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Abstract: To design a high performance BaTiO3 (BTO)-integrated Si modulator, 

understanding how BTO domain orientations influence its electro-optical (EO) properties is 

crucial. The 100-nm-thick BTO films with c-oriented and a-oriented domains are obtained by 

exploiting various thickness of SrTiO3 buffer layers grown on Si(001) substrates. Then, the 

electro-optical behavior for 2 differently oriented samples is analyzed using spectroscopic 

ellipsometry. 

© 2017 Optical Society of America 

OCIS codes: (160.2660) Ferroelectrics; (160.2100) Electro-optical materials; (190.4400) Nonlinear optics, materials; 

(310.0310) Thin films; (310.3840) Materials and process characterization; (310.6860) Thin films, optical properties. 

References and links 

1. E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J. M. Triscone, and P. Ghosez, 
“Improper ferroelectricity in perovskite oxide artificial superlattices,” Nature 452(7188), 732–736 (2008). 

2. C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, “Optical response of high-dielectric-

constant perovskite-related oxide,” Science 293(5530), 673–676 (2001). 
3. R. W. Whatmore, “Pyroelectric ceramics and devices for thermal infra-red detection and imaging,” 

Ferroelectrics 118(1), 241–259 (1991). 

4. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, “Lead-free 
piezoceramics,” Nature 432(7013), 84–87 (2004). 

5. F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light Modulation and Beam Deflection 

with Potassium Tantalate‐Niobate Crystals,” J. Appl. Phys. 37(1), 388–398 (1966). 
6. B. W. Wessels, “Ferroelectric Epitaxial Thin Films for Integrated Optics,” Annu. Rev. Mater. Res. 37(1), 659–

679 (2007). 

7. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, 

D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulator for fiber-optic 
communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000). 

8. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi 201(2), 253–283 (2004). 

9. R. A. Soref and B. R. Bennett, “Electrooptical effect in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 
(1987). 

10. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed 

silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004). 
11. M. Pantouvaki, P. Verheyen, J. D. Coster, G. Lepage, P. Absil, and J. V. Campenhout, “56Gb/s ring modulator 

on a 300mm silicon photonics platform,” in 2015 European Conference on Optical Communication (ECOC), 

2015), 1–3. 
12. G. T. Reed and C. E. Jason Png, “Silicon optical modulators,” Mater. Today 8(1), 40–50 (2005). 

13. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. 

Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic 
material,” Nature 441(7090), 199–202 (2006). 

14. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon 

substrates,” Opt. Express 21(21), 25573–25581 (2013). 
15. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984), Vol. 10. 

16. A. A. Demkov and A. B. Posadas, Integration of Functional Oxides with Semiconductors (Springer, 2014). 

                                                                                   Vol. 7, No. 6 | 1 Jun 2017 | OPTICAL MATERIALS EXPRESS 2030

#291887 https://doi.org/10.1364/OME.7.002030 
Journal © 2017 Received 31 Mar 2017; revised 14 May 2017; accepted 15 May 2017; published 19 May 2017

Corrected: 19 June 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/147049932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


17. J. W. Reiner, A. M. Kolpak, Y. Segal, K. F. Garrity, S. Ismail-Beigi, C. H. Ahn, and F. J. Walker, “Crystalline 

oxides on silicon,” Adv. Mater. 22(26-27), 2919–2938 (2010). 
18. D. G. Schlom, L.-Q. Chen, X. Pan, A. Schmehl, and M. A. Zurbuchen, “A Thin Film Approach to Engineering 

Functionality into Oxides,” J. Am. Ceram. Soc. 91(8), 2429–2454 (2008). 

19. R. McKee, F. Walker, and M. Chisholm, “Crystalline oxides on silicon: the first five monolayers,” Phys. Rev. 
Lett. 81(14), 3014–3017 (1998). 

20. C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active 

silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14(3), 1419–1425 (2014). 
21. S. Abel, T. Stoferle, C. Marchiori, D. Caimi, L. Czornomaz, M. Stuckelberger, M. Sousa, B. J. Offrein, and J. 

Fompeyrine, “A Hybrid Barium Titanate–Silicon Photonics Platform for Ultraefficient Electro-Optic Tuning,” J. 

Lightwave Technol. 34(8), 1688–1693 (2016). 
22. K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. 

Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom, “Enhancement of ferroelectricity in strained BaTiO3 thin 

films,” Science 306(5698), 1005–1009 (2004). 
23. C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. 

Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on 

silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8(10), 748–754 (2013). 
24. C. Merckling, G. Saint-Girons, C. Botella, G. Hollinger, M. Heyns, J. Dekoster, and M. Caymax, “Molecular 

beam epitaxial growth of BaTiO3 single crystal on Ge-on-Si(001) substrates,” Appl. Phys. Lett. 98(9), 092901 

(2011). 
25. G. Delhaye, C. Merckling, M. El-Kazzi, G. Saint-Girons, M. Gendry, Y. Robach, G. Hollinger, L. Largeau, and 

G. Patriarche, “Structural properties of epitaxial SrTiO3 thin films grown by molecular beam epitaxy on 

Si(001),” J. Appl. Phys. 100(12), 124109 (2006). 
26. N. Lucas, H. Zabel, H. Morkoc, and H. Unlu, “Anisotropy of thermal expansion of GaAs on Si(001),” Appl. 

Phys. Lett. 52(25), 2117–2119 (1988). 

27. M. H. M. Hsu, D. Van Thourhout, M. Pantouvaki, J. Meersschaut, T. Conard, O. Richard, H. Bender, P. Favia, 
M. Vila, R. Cid, J. Rubio-Zuazo, G. R. Castro, J. Van Campenhout, P. Absil, and C. Merckling, “Controlled 

orientation of molecular-beam-epitaxial BaTiO3 on Si(001) using thickness engineering of BaTiO3 and SrTiO3 
buffer layers,” to be published in Appl. Phys. Express. 

28. F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O’Connor, M. D. Rossell, B. Offrein, J. Fompeyrine, and S. Abel, 

“Low-loss BaTiO3–Si waveguides for nonlinear integrated photonics,” ACS Photonics 3(9), 1698–1703 (2016). 
29. M. Li, J. Zhou, X. Jing, M. Zeng, S. Wu, J. Gao, Z. Zhang, X. Gao, X. Lu, J. M. Liu, and M. Alexe, “Controlling 

resistance switching polarities of epitaxial BaTiO3 films by mediation of ferroelectricity and oxygen vacancies,” 

Adv. Electron. Mater. 1(6), 1500069 (2015). 
30. M. H. M. Hsu, C. Merckling, S. El Kazzi, M. Pantouvaki, O. Richard, H. Bender, J. Meersschaut, J. Van 

Campenhout, P. Absil, and D. Van Thourhout, “Diffraction studies for stoichiometry effects in BaTiO3 grown 

by molecular beam epitaxy on Ge(001),” J. Appl. Phys. 120(22), 225114 (2016). 

31. D. Crandles, B. Nicholas, C. Dreher, C. Homes, A. McConnell, B. Clayman, W. Gong, and J. Greedan, “Optical 

properties of highly reduced SrTiO 3-x,” Phys. Rev. B 59(20), 12842–12846 (1999). 

32. M. H. M. Hsu et al., imec, Kapeldreef 75, 3001, Leuven, Belgium, are preparing a manuscript to be called 
“Crystal structures and ferroelectricity for epitaxial BaTiO3 on SrTiO3-on-Si pseudo-substrate using plasma-

assisted molecular beam epitaxy.” 

33. D. V. Likhachev, N. Malkova, and L. Poslavsky, “Modified Tauc–Lorentz dispersion model leading to a more 
accurate representation of absorption features below the bandgap,” Thin Solid Films 589, 844–851 (2015). 

34. M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, 

“Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 

Condens. Matter 50(9), 5941–5949 (1994). 

1. Introduction 

Owing to their relaxed ionic bonds and transition metal cations, ferroelectric oxides 

simultaneously possess strong dielectric, piezoelectric, linear electro-optical (EO, also known 

as the Pockels effect), and pyroelectric behavior [1–6]. 

Historically, fiber optics telecom systems have exploited the relatively high Pockels 

coefficient (~30 pm/V) of the ferroelectric material LiNbO3 (LNO) to achieve high 

performance optical modulators [7,8]. More recently, Si-based photonic integrated circuits 

have employed carrier dispersion effects to achieve high-speed Si modulators. However, for 

photonic systems using higher order modulation scheme, such as quadrature phase shift 

keying, exploiting the carrier dispersion effect leads to sub-optimal performance [7]. Thus, 

for these applications, it would be more advantageous to employ a pure phase modulator that 

utilizes the Pockels effect rather than the carrier dispersion effect to avoid unbalanced 

amplitude modulation. However, as is well known, bulk silicon does not exhibit a linear 
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electro-optic effect given its centro-symmetric crystal structure [9–12]. Therefore, several 

groups have investigated how to break this crystal symmetry in silicon waveguides, e.g. 

through the deposition of a highly strained silicon nitride layer, resulting in a Pockels 

coefficient of ~1.7 pm/V [13]. In a different approach, Rabiei et al. used a wafer-bonding 

technique to transfer a LNO thin film onto a silicon substrate. They demonstrated an EO 

coefficient of ~30 pm/V, which is comparable to the EO performance of bulk LNO [14]. 

Among the various ferroelectric oxides, BaTiO3 (BTO) exhibits a much more pronounced 

Pockels coefficient [6,15] however, at least in bulk crystals. In thin film applications, its EO 

behavior depends on its crystallinity, with single crystalline BTO displaying the best 

properties [16–18]. However, it is challenging to integrate high quality crystalline BTO thin 

films on a Si(001) substrate owing to their largely different crystal structure and chemical 

properties [16]. The in-plane lattice constant (a//) of BTO is 0.3992 nm, while that of silicon is 

0.5431 nm; this constitutes a lattice mismatch of 27%. Besides, BTO is chemically unstable 

when deposited directly on silicon, resulting in the formation of an amorphous silicate layer 

and inhibiting the synthesis of high-quality epitaxial BTO. This particular problem was not 

resolved until the late 1990s, when McKee et al. utilized a ½ monolayer (ML) of SrO to 

obtain a high quality SrTiO3 (STO) layer using molecular beam epitaxy (MBE) [19]. 

Although bulk STO and Si still have a cubic-to-cubic lattice mismatch of around 28% (STO 

for a// is 0.3905 nm), a ½ ML of SrO can be used as a lattice template to initiate a 45° rotation 

of the STO lattice with respect to the Si lattice, reducing the remaining lattice mismatch to 

2% (Si/ 2  = 0.3840 nm). Building further on this development, the chemical rejection 

between BTO and Si can now be resolved via the insertion of STO, which present similar 

crystal and chemical structures to BTO [16]. Moreover, the lattice mismatch between BTO 

and STO is only 2%. Thus, STO can be used to facilitate the monolithic integration of BTO 

thin films on Si(001) using MBE. Recently, based on this growth technique, the high speed 

silicon integrated modulators that exploit the excellent EO properties of BTO have been 

successfully demonstrated. Xiong et al. [20] and Abel et al. [21] presented hybrid BTO/Si 

optical modulators showing the bandwidth of 5 GHz and effective Pockels coefficient of 300 

pm/V respectively. 

Nevertheless, the strain owing to the remaining mismatch of the lattice constants and the 

different thermal expansion coefficients results in multi-domains within the BTO layers 

grown on STO-buffered Si(001) [22–24]. BTO has a tetragonal crystal structure, with its 

optical axis along <100>BTO, resulting in six possible domain orientations: two 180°-type 

domains (c-oriented, out-of-plane optical axis) and four 90°-type domains (a-oriented, in-

plane optical axis). Given the optical anisotropy of BTO, the EO behavior of a BTO-based 

modulator will be dependent on the relationship between the BTO domain orientation (i.e. the 

BTO optical axis), the externally applied electric field, and the polarization of the optical 

signal [15]. To design a high performance BTO-integrated Si modulator, it is crucial to 

understand how these mixtures of the domains influence its EO properties. 

Therefore, we use spectroscopic ellipsometry (SE) to investigate how the EO response of 

two differently grown films depends on their respective domain orientation. The 100 nm BTO 

films are grown using plasma-assisted MBE starting from respectively a 10 nm and a 40 nm 

STO buffer layer deposited on highly p-doped Si(001) substrates. Via X-ray diffraction 

(XRD), the BTO film grown on the 10-nm-thick STO buffer is identified as being more a-

oriented while the BTO layer grown on 40-nm-thick STO is shown to be more c-oriented. 

Then, we analyze the EO behavior in a- and c-oriented BTO films by studying the interplay 

between domain orientations and applied electric field. 

2. Experiments 

All of the samples were grown on highly p-doped 200mm Si(001) (p
+
-Si) substrates in a 

Riber49 200 mm production MBE reactor. Ti was evaporated with an electron beam that was 

controlled by a feedback loop from a mass spectrometer to maintain a constant flux during 
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growth. A Ba atomic flux was obtained using a standard Knudsen effusion cell and the 

[Ba]/[Ti] flux ratio was calibrated with the help of a quartz crystal microbalance as well as 

Rutherford backscattering spectroscopy (RBS). A remote plasma source was used to produce 

atomic oxygen during the growth. 

Prior to STO deposition, 2 ML of Sr was deposited on the substrate at 650 °C. Then the 

Sr-covered Si substrate was ramped up to 800 °C until a bright 2 × 1 reflection high energy 

electron diffraction (RHEED) reconstruction pattern was obtained. The substrate was then 

cooled back to 600 °C. Meanwhile, the RHEED reconstruction pattern evolved to a 2 × 3 

pattern, revealing a 1/6 ML of Sr remaining on the surface. Additional Sr was added until a ½ 

ML of Sr (confirmed by RBS) was obtained, resulting again in a 2 × 1 RHEED pattern. This 

½ ML of Sr not only serves as a crystal template to drive the desired 45° lattice rotation of the 

STO layer with respect to Si(001), but also protects the Si surface from being oxidized. 

Afterwards, 6 ML (2.4 nm) of STO was deposited at 150 °C under an oxygen partial pressure 

of ~4 × 10
7

 Torr. This layer's RHEED pattern showed that it was amorphous owing to 

insufficient oxygen and the temperature being too low. Then, the substrate was heated up to 

550 °C without oxygen flux for recrystallization until the RHEED lines became sharp and 

stable. To ensure the initial STO crystallinity, we repeated the above STO deposition steps 

once more to obtain a 5 nm STO layer on the Si(001) substrate. After the second 

recrystallization step at 550 °C, the remainder of the STO layer (5nm or 35nm) was grown at 

the same temperature and under an oxygen partial pressure of ~1.2 × 10
6

 Torr until the 

desired thickness was reached. Then, the substrate temperature was ramped up to 630 °C to 

grow a 100-nm-thick BTO layer under an oxygen partial pressure of ~1.6 × 10
6

 Torr. In the 

next sections, we present and discuss the detailed crystal, electrical, and optical characteristics 

of these layers. 

3. Results and discussions 

3.1 Crystal structures and domain orientations 

In this section, the XRD analysis is performed to identify the domain orientation and 

crystallinity in 100-nm-thick BTO samples on Si(001) substrate using 10 nm and 40 nm STO 

buffer layers. Figure 1(a) presents ω-2θ XRD scans along [001]BTO and [101]BTO. Based on 

the position of the Bragg peaks along (002)BTO/STO and (202)BTO/STO, the average in-plane 

lattice constant a//, the out-of-plane lattice constant a┴, and the tetragonality a┴/a// of the 

samples can be extracted. The lattice parameters of bulk BTO can be taken as a reference: 

bulk c-oriented BTO has a// = 0.3992 nm, a┴ = 0.4036 nm, and tetragonality = 1.011; bulk a-

oriented BTO has a// = 0.4036 nm, a┴ = 0.3992 nm, and tetragonality = 0.989. Derived from 

the data in Fig. 1(a), the a┴, average a// and tetragonality values for the BTO layer grown on 

the 40-nm-thick STO buffer layer are 0.4022 nm, 0.4003 nm, and 1.005, respectively. The 

tetragonality greater than unity indicates that domains in this layer are mostly c-oriented. On 

the other hand, for the BTO layer grown on the 10-nm-thick STO buffer, a┴ = 0.3997 nm, 

average a// = 0.4039 nm, and a┴/a// = 0.990 are evaluated, indicating that a-oriented domains 

are predominant. The different behavior of both samples is driven by the trade-off between 

the compressive and tensile strain in the BTO/STO/Si(001) heterostructures. The compressive 

strain resulted from the smaller a// for the underlying STO layer (a// = 0.3905 nm for bulk STO 

and a// = 0.3992 nm for bulk c-oriented BTO) tends to favor c-oriented BTO. Conversely, 

because of the difference in the thermal expansion coefficients of Si and BTO (αsi = 2.6 × 

10
6

 K
1

 for Si and αBTO = 11 × 10
6

 K
1

 for bulk BTO), the tensile strain is also exerted on 

the BTO layer, favoring a-oriented domains. By using the 10 nm thick STO buffer, the BTO 

layer is close to the Si surface. When cooling down after the growth, the Si thermal expansion 

drives the contraction of the BTO in-plane lattice [25,26]. Therefore, the tensile strain is 

formed, leading the BTO orientation to be more a-oriented [25]. Nevertheless, by using a 40-

nm-thick STO buffer layer as a “spacer” between the BTO and Si, the effect from the Si 
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thermal expansion coefficient, which brings about the tensile strain, is attenuated. Thus, the 

compressive strain induced by the difference in lattice constants becomes dominant, 

facilitating more c-oriented domains in the BTO layer. More details of the thickness 

engineering to control BTO orientations can be found elsewhere [27]. For convenience, in the 

remainder of this work, we will denote the samples grown on the 10- and 40-nm-thick STO 

buffer layer as a-oriented and c-oriented, respectively. Figure 1(b) presents the azimuthal  

scan of (202)STO, (202)BTO and (202)Si for c-oriented BTO. Due to the 4-fold symmetry, 

periodicity in the -scan spectrum is 90°. In addition, the ½ ML of Sr at the interface between 

STO and Si initiates 45° lattice rotation, making an epitaxial STO buffer layer on Si(001) 

feasible. Then, the BTO layer can be epitaxially grown onto the STO buffer. Thus, the 

epitaxial relationship for the BTO/STO/Si(001) stack is as follows: 

<100>BTO(001)//<100>STO(001)//<110>Si(001). Indeed, consistent with this crystal 

system, the  scans of {202}Si, {202}BTO, and {202}STO in Fig. 1(b) also shows a 45° shift for 

the BTO and STO with respect to the Si peaks. Besides, the BTO crystal quality for both 

orientations is comparable. The full width half maximum of the (002)BTO rocking curve (ω-

scan) is 0.8° and 0.7° for the a- and c-oriented BTO, respectively. Similarly, the RHEED 

patterns of both films, shown in Fig. 2(a), exhibit sharp streak-lines, revealing a good 

crystallinity of the BTO as well as a flat surface. This is in agreement with Fig. 2(b), which 

shows the transmission electron microscope (TEM) image for a-oriented BTO, illustrating 

low roughness on the top surface. However, we note that there is a 3.5 nm amorphous 

interfacial layer between the STO layer and the Si substrate. From the high-angle annular 

dark field scanning TEM (HAADF-STEM) image shown in Fig. 2(c), we can derive that this 

interfacial layer is actually composed of two layers. Since image contrast in HAADF-STEM 

is proportional to the atomic number squared (Z
2
), the double layers at interface suggest 

layers with different compositions. From electron dispersion spectroscopy, the whole 

interfacial layer (IL) is found to be composed of a silicate compound with a graded 

distribution of Si, O, Sr, and Ti. The top layer contains more Sr and Ti, while the bottom layer 

is identified as being more SiOx-rich. Such an amorphous double-layer interface is formed at 

the beginning of the STO preparation step. From our observations, a thicker STO brings about 

an increasing silicate thickness. Therefore, the IL of ~3.5 nm for c-oriented BTO (40-nm-

thick STO buffer layer) is thicker than that of ~2.5 nm for a-oriented BTO (10-nm-thick STO 

buffer) [27]. Moreover, in agreement with Fig. 1(b), Fig. 2(c) indicates the epitaxial 

relationship between BTO, STO, and the Si(001) substrate, as labelled by the arrows overlaid 

on the picture. Despite the existence of the silicate IL, promising modulation bandwidth of 5 

GHz [20], effective Pockels coefficient of 300 pm/V [21] and waveguide propagation loss of 

6 dB/cm [28] have been successfully demonstrated. 

 

Fig. 1. (a) The ω-2θ XRD scans along [001]BTO/STO and [101]BTO/STO for a 100-nm-thick BTO 

layer on 10- and 40-nm-thick STO layer. (b) A -scan of {202}Si, {202}BTO, and {202}STO for 

100-nm-thick BTO on a 40 nm STO layer. 
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Fig. 2. (a) The RHEED patterns for c- and a-oriented BTO layers on Si(001). TEM (b) and 
HAADF-STEM (c) images for 100-nm-thick layers of a-oriented BTO on a Si(001) substrate 

with a 10-nm-thick STO buffer layer. 

3.2 Electrical properties 

During operation of the EO devices, the leakage current needs to be low to avoid deterioration 

of the applied field, limiting optical modulator performance. In this section, we focus on the 

a-oriented BTO sample and investigate the effect of post-process annealing on the leakage 

current. The annealing is carried out at different temperatures, under ambient oxygen 

exposure for 30 min. Then, we sputter a 10-nm-thick gold layer as a top electrode. The 

resulting current density versus voltage (J–V) curves are shown in Fig. 3(a). The 

corresponding current densities at + 1 V and –1 V are recorded in Fig. 3(b) and 3(c), 

respectively. The current density results using MBE in this work are within the range of those 

by pulsed laser deposition [29]. Given the ultra-high vacuum (UHV) epitaxial process, it is 

challenging to avoid the generation of oxygen vacancies in the as-grown samples, explaining 

the high leakage current above 100 mA/cm
2
 at +/ 1 V [30]. According to the chemical 

equation: 

  .. /

o o 2O v 2e ½O g    (1) 

at oxygen sites (Oo) in the oxide, the creation of one oxygen vacancy with double positive 

charges (v
..

o) will produce two free carriers (e
/
) and one oxygen molecule (O2). Therefore, in 

an oxygen-deficient condition, carriers created through oxygen vacancy formation cause the 

oxide to be conductive and absorptive in the near infrared-spectrum [31]. Although the as-

deposited sample shows a high leakage current density, post-process annealing under ambient 

oxygen at increasing temperatures can suppress the leakage current dramatically. Following 

annealing at 600 °C for 30 min, the current density is reduced to 10
4

 mA/cm
2
 at +/ 1 V. In 

addition, such annealing process increases the silicate IL thickness from ~2.5 nm to ~5 nm, 

making the IL become more influential on the electrical phenomenon. The IL thickening 

enables the BTO/STO/silicate IL/p
+
-Si heterostructure to behave more like an insulator. 

Therefore, after the oxygen annealing, the suppression of the current density at both bias 

polarities can result from the combinational effects of filling the oxygen vacancies and 

thickening the silicate IL [32]. Furthermore, ω-2θ XRD scans show that the BTO crystal 

structure does not noticeably change under such annealing process. Prior to EO 

characterizations, both the a- and c-oriented samples studied here are annealed at 600 °C for 

30 minutes to improve electrical performance of the heterostructures. 
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Fig. 3. (a) The J–V curves in terms of various post-process annealing temperatures under 30 

min oxygen ambient for 100-nm-thick layers of a-oriented BTO on highly p-doped Si 

substrates with a 10 nm STO buffer layer. The top electrode is gold (10 nm). (b) and (c) are the 

current density at + 1 V and 1 V, respectively, for different annealing temperatures. 

3.3 EO characterization using spectroscopic ellipsometry 

In principle, spectroscopic ellipsometry (SE) measures the ratio of the reflection coefficients 

for the TE (rTE) and TM (rTM) polarized light waves that are incident on the stack under study. 

This ratio is then expressed as a function of the characteristic terms tan(Ψ) and Δ, as follows: 

 
Δtan(Ψ) iTM

TE

r
e

r
  (2) 

Fitting an analytical model to the measured data then allows to extract the desired information 

(refractive index, thickness) of the different layers in the stack. Given that Δ cannot be related 

to a physical picture of the polarization ellipse in a straightforward manner, in practice one 

rather uses tan(Ψ) and cos(Δ) for presenting the results of an SE measurement. To enable 

efficient extraction of the BTO EO properties, we study its effect on the cos(Δ) spectrum in 

the following analysis. 

To perform bias-dependent SE measurements, a transparent electrode must be prepared on 

the sample surface. The measured samples use a 200 nm indium tin oxide (ITO) layer as the 

top electrode and a highly p-doped Si substrate as the bottom electrode. In the remainder of 

this paragraph we use a 200 nm ITO/100 nm a-oriented BTO/10 nm STO/Si structure as an 

example to explain how the BTO index change induced by an applied voltage is derived. 

Figure 4(a) presents the cos(Δ) spectrum of this structure recorded with a signal acquisition 

time of 2 s and an applied voltage of 0 V at an angle of incidence (AOI) of 65°. The effect of 

applying a voltage on the measured cos(Δ) signal is then measured with a much longer 

acquisition time (90s) as certain discrete wavelengths (labelled by the red dots). Figure 4(b) 

shows the measured difference {cos(Δ(1V)) - cos(Δ(0V))}. As shown in the inset of Fig. 4(a) 

and in Fig. 4(b), the effect on cos(Δ) is small. If a standard parametric spectral fitting method 

were applied to extract the BTO EO response from such a minor difference in cos(Δ), 

unphysical results might be obtained, despite a high fitting quality [33]. Therefore, as an 

alternative, we used a numerical approach to determine the index change induced by applying 

a voltage over the BTO layer, based on the transfer matrix method (TMM). 
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Fig. 4. (a) The measured cos(Δ) spectrum at AOI 65° for a-oriented BTO (100 nm) on a STO-

buffered (10 nm) Si substrate at 0 V. The dotted lines indicate the wavelengths where the EO 
measurements with long acquisition time were executed. The inset shows an EO-induced 

spectrum shift at 460 nm. (b) The cos(Δ) difference induced by applying 1 V. (c) The 

refractive indices of BTO, STO, and ITO that are used in the spectrum calculation. (d) A 

simulated cos(Δ) curve using the TMM with a BTO index variation δnBTO of between 0.05 

and 0.05. 

First, a standard parametric fitting procedure to a dispersion law expressed as a 

combination of a Tauc-Lorentz model and a Gauss function is used to extract the wavelength 

dependent refractive indices for BTO, STO and ITO. The optical effect of the few-nm-thick 

IL is negligible. The results are shown in Fig. 4(c). Then, based on Eq. (1), the expected 

cos(Δ) can be calculated using a TMM with known parameters, including the angle of 

incidence (AOI), and the thickness and optical indices of the ITO, BTO, STO and Si layers. 

Subsequently, we vary the BTO index around its measured value with δnBTO changing from 

0.05 to 0.05, to obtain different cos(Δ) spectra, thus simulating the effect of applying a 

voltage, as shown in Fig. 4(d). At each measured wavelength, Fig. 4(d) can then be used to 

derive the cos(Δ) difference over the range 0.05  δnBTO  0.05 with respect to the value at 

δnBTO = 0. Finally, by comparing Fig. 4(b) with Fig. 4(d), the measured cos(Δ) difference can 

be translated in an associated δnBTO. In the next section, the EO effect as measured in c-

oriented and a-oriented BTO using the method described above will be discussed and 

compared. 
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3.4 Comparison of the EO response for c-oriented and a-oriented BTO 

 

Fig. 5. δnBTO at 1 V for a- and c-oriented BTO. 

Figure 5 shows δnBTO(1 V) for a-oriented and c-oriented BTO, calculated by the method 

described in the previous section. It can be clearly seen that the a-oriented BTO shows a 

larger δnBTO than c-oriented BTO over the whole spectrum. To explain this, we consider 

single-domain c-oriented BTO, with its domain orientation (optical axis) along the z-axis, as 

shown in Fig. 6(a). Since BTO is an optically anisotropic material, its ordinary (no) and 

extraordinary indices (ne) with respect to the crystal axes can be described through the index 

ellipsoid shown in Fig. 6(a) (without E-field). Then, the effect of applying an electric field is 

described by the associated deformation of the index ellipsoid according to: 
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the reported components r51 and r33 can be as large as 1300 and 105 pm/V for bulk BTO 

crystals, respectively [34]. Based on Eq. (3), the electric field should be applied perpendicular 

to the optical axis of the BTO, i.e. along the x- or y-axis, to exploit the strong r51 component 

of the Pockels tensor. Applying an electric field along the z-axis only exploits the much 

weaker r13 and r33 components, resulting in a weaker EO effect. Our samples have a top-down 

electrode configuration resulting in a vertical electric field as shown in Fig. 6(b). This 

explains why a stronger EO effect is measured in the a-oriented sample, where the optical 

axis is perpendicular to the electric field, than in the c-oriented sample, in which the electric 

field is parallel to the optical axis. 
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Fig. 6. (a) Lattice structure for c-oriented BTO and its index ellipsoid without and with an 
applied electric field. (b) Relationship between the electric field and the optical axis in c- and 

a-oriented BTO. 

4. Conclusions 

We prepared 100-nm-thick layers of c- and a-oriented BTO on Si(001) substrates with 

respectively 40 and 10 nm STO buffer layers. The orientation of the domains was identified 

by XRD and we utilize RHEED, TEM, and HAADF-STEM analysis to study the crystallinity 

of the grown BTO layers and the nature of the interface layer between the STO and Si 

substrate. Even though BTO shows good crystallinity, the UHV MBE process introduces 

many oxygen vacancies into the layer, resulting in large leakage currents. By post-process 

annealing in an oxygen ambient at 600 °C for 30 min, the leakage current is efficiently 

suppressed, ensuring a sufficient electric field can be built up in the BTO layer during device 

operation. Then, for both the c-oriented and the a-oriented BTO layers, we investigated how 

the domain structure influences the EO response, as measured by SE. Given the top-down 

electrode configuration, the a-oriented BTO layer shows a larger index difference δnBTO 

compared with c-oriented BTO when an external bias of 1 V is applied. This is explained by 

the fact that the optical axis of a-oriented BTO is perpendicular to the applied electric field, 

allowing exploiting the strong r51 component in this case. The c-oriented BTO sample, 

however, which has its optical axis parallel to the electric field, shows a weaker EO response, 

because it relies on the smaller r13 and r33 components of the Pockels tensor. Therefore, this 

work provides not only a better understanding in how the domain orientation in a BTO thin 

film affects its EO response but also provides insights into how to design high performance 

BTO/Si hybrid modulators, taking into account the domain orientation of the BTO thin films 

grown on a Si(001) substrate. 
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