α

1√
h(r)

dr

)2

as desired.

Remark 3.1.13 (Choice of the velocity field). In the two-point space, the continuity
equation reduces to {

ρ̇t(a) = 1
2 ρ̂t(a, b) p [Vt(b, a)− Vt(a, b)]

ρ̇t(b) = 1
2 ρ̂t(a, b) q [Vt(a, b)− Vt(b, a)].

Given any AC curve (ρt) ⊆ P(X), it is immediate to find a Vt satisfying these
equations. First of all, the value of Vt on {t : ρt /∈ P∗(X)} is irrelevant, because
ρ̇t = 0 for almost every t in this set. Elsewhere, it is necessary and sufficient that

Vt(b, a)− Vt(a, b) =
2ρ̇t(a)

ρ̂t(a, b) p
(3.1.6)

because then the other equation is automatically satisfied, since

π(a)ρt(a) + π(b)ρt(b) = 1.

We recall that in the continuous case the “right” choice of the velocity field was
(almost) a gradient. Here there is no difficulty to find a suitable Vt of the form
Vt = ∇ψt: in fact the only restriction on Vt is (3.1.6), which becomes

ψt(b)− ψt(a) =
ρ̇t(a)

ρ̂t(a, b) p
. (3.1.7)

In light of the Lemma, we have

W(ρα, ρβ)2 = min
γ(0)=α,γ(1)=β

p+ q

4pq

∫ 1

0

γ̇(t)2

h(γ(t))
dt.

Putting ρt := ργ(t), this can be rewritten in terms of the two quantities

ρ̇t(a) = −p+ q

2q
γ̇(t), ρ̇t(b) =

p+ q

2p
γ̇(t).

which in turn can be expressed using the continuity equation. Using both the
identities to give the same relevance both to a and to b, we get

W(ρα, ρβ)2 = min
ρ0=ρα,ρ1=ρβ

1

2

∫ 1

0

1

h(γ(t))

{
q

p(p+ q)
[ρ̇t(a)]2 +

p

q(p+ q)
[ρ̇t(b)]

2

}
dt =

= min
ρ0=ρα,ρ1=ρβ

1

2

∫ 1

0

{
ρ̂t(a, b)

2

h(γ(t))
[∇ψt(a, b)]2K(a, b)π(a)+

+
ρ̂t(a, b)

2

h(γ(t))
[∇ψt(a, b)]2K(b, a)π(b)

}
dt.
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(Recall that by (3.1.7), (ρt) determines∇ψt(a, b) for the values of t where ρ̂t(a, b) 6= 0,
which are the ones relevant to the value of the integral above.)

The computation above works for every h, and whatever θ we are using in
(CE’). The result becomes simpler if we require that ρ̂t(a, b) = h(γ(t)). There are
two conceptually different situations in which this can be done:

1. If we have h of the form (3.1.5) (because we are trying to represent the heat
flow, and so we are in the setting of Proposition 3.1.10), then we impose

θ(r, s) :=
s− r

U ′(s)− U ′(r)
∀r, s > 0, s 6= r

which can be extended to s = r defining θ(s, s) = 1
U ′′(s) . We complete the

definition of θ with the condition θ(·, 0) = θ(0, ·) = 0; for general U this θ is
not continuous, in the sequel we assume that it is. By direct verification, the
standard case U(x) = x log x satisfies this assumption (see Example 3.1.15
below).

2. Conversely, if we are given θ, we can realize the condition ρ̂t(a, b) = h(γ(t))
simply choosing h(r) := θ(ρr(a), ρr(b)).

In both cases, the final result reads as follows:

W(ρ0, ρ1)2 = min
(ρt,∇ψt)t solves (CE’)

∫ 1

0

1

2

{
[∇ψt(a, b)]2ρ̂t(a, b)K(a, b)π(a)+

+[∇ψt(b, a)]2ρ̂t(b, a)K(b, a)π(b)
}
dt. (3.1.8)

We recognize in the integrand an expression very similar to ‖∇ψt‖2K , except
for the presence of the weight ρ̂t. Hence, even if X has more than two points, we
introduce the notation:

Notation. For Φ,Ψ : X ×X → R and ρ ∈P(X), we define

〈Φ,Ψ〉ρ̂ :=
1

2

∑
x,y∈X

Φ(x, y)Ψ(x, y)ρ̂(x, y)K(x, y)π(x), ‖Φ‖ρ̂ :=
√
〈Φ,Φ〉ρ̂.

Now we can write the result (3.1.8) in a very suggestive way, formally similar to
Benamou-Brenier’s formula (BB) (rewritten using the fact that the optimal velocity
field is in the closure of gradients):

W(ρ0, ρ1)2 := inf

{∫ 1

0
‖∇ψt‖2ρ̂t : (ρt,∇ψt)t solves (CE’)

}
.

To avoid confusion, we summarize the main achievements of this paragraph.

Theorem 3.1.14 (Summary). Suppose that X has only two points a, b, and put
p := K(a, b), q := K(b, a). Call ρβ the density of 1

2(1 − β)δa + 1
2(1 − β)δb with

respect to π. Then:



3.1. THE NEW DISTANCE 71

1. For θ as in Hypothesis 3.1.2, the two following formulas define the same ex-
tended distance on P(X):

W(ρα, ρβ) :=
1

2

√
1

p
+

1

q

∣∣∣∣∣
∫ β

α

1√
θ(ρr(a), ρr(b))

dr

∣∣∣∣∣ ,
W(ρ0, ρ1)2 := inf

{∫ 1

0
‖∇ψt‖2ρ̂t : (ρt,∇ψt)t solves (CE’)

}
,

and the infimum is realised by a C1 curve (ρt).

In particular, from the first equation, W is a true distance at least on the
space P∗(X) := {ρβ : β ∈ (−1, 1)}, and (P∗(X),W) is isometric to an open
interval of R.

2. Let U ∈ C2((0,∞)) be such that U ′′ > 0, and put

θ(r, s) :=


0, if rs = 0

s− r
U ′(s)− U ′(r)

, if r, s > 0, s 6= r

[U ′′(s)]−1, if r = s.

Suppose that this θ is continuous also in the boundary points of [0,∞)2, so that
the first part of the theorem applies. Then the gradient flow starting from ρ0

of the functional U(ρ) := U(ρ(a))π(a)+U(ρ(b))π(b) on the space (P∗(X),W)
is given by the heat flow ρt = e(K−I)tρ0.

This part applies to U(x) := x log x, in which case U coincides with the entropy
functional H.

Notation. Sometimes we will emphasise the dependence of the distance W on the
parameters p, q denoting it with the symbol Wp,q.

Example 3.1.15 (Classical case). If f(x) = x log x, then a calculation gives that
θ(r, s) =

∫ 1
0 s

1−trt dt, which is the so-called logarithmic mean. If in addition
p = q, then the explicit definition of W reduces to

W(ρα, ρβ) :=
1√
2p

∣∣∣∣∣
∫ β

α

√
arctanh r

r
dr

∣∣∣∣∣ . (3.1.9)

By elementary calculus, one can now verify that W(ρα, ρβ) is finite even when α, β
take the values ±1.

3.1.3 The n-point space

The second definition of W makes sense even if |X| > 2:

Definition 3.1.16. For ρ0, ρ1 ∈ RX (and in particular if ρ0, ρ1 ∈P(X)), we put

W(ρ0, ρ1) :=

√
inf

{∫ 1

0
‖∇ψt‖2ρ̂t : (ρt,∇ψt)t∈[0,1] solves (CE’)

}
.
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Remark 3.1.17 (Reduction to K reversible). By direct inspection, one sees that both
(CE’) and ‖∇ψt‖2ρ̂t are the same if we substitute K with the irreducible Markov

kernel K̃ defined by K̃(x, y) := 1
2

(
K(x, y) + π(y)

π(x)K(y, x)
)

. The invariant π is the

same, but K̃ is reversible: so, in order to study the properties of W, the following
assumption is not really restrictive:

Hypothesis 3.1.18. From now on, K will be a reversible irreducible Markov kernel.

Remark 3.1.19 (Associated graph). A reversible Markov kernel can be naturally
associated to a weighted unoriented graph on X: it is sufficient to draw the edge
between x and y if and only if K(x, y) > 0, and to give it the weight π(x)K(x, y).
Note that the sum of the weights of the edges touching x (i.e. the “weight of x”) is
π(x).

Conversely, given an unoriented weighted graph such that the sum of the weights
of its points is equal to 1, we can recover a (unique) Markov kernel inducing this
graph: we have just seen that π(x) is determined, hence K(x, y) is determined too
by

K(x, y) =
(weight of the edge x↔ y)

π(x)
.

Definition 3.1.20. For x, y ∈ X, dg(x, y) will be the graph distance between x
and y on the graph associated to K, i.e. the minimum number of edges of a path
connecting x to y.

Theorem 3.1.21. W is an extended distance on P(X).

Symmetry is obvious. The following lemma immediately implies the triangle
inequality:

Lemma 3.1.22. For every η, σ ∈P(X) and T > 0, it holds

W(ρ, σ) = inf

{∫ T

0
‖∇ψt‖ρ̂t : (ρt,∇ψt)t∈[0,T ] solves (CE’), ρ0 = η, ρ1 = σ

}
.

Proof. The infimum in the thesis is evidently invariant by time rescaling, hence we
can suppose T = 1. Then ≥ is an application of Jensen’s inequality.

The converse is nontrivial only if the infimum on the right hand side if a finite
number C. In this case, fix ε > 0 and pick (ρt,∇ψt)t∈[0,1] solving (CE’) and such
that ∫ 1

0
‖∇ψt‖ρ̂t < C + ε .

We know that (CE’) is preserved by AC strictly increasing reparametrisations
(Remark 3.1.4). The idea is to use a reparametrisation τ such that τ ′(s)

∥∥∇ψτ(s)

∥∥
ρ̂τ(s)

becomes “approximately constant”, so to have “almost equality” in Jensen’s inequal-
ity. Precisely, for s ∈ [0, 1] put

σ(s) :=
1

cε

∫ s

0

√
‖∇ψr‖2ρ̂r + ε2dr
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where cε is chosen to have σε(1) = 1, i.e.

cε :=

∫ 1

0

√
‖∇ψr‖2ρ̂r + ε2dr ≤

∫ 1

0

(
‖∇ψr‖ρ̂r + ε

)
dr < C + 2 ε .

σ is AC with σ′ > ε, so it has an AC strictly increasing inverse τ such that for
a.e. s ∈ [0, 1]

τ ′(s) = cε

(√∥∥∇ψτ(s)

∥∥2

ρ̂τ(s)
+ ε2

)−1

.

To conclude, put ρ̃s := ρτ(s) and ψ̃s := ψτ(s)τ
′(s): it is an admissible couple in the

infimum defining W, therefore

W(η, σ)2 ≤
∫ 1

0

∥∥∥∇ψ̃s∥∥∥2

̂̃ρs ds =

∫ 1

0

∥∥∇ψτ(s)

∥∥2

ρ̂τ(s)
τ ′(s)2ds =

= c2
ε

∫ 1

0

∥∥∇ψτ(s)

∥∥2

ρ̂τ(s)∥∥∇ψτ(s)

∥∥2

ρ̂τ(s)
+ ε2

ds ≤ c2
ε ≤ (C + 2 ε)2.

Letting ε→ 0, we get the desired inequality.

To conclude that W is an extended distance, we need only that W(ρ, σ) > 0 for
every ρ 6= σ. We can actually say more:

Definition 3.1.23. For ρ, σ ∈ P(X), the total variation distance between ρ
and σ is

dTV (ρ, σ) :=
∑
x∈X
|ρ(x)− σ(x)|π(x) = ‖ρ− σ‖L1(π) .

Notation. ‖θ‖′∞ := sup

{
θ(s, t) : 0 ≤ s, t ≤

(
min
x∈X

π(x)

)−1
}
.

Lemma 3.1.24 (Lower bound). Let ρ0, ρ1 ∈P(X). Then

1√
2
dTV (ρ0, ρ1) ≤

√
2W1(ρ0, ρ1) ≤

√
‖θ‖′∞W(ρ0, ρ1)

where W1 is the Wasserstein distance with respect to dg.

Proof. The first inequality follows observing that 1
2dTV = W1 when the distance on

X is d̃(x, y) := 1 for every x 6= y; but d̃ ≤ dg and the inequality is proven.
To prove the remaining inequality, we can suppose that W(ρ0, ρ1) <∞. We fix

ε > 0 and take a (ρt,∇ψt)t∈[0,1] solving (CE’) and such that∫ 1

0
‖∇ψt‖2ρ̂t dt <W(ρ0, ρ1)2 + ε .

We want to use Kantorovich’s duality: so, for any φ 1-Lipschitz for dg, we compute

|〈φ, ρ0 − ρ1〉π| =
∣∣∣∣∫ 1

0
〈φ, ρ̇t〉πdt

∣∣∣∣ (CE’)
=

∣∣∣∣∫ 1

0
〈∇φ, ρ̂t • ∇ψt〉Kdt

∣∣∣∣ . (3.1.10)
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If we apply Cauchy-Schwarz’s inequality to the symmetric bilinear positive semidef-
inite form

(f, g) 7→
∫ 1

0
〈∇ft, ρ̂t • ∇gt〉Kdt

we infer that

(3.1.10) ≤
(∫ 1

0
〈∇φ, ρ̂t • ∇φ〉Kdt

)1/2(∫ 1

0
〈∇ψt, ρ̂t • ∇ψt〉Kdt

)1/2

.

The second integral is less or equal than W(ρ0, ρ1)2 + ε; it remains to estimate the
first integral, which is∫ 1

0

1

2

∑
x,y∈X

(φ(x)− φ(y))2ρ̂t(x, y)K(x, y)π(x) dt. (3.1.11)

But in (3.1.11), the only nonzero addends are such that K(x, y) 6= 0 and x 6= y, so
that dg(x, y) = 1. Hence for φ 1-Lipschitz

(3.1.11) ≤ 1

2

∫ 1

0

∑
x,y∈X

θ(ρt(x), ρt(y))K(x, y)π(x) ≤ 1

2
‖θ‖′∞ . (3.1.12)

Letting ε→ 0 the conclusion follows.

Remark 3.1.25 (Simpler bound). If we are not interested in the bound involving
W1 (for example, because we only want to prove that W(η, σ) > 0 if η 6= σ), then
we can avoid using Kantorovich’s duality (which may be desirable, because the
theory exposed in this chapter is independent from optimal transport, except for
inspiration): in fact, the computations leading to (3.1.11) are valid even if we only
know that φ ∈ L∞(X), but then

(3.1.11) ≤ 2 ‖φ‖2L∞(X) ‖θ‖
′
∞
∑
x,y∈X

K(x, y)π(x) = 2 ‖φ‖2L∞(X) ‖θ‖
′
∞ .

Letting ε→ 0, we have shown that

|〈φ, ρ0 − ρ1〉π| ≤
√

2 ‖θ‖′∞W(ρ0, ρ1) ‖φ‖L∞(X)

which by duality of L1 and L∞ easily yields the bound involving dTV .

Remark 3.1.26 (Sharper bound). Suppose that θ is concave and 1-homogeneous.
Then

θ(s, t) =
1

2
(θ(s, t) + θ(t, s)) ≤ θ

(
s+ t

2
,
s+ t

2

)
=
s+ t

2
θ(1, 1).

Inserting this inequality in (3.1.12) (instead of using simply θ(. . . ) ≤ ‖θ‖′∞), one
obtains √

2W1(ρ0, ρ1) ≤
√
θ(1, 1)W(ρ0, ρ1).

which is slightly sharper, and independent of K.
This applies if θ is the logarithmic mean, for which θ(1, 1) = 1.
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As in the continuous case, we can drop the request that the velocity field is a
gradient:

Proposition 3.1.27 (General velocity fields). For every ρ0, ρ1 ∈P(X), it holds

W(ρ0, ρ1) =

√
inf

{∫ 1

0
‖Vt‖2ρ̂t : (ρt, Vt)t∈[0,1] solves (CE’)

}
. (3.1.13)

Proof. If (ρt, Vt)t is a solution of (CE’) and Wt is another velocity field, then
(ρt,Wt)t solves (CE’) as well if and only if ∇ · ((Vt − Wt) • ρ̂t) = 0. In some
sense this is still equivalent to “orthogonality to the gradients”, since

〈Ψ,∇φ〉ρ̂ = −〈∇ · (Ψ • ρ̂), φ〉π. (3.1.14)

To make the argument precise, we note that ‖Vt‖2ρ̂t and (CE’) depend only on the
values Vt(x, y) in the couples (x, y) such that K(x, y)ρ̂t(x, y) > 0. Hence the only
thing that matters is the equivalence class of Vt in the space

Hρt :=
RX×X

∼

where Φ ∼ Ψ if they coincide on {(x, y) : K(x, y)ρ̂t(x, y) > 0}.
On Hρ, we consider 〈·, ·〉ρ̂, which thanks to the identification ∼ is a nondegen-

erate positive scalar product: so (3.1.14) means that

Ψ 7→ ∇ · (Ψ • ρ̂) (well defined in Hρ)

is minus the adjoint to the “gradient” operator ∇ : L2(π) → Hρ. Hence its kernel
is Ran(∇)⊥.

To sum up, given that (ρt, Vt)t solves (CE’), then (ρt,Wt)t is another solution if
and only if for a.e. t it holds

Wt = Vt + Ψt in Hρt

where Ψt is any element orthogonal to the gradients in Hρt . Among these Wt, the
one of least norm is the orthogonal projection of Vt onto {∇ψ : ψ ∈ RX}, from
which the conclusion follows.

Theorem 3.1.28 (The infimium is attained). Suppose that ρ0, ρ1 are such that
W(ρ0, ρ1) <∞. Then the infimum which defines W is attained (and a fortiori also
the infimum in (3.1.13)).

Proof. Take (ρn, V n) any minimizing sequence in (3.1.13). Firstly, we note that

ρ̇t(x)2 =
1

4

∑
y∈X

(Vt(x, y)− Vt(y, x))ρ̂t(x, y)K(x, y)π(x)

2

Jensen
≤

≤ 1

4

∑
y∈X

(Vt(x, y)− Vt(y, x))2ρ̂t(x, y)2K(x, y)π(x) ≤ C <∞
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thanks to the fact that (ρn, V n) is minimizing and ρ̂t is equibounded. Therefore,
(ρn) is a bounded sequence in W 1,2(0, 1) and so, possibly passing to a subsequence,
we can suppose that ρn⇀ρ∞ in W 1,2(0, 1) and, by compactness of the embedding
of W 1,2(0, 1) in C([0, 1]), also that ρn → ρ∞ uniformly. In particular, ρ∞0 = ρ0 and
ρ∞1 = ρ1.

Now we can use a form of semicontinuity of the L2 relative norm (in the spirit
of Lemma 1.3.20). Precisely, consider on [0, 1] the measures

µnx,y(dt) := ρ̂nt (x, y)K(x, y)π(x)dt, µ∞x,y(dt) := ρ̂∞t (x, y)K(x, y)π(x)dt.

Evidently, the total masses are bounded and µn⇀µ∞ as vector-valued measures.
Put νnx,y(dt) := V n

t (x, y)µnx,ydt.

If µ is any measure with values in RX×X and nonnegative components, then
L2(µ;RX×X) with the scalar product 〈f, g〉L2(µ) :=

∑
x,y〈fx,y, gx,y〉L2(µx,y) is Hilbert.

For g ∈ Cb([0, 1];RX×X), we have

|〈νn, g〉| =

∣∣∣∣∣∑
x,y

∫
[0,1]

gx,yV
n(x, y) dµnx,y

∣∣∣∣∣ Cauchy-Schwarz
≤ ‖V n‖L2(µn) ‖g‖L2(µn)

(3.1.15)
Since ‖g‖L2(µn) ≤ C ‖g‖∞, we infer that νn are equibounded vector-valued mea-
sures, and so we can suppose that (νn) converges weakly (i.e. in duality with
C0

(
[0, 1];RX×X

)
) to a certain ν. Letting n→∞ in (3.1.15), we get that g 7→ |〈ν, g〉|

is the restriction to C0

(
[0, 1];RX×X

)
of a continuous linear functional on L2(µ∞)

with norm less or equal than lim ‖V n‖L2(µn) =
√

2W(ρ0, ρ1). Hence, it can be

represented as 〈V∞, ·〉L2(µ) where ‖V∞‖L2(µ∞) ≤
√

2W(ρ0, ρ1).
In other terms, there exists a function V∞t (x, y) such that

V n
t (x, y)ρ̂nt (x, y)K(x, y)π(x)dt⇀V∞t (x, y)ρ̂∞t (x, y)K(x, y)π(x)dt ∀x, y ∈ X

(3.1.16)
and

1

2

∫ 1

0

∑
x,y∈X

V∞t (x, y)2ρ̂∞t (x, y)K(x, y)π(x)dt ≤ W(ρ0, ρ1)2.

Finally, we prove that (ρ∞t , V
∞
t ) solves (CE’). We already know that ρ∞ has a

distributional derivative in L2(0, 1); hence we can let n → ∞ in the continuity
equation for (ρnt , V

n
t ), and using (3.1.16) the conclusion follows.

The result of the argument above is that the infimum in (3.1.13) is attained;
but then, thanks to the construction used in the proof of Proposition 3.1.27, there
is also a minimizing couple of the form (ρt,∇ψt)t.

Theorem 3.1.29 (Existence of geodesics). For every ρ0, ρ1 ∈ P(X) such that
W(ρ0, ρ1) <∞, if (ρt, Vt) is a minimizing couple in (3.1.13), then

‖Vt‖ρ̂t =W(ρ0, ρ1) for a.e. t ∈ [0, 1]

and ρt is a constant speed geodesic in P(X). So, in light of the previous theorem,
a constant speed geodesic from ρ0 to ρ1 exists. In particular, if W is always finite,
then P(X) is a geodesic space.
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Proof. Let (ρt, Vt) be a minimizing couple in (3.1.13). Then we have

W(ρ0, ρ1)
Lemma 3.1.22
≤

∫ 1

0
‖Vt‖ρ̂t dt

Jensen
≤

√∫ 1

0
‖Vt‖2ρ̂t dt =W(ρ0, ρ1).

As a consequence, equality is achieved in Jensen’s inequality: hence the integrand is
a.e. constant, precisely ‖Vt‖ρ̂t =W(ρ0, ρ1) for a.e. t. Using the definition we deduce
that W(ρs, ρt) ≤ (t− s)W(ρ0, ρ1) for every [s, t] ⊆ [0, 1], so (ρt) is a constant speed
geodesic.

A complete description of AC2(P(X)) is possible, in perfect analogy with The-
orem 2.1.16.

Theorem 3.1.30 (Description of AC2(P(X))).

1. Let (ρt, Vt)t∈[0,1] be a solution of (CE’) with
∫ 1

0 ‖Vt‖
2
ρ̂t
< ∞. Then (ρt)t∈[0,1]

is an AC2 curve in P(X) and, denoting by |ρ′t|P(X) its metric derivative, it
holds

|ρ′t|P(X) ≤ ‖Vt‖ρ̂t for a.e. t ∈ [0, 1].

2. Conversely, if (ρt)t∈[0,1] is an AC2 curve in P(X), then it satisfies (CE’) for
some Vt such that ‖Vt‖ρ̂t = |ρ′t|P(X) for a.e. t ∈ [0, 1] (the least possible value,
according to part 1.). It is also possible to take Vt of the form ∇ψt.

Proof. The proof of part 1. is absolutely identical to its continuous counterpart.
Also for part 2. we can exploit the idea of the old proof: namely, for m ∈ N, we

use Theorem 3.1.29 to build (ρmt , V
m
t )t∈[0,1] solving (CE’), such that ρmt coincides

with ρt in t = i
m for i = 0, . . . ,m, and

‖V m
t ‖ρ̂mt = mW(ρ(i−1)/m, ρi/m) for every i = 1, . . . ,m and a.e. t ∈

[
i− 1

m
,
i

m

]
.

In particular, for a.e. t ∈
[
i−1
m , im

]
, it holds

‖V m
t ‖

2
ρ̂mt

= m2W(ρ(i−1)/m, ρi/m)2 ≤ m
∫ i/m

(i−1)/m
|ρ′s|2P(X)ds.

Integrating in dt for t ∈
[
i−1
m , im

]
and summing over i, we deduce∫ 1

0
‖V m

t ‖
2
ρ̂mt
dt ≤

∫ 1

0
|ρ′s|2P(X)ds <∞. (3.1.17)

We observe that ρmt → ρt for m→∞ uniformly: in fact, for t ∈ [0, 1], we have

|ρmt − ρt| ≤
∣∣ρt − ρbmtc/m∣∣+

∣∣∣ρmt − ρmbmtc/m∣∣∣
where the first addend goes to 0 for uniform continuity of ρt, and the second is equal
to (

t− bmtc
m

)
W
(
ρbmtc/m, ρdmte/m

) m→∞−−−−→ 0.
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This uniform convergence and inequality (3.1.17) allow the repetition of the semi-
continuity argument used in the proof of Theorem 3.1.28. The result is that there
exists a velocity field Vt such that (ρt, Vt)t∈[0,1] satisfies the continuity equation and∫ 1

0
‖Vt‖2ρ̂t dt ≤

∫ 1

0
|ρ′t|2P(X)dt.

But part 1. tells us that pointwise we have the converse inequality ‖Vt‖ρ̂t ≥ |ρ
′
t|P(X)

for a.e. t: the conclusion follows. We know that we can replace Vt with a velocity
field of the form ∇ψt without increasing the norm, so the proof is complete.

Remark 3.1.31. Every Vt of the form ∇ψt and solving (CE’) satisfies part 2.: in
fact, among the velocity fields that solve (CE’), the gradients have minimum norm
(see the proof of Proposition 3.1.27). However, this time the minimizing gradient
velocity field may not be unique. We will anyway find a canonical way to choose a
“tangent” field: see Remark 3.2.8.

Before we continue our comparison with the continuous case, it is worth studying
in detail on which subspaces of P(X) the extended distance W is a finite distance.
We will need the following assumption:

Hypothesis 3.1.32. The function θ, besides satisfying Hypothesis 3.1.2, has the
doubling property: for every T > 0 there exists a constant Cd = Cd(T ) > 0 such
that θ(2r, 2s) ≤ 2Cd θ(r, s) for every s, t ∈ [0, T ].

Remark 3.1.33. Any 1-homogeneous θ (like the logarithmic mean) satisfies this
assumption with Cd = 1.

Remark 3.1.34. Combining the doubling property and the monotonicity of θ, we
have that for every M > 0 there exists a CM such that θ(αr, αs) ≤ CMθ(r, s) for
every α ∈ [0,M ].

Notation.

Cθ :=

∫ 1

0

1√
θ(1− r, 1 + r)

dr. (3.1.18)

Remark 3.1.35 (Meaning of Cθ).
√

2
pCθ is the distance between a Dirac mass and

the uniform distribution on the two point space with p = q > 0 (Theorem 3.1.14).
Hence Cθ < ∞ if and only if W is finite on the space of probability measures on
this 2-point space. We know that this is true if θ is the logarithmic mean.

We can extend our considerations to generic positive measures (with a common
fixed total mass), because finiteness of W is scaling invariant:

Lemma 3.1.36 (Positive measures). Let m > 0. Then there exist c, C positive
constants such that

c W(ρ0, ρ1) ≤ W(mρ0,mρ1) ≤ C W(ρ0, ρ1).

Moreover, if θ is 1-homogeneous, then W(mρ0,mρ1) =
√
m W(ρ0, ρ1).
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Proof. It is sufficient to prove that for every m > 0 and every ρ0, ρ1 ∈ RX it holds
W(mρ0,mρ1) ≤ Cm W(ρ0, ρ1), with Cm =

√
m in the 1-homogeneous case. In fact,

using this inequality with 1
m in the place of m would then conclude the proof of the

lemma.
Suppose that (ρt, Vt) satisfies ∂tρt + ∇ · (ρ̂t • Vt) = 0. This can be written as

∂t(mρt) +∇ · (m̂ρt • Ṽt) if we call

Ṽt(x, y) :=
mρ̂t(x, y)

m̂ρt(x, y)
Vt(x, y)

(
convention:

0

0
= 0

)
.

Now we observe that∑
x,y∈X

Ṽt(x, y)2m̂ρt(x, y)K(x, y)π(x) =
∑
x,y∈X

Vt(x, y)2ρ̂t(x, y)K(x, y)π(x)
m2ρ̂t(x, y)

m̂ρt(x, y)
.

If θ is 1-homogeneous, we immediately deduce that the fraction at the right hand
side is equal to m; otherwise, we can estimate it from above with a constant by
Remark 3.1.34. In both cases, for arbitrariness of (ρt, Vt) the conclusion easily
follows.

Definition 3.1.37. For ρ ∈ P(X) and x, y ∈ X, we will write x ∼ρ y if either
x = y or there exists a path in the graph associated to K linking x with y and
involving only points where ρ > 0 (in particular ρ(x), ρ(y) > 0). This defines
an equivalence relation on X; the points of X \ supp(ρ) are isolated, while the
equivalence classes in supp(ρ) will be called the connected components of the
support of ρ.

Theorem 3.1.38 (Characterisation of finiteness).

1. If Cθ <∞, then W(ρ0, ρ1) <∞ for every ρ0, ρ1 ∈P(X).

2. If Cθ = ∞, then W(ρ0, ρ1) < ∞ if and only if ρ0 and ρ1 have the same
support and each connected component of it has the same total mass for the
two measures.

For the proof, we need two lemmas which compare W on X with the explicitly
known distances Wp,q on the 2-point space.

Lemma 3.1.39 (Comparison I). Let a, b ∈ X be such that K(a, b) > 0, and suppose
that ρ0, ρ1 ∈ P(X) coincide on X \ {a, b}; put p := K(a, b)π(a). Consider on the
2-point space Y = {a, b} the Markov kernel K̄ such that K̄(a, b) = K̄(b, a) = p,
and denote by Wp,p the induced distance between measures on Y ; call ρ̄0, ρ̄1 the
(densities of the) restrictions to Y of the measures on X whose densities are ρ0, ρ1.
Then

W(ρ0, ρ1) ≤
√
CdWp,p(ρ̄0, ρ̄1).

Proof. Let (ρ̄t)t∈[0,1] ⊆ P(Y ),
(
ψ̄t
)
t∈[0,1]

⊆ RY be such that (ρ̄t,∇ψ̄t)t satisfies

(CE’), i.e. {
˙̄ρt(a) +

(
ψ̄t(b)− ψ̄t(a)

)
p ˆ̄ρt(a, b) = 0

˙̄ρt(b) +
(
ψ̄t(a)− ψ̄t(b)

)
p ˆ̄ρt(a, b) = 0.

(3.1.19)
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Then we can extend the measure (whose density w.r.t. π̄ is) ρ̄t to a probability
measure (whose density w.r.t. π is) ρt ∈P(X), simply imposing ρt(x) = ρ0(x) for
every x ∈ X \ {a, b}. (ρt is a probability measure since ρ0 is and (CE’) preserves
total mass.) Since the invariant probability vector for K̄ is π̄(a) = π̄(b) = 1

2 , we are
saying 2π(a)ρt(a) = ρ̄t(a) and 2π(b)ρt(b) = ρ̄t(b).

If we write the system (3.1.19) in terms of ρt, we can give to it the form of a
continuity equation for the curve (ρt) using the velocity field

Vt(a, b) := −Vt(b, a) :=
ˆ̄ρt(a, b)

2ρ̂t(a, b)

(
ψ̄t(a)− ψ̄t(b)

)
,

(
0

0
:= 0

)
Vt(x, y) := 0 if (x, y) /∈ {(a, b), (b, a)}.

Hence

W(ρ0, ρ1)2 ≤ 1

2

∫ 1

0
[Vt(a, b)

2ρ̂t(a, b)K(a, b)π(a) + Vt(b, a)2ρ̂t(b, a)K(b, a)π(b)]dt =

=
1

4

∫ 1

0

ˆ̄ρt(a, b)
2

ρ̂t(a, b)

(
ψ̄(b)− ψ̄(a)

)2
p dt. (3.1.20)

The monotonicity and doubling properties of θ imply

ˆ̄ρt(a, b) = θ (2π(a)ρt(a), 2π(b)ρt(b)) ≤ θ (2ρt(a), 2ρt(b)) ≤ 2Cd ρ̂t(a, b).

Using this to eliminate ρ̂t in (3.1.20), and since p = 2π̄(a)K̄(a, b) = 2π̄(b)K̄(b, a),
we obtain that W(ρ0, ρ1)2 is less or equal than

1

2
Cd

∫ 1

0
∇ψ̄t(a, b)2 ˆ̄ρt(a, b)[π̄(a)K̄(a, b) + π̄(b)K̄(b, a)]dt = Cd

∫ 1

0

∥∥∇ψ̄t∥∥2
ˆ̄ρt
dt.

The infimum over all the admissible choices of (ρ̄, ψ̄) gives the conclusion.

Lemma 3.1.40 (Comparison II). Consider on the 2-point space Y = {a, b} the
Markov kernel such that K̄(a, b) = K̄(b, a) = 1, and call W1,1 the induced distance
between measures on Y . Fix o ∈ X; for every ρ ∈ P(X) call ρ the element of
P(Y ) giving mass π(o)ρ(o) to the point a.

Then there exists a constant c depending only on K and θ, such that

W(ρ0, ρ1) ≥ c W1,1

(
ρ0, ρ1

)
.

Moreover, if θ is concave and 1-homogeneous (like the logarithmic mean), then the
inequality is true with c = 1.

Proof. We preliminarily note that for every ρ ∈P(X) it holds

ρ(a) = 2π(o)ρ(o), ρ(b) = 2
∑
x 6=o

π(x)ρ(x).

Let (ρt)t∈[0,1] be any curve in P(X) from ρ0 to ρ1, and suppose that (ρt,∇ψt)t
satisfies the continuity equation. Then

ρ̇t(o) +
∑
x 6=o

(ψt(x)− ψt(o)) ρ̂t(o, x)K(o, x) = 0.
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We multiply this equation by 2π(o) to get

ρ̇t(a) + 2
∑
x 6=o

(ψt(x)− ψt(o)) ρ̂t(o, x)K(o, x)π(o) = 0.

We would like to write this in the form

ρ̇t(a) +
(
ψt(b)− ψt(a)

)
ρ̂t(a, b) = 0

so that (ρt,∇ψt) solves (CE’) (recall that the equation for ρ̇t(b) is then automatically
satisfied because total mass is constant). To this aim, we put (with the convention
0
0 = 0):

ψt(a) :=
2
∑

x 6=o ρ̂t(o, x)K(o, x)π(o)

ρ̂t(a, b)
ψt(o),

ψt(b) :=
2
∑

x 6=o ρ̂t(o, x)K(o, x)π(o)ψt(x)

ρ̂t(a, b)
.

For simplicity of notation, we will write St for the sum
∑

x 6=o ρ̂t(o, x)K(o, x)π(o).
We have to estimate

‖∇ψt‖2ρ̂t =
1

2

∑
x,y∈X

(ψt(x)− ψt(y))2 ρ̂t(x, y)K(x, y)π(x).

Firstly, we forget the addends with x 6= o and y 6= o, getting

‖∇ψt‖2ρ̂t ≥
∑
x 6=o

(ψt(x)− ψt(o))2 ρ̂t(o, x)K(o, x)π(o).

(We used that K is reversible.) Expanding the square, this is equal to∑
x 6=o

ψt(x)2ρ̂t(o, x)K(o, x)π(o)− 2ψt(o)
∑
x 6=o

ψt(x)ρ̂t(o, x)K(o, x)π(o) + Stψt(o)
2.

(3.1.21)
We want to express this in terms of ρt, ψt.

To begin, let us suppose that St > 0. Jensen’s inequality gives

1

St

∑
x 6=o

ψt(x)2ρ̂t(o, x)K(o, x)π(o) ≥

 1

St

∑
x 6=o

ψt(x)ρ̂t(o, x)K(o, x)π(o)

2

Inserting this in (3.1.21) and using the definition of ψt, we get

(3.1.21) ≥ 1

4St
ψt(b)

2ρ̂t(a, b)
2 − ψt(b)ρ̂t(a, b)

ψt(a)ρ̂t(a, b)

2St
+ St

ψt(a)2ρ̂t(a, b)
2

4S2
t

=

=
ρ̂t(a, b)

2

4St

(
ψt(b)− ψt(a)

)2
.

If we could prove that for some c > 0 it holds

ρ̂t(a, b)

2St
≥ c2 (with c = 1 if θ is concave 1-homogeneous), (3.1.22)



82 CHAPTER 3. A NEW DISTANCE ON DISCRETE SPACES

then we would conclude that

‖∇ψt‖2ρ̂t ≥ c
2
(
ψt(b)− ψt(a)

)2 1

2
ρ̂t(a, b) = c2

∥∥∇ψt∥∥2

ρ̂t

which is true by direct inspection also if St = 0; integration on t would then give
the thesis for arbitrariness of ρt and ψt.

It remains only to prove (3.1.22). We once remarked that the doubling property
implies that for a suitable constant C,

2St = 2π(o)
∑
x 6=o

K(o, x)θ(ρt(o), ρt(x))
Remark 3.1.34

≤

≤ C
∑
x 6=o

θ

(
2π(o)K(o, x)ρt(o), 2π(o)K(o, x)ρt(x)

)
=

= C
∑
x 6=o

θ

(
2π(o)K(o, x)ρt(o), 2π(x)K(x, o)ρt(x)

)
.

Using monotonicity of θ and the fact that K(o, x),K(x, o) ≤ 1, the right hand side
is less or equal than

C
∑
x 6=o

θ(2π(o)ρt(o), 2π(x)ρt(x))
monotonicity
≤ C

∑
x 6=o

θ

2π(o)ρt(o), 2
∑
y 6=o

π(y)ρt(y)


which is equal to C|X|ρ̂t(a, b), and the desired inequality is proven.

Finally, with the additional hypothesis that θ is concave 1-homogeneous, we can
perform a better estimate. In fact,

ρ̂t(a, b) = θ

2ρt(o)π(o), 2
∑
y 6=o

π(y)ρt(y)

 = 2π(o)θ

ρt(o),∑
y 6=o

ρt(y)
π(y)

π(o)

 .

Noting that π(y) =
∑

x∈X π(x)K(x, y) ≥ π(o)K(o, y) and using twice the mono-
tonicity property we get that the last expression is greater or equal than

2π(o)θ

ρt(o),∑
y 6=o

ρt(y)K(o, y)

 ≥ 2π(o)θ

∑
y 6=o

ρt(o)K(o, y),
∑
y 6=o

ρt(y)K(o, y)


which by concavity and 1-homogeneity is greater or equal than

2π(o)
∑
y 6=o

K(o, y)θ (ρt(o), ρt(y)) = 2St.
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Proof of Theorem 3.1.38 (Characterisation of finiteness).

1. If Cθ < ∞, thanks to Lemma 3.1.39, if η, σ ∈ P(X) differ only in a couple of
points a, b such that K(a, b) > 0, thenW(η, σ) <∞. Now given any ρ0, ρ1 ∈P(X)
distinct, we claim that there exists ρ̃0 ∈P(X) at a finite distance from ρ0 and such
that

#{x : ρ̃0(x) 6= ρ1(x)} < #{x : ρ0(x) 6= ρ1(x)}.

Iterating this argument a finite number of times, the conclusion would follow.

Let us prove the claim. Since the total mass is 1, there are x̄, ȳ ∈ X such that
ρ0(x̄) > ρ1(x̄) and ρ0(ȳ) < ρ1(ȳ). Call m the exceeding mass which ρ0 has in
x̄. For irreducibility of K, there exists a chain x̄ = x0, x1, . . . , xN = ȳ such that
K(xi−1, xi) > 0 for every i = 1, . . . , N . We recursively build intermediate measures
(ρ(i))i=0,...,N as follows:

• ρ(0) = ρ0;

• For i = 0, . . . , N − 1, ρ(i+1) differs from ρ(i) only in the fact that a mass m
has been “moved” from xi to xi+1.

By construction, W(ρ(i−1), ρ(i)) <∞, ρ(0) = ρ0 and ρ(N) differs from ρ0 only in the
points x̄, ȳ; moreover, ρ(N)(x̄) = ρ1(x̄). Putting ρ̃0 := ρ(N), the claim is proved.

2. If ρ0, ρ1 have the same support and give the same mass to each connected com-
ponent of the support, then we can still build ρ̃0 at a finite distance from ρ0 and
differing from ρ1 in a smaller number of points. In fact, we can repeat the construc-
tion above, with the only additional attention to take x̄, ȳ in the same connected
component of the support (here we use that the total mass of this component is
equal for the two measures), and to chose the xi in such a way that ρ0(xi) > 0
for every i (possible because x ∼ρ0 y). We note that at each step, the application
of Lemma 3.1.39 gives an upper bound of W(ρ(i−1), ρ(i)) in terms of the distance
between two measures with strictly positive densities on the 2-point space: this
distance is always finite, and the conclusion follows.

Conversely, suppose that W(ρ0, ρ1) <∞. If by contradiction the supports were
different, there would be o ∈ X such that ρ0(o) > 0 and ρ1(o) = 0 or vice versa, so
that an application of Lemma 3.1.40 would give W(ρ0, ρ1) = ∞, which is not the
case. Therefore, supp(ρ0) = supp(ρ1).

Take now any (ρt,∇ψt)t∈[0,1] satisfying (CE’) and such that
∫ 1

0 ‖∇ψt‖
2
ρ̂t
dt <∞.

Then by definition W(ρ0, ρt) < ∞, so the previous argument gives supp(ρ0) =
supp(ρt). But then K(x, y)ρ̂t(x, y) = 0 unless x ∼ρ0 y, so the continuity equation
reduces to

ρ̇t(x) +
∑
y∼ρ0x

(ψt(y)− ψt(x))K(x, y)ρ̂t(x, y) = 0 ∀x ∈ X. (3.1.23)

For every z ∈ X fixed, consider the identities above for x ∼ρ0 z, multiply each of
them by π(x) and sum over x: the result (using reversibility ofK) is

∑
x∼ρ0z

ρ̇t(x)π(x) =

0, i.e. the total mass of the connected component of z is preserved.
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Remark 3.1.41 (On global existence of solutions to (CE’)). Assume that Cθ = ∞,

and suppose that (Vt)t∈[0,T ] ⊆ RX×X is such that
∑

x,y

∫ T
0 Vt(x, y)2dt < ∞. Then

we claim that there exists a globally defined solution (ρt)t∈[0,1] of (CE’) for every
initial condition ρ0 ∈P∗(X). By Remark 3.1.6, it is sufficient to show that if ρt is
a solution defined for t ∈ [0, τ), then ρt > 0 for every t ∈ [0, τ). If this was false,
there would be a first value t̄ such that ρt̄ has some component equal to 0; evidently
ρt̄ ≥ 0, so it is an element of P(X) \P∗(X). But the hypothesis on Vt implies
W(ρ0, ρt̄) <∞, and this contradicts the previous Theorem.

Remark 3.1.42 (Eulerian description of geodesics, formal proof). Mimicking Re-
mark 2.1.24, we now formally derive an analogous of the “Eulerian” equations of
geodesics (2.1.2). The result can be proven rigorously in a different way, as we will
explain in Theorem 3.2.14.

Let (ρt)t∈[0,1] be a constant speed geodesic in P(X), and consider an “optimal”
velocity field ∇ψt realising the infimum in the definition of W. Consider any other
curve (σt)t∈[0,1] from ρ0 to ρ1, and any (Wt)t∈[0,1] ⊆ RX×X such that (σt,Wt)t solves
(CE’).

For ε ∈ R, put ρεt := (1 − ε)ρt + ε σt. This defines a curve in P(X) at least if
ρt(x) > c > 0 for every t, x and ε is small: let us assume that this is true. With the
usual trick, we find that a velocity field such that ρεt solves the continuity equation
is

V ε
t (x, y) :=

(1− ε)∇ψt(x, y)ρ̂t(x, y) + εWt(x, y)σ̂t(x, y)

ρ̂εt (x, y)
.

So the following quantity has a local minimum in ε = 0:∫ 1

0
‖V ε

t ‖
2
ρ̂εt
dt =∫ 1

0

∑
x,y

[(1− ε)∇ψt(x, y)ρ̂t(x, y) + εWt(x, y)σ(x, y)]2 ρ̂εt (x, y)−1K(x, y)π(x)dt.

Supposing that θ ∈ C1((0,∞)2), and writing for brevity ∂1ρ̂(x, y) for ∂1θ(ρ(x), ρ(y)),
the derivative of the integrand (as a function of ε) in ε = 0 is (straightforward
computation):

2
∑
x,y

{∇ψt(x, y) [Wt(x, y)σ̂t(x, y)−∇ψt(x, y)ρ̂t(x, y)] +

−∇ψt(x, y)2∂1ρ̂t(x, y) (σt(x)− ρt(x))
}
K(x, y)π(x).

Now we note that∑
x,y

∇ψt(x, y)Wt(x, y)σ̂t(x, y)K(x, y)π(x) = 2〈∇ψt,Wt • σ̂t〉K =

= −2〈ψt,∇ · (Wt • σ̂t)〉π = 2〈ψt, σ̇t〉π

and for the same reasons∑
x,y

∇ψt(x, y)2ρ̂t(x, y)K(x, y)π(x) = 2〈ψt, ρ̇t〉π
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Hence, if we can differentiate under the integral sign and impose the result to be 0,
the condition is

0 =

∫ 1

0

∑
x

{
2ψt(x) (σ̇t(x)− ρ̇t(x))π(x)+

−
∑
y

∇ψt(x, y)2∂1ρ̂t(x, y) (σt(x)− ρt(x))K(x, y)π(x)
}
dt.

Let us suppose that ψt is a C1 function of t. (In fact it is not restrictive; we do
not give any proof, because it will become clear after the Riemannian structure of
P∗(X) is described: see the next section.) Integration by parts transforms this
equation into

0 =

∫ 1

0

∑
x

[
ψ̇t(x) +

1

2

∑
y

∇ψt(x, y)2∂1ρ̂t(x, y)K(x, y)

]
(ρt(x)− σt(x))π(x)dt

(3.1.24)
for every (σt) curve in P(X) from ρ0 to ρ1 solving the continuity equation for some
velocity field.

As in the continuous case, we cannot expect that this implies that the integrand
is zero, because the couple (ρt,∇ψt) is unchanged if we add to ψt a constant function
f(t). However, we claim that if a function (φt)t∈[0,1] ⊆ RX satisfies

0 =

∫ 1

0

∑
x∈X

φt(x) (ρt(x)− σt(x))π(x)dt (3.1.25)

for every (σt) as above, then φt must be constant in space (up to a negligible set of
times). This would immediately imply that, with an additive perturbation, we can
find a potential ψt satisfying the following “Hamilton-Jacobi”-like condition:

ψ̇t(x) +
1

2

∑
y∈X
∇ψt(x, y)2∂1ρ̂t(x, y)K(x, y) = 0 ∀x ∈ X. (3.1.26)

To prove the claim, we choose any y, z ∈ X, and any η ∈ C∞c ((0, 1)), and

consider σt := µt + ε(
δy
π(y) −

δz
π(z))η(t), which is in P(X) if ε is small. Since σt

is a.e. differentiable, then one can see that it satisfies the continuity equation for
some velocity field (see for instance Theorem 3.2.7 below): hence it an admissible
variation. But for this choice of σt, equation (3.1.25) becomes∫ 1

0
[φt(y)− φt(z)] η(t)dt = 0,

which for arbitrariness of η ∈ C∞c ((0, 1)) yields φt(y) = φt(z) for a.e. t as desired.
Finally, we note that in the case Cθ = ∞, even if we do not know that ρ0 > 0,

the above argument can be adapted. In fact, the manipulations leading to (3.1.24)
still work if we impose additionally that W(σt, ρ0) < ∞ for every t: by our char-
acterisation of finiteness of W, this means that the connected components of the
supports of σt and ρ0 are the same and have the same total mass. As for the claim,
the variations σt used in its proof are now admissible if and only if y ∼ρ0 z. Hence
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the conclusion is somewhat weaker: φt is constant on the connected components of
supp(ρ0). This is not a real issue, since if we add to ψt a function which is constant
on the components of supp(ρ0), then the quantities involved in the definition of W
do not vary. Hence, we can still conclude that, for a suitable choice of the “optimal”
potential ψt, equation (3.1.26) holds.

The system of ordinary differential equations{
∂tρt +∇ · (∇ψt • ρ̂t) = 0
∂tψt + 1

2

∑
y∈X ∇ψt(·, y)2∂1ρ̂t(·, y)K(·, y) = 0

(3.1.27)

strongly resembles the “Eulerian” description of geodesics in P2(Rn) given by the
system (2.1.2), except for the fact that now the equation for ψt depends also on ρt.
It actually characterises constant speed geodesics: see Theorem 3.2.14.

3.2 Riemannian structure

Our aim is to show that under suitable hypotheses, W is a “Riemannian” distance.
For easier manipulation, we write the quadratic quantity ‖∇ψt‖2ρ̂t in matrix notation

as 〈A(ρt)ψt, ψt〉; it turns out that A(ρ) ∈ RX×X is given by

Ax,y(ρ) :=

{∑
z 6=xK(x, z)ρ̂(x, z)π(x), if x = y

−K(x, y)ρ̂(x, y)π(x), if x 6= y.
(3.2.1)

Similarly, we can write the continuity equation as ρ̇t = B(ρt)ψt where

Bx,y(ρ) :=

{∑
z 6=xK(x, z)ρ̂(x, z), if x = y

−K(x, y)ρ̂(x, y), if x 6= y;
(3.2.2)

note that A = ΠB if Π is the diagonal matrix with diagonal entries π(x). We collect
for future use some linear algebra remarks.

Remark 3.2.1. Since A(ρ) is symmetric positive semidefinite, then

KerA(ρ) =
{
ψ ∈ RX : 〈A(ρ)ψ,ψ〉 = 0

}
=
{
ψ ∈ RX : ψ(x) = ψ(y) whenever x ∼ρ y

}
by definition of 〈A(ρ)ψ,ψ〉. Moreover, by symmetry of A(ρ), we have

RanA(ρ) = (KerA(ρ))⊥ =

ψ ∈ RX :
∑
z∼ρx

ψ(z) = 0 ∀x ∈ X

 .

From the relation A = ΠB, we also deduce that

KerB(ρ) =
{
ψ ∈ RX : ψ(x) = ψ(y) whenever x ∼ρ y

}
,

RanB(ρ) =

ψ ∈ RX :
∑
z∼ρx

ψ(z)π(z) = 0 ∀x ∈ X

 .
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Notation. For σ ∈P(X) and b > 0, we will write:

Pσ(X) :={ρ ∈P(X) :W(ρ, σ) <∞};

P ′
σ(X) :=

ρ ∈P(X) :
∑
y∼ρx

ρ(y)π(y) =
∑
y∼σx

σ(y)π(y) ∀x ∈ X

 ;

Pb
σ(X) :=

{
ρ ∈P ′

σ(X) : ρ(x) ≥ b ∀x ∈ supp(σ)
}

;

P∗(X) := P ′
1(X) = {ρ ∈P(X) : ρ(x) > 0 ∀x ∈ X}.

(Note that every ρ ∈P ′
σ(X) satisfies supp(ρ) = supp(σ).)

Thanks to the characterisation of finiteness of W, we have that Pσ(X) is equal
to P(X) if Cθ <∞, and to P ′

σ(X) otherwise.

Lemma 3.2.2. For every σ ∈P(X) and b > 0 there exist constants 0 < c < C <∞
such that

c ‖ψ‖ ≤ ‖B(ρ)ψ‖ ≤ C ‖ψ‖ ∀ψ ∈ RanA(σ) ∀ρ ∈Pb
σ(X).

Proof. The second inequality is immediate since the entries of B(ρ) are bounded.
As for the first one, we note that by symmetry A(ρ) restricts to an isomorphism

on its range, and so B(ρ) = Π−1A(ρ) restricts to an isomorphism Bρ of RanA(ρ)
onto RanB(ρ). But RanA(ρ) = RanA(σ) and RanB(ρ) = RanB(σ) by Remark
3.2.1: hence, ρ 7→ B−1

ρ is a well defined continuous mapping defined on the compact

set Pb
σ(X) with values in the linear isomorphisms of RanB(σ) onto RanA(σ), and

the conclusion follows.

Corollary 3.2.3 (Partial converse of Lemma 3.1.24). For every σ ∈ P(X) and
b > 0, there exists a constant C > 0 such that for every ρ0, ρ1 ∈ Pb

σ(X), setting
ρt := (1− t)ρ0 + tρ1 and for a suitable ∇ψt satisfying (CE’), it holds

W(ρ0, ρ1) ≤
(∫ 1

0
‖∇ψt‖2 dt

)1/2

≤ CdTV (ρ0, ρ1).

Proof. Note that ρt ∈ Pb
σ(X) satisfies ρ̇t = ρ0 − ρ1 ∈ RanB(σ) by the charac-

terisation of the range of B(σ) (Remark 3.2.1). Hence, with the notations of the
proof of Lemma 3.2.2, we can take ψt := B−1

ρt ρ̇t ∈ RanA(σ), so that the continuity
equation ρ̇t = B(ρt)ψt is satisfied and ‖ψt‖ ≤ C ‖ρ0 − ρ1‖ ≤ C ′dTV (ρ0, ρ1) by the
same Lemma 3.2.2. In conclusion,

W(ρ0, ρ1)2 ≤
∫ 1

0
〈A(ρt)ψt, ψt〉dt ≤ C̄dTV (ρ0, ρ1)2

where we also used the obvious fact that the matrices A(ρ) are equibounded.

Remark 3.2.4 (P ′
σ(X) as a smooth manifold). P ′

σ(X), as a subset of RX , is simply
the open subset {ψ ∈ RX : ψ(x) > 0 ∀x ∈ supp(σ)} of the affine subspace{

ψ ∈ RX : ψ(z) = 0 ∀z /∈ supp(σ),
∑
y∼σx

ψ(y)π(y) =
∑
y∼σx

σ(y)π(y) ∀x ∈ X

}
.
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Hence, it has a natural structure of smooth manifold of dimension | supp(σ)| − n(σ),
where n(σ) is the number of independent conditions of the form∑

y∼σx
ψ(y)π(y) =

∑
y∼σx

σ(y)π(y)

as x runs in X; i.e., n(σ) is the number of connected components in supp(σ).
This structure is compatible with the topology induced by W:

Proposition 3.2.5 (convergence in Pσ(X)). Let σ ∈P(X) and ρα, ρ ∈Pσ(X).

Then ρα
W−→ ρ if and only if ρα

dTV−−→ ρ.

Proof. We already know that dTV is bounded above by a multiple of W (Lemma
3.1.24), so one implication is trivial. Conversely, suppose that (ρα) ⊆ Pσ(X)
converges to ρ ∈Pσ(X) in total variation.

If Cθ < ∞, for each α we can estimate W(ρα, ρ) using the procedure used at
page 83 in the first part of the proof of Theorem 3.1.38. In fact, the measures ρ(i)

defined there satisfy

W
(
ρ(i−1), ρ(i)

) Lemma 3.1.39
≤ Wp(i),p(i)

(
ρβ

(i)
, ρβ̃

(i)
)

=
1√
2p(i)

∣∣∣∣∣
∫ β̃(i)

β(i)

1√
θ(ρr(a), ρr(b))

dr

∣∣∣∣∣ .
In this estimate, the number of intermediate measures ρ(i) is at most |X|+1 indepen-
dently of α; p(i) can take only a finite number of values (see Lemma 3.1.39), which
are strictly positive; and β(i) − β̃(i) is infinitesimal in α thanks to the hypothesis

ρα
dTV−−→ ρ. The absolute continuity of the integral gives the conclusion.
If Cθ =∞, then the hypothesis ρα, ρ ∈Pσ(X) = P ′

σ(X) enables the use of the
procedure from the second part of the cited proof of Theorem 3.1.38. Now we can
repeat the argument above literally, with the only additional remark that β(i) and
β̃(i) definitively belong to some subinterval (ε, 1− ε) ⊂⊂ (0, 1), where the absolute
continuity of the integral holds even without the hypothesis Cθ <∞.

Proposition 3.2.6 (Completeness). The metric space (Pσ(X),W) is complete for
every σ ∈P(X).

Proof. Let (ρn) ⊆Pσ(X) be Cauchy with respect to W.
If Cθ <∞ then Pσ(X) = P(X); (ρn) is Cauchy also for dTV (Lemma 3.1.24),

and therefore converges in total variation: the conclusion comes from the previous
proposition.

If Cθ = ∞, from the W-boundedness of the set {ρn : n ∈ N}, by comparison
with the two point space (Lemma 3.1.40), we get that there exists b > 0 such that
ρn ∈ Pb

σ(X) for every n. But on Pb
σ(X), the distances dTV and W are strongly

equivalent by Lemma 3.1.24 and Corollary 3.2.3: since
(
Pb

σ(X), dTV

)
is complete,

the conclusion follows.

We saw that P ′
σ(X) = σ + RanB(σ): so, the tangent space can be identified

with RanB(σ). But there is also a way of thinking of the “tangent space” as a
space of gradients via the continuity equation, in analogy with the definition of
Tanµ P2(Rn) from Chapter 2:
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Theorem 3.2.7. Fix σ ∈P(X). Then:

1. For every ρ ∈P ′
σ(X) and φ ∈ RanB(σ), there exists a unique ψ ∈ RanA(σ)

such that φ = B(ρ)ψ; the map Iρ defined by

Iρφ := ∇ψ

is a linear isomorphism of RanB(σ) onto

Tρ := {∇ψ : ψ ∈ RanA(σ)}.

2. If ρ : [0, 1]→P ′
σ(X) is differentiable at a point t ∈ [0, 1], then

Dtρ := Iρt ρ̇t

is the unique element ∇ψt ∈ Tρt satisfying ρ̇t+∇·(ρ̂t•∇ψt) = 0. In particular,
every a.e. differentiable curve satisfies (CE’) for a suitable gradient velocity
field.

Proof.
1. We already observed in the proof of Lemma 3.2.2 that B(ρ) is a linear isomor-

phism of RanA(σ) onto RanB(σ): it remains to prove that ψ 7→ ∇ψ is injective on
RanA(σ) (hence an isomorphism with its image Tρ). This is true because if ∇φ = 0,
then 0 = ‖∇ψ‖2ρ̂ = 〈A(ρ)ψ,ψ〉; A(ρ) is symmetric positive semidefinite, therefore
A(ρ)ψ = 0, and since A(ρ) is an isomorphism on its image we deduce ψ = 0.
2. By definition of B(ρ), the equation ρ̇t +∇ · (ρ̂t • ∇ψt) = 0 can be rewritten as
ρ̇t = B(ρt)ψt, so part 1. yields the conclusion.

Remark 3.2.8 (Tangent field). Let (ρt) ⊆ P ′
σ(X) be any absolutely continuous

curve with respect to W. There exists an AC2 reparametrisation of the curve, so
Theorem 3.1.30 implies that ρ solves (CE’) for some velocity field.

Moreover, if (ρt) ⊆ P ′
σ(X) is any a.e. differentiable curve, then the Theorem

above provides a canonical choice Dtρ of a velocity field ∇ψt satisfying (CE’) (up
to a negligible set of times). This tangent velocity field is characterized by the
fact that for a.e. t, ∇ψt belongs to the tangent space Tρt to P ′

σ(X) in ρt. Note
that the tangent field realizes

inf
(∇ψt):(ρt,∇ψt)t solves (CE’)

∫ 1

0
‖∇ψt‖2ρ̂t dt

(see Remark 3.1.31).
In the case of P∗(X), the tangent space is truly the “space of gradients” as

in the continuous setting: Tρ = {∇ψ : ψ ∈ RX}. In fact, when we defined A(σ),
we noted that the condition ψ ∈ RanA(σ) is equivalent to

∑
x ψ(x) = 0, which is

readily accomplished by addition of the same constant to all components, thus not
modifying ∇ψ.

Now that we can identify Tρ with the tangent space, 〈·, ·〉ρ̂ can be seen as a
Riemannian metric (which is Cr if θ ∈ Cr((0,∞)2)): the scalar product is nonde-
generate since, as we noticed in the previous proof, ‖∇ψ‖2ρ̂ with ∇ψ ∈ Tρ implies
∇ψ = 0.
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Theorem 3.2.9 (W as a Riemannian distance).

1. If Cθ = ∞ and σ ∈ P(X), then the Riemannian metric 〈·, ·〉ρ̂ induces on
Pσ(X) the distance W.

2. If Cθ <∞ and θ is concave (like the logarithmic mean), then the Riemannian
metric 〈·, ·〉ρ̂ induces on P∗(X) the distance W.

Proof.
1. Let ρ0, ρ1 ∈Pσ(X). Note that in the infimum that definesW one can obviously

restrict to the curves (ρt) such that the quantity to be minimized is finite. Supposing
that Cθ =∞, this implies that (ρt) ⊆P ′

σ(X): hence, by the previous Remark, an
optimal choice of ∇ψt is the “tangent” one. To sum up,

W(ρ0, ρ1)2 = inf
(ρt)⊆Pσ(X) a.e. differentiable

∫ 1

0
‖Dtρ‖2ρ̂t dt

which is precisely the squared Riemannian distance.
2. Let ρ0, ρ1 ∈ P∗(X). The argument of part 1. can be repeated literally if we

can show that, in the definition of W, we can restrict to the curves (ρt) entirely
contained in P∗(X). Let us prove this.

Fix ε > 0, and find (ρt,Ψt)t∈[0,1] solving (CE’) such that∫ 1

0
‖Ψt‖2ρ̂t dt <W(ρ0, ρ1)2 + ε .

Set ρεt := (1− ε)ρt + ε, which solves (CE’) with velocity field

Ψε
t (x, y) := (1− ε) ρ̂t(x, y)

ρ̂εt (x, y)
Ψt(x, y).

The function 1
θ is convex as a composition of the convex nonincreasing x 7→ x−1

with the concave θ. Hence, (x, s, t) 7→ x2

θ(s,t) is convex too, from which

2 ‖Ψε
t‖

2
ρ̂εt

=
∑
x,y∈X

Ψε
t (x, y)2

θ (ρεt (x), ρεt (y))
ρ̂εt (x, y)2K(x, y)π(x)

convexity
≤

≤
∑
x,y∈X

(1− ε)

[
ρ̂t(x,y)
ρ̂εt (x,y)Ψt(x, y)

]2

θ (ρt(x), ρt(y))
ρ̂εt (x, y)2K(x, y)π(x) = (1− ε)2 ‖Ψt‖2ρ̂t .

Therefore, ∫ 1

0
‖Ψε

t‖
2
ρ̂εt
dt ≤ (1− ε)

∫ 1

0
‖Ψt‖2ρ̂t dt < (1− ε)W(ρ0, ρ1)2 + ε .

Unfortunately, ρε0 6= ρ0 and ρε1 6= ρ1. However, by Corollary 3.2.3 they are “near”:
precisely, for i = 0, 1, if we put

ρi,εt := (1− t)ρi + tρεi ,
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then there exists a velocity field (Ψi,ε
t )t such that (ρi,εt ,Ψ

i,ε
t )t solves (CE’) and∫ 1

0

∥∥∥Ψi,ε
t

∥∥∥2

ρ̂i,εt
dt ≤ C2dTV (ρi, ρ

ε
i )

2 ≤ C ′ ε2

for some constants C,C ′ independent of ε.
Now we simply rescale

(
ρ0,ε,Ψ0,ε

)
to be defined in the time interval [0, ε], (ρε,Ψε)

to be defined in [ε, 1 − ε], and
(
ρ1,ε,Ψ1,ε

)
to be defined in [1 − ε, 1]: gluing the

three resulting curves together, we get (ρ̄εt , Ψ̄
ε
t )t∈[0,1] ⊆ P∗(X) solving (CE’) and

connecting ρ0 to ρ1, such that∫ 1

0

∥∥Ψ̄ε
t

∥∥2
ˆ̄ρεt
dt ≤ 1

ε

∫ 1

0

∥∥∥Ψ0,ε
t

∥∥∥2

ρ̂0,ε
t

dt+
1

1− 2 ε

∫ 1

0
‖Ψε

t‖
2
ρ̂εt
dt+

1

ε

∫ 1

0

∥∥∥Ψ1,ε
t

∥∥∥2

ρ̂1,ε
t

dt

≤ 2C ′ ε+
(1− ε)W (ρ0, ρ1)2 + ε

1− 2 ε
.

Since ε is arbitrary, and recalling as usual that we can replace Ψ̄ε
t with a gradient

without increasing its norm, the conclusion follows.

With almost the same proof, we can show the following:

Theorem 3.2.10 (restriction to ρ ∈ C∞). Suppose that θ ∈ C∞((0,∞)2) is con-
cave. Then in the infimum that definesW, one can restrict to (ρt) ∈ C∞((0, 1);RX).

Note. In the original article [12], the distance W was defined requiring (ρt) to be
piecewise C1; in light of the Theorem, this makes no difference at least in the most
relevant case of the logarithmic mean.

Proof. Given any (ρt, Vt)t∈[0,1] solving the continuity equation, we define a solution
of (CE’) in [− ε, 1 + ε] as follows:

(σεt ,W
ε
t ) :=


(ρ0, 0) , if t ∈ [− ε, ε](
ρ t−ε

1−2 ε
,

1

1− 2 ε
V t−ε

1−2 ε

)
, if t ∈ [ε, 1− ε]

(ρ1, 0) , if t ∈ [1− ε, 1 + ε].

It evidently satisfies ∫ 1

0
‖W ε

t ‖
2
σ̂εt
dt =

1

1− 2 ε

∫ 1

0
‖Vt‖2ρ̂t dt. (3.2.3)

We now mollify in time: ρε := σε ∗jε is an admissible C∞((0, 1);RX) curve between
ρ0 and ρ1, which satisfies (CE’) with velocity field

V ε(x, y) :=
[W ε(x, y)σ̂ε(x, y)] ∗ jε

ρ̂ε(x, y)
.

Again by convexity of (x, s, t) 7→ x2

θ(s,t) , we get

2 ‖V ε
t ‖

2
ρ̂εt

=
∑
x,y∈X

V ε
t (x, y)2ρ̂εt (x, y)2

θ (ρεt (x), ρεt (y))
K(x, y)π(x)

convexity
≤

≤
∑
x,y∈X

[
W ε(x, y)2σ̂ε(x, y)2

θ (σε(x), σε(y))
∗ jε
]

(t) K(x, y)π(x).



92 CHAPTER 3. A NEW DISTANCE ON DISCRETE SPACES

Integrating in dt,∫ 1

0
‖V ε

t ‖
2
ρ̂εt
dt ≤

∫ 1

0
‖W ε

t ‖
2
σ̂εt
dt

(3.2.3)

≤ 1

1− 2 ε

∫ 1

0
‖Vt‖2ρ̂t dt.

Finally, we can replace V ε with a gradient field with the usual projection argument.

Remark 3.2.11. If in addition one knows that ρ0, ρ1 ∈P∗(X), then the above proof
in fact shows that we can also require ψ to be C∞. This is not surprising if one
recalls the Riemannian structure of P∗(X).

Example 3.2.12 (W not Riemannian on P ′
σ(X)). When Cθ < ∞, we cannot

expect thatW is induced by the Riemannian metric on the smooth manifold P ′
σ(X)

for general σ, as the present example shows.
Let θ be such that Cθ <∞. Consider on the three-point space X := {a, b, c} a

reversible irreducible Markov kernel K in which the roles of a and b are symmetric
and K(x, y) > 0 if x 6= y. Call ρ0 the probability measure giving mass 1

3 to a and 2
3

to b, ρ1 the probability measure giving mass 2
3 to a and 1

3 to b. Take σ := ρ0, and
call dσ the distance induced on P ′

σ(X) by the Riemannian metric. By definition,

dσ(ρ0, ρ1) ≥

 inf
(ρt,∇ψt) solves (CE’)

(ρt)⊆P′σ(X)

∫ 1

0
‖∇ψt‖2ρ̂t dt


1/2

.

In our situation, the argument used for the comparison Lemma 3.1.39 can be in
some sense reversed:

Claim. Put p := K(a, b)π(a). Consider on the 2-point space Y = {a, b} the Markov
kernel K̄ such that K̄(a, b) = K̄(b, a) = p, and denote by Wp,p the induced distance
between measures on Y ; call ρ̄0, ρ̄1 the (densities of the) restrictions to Y of the
probability measures on X whose densities are ρ0, ρ1. Then there exists a constant
C > 0, depending only on θ and π, such that

inf
(ρt,∇ψt) solves (CE’)

(ρt)⊆P′σ(X)

∫ 1

0
‖∇ψt‖2ρ̂t dt ≥ C

2Wp,p(ρ̄0, ρ̄1)2.

We postpone the proof, which is a modification of the proof of Lemma 3.1.39.
Using the claim, we get

dσ(ρ0, ρ1) ≥ CWp,p(ρ̄0, ρ̄1).

By the explicit formula (3.1.9) for Wp,p, this becomes

dσ(ρ0, ρ1) ≥ C 1√
2K(a, b)π(a)

∫ 1/3

−1/3

√
arctanh r

r
dr. (3.2.4)

On the other hand, if we call ρ2 the probability measure giving mass 1
3 to each

point of X, then

W(ρ0, ρ1) ≤ W(ρ0, ρ2) +W(ρ2, ρ1)
symmetry

= 2W(ρ1, ρ2).
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By comparison with the two point space (Lemma 3.1.39),

W(ρ1, ρ2) ≤
√
CdWp′,p′(ρ̄1, ρ̄2),

where p′ = K(a, c)π(a), and ρ̄1, ρ̄2 represent measures on {a, c} of total mass 2
3 ;

the first one is concentrated on a, while the second one gives equal mass to the two
points. Using the scaling property in Lemma 3.1.36 and then the explicit formula
(3.1.9), we have

Wp′,p′(ρ̄1, ρ̄2) =

√
2

3

1√
2K(a, c)π(a)

∫ 1

0

√
arctanh r

r
dr.

To sum up, we have proved the two inequalities

dσ(ρ0, ρ1) ≥ C√
2K(a, b)π(a)

∫ 1/3

−1/3

√
arctanh r

r
dr,

W(ρ0, ρ1) ≤ 2
√
Cd

√
2

3

1√
2K(a, c)π(a)

∫ 1

0

√
arctanh r

r
dr.

Hence, if we choose K in such a way that

C√
2K(a, b)π(a)

∫ 1/3

−1/3

√
arctanh r

r
dr > 2

√
Cd

√
2

3

1√
2K(a, c)π(a)

∫ 1

0

√
arctanh r

r
dr,

then dσ(ρ0, ρ1) >W(ρ0, ρ1).
Choose π in any way: for instance, π := (1

3 ,
1
3 ,

1
3). The above condition be-

comes that K(a, b) is smaller than a constant multiple of K(a, c). A kernel K with
the chosen π and satisfying this property can be easily built, for instance via the
associated weighted graph (see Remark 3.1.19).

Note that the found condition is about relative smallness of K(a, b), which is
intuitive: if the probability of the direct transition from a to b is too small, then it
is less expensive to pass through c.

Proof of the Claim. Take any (ρt,∇ψt) solving (CE’) and such that ρt(x) = 0 for
every x /∈ {a, b}. Define a potential ψ̄t : {a, b} → R satisfying

∇ψ̄t(a, b) =
2ρ̂t(a, b)

ˆ̄ρt(a, b)
∇ψt(a, b),

(
0

0
:= 0

)
.

Then (ρ̄t,∇ψ̄t) solves (CE’) (immediate verification). We observe that
∫ 1

0 ‖∇ψt‖
2
ρ̂t
dt

equals

1

2

∫ 1

0
[∇ψt(a, b)2ρ̂t(a, b)K(a, b)π(a) +∇ψt(b, a)2ρ̂t(b, a)K(b, a)π(b)]dt =

=
1

4

∫ 1

0

ˆ̄ρt(a, b)
2

ρ̂t(a, b)

(
ψ̄t(b)− ψ̄t(a)

)2
p dt. (3.2.5)

The monotonicity and doubling properties of θ imply that, if k is a positive integer
such that 2π(a), 2π(b) ≥ 2−k, then

ˆ̄ρt(a, b) = θ (2π(a)ρt(a), 2π(b)ρt(b)) ≥ θ
(

2−kρt(a), 2−kρt(b)
)
≥ (2Cd)

−k ρ̂t(a, b).
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Using this to eliminate ρ̂t in (3.2.5), and noting that p = 2π̄(a)K̄(a, b) = 2π̄(b)K̄(b, a),
we obtain∫ 1

0
‖∇ψt‖2ρ̂t dt ≥

1

4
(2Cd)

−k
∫ 1

0
∇ψ̄t(a, b)2 ˆ̄ρt(a, b)[π̄(a)K̄(a, b) + π̄(b)K̄(b, a)]dt =

=
1

2
(2Cd)

−k
∫ 1

0

∥∥∇ψ̄t∥∥2
ˆ̄ρt
dt ≥ C2Wp,p(ρ̄0, ρ̄1)2.

Remark 3.2.13 (“Differential” geodesics). If either Cθ = ∞, or σ = (1, . . . , 1) and
θ is concave, then we know that Pσ(X) is a Riemannian manifold, so we have
the classical differential concept of geodesic. “Differential” geodesics always exist
locally; in the case Cθ = ∞ we have also global existence by Hopf-Rinow’s theo-
rem, since the space Pσ(X) is complete. From the same theorem, we recover the
existence of minimizing geodesics between any couple of points.

For classical geodesics, we can obtain rigorously the “Hamilton-Jacobi”-like
equation in (3.1.27):

Theorem 3.2.14 (Equations of geodesics). Assume that θ ∈ C1((0,∞)2). Con-
sider a curve (ρt) in Pσ(X), where either Cθ = ∞, or σ = (1, . . . , 1) and θ is
concave. Suppose that ρ̇t exists for a.e. t, and let ψt ∈ RanA(σ) be characterized
by ∇ψt = Dtρ. Then (ρt) is a (classical) constant speed geodesic with tangent field
(∇ψt) if and only if{

∂tρt +∇ · (∇ψt • ρ̂t) = 0
∂tψt + 1

2ProjRanA(σ)

∑
z∈X ∇ψt(·, z)2∂1ρ̂t(·, z)K(·, z) = 0,

(3.2.6)

where Proj denotes orthogonal projection and

∂1ρ̂(x, z) :=

{
∂1θ (ρ(x), ρ(z)), if ρ(x)ρ(z) > 0

0, otherwise.

The proof of the theorem uses the cogeodesic flow, whose definition is here
recalled to fix the notations. The idea is to write the Euler-Lagrange equations of
geodesics in Hamiltonian form.

Let (M, g) be a Riemannian manifold, and choose local coordinates yα. We will
use the Einstein summation convention. For every x ∈ M and x′ ∈ TxM , write
x′ := x′β∂β; put

p(x, x′) := gαβ(x)x′βdyα ∈ T ∗x (M).

p(x, x′) can be intrinsically defined as the 1-form p(x, x′) := g(x)[x′, ·]. The inverse
transformation maps x ∈M , p := pβdy

β ∈ T ∗xM into

x′(x, p) := gαβ(x)pβ∂α ∈ TxM.

The classical result is that ρ(t) is a constant speed geodesic if and only if, putting
p(t) := p(ρ(t), ρ̇(t)) := pα(t)dρ(t)y

α, it holds{
ρ̇α = gαβ(ρ)pβ

ṗα = −1
2
∂gβγ

∂yα (ρ)pβpγ ,
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where ρα are the coordinates of ρ. We note that the first equation simply states
that p(t) = p(ρ(t), ρ̇(t)), while the second one can be compactly written using the
concept of differential of a function, as:

ṗα(t)dyα = −dρ(t)

[
1

2
gβγ(·)x′β(·, p(t)), x′γ(·, p(t))

]
. (3.2.7)

Proof of the Theorem. Since both geodesics and solutions to the system of ODE
locally exist and are unique (with suitable initial conditions), it is sufficient to
prove that if (ρt) is a constant speed geodesic and (∇ψt) is its tangent field with
ψt ∈ RanA(σ), then (ρt, ψt) satisfies the system; the first equation is the continuity
equation, so we must only verify the second one.

We want to write the second equation of the cogeodesic flow in our context;
since our manifold is an open set in an affine subspace σ+ RanB(σ) of RX , we can
choose as coordinates an appropriate subset {yα}α∈J of the canonical coordinate
functions

{
yβ
}
β∈X of RX .

Let us denote by Bρ the restriction of B(ρ) to RanA(ρ). By definition of the
metric, for all ρ ∈Pσ(X) and for every couple of tangent vectors ρ′, ρ̃′ ∈ RanB(σ),

gρ[ρ
′, ρ̃′] = 〈B−1

ρ ρ′, A(ρ)B−1
ρ ρ̃′〉;

since A(ρ) = ΠB(ρ) and B(ρ)B−1
ρ = Id, the right hand side equals

〈B−1
ρ ρ′,Πρ̃′〉 = 〈ΠB−1

ρ ρ′, ρ̃′〉.

This means that

p(ρ, ρ′) =
∑
β∈X

(
ΠB−1

ρ ρ′
)

(β)dyβ =
∑
β∈X

(
B−1
ρ ρ′

)
(β)π(β)dyβ

as 1-forms on Pσ(X). But ψt = B−1
ρt ρ̇t: hence∑

α∈J
pα(t)dyα := p(ρt, ρ

′
t) =

∑
β∈X

ψt(β)π(β)dyβ on Pσ(X). (3.2.8)

In other terms, Πψt is the projection on RanB(σ) of

vα(t) :=

{
0, if α /∈ J
pα(t), otherwise.

For future use, we restate this as

ψt = ProjRanA(σ)

[
Π−1v(t)

]
. (3.2.9)

Since on our manifold every yβ is a constant plus a linear combination with
constant coefficients of the functions {yα}α∈J , differentiation of (3.2.8) with respect
to t yields ∑

α∈J
ṗα(t)dyα =

∑
β∈X

ψ̇t(β)π(β)dyβ on Pσ(X). (3.2.10)
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It remains to compute the right hand side of (3.2.7). In our context, the expres-
sion in square brackets is exactly

1

4

∑
α,z∈X

(ψt(α)− ψt(z))2θ(ρ(α), ρ(z))K(α, z)π(α),

where ψt has to be thought as a function ρ and p(t). By (3.2.9), we see that in
fact it is a function of the only p(t) and does not depend on ρ. Thanks to this
observation, the right hand side of the (3.2.7) becomes

−1

2

 ∑
α,z∈X

(ψt(α)− ψt(z))2 ∂1θ (ρt(α), ρt(z))K(α, z)π(α)dyα

 on Pσ(X).

Combining this with (3.2.10), we can restate (3.2.7) as the equality of the projections
on RanB(σ) of the two vectors Πψ̇t and

−Π · 1

2

∑
z∈X
∇ψt(·, z)2∂1ρ̂t(·, z)K(·, z);

the former already belongs to RanB(σ), so the projection operator can be omitted.
Applying Π−1 to this equality, the conclusion follows.

Remark 3.2.15 (Projections and gradients). If ψ ∈ RX and x ∼σ z, then the value
of ∇ψ(x, z) is unaltered if we substitute ψ with ProjRanA(σ)ψ. In fact, an orthog-

onal basis of RanA(σ)⊥ is given by the elements of RX corresponding to indicator
functions of connected components of supp(σ). Using this basis, it is easy to verify
that [

ProjRanA(σ)ψ
]

(x) = ψ(x)− cx,

where cx depends only on the connected component of x.
Thanks to this observation, to compute the trajectory of a geodesic, one might

solve the simplified system{
∂tρt +∇ · (∇ψt • ρ̂t) = 0
∂tψt + 1

2

∑
z∈X ∇ψt(·, z)2∂1ρ̂t(·, z)K(·, z) = 0 :

in fact, our remark implies that then
(
ρt,ProjRanA(σ)ψt

)
solves (3.2.6). Though

this is the form in which the Theorem was stated in the original article [12], we
preferred equation (3.2.6), because Maas’s procedure does not produce the “canon-
ical” tangent field ψt: note for instance that the last equation implies that each
component of ψt has nonpositive derivative, while we know from ψt ∈ RanA(σ)
that the tangent field satisfies

∑
x∈X ψt(x) ≡ 0.

3.3 Differentiable functionals and gradient flows

We now compute the (classical) gradient of the potential and internal energy func-
tionals on P∗(X), with respect to our metric. This will yield the identification of
the heat flow with the gradient flow of entropy.



3.3. DIFFERENTIABLE FUNCTIONALS AND GRADIENT FLOWS 97

Definition 3.3.1. Let V : X → R be any function. Then the potential energy
functional V : P(X)→ R is defined by

V(ρ) :=
∑
x∈X

V (x)ρ(x)π(x).

Proposition 3.3.2 (gradient of V). The potential energy functional is differentiable
on P∗(X), and gradV ≡ ∇V .

Proof. Since the differentiable structure of P∗(X) is inherited by RX , differentia-
bility is clear. Moreover, if (ρt) ⊆ P∗(X) is a C1 curve with tangent field ∇ψt,
where ψt ∈ RanA(ρt), then we have

d

dt
V(ρt) =

∑
x∈X

V (x)ρ̇t(x)π(x) = 〈V, ρ̇t〉π = −〈V,∇ · (ρ̂t • ∇ψt)〉π =

= 〈∇V, ρ̂t • ∇ψt〉K = 〈∇V,∇ψt〉ρ̂t .

Definition 3.3.3. Let U ∈ C1((0,∞)). Then the internal energy functional
U : P(X)→ R is defined by

U(ρ) :=
∑
x∈X

U(ρ(x))π(x).

Proposition 3.3.4 (gradient of U). The potential energy functional is differentiable
on P∗(X), and

gradU(ρ) = ∇(U ′ ◦ ρ) ∀ρ ∈P∗(X).

Proof. Again, differentiability is obvious. Moreover, if (ρt) ⊆P∗(X) is a C1 curve
with tangent field ∇ψt, where ψt ∈ RanA(ρt), then we have

d

dt
U(ρt) =

∑
x∈X

U ′(ρt)ρ̇t(x)π(x) = 〈U ′ ◦ ρt, ρ̇t〉π = −〈U ′ ◦ ρt,∇ · (ρ̂t • ∇ψt)〉π =

= 〈∇(U ′ ◦ ρt), ρ̂t • ∇ψt〉K = 〈∇(U ′ ◦ ρt),∇ψt〉ρ̂t .

Remark 3.3.5 (gradients in general Pσ(X)). The situation is a little more involved if
we compute the gradients in Pσ(X), since it might happen that ∇V,∇(U ′◦ρ) /∈ Tρ,
in which case they must be projected to obtain the true gradient in Pσ(X).

Since P∗(X) is Riemannian, and a submanifold of RX , we can use the simple
classical concept of gradient flow:

Definition 3.3.6. ρ : [0,∞)→P(X) is a gradient flow of the differentiable func-
tional F : P∗(X)→ R if and only if it is continuous in total variation, and

ρt ∈P∗(X), Dtρ = − gradF(ρt) ∀t > 0.
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Theorem 3.3.7 (Heat flow as gradient flow of entropy). Let U ∈ C2((0,∞)) be
such that U ′′ > 0, and suppose that θ is of the form

θ(r, s) :=


0, if rs = 0

s− r
U ′(s)− U ′(r)

, if r, s > 0, r 6= s

[U ′′(s)]−1, if r = s > 0.

Assume either that Cθ =∞ or that θ is concave.
Then the gradient flow of the internal energy functional U starting from any

ρ0 ∈P(X) is the heat flow ρt = e(K−I)tρ0.
The theorem applies to U(x) := x log x; in this case, θ is the logarithmic mean

and U coincides with the entropy functional H.

Proof. Of course, (ρt) is continuous in total variation, and C∞((0,∞)). Note that
et(K−I) = eKte−t, so all its entries are positive by definition of exponential and
irreducibility of K. As a consequence, ρt ∈P∗(X) for every t > 0.

Moreover,

ρ̂(x, y) =
ρ(x)− ρ(y)

U ′(ρ(x))− U ′(ρ(y))

(extended by continuity where ρ(x) = ρ(y) or ρ(x)ρ(y) = 0): therefore

∆ρ = ∇ · (∇ρ) = ∇ ·
(
ρ̂ • ∇(U ′ ◦ ρ)

)
.

Since ρt = ∆ρt by definition of heat flow, then the above equality yields

ρ̇t −∇ ·
(
ρ̂t • ∇(U ′ ◦ ρt)

)
= 0

which is what we wanted, in light of Proposition 3.3.4.
The second part of the theorem is an obvious verification.
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Conclusions

The similarities between the two theories developed in Chapters 2 and 3 are evident.
Since one of the main purposes of this thesis is to facilitate the comparison, we put
here a “conversion table” to help the reader find which is the discrete counterpart
of any Euclidean result, and vice versa.

Result Euclidean version Discrete version

Benamou-Brenier’s formula Theorem 2.1.15 Definition 3.1.16
restriction to gradients Proposition 2.1.18 Proposition 3.1.27
inf is attained Proposition 2.1.2 Theorem 3.1.28

(Quasi-)arclength reparametrisation Lemma 1.3.17 Lemma 3.1.22
Existence of geodesics Theorem 1.3.23 Theorem 3.1.29
Description of AC2 Theorem 2.1.16 Theorem 3.1.30
Tangent field to a curve Remark 2.1.20 Remark 3.2.8
Eulerian description of geodesics Remark 2.1.3 Theorem 3.2.14

formal variational proof Remark 2.1.24 Remark 3.1.42
Completeness Proposition 1.3.5 Proposition 3.2.6
Differentiability of potential energy Theorem 2.2.22 Proposition 3.3.2
(Sub)differentiability of internal energy Theorem 2.2.32 Proposition 3.3.4
Heat flow as gradient flow of entropy Theorem 2.3.11 Theorem 3.3.7

Unfortunately, the way in which the two theories are presently developed looks
incompatible with a unified treatment. Nevertheless, such a tight conceptual con-
nection may be a fertile source of inspiration both for the Euclidean and for the
discrete setting.
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