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NOTATION INDEX 
 
 

A.U.     Arbitrary units 

AOC     Assimilable organic carbon 

ATP     Adenosine triphosphate 

bp     basepairs 

CARS     Coherent anti-Stokes Raman spectroscopy 

CCD     Charge coupled device 

cFDA     Carboxyfluorescein diacetate 

cFDA-SE    Carboxyfluorescein diacetate succinimidyl ester 

CFU     Colony forming unity 

CPVC     Chlorinated polyvinylchloride 

D0-2     Hill number diversity indices 

DGGE     Denaturing gradient gel electrophoresis 

DiBAC4(3)    Bis-(1,3-dibutylbarbituric acid)trimethine oxonol 

DMSO     Dimethyl sulphoxide 

DNA     Deoxyribonucleic acid 

DOC     Dissolved organic carbon 

dsDNA     Double-stranded deoxyribonucleic acid 

DWDS     Drinking water distribution systems 

EDTA     Ethylenediaminetetraacetic acid 

EPS     Extracellular polymeric substance 

EU     Europe/European Union 

FCM     Flow cytometer 

FCS     Flow cytometry standard 

FDA     Fluorescein diacetate 

FL-1, FL-3, …. Fluorescence detector of a flow cytometer, number 
started from the lowest wavelength 



Notation index 

II 

FRET Fluorescence resonance electron transfer 

FSC     Forward scatter 

HE     Dihydroethidium or hydroethidine 

HNA     High nucleic acid 

HPC     Heterotrophic plate counts 

IR     Infrared 

LDA     Linear discriminant analysis 

LNA     Low nucleic acid 

LP     Long pass (e.g. a long pass filter) 

LRV     Log reduction value 

LTRS     Laser tweezers Raman spectroscopy 

MF     Microfiltration 

MRM     Microbial resource management 

NF     Nano filtration 

NR     Nile Red 

OD     Optical density 

PBS     Phosphate-buffered saline 

PCA     Principal component analysis 

PCoA     Principal coordinate analysis 

PCR     Polymerase chain reaction 

PE     Polyethylene 

PI     Propidium iodide 

PLS     Partial least squares 

PLS-LDA Partial least squares regression followed by linear 
discriminant analysis 

PMT     Photo multiplier tube 

PVC     Polyvinylchloride 

QC     Quality control 

RNA     Ribonucleic acid 



   Notation index 

III 

RNS     Reactive nitrogen species 

ROS     Reactive oxygen species 

rRNA     Ribosomal ribonucleic acid 

SERS     Surface enhanced Raman spectroscopy 

SG     SYBR green I 

SGPI     SYBR green I and propidium iodide 

SIP     Stable isotope probing 

SSC     Side scatter 

TERS     Tip-enhanced Raman spectroscopy 

TOC     Total organic carbon 

UF     Ultrafiltration 

UPVC     Unplasticized polyvinylchloride 

UV     Ultraviolet 

VBNC     Viable but non-culturable 

WHO     World health organization 

YE     Yeast extract 
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CHAPTER 

  1 
INTRODUCTION 

1 Microbial ecology 

Microorganisms were the first living creatures on earth and its sole inhabitants for almost 

three billion years. They survived the most harsh conditions in the history of the earth and 

helped to shape the environment. Today they are still the most abundant and widespread 

group of living organisms and still play a vital role in our planetary ecosystem. Yet it’s only in 

the late 17th century that they were observed for the first time with the advent of the 

microscope. At first, microbiology, led by Louis Pasteur and Robert Koch, focused on pure 

cultures and the role of bacteria in infectious diseases and fermentation. Microbial ecology 

itself emerged at the end of the 19th century, when Sergei Winogradsky and Martinus 

Beijerinck discovered the biochemical cycles such as chemolithotrophy, the carbon or the 

nitrogen cycle. In the first part of 20th century, microbial ecology evolved to a discipline 

underlining the interactions between bacteria, and with their environment in all its diversity 

(Bertrand et al., 2015).  

1.1 Microbial ecosystems 

Microbial ecosystems are typically very diverse ecosystems both in structure and 

functionality and play a key role in nearly all biogeochemical cycles of our planet such as, the 

nitrogen cycle or the carbon cycle (Schmidt, 2006). These processes are only accomplished 

by the joint effort of microorganisms with a different functional role. The microorganisms do 

not act as individuals but rather as dynamically changing microbial communities (Little et al., 

2008, Klitgord and Segre, 2010). The diversity is thus a key aspect for the functioning of an 

ecosystem and is therefore central in our search to better understand microbial ecosystems 

for microbiological, ecological and biotechnological purposes. Microbial ecosystems can be 

distinguished depending on their complexity, i.e. natural communities, synthetic communities 

or pure cultures. Each of these levels can help us to better understand different aspects of 

how microbial communities function (Figure 1 - 1). 
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A plethora of natural microbial ecosystems have been described but only the freshwater 

microbial ecosystems will be discussed further. Microbial communities in fresh water typically 

fluctuate between 104-105 cells/mL for drinking water or ground water and 105-107 cells/mL 

for surface water. They play an important role in the nutrient cycle of the water bodies and 

can affect the overall water quality of drinking water or process water (Besmer et al., 2014). 

The microbial community composition between different fresh water bodies can vary 

enormously in function of the type of water. Considering the chemical and physical 

differences between ground water, river water or lake water, this discrepancy is not 

surprising. Multiple factors shape the microbial communities, one of which is the oxygen 

concentration. While oxygen is abundant in air, the solubility in water is low and only in water 

exposed to light, phototrophic microorganisms produce oxygen. In the deeper layers, 

facultative bacteria consume all the oxygen to metabolize the organic matter, resulting in 

anoxic conditions (Salmond and Whittenbury, 1985). The nutrient concentration or trophic 

status also influences the microbial communities as it defines the available niches 

(Lindstrom, 2000). While drinking water contains roughly 2 mg/L of total organic carbon 

(TOC), river water can contain more than 10 mg/L TOC (Niemirycz et al., 2006). The amount 

of organic matter again influences the available oxygen as, even in turbulent water, a high 

carbon load can lead to oxygen deficits due to microbial respiration (Salmond and 

Whittenbury, 1985). Also temperature plays a role and reports have shown that microbial 

communities change significantly depending on the season (Pinto et al., 2014). Yet, the 

bacterial taxa that play the most prominent role in these ecosystems remain relatively 

unknown (Newton et al., 2011). Our current knowledge is mainly based on the isolation and 

identification of the bacteria. But, as most bacteria are not able to be cultured or isolated, big 

gaps in our knowledge remain.  

For ecological research, natural communities are very relevant though difficult to study 

considering their complexity and the impossibility to control the numerous external factors. 

Artificial communities, referred to as synthetic ecosystems, consist of an assembled 

microbial ecosystem created by a bottom-up approach where two or more defined microbial 

populations are brought together in a controlled and well-defined environment (Figure 1 - 1). 

The advantages are the lower complexity, higher controllability, and higher reproducibility 

(De Roy et al., 2014b). However, these artificial ecosystems should not be considered as 

miniature versions of natural ecosystems but as a tool to test ecological theories and to study 

fundamental principles such as microbial interactions, nutrient cycling or the influence of 

external factors observed in natural communities. Synthetic ecosystems are also used to 

create interacting communities with specific characteristics (De Roy et al., 2014b, Jessup et 

al., 2004). 
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The culturing of bacteria allows us to isolate bacterial species for in-depth analysis of their 

physiological potential and characteristics. The isolation of bacteria is a cornerstone of 

microbiological research, and while pure cultures are the simplest microbial experimental set-

up, they are still not fully understood (Jessup et al., 2004). With the advent of technologies 

such as genomics, transcriptomics, proteomics and metabolomics, a lot of knowledge has 

been gained in the taxonomic and physiologic diversity of bacteria, which helped to 

understand the functionality, interactions or adaptability of these bacteria within communities 

(Kuypers and Jorgensen, 2007, Wagner, 2009). The combined focus on microbial 

functionality and activity with the in-depth analysis of genetics, has also led to new insights 

and a growing focus on microbial individuality (Ackermann and Schreiber, 2015). Research 

showed that even taxonomically homogeneous populations could be functionally 

heterogeneous (Elowitz et al., 2002, Wagner, 2009, Ceuppens et al., 2013, Orphan et al., 

2001, Musat et al., 2008). This phenotypic diversity is a deeper level of diversity, which also 

shapes the microbial community in ecosystems as it is believed to be beneficial. The first 

advantage of phenotypic heterogeneity is that it increases the chance of a population to 

survive fluctuating environments. This bet-hedging strategy is an alternative strategy where 

microbes diversify instead of responding to environmental cues. An example of this is the 

occurrence of persister cells that show little growth or metabolic activity and that are 

therefore able to survive antibiotic treatment (Balaban et al., 2013). Another advantage is the 

division of labor where a population divides itself in subpopulations using different pathways 

that are either incompatible or inefficient to combine. The cellular differentiation of 

cyanobacteria filaments is an example of labor division (Flores and Herrero, 2010). Several 

mechanisms have been reported to induce phenotypic heterogeneity. A first mechanisms is 

genetic modifications or mutations but, as phenotypic differentiation occurs at rates higher 

than any known mutational mechanism and as it is robust against the suppression of 

mutational mechanisms, it is not considered as the most prominent cause (Ackermann, 

2015). Another mechanism is the stochasticity of gene expression (Elowitz et al., 2002, Blake 

et al., 2003) and the stochastic partitioning of molecules at cell division (Huh and Paulsson, 

2011), although the latter is less important in the case of symmetrical division. Next to 

intrinsic mechanisms, also extrinsic mechanisms such as cell-to-cell communication (e.g. 

quorum sensing) and environmental fluctuations can lead to phenotypic differentiation 

(Ackermann, 2015) (Figure 1 - 1). 
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Figure 1 - 1: The connection between the different levels of microbial ecosystems. Natural 
ecosystems are the most complex and are shaped by microbial interactions and 
communication (A) and by the community diversity, which is determined by both the richness 
and the evenness of the community (section 1.2) (B), abiotic factors (C), biotic factors (D), 
the community resilience and resistance (E), and its architecture and spatial organization (F). 
Synthetic ecosystems are approximations of natural ecosystems but assembled with pure 
cultures. Synthetic ecosystems are mainly used to study microbial ecology. Pure cultures can 
be considered as a community of phenotypically different subpopulations and both intrinsic 
(a) or extrinsic (b) mechanisms can change the phenotypic heterogeneity of a microbial 
population (De Roy et al., 2014a). 
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1.2 Microbial resource management 

Microorganisms are not only vital for earth’s biogeochemical cycles but are now also crucial 

for our modern society because many basic food products, medication or fine chemicals are 

produced with microbiologically driven processes. Also wastewater treatment, 

bioremediation, bioleaching or bioaugmentation is facilitated by the activity of microbial 

communities. All these processes rely on natural microbial communities, axenic cultures or 

combinations thereof. It is now well-established that bacteria do not work alone but rather in 

communities. The way to steer biotechnological or environmental microbial processes is by 

steering the microbial communities as a whole. Verstraete et al. (2007) therefore proposed 

the concept of microbial resource management (MRM) that, similarly to human resource 

management, aims at increasing the efficiency of the microbial capital. For this, three 

questions about the community need to be handled. “Who is there?”, “Who is doing what?”, 

and “Who interacts with whom?”. To answer these questions, different types of techniques 

can be used which will be discussed further (Chapter 1, section 1.3). These methods often 

yield a large amount of data and in order to deal with all this information, Marzorati et al. 

(2008) and Read et al. (2011) proposed MRM tools inspired by macroecological concepts. 

They were initially developed for gel-based molecular methods such as denaturing gradient 

gel electrophoresis (DGGE) but can be extended to other techniques such as sequencing or 

even flow cytometric fingerprinting (Props et al., 2016). These MRM parameters are the 

richness, the evenness, and the dynamics. Depending on the method, they are calculated in 

a different way and the biological meaning and interpretation can differ.  

The richness of an ecosystem represents the number of species present. For sequencing-

based data, the interpretation is evident as the richness equals the sum of the identified taxa. 

A high richness indicates the high carrying capacity of the environment. Research has shown 

that a high taxonomic species richness helps microbial communities to resist to microbial 

invasion and stress (Mallon et al., 2015, De Roy et al., 2013). Furthermore, also community 

functionality improves with increasing richness, though at a decreasing rate (Bell et al., 

2005). In case of flow cytometry, richness is defined as the number of bins in which events 

are registered (Box 1). The relationship between cytometric richness and community 

functionality, resistance and resilience has yet to be reported.  

The number of species alone is not sufficient to describe a community and also their 

abundance plays an important role. Species diversity, as defined in ecology, is therefore 

always a combination of species richness and species evenness. Many different indices 

have been proposed based on different calculations and reporting different aspect of a 

microbial community (Legendre and Legendre, 2012). The order-based Hill numbers are 
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ecologically meaningful because they are interpretable in terms of the ‘effective number of 

species’ (Hill, 1973, Props et al., 2016). Depending on their order, Hill numbers take the 

evenness more or less into account (Box 1). These indices, calculated for both flow 

cytometry data and sequencing data, have been reported to correlate well (Props et al., 

2016). 

The microbial community composition is continuously in flux (Shade et al., 2012, Konopka et 

al., 2007). The dynamics of a system express how much communities change over time, and 

is the consequence of both endogenous (e.g. microbial interactions) and exogeneous (e.g. 

environmental changes) factors (Konopka et al., 2015, Jiao et al., 2017). Its potential 

influence on functionality is evident, yet the system’s function can be retained regardless of 

the changes in community composition as well (i.e. resilience) (Shade et al., 2012). 

Research based on co-occurrence patterns has given valuable insights in the influence of 

specific factors on community dynamics (Widder et al., 2016). Yet, ecological concepts 

underlying the dynamics are still lacking (Konopka et al., 2015).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Box 1 - A phenotype, a bin, an operational phenotype, and phenotypic diversity 

A phenotype is defined by the observed traits of the bacteria. These observed traits 

depend on the technique used to analyze the bacteria. In case of flow cytometry, the 

fluorescence intensity or scattered light of each cell is measured. Binning is the process of 

grouping continuous values into a smaller number of categories or bins. The binned value 

is representative of all data points within the category. The purpose of binning is to reduce 

the number of values and to reduce the effect of small variations in the data. In the case of 

flow cytometry, the continuous intensity scale can be binned for all relevant detectors or 

dimensions. As all cytometry data points within a bin have the same optical properties, 

they can be considered to be of a same operational phenotype. The density of data points 

in each bin corresponds to the abundance of each of these operational phenotypes. The 

resulting flow cytometric fingerprinting data is then similar to the output of typical 

sequencing based on which phenotypic diversity or MRM parameters can be calculated 

(Figure 1 - 2).  
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The diversity can be calculated based on the Hill number diversity indices which is 

represented with the following general formula (Equation 1) in which a represents to order 

of the equation and pi the relative abundance of a species in an ecosystem or phenotype 

in an cytometry plot. 

          (1) 

Depending on their increasing order (q = 0 - 2), the Hill number diversity indices 

increasingly emphasize the evenness (Equation 2 – 4). For a given sample with S bins 

containing cells, the first order Hill number is equal to the species richness and does not 

take evenness into account. 

          (2) 

          (3) 

           (4) 

Figure 1 - 2: Illustration of the binning process on a biparametric cytometric fingerprint 
shown as a three dimensional cell density landscape. The cell density is illustrated with the 
color in function of both fluorescence parameters FL-1 and FL-3. A grid divides the data in 
bins in which the cell density is calculated per bin. Because all cells in a bin have the same 
optical characteristics, they can be defined as operational phenotypes 
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1.3 Monitoring microbial ecosystems 

To further study microbial ecology or to put the concepts of microbial resource management 

into practice, good tools for community analysis are required. Numerous methods are 

available and, in general, a distinction can be made between culture-dependent and culture-

independent techniques. The culture-dependent techniques are fundamental for microbiology 

and are still widely used for the isolation and culturing of species of interest. The tools are 

cheap and the methods rather easy to perform but require long incubation times and are 

labor intensive. Moreover, many microorganisms cannot be cultured, making their use for 

ecological research sometimes difficult. 

Culture-independent methods can be divided further into single-cell and bulk methods. 

Examples of single-cell methods are flow cytometry or Raman spectroscopy, which will be 

discussed in Chapter 1, section 2. In the last decades, bulk methods such as molecular 

techniques gained much popularity. At first, molecular fingerprinting tools were used for 

community characterization such as DGGE, but the technological advances and the 

decreased prices have made sequencing technologies, such as 454 pyrosequencing and 

Illumina, a standard method. Sequencing methods are particularly useful for microbial 

ecology and microbial resource management as they are able to identify the microbial taxa 

present, as well as determine their relative abundances. However, there are a few important 

caveats to sequencing or other molecular approaches. A first point of attention is that they 

require DNA extraction, which can lead to important biases considering the heterogeneity in 

the microbial world and the sometimes difficult matrix in which bacteria are embedded 

(Starke et al., 2014). In many cases, the extracted DNA also needs to be amplified which 

adds another bias. Universal primers are seldom truly universal because they do not amplify 

each DNA strand with the same efficiency (Thijs et al., 2017). As a result, the relative 

abundances can be an over- or underestimation of the actual abundance of the taxa. The 

last source of bias is the comparison of 16S rRNA gene sequences with the available 16S 

rRNA gene databases for identification. As different databases are available also different 

results can be obtained for a same dataset. Also, databases are not free of errors and many 

depositions are of poor quality or incorrectly labeled (Ashelford et al., 2005, Janda and 

Abbott, 2007). Due to these different sources of bias, much research is done on 

bioinformatics pipelines to reduce these issues though different pipelines are reported to 

influence the results significantly (Mysara et al., 2017). For example, recently, it was 

proposed that the relative species abundances should be combined with absolute cell 

concentrations, as determined with for example flow cytometry, to calculate the absolute 

species abundances (Props et al., 2017). 
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Sequencing is only answering one of the three questions of microbial resource management 

and is therefore insufficient to characterize microbial communities on itself. Ideally also more 

information on the microbial activity is necessary. For many applications, the presence or 

absence of one or more molecules can be used to describe the community functionality. 

Depending on the type of molecule or concentration different techniques can be used. 

Typically, a correlation between the occurrence of certain species and the required metabolic 

activity is made a posteriori. Information on how microbial communities react to external 

factors or how bacteria interact with each other, has been obtained this way (Brehm-Stecher 

and Johnson, 2004). But, this approach only considers microbial communities on the 

population level and in the last couple of years, emphasis on the potential importance of 

phenotypic heterogeneity has been published repeatedly (Delvigne and Goffin, 2014, 

Ackermann, 2015). This new attitude towards microbial communities calls for single-cell 

technologies to characterize the microorganisms, their activity and interactions at the 

individual level to provide an insight on how these communities work with unprecedented 

detail. Very promising development has been made in the field of single-cell sequencing and 

transcriptomics (Brehm-Stecher and Johnson, 2004). However, the method is not yet fully 

developed and some important issues and technical difficulty are refraining the wider 

application of the method. Blainey (2013) reviews the issues and perspectives of single-cell 

genomics and transcriptomics in the field of microbiology. 

2 Alternative approaches 

The increased awareness of the importance of the bacterial individuality calls for single-cell 

methods for microbial analysis. Ideally, fast and easy methods requiring little or no sample 

preparation are used. In this developing field, two promising methods among many, are flow 

cytometry and Raman spectroscopy. 

2.1 Flow cytometry 

Flow cytometry is an optical technique for analyzing individual particles, typically cells, that 

are suspended in a fluid. It measures and analyzes simultaneously multiple physical and 

(bio)chemical characteristics of the single particles as they flow in a liquid stream through an 

excitation light source, which is typically a laser beam (Shapiro, 2003, Hammes and Egli, 

2010). The first flow cytometer was built in 1934 in Canada and comprised of a capillary 

mounted on a microscope for photoelectric cell counting (Moldovan, 1934). Later, Guckert 

and O'Konski (1947) modified the technique and their particle counter was used successfully 

by the United States army in the second world war to detect airborne bacterial spores (Davey 
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and Kell, 1996). The first modern fluorescence-based cytometer was patented in 1968 

(Dittrich and Gühde, 1973) and commercialized that same year by Partec in Göttingen, 

Germany. Since then, flow cytometers have improved considerably due the technological 

advances in optics and electronics and eventually found their way in the field of microbiology 

in the 1980s (Wang et al., 2010). 

2.1.1 Working principle 

A flow cytometer comprises of three parts: the fluidics, optics and electronics system (Figure 
1 - 3). The fluidics system transports the particles in a fluid stream to the light source. By 

injecting the sample into a stream of sheath fluid, the flow of the sheath fluid accelerates and 

aligns the particles. After alignment by so-called hydrodynamic focusing, the particles are 

transported to the flow chamber where they pass individually through a light beam. When the 

particles pass the laser interrogation point, their intrinsic properties, like cell size, granularity, 

and morphology, lead to specific interactions with the laser light, including scattering and 

fluorescence. Light scattering is detected either at a small angle by a forward scatter detector 

(FSC), or perpendicular to the incident light by a sideward scatter detector (SSC). 

Fluorescence on the other hand, typically originates from the excitation of fluorochromes or 

from autofluorescent particles and is detected after selection with appropriate wavelength 

filters (Shapiro, 2003). The scattered and emitted fluorescent light is collected by a system of 

optical mirrors and filters to route specified wavelengths of light to different optical detectors 

which are all part of the optical system. The light signals are finally detected by 

photomultiplier tubes (PMT) and converted into electronic signals in the electronics system 

(Shapiro, 2003). 

 
Figure 1 - 3: Scheme of a flow cytometer (De Roy, 2014). 
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The main advantage of the method is the speed of the analysis as up to 10 000 cells per 

second can be analyzed. Furthermore, automated sampling and integration with robotics 

enables an automated and high throughput analysis. Modern instruments are also very 

accurate with an instrument error below 5%, and sensitive with a detection as low as 100 

cells/mL (Hammes and Egli, 2010). Because bacteria are small and because samples can 

contain a lot of abiotic particles, such as crystals and dust, which cause light scattering, it is 

necessary to label microbial cells with fluorescent molecules (Wang et al., 2010). In general, 

the scattered light already provides information about basic cells characteristics (e.g. cells 

size or surface properties), but fluorescent probes provide additional information about 

specific features. A wide variety of dyes are available and depending on which dyes are used 

the viability, metabolic activity or intracellular pH per cell can be measured (Chapter 2). 

Multiple features can be measured simultaneously as flow cytometers are equipped with 

several lasers and detectors. However, when multiple fluorescent markers are used, optical 

cross-talk can be an issue. Cross-talk or spillover is caused by the overlapping emission 

spectra of the fluorochromes but can be corrected by spectral subtraction referred to as 

compensation. A last advantage of flow cytometry is that there is no need for a culturing step 

or DNA extraction which makes it very useful for environmental microbiology. Normally little 

sample preparation is required though some pre-treatment such as sonication can be 

necessary to detach bacteria from biofilms or to disintegrate flocs (Wang et al., 2010, 

Hammes and Egli, 2010) 

2.1.2 Fingerprinting 

Analysis of flow cytometric data typically involves gating and feature extraction on the one 

hand and interpretation of the flow cytometric patterns on the other hand (Bashashati and 

Brinkman, 2009). In the gating process, the operator draws approximated polygons around 

specific areas of interest, for example around bacterial cell clusters with similar properties 

(Hammes and Egli, 2010). From these gates of interest, features like the percentage of cells 

within the identified gates, are computed for further analysis (Bashashati and Brinkman, 

2009). Since gating is a highly subjective process, which is mainly based on the experience 

and knowledge of the operator, it is often inaccurate and prone to error (Maecker et al., 

2004). A solution is automated gating which classifies and clusters cells in a more objective 

and systematic way. In addition, automated gating is less time consuming and labor intensive 

than manual gating when processing a large number of samples (Bashashati and Brinkman, 

2009). 
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Depending on the physiological state or the taxonomy of the bacteria, flow cytometric data 

changes in ways that cannot be quantified with traditional gates. To do so, so-called 

fingerprinting techniques have been developed. Fingerprinting can be done with a variety of 

techniques, each different in their approach and purpose. A first approach is based on the 

image processing of the cytometric biplots. Bombach et al. (2011) introduced the Dalmatian 

plot where an overlap image of each pair of images is created. In a first step, the operator 

gates the most abundant subsets of cells, and in a second step the gates are colored in 

black or in greyscale. Pairwise overlap images are then calculated and based on the number 

of identified gates, the total number of positive pixels, the average size of each gate and the 

relative fraction of how much each pixels accounts for in the picture the Jaccard dissimilarity 

between the images is calculated. As improvement to this method, the cytometric histogram 

image comparison (CHIC) procedure was introduced, but in contrast to the Dalmatian plot 

method, no initial gating is required making this method more reproducible and objective. 

Following this, the images are compared based on an exclusive disjunction function (XOR) 

and an overlap image. Both are then combined to calculate an average grey value per 

informative pixel which is used to calculate the dissimilarity between the samples (Koch et 

al., 2013a). Because those methods are based on image analysis, they will not be discussed 

further in this introduction. For more information, the comparative study by Koch et al. (2014) 

is recommended. A second and more often used approach is based on gating or binning of 

cell populations. The simplest method was developed by Prest et al. (2013) and is mainly 

used for water analysis where aquatic microbial communities, stained with SYBR green I, 

show two populations. Based on the SYBR green’s property to bind nucleic acids they are 

therefore called low nucleic acid bacteria (LNA) and high nucleic acid bacteria (HNA) 

(Lebaron et al., 2001, Robertson and Button, 1989). The ratio of those both populations is 

supposed to be constant in a stable environment, whereas deviations are caused by 

changes in the microbial community. This remarkably simple method is proved to be 

sensitive for the detection of changes. Today, it is used to monitor drinking water quality and 

was integrated in the Swiss legislation (SLMB, 2012), and although flow cytometry has not 

been legalized in other countries for this purpose, drinking water utilities explore its use an 

early warning system but further development is required. A disadvantage of the method is 

that it only works with nucleic acid stains capable of differentiating HNA and LNA bacteria. 

Furthermore, the distinction between HNA and LNA bacteria is not possible for most 

microbial communities and for axenic lab cultures, thus precluding the universality of the 

method. The cytometric barcoding (CyBar) method, developed by Koch et al. (2013c), is 

based on the creation of a gating template for all samples. An ellipsoid gate is drawn for 

every population that appears over the course of the experiment. The normalized number of 

cells detected in each gate is used as a barcode characterizing the microbial community. 
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Similarly to the previous method, changes in the microbial community are translated in 

fluctuations of the cell counts per gate and subsequently the characteristic barcode. Based 

on this method, correlations between populations and abiotic data can be calculated. As this 

method relies on the gating of populations, suitable stains and instrumentation are necessary 

to maximize the number of detected populations. It is evident that a reduced number of 

populations engenders a decreased resolution and sensitivity of the method. As a result, this 

method is suitable for microbial communities with a high physiological and taxonomic 

heterogeneity who can produce a higher amount of subpopulations but it is unsuitable for 

less diverse communities or axenic cultures. A second downside of the method is the 

inherent subjectivity of gating, hindering the reproducibility of the method by independent 

operators. To overcome this limitation an objective and gate-free method can be 

implemented, as described by Rogers and Holyst (2009), where an algorithm based on all 

samples divides the cytometric biplots in bins with an equal number of cells. This method, 

referred to as probabilistic binning, creates a model applied on all samples to calculate the 

number of cells per bin. As a result, the biological meaning behind the binned populations is 

lost. This approach was successfully applied by De Roy et al. (2012) to discriminate different 

brands of bottled drinking water and to detect the impact of physicochemical perturbations on 

the microbial community. In addition, De Roy et al. (2012) improved the method by 

performing a discriminant analysis on the fingerprints to maximize the performance. Similarly 

to the method described by Koch et al. (2013c), the dependency of the method on the 

original dataset impedes its flexibility. To solve this, an equally spaced grid can be used 

instead of probabilistic binning as described by Van Nevel et al. (2016b), where we 

successfully showed that it was possible to use flow cytometric fingerprinting for fast 

monitoring of drinking water quality. However, post-processing of the data is based on a 

supervised discriminant analysis. For this, all the data should be analyzed simultaneously 

and knowledge about what has to be discriminated is required, making this approach 

unsuitable for exploratory and real-time analysis. To address this problem, and to make flow 

cytometric fingerprinting a useful tool for an early-warning system, Props et al. (2016) 

introduced the so-called phenotypic diversity indices after binning with an equally spaced 

grid. The convenience of reducing the flow cytometric fingerprint to a single number improves 

interpretation and visualization especially for time-series where the change in phenotypic 

diversity can be used for monitoring. 
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2.2 Raman spectroscopy 

Raman spectroscopy is an optical technique names after the Nobel prize-winning Indian 

physicist Sir C. V. Raman. The method observes the vibrational, rotational, and other low 

frequency modes of a molecule in a cell for example, via light scattering. It is widely used in 

the field of chemistry to provide structural fingerprints to identify molecules. The Raman 

effect, i.e. the inelastic scattering of light, was observed for the first time in 1928 (Raman and 

Krishnan, 1928). But, due to the low signal intensity and the sensitivity of the method, it took 

until the advent of the lasers in the 1960s before Raman spectroscopy was used as a 

common analytical method. 

2.2.1 Working principle 

The periodic motion between the atoms in a molecule is referred to as molecular vibration. A 

number of different vibrational modes are possible and include bending and stretching of the 

molecular bonds. Raman spectroscopy can measure these vibrational modes directly by 

measuring the scattering of monochromatic light. When monochromatic light, typically from 

the visual part of the spectrum, interacts with the sample, the light will be partly scattered. 

This scattering can be split up in two parts, i.e. the elastic and the inelastic scatter. In both 

cases an incident photon is temporarily absorbed by the transition from a ground state into a 

virtual state of excitation and is scattered by the transition from this virtual state back to the 

ground state (Figure 1 - 4). The majority of the scattered light has the same wavelength or 

energy as the incoming light which is referred to as the elastic or Rayleigh scatter. In case of 

inelastic scatter, the scattered photons from the monochromatic light have more or less 

energy after interacting with the molecular vibrations. In case the photons lose energy, i.e. 

the photon wavelength increases, the scatter is called Stokes scatter. This energy loss is due 

to energy absorption by the molecule. In case the photons gain energy, i.e. the wavelength 

decreases, the scatter is called anti-Stokes scatter. This energy gain is due to energy 

dissipation from the material. Molecules that are initially in the ground state give rise to 

Stokes scattering, while molecules that are initially in an excited vibrational state give rise to 

anti-Stokes scattering. At ambient temperatures, more molecules are in their ground states, 

and therefore Stokes scattering is more intense than anti-Stokes scattering (Larkin, 2011). 
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Figure 1 - 4: Jablonski energy diagram illustrating the different types of scattering. Horizontal 
lines represent different vibrational states of the molecular bonds. The incident photons from 
the monochromatic light have an energy level equal to hν0, with h as Planck’s constant. After 
exciting the electron could to a virtual state, a second photon is emitted. In case of Rayleigh 
or elastic scatter, the emitted photon has the same energy as the incident photon. Other 
types of scatter are referred to as Raman or inelastic scatter. When the photons lose energy, 
the scatter is called Stokes scatter. When the photons gain energy the scatter is called anti-
Stokes scatter. 

This energy loss or gain is caused by the interaction of the photons with the molecular 

electron cloud. The vibrational states of the molecular electron cloud create electric fields 

and the polarizability of the molecule is the ease at which this electron cloud can be changed 

in shape, size or orientation in response to an external electric field. Incident photons will 

also generate an electromagnetic field, generated by the photon’s energy state, and can 

polarize the electromagnetic field of the molecule it interacts with which is referred to as an 

induced dipole. By causing this induced dipole, the incident photons can either gain or lose 

some energy. As the vibrational modes of a molecule are dependent on the mass of the 

atoms and their geometric arrangement, the nature of their chemical bond, and their motions, 

Raman scattering can be used to collect this information. Thus, the structure and the 

properties of the molecules in a sample can be characterized. Next to that, the relative 

intensity of the Raman signal is also dependent on the relative concentration of the 

molecules making quantification of the chemical bonds possible. As polarizability is 

necessary for a Raman scattering, not all molecules can be detected with Raman 

spectroscopy. Also, the smaller the polarizability, the smaller the Raman-effect. Because of 

that, molecules such as H2O have a very low Raman-activity which means that water will not 

interfere with Raman signals. This is an important advantage of Raman spectroscopy for the 
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biological sciences as water is omnipresent in biological samples. Raman scatter is an 

inherently weak process as only 1 out of 106-108 incident photons are Raman scattered 

(Petry et al., 2003).  

Raman spectra contain the intensity of the scatter signal as a function of the energy 

difference with the incident light, expressed in terms of the so-called wavenumber. Equation 
5 describes how to convert between the Raman shift expressed in wavenumbers to the 

spectral wavelength of the incident and emitted photons. 

      (5) 

In which represent the Raman shift in wavenumbers (cm-1) and  represents the 

wavelength of the incident photon and  the wavelength of the emitted photon. This 

wavenumber is directly related to the energy of the photons which is shown by Equation 6. 

      (6) 

Where is the wavenumber of a photon in function of its energy E divided by the speed of 

light c and Planck’s constant h. 

 

Figure 1 - 5: Scheme of a Raman spectroscope. A monochromatic light beam is focused on 
a sample with a microscope. After interaction with the sample, the scattered light is collected 
by a lens and the Rayleigh scatter is removed by a longpass (LP) filter. The resulting light is 
grated to split the light in its different components and converted to an electrical signal by a 
detector (Butler et al., 2016). 
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In practice, lasers with wavelengths in the visible light spectrum are used. As many biological 

or organic molecules can be autofluorescent with green or blue lasers, red (e.g. 633 nm) or 

near infra-red (785 nm) are preferred (Box 2). However, when increasing the wavelength of 

the incident light, the Raman scatter signal intensity decreases, and longer acquisition times 

and higher laser power may be required. For single-cell applications, the lasers are mounted 

on a microscope in order to focus the light on the bacteria of interest (Figure 1 - 5). To 

ensure that the incident light has only one particular wavelength, a monochromator is 

sometimes used before the light reaches the sample. During Illumination, the scattered light 

is focused with a lens and the photons resulting from the elastic scattering are removed by a 

Rayleigh filter. The resulting light consisting of inelastically scattered photons is then splitted 

according to its wavelength by a beam splitter or grating. This way, all wavelengths are 

Box 2 - Fluorescence, Raman scattering or infrared (IR) absorption 

When incident photons interact with matter, they can bring the molecules from a ground 

state to an excited state by transferring their energy through absorption. The lifetime of 

such a state is usually very short and the transition from the excited state back to the 

ground state can happen in different ways. For example, molecules can emit photons 

when transitioning from an excited singlet or triplet state to the ground state, which results 

in fluorescence or phosphorescence respectively. This is usually caused by high energy 

photons (e.g. from UV or blue lasers). When lower energy photons interact with matter, the 

energy can by absorbed and bring the molecules to a higher vibrational state without 

excitation to a higher energy level as with IR absorption. When photons are not absorbed 

by the molecules they can bring the molecules to a virtual state of excitation and result in 

scatter such as Rayleigh and Raman scatter. 

 

 
Figure 1 -  6: Illustration of fluorescence, IR absorption, and Raman scattering with ωL = 
laser frequency, ωFl = fluorescence emission, ωA = IR absorption, ωS = Raman scattering. 
Adapted from Petry et al. (2003). 
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collected on a separate spot on the detector. For most applications a charge-coupled device 

(CCD) detector is used to convert the optical signal into an electronic signal which can then 

be visualized in a spectrum. 

2.2.2 Applications in microbiology 

Raman spectroscopy is used for a wide variety of applications but is well-established for 

material identification, e.g. to assess mineral composition in geology, purity of polymers or 

pharmaceuticals or even for chemical analysis in art and archaeology (Petry et al., 2003, 

Vandenabeele et al., 2007). Also in life sciences, Raman spectroscopy has become more 

popular over the years as it offers a non-invasive, non-destructive and water-insensitive 

method to characterize the chemical and spatial structure of tissues or cells. In the field of 

microbiology, the potential of Raman has been reported for species identification (Hutsebaut 

and Moens, 2005, Jarvis and Goodacre, 2008, Stockel et al., 2016) and for determining 

microbial interactions by using stable isotope probing (SIP) or deuterium (Berry et al., 2015, 

Cui et al., 2017). 

Raman spectroscopy suffers from some important drawback when measuring spontaneous 

Raman scattering. The signals are very weak as only 1 out of 106-108 incident photons are 

Raman scattered. Also, biological samples often have fluorescent properties which are much 

stronger than the Raman signals. Even very weak fluorescent signals can mask Raman 

scatter. To circumvent these issues, special Raman-based techniques can be used of which 

only a few will be discussed further here. A well-known example is the use surface enhanced 

Raman spectroscopy (SERS) which enhances the signal of molecules adsorbed on rough 

metal surfaces or nanostructures, typically silver or gold (Fleischmann et al., 1974). The 

technique relies on a combination of chemical and electromagnetic signal enhancement. The 

collective excitation of the electron in the metallic nanostructures, also called the surface 

plasmon resonance, enhances the electromagnetic field of the molecules bound to, or in 

close proximity of the metal surface. The enhanced electromagnetic field subsequently 

induces a stronger Raman signal. The chemical enhancement relies on the charge transfer 

between the metal surface and the adsorbed molecules (Petry et al., 2003). For this, a short 

sample preparation in which, for example, bacteria are coated with gold nanoparticles and 

the adaptation of the laser frequency for it to match the frequency of the plasmon resonance 

is necessary. SERS has most often been used for species discriminations (Jarvis and 

Goodacre, 2008). The time gain can, in combination with microfluidic devices, also lead to 

automation (Walter et al., 2011). For subtle differences, SERS can be unreliable as only the 

spectra of the molecules in the vicinity of the SERS particles are amplified (Hering et al., 

2008). SERS also reduces the holistic character of Raman spectroscopy as only the signal of 
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the molecules on the surface of the bacteria are amplified (Pahlow et al., 2012). Tip-

enhanced Raman spectroscopy (TERS) is a variation on SERS where an almost atomically 

sharp gold pin is used to enhance the Raman signals. Similarly to atomic force microscopy 

(AFM), this pin can be used to probe surfaces and to map the Raman profiles. Budich et al. 

(2008) demonstrated how TERS could be used to map the heterogeneity of the microbial cell 

surface. But, to our knowledge, not much research has been done with TERS in the field of 

microbiology. A very promising variation on Raman spectroscopy is coherent anti-Stokes 

Raman spectroscopy (CARS). CARS relies on the interaction of three different lasers, a 

pump laser, a Stokes laser, and a probe laser. The combination of the pump laser and the 

Stokes laser is used to excite the molecules to a higher vibrational state (ωωpump - ωStokes). The 

probe laser then excites the molecule to a virtual state enabling anti-Stokes photons to be 

scattered (Figure 1 - 7). The resulting CARS signal is stronger and directed in comparison to 

spontaneous Raman scattering. The more energetic nature of the signal also makes CARS 

insensitive to the interference of fluorescence as it is detected on the short wavelength side 

of the excitation pulses (Krafft et al., 2009). 

 
Figure 1 - 7: Illustration of the energy levels in coherent anti-Stokes Raman spectroscopy. 
The samples are probed with both a pump and a Stokes laser with frequencies ωpump and 
ωStokes, respectively. As a result, the molecule is brought into a higher vibrational level. 
Subsequently, the probe laser with frequency ωprobe excites the molecule to a virtual state, 
which results in an anti-Stokes scatter with frequency ωCARS. Because the CARS signal 
contains more energy, it is both stronger than the spontaneous Raman signals and shows a 
blueshift. 

The signal enhancement enables CARS images to be collected at video time rates. In 

contrast to SERS, CARS is non-invasive and makes it thus an ideal method for real-time 

imaging of cells and tissues (Cicerone, 2016). However, the suppression of background has 

so-far been challenging and made the application of the technique for research more difficult 

though solutions are now available (Arora et al., 2008). The potential of CARS has been 

illustrated in studies of eukaryotic cells and demonstrated subcellular resolution as even 
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chromosomes can be imaged (Cheng et al., 2002, Yue and Cheng, 2016). Similarly, Okuno 

et al. (2010) demonstrated the subcellular resolution of CARS with budding yeast. Scully et 

al. (2002) proposed and developed with his team a CARS-based approach to detect and 

identify bacterial spores in air (Petrov et al., 2007, Pestov et al., 2008) while Hong et al. 

(2016) showed that CARS could also be used to detect bacteria in complex matrices such as 

milk or urine. 

3 Objectives and overview of the research 

Microbial communities are, regardless of their complexity, central to our planet’s health and 

many industrial processes. To make bacteria-driven processes more efficient and less prone 

to failures, a good understanding on how these communities work is vital. For both industrial 

applications or for research, a need for a fast characterization of these communities is 

necessary to increase this understanding. Microbial resource management has been 

proposed as a guidelines for steering microbial communities, and while there are many 

technological solutions for research, there is a lack of fast, cheap, and easy techniques for 

microbial community characterization. This doctoral research is based on previous work of 

De Roy et al. (2014a) and Van Nevel (2014) where flow cytometric fingerprinting is first 

proposed. Here we present improvements on the method, test its sensitivity, and explore 

potential applications. Based on this flow cytometric fingerprinting pipeline, the possibility of 

Raman spectroscopy as alternative method for microbial community characterization was 

also explored. 

The first part of this thesis focuses on pure cultures as most simple type of a microbial 

ecosystem. Flow cytometry has often been used for cell counting of pure cultures, yet almost 

no research has been done to explore the possibilities of flow cytometric fingerprinting for 

pure cultures. Furthermore, Raman spectroscopy was also explored as method for 

community characterization. In the second part, flow cytometric fingerprinting was applied to 

monitor aquatic microbial communities to determine the most influencing factors on the 

fingerprints, the sensitivity, and the relevance of the method for practical applications.  

PART 1: Pure cultures and cocultures 

Flow cytometry relies on staining and much research has been done on dyes yet very few 

truly multicolor protocols have been developed. Moreover, important variations are reported 

between protocols and some important aspects such as stability in function of time are poorly 

investigated. In Chapter 2, different multicolor staining protocols for automated and high 

throughput flow cytometric analysis were compared and optimized for both a Gram positive 

and a Gram negative bacteria species. The purpose of this chapter was to find the most 
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sensitive, stable, and most biologically informative dye combination for the following 

research. 

In Chapter 3, the cytometric fingerprinting toolbox was expanded by calculating the similarity 

between fingerprints. The sensitivity of the method was tested by comparing the fingerprints 

of 29 strains and species of taxonomically related Lactobacilli. Furthermore, the sensitivity of 

the method was calculated by using beads and bacteria mixtures. Finally, also the impact of 

technical issues and the importance of physiological changes due to microbial growth on the 

reproducibility is illustrated. 

It is well-established and illustrated in previous chapter that flow cytometry fingerprints of 

axenic cultures change in function of their growth stage. In Chapter 4, a classic E. coli batch 

fermentation was monitored with flow cytometric fingerprinting to determine why the 

cytometric fingerprints change in function of the growth stage. For this, the cell physiology, 

cell density, and the fingerprints were compared with operational parameters such as 

respiration and metabolite production. The aim of this chapter was to further explore 

sensitivity of flow cytometric fingerprinting to physiological changes and to explore the 

usability of flow cytometry in the context of bioreactor monitoring. 

The reliance of flow cytometry on fluorochromes is in some cases and advantage, but it also 

complicates the sample preparation and slows down the analysis. In Chapter 5, we tested 

how Raman spectroscopy, a non-invasive and non-destructive alternative for flow cytometry, 

could be used to detect phenotypic diversity of the model organism E. coli. Several data 

processing pipelines were compared and several fingerprinting pipelines are proposed for 

future research. 

To assess the influence of phenotypic diversity in microbial communities, fast single-cell 

techniques capable of revealing the this lowest level of diversity are required. In Chapter 6, 

both flow cytometry and Raman spectroscopy were compared for the detection of phenotypic 

changes of two drinking water isolates. For this, microcosms were developed which allowed 

individual cell populations to interact while remaining physically separated. 

PART 2: Environmental microbiology 

As flow cytometry showed to be a valuable and sensitive tool for microbial community 

analysis, the application of the method on complex environmental communities was 

evaluated. Water distribution systems are fundamental for drinking water or process water 

distribution. In both cases, the water quality is important and microbial regrowth in the 

distribution system should be limited as much as possible. Biofilms on the piping material are 

an important source of microbes in the water, and in Chapter 7, flow cytometry was applied 
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for the monitoring of the biofilm and bulk water microbial community. A series of batch tests 

and a lab-scale flow-through experiment were set up to assess the influence of different pipe 

materials and water sources on the dynamics in the microbial communities assessed with 

flow cytometric fingerprinting. Bacteria are known to colonize biofilms and we investigated 

with flow cytometry if Enterobacter amnigenus, a known drinking water contaminant, could 

colonize biofilms of different pipe materials. 

In the last chapter, Chapter 8, the sensitivity of flow cytometric fingerprinting to detect the 

response of a fresh water microbial community to a contamination was tested by adding 

elements which could be used as nutrients by the bacteria. Finally, a flow cytometer was 

installed in a full-scale water production plant to demonstrate the practical application of flow 

cytometry and cytometric fingerprinting at the different stages of a water treatment plant. 

 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 

CHAPTER 

2 
 

MULTICOLOR FLOW CYTOMETRY 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

 
 
 
 
 
 
 
 
 
 
 



 

29 

CHAPTER 

  2 
MULTICOLOR FLOW CYTOMETRY 

1 Abstract 

Flow cytometry is a rapid and quantitative method to determine bacterial physiology. 

Although different stains can be used to determine the physiology, staining protocols are 

inconsistent and lack a general optimization approach. Very few 'true' multicolor protocols, 

where dyes are combined in one sample, have been developed in such a way for 

microbiological applications. As each dye and dye combination behaves differently within a 

certain combination of medium matrix, microorganism or instrument, protocols need to be 

tuned to obtain reproducible results. In this chapter, we review current single, double and 

triple stains and the different parameters that influence staining: stain kinetics, optimal stain 

concentration and the effect of the chelator EDTA as membrane permeabilizer. As multiwell 

autoloaders are now commonly used, samples are often stained at the same time but not 

measured simultaneously. The time difference between the analysis of samples of a 

multiwell assay can significantly impact the results. In the last section, we highlight the need 

to investigate the stability of multicolor assays to ensure correct results. 
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2 Introduction 

Multicolor flow cytometry is a good approach to simultaneously estimate and assess multiple 

features and to characterize the physiological heterogeneity of a community in detail. 

However, staining bacteria is a complex interplay between dye chemistry, the target 

organisms and the staining conditions. For microbiological applications, the diversity of 

bacterial species is challenging, as even closely related organisms are known to behave very 

differently, making it difficult to analyze bacteria in a standardized way (Shapiro, 2000). 

Hence, it is important to have a reasonable amount of standardization in terms of stain 

concentration, used buffers, incubation time, need for permeabilization or fixation, and the 

necessary controls to compare different samples. In addition, a better understanding of the 

staining chemistry is important to estimate the reliability of a staining protocol for a specific 

research set-up. Unfortunately, it is exactly on those aspects that many available studies lack 

the necessary information and where data are poor and inconsistent. An overview of the 

parameters important for protocol optimization are given by Hammes et al. (2011). Very few 

'true' multicolor protocols, where dyes are combined in one sample, have been developed in 

such a way for microbiological applications. A wide variety of fluorescent dyes are available 

for flow cytometry. Thus, very different aspects of microbial physiology can be assessed and 

monitored. However, it is important to understand how different dyes function and how they 

can be applied to draw the correct conclusions. In this chapter, we discuss the discrepancy 

between protocols for some popular stains and offer a way in which staining could be 

optimized for a specific set-up. The number of available dyes is vast and summarizing them 

all in detail is beyond the scope of this work as not all dyes are useful for flow cytometric 

fingerprinting. For more information consult Hammes et al. (2011), Strauber and Muller 

(2010), Tracy et al. (2010) and Shapiro (2003). Furthermore, we included novel data using 

red-excitable SYTO dyes combined with functional stains for double and triple staining 

applications. 

2.1 Cell-permeant nucleic acids dyes 

Nucleic acids carry the genetic information used in the development and functioning of all 

living organisms and viruses and could therefore be a very logical indicator of life. However, 

it’s important to note that DNA can be persistent and that dead cells may still contain DNA. 

For example, when bacteria are killed by UV-C irradiation, lethal thymine dimers are 

produced that will be stained by most nucleic acid dyes (Hammes et al., 2011). Nucleic acid 

stains can also act as good counterstains for labeling all organisms which are present, live or 

dead. Generally, nucleic acid stains can be divided in cell-permeant and cell-impermeant 
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dyes depending on their ability to pass through the cell membrane. The latter, being unable 

to cross intact membranes, can therefore be considered as viability-dependent dyes. 

Furthermore, the difference between the Gram-positive and Gram-negative bacterial cell wall 

structure poses additional difficulties (Berney et al., 2007, Strauber and Muller, 2010, 

Shapiro, 2003) and permeabilization of the outer membrane of Gram-negative bacteria is 

often necessary to optimize staining. Either EDTA or citrate can be used for this purpose 

(Marie et al., 1996). Both compounds permeabilize the outer membrane by chelating cations 

and stripping the LPS layer of the outer membrane (Chen et al., 2004).These cations can 

also be deleterious as they decrease binding efficiency of certain dyes such as DAPI or 

Hoechst 33342 (Marie et al., 1996). Here, we will focus on EDTA as previous results from 

Marie et al. (1996) showed that EDTA gave similar to those with citrate. 

2.2 Functional dyes 

Cell-impermeant nucleic acid stains such as propidium iodides (PI) are not able to cross 

membranes because of their size and charge, and are therefore used as an indicator of 

membrane permeabilization (Berney et al., 2007). Since membrane integrity is vital to keep 

the intracellular environment stable, membrane damage can be an indication of cell death 

(Hammes et al., 2011). However, it is known that contact time, incubation temperature and 

stain concentration are crucial factors for proper staining, which emphasizes the importance 

of standardization (Van Nevel et al., 2013, Hammes et al., 2012). Furthermore, a recent 

study on E. coli suggested that porins and periplasmic transporters induced by substrate 

limitation facilitate PI entry into cells and that staining efficiency is influenced by the 

physiological state (Brognaux et al., 2014). Shi et al. (2007) showed that more bacteria were 

stained during early exponential phase than during the early lag phase. This indicates that PI 

cannot be used as viability estimator and suggests the necessity for multiparameter viability 

determination. Besides PI, other dyes with a similar mode of action are available such as 

SYTOX dyes, the TOTO and TO-PRO family of dyes (Shapiro, 2003). 

Another aspect of viability is maintaining the cell's membrane potential. All healthy microbial 

cells need to keep their membrane potential, which is produced through a functional electron 

transport chain. The membrane potential also powers processes such as ATP synthesis and 

solute-ion transport. If the membrane potential decreases, the cell will be unable to transport 

essential molecules eventually leading to cell death. Membrane potential should be 

considered as a more conservative measurement of viability compared to membrane 

permeabilization because of the link between membrane potential and cell activity (Hammes 

et al., 2011). DiBAC4(3), also known as bis oxonol (BOX), is mostly used to evaluate 
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membrane potential. It enters depolarized cells, because of its anionic structure and binds 

non-specifically to intracellular proteins (Muller and Nebe-von-Caron, 2010). In contrast, the 

cationic Rhodamine 123 (Rh123) only accumulates in cells with active membrane potential 

(Diaper et al., 1992). Since this stain can be actively pumped out by certain cells it has a 

limited use in standardized protocols (Tracy et al., 2010). Alternative dyes are 3,3’-

dihexyloxacarbocyanine iodide (Di-OC6(3)), 3,30- diethyloxacarbocyanine (Di-OC2(3)) and 

3,30-dipropylthiadicarbocyanine (DiSC3(5)) (Shapiro, 2003). Various protocols exist for the 

use of DiBAC4(3) with final stain concentrations, incubation time and temperatures ranging 

from 0.24 μM to 29 μM (Herrera et al., 2002, Nielsen et al., 2009), 2 to 20 minutes (Lopez-

Amoros et al., 1995, Comas and Vives-Rego, 1997, Rezaeinejad and Ivanov, 2011), and 

room temperature to 40°C (Rezaeinejad and Ivanov, 2011, Linhova et al., 2012), 

respectively. Table 2 - 1 provides an overview of staining protocols and their references. 

Table 2 - 1 : Overview of concentration, incubation time and temperature used in staining 
protocols for different dyes and organisms compared with our findings. 

Dye Conc. 
[μM] 

Incubation 
Time [min] 

Incubation 
Temp. [°C] Organism studied Reference 

DiBAC4(3) 5 22-40 37 C. metallidurans CH34, L. 
brevis LMG 18022 This study 

 1 4 37 Bififobacterium 
adolescentis Amor et al. (2002) 

 1 2 RTa E. coli Comas and Vives-Rego 
(1997) 

 19.4 10 RT E. coli, P. aeruginosa, S. 
aureus Jepras et al. (1995) 

 0.24 10 RT 
P. fluorescens, Pythium 
ultimum, Rhizoctonia 
solani 

Nielsen et al. (2009) 

0.5 15 37 S. macedonicus Papadimitriou et al. (2007) 

 1 20 37 E. coli Rezaeinejad and Ivanov 
(2011) 

 0.48 20 40 L. delbrueckii subsp. 
bulgaricus Rault et al. (2008) 

1 2 RT E. coli, S.typhimurium Lopez-Amoros et al. (1995) 

 1.94 7 RT C. pasteurianum, C. 
beijerinckii Linhova et al. (2012) 

29 10 RT E. coli Herrera et al. (2002) 
10 10 20 E. coli Berney et al. (2009) 
3.87 10 RT Pichia pastoris Hyka et al. (2010) 

     
 
 

cFDA 10 30-40 37 C. metallidurans CH34, L. 
brevis LMG 18022 This study 

50 10 30 Lactobacillus plantarum Bunthof and Abee (2002) 
50 10 30 Lactococcus lactis Bunthof et al. (1999) 
10 10-20-30 RT-30-40 Lake water bacteria Porter et al. (1995) 
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10 10 37 Lactic acid bacteria Chen et al. (2012) 

 10 30 37 Bifidobacterium 
adolescentis Amor et al. (2002) 

 2E-04 10 40 L. delbrueckii subsp. 
bulgaricus Rault et al. (2008) 

 0.002 10 40 L. delbrueckii subsp. 
bulgaricus Rault et al. (2009) 

25 45 37 S. macedonicus Papadimitriou et al. (2007) 
10.8 10 37 Pichia pastoris Hyka et al. (2010) 

 50 60 30 B. cereus endospores Cronin and Wilkinson 
(2008a) 

10 30 37 activated sludge bacteria Forster et al. (2002) 

 21.7 10 RT C. pasteurianum, C. 
beijerinckii Linhova et al. (2012) 

 10 15 35 

Aeromonas hydrophila, B. 
subtilis, E. coli, P. 
aeruginosa, S. epidermidis 
and bacteria from 
environmental waters 

Hoefel et al. (2003) 

 21.7 30 37 E. coli, P. aeruginosa, S. 
aureus Jepras et al. (1995) 

5 30 30 L. lactis Hansen et al. (2015) 
 

cFDA-SE 0.2 38-40 37 C. metallidurans CH34, L. 
brevis LMG 18022 This study 

 0.045 10 40 L. delbrueckii subsp. 
bulgaricus Rault et al. (2008) 

 100 150 25-37 Strains from aquatic 
environment Fuller et al. (2000) 

 10 30 35 

Aeromonas hydrophila, B. 
subtilis, E .coli, P. 
aeruginosa, S. epidermidis 
and bacteria from 
environmental waters 

Hoefel et al. (2003) 

11 20 37 S. pyogenes Hytonen et al. (2006) 

 1 15 30 Bifodobacterium, 
Lactobacillus Lahtinen et al. (2006) 

50 20 37 L. casei Lee et al. (2004) 
10 30 37 B. licheniformis Hornbaek et al. (2002) 
35 10 RT Lactobacillus plantarum Fitzgerald et al. (2004) 
1 10 30 L. lactis Breeuwer et al. (1996) 
44.8 10 40 Oenococcus oeni Bouix and Ghorbal (2015) 
50 30 30 L. lactis Hansen et al. (2015) 
0.5 4 RT Cronobacter spp. Arku et al. (2011) 

 

HE 5 40 37 C. metallidurans CH34, L. 
brevis LMG 18022 This study 

31.7 10 RT E. coli Herrera et al. (2002) 
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 10 0 RT Cupriavidus, shewanella, 
E. coli, deinococcus Baatout et al. (2005) 

0.07 4 RT Cronobacter spp. (Arku et al., 2011) 
      

Nile Red 0.13 10-40 37 C. metallidurans CH34, L. 
brevis LMG 18022 This study 

 10,100 30 RT Synechocystis spp, E. coli Tyo et al. (2006) 

 157 10-15 RT P. auroginosa Vidal-Mas et al. (2001) 

3.1 30 RT Escherichia coli Herrera et al. (2002) 
94.2 10 RT Ralstonia eutropha Gorenflo et al. (1999) 
60 10 RT environmental bacteria Koch et al. (2013c) 

 0.126 30 RT Methylobacterium 
rhodesianum Ackermann et al. (1995) 

aRT: Room Temperature 

Besides membranes, other aspects of the cell can be used to assess viability or functionality. 

All bacteria possess housekeeping enzymes such as esterases or dehydrogenases that are 

linked to the respiratory activity of metabolically active cells. The inactivity of these enzymes 

indicates metabolic inactivity, but not necessarily cell death as these enzymes can still be 

active even after cell death has occurred. Measurement of cellular enzymatic activity is 

useful although the mentioned limitations needs to be considered. Generally, dyes used to 

monitor enzymatic activity are cleaved upon uptake in the cell, leading to the production of a 

fluorescent signal (Shapiro, 2003). Again, a wide variety of dyes that target different 

enzymatic activities are available. A popular dye is 5-cyano-2,3-ditolyl tetrazolium chloride 

(CTC), which is reduced by dehydrogenases to fluorescent membrane-impermeant formazan 

(Lopez-Amoros et al., 1997). Since respiratory activity is linked to the maintenance of the 

membrane potential, CTC reduction and DiBAC4(3) diffusion are complementary (Hammes et 

al., 2011). Fluorescein diacetate (FDA), another popular dye, is cleaved by esterases to 

release the fluorescent fluorescein. Since fluorescein easily leaks from cells, FDA 

modifications have been developed such as carboxyfluorescein diacetate (cFDA), with better 

retention kinetics, and modifications of cFDA to further reduce leakage such as 

carboxyfluorescein diacetate acetoxymethyl ester (cFDA-AM), 20,70-bis-(2-carboxyethyl)-5-

(and-6)-carboxyfluorescein-AM (BCECF-AM), calcein-AM and carboxyfluorescein diacetate 

succinimidyl ester (cFDA-SE). Evidently to avoid leakage, cell permeabilization (e.g. by 

EDTA or citrate) to improve staining is not recommended with those dyes. Furthermore, 

permeabilization of the membranes can affect viability. An interesting feature of these dyes is 

that the fluorescence emission intensity of fluorescein depends on the pH, thereby giving 

additional information about cell metabolism. With a maximal emission at pH 9 and minimal 

emission at pH 5, changes around the neutral pH can be detected (Johnson and Spence, 
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2010). Again, many different protocols for cFDA and cFDA-SE have been reported (Table 2 - 
1). 

Oxidative stress can also be assessed by flow cytometry. Reactive oxygen and nitrogen 

species (ROS and RNS) such as superoxide anion radical (O2˙-), hydrogen peroxide (H2O2) 

and the hydroxyl radical (HO˙) are naturally occurring by-products of respiration and 

oxidation. To protect themselves from those toxic compounds, aerobic organisms use 

enzymes like superoxide dismutase (SOD) or non-enzymatic anti-oxidants like glutathione 

(GSH) to control the level of ROS. Environmental oxidizers, such as UV irradiation or 

chlorination can increase intracellular ROS levels leading to increased oxidative stress and 

eventually to cell death. To measure the increase of ROS, dihydroethidium (hydroethidine; 

HE) can be used. The oxidation of HE results in the formation of ethidium, a fluorescent 

compound that intercalates DNA (ex./em. 520/610 nm) (Munzel et al., 2002). Research has 

shown that not only O2˙- but also cytochrome c and other reactive oxygen and nitrogen 

species can oxidize HE (Tarpey et al., 2004). The relative reactivity of the different 

components are ONOO- > Fe(II)/H2O2 (i.e. HO˙) > O2˙- > H2O2 (Murrant and Reid, 2001) and 

show that HE provides an indication of both ROS and RNS production (Gomes et al., 2005). 

Literature on the use of HE for assessing oxidative stress in bacteria by flow cytometry is 

scarce and staining protocols used concentrations between 0.07 and 31 μM (Arku et al., 

2011, Herrera et al., 2002) and incubation times between zero and ten minutes at room 

temperature (Baatout et al., 2005, Herrera et al., 2002) (Table 2 - 1). 

Lipid composition is an interesting parameter to investigate cell physiology as it reveals more 

about the cells energy storage. Lipid stains can roughly be divided into two groups: lipid 

analogues and lipophilic organic molecules. The BODIPY-labeled fatty acid analogues are 

often used for mammalian cells and microscopy, their use in flow cytometry applications is 

rather rare (Benincasa et al., 2009, Papadimitriou et al., 2007). An example of the second 

class is nile red (NR), which binds selectively to non-polar lipid droplets inside cells (Johnson 

and Spence, 2010) and can be used to detect the presence of storage lipids (PHA/PHB) in 

spectrophotometry (Greenspan and Fowler, 1985) and flow cytometry (Tyo et al., 2006, 

Vidal-Mas et al., 2001, Ackermann et al., 1995, Gorenflo et al., 1999, Herrera et al., 2002). 

Tyo et al. (2006) showed that ionic strength of the dilution buffer influenced staining 

efficiency and recommended to use deionized water as dilution buffer instead of 

physiological saline solution (0.9% NaCl) to improve signal to noise ratio. The authors also 

mentioned the need for membrane permeabilization for specific bacterial species, which 

reduced viability. Interestingly, they also showed that the optimal concentration of NR is 

species dependent, potentially because of differences in PHA contents. Protocols vary with 
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concentrations between 3 and 100 μM (Tyo et al., 2006, Herrera et al., 2002) and incubation 

times ranging from 10 minutes to 30 minutes at room temperature (Gorenflo et al., 1999, Tyo 

et al., 2006) (Table 2 - 1).  

2.3 Stain combinations 

Combining different stains offers the possibility to simultaneously assess different 

physiological states of bacteria within a population, thereby improving understanding of 

bacterial behavior within a specific condition (Nebe-von-Caron et al., 2000, Nielsen et al., 

2009, Rezaeinejad and Ivanov, 2011). Several studies used and described double and triple 

staining protocols in order to determine different functional properties of a bacterial 

community (Hewitt et al., 1999, Johnson and Spence, 2010). A widely-used stain 

combination is available in the commercialized Live/Dead BacLight kit (Thermo Fisher 

Scientific), which uses a combination of SYTO 9 and PI to distinguish intact 'live' cells from 

permeabilized 'dead' cells. This kit has been used in numerous studies (Vriezen et al., 2012, 

Mah et al., 2003, Leys et al., 2009, Lawrence et al., 1998, Dalwai et al., 2006, Alonso et al., 

2002). Table 2 - 2 gives an overview of genuine double and triple staining protocols and their 

applications. Apart from these combinations, many multicolor protocols have been optimized 

in which dyes are separately added to different technical replicates of the same sample. This 

is different from a genuine multicolor set-up in which dyes are added to the sample 

simultaneously. 

To combine different dyes, it is important to choose dyes that possess the right spectral 

properties, to determine the incubation time, incubation conditions and dye concentration for 

each fluorescent probe separately, and to assess possible interference. When combining 

stains, one of the most common issues is overspill which is a consequence of the spectral 

characteristics of the dyes. To resolve overspill, other dye combinations can be made or 

compensation can be applied. A second type of interference, also related to the spectral 

characteristics of the dyes, is FRET (fluorescence resonance electron transfer). In this case 

the emission of one dye (donor) is absorbed by a second dye (acceptor) in close proximity. 

Consequently, the fluorescence intensity of the donor decreases (quenching) and the 

fluorescence intensity of the acceptor increases (Horvath et al., 2005). Besides FRET, also 

the matrix can cause fluorescence quenching. Each dye combination behaves differently 

within a certain combination of medium matrix, microorganism or instrument and needs to be 

tuned to determine possible compensations and obtain reproducible results (Hyka et al., 

2010, Tracy et al., 2010). 
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Table 2 - 2: Overview of double and triple combination of stains, set-up of combinations and 
subject in which they were used. 

Stains Set-up Subject Reference 

Hexidium iodide/cFDA Double stain 
Physiological characterization of 
Escherichia coli during 
fermentations 

Hewitt et al. 
(1999) 

cFDA/PI/DiBAC4(3) 
Double cFDA/PI Bile salt stress on bifidobacteria 

population 
Amor et al. 
(2002) Single DiBAC4(3) 

cFDA/PI Double stain 
Viability assessment of 
Lactococcus lactis exposed to 
different stresses 

Bunthof et al. 
(1999) 

cFDA/PI Double stain Gastro-intestinal stress on 
probiotic bacteria 

Chen et al. 
(2012) 

Rh123/ DiBAC4(3)/PI/ 
SYTO13/SYTO17 

Double PI/SYTO13 Effect of gramicidin, 
formaldehyde, and surfactants on 
Escherichia coli 

Comas and 
Vives-Rego 
(1997) Single other stains 

SYTO9/PI/cFDA/ 
Hoechst3342/resazurine/ 
SYTOX green 

Double SYTO9/PI 
Growth phase-related changes in 
Bacillus cereus 

Cronin and 
Wilkinson 
(2008b) Single other stains 

Hexidium iodide/cFDA Double stain Gram staining of bacteria in 
activated sludge 

Forster et al. 
(2002) 

PI/DIOC6 Double stain Starvation response in Bacillus 
licheniformis 

da Silva et al. 
(2005) 

Rh123/DiBAC4(3)/PI Double Rh123/PI and 
DiBAC4(3)/PI 

Starvation survival in seawater of 
Escherichia coli and Salmonella 
typhimurium 

Lopez-Amoros 
et al. (1995) 

Thiazoleorange(TO)/PI/  
DiBAC4(3) 

Double TO/PI Characterization of bacteria in 
microbial fuel cells 

Matos and 
Lopes da Silva 
(2013) Single DiBAC4(3) 

SYBR green/EB/ 
DiBAC4(3)/PI 

Double SYBR green/PI Pseudomonas fluorescens DR54 
biocontrol 

Nielsen et al. 
(2009) Triple SYBR 

green/EB/DiBAC4(3) 

PI/cFDA/ DiBAC4(3) 
Double PI/cFDA Acid stress response of 

Streptococcus macedonicus 
Papadimitriou 
et al. (2007) Single DiBAC4(3) 

CTC/fluorescent- 
antibody/DAPI 

Double 
CTC/fluorescent-
antibody 

Enumeration of 
enterohemorrhagic Escherichia 
coli O157:H7 

Pyle et al. 
(1995) 

Single DAPI 

cFDA/cFDA-SE/PI/  
DiBAC4(3) 

Double cFDA/PI Fermentation of Lactobacillus 
delbrueckii 

Rault et al. 
(2008) Single DiBAC4(3) and 

cFDA-SE  

cFDA/PI Double Viability of Escherichia coli 
O157:H7 in river water 

Tanaka et al. 
(2000) 

cFDA/PI/CTC 
Double cFDA/PI Effect of pollution on the activity 

of microbial communities in river 
water 

Yamaguchi and 
Nasu (1997) Single CTC 
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2.4 Stability 

An advantage of flow cytometry is the possibility to analyze samples in a high throughput 

manner. The use of multiwell autoloaders has become very common and samples are often 

stained and incubated at the same time. However, this can lead to discrepancies as samples 

are not measured simultaneously. In that time frame, biological changes such as aggregation 

or physiological and chemical changes such as bleaching, dye extrusion or intrusion can 

occur and significantly alter the results and subsequently affect the reliability and 

reproducibility (Hyka et al., 2010). Dye stability is therefore an important factor to consider, 

particularly when measuring in high throughput screening mode. Only Hammes et al. (2012) 

and Van Nevel et al. (2013) discussed this issue for the double SYBR green and propidium 

iodide staining. To assess the stability of the dye, Van Nevel et al. (2013) aliquoted a known 

sample in a multiwell plate after staining with their optimized staining protocol and monitored 

the mean fluorescence intensity and cell concentration of the detected populations. This way 

the gradual changes in the results could be detected. They showed that SYBR green I 

staining is stable for at least 74 minutes, making this stain suitable for multiwell plates. On 

the other hand, they demonstrated that the combination of SYBR green and propidium iodide 

is less stable and that, albeit the number of cells in each population remained stable, the 

fluorescence intensity changed over time. Thus, care should be taken when many samples 

are analyzed in batch and when a fixed gating template (Prest et al., 2013) or flow cytometric 

fingerprinting (De Roy et al., 2012) is used to analyze the data. The authors also clearly 

mention that the dye stability is different when other dye concentrations or samples are 

tested and illustrate the usability of such tests to develop high throughput assays. 

3 Materials and methods 

3.1 Preparation of bacteria cultures 

Two bacterial strains were used. The Gram-positive Lactobacillus brevis LMG 18022 and the 

Gram-negative Cupriavidus metallidurans CH34. Both were grown overnight at 28°C in 

aerobic conditions in liquid media, MRS broth (Oxoid) and LB broth (Oxoid), respectively. As 

example of a mixed microbial culture, bottled Evian water was used. Bacterial cultures were 

diluted in phosphate buffered saline (PBS) solution and adjusted to a concentration around 

105 cells/mL prior analysis based on flow cytometric cell enumeration (Prest et al., 2013). 
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3.2 Flow cytometry and used stains 

Bacteria were analyzed on a Accuri C6 (BD Biosciences) with a blue (488 nm, 20 mW) and 

red (640 nm, 14.7 mW) laser. Standard optical filters were used and included FL-1 (530/30 

nm), FL-2 (585/40 nm) and FL-3 (670 LP) for the blue laser and FL-4 (675/25 nm) for the red 

laser. The tested dyes include DiBAC4(3) (Sigma Aldrich), cFDA (Sigma Aldrich) and cFDA-

SE (Sigma Aldrich) and were detected with FL-1. The dyes dihydroethidium (Sigma Aldrich) 

and Nile red (Sigma Aldrich) were detected with FL-3 and the red-excitable SYTO dyes 17, 

59-64 (Thermo Fisher) were detected with FL-4. A daily quality control with fluorescent beads 

(05-4008, Sysmex) and a cleaning cycle were performed before the experiments to assess 

both the accuracy (bead count and position) and the cleanliness of the machine. Samples 

were analyzed in the Accuri C6 software (version 1.0.264.21) unless stated otherwise. 

3.3 Assessment of staining kinetics 

Staining kinetics were assessed by staining 1.5 mL of a 105 cells/mL bacterial suspension 

(as described above) and measuring continuously for maximum 40 min (or one hour for HE 

as stabilization of the signal took longer) using the instrument’s “unlimited run” function. The 

fluidics speed was set at low flow rates (16 μL/min) to keep a low number of events per 

second in all channels (< 2000). During acquisition, the sample was incubated at 37°C. For 

the red-excitable SYTO dyes, time-gates were made of one minute using the flowCore 

package v1.38.1 in R. For each gate the average fluorescence intensity of the cell population 

was extracted. Cell concentrations were not extracted in this experiment as they were not 

considered reliable for the given set-up. 

3.4 Assessment of optimal conditions for the single stains 

The concentration, incubation time and the effect of EDTA were tested on all SYTO stains 

and on both bacteria. Cell suspensions were prepared as described above. Three dye 

concentrations (5 μM, 0.5 μM and 0.05 μM) were tested at different incubation times (0 min, 

15 min and 30 min) both with and without EDTA. The final concentration of EDTA was 5 mM. 

To determine if dyes could be used as benchmark, cell concentrations with the SYTO dyes 

were compared to the standard SYBR green I staining as described by Prest et al. (2013). 

For all functional dyes, one single concentration was used based on literature and titration. 

The optimal stain concentration was chosen based on maximized signal to background 

distinction (Appendix Figure 2 - 1). The final concentrations chosen were 5 μM, 1 μM, 0.2 

μM, 10 μM and 0.3 μM for dihydroethidium, DiBAC4(3), cFDA-SE, cFDA and Nile Red 

respectively. For all SYTO stains a sample filtered over a 0.22 μm filter (Merck Millipore) was 
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used as a negative control. A sample was heat-killed by incubation at 100°C for 30 min to 

serve as positive control sample for DiBAC4(3) and as a negative control sample for cFDA 

and cFDA-SE. An oxidized sample was prepared by adding 10 μl of 30% H2O2 (Sigma 

Aldrich) to 500 μl of sample. After 30 min of incubation, the suspension was centrifuged and 

washed three times with 0.22 μm-filtered PBS to remove the H2O2 as to avoid bleaching of 

the stains. This sample was used as positive control for dihyroethidium staining. 

3.5 Assessment of triple staining 

Following triple stains were tested DiBAC4(3)/ dihydroethidium/ SYTO 60, DiBAC4(3)/ Nile 

red/ SYTO 60, cFDA/ dihydroethidium/ SYTO 60, cFDA/ Nile Red/ SYTO 60, cFDA-SE/ 

dihydroethidium/ SYTO 60, cFDA-SE/ Nile Red/ SYTO 60. For each triple stain, all double 

stain combinations were tested and all single stains as well. The stains were tested on both 

bacteria (prepared as described above) and on all controls described previously. Finally, a 

mixture of different samples was made to have a positive and negative signal for each stain 

(Appendix Table 2 - 1). All samples were incubated at 37°C for 30 min. After flow cytometry 

read out, a gating protocol was established. For the double stains with SYTO 60, first both 

FL-1 positive and FL-3 positive cells were gated versus FL-4. Then both positive and 

negative FL-1 and FL-3 populations were gated in the opposite channel (e.g. the FL-3 

positive population was gated in the FL-1 channel) to establish the necessary compensation. 

After the right gates and compensation were established, 4 populations could be 

distinguished with the triple stains: FL-1+/FL-3+, FL-1-/FL-3+, FL-1+/FL-3-, FL-1-/FL-3-. The 

gating protocol is further illustrated in Figure 2 - 1. 
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Figure 2 - 1: Illustration of the gating protocol used to discriminate the four populations when 
using triple stains. The red-excitable nucleic acid stain SYTO 60 was used as a counterstain 
to differentiate cells from background. For the double stains with SYTO 60, first both FL-1 
positive (upper left) and FL-3 positive cells were gated versus FL-4 (upper right). Then both 
positive and negative FL-1 and FL-3 populations were gated in the opposite channel (e.g. the 
FL-3 positive population was gated in the FL-1 channel) to establish the necessary 
compensation. After the right gates and compensation were established, four populations 
could be distinguished with the triple stains: FL-1+/FL-3+, FL-1-/FL-3+, FL-1+/FL-3-,and FL-1-

/FL-3-. 

3.6 Stability 

A mixed microbial community with different cell populations (e.g. dead, live or oxidized were 

prepared of either L. brevis LMG 18022 or C. metallidurans CH34 and stained with any of the 

triple combinations mentioned in the previous section. The samples were then subsampled 

and loaded in a 96-well plate and measured sequentially with the flow cytometer after 30 min 

of incubation at 37°C. Cell concentrations were then determined by applying the gating 

protocol mentioned in the previous section allowing to look at the stability of these 

concentrations over the time needed to process the complete 96-well plate (about 1 h 30 

min). 
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4 Results and Discussion 

To further scrutinize the usability of SYTO dyes, we investigated the possible application of 

the red-excitable SYTO dyes 17, 59, 60, 61, 62, 63 and 64 for both the Gram-negative 

bacterium Cupriavidus metallidurans CH34 and the Gram-positive bacterium Lactobacillus 

brevis LMG 18022. First, we tested the staining kinetics by measuring the change in 

fluorescence over time. Results indicated that dye uptake was immediate for the Gram-

positive bacterium while an incubation period of approximately 15 minutes was required for 

the Gram-negative bacterium to reach maximum fluorescence intensity (Appendix Figure 2 
- 2 and Appendix Figure 2 - 3). For the Gram-positive population, fluorescence intensities 

were stable, indicating time-independent uptake. For the Gram-negative population, 

fluorescence intensities increased over time showing time-dependent uptake. After uptake, 

the fluorescence signal remained stable during the entire measurement period (30 minutes). 

This difference in uptake between Gram-positive and Gram-negative bacteria is likely due to 

differences in cell membrane composition and is also observed for blue-excitable SYTO dyes 

Lebaron et al. (1998). A second test was performed where different dye concentrations and 

the effect of EDTA were assessed for all dyes. This test was performed because cell 

concentrations can vary depending on the used dye concentrations and incubation time 

regardless of the fluorescence intensity of the cell population. Thus, different dye 

concentrations and the effect of EDTA were assessed at different time points during 

incubation (0 min, 15 min and 30 min) for all red-excitable SYTO dyes. As a benchmark, cell 

concentrations were compared to the standard SYBR green I staining as described by Prest 

et al. (2013). Results of this experiment for SYTO 60 and the SYBR green bench mark are 

shown in Figure 2 - 2, the results of the other dyes are available in the publication of 

Buysschaert et al. (2016). A stain was assessed as good, if cell concentrations did not 

deviate more than 10% from the SYBR green benchmark. Our results showed that a final 

stain concentration of 0.5 μM is preferable for all red-excitable SYTO dyes and that an 

incubation period between 15 to 30 minutes, depending on the organism, is sufficient to 

obtain a reliable estimate of cell numbers (data not shown). Only SYTO 64 was unable to 

stain bacteria under these conditions, as no cells could be detected with the flow cytometer 

(data not shown). This optimal stain concentration is comparable to the concentration found 

by Comas and Vives-Rego (1997) who tested SYTO 17 at 1 μM on Escherichia coli. 

However, our protocol relied on a shorter incubation time of 15 minutes instead of 60 

minutes. The difference in incubation temperature could facilitate dye intrusion by diffusion 

and could explain the difference (Johnson and Spence, 2010). As cell concentrations 

remained stable after the minimal incubation time it indicates that the dyes are not pumped 

out of the cells. In case no bleaching occurs, longer incubation times can also be used. The 
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addition of 5 μM EDTA did not improve staining efficiency nor signal intensity, except when 

lower dye concentrations (0.05 μM) were used for the Gram-negative bacterium. 

 
Figure 2 - 2: Optimization of the red-excitable dye SYTO 60 for both the Gram-positive 
Lactobacillus brevis LMG 18022 (left) and Gram-negative Cupriavidus metallidurans CH34 
(right) on three different time points: 0 min (top), 15 min (middle) and 30 min (bottom). 
Staining was performed with three different stain concentrations (5 μM, 0.5 μM and 0.05 μM) 
with and without 5 μM EDTA. All samples were measured in triplicate. Cell concentrations 
are expressed as events/μL and should be compared to the results obtained with SYBR 
green I staining as benchmark. A maximum 10% deviation on the SYBR green I results was 
accepted.  

For the different functional dyes, staining kinetics were assessed in the same way as the 

nucleic acid dyes. Most dyes showed a time-dependent dye uptake but after fluorescence 

intensity maximized, the fluorescence intensity remained stable until the end of the 

measurement (40 min). In contrast to the other functional dyes tested, HE showed a time-

independent uptake in the Gram-positive population (Appendix Figure 2 - 4). For DiBAC4(3), 

the minimal incubation time was 22 minutes regardless of the type of bacteria. For the other 

functional dyes, a difference could be noticed between the Gram-positive and Gram-negative 
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bacteria. Incubation times for the Gram-positive L. brevis LMG 18022 are 21, 38, 24, and 10 

minutes for cFDA, cFDA-SE, HE, and NR, respectively. For the Gram-negative C. 

metallidurans CH34, the incubation times are 30, 26, 30, and 5 minutes for cFDA, cFDA-SE, 

HE, and NR, respectively (Appendix Figure 2 - 4 and Appendix Figure 2 - 5). The optimal 

stain concentration was chosen based on maximized signal to background distinction 

(Appendix Figure 2 - 1). A concentration of 1, 10, 1, 5, and 0.63 μM was chosen for 

DiBAC4(3), cFDA, cFDA-SE, HE, and NR, respectively. The use of EDTA was evaluated for 

all functional stains, except for DiBAC4(3) as EDTA can alter membrane permeability and 

thus impact membrane potential. Results showed an important increase in background 

fluorescence because of leakage for cFDA and cFDA-SE. For HE and NR, the use of EDTA 

did not improve staining significantly (data not shown). The addition of EDTA with any 

functional dye is therefore not recommended as it will impact the measurement. The 

fluorescence stability and the similar incubation conditions enable the combination of 

different dyes with seemingly incompatible staining protocols despite the different minimal 

incubation times. 

To test the feasibility of 'true' triple staining protocols, stain combinations were chosen on the 

basis of spectral characteristics. A green fluorescent stain (DiBAC4(3), cFDA ,and cFDA-SE) 

was combined with an orange fluorescent stain (HE, NR) and a red-fluorescent counterstain 

(SYTO 60). Several important parameters such as distinguishable populations, total cell 

concentration, interference between stains and overspill in other channels were evaluated 

and a gating protocol was established. This has been further illustrated in Figure 2 - 1. Four 

different C. metallidurans or L. brevis suspensions were made (i.e. a heat-killed, a peroxide-

exposed, a stationary phase culture, and a mixed population), which were subsequently 

stained either with a single stain or all combinations of double and triple stains. This 

approach was necessary to determine the appropriate compensation, thresholds, and gating. 

For all triple stain combinations, four populations could be identified with flow cytometry. The 

threshold and the number of events detected were always affected when stains were 

combined because of the increased background to signal ratio as a result of spectral overlap 

and compensation. In addition, compensation was necessary for all green and orange 

fluorescent dyes, as all caused overspill in the other fluorescent channels. DiBAC4(3) caused 

the most spillover and a compensation of more than 100% was necessary making this dye 

unsuitable in combination with NR and HE. Both cFDA and cFDA-SE showed to be more 

suitable for triple staining. Combinations with NR required a 25% and 15% compensation in 

combination with cFDA and cFDA-SE, respectively. This is slightly higher than for HE, which 

required a 9% and 13% compensation in combination with cFDA and cFDA-SE, respectively. 

SYTO 60 did not require compensation and allowed to distinguish cells from the background 
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as well as correcting for false positive and false negative events. Because of this, any 

combination of a functional dye was possible with SYTO 60, resulting in more reliable 

population counts. 

We also investigated the stability of the previously described triple staining protocols. A 

synthetic microbial community with different cell populations (e.g. dead, live or oxidized cells) 

was aliquoted in a 96-well plate, stained and incubated as previously described. Stability was 

assessed by comparing the number of cells in the pre-established gates of each sample. As 

all samples were measured consecutively and for a fixed time (one minute), the stability in 

time could be determined. For few triple stains a satisfying degree of stability (10% deviation 

in the cell counts per gate) for the different populations was found based on the analysis of a 

96-well plate (Appendix Table 2 - 2). While DiBAC4(3) is difficult to combine with both NR 

and HE, only combinations with cFDA and cFDA-SE are considered. As expected, both 

carboxyfluorescein stains impair the stability of triple stains due to the previously mentioned 

leakage and a maximum stability of 15 minutes was measured, making these triple stain 

combinations unsuitable for high throughput screening tests requiring more than 15 min 

analysis time. Similar to the results found by Van Nevel et al. (2013), stability can be affected 

or even improved when other dye combinations or other dye concentrations are used.  

5 Conclusions and perspectives 

Since the introduction of flow cytometry for research, it has been used to analyze cell 

populations through high-throughput single-cell analysis. Numerous staining protocols have 

been developed for many applications. However, knowledge about the influence of the 

different methodological factors on the measurement, and its subsequent interpretation, is 

still lacking. This is important as they impact the reliability and reproducibility of a staining 

protocol. Few genuine multicolor protocols have been developed for microbiology and even 

fewer give an explanation why a certain concentration, incubation time, and temperature 

were chosen or how stable the added fluorochromes were. Furthermore, few results have 

been published regarding the performance of multicolor protocols in multiwell assays. 

In this chapter, we demonstrated how red-excitable SYTO dyes can be integrated as a 

counterstain for multicolor protocols. Moreover, we tested some functional dyes and showed 

that, like the SYTO dyes, the efficiency differed between the tested organisms, confirming 

that optimization is necessary for accurate functional measurements. For all tested dyes we 

showed that their fluorescence intensity remained stable after fluorescence intensity 

maximized, offering the possibility to combine dyes with different minimal incubation times. 

However, we found that the combined dyes influence the results and that appropriate 
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controls and compensation are crucial for a correct analysis. DiBAC4(3) was difficult to 

combine as it produced a lot of background fluorescence and spillover while cFDA and 

cFDA-SE were more suitable for combinations. Being excited by a red laser, SYTO 60 did 

not create spillover and was thus easily combined with other dyes. In general, the addition of 

a nucleic acid stain improved the results as more background fluorescence could be filtered 

out. Another parameter that influences stain performance is the dye stability during analysis, 

as the last sample of a batch analysis will not be analyzed at the same time as the first 

sample and may have undergone changes in biology (e.g. aggregation, sedimentation 

behavior, physiological changes) as well as in staining chemistry (e.g. bleaching or leakage). 

Both literature and our preliminary results clearly show that stability is important to ensure 

correct results. It can be concluded that the simultaneous discrimination of certain 

physiological states is possible when protocols and staining conditions are optimized and 

appropriate compensation is set. The addition of a red excited nucleic acid dye as 

counterstain reduces the background to signal ratio and improves the separation between 

the positive and negative populations. 
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7 Appendix – Supplementary information for Chapter 2 
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Appendix Figure 2 - 1: Staining index of the different functional stains tested. Staining index 
was defined by Maecker et al. (2004) and is defined as the relative difference between the 
background and the fluorescent population. Lower concentrations showed the same mean 
fluorescence positive cell population but higher variance and lesser cells detected while the 
higher concentration shifted both background and the positive cell population higher and 
induced more background signal. 
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Appendix Figure 2 - 2: Evolution of fluorescence intensity over time during incubation at 
37°C for the different SYTO dyes with the Gram-positive bacteria, Lactobacillus brevis LMG 
18022 cell suspension of 105 cells/ml. For each of the SYTO stains 0.5 μM was used. SYTO 
64 was not included as no cells could be detected at any point in time. Intensity was 
normalized. The first time point (t=0) was not included due to poor quality of the data. The 
last time points of SYTO 62 and a few time points of SYTO 60 were also removed due to 
improper acquisition. The cell concentration was not calculated for this experiment as results 
can be unreliable for this set-up. 

 

Appendix Figure 2 - 3: Evolution of fluorescence intensity over time during incubation at 
37°C for the different SYTO dyes with the Gram-negative bacteria Cupriavidus metallidurans 
strain CH34 cell suspension of 105 cells/ml. For each of the SYTO stains 0.5 μM was used. 
SYTO 64 was not included as no cells could be detected at any point in time. Intensity was 
normalized. The first time point (t=0) was not included due to poor quality of the data. The 
last time point of SYTO 62 was also removed due to improper acquisition. The cell 
concentration was not calculated for this experiment as results can be unreliable for this set-
up. 



Multicolor flow cytometry 

49 

 

Appendix Figure 2 - 4: Evolution of fluorescence intensity over time during incubation at 
37°C for the different functional dyes with the Gram-positive bacteria, Lactobacillus brevis 
LMG 18022 cell suspension of 105 cells/ml. Concentrations used are final concentrations 5 
μM, 1 μM, 0.2 μM, 10 μM and 0.3 μM for HE, DiBAC4(3), cFDA-SE, cFDA, and NR 
respectively. Intensity was normalized. The first time point (t=0) was not included due to poor 
quality of the data. The cell concentration was not calculated for this experiment as results 
can be unreliable for this set-up. 

 

Appendix Figure 2 - 5: Evolution of fluorescence intensity over time during incubation at 
37°C for the different functional dyes with the Gram-negative bacteria Cupriavidus 
metallidurans strain CH34 cell suspension of 105 cells/ml. Concentrations used are final 
concentrations 5 μM, 1 μM, 0.2 μM, 10 μM and 0.3 μM for HE, DiBAC4(3), cFDA-SE, cFDA, 
and NR respectively. Intensity was normalized. The first time point (t=0) was not included 
due to poor quality of the data. The cell concentration was not calculated for this experiment 
as results can be unreliable for this set-up. 
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Appendix Table 2 - 1: overview of the samples used as positive and negative controls. To 
make ensure a positive and a negative population for all dyes when triple stains were 
applied, a mix of different samples was made. 

  Positive control Negative control 
cFDA Live cellular suspension Heat-killed sample 

cFDA-SE Live cellular suspension Heat-killed sample 

DiBAC4(3) Heat-killed sample Live cellular suspension 

NR 
Stationary phase C. 

metallidurans culture 
Exponential phase L. brevis 

HE Peroxidised sample Live cellular suspension 

SYTO 60 Cellular suspension 0.22 μm-filtered sample 

 

 

 

Appendix Table 2 - 2: Stability of the different triple stains expressed in minutes. Stability 
was considered sufficient when cell counts in the predefined gates of the detected 
populations did not deviate more that 10% from the first sample. Gating was of the 
populations was performed as described previously. Triple stains with DiBAC4(3) were not 
considered because of a high spillover. 

Triple Stain Stability [min] 

cFDA/NR/SYTO 60 13 

cFDA/HE/SYTO 60 3 

cFDA-SE/NR/SYTO 60 15 

cFDA-SE/HE/SYTO 60 13 
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CHAPTER 

  3 
FLOW CYTOMETRIC FINGERPRINTING FOR MICROBIAL 

STRAIN DISCRIMINATION AND PHYSIOLOGICAL 
CHARACTERIZATION 

1 Abstract 

The analysis of microbial populations is fundamental, not only for developing a deeper 

understanding of microbial communities but also for their engineering in biotechnological 

applications. Many methods have been developed to study their characteristics and over the 

last few decades, molecular analysis tools, such as DNA sequencing, have been used with 

considerable success to identify the composition of microbial populations. Recently, flow 

cytometric fingerprinting is emerging as a promising and powerful method to analyze 

bacterial populations. So far, these methods have primarily been used to observe shifts in 

the composition of microbial communities of natural samples. In this chapter, we apply a flow 

cytometric fingerprinting method to discriminate among 29 Lactobacillus strains. Our results 

indicate that it is possible to discriminate among 27 Lactobacillus strains by staining with 

SYBR green I and that the discriminatory power can be increased by combined SYBR green 

I and propidium iodide staining. Furthermore, we illustrate the impact of physiological 

changes on the fingerprinting method by demonstrating how flow cytometric fingerprinting 

can discriminate the different growth phases of a microbial culture. The sensitivity of the 

method is assessed by its ability to detect changes in the relative abundance of a mix of 

polystyrene beads down to 1.2%. When a mix of bacteria was used, the sensitivity was as 

between 1.2% and 5%. The presented data demonstrate that flow cytometric fingerprinting is 

a sensitive and reproducible technique with the potential to be applied as a method for the 

dereplication of bacterial isolates. 

 

Chapter redrafted after: 

Buysschaert,B., Kerckhof, F.-M., Vandamme, P., De Baets, B. & Boon, N. (2017). Flow 
cytometric fingerprinting for strain discrimination. Cytometry part A. 
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2 Introduction 

The application of flow cytometry in microbiology became popular in the last few decades 

due to the improved resolution of the instrumentation (Shapiro, 2003). The initial reason for 

its success was the possibility to count planktonic bacteria. The high throughput of the 

technique increases the accuracy of the measurement while decreasing the analysis time, 

making flow cytometry the method of choice for bacterial enumeration (Muller and Nebe-von-

Caron, 2010). A second reason for the success is the possibility to simultaneously assess 

different physiological parameters by means of multicolor staining assays (Hammes et al., 

2011, Tracy et al., 2010, Strauber and Muller, 2010). As a consequence, specific cellular 

reactions can be monitored and quantified with single-cell resolution, rendering flow 

cytometry a very appealing technique to study microorganisms (Van Nevel et al., 2013). Not 

only has much research been done on characterizing the microbial physiology of single 

species by means of flow cytometry, also environmental (community) microbiology and 

microbial ecology gained much insight in population dynamics thanks to flow cytometry 

(Wang et al., 2010, Porter et al., 1997, Vives-Rego et al., 2000, Prest et al., 2014). While 

usage and applications increased, challenges became apparent and experiments with 

different dyes demonstrated that the heterogeneity in microbial life influences the staining 

kinetics (Lebaron et al., 1998, Buysschaert et al., 2016, Strauber and Muller, 2010). This 

resulted in the need to optimize staining protocols for each type of bacterium or bacterial 

community (Muller et al., 1995). Furthermore, it has been shown that environmental factors 

and the microbial growth phase influence the outcome of flow cytometric analyses (Shi et al., 

2007, Brognaux et al., 2014). Although this could hinder conventional data analysis based on 

gating where fixed regions of interest are determined based on operator experience and 

control samples, it can also be seen as an opportunity to detect changes related to both the 

organism itself and its environment. One way to exploit this sensitivity is by flow cytometric 

multidimensional fingerprinting, a method developed in the last few years (Props et al., 2016, 

De Roy et al., 2012, Koch et al., 2013a, Koch et al., 2013c, Prest et al., 2013, Bombach et 

al., 2011, Van Nevel et al., 2016b). 

Flow cytometric fingerprinting algorithms have been presented in various ways, each 

different in their approach and purpose. A first approach is based on image processing of the 

flow cytometric density plots. Examples of these kind of methods are the Dalmatian plot 

method and the cytometric histogram image comparison (CHIC) method (Bombach et al., 

2011, Koch et al., 2013a). In this case pairwise comparisons of the images are used as a tool 

to differentiate microbial communities. For more information on these methods we refer the 

reader to the comparative study by Koch et al. (2014). A second approach is based on either 
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gating or binning of flow cytometry cell populations. This approach relies on the hypothesis 

that phenotypic or genotypic changes in the microbial communities are reflected by changes 

in event counts in the different gates or bins in a multidimensional space. Recently, methods 

based on this approach have been published by Prest et al. (2013) and Koch et al. (2013b). 

The method developed by Prest et al. (2013) is optimized for drinking water and its 

usefulness is illustrated by the integration of flow cytometry for monitoring drinking water in 

the Swiss legislation (SLMB, 2012). The method named CyBar, developed by Koch et al. 

(2013b) on the other hand was used to monitor the microbial community of a biogas reactor. 

However, both methods have two main disadvantages: Firstly, they rely on gating which is 

subjective and dependent on the expertise of the operator. Consequently, the reproducibility 

of these methods is decreased. Secondly, as the gates are based on the microbial 

community of a specific environment or set-up, the universality of the method is constrained. 

An objective and gate-free method can be implemented to overcome these limitations as 

described by Van Nevel et al. (2016b), (Van Nevel et al., 2016a). There we showed that 

cytometric fingerprinting is a viable strategy for the fast monitoring of drinking water quality. 

The data post-processing is based on a supervised discriminant analysis to separate 

different types of samples. This method requires a representative and labeled dataset to 

compute discriminant functions for further classification, rendering this approach unsuitable 

for exploratory and real-time analysis. To summarize, although all previously described 

methods demonstrate that flow cytometric fingerprinting is a sensitive method to assess the 

dynamics of microbial populations in communities, they can be either limited to specific 

applications, subjective, time consuming, complex or they require a complete dataset and 

knowledge of the observed system to be implemented. The combination of these factors has 

made it difficult to implement flow cytometric fingerprinting as an exploratory tool. To address 

this problem, Props et al. (2016) introduced the so-called phenotypic diversity index. The 

convenience of reducing the flow cytometric fingerprint to a single number, referred to as the 

phenotypic fingerprints, improves interpretation and visualization, especially for time-series 

data. For time-independent data, however, the phenotypic diversity, expressed in arbitrary 

units, is less suitable as it does not explain the relationship between samples and lacks the 

resolution to discriminate among similar samples. In the current chapter, we describe a 

clustering-based unsupervised algorithm with flow cytometric fingerprinting, complementary 

to the fingerprinting method of Props et al. (2016), for dereplication of microbial isolates. 

To assess the suitability of our unsupervised flow cytometric fingerprinting method, we 

compared 29 bacterial strains encompassing closely as well as more distantly related 

Lactobacillus species and demonstrated that it was possible to discriminate 27 strains from 

one another solely based on their flow cytometric fingerprint. Discrimination could be 
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improved depending on the dyes used and by excluding background fluorescence. As flow 

cytometric fingerprints are known to change in function of the microbial physiology, the effect 

of the growth phase on the fingerprinting was also assessed and our results show that the 

different growth stages could be distinguished using our fingerprinting strategy, which 

illustrates that the growth stage directly impacts the fingerprints. Furthermore, we determined 

the sensitivity of the method with polystyrene beads and by mixing two bacteria strains. We 

demonstrated that a comparative shift of 1.2 to 5 % of events is sufficient to be detected by 

our fingerprinting method. Ultimately, we assessed the reproducibility of the method as well. 

3 Materials and methods 

3.1 Flow cytometric fingerprinting for taxonomic differentiation 

Bacterial strains. 29 Lactobacillus strains representing eight distinct species were selected 

for this experiment. We included multiple strains of several species to determine to which 

extent flow cytometric fingerprinting permitted to distinguish among strains representing the 

same species. In addition, four of the species selected, i.e. Lactobacillus casei, Lactobacillus 

paracasei, Lactobacillus rhamnosus and Lactobacillus zeae, all belong to the so-called 

Lactobacillus casei species cluster, and are therefore taxonomically and phylogenetically 

closely related (Pot et al., 2014). The remaining species studied (i.e. Lactobacillus 

acidophilus, Lactobacillus brevis, Lactobacillus farciminis and Lactobacillus salivarius) each 

represent an additional Lactobacillus species cluster (Pot et al., 2014) (Appendix Figure 3 - 
1). The strains analyzed included L. acidophilus LMG 8151, LMG 9433T (*T, type strain), LMG 

11428 and LMG 11430; L. brevis LMG 6906T, LMG 7761, LMG 11774, LMG 11993 and LMG 

18022; L. casei LMG 6904T; L. farciminis LMG 9200T, R-42629 and R-46564; L. paracasei 

LMG 9191T (L. paracasei subsp. tolerans), LMG 10774, LMG 13087T (L. paracasei subsp. 

paracasei), LMG 13729 and R-21695; L. rhamnosus R-32689, LMG 6400T, LMG 10775, 

LMG 12166 and LMG 18030; L. salivarius LMG 9476T (Lactobacillus salivarius subsp. 

salicinius), LMG 9477 (Lactobacillus salivarius subsp. salivarius), LMG 14476, LMG 14477 

and LMG 22873; and L. zeae LMG 17315T (Table 3 - 1). All strains originated from the 

BCCM/LMG collection or from the research collection of the Laboratory of microbiology, 

faculty of science, UGent, (LM-UGent). 
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Table 3 - 1: Overview of the different species and their cultivation conditions. 

Species Name Strain Number Condition Temperature [°C] 

L. acidophilus 8151 Anaerobic 37 

L. acidophilus 9433T Anaerobic 37 

L. acidophilus 11428 Anaerobic 37 

L. acidophilus 11430 Anaerobic 37 

L. brevis 6906T Aerobic 28 

L. brevis 7761 Aerobic 28 

L. brevis 11774 Aerobic 28 

L. brevis 11993 Aerobic 28 

L. brevis 18022 Aerobic 28 

L. casei 6904T Aerobic 28 

L. farciminis 9200T Aerobic 28 

L. farciminis R-42629 Aerobic 28 

L. farciminis R-46564 Aerobic 28 

L. paracasei 9191T Aerobic 28 

L. paracasei 10774 Aerobic 28 

L. paracasei 13087T Aerobic 28 

L. paracasei 13729 Aerobic 28 

L. paracasei R-21695 Aerobic 28 

L. rhamnosus R-32689 Aerobic 37 

L. rhamnosus 6400T Anaerobic 37 

L. rhamnosus 10775 Anaerobic 37 

L. rhamnosus 12166 Anaerobic 37 

L. rhamnosus 18030 Anaerobic 37 

L. salivarius 9476T Aerobic 28 

L. salivarius 9477 Aerobic 28 

L. salivarius 14476 Aerobic 28 

L. salivarius 14477 Aerobic 28 

L. salivarius 22873 Aerobic 28 

L. zeae 17315 Aerobic 28 

Cultivation method. The lactobacilli were cultivated on MRS agar plates (Oxoid). After three 

days of incubation, colonies were picked and transferred to liquid MRS broth (Oxoid) in 

quadruplicate. After exactly 24 hours of growth, the strains were transferred to fresh medium 

in a 2% (v/v) ratio and samples were taken after exactly 24 hours of growth. Anaerobic 

strains (LMG 8151, LMG 9433T, LMG 11428, LMG 11430, LMG 6400T, LMG 10775, LMG 
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12166, LMG 18030) were incubated at 37°C. The other strains were incubated at 28°C 

except R-32689 which was also incubated at 37°C (Table 3 - 1). The incubation time was 

chosen to increase reproducibility but did not ensure that all strains were in the same growth 

stage after 24 hours. 

Staining protocol. Two different stains were applied: SYBR Green I (SG) and a combination 

of SYBR green I and propidium iodide (SGPI) as a viability indicator. PI (20 mM in dimethyl 

sulfoxide (DMSO), Invitrogen) and SYBR Green I (10 000X concentrate in DMSO, Invitrogen) 

were diluted 50 and 100 times respectively in 0.22 μm-filtered DMSO (IC Millex, Merck). In 

either case, samples were stained  with 10 μL/mL staining solution (Prest et al., 2013). While 

SG stains all cells regardless of their phenotypic state, PI only enters cells with a damaged or 

permeabilized membrane, thus differentiating intact versus putative dead or damaged cells. 

Flow cytometry. All samples were measured with a benchtop Accuri C6 cytometer (BD 

Biosciences). The stability of the instrument was controlled daily using 3 μm calibration 

beads (05-4018, Sysmex-Partec) and the instrument was calibrated according to the 

manufacturers standard. The blue laser (488 nm) was used for the excitation of the stains. 

The filters for the (fixed gain) photomultiplier detectors used during the measurements were 

533 nm with a bandpass of 30 nm for the green fluorescence (FL-1) and 670 nm longpass 

filter for the red fluorescence (FL-3). The threshold was set on the 533/30 nm (FL-1) detector 

at the arbitrary unit of 500. The reproducibility of the method was tested with a FACSVerse 

cytometer (BD Biosciences). The performance of the instrument was monitored daily and the 

instrument was calibrated with the CS&T calibration beads (BD Biosciences). The blue laser 

(488 nm) was used for the excitation of the stains. The optical filters used were 527 nm with 

a bandpass of 32 nm for the green fluorescence and 700 nm with a bandpass of 54 nm for 

the red fluorescence.  

3.2 Flow cytometric fingerprinting for physiological differentiation 

To assess the effect of the growth phase on the fingerprinting method, a batch experiment 

was performed where L. paracasei LMG 10774 was cultivated in MRS medium (Oxoid). 

Biological triplicates of the culture were cultivated in flasks shaken at 200 rpm and incubated 

at 28°C during the entire experiment. Inoculation concentration was approximately 107 

cells/mL. Samples were taken from the flasks with an OnCyt© staining robot (Oncyt, 

Switzerland) coupled to the Accuri C6 flow cytometer as described by Besmer et al. (2014). 

In short, every 18 minutes the autosampler took a sample from one of the flasks and diluted 

it 1000 times with 0.22 μm-filtered water. Subsequently, the samples were automatically 
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stained with SYBR green I in the same concentration as described above and incubated at 

37°C for 13 minutes. The growth curves were made with the cell concentration as 

determined by flow cytometry. A universal gate was used to remove most of the background 

as described below. 

3.3 Sensitivity analysis and reproducibility 

Two types of fluorescent polystyrene beads were selected for this test (0.88 μm and 1.34 μm 

Nano Polystyrene and Fluorescent Size Standard, Spherotech). The beads were analyzed 

on the Accuri C6 and excited by the blue laser. As the beads had different sizes and a 

different fluorescence intensity, a distinct fingerprint could be made based on both the scatter 

signals and the fluorescence signals (530/30 nm and 670 LP). To determine the sensitivity, 

mixes of different ratios were made (i.e. 0, 1, 5, 10, 20, 30, 40, 50 percent for both bead 

types). To that end, the beads were first diluted to a concentration of approximately 105 

beads/mL in 0.22 μm-filtered water. Both suspensions with an equal concentration of beads 

were then mixed in different ratios. The mixtures were analyzed in triplicate. The ratio of 

beads was calculated based on the bead counts with the Accuri C6 Csampler software 

(version 1.0.264.21, BD Biosciences) as the measured count deviated from the theoretical 

values. Similarly, Lactobacillus brevis LMG 18022 and Lactobacillus paracasei LMG 9191T 

were mixed in different ratios. Both strains could easily be discriminated but their cell 

populations show some overlap in the fluorescence and scatter channels (Appendix Figure 
3 – 2). Prior to mixing, stocks of equal concentration (105 cells/mL) were made for both 

strains. Concentrations were determined by flow cytometric cell counting (Van Nevel et al., 

2013) after standardized culturing, ensuring that all samples contained the same number of 

cells. The majority of the background fluorescence was removed prior analysis using the 

universal gate described below. To assess reproducibility of the dereplication method, the 

experiment was repeated three times for LMG 9191T, LMG 9200T, LMG 9477 and LMG 

18022. For each repetition, quadruplicates of the strains were cultivated, stained with SGPI 

and analyzed similarly to the other datasets. 

3.4 Data analysis 

Unless mentioned otherwise, all data was extracted from the proprietary Accuri C6 Csampler 

software version 1.0.264.21 or FACSuite software version 1.0.4 (BD Biosciences, Belgium) 

in the flow cytometry standard (FCS 3.0) format and subsequently imported into R version 

3.4.0 (R Core Team, 2015) through the functionality offered by the flowCore package v1.42.2 

(B. Ellis et al.). Data was first log transformed and subsequently normalized by dividing all 
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values by the maximum fluorescence intensity signal. No compensation was applied. Gating 

to reduce the background was performed in R studio using the flowCore package on both SG 

and SGPI stained samples. A 0.22 μm-filtered control was used to determine the position of 

the background and a heat-killed sample was used to determine the position of the 

permeabilized cell population (Berney et al., 2007). Based on this, a universal gate was 

constructed to remove as much background as possible without removing the permeabilized 

cell population although the distinction between PI positive cells and the background can be 

difficult for some samples. Additionally, a stained sample of the dilution buffer was used to 

assess the quality of the dilution buffer and of the stain (Figure 3 - 1). The data quality was 

evaluated and improperly acquired data was cleaned using the flowAI package v1.4.3 

(Monaco et al., 2016) in order to remove anomalies in the data related to changes in flow 

rate, unstable signal or outliers in the lower limit of the dynamic range. Samples which failed 

the quality control (QC) were removed from the dataset. When the microbial growth was 

monitored, 2000 events per sample were randomly selected to avoid an influence of the 

different number of detected events during the different growth stages on the fingerprint. This 

was done after background was removed with the universal gate. Next, a single-step 

discretization (‘binning’) and Gaussian bivariate density estimation was performed on the 

selected parameters (green and red fluorescence, FSC-H and SSC-H) using the 

KernSmooth package (Wand, 2015). A binning grid of 128 x 128 was fixed for each bivariate 

density estimation (Props et al., 2016). All bivariate density estimations were concatenated to 

a one-dimensional feature vector which we refer to as the fingerprint. Subsequently, the 

dissimilarity of the fingerprints was calculated using the quantitative Jaccard distance 

measure (Ružička index) as implemented in the function vegdist from the vegan package 

v2.4.3 (Oksanen et al., 2016). The Jaccard distance matrices were visualized as 

dendrograms based on agglomerative clustering with Ward’s minimum variance method 

(Ward.D2 from the hclust package) as linkage from the stats package (R Core Team, 2015). 

Uncertainty of the clustering was evaluated with the pvclust package v2.0.0 (Suzuki and 

Shimodaira, 2015). The latter package provides two types of p-values: AU (Approximately 

Unbiased) p-value and BP (Bootstrap Probability) value. The AU p-value, which is computed 

by multiscale bootstrap resampling, is a better approximation of the unbiased p-value than 

the BP value computed by normal bootstrap resampling. The number of permutations was 

determined based on the standard error of the calculated p-values. For all clustering 

dendrograms, 1000 permutations were sufficient and resulted in a maximum error of 

approximately 0.02. For p-values >95% the hypothesis that the cluster does not exist is 

rejected at a 5% significance level. Dendrograms were visualized with the iToL software 

version 3.5.3 (Letunic and Bork, 2016). 
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Figure 3 - 1: Illustration of representative fingerprints of different Lactobacillus spp. strains 
and the controls used to construct the gate. Fingerprints of LMG 9200T (A,B), LMG 9477 
(C,D), LMG 7761 (E,F) and LMG 14476 (G,H) were obtained by staining the bacteria with 
SGPI. A universal gate, shown as a red rectangle, was constructed to remove as much 
background as possible. The gate was based on a heat killed sample (I,J) and a 0.22 μm-
filtered sample (K,L). The fingerprint plots based on the scatter signals only show the data 
after background was removed with the universal gate (B,D,F,H,J,L). 

4 Results and discussion 

Flow cytometric fingerprinting has been established as a useful tool to monitor microbial 

communities in the past decade (Koch, 2013, Prest et al., 2013, Van Nevel et al., 2016a, 

Props et al., 2016, Van Nevel et al., 2016b). In this chapter we explore the possibility to use 

flow cytometry to analyze axenic cultures based on the division of the cytometric data in bins 

by an equally spaced grid as described by Van Nevel et al. (2016b) and Props et al. (2016) 

to create fingerprints. The Jaccard distance measure between these fingerprints was 

subsequently calculated to cluster the data based on their similarity. Thus, our method can 

be considered as an extension of those methods as they are founded on a common binning 
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approach. Using binning instead of gating reduces operator dependency and increases 

interoperability. Another advantage is that, in theory, it can be used for any kind of sample or 

stain in contrast with the methods developed by Prest et al. (2013) and Koch et al. (2013a) 

as it does not rely on gating of specific subpopulations. In comparison to other binning 

approaches such as the flowFP method (De Roy et al., 2012, Rogers and Holyst, 2009) this 

algorithm does not require a training dataset to construct a binning model. Regarding the 

subsequent treatment of the fingerprints, Van Nevel et al. (2016b) relied on supervised 

discriminant analysis to look for the differences between samples and a reference. Despite 

the better performance of supervised methods, a disadvantage is that it requires labeled data 

which is, in many cases, not available. Props et al. (2016) showed that it is also possible to 

calculate diversity indices on the binned data and that the dynamics of these diversity indices 

is correlated to the dynamics in community composition as determined by amplicon 

sequencing of the 16S rRNA gene. This approach does however not describe the similarity 

between samples. Calculation of the phenotypic diversity on our dataset showed to be 

difficult to interpret as not every strain yielded a different diversity whereas no relationship 

between the samples is established (Appendix Figure 3 - 3). The CHIC method (Koch et al., 

2013a) does establish this relationship by pairwise image comparison. The downside of the 

method is the workflow where data must be pre-processed first. Then images must be 

created and saved in the cytometry software. Subsequently, the images are imported and 

analyzed in ImageJ. The output of the image analysis is then exported from imageJ and 

imported in R for final statistical analysis. The use of different software platforms makes this 

workflow impractical, and as it relies on image comparison, multiple images should be 

generated per sample to analyze the multivariate flow cyometry data making it also a 

laborious analysis. Our initial choice for the Jaccard distance measure to calculate the 

similarity was based on its frequent use in ecological studies. To validate our choice, a 

comparison was made with other distance measures (Appendix Figure 3 - 4). The results 

showed that also other distance measures could be used successfully. 

4.1 Flow cytometric fingerprinting for taxonomic differentiation 

A wide variety of dyes are available for flow cytometry to assess different aspects of 

microbial cells (Buysschaert et al., 2016). In addition, most dyes exhibit different spectral 

characteristics, changing the flow cytometric data and as a consequence, the cytometric 

fingerprint. To assess the effect of the stain that was used we tested both SYBR green I (SG) 

and the combination of SYBR green I and propidium iodide (SGPI) on all biological 

quadruplicates of the 29 Lactobacillus strains. Fingerprints of both the scatter signals and the 

fluorescence signals (530/30 nm and 670 LP) were made for each sample, and sample 
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dissimilarities were calculated based on these flow cytometry data. In both datasets, 

improperly acquired samples due to technical failures were found. These samples show 

abnormal results or an unsteady fluorescence intensity over time. For the SG stained dataset 

these are LMG 9191T rep1 and rep3, LMG 11428 rep4, LMG 10774 rep3, LMG 12166 rep3, 

LMG 18030 rep2, LMG 9476 rep1, LMG 14476 rep1 and LMG 22873 rep1. For the SGPI 

stained dataset LMG 9191T rep1 and 3 and LMG 11428 rep4 were acquired improperly. The 

results were clustered and visualized in dendrograms.  

The dendrogram based on fingerprints obtained with SG staining without gating indicated 

that 5 out of 116 fingerprints were misclassified and that two pairs of bacteria could not be 

discriminated (Appendix Figure 3 - 5). When SGPI was used as a stain, the results 

improved to 3 out of 116 fingerprints that were misclassified and one pair of strains that could 

not be discriminated (Appendix Figure 3 - 6). Although some samples experienced some 

issues during acquisition, not all of these were misclassified (Appendix Figure 3 - 5 and 

Appendix Figure 3 - 6). The successful discrimination of the different strains based on SG 

or SGPI, both nucleic acid dyes, is in part related to the difference in genome sizes that may 

vary from over three million base pairs (bp) in the L. casei species to around two million bp 

for L. acidophilus. Also between strains of the same species, important differences in 

genome size can be noticed (Wassenaar and Lukjancenko, 2014). PI is generally used as a 

viability indicator, therefore the extra information necessary to improve the results is related 

to the viability of the bacteria. It is important to note that not all strains had the same growth 

rate, thus not all strains were in stationary phase at the time of analysis. Consequently, the 

number of permeabilized or dead cells, which is related to the growth rate, differed between 

the strains as well. The combination of dyes can improve clustering performance, if they 

reveal relevant information for discrimination and when used in a reproducible and 

standardized way. Fingerprinting techniques ideally rely on ungated data as each form of 

gating might alter the results and decrease the universality of the method. However, 

background fluorescence is often present and might alter the results. To assess the impact of 

background fluorescence on the clustering, the background was removed using a universal 

gate (Figure 3 - 1) both for samples stained with SG and SGPI and the cell populations were 

processed in the same way as the ungated samples. When both background and cells were 

used, there were five misclassifications and two pairs that could not be discriminated for the 

SG stained samples. When only cells were considered, the misclassification decreased to 

four misclassified fingerprints and one indiscriminate pair (Appendix Figure 3 - 7). 

Clustering of the samples stained with SGPI showed no improvement after removing the 

background fluorescence. Based on this, we argue that the background did not worsen our 

results markedly.  
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Flow cytometry is a sensitive technique and several problems can occur during acquisition 

such as an unstable flow due to clogs or an unstable fluorescence signal due to cell settling 

or improper staining. These irregularities can influence the fingerprints and subsequently the 

results. By using an automated algorithm to detect and remove anomalies, the data could be 

cleaned from these anomalies (Monaco et al., 2016). In case of the gated SG stained 

dataset, samples LMG 9191T rep3, LMG 11428 rep4, LMG 6906 rep3 and LMG 6906 rep4 

were removed due to an insufficient number of cells causing an error during quality control. 

Among the gated SGPI stained dataset, samples LMG 9191T rep3, LMG 6906 rep3 and 4, 

LMG 14477 rep1 and LMG 11428 rep4 were removed. In both cases, sample LMG 11428 

rep4 was also misclassified. Results improved after automated cleaning to 3 misclassified 

fingerprints out of 112 and one indiscriminate pair for SG stained samples (Appendix Figure 
3 - 8) and 2 misclassified fingerprints out of 111 and one indiscriminate pair for the SGPI 

stained samples (Figure 3 - 2). Some samples were still misclassified after quality control 

and background removal. Results suggest the misclassification is related to the staining as 

the mean fluorescence intensity of the cell populations showed to be noticeably different from 

the other replicates. Based on this, we conclude that misclassification can be caused by 

background fluorescence, invalid data, improper staining or a combination thereof. 

As clustering algorithms tend to form clusters even in homogeneous datasets, it is important 

to validate the clustering. Thus it cannot be assumed that every cluster is meaningful 

(Hennig, 2007). Using bootstrapping analysis, we calculated the stability of the clusters and 

proved that the clustering was stable (Appendix Figure 3 - 9 and Appendix Figure 3 - 10). 

Phylogenetic relatedness between the strains could not be observed in the flow cytometric 

fingerprinting dendrograms. Nevertheless, when cells were stained with SG and no 

background was removed or data was cleaned, one of the four main branches contained 

almost exclusively strains grown in anaerobic conditions (Appendix Figure 3 - 5). 
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Figure 3 - 2: Dendrogram of the flow cytometric fingerprints of the 29 Lactobacillus strains 
and species stained with SGPI. All species and strains were cultivated in biological 
quadruplicates. After acquisition, flow cytometry data was gated to remove the background 
and cleaned from anomalies. Subsequently, the multidimensional space was binned and the 
density based Jaccard distance measures were calculated for all samples and visualized in a 
dendrogram constructed with the Ward hierarchical clustering method. The different strains 
are indicated with a different colored label. Clades highlighted in blue indicate strains that 
could not be discriminated. Nodes highlighted in red show the misclassified fingerprints. 
Fingerprints of LMG 9200T (A,B), LMG 9477 (C,D), LMG 7761 (E,F) and LMG 14476 (G,H) 
are shown in Figure 3 – 1.  

4.2 Flow cytometric fingerprinting for physiological differentiation 

As flow cytometric fingerprints of bacteria vary in function of incubation time, the capability of 

our method to discriminate different growth phases from one another was assessed. To this 

end, a batch culture of L. paracasei LMG 10774 was monitored during its different growth 

phases. The growth curves of the replicates were obtained based on the flow cytometric cell 

A,B 

C,D 

E,F G,H 
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counts and are shown in Figure 3 - 3 (above). The growth curve can be divided in three 

sections: the lag phase from the start to approximately 12 hours of growth, the exponential 

phase between 12 hours and 36 hours of growth and the early stationary phase that starts 

approximately at 36 hours of growth. Fingerprints of the samples were compared using the 

density-based Jaccard distance measure and the result of the clustering is visualized in 

Figure 3 - 3 (below). The clustering shows four branches dividing the data according to the 

time of incubation. A comparison between the growth curve and the dendrogram shows that 

the lag phase, the early exponential phase, the late exponential phase and the early 

stationary phase can be discriminated from one another. Despite the good separation 

between the lag and early exponential phase, a less precise distinction could be made 

between the late exponential phase and the early stationary phase. A possible explanation 

for this result is the average change in morphology and physiology of the bacteria during 

growth. While cells tend to be larger in the lag phase to prepare for division, the cells in the 

exponential phase show higher activity and contain more nucleic acids as they are actively 

dividing. Cells in the stationary phase decrease in size and change their metabolism as 

nutrients deplete and waste increases. The possibility to discriminate among different growth 

stages, which could be labeled as physiological fingerprinting, has been reported in literature 

(Steen and Boye, 1980, Boye and Lobner-Olesen, 1991) and suggests that these results are 

independent of the microorganism tested. Our findings are consistent with this literature as 

the authors also based their conclusions on nucleic acid stains. On the other hand, our 

results also show an important overlap between the late exponential phase and the 

stationary phase. This is partially related to the variability inherent to the data which is 

reflected in the variability of the cell concentrations but could also be related to the fact that 

the transition between the two phases is not a clear transition. It is important to add that the 

concentration of cells could not exert an effect on the clustering as for all samples 2000 cells 

were randomly sampled after gating from the FCS files for subsequent fingerprinting. 

Although samples from the first six hours did not contain 2000 cells due to the low cell 

concentration, this is not reflected in the clustering of the data. A second important 

conclusion that can be drawn from these results is that the growth stage at which bacteria 

are sampled for phylogenetic fingerprinting influences the outcome and the reproducibility of 

the results. To overcome this issue, a standardized cultivation protocol is necessary to 

improve reproducibility. Such a protocol should ensure that isolates are analyzed in the same 

growth stage for every measurement. As illustrated by our results, even relatively small time 

differences can be important.  
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Figure 3 - 3: Growth curve of L. paracasei LMG 10774 as determined by flow cytometric cell 
concentration (above) and the subsequent clustering of the flow cytometric fingerprints 
(below). The growth curve was constructed based on the cell concentration detected by flow 
cytometry and the SG staining. Three biological replicates were monitored for this 
experiment. The growth curve shows the different stages of the microbial growth with the lag 
phase until approximately 12 hours of growth, the stationary phase starting after 
approximately 36 hours of growth and the exponential phase in between. Clustering of the 
data after gating and cleaning, shows four clusters coinciding with the lag phase, the early 
exponential phase, the late exponential phase and the stationary phase. Samples are 
labeled according to the time sampling after inoculation and colored in function of this time. 
The timespan of the four clusters is plotted on top of the growth curve to visualize the overlap 
between the clusters. 
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4.3 Sensitivity analysis and reproducibility 

To assess the sensitivity of the method, fluorescent beads of 0.88 μm and 1.34 μm were 

mixed in different ratios. Both bead populations could easily be discriminated based on their 

fluorescent or scatter signals and showed no overlap in any of the channels used for 

fingerprinting. Prior to mixing, dilutions of both bead solutions were made to ensure that all 

samples contained a similar concentration of beads. The standard deviation on the detected 

concentration was 4%. The results are shown in Figure 3 - 4 where the ratios are expressed 

in percentage of detected 0.88 μm beads. The clustering shows to easily discriminate 

samples with a difference of approximately 10% in bead populations and shows some larger 

clusters with comparable ratios. The sensitivity of the method can be determined by looking 

more closely at the lower or higher concentrations of 0.88 μm beads. When taking the 

average concentration of 0.88 μm beads into account in both end of the dilution spectrum, it 

can be concluded that a difference of 1.2% of events with different optical characteristics in 

all parameters used for fingerprinting can be detected. This illustrates that even very small 

changes have an impact on the results. It should be noted that this threshold was based on 

two types of beads with distinct fingerprints in all channels considered in this analysis. 

Consequently, it should be considered as the maximal sensitivity of the method. However, 

both the 5.6% and the 67.8% samples showed to be misclassified and lower mean 

fluorescence intensity was noticed of the 1.34 μm beads for the 67.8% sample. For the 5.6% 

sample no important difference in the fluorescence intensity of the bead populations could be 

detected. 

By replicating the sensitivity analysis with mixtures of LMG 9191T and LMG 18022, we show 

that also for bacteria a high sensitivity can be obtained down to a theoretical mix of 1% 

(Appendix Figure 3 - 2). However, as both microbial populations showed some overlap, it is 

hard to calculate the actual fraction of each strain to take technical errors into account. 

Because of this finding, we conclude that for these two strains, a sensitivity of at least 5% 

can be reached. Although this figure is higher than what we found for a mixture of beads, it is 

expected as the sensitivity should decrease with an increasing overlap between cytometric 

cell populations. Prest et al. (2013) show that their method detects changes of 3% of the 

relative cell concentration, whereas our method exhibited a comparable but better 

performance with a sensitivity of 1.2%. 

Next to biological variation, the instruments can influence the results of the fingerprint as they 

vary in the type of lasers, detectors or optical filters. Instrumental drift can also compromise 

the reproducibility. Although this effect is small on the short term, this could be of higher 

importance after in the long term. This technical bias can be monitored with fluorescent 
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beads as daily quality control. To avoid any issues over time it could be useful to spike 

samples with beads and use the beads to correct the data for drift. Our results show that the 

method is reproducible for three independent repetitions of four different strains. The 

measurements were performed on an instrument with the possibility to recalibrate the optics 

to avoid the effect of instrumental drift. The reproducibility of the method was tested by 

repeating the analysis three times with LMG 9191T, LMG 9477, LMG 9200T and LMG 18022 

as pure cultures stained with SGPI. Results after gating and cleaning the data show that the 

method is reproducible (Figure 3 - 5). 

 

Figure 3 - 4: Hierarchical clustering of the mixtures of 0.88 μm and 1.34 μm fluorescent 
polystyrene beads after cleaning the data with the flowAI package. Samples were prepared 
and measured in triplicates. Labels indicate the measured percentage of 0.88 μm beads and 
label colors are based the theoretical percentage of 0.88 μm beads. Red nodes indicate 
incorrectly clustered samples. For the highest and lowest percentages of both populations, 
the average percentage of 0.88 μm beads was calculated to estimate the maximal sensitivity. 
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Figure 3 - 5: illustration of the reproducibility of the method assessed by three independent 
repetitions of the method. To this end, four strains were selected and cultivated and analyzed 
as described above. Prior clustering, data was gated and cleaned as described above. 
Strains are indicated with a different color. 

Flow cytometric fingerprinting can be divided into what could be named phylogenetic 

cytometric fingerprinting on one hand and physiological cytometric fingerprinting on the other 

hand. The former is demonstrated by the experiment with the different strains and shows that 

pure cultures have characteristic fingerprints which can be used to discriminate taxa from 

one another. A possible application of this method in the context of environmental 

microbiology is the dereplication of microbial isolates before molecular characterization to 

improve isolation efficiency and to increase throughput (Dieckmann et al., 2005). Today, 

characterization of isolates can also be performed in high throughput using MALDI-TOF for 

peptide fingerprinting of a culture (De Bruyne et al., 2011). Similar to our proposed method, 

this approach requires a standardized cultivation protocol to ensure reproducibility. In this 

respect, both methods are comparable to one another but advantages of flow cytometry are 

the single-cell resolution and the possibility to assess different aspects of the cells by using 
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specific dyes. Physiological fingerprinting, on the other hand, is an interesting way to 

characterize the microbial physiology and could be used to better understand and estimate 

the impact of microbial physiology on its functionality. While physiological characterization 

using different dyes is well established (Strauber and Muller, 2010, Hammes et al., 2011) 

and has been shown useful in biotechnology (da Silva et al., 2012, Hewitt et al., 2000), they 

often rely on complex multicolor assays and gating strategies. Fingerprinting could help 

facilitate the analysis and interpretation of this data. 

5 Conclusions and perspectives 

In the current chapter we describe a new approach for flow cytometric fingerprinting that 

shares the same binning algorithm as described by Van Nevel et al. (2016a) and Props et al. 

(2016) and should be considered as a complementary method. Whereas the approach of 

Props et al. (2016) is more suitable for monitoring of time-series data, our method is better 

suited as comparative analysis tool for samples that are not necessarily time-dependent. In 

contrast to the method of Van Nevel et al. (2016a), our method is not supervised and is thus 

not reliant on labeled data. We successfully demonstrate that it is possible to discriminate 

bacterial strains and species with flow cytometry using only SG as nucleic acid dye. We also 

demonstrate that an alternative choice of stains might improve the discriminatory power. In a 

second experiment, we showed how fingerprinting could discriminate the different growth 

stages and illustrate that it may affect the reproducibility of the fingerprinting method. Finally, 

we show that a 1.2% change in the pattern can already be detected with our method based 

on a test with beads. When biological samples are used, with more similar spectral 

characteristics than beads, we show that changes between 1% and 5% of the events are 

detected. Because of this sensitivity and because of biological and mechanical variability, it is 

important to work with a standardized growth protocol to improve reproducibility. To 

conclude, we discussed the possibility to use flow cytometric fingerprinting as a fast 

dereplication tool to screen microbial isolates as well as the use of flow cytometric 

fingerprinting for physiological characterization of axenic microbial cultures through time. 

These proposed strategies increase the realm of possibilities for bacterial flow cytometry, 

especially for axenic cultures. 
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7 Appendix – Supplementary information for chapter 3 

 

 

Appendix Figure 3 - 1: Phylogenetic relationship of the different Lactobacillus species and strains 
as described by Pot et al. (2014). 
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Appendix Figure 3 - 2: Illustration of the fingerprints of both LMG 9191T (A), LMG 18022 (B) 
and a mixture of both (C). The resulting dendrogram of the different mixes expressed as 
theoretical percentage of LMG 9191T (D). As both cell populations overlap partially, it was not 
possible to recalculate the measured percentage of LMG 9191T. Data was gated to remove 
the background and cleaned as described above. All samples were prepared and measured 
as technical triplicates. One sample is misclassified (red node) and visual assessment 
attributes this difference to an effect of the staining. 
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Appendix Figure 3 - 3: Hill number diversity index D2 as described by Props et al. (2016) for 
the 29 Lactobacillus strains stained with SGPI after background removal and cleaning of the 
data. All samples were measured in biological quadruplicates. 
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Appendix Figure 3 - 4: Comparison of different distance measures for the SG stained 
dataset. Both ecological diversity distance measures (Bray-Curtis [B] and Jaccard-Ružička 
[J]) as probability distribution distance measures (Bhattacharyya [Bh] and Kullback-Liebler 
[KL]) were compared. Both the Bray Curtis and the Jaccard-Ružička distance were 
calculated based on the vegan package v2.3.4 (Oksanen et al., 2016). The Kullback-Liebler 
distance was calculated with the flexmix package v2.3.13 (Grun and Leisch, 2008). Because 
the Kullback-Liebler distance measure is an asymmetrical measure, the Kullback-Liebler 
distance measure was calculated as 1/2(KL(p,p')+KL(p',p)) to make it symmetrical. This is 
also known as the Jeffrey divergence. To conclude, the Bhattacharyya distance measure 
was calculated with the fpc package v2.1.10. To compare the methods, the performance was 
calculated as the normalized number of pairs of consecutive samples that are either of the 
same strain and cluster together or that are of different strains and do not cluster together. 
This was done at multiple heights to see the overall evolution of the performance. All 
methods except Bhattacharyya show to reach the maximum performance of 1. 
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Appendix Figure 3 - 5: Dendrogram of the flow cytometric fingerprints of the 29 
Lactobacillus strains and species stained with SG. All species and strains were cultivated in 
biological quadruplicates. After acquisition, the multidimensional space was binned and the 
density based Jaccard distance measures were calculated for all samples and visualized in a 
dendrogram constructed with the Ward hierarchical clustering method. Background was not 
removed and no quality assessment was performed on the data. The different strains are 
indicated with a different colored label. Clades highlighted in blue indicate strains that could 
not be discriminated. Nodes highlighted in red show the misclassified fingerprints. Dashed 
lines indicate samples that showed anomalies in their acquisition after visual inspection of 
the green fluorescence in function of time.  
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Appendix Figure 3 - 6: Dendrogram of the flow cytometric fingerprints of the 29 
Lactobacillus strains and species stained with SGPI. All species and strains were cultivated 
in biological quadruplicates. After acquisition, the multidimensional space was binned and 
the density based Jaccard distance measures were calculated for all samples and visualized 
in a dendrogram constructed with the Ward hierarchical clustering method. Background was 
not removed with a gate and no quality assessment was performed on the data. The different 
strains are indicated with a different colored label. Clades highlighted in blue indicate strains 
that could not be discriminated. Nodes highlighted in red show the misclassified fingerprints. 
Dashed lines indicate samples showed anomalies in their acquisition after visual inspection 
of the green fluorescence in function of time. Fingerprints of LMG 9200T (A,B), LMG 9477 
(C,D), LMG 7761 (E,F) and LMG 14476 (G,H) are shown in Figure 3 – 1. 
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Appendix Figure 3 - 7: Dendrogram of the flow cytometric fingerprints of the 29 
Lactobacillus strains and species stained with SG. All species and strains were cultivated in 
biological quadruplicates. After acquisition, background was removed by using a universal 
gate. Next, the multidimensional space was binned and the density based Jaccard distance 
measures were calculated for all samples and visualized in a dendrogram constructed with 
the Ward hierarchical clustering method. No quality assessment was performed on the data. 
The different strains are indicated with a different colored label. Clades highlighted in blue 
indicate strains that could not be discriminated. Nodes highlighted in red show the 
misclassified fingerprints. Dashed lines indicate samples showed anomalies in their 
acquisition after visual inspection of the green fluorescence in function of time. 
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Appendix Figure 3 - 8: Dendrogram of the flow cytometric fingerprints of the 29 
Lactobacillus strains and species stained with SG. All species and strains were cultivated in 
biological quadruplicates. After acquisition, flow cytometry data was gated to remove the 
background and cleaned from anomalies. Subsequently, the multidimensional space was 
binned and the density based Jaccard distance measures were calculated for all samples 
and visualized in a dendrogram constructed with the Ward hierarchical clustering method. 
The different strains are indicated with a different colored label. Clades highlighted in blue 
indicate strains that could not be discriminated. Nodes highlighted in red show the 
misclassified fingerprints. 
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CHAPTER 

  4 
SINGLE-CELL CHARACTERIZATION FOR FERMENTATION 

BIOREACTOR PERFORMANCE 

1 Abstract 

Fermentation bioreactors are challenging systems to manage because of the complex 

biological processes they mediate and the sensitive and sometimes capricious nature of the 

biology. Monitoring the microbial populations is therefore indispensable for good operational 

practices to detect possible problems in an earlier stage or to help determine the most 

important process parameters influencing activity and stability. Most microbial monitoring 

techniques used today are either indirect or bulk methods, providing only partial information 

about the microbial populations and potentially masking cell-to-cell heterogeneity. Flow 

cytometry is a fast, multiparametric, and cheap single-cell method which can be used to 

characterize isogenic bacterial populations and quantify their phenotypic heterogeneity. In 

this chapter, we applied flow cytometry to assess the phenotypic heterogeneity of an E. coli 

during a batch fermentation and we establish the relationship between the changes in 

phenotypic diversity and the substrate depletion thus demonstrating the usability of flow 

cytometry as an early-warning system for bioreactor monitoring. 

 

 

 

 

 

 
 
Chapter redrafted after: 
Buysschaert, B., Props, R., De Mey, M., Boon, N. Using phenotypic diversity for microbial 
bioreactor monitoring. In preparation 
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2 Introduction 

Microbial fermentation is a key technology for our modern society and is used on an 

industrial scale for the production of a great number of products. At the heart of the 

fermentation are the microorganisms comprising typically one, but sometimes different, 

microbial species (Harrison, 1978). Regardless of phylogenetic diversity, fermentation 

processes are mediated by microbial communities consisting of various (isogenic) 

subpopulations (Nebe-von-Caron et al., 2000). A detailed understanding of the population 

dynamics in response to changing conditions is therefore necessary to improve control of the 

bioprocesses and to understand the apparent capricious nature of the biology (Lidstrom and 

Konopka, 2010, Verstraete et al., 2007). Monitoring is a vital aspect of the fermentation 

technology but the majority of the parameters measured are related to the process operation 

itself while only few parameters are directly related to the microbial populations (Pohlscheidt 

et al., 2009). Yet, the detection of changing dynamics in an early stage can significantly 

contribute in preventing issues in reactor performance. 

Many methods are available for biomass monitoring but they all provide only limited insight 

and are hampered by practical constraints. A first approach is to quantify the biomass 

through, for example, cell dry weight or volumetric measurements. However, these quick and 

easy methods are imprecise and do not provide information about the cellular physiology 

(Pohlscheidt et al., 2009). Alternative approaches are based on optics such as optical density 

(OD) or microscopy measurements. Despite that OD measurements are faster and more 

accurate than the cell dry weight, they remain a coarse estimation of the cell density, 

especially at lower concentrations, and do not provide additional information on cellular 

physiology (Lewis et al., 2014). Microscopy on the other hand is a powerful tool and can, with 

the use of dyes, reveal more about microbial physiology. Its main drawbacks are the sample 

preparation and the low throughput. Moreover, the precision and accuracy to count bacteria 

decreases if the output is based on less than 400 counted cells (Bolter et al., 2002). One of 

the most interesting methods developed in the last few years is the capacitance 

measurement to quantify the living cells in suspension. It has already been applied to a large 

variety of fermentations and cultures (Knabben et al., 2011) yet it does not provide 

physiological information apart from cell integrity. As none of the aforementioned methods 

directly measure cellular activity, other methods should be considered. In the case of 

dissolved oxygen (DO) and exhaust-gas composition analysis, the relation between activity 

and oxygen consumption of carbon dioxide production has been established (Salmond and 

Whittenbury, 1985). All aforementioned methods are already well-established and have 

proven to be useful for bioreactor monitoring, yet they all share some important 
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shortcomings. Firstly, most of these methods are indirect and do not measure the bacteria. 

Some parameters such as the CO2 concentration are a good indicator of microbial activity 

but fail to provide a deeper insight in the microbiology necessary to anticipate on how the 

microorganisms are reacting (Muller et al., 2010). Microorganisms can be analyzed with 

molecular tools such as RNA analysis but these methods are generally time-consuming, 

costly, and require specialist skills making them only suitable for research purposes. 

Secondly, all these methods, with the exception of microscopy, are bulk methods returning 

only a single summary statistic per microbial population measured. This approach may mask 

subpopulations and the underlying dynamics in the microbial population (Delvigne and 

Goffin, 2014). As they are undetected, no relationship can be established between these 

dynamics and the reactor output or operational parameters. Ideally, a single-cell method 

capable of measuring different physiological parameters should be used to gain better insight 

in the microbial population dynamics. 

Several techniques are available to analyze microorganisms and their behavior on a single-

cell level, but only a few are apt to monitor bioreactors as the method in question needs to be 

fast and cheap to enable a high measuring frequency. Flow cytometry offers a more 

complete option as it is able to measure thousands of cells and multiple physiological 

parameters of interest by means of specific fluorochromes. Furthermore, it is possible to 

automate the process in a reproducible way (Hammes et al., 2012, Besmer et al., 2014, 

Brognaux et al., 2013) (Chapter 8). However, the main bottleneck of flow cytometry is the 

complex and subjective data analysis which has restricted its use to research purposes 

(Hammes and Egli, 2010). The complexity of the data analysis is caused by both the quantity 

of and the nature of the data. Whereas using one fluorochrome poses no difficulty for the 

interpretation, a combination of fluorochromes makes the data analysis complicated as a 

good understanding of fluorochrome kinetics and optical properties are necessary 

(Buysschaert et al., 2016, Roederer, 2002). Furthermore, it is known that the flow cytometric 

data changes noticeably depending on both the growth conditions and the growth stage 

(Muller, 2007, Ambriz-Avina et al., 2014, Wang et al., 2010, Buysschaert et al., 2017). Yet, it 

is difficult to take these small changes into account with the traditional gating-based data 

analysis. To process the high amount of data and to quantify the subtle changes in the 

cytometric data, so-called flow cytometric fingerprinting can be used. The purpose of 

cytometric fingerprinting is to process the data in an objective, automated, reproducible way, 

and to condense the obtained information in an uncomplicated result. Fingerprinting is not a 

new approach and the usefulness of this approach has been published in the fields of 

environmental microbiology and microbial ecology (Koch et al., 2013a, Koch et al., 2013c, 

Koch et al., 2014, Prest et al., 2013, Props et al., 2016, Buysschaert et al., 2017) but not yet 
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in the context of bioreactor monitoring. The method described by Props et al. (2016) 

translates the flow cytometric plot in a single summary statistic (i.e. the phenotypic diversity 

metric) and is the most promising method for bioreactor monitoring because of its automated 

pipeline and because of its suitability for longitudinal data. 

In this chapter, we demonstrate that flow cytometric fingerprinting can be used to 

characterize and track the phenotypic heterogeneity based on the nucleic acid profile in a 

microbial bioreactor. For this, we monitored twice a batch fermentation of E. coli grown in a 

minimal medium containing glucose as carbon source. Flow cytometric measurements were 

performed with SYBR green I (SG) as nucleic acid stain on one hand and a combination of 

SYBR green I and propidium iodide (SGPI) as membrane integrity stain on the other hand to 

assess the effect of dyes and the additional physiological information they provide. Results 

showed a good relationship between the fingerprints and the respiration profile and 

demonstrate that flow cytometric fingerprinting could be used to rapidly detect issues with 

both dyes. 

3 Materials and methods 

3.1 Preparation of bacteria cultures 

Escherichia coli MG1655 (ATCC 47076) was obtained from the American Type Culture 

Collection (ATTC). Lysogeny broth (LB) was used to recover the strain from cryovials. LB 

was composed of 1 % tryptone-peptone (Difco), 0.5 % yeast extract (Difco) and 1 % sodium 

chloride (VWR). LB agar plates contain the same components as LB with the addition of 1 % 

agar. For growth experiments in flasks a defined medium was used. This defined medium 

contained 18 μM FeCl2·4H2O (Merck), 26 μM CaCl2 (Merck), 10.2 μM MnCl2·4H2O (Merck), 

2.2 μM CuCl2·2H2O (Sigma), 2.1 μM CoCl2·6H2O (Merck), 6.9 μM ZnCl2 (Merck), 0.4 μM 

H3BO4 (Merck), 40.3 μM Na2EDTA·2H2O (Fluka), 3 μM thiamine·HCl (Sigma), 0.4 μM 

Na2MoO4·2H2O (Fluka), 2.7 μM SeO2 (Sigma), 37.4 mM NH4Cl (Merck), 37.8 mM (NH4)2SO4 

(Merck), 22 mM KH2PO4 (Acros), 42 mM KH2PO4 (Acros), 40 mM MOPS (Sigma), 2 mM 

MgSO4·7H2O (Fluka), 8.6 mM NaCl (VWR), and 83.3 mM glucose·H2O (Cargill). Trace 

element solution and molybdate solution were sterilized with a bottle top filter (Corning PTFE 

filter, 0.22 μm). Carbon source and MgSO4 were dissolved in 200 ml H2O and autoclaved 

separately to avoid Maillard reaction. All other components (except trace element and 

molybdate solution) were dissolved in 800 mL H2O and set to pH 7.0 with 1 M K2HPO4 

(Acros) solution. The sterile trace elements and molybdate solution were added after 
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autoclaving. Growth experiments in bioreactors were performed in defined medium without 

MOPS buffer. 

A preculture from one colony on a LB-plate in 5 mL LB was grown during 8 h at 37°C on an 

orbital shaker (LS-X AppliTek orbital shaker) at 200 rpm. From the preculture, 2 mL was 

transferred to 100 mL of MM-flask medium in a 0.5 L shake flask and incubated overnight (16 

h) at 37°C on an orbital shaker at 250 rpm. The inoculum was injected into the vessel with a 

sterile syringe through an inoculation port sealed with a septum and was 5% of the bioreactor 

working volume. 

3.2 Batch Fermentations 

Two batch fermentations were carried out in a 2 L Biostat B culture vessel (Sartorius-BBI 

Systems) with a working volume of 1.5 L. Temperature (37°C), pH (7.0), stirring rate (600 

rpm), and airflow rate (1.5 L/min) were controlled by the Biostat B control unit. For 

maintaining the pH at 7.0, 0.05 M H2SO4 (VWR), and 2 M KOH (Sigma) were used. Gas that 

exits the bioreactor passed through an exhaust cooler (Thermostat DC1 equipped with cooler 

K20, Haake) set at 4°C. O2 and CO2 concentration in the exhaust gas were measured by a 

URAS 10E off-gas analyzer from Hartmann and Braun. The maximum sampling frequency 

was one sample every 30 min for Batch 1 and every 15 min for batch 2. To avoid foaming, a 

solution of 10% silicone antifoaming agent (BDH 331512K, VWR) was added to the culture 

vessel. All parameters described above were monitored using MFCS/win software (Sartorius 

AG). 

In its interior, the bioreactor contains a harvest pipe which exits the vessel through a 

sampling port. The harvest sampling pipe consists of a Bio-Rad HPLC tubing (Bio-Rad). 

Outside the vessel, the sampling pipe is connected to a Masterflex 16 tubing (Cole Parmer) 

that creates a circuit back to the vessel and that includes a harvest port with a sterile glass 

sampling vial. The system has been designed to obtain a low retention time of the culture 

broth in the tubing. Such a sampling system is required to have a reliable method for the 

rapid assessment of cell physiology. This system is referred to as “rapid sampling loop”. 

During batch experiments, a sample for OD600 and extracellular measurements was taken 

each hour using the rapid sampling loop and the cold stainless bead sampling method. For 

both batches, samples were taken every 30 minutes. Around the time of metabolic switch, 

samples were taken every 15 minutes for batch 1 and every 5 minutes for batch 2. 

Organic acids were determined by high performance liquid chromatography (HPLC) on a 

Varian Prostar HPLC system (Varian), using an Aminex HPX-87H column (Bio-Rad) 
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equipped with a one centimeter reversed phase precolumn, with 5 mM H2SO4 (0.6 mL/min) 

as mobile phase and heated at 65°C. Detection was done by a dual-wave UV−vis (210 and 

265 nm) detector (Varian Prostar 325) and a differential refractive index detector (MERCK 

LaChrom L-7490, Merck). 

3.3 Flow Cytometry 

Samples were analyzed on an Accuri C6 (BD Biosciences) with a blue (488 nm) and red 

(640 nm) laser. Standard optical filters were used and included FL-1 (530/30 nm), FL-2 

(585/40 nm) and FL-3 (670 LP) for the blue laser and FL-4 (675/25 nm) for the red laser. An 

optimized staining protocol was used from Van Nevel et al. (2013). Samples were diluted in 

with physiological solution filtered over a 0.22 μm syringe filter (Merck) to a concentration of 

approximately 106 cells/mL for a more precise cell counts. Two independent staining 

procedures were used to measure both total and intact cells. Bacteria were stained with 10 

μL/mL of SYBR Green I (SG, Invitrogen, 100x diluted in DMSO from stock) for total cell 

counting. For intact cell counts, Propidium Iodide (PI, Invitrogen, final concentration 4 μM) is 

added together with SG. The samples were then incubated for 13 minutes at 37°C to 

optimize the staining. All measurements were performed in triplicate. 

All data was extracted from the proprietary Accuri C6 CSampler software version 1.0.264.21 

in the flow cytometry standard (FCS 3.0) format and subsequently imported into R v3.4.0 (R 

Core Team, 2015) through the functionality offered by the flowCore package v1.42.2 (B. Ellis 

et al.). Data was first log transformed and then normalized by dividing all values by the 

maximum fluorescence intensity signal. No compensation was applied. Gating to reduce the 

background was performed in R studio using the flowCore package on both SG and SGPI 

stained samples. A 0.22 μm-filtered control was used to determine the position of the 

background and a heat-killed sample was used to determine the position of the 

permeabilized cell population (Berney et al., 2007). Based on this, a universal gate was 

constructed to remove as much background as possible without removing the permeabilized 

cell population although the distinction between PI positive cells and the background can be 

difficult for some samples (Appendix Figure 4 - 1). Additionally, a stained sample of the 

dilution buffer was used to assess the quality of the dilution buffer and of the stain. The data 

quality was evaluated and improperly acquired data was cleaned using the flowAI package 

v1.4.3 (Monaco et al., 2016) in order to remove anomalies in the data related to changes in 

flow rate, unstable signal or outliers in the lower limit of the dynamic range. Samples which 

failed the QC were removed from the dataset. To avoid a bias due to different cell numbers, 

10 000 events per sample were randomly selected. This was done after background was 
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removed with the universal gate. Next, a single-step discretization (‘binning’) and Gaussian 

bivariate density estimation was performed on the selected parameters (green and red 

fluorescence, FSC-H and SSC-H) using the KernSmooth package v2.23.15 (Wand, 2015). 

An equally spaced grid (binning grid) of 128 x 128 was fixed for each bivariate density 

estimation using the flowFDA package v1.0. All bivariate density estimations were 

concatenated to a one-dimensional feature vector which we refer to as the fingerprint. 

Subsequently, phenotypic alpha diversity was calculated according to the publication of 

Props et al. (2016) where Hill diversity indices are applied to describe the diversity of 

conceptual phenotypes within and between samples. The code is available at 

https://github.com/rprops/Phenoflow_package. To test if any of the operational parameters 

were correlated to the phenotypic diversity, the Spearman’s rank correlation coefficient was 

calculated by means of the package Hmisc v4.0.3 (Harrell, 2017). 

4 Results and discussion 

To explore the added value of flow cytometric fingerprinting for bioreactor monitoring, an E. 

coli batch fermentation with glucose as carbon source was set up. The fermentation was 

monitored using conventional parameters such as respiration (CO2 production) alongside 

with flow cytometry. The impact of two different dyes and several data analysis parameters 

on the flow cytometry results were compared in this chapter. Two independent fermentation 

runs were conducted within a period of ten days. 

4.1 Conventional parameters 

The fastest conventional method for monitoring microbial activity during a batch fermentation 

is online CO2 measurements. Results of the online measurements showed that the microbial 

respiration increases from an atmospheric concentration of 0.04% to 3.01% CO2 after 6 h 10 

min for batch 1, and to 2.95% CO2 after 6 h 28 min for batch 2, after which respiration (CO2 

production) decreases to 0.58% and 0.61% CO2 in 15 min for batch 1 and 2 respectively 

(Figure 4 - 1). CO2 production increases again for both fermentations until 10 h 4 min for 

batch 1 and 10 h 28 min for batch 2 to decrease again afterwards and decrease steadily from 

around 0.3% to 0.08% CO2 for the rest of the reactor run. The first increase of CO2 

production coincides with the increase of acetate and lactate, both by-products of the 

glucose respiration. 

The first decrease is due to the depletion of glucose and a reduction of the microbial growth 

rate as can be seen from the cell concentrations (Figure 4 - 2). The second increase in 

respiration coincides with the decrease in acetate and, to a lesser extent, lactate 
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concentrations until the concentration of acetate is almost 0 g/L and the concentration of 

lactate 0.5 g/L. The change in substrate concentration and the fluctuation of the microbial 

activity indicate that the E. coli population first consumes the glucose to produce acetate and 

lactate as by-products. When glucose is depleted, the bacteria consume acetate and lactate 

as carbon source instead. This behavior of E. coli has been documented extensively before 

and demonstrates that the fermentation runs as expected (Salmond and Whittenbury, 1985). 

 
Figure 4 - 1: The CO2 concentration expressed as percent of the total air volume for batch 1 
and batch 2 (A). The acetate concentration in the reactor for batch 1 and batch 2 (B) and 
lactate concentration for batch 1 and 2 (C) in function of time. Both compounds are 
expressed in g/L sample and were measured with HPLC. The gas composition was 
measured online with an off-gas analyzer. 
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4.2 Cell density 

Flow cytometry enables the distinction between intact (SG stained) and permeabilized (SG 

and PI stained) cells. The results of both batches show a consistent pattern with an increase 

and peak in the percentage of permeabilized cells before the first decrease of the CO2 

concentration at 5 h 45 min and 6 h 23 min for batch 1 and 2 respectively, and a peak in the 

percentage of permeabilized cells after the second decrease of the CO2 concentration at 10 

h 11 min and 10 h 53 min for batch 1 and 2 respectively (Figure 4 - 2). The appearance of 

the first increase of permeabilized bacteria appears 25 min and 5 min before the first 

decrease in the CO2 concentration, and the second increase of permeabilized bacteria, 7 min 

and 25 min after the second decrease in CO2 concentration for batch 1 and 2 respectively.  

 Discrepancies between both batches can be explained by the different sampling frequencies 

for off-gas analysis and flow cytometry. While samples for flow cytometry were taken every 

15 min for batch 1, samples were taken every 5 min for batch 2 for the first CO2 peaks. 

Afterwards, samples were taken every 30 minutes for both batches. Regardless of the 

percentage of permeabilized cells, an increase and subsequent decrease over time is 

noticeable in both batches at comparable time points. The cell concentration shows, 

regardless of cell integrity, the typical characteristics of a sigmoidal growth curve (Figure 
4 - 2a). A potential cause for the increase in permeabilized cells is the substrate depletion 

leading to cell death, which is determined by cell permeability for this experiment (Hewitt et 

al., 2000). However, to determine if cells are actually dead, other techniques should be used 

aside from PI uptake because membrane permeability could be induced by other factors 

which do not always lead to cell death (Amor et al., 2002, Shi et al., 2007) . Studies using 

molecular methods showed that, in the event of substrate depletion, E. coli cells can express 

more transmembrane transport proteins to allow the scarce nutrients to enter the cells (Egli, 

2010, Wick et al., 2001). These membrane modifications and enhanced permeability can 

increase the PI uptake (Brognaux et al., 2014). The speed and timing at which the cell 

permeability of our observations changed, agrees with this hypothesis. 
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Figure 4 - 2: Cell concentration expressed as cells/mL (green, A) and the fraction of 
permeabilized cells expressed in percentage (red, B) in function of time. The data for both 
batch 1 (left) and batch 2 (right) are presented here. Cell concentrations were determined 
with flow cytometry by means of gating. The standard deviation of the cell concentrations 
was calculated with the triplicate measurements. The first sample represents the inoculum. 

4.3 Flow cytometric fingerprinting 

Besides cell concentration and the distinction between intact and permeabilized cells, 

fingerprinting algorithms can be used to extract more information from the flow cytometry 

data. Various ways of fingerprinting are available but for time-series data, the method 

described by Props et al. (2016) is promising. With this method, three Hill number diversity 

indices can be calculated, i.e. D0, D1, and D2. D0 describes the total number of bins – 

multidimensional density plot discretizations – containing cells, regardless of the 

concentration of cells per bin. D1 and D2 also take the relative density of the number of cells 
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per bin into account. In case of D2, more weight is given to those bins containing many cells 

in comparison to D1. As all cells in one bin are supposedly similar in their optical 

characteristics, they can therefore be categorized as being from a same conceptual 

phenotype. The data shows that, just before the respiration decreases for the first time, the 

phenotypic diversity D2 increases noticeably in both batches and for both SGPI (Figure 4 - 3) 

and SG (Appendix Figure 4 - 2). This observation is similar for all three indices (data not 

shown). For batch 1, a first maximum is reached 25 minutes before the CO2 concentration 

reaches its maximum and at the same time as the permeabilized cell population peaks. For 

batch 2 the first local maximum of three consecutive samples is reached 21 minutes before 

the CO2 concentration reaches a maximum. 

 
Figure 4 - 3: Respiration is illustrated by the concentration of CO2 expressed as percentage 
of air volume in function of the time since the start of fermentation for batch 1 (left) and batch 
2 (right) (A). Hill number diversity index D2 describing phenotypic diversity based on the flow 
cytometry data after SGPI staining is expressed in arbitrary units (B). The diversity indices 
are estimated averages based on bootstrapping (n=100) and the standard error of the 
triplicates was added. Prior analysis, background fluorescence was removed by gating. The 
first sample represents the inoculum. 
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An explanation for these results could be the appearance of a permeabilized cell population 

after the first decrease in respiration. However, a comparison of the results after staining with 

SGPI (Figure 4 - 3) or SG (Appendix Figure 4 - 2) indicate that both dyes exhibit similar 

trends. As SG is not affected by damaged cells, it is improbable that the permeabilized cell 

population causes the change in phenotypic heterogeneity. Both dyes have the property of 

binding to nucleic acids and a change in the nucleic acid composition is therefore a more 

likely explanation. This hypothesis is supported by contrasting the density plots of the peak 

samples with the density plots of the samples with low phenotypic diversity. For both batches 

stained with either SGPI (Figure 4 - 4) or SG (Appendix Figure 4 - 3), the mean 

fluorescence intensity shifts down, suggesting changes in the nucleic acid profile of the cell 

population. The substrate depletion, coinciding with the decrease of the respiration, induces 

a metabolic switch which slows down growth. Due to this diauxic shift, a fraction of the cell 

population enters a non-growing state while another fraction will metabolize the remaining 

nutrients (Kotte et al., 2014). Taymaz-Nikerel et al. (2010) also showed that the biomass 

composition of an E. coli cultured in minimal medium changes with a changed growth rate. 

The decrease of growth induces a decrease in fluorescence intensity as less dsDNA will be 

available in the cells and metabolizing cells also contain relatively more RNA which yields 

weaker fluorescent signals upon binding with SYBR green I (Solopova et al., 2014, Johnson 

and Spence, 2010). Thus, the increased diversity D2 suggests that, after substrate depletion, 

the E. coli cell population shows a higher phenotypic diversity.  

Several mechanisms have been reported to induce phenotypic heterogeneity. A first 

mechanisms is related to the genetic differences but, as phenotypic differentiation occurs at 

rates higher than any known mutational mechanism and as it is robust against the 

suppression of mutational mechanisms, it is not considered as the most prominent cause 

(Ackermann, 2015). Another explanation is the stochasticity of gene expression (Elowitz et 

al., 2002, Blake et al., 2003) and stochastic partitioning of molecules at cell division (Huh and 

Paulsson, 2011) although the latter is less important in the case of symmetrical division. Next 

to intrinsic mechanisms also extrinsic mechanisms such as cell-to-cell communication (e.g. 

quorum sensing) and environmental fluctuations can lead to phenotypic differentiation. The 

response to the latter is known as a bet-hedging strategy of bacteria to survive in challenging 

environments. Scientific studies reported this before based on observations of the expression 

of fluorescent markers (Acar et al., 2008, Solopova et al., 2014) and a well-known example is 

the occurrence of slow growing persister cell subpopulations that are resistant to antibiotics 

in contrast to the antibiotic sensitive cells growing at normal rates (Balaban et al., 2004, 

Keren et al., 2004). Kotte et al. (2014) reported how E. coli cells diversified in two distinct 

phenotypes based on their growth rate after glucose depletion. Depending on the substrate 
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concentration, a larger cell population enters a non-growing state with low metabolic activity 

thus explaining the decreased fluorescence intensity. However, Kotte et al. (2014) reported 

that the phenotypic diversification is a response to the metabolic switch while our results 

show that the diversification occurs before the metabolic switch indicated by the CO2 

concentration.  

 

Figure 4 - 4: Contrast of the density plots of the peak samples with the density plots of the 
samples with low phenotypic diversity for both batch 1 (left) and batch 2 (right). First, only 
the peak sample is considered (above) but then the next sample (peak +1) and the sample 
after that is contrasted (peak +2). The red color indicates a region with higher density in the 
samples with high phenotypic diversity D2 in contrast to the samples with low phenotypic 
diversity D2. Inversely, the regions in blue indicate regions of lower density in the samples 
with high phenotypic diversity D2 in contrast to the samples with low phenotypic diversity D2. 

Samples were stained with SGPI and background was removed prior analysis. If the 
difference between the two communities is lower than 0.02, no contrast value is shown on 
the graphs, which causes the appearance of different clusters. 
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4.4 Correlation with operational parameters 

In order to understand the relationship between phenotypic diversity changes and 

operational parameters, the correlation between the Hill number diversity indices and the 

different operational parameters was calculated with a Spearman’s rank correlation 

coefficient. Furthermore, the correlations coefficients can show which dye or gating strategy 

is best. A comparison of the resulting coefficients for the different batches, dyes, and gating 

strategies, show that the gated data correlates better with parameters such as optical density 

or acetate and lactate concentrations (Table 4 - 1). As all these parameters are related to the 

microbiology, the correlation was expected. Gating the data reduces the noise created by the 

background fluorescence, thus improving the correlation with the biological parameters. This 

result also confirms our previous findings (Chapter 3). Also, no important difference can be 

seen between SG and SGPI stained data or the different diversity indices. No clear positive 

or negative correlation was found between the CO2 or O2 concentration. It is important to 

note that the correlations between flow cytometry and CO2 and O2 concentrations should be 

interpreted with caution as the dataset was incomplete for many data-points. As a 

consequence, the pairwise correlations coefficients were not always calculated on the same 

number of data-points, potentially over- or underestimating the correlations. 

Using flow cytometry to monitor bioreactors is a promising line of research and several 

attempts have been made in the past (Brognaux et al., 2013). As illustrated in this chapter, 

one of the clear advantages of flow cytometry for bioreactor monitoring is the possibility to 

count cells and characterize physiology e.g. viability (Hewitt et al., 2000, Nebe-von-Caron et 

al., 2000, Delvigne and Goffin, 2014). For other physiological traits, a plethora of fluorescent 

dyes is available making the possibilities almost limitless. Because of the complex nature of 

the staining kinetics and the data output, different pipelines of fingerprinting were developed 

to facilitate the data analysis and interpretation. However, few have been made to use these 

fingerprinting techniques to monitor bioreactors. Here we show that more complementary 

information to cell viability and operational parameters can be extracted from the flow 

cytometry complementary data. Despite the promising results, flow cytometry still has some 

shortcomings that should be resolved before the method could be used as a proper 

monitoring tool. A first issue is related to the possibility to measure online. Some self-made 

prototypes have been developed for research (Brognaux et al., 2013, Besmer et al., 2014) 

yet no such features are available on commercially available cytometers. Some third-party 

companies offer automated online sampling technology but this increases the price of the 

instrument. A second issue is related to the dye chemistry. As bacteria are small, 

fluorochromes are necessary to visualize them. Despite the advantages of assessing specific 

features with selective fluorochromes, this approach limits the measured biological 
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information as only labeled features are measured. Moreover, almost all dyes necessitate an 

incubation time which decreases the rapidity of the method. For example, SG and SGPI 

require a minimum incubation time of 13 minutes while our results show that cell permeability 

or phenotypic diversity can change markedly in a less than 15 minutes. Research on faster 

staining protocols or alternative dyes capable of revealing phenotypic heterogeneity is 

therefore needed. Alternatively, the applicability of a label-free approach such as, for 

example, Raman spectroscopy or FT-IR should be investigated. 

Table 4 - 1: Spearman’s rank correlation coefficients between the Hill diversity indices 
calculated from the flow cytometry data as described by Props et al. (2016) and operational 
parameters. The numbers were calculated for both batches, both stain types and with and 
without background removal. 

    SG 
      CO2 pO2 Temperature Lactate Acetate OD600 

Batch 1 

Ungated 
D0 0.24 0.07 0.14 0.56 0.56 -0.16 
D1 0.41 0.26 0.05 0.59 0.66 -0.21 
D2 0.40 0.02 0.42 0.70 0.58 0.42 

Gated 
D0 0.27 0.20 0.61 0.66 0.45 0.83 
D1 0.14 0.32 0.52 0.65 0.41 0.81 
D2 0.12 0.28 0.51 0.63 0.44 0.78 

Batch 2 

Ungated 
D0 0.18 0.28 0.20 -0.07 0.16 0.02 
D1 0.35 0.29 0.30 -0.05 -0.20 0.24 
D2 0.41 0.26 0.26 0.26 0.05 0.29 

Gated 
D0 0.01 0.32 0.56 0.61 0.73 0.98 
D1 0.13 0.16 0.51 0.88 0.79 0.98 
D2 0.16 0.08 0.53 0.95 0.82 0.86 

    SGPI 

Batch 1 

Ungated 
D0 0.40 0.14 0.29 0.68 0.38 0.01 
D1 0.33 0.03 0.33 0.73 0.50 0.08 
D2 0.15 0.25 0.56 0.65 0.39 0.58 

Gated 
D0 0.15 0.35 0.70 0.67 0.48 0.91 
D1 0.11 0.43 0.64 0.69 0.43 0.93 
D2 0.05 0.43 0.63 0.62 0.41 0.81 

Batch 2 

Ungated 
D0 0.54 0.60 0.35 -0.18 0.23 -0.40 
D1 0.21 0.01 0.32 0.22 0.24 0.26 
D2 0.10 0.11 0.25 0.59 0.61 0.43 

Gated 
D0 0.15 0.41 0.75 0.61 0.77 0.52 
D1 0.10 0.19 0.52 0.83 0.83 0.98 
D2 0.17 0.07 0.55 0.87 0.87 0.93 
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5 Conclusions and perspectives 

The possibility of flow cytometry to determine both cell density and cell physiology in high 

throughput makes it the method of choice to monitor the microbial population in bioreactors. 

In this chapter we demonstrate that much more information can be extracted from these 

measurements by flow cytometric fingerprinting. Our results show that the operational 

phenotypic diversity increases approximately 20 minutes before CO2 concentration 

decreases, making flow cytometry faster than exhaust-gas analysis. Based on literature and 

other research, we conclude that the increased cytometric diversity is caused by a 

phenotypic diversification as a consequence of substrate depletion. The emergence of 

metabolically different subpopulations with different nucleic acid profiles explains why 

fingerprinting with only one nucleic acid dye, SYBR green, is capable of detecting the 

population dynamics. Our findings open possibilities in the context of fundamental research, 

but also in the context of industrial bioprocesses, in order to detect disturbances in reactor 

performance in an early stage and to assist in steering operational parameters. We made a 

first attempt to correlate the phenotypic diversity indices with operational parameters and 

found good correlation with the biological parameters. A more in-depth research with variable 

operational conditions could help to gain a better insight in the relationship between reactor 

operations and phenotypic diversity. Moreover, also the relationship between yield and 

phenotypic heterogeneity should be established under different conditions. 
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7 Appendix – Supplementary information for chapter 4 

 

Appendix Figure 4 - 1: Illustration of the gating strategy. The gates to enumerate the intact 
cells (A) and the permeabilized cells (B) are shown for an SGPI sample. The universal gates 
for SGPI (C) and SG (D) samples were used to reduce the background from the samples 
prior fingerprinting. A heat-killed sample was used to determine the position of the 
permeabilized cells (E) and a filtered sample of fresh medium was used to position the 
background (F). 
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Appendix Figure 4 - 2: Hill number diversity index D2 to describe phenotypic diversity based 
on the flow cytometry data after SG staining are expressed in arbitrary units in function of the 
time since the start of fermentation for batch 1 (left) and batch 2 (right) (B). Respiration is 
illustrated by the concentration of CO2 expressed as percentage of air volume (A). The 
diversity indices are estimated averages based on bootstrapping (n=100) and the standard 
error (n=3) of the triplicates was added. Prior analysis, background fluorescence was 
removed by gating.  
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Appendix Figure 4 - 3: Contrast of the density plots of the peak samples with the density 
plots of the samples with low phenotypic diversity for both batch 1 (left) and batch 2 (right). 
First, only the peak sample is considered (above) but then the next sample (peak +1) and 
the sample after that is contrasted (peak +2). The red color indicates a region with higher 
density in the samples with high phenotypic diversity D2 in contrast to the samples with low 
phenotypic diversity D2. Inversely, the regions in blue indicate regions of lower density in the 
samples with high phenotypic diversity D2 in contrast to the samples with low phenotypic 
diversity D2. Samples were stained with SG and background was removed prior analysis. If 
the difference between the two communities is lower than 0.02, no contrast value is shown 
on the graphs, which causes the appearance of different clusters. 
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CHAPTER 

5 
SINGLE-CELL RAMAN SPECTROSCOPY FOR GENOTYPIC 

AND PHENOTYPIC DIFFERENTIATION OF BACTERIA 
POPULATIONS 

1 Abstract 

The increasing focus on bacterial individuality is leading to the development of new single-

cell technologies. Research in the last decade often showed the importance of phenotypic 

heterogeneity for microbial cultures which adds an extra dimension in the microbial 

community analysis. In order to better understand the relevance of phenotypic heterogeneity 

in different types of microbial communities, a quick and easy way of determining microbial 

genotypes and phenotypes is required. Single-cell Raman spectroscopy is a potential 

solution for this as it makes a chemical fingerprint of every cell. In this chapter, we compare 

several workflows with Raman spectroscopy to discriminate among microbial genotypes and 

phenotypes. We demonstrate the sensitivity to microbial physiology of the method by 

comparing different phenotypes. Finally, we applied a novel method to discriminate and 

quantify different microbial taxa from a single measurement of an in vitro and in silico 

synthetic community. 
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2 Introduction 

The capacity of microbial communities to adapt themselves to almost every known 

environment has led to the discovery of many metabolic pathways that could be used as the 

potential solution to 21st century problems. As a consequence, bacteria are used in a wide 

variety of industrial technologies such as the pharmaceutical industry, the food industry or in 

environmental technology. Because those bacterial populations and communities are 

fundamental to the success of those processes, a good understanding of the community is 

the key to a good management of the system. With this in mind, Verstraete et al. (2007) 

introduced the concept of microbial resource management (MRM) where the approach to 

better understand the microbial community is condensed to three questions: “Who is there?”, 

“What do they do?” and “Who is doing what with whom?”. The technical evolutions of the last 

half century made it possible to easily identify on the molecular level which bacteria are 

present. Initially, labor intensive clone libraries were used but later, next generation 

sequencing methods made it faster, easier and cheaper than ever before to identify the 

community members. Despite the technical advances some concessions had to be made 

regarding the depth at which communities are characterized. While clone libraries often used 

whole 16S rRNA gene sequencing, next generation sequencing is often based on partial 16S 

rRNA gene sequencing reducing the identification depth from the species or strain level to 

the family or genus level (Mizrahi-Man et al., 2013). While knowing who is present can 

elucidate many questions, it does not explain everything as bacteria can behave differently 

depending on their environment. To understand that behavior and the potential interactions, 

a microbial community can be analyzed in different ways such as proteomics or 

metabolomics. Typically, the correlation between a certain functionality and community 

structure is made to attribute roles to a group of organisms (Kuypers and Jorgensen, 2007). 

A common caveat of all previously mentioned methods is that they are bulk methods. The 

potential danger of a bulk analysis is that it may mask subpopulations by calculating 

population wide averages on a large number of cells (Davis and Isberg, 2016). As a 

consequence of this awareness, the focus of current research shifts increasingly towards 

cellular individuality (Ackermann and Schreiber, 2015) and a variety of single-cell tools and 

technologies are under development, going from single-cell sequencing (Gawad et al., 2016) 

to single-cell transcriptomics (Wu et al., 2014). This focus on individuality already highlighted 

the importance of phenotypic heterogeneity for bioprocess technology regarding both the 

productivity and robustness of starter cultures, probiotics, and bioprocesses (Delvigne and 

Goffin, 2014). Cells in starter cultures and probiotics can be both live and dead and a fraction 

of the cells are in the so-called viable but nonculturable (VBNC) state which can impact the 

communities functionality or productivity (Davey and Hexley, 2011). Next to viability, other 
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phenotypes have been shown to be important for bioprocess productivity (Sundstrom et al., 

2004, Hewitt et al., 2007, Tracy et al., 2008, Alonso et al., 2012). These findings are not only 

relevant for bioprocess technology but also in the wider field of microbiology as also toxin 

production for example is related to phenotypic heterogeneity (Ceuppens et al., 2013). This 

indirectly broadens the field of microbial ecology as even isogenic populations can be 

considered as a community of phenotypes. In this respect, phenotypic heterogeneity is, as 

deeper level of community organization, worthwhile investigating for community 

characterization as it is inherent to a community and its functionality. 

To evaluate the importance of phenotypic heterogeneity for microbial community 

functionality, a method able to detect phenotypes or phenotypic changes on the single-cell 

level is necessary. Different approaches are possible, but the best-known technique is 

microscopy. A first approach is to monitor heterogeneity in function of cell motility or growth 

(Balaban et al., 2013, Spudich and Koshland, 1976). Alternatively fluorescent probes or gene 

expression reporters can be used (Ackermann, 2015, Smits et al., 2006). The availability and 

the possibility to simultaneously assess multiple traits of single cells makes it a good method 

but it lacks the high throughput modern research often requires. The introduction of flow 

cytometry has resolved this issue but both methods are unable to identify species or to 

differentiate phenotypes if they are not related to the morphology of the cell. Although 

fluorescent labels can be used to highlight specific physiological features, their use is not 

without limitations. In a first instance because labels can bind non-selectively to other 

components than the targets, skewing the results of the analysis or making the sample 

preparation more complex. In a second instance, labeling narrows the observations as only 

labeled features are measured. The latter is not per se a problem but requires knowledge on 

what has to be measured prior analysis. Raman spectroscopy is a non-invasive and non-

destructive optical method and makes profiles of the chemical bonds present in the cell as 

the inelastic scatter of the incident Raman laser is detected. This results in a unique chemical 

signature for each cell and, in contrast to the previously mentioned methods, without 

labeling. Therefore, the Raman spectrum can say something about the cell phenotype and, 

being label free, has the potential to explain the detected differences without prior knowledge 

of cause. Other advantages are that the method is non-destructive and requires little or no 

sample preparation. Scientific research extensively reported the use of Raman spectroscopy 

for species discrimination (Hutsebaut and Moens, 2005, Jarvis and Goodacre, 2008, Stockel 

et al., 2016) and also to determine species interactions by using SIP or deuterium (Berry et 

al., 2015, Cui et al., 2017). 

In this chapter we compare different workflows and demonstrate how single-cell Raman 

spectroscopy can be used to discriminate among different microbial genotypes and 
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phenotypes. For this, two strains of E. coli were compared. To increase genotypic and 

phenotypic heterogeneity, one strain was transformed with a TOL plasmid tagged with a 

green fluorescent protein (GFP) marker and the other strain was grown in two different media 

to induce different phenotypes. To take the effect of sample handling and preservation into 

account, an old sample was compared to a freshly fixed and older fixed sample. Several data 

processing methods were compared, which showed that all cell types could be differentiated 

with multiple methods albeit with varying accuracy. To conclude, we present a novel 

algorithm to simultaneously quantify and identify bacteria taxa in a sample based on one 

single Raman spectrum. We illustrate the power of this method by applying our method both 

on in sillico and in vitro microbial communities. 

3 Materials and methods 

3.1 Bacteria 

Four different E. coli cultures were prepared for the experiments. The first two cultures 

contained different E. coli strains; i.e. E. coli LMG 8063 and E. coli DH5α DSMZ 6897. Both 

were cultivated in Luria Bertani (LB) broth (Oxoid) and incubated at 37°C for 24 hours to 

reach stationary phase. To induce phenotypic heterogeneity an E. coli DH5α harboring a 

TOL plasmid with a mini-Tn5-PA1-04/03::gfpmut3-cassette (Christensen et al., 1998; 

Haagensen et al., 2002) according to Boon et al. (2006) was used. To select the transformed 

cells, a kanamycin (Km) resistance gene was inserted and 50 mg/L of Km was added to the 

Luria Bertani broth prior incubation at 37°C for 24 hours. E. coli LMG 8063 was also 

cultivated in a minimal medium and incubated at 37°C for 24 hours. The minimal medium 

contained glucose as only carbon source and was made according to De Mey et al. (2007). 

To assess the effect of sample handling and preservation, two E. coli DH5α were fixed with 

formaldehyde as described by Read and Whiteley (2015). One sample was measured 

immediately after resuspension (fixed sample), the other sample was measured after a few 

hours of sample preparation (old fixed sample). In the same way, an unfixed sample of E. 

coli DH5α was measured a few hours after sample preparation (old sample). To quantify the 

relative abundance in a synthetic community, a Delftia acidovrans DSMZ 14801, 

Lactobacillus casei subsp. casei LMG 6904, Citrobacter werkmanii DSMZ 17579, 

Pseudomonas fluorescens LMG 1794T, Cupriavidus necator LMG 1190, and Micrococcus 

luteus LMG 3293 were cultivated in Luria Bertani (LB) broth (Oxoid) and incubated at 37°C 

for 24 hours to reach stationary phase. In vitro mixtures were made after cell enumeration 

with flow cytometry as described previously (Buysschaert et al., 2016). The mixing ratios 

were 0, 25%, 50%, 75%, and 100% of one species with the other. 
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3.2 Sample preparation 

1 mL of cell suspension was centrifuged for five minutes at 5000 rcf at room temperature. 

After centrifugation the pellet was washed three times and resuspended in 0.22 μm-filtered 

water (Sartorius) to remove all medium components. A droplet of 10 μl of cellular suspension 

containing approximately 108 cells/mL was spotted on a CaF2 glass slide and air-dried for a 

few minutes. 

3.3 Raman spectroscopy 

The Raman spectra of each single bacterial cell were measured with WITec Alpha300R+ 

confocal Raman microscope using 785 nm excitation diode laser (Toptica) and an UHTS 300 

spectrometer with a -60°C cooled CCD camera (iDus 401 BR-DD, ANDOR). The 100x/0.9 

NA (Nikon) objective was used. Laser power was measured before the objective and was set 

to 200 mW. The integration time was 45 seconds for each single bacterium spectrum 

acquisition. 

3.4 Data analysis 

The obtained spectra were imported as SPC files in R (R Core Team, 2015) for 

preprocessing and analysis. First, the most relevant region between 600 – 1800 cm-1 was 

selected using the Hyperspec package v0.98.20161118 (Beleites and Sergo, 2016). Next, 

the baseline was estimated using the SNIP algorithm with ten iterations and corrected by 

subtraction (Figure 5 - 1). The data was also normalized with the area under the curve 

(AUC) algorithm. Both functions are implemented in the MALDIquant package v1.16.2 (Gibb 

and Strimmer, 2012). For classification two unsupervised and three supervised methods 

were compared. For the first unsupervised method the similarity between all spectra was 

measured using the quantitative Jaccard distance measure (Ružička index) as implemented 

in the function vegdist from the vegan package v2.4.3 (Oksanen et al., 2016). The resulting 

similarities were clustered based on agglomerative clustering with Ward’s minimum variance 

method (ward.D2 from the hclust package) as linkage from the stats package (R Core Team, 

2015) and visualized in a dendrogram with the iToL software (Letunic and Bork, 2016). The 

second unsupervised method is a visualization by means of t-SNE (van der Maaten and 

Hinton, 2008) using the tsne package v0.1.3. Subsequently the samples were classified by k-

means hierarchical clustering from the package stats v3.4.1. Perplexity of the t-SNE 

algorithm was optimized by comparing the results of the classification and a final perplexity of 

30 was selected. Partial least squares (PLS), partial least squares with subsequent linear 

discriminant analysis (PLS-LDA) and random forests were compared as examples of 
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supervised methods. All three were implemented in R using the packages pls, MASS and 

randomForest respectively (Mevik and Wehrens, 2016, Venables and Ripley, 2002, Liaw and 

Wiener, 2002). For all supervised methods the data was randomly divided in a training 

dataset and a test dataset. The training dataset was three times larger than the test dataset 

and the same for all implemented methods. Based on the random forest classification and 

based on a custom made peak selection function, the most important features contributing to 

the difference between the samples were selected and identified by comparing the results 

with existing tables from literature (Table 5 - 1). To estimate the relative abundance of 

species in a synthetic community, a linear unmixing model was assumed and the proportion 

of each species, or endmember, was estimated based on the spectrum of an axenic culture. 

For hyperpectral unmixing, the package hsdar v0.5.1 was used (Lehnert et al., 2015). 

Spectra of both in silico mixtures of the two endmembers and in vitro mixtures were unmixed 

with the algorithm. The spectra of the endmembers and the mixtures were calculated as the 

average of 50 single-cell spectra  

Table 5 - 1: Overview of wavenumbers and their assignments according to literature. 

Wavenumber [cm-1] Assignment Reference 
615 Monosubstituted benzenes Jarvis et al. (2004) 
620 Phenylalanine (skeletal) Maquelin et al. (2002) 
640 Tyrosine (skeletal) Maquelin et al. (2002) 
665 Guanine Maquelin et al. (2002) 
720 Adenine Maquelin et al. (2002) 
730 A ring stretching Uzunbajakava et al. (2003) 
752 T ring stretching Uzunbajakava et al. (2003) 
778 - 782 Nucleic acids (phosphoric acid esters) Schuster et al. (2000b) 
778 - 782 Nucleic acids (cytidine, uracil) Schrader (1997) 
778 - 785, 792 Cytosine, uracil (ring, stretching) Maquelin et al. (2002) 
798 Ring breathing Jarvis et al. (2004) 

810 - 820 Nucleic acids (C-O-P-O-C in RNA 
backbone) Schuster et al. (2000b) 

813 A-type helices in RNA Uzunbajakava et al. (2003) 
828 Aliphatic Jarvis et al. (2004) 
829 Exposed tyrosine Maquelin et al. (2002) 
830, 850 Tyrosine (in protein) Schrader (1997) 
835 DNA Deng et al. (1999) 
852 Buried tyrosine Maquelin et al. (2002) 
858 C-C stretching, C-O-C 1,4-glycosidic link Maquelin et al. (2002) 
897 C-O-C stretching Maquelin et al. (2002) 
1004 Phenylalanine Schuster et al. (2000b) 
1004 Phenylalanine Maquelin et al. (2002) 

1030 - 1130 Carbohydrates, mainly -C-C- (skeletal) and 
C-O, C-O-H deformation Schuster et al. (2000b) 

1032 Phenylalanine, C-N stretching Uzunbajakava et al. (2003) 

1054 Nucleic acids, C-O stretching, protein, C-N 
stretching Uzunbajakava et al. (2003) 
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1061 C-N and C-C stretching Maquelin et al. (2002) 
1085 C-O stretching Maquelin et al. (2002) 

1098 Phosphate, C-C skeletal and C-O-C 
stretching from glycosidic link Maquelin et al. (2002) 

1100 Glass background Schuster et al. (2000b) 
1102 > PO4

3- stretching (symmetric) Maquelin et al. (2002) 
1130 =C–C= (unsaturated fatty acids in lipids) Schrader (1997) 
1150 n-alkanes Jarvis et al. (2004) 
1175 Tyrosine, phenylalanine Uzunbajakava et al. (2003) 
1209 Tyrosine, phenylalanine, protein, amide III Uzunbajakava et al. (2003) 
1214, 1240, 1254 Thymine, cytosine, adenine, ring v Uzunbajakava et al. (2003) 
1220 - 1290 Amide III, lipids Schuster et al. (2000b) 
1249 N–H, C–N, amid III random coil Schuster et al. (2000b) 
1254 Adenine, amide Ill Uzunbajakava et al. (2003) 
1267 Lipids van Manen et al. (2005) 
1268 Amide III - α helix Jarvis et al. (2004) 
1295 CH2 deformation Maquelin et al. (2002) 
1304 Adenine, amide III Uzunbajakava et al. (2003) 
1320 Amide III Schuster et al. (2000b) 
1320 Amide III, C-H deformation Schuster et al. (2000b) 
1336 - 1339 Adenine Uzunbajakava et al. (2003) 
1344 Adenine,  guanine Jarvis et al. (2004) 
1375 Thymine, adenine, guanine Uzunbajakava et al. (2003) 
1401 α-amino acids Jarvis et al. (2004) 
1421 - 1427 Adenine, guanine Uzunbajakava et al. (2003) 
1431 - 1481 Protein marker band 1451 Uzunbajakava et al. (2003) 
1441 Lipids van Manen et al. (2005) 
1450 C-H2 deformation Schrader (1997) 
1468 C-H deformation Maquelin et al. (2002) 

1482 - 1487 Nucleic acids (C-O-P-O-C in RNA 
backbone) Schuster et al. (2000b) 

1505, 1518, 1532, 1578 Adenine, cytosine, guanine Uzunbajakava et al. (2003) 
1510 Adenine Uzunbajakava et al. (2003) 
1521 Pigment Jarvis et al. (2004) 
1572 Amide II Jarvis et al. (2004) 
1573 C=C Schuster et al. (2000b) 

1573 C=C, N-H deformation and C-N stretching 
(amide II) Schuster et al. (2000b) 

1575 Guanine, adenine (ring stretching) Maquelin et al. (2002) 
1606 Phenylalanine Maquelin et al. (2002) 
1614 Tyrosine Maquelin et al. (2002) 
1627 Olefinic Jarvis et al. (2004) 
1650 - 1680 Amide I Maquelin et al. (2002) 
1658 Unsaturated lipids van Manen et al. (2005) 
1660 - 1670 Amide I Schuster et al. (2000b) 
1740 > C=C ester stretching Maquelin et al. (2002) 
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Figure 5 - 1: Baseline correction and normalization of the spectra. Based on the SNIP 
algorithm, several baselines were constructed depending on the number of iterations (A). ten 
iterations were selected as the curve was neither over-fitted nor under-fitted (B). 
Subsequently, the data was normalized using the area under the curve normalization (C). 
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4 Results and discussion 

To determine how single-cell Raman spectroscopy can be used to determine phenotypic 

differences, phenotypic differentiation was induced in different ways in two E. coli strains. 

Thus, a wild type E. coli DH5α was compared to its gfp-labeled counterpart and another E. 

coli strain was cultured both in a complex and a minimal medium. Furthermore, an old 

sample, a freshly fixed sample, and an old fixed sample of the wild type E. coli DH5α were 

compared to assess the effects of sample handling and preservation. As all these samples 

are either different due to their genotypes and/or external factors, they will be referred to as 

different phenotypes within this chapter. 

4.1 Supervised and unsupervised methods 

Both supervised and unsupervised methods can be used to analyze high dimensional 

Raman spectroscopy data. While it is generally known that supervised methods perform 

better, the unsupervised methods have the advantage that no knowledge of the clusters in 

the data is required prior analysis. A first unsupervised method is the t-SNE visualization 

algorithm (Figure 5 - 2).The results show that the data clearly clusters into five groups. The 

groups are all based on the type of organism and the culturing method. No difference can 

visually be found between the two types of fixed sample. The difference between an old E. 

coli DH5α sample and the E. coli LMG 6803 cultured in minimal medium is small as well. t-

SNE proves to be a useful tool to visualize the large amount of information in two 

dimensions. The caveat of the method is that artificial clusters can be formed if the 

parameters are not optimized. Due to the nature of t-SNE, only a visual interpretation can be 

drawn from the data and no density based algorithms, such as clustering, can be used. 
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Figure 5 - 2: t-SNE visualization of the single-cell spectra of the different E. coli phenotypes 
and strains. Some E. coli DH5α samples were prepared differently to assess the impact of 
sample pre-treatment. All spectra were preprocessed in the same way. 

In order to find an automated and objective way to quantify clusters in the data, different and 

more conventional methods can be used. The most common examples are hierarchical 

clustering and PCA. In this chapter, we combined principal component analysis with k-means 

clustering to determine the clusters. For clustering, the ten first principal components were 

used as they retained more than 70% of the variability of the dataset. An increase in the 

number of principal components did not provide different results after clustering (data not 

shown). The optimal number of clusters was determined with the silhouette plots and seven 

clusters were found in the data. The results show that five clusters corresponded with the 

expected phenotypes and two clusters contained a small number of misclassified spectra 

(Figure 5 - 3). Similarly to t-SNE, no difference can be noticed between two types of fixed 

samples and both the old E. coli DH5α sample and the E. coli LMG 6803 cultured in minimal 

medium cluster together. All spectra of the old E. coli DH5α sample were therefore 

considered to be misclassified. The resulting accuracy is 85% if the two types of fixed 

samples are considered as one cluster.  
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Figure 5 - 3: Two dimensional visualization of the principal component analysis on all single-
cell spectra. Clustering was performed with k-means clustering, based on ten principal 
components. Colors were assigned to the clusters corresponding to the known phenotypes. 
Misclassified samples were considered as another cluster. The accuracy of the method is 
85% for this dataset. 

A last unsupervised method is based on the density based Jaccard distance measure 

(Ružička index) between the samples and the subsequent hierarchical clustering with Ward’s 

algorithm. The results demonstrate that the phenotypes can be discriminated from one 

another with the exception of the two types of fixation (Figure 5 - 4). Again, the old E. coli 

DH5α cells clusters together with the E. coli LMG 8603 cells grown in minimal medium and 

were considered to be misclassified. 19 misclassifications were found in total out of 236 

spectra. The accuracy is thus 92% and noticeably better than PCA combined with k-means 

clustering. Results were similar with other distance measures such as the Bray distance (19 

misclassifications; 92% accuracy) or the Euclidean distance and the spectral contrast angle 

(Wan et al., 2002) (21 misclassifications; 91% accuracy). However, results altered 

considerably when other clustering algorithms were found. Ward’s method showed to result 

in the highest accuracy (data not shown). 
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Figure 5 - 4: Dendrogram of the Raman spectra of the different strains and phenotypes. 
Similarity was calculated with the density based Jaccard distance measure and clustering 
was performed with Ward’s hierarchical clustering algorithm. Sample preprocessing was the 
same for all samples. The accuracy of the method is 92%.  

Aside from unsupervised methods, also supervised methods were assessed to increase the 

performance to discriminate among phenotypes and the range of applications of 

phenotyping. The methods selected were partial least squares (PLS), partial least squares 

and subsequent linear discriminant analysis (PCA-LDA), and random forests. Although the 

intention of PCA and PLS is to reduce the dimensionality of the data, PLS is designed for 

datasets with large number of correlated variables (e.g. data points in a spectrum) and uses 

the labeled data to emphasize the directions necessary for discrimination. The PLS 

classification of the test set in function of the two first components or latent variables shows 

no clear visual distinction between the clusters although 58% of the spectra were classified 

correctly (Figure 5 - 5). The old sample of E. coli DH5α was only present twice in the test set 

and was twice misclassified. The accuracy is lower than the unsupervised methods which is 

partially related to the smaller size of the test set. 
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Figure 5 - 5: Two dimensional visualization of the partial least square classification (PLS) on 
all single cell spectra of the test set. The model was built with a training set comprising two 
third of the data set and validated with the leave-one-out principle. Colors were assigned to 
correctly classified spectra and grey to all misclassified spectra. The accuracy of the method 
is 58%. 

PLS can also be used as a preprocessing step before LDA to improve accuracy. For LDA, 

six PLS components were selected as they resulted in the smallest root mean square error of 

prediction (RMSEP). Subsequent discriminant analysis was performed on the same test set 

after transformation by the PLS model mentioned above. The clustering of the different 

phenotypes and strains in function of the first two discriminants improved as compared to 

PLS (Figure 5 - 6). The accuracy increased to 86% for the test set and was therefore 

comparable but slightly better than PCA and k-means analysis. But, in contrast to the 

unsupervised methods, a distinction can be made between the two different types of fixation. 

The last supervised method tested here, random forests, was trained and tested with the 

same training set and test set. The model was constructed by training 1000 decision trees for 

classification. The method proved to be the most accurate with a classification accuracy of 

97%. Because of this, the most important features or wavenumbers contributing to the 

classification were extracted to understand the biological differences causing the 

discrimination. Mainly the amide III signal representative for proteins (Raman bands 1269, 

1272, 1280, 1308, 1319 and 1322 cm-1), tyrosine and phenylalanine (Raman bands 637, 

1009, 10031, 1179 cm-1), and thymine, adenine, and guanine, representative for the nucleic 

acid content (Raman bands 1308, 1372, 1375 cm-1) were found. This suggests that the 

phenotypic differences are related primarily to protein content and concentration and, to a 

lesser extent, nucleic acid concentration. Although not confirmed by an independent method, 

it is very likely that proteins are responsible for the difference between the phenotypes. 
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Especially with the gfp-labeled bacteria, where the fluorescent protein expression could be 

monitored visually. Furthermore, the difference between E. coli cultivated in a rich or in a 

minimal medium will probably be translated in the cellular protein profiles as well because of 

the different pathways required to grow on both media. 

 

Figure 5 - 6: Two dimensional visualization of the partial least square classification (PLS) on 
all single-cell spectra and subsequent linear discriminant analysis (LDA) of the test set. The 
PLS classifier was built with a training set comprising two third of the data set and validated 
with the leave-one-out principle. Six components were selected for based on the minimal 
RSMEP for subsequent LDA modeling. Colors were assigned to correctly classified spectra 
and grey to all misclassified spectra. The accuracy of the method is 86%. 

The results presented in this chapter show that discrimination between phenotypes and 

genotypes until the strain level is possible with either supervised learning algorithms or 

unsupervised clustering. Similar attempts to discriminate among strains or to detect 

phenotypes have been reported before (Jarvis and Goodacre, 2008, Stephen et al., 2012, 

Hutsebaut and Moens, 2005, Maquelin et al., 2000, Rosch et al., 2005, Stockel et al., 2016). 

Different ways of processing the data are proposed and, similar to our findings, also 

unsupervised clustering algorithms were found to work well to discriminate among microbial 

strains (Harz et al., 2005). The clear distinction between strains with Raman spectroscopy 

can be explained by the important differences that can occur between strains from the same 

genus (Yoon et al., 2012). As Raman spectroscopy is a holistic method, differences in 

nucleic acid or protein profiles can be detected easily. Also supervised machine learning 

classification tools, such as support vector machines, were used to improve the data. The 

accuracy of the random forest classification is comparable but better than the accuracies of 

94.1% (Harz et al., 2005) and 89.2% (Rosch et al., 2005) found with support vector 
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machines. It is important to note that comparison is difficult as the data sets differ. Next to 

this, the approach differs as our purpose is to characterize phenotypic heterogeneity while 

Rosch et al. (2005) and Harz et al. (2005) tested how robust their taxonomic classification 

model was against phenotypic heterogeneity. Inter- and intracellular heterogeneity of a 

pathogenic strain have been recorded and quantified by Hermelink et al. (2009). Similarly, 

Schuster et al. (2000a) and Huang et al. (2004) showed that bacterial phenotypes change in 

function of their growth stage. Both Hermelink et al. (2009) and Schuster et al. (2000a) 

defined the variability on a select number of peaks with a known biological meaning but did 

not exploit the holistic nature of Raman spectroscopy. Read et al. (2013) also used a limited 

number of peaks prior hierarchical clustering to determine the host origin of isolates and 

used automatic relevance determination (ARD) algorithm for this purpose. Other groups also 

used supervised learning such as PCA-LDA to discriminate among extra- and intracellular 

phenotypes of a pathogenic bacteria with a classification accuracy of 85% (Grosse et al., 

2015), to discriminate phenotypic reactions as consequence of antibiotic treatments with a 

classification accuracy of 83.6% (Athamneh et al., 2014) or to determine bacterial metabolic 

history (Huang et al., 2007). 

Regardless of all promising results, Raman spectroscopy so-far failed to be incorporated as 

a standard microbial technique. The most important issue is that the method still lacks the 

high throughput modern research requires today. In comparison to molecular analysis 

Raman spectroscopy is quick but with an acquisition time of more or less 60 seconds per 

cell, the method can hardly be considered fast. Several solutions can be implemented to 

decrease the acquisition time and subsequently increase the throughput. The most well 

documented attempts have been made by using SERS which was successfully applied for 

species discrimination (Jarvis and Goodacre, 2008). The time gain can, in combination with 

microfluidic devices, also lead to automation (Walter et al., 2011). For more subtle 

differences such as phenotypic heterogeneity, SERS could prove unreliable as only the 

spectra of the molecules in the vicinity of the SERS particles are amplified (Hering et al., 

2008) and as only the signal of the molecules on the surface of the bacteria are amplified 

(Pahlow et al., 2012). More recent Raman techniques such as coherent anti-Stokes Raman 

spectroscopy (CARS) and stimulated Raman spectroscopy reduce the acquisition time and 

are reported to provide robust signals, 100 times stronger than conventional Raman 

spectroscopy (Petrov et al., 2007, Opilik et al., 2013, Hansen et al., 2015). Another difficulty 

is the plethora of methods available for data analysis. Though many researchers use similar 

methods, comparison is often difficult because of different instrumentation and purposes. To 

address this issue, we tried to compare multiple methods in this chapter and found that most 

commonly used methods are useful for the purpose of phenotypic fingerprinting though with 
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varying accuracy. Hutsebaut et al. (2005) and Rodriguez et al. (2011) propose some 

solutions to overcome issues related to instrumental drift or to standardize data processing in 

order to make spectra comparable, regardless of the instrumentation. 

4.2 Estimation of the relative abundance of species in a synthetic 
community 

The capability of Raman spectroscopy to discriminate microbial taxa can be used to monitor 

the population dynamics. For this purpose we demonstrate with in silico and in vitro mixtures 

of bacteria pairs how hyperspectral unmixing algorithms can be used. Three pairs of bacteria 

species were combined for this purpose and the results show that hyperspectral unmixing 

predicts almost perfectly the correct abundances of both species when mixed in silico 

(Figure 5 - 7). For the in vitro mixes, the results are less accurate yet show to differ 

depending on the microbial pair analyzed. The different performance of the algorithm 

between the  in silico and in vitro mixes can be explained by the assumption of the unmixing 

algorithm that the spectrum resulting of a mixture, is a linear combination of both spectra of 

the species present. When mixing two bacteria in vitro, physiological adaptation might occur 

and the spectra of the axenic culture will not correspond with the spectra of the microbial 

community members. This phenomenon will be discussed and studied in more detail in 

Chapter 6. Also, similarly to flow cytometry, physiological differences dependent on the 

growth stage could interfere with the accuracy of the predictions. In this set-up, stationary 

phase cultures were used to reduce the biological variability. A last important factor 

influencing the results is the reproducibility of the Raman spectroscopy measurements. The 

technique’s sensitivity to phenotypes is an advantage in comparison to other methods yet at 

the same time, technical variability can make the reproducibility or the detection of small 

differences difficult. In the results shown above we demonstrate that leaving an old sample of 

the same bacteria changes significantly and is, regardless of the method used, wrongfully 

classified as a separate subpopulation. Additional research towards standardization could 

help to reduce or estimate the still unknown impact of these technical biases.  

Thus, to improve the results, a non-linear unmixing algorithm could be implemented. But, to 

our knowledge, no mathematical models are available describing how Raman spectra 

combine to a single summary spectrum. This is in part also due to the complex physical and 

biological interactions influencing the outcome. Alternatively, machine learning algorithms 

can also be used. In contrast to hyperspectral unmixing, this approach does not rely on a 

mathematical assumption yet deduces a model based on the spectra. A drawback of 

machine learning is that, for each set-up, a model should be trained and validated. Rubbens 

et al. (2017) published comparable research based on flow cytometry and used both LDA 



Single-cell Raman spectroscopy of bacteria populations 

127 

and random forests to discriminate different microbial species of both in silico and in vitro 

mixtures of two bacteria populations. For more than half of the analyzed samples they 

identified single cells with >90% accuracy. Moreover, similarly to our findings, they report 

different performances depending on the bacteria pair. Our comparable findings show that, 

next to flow cytometry, also Raman spectroscopy can be used to identify and quantify 

microbial species in a microbial community. A fundamental difference between the 

techniques is the sensitivity. While flow cytometry only acquires around 24 parameters per 

cell, Raman spectroscopy acquires hundreds of features per cell. This difference might not 

be reflected by the performance of unmixing algorithms on a mixture of two bacteria 

populations but certainly will prove to be an advantage when more species are mixed and 

when different physiological states have to be taken into account. 
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Figure 5 - 7: The predicted abundance in function of the in silico (blue) or in vitro (red) 
fraction for three pairs of bacteria. Delftia acidovrans DSMZ 14801 and Lactobacillus casei 
subsp. casei LMG 6904 (A), Citrobacter werkmanii DSMZ 17579 and Pseudomonas 
fluorescens LMG 1794T (B), and Cupriavidus necator LMG 1190 and Micrococcus luteus 
LMG 3293 (C). 
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5 Conclusions and perspectives 

In this chapter we demonstrate that single-cell Raman spectroscopy can used to differentiate 

among microbial phenotypes. Furthermore, we compared several common and new data 

analysis methods and show that not all are equally successful to resolve the different 

phenotypes. Based on our results, we conclude that hierarchical clustering is the best 

unsupervised method although PCA also showed satisfying results. When supervised 

methods are used, random forests are clearly superior to the other methods tested in this 

paper. Our findings are in line with the findings of other researchers and confirm that Raman 

spectroscopy is the best method developed so far for microbial phenotyping. However, to 

meet the demands of modern research, higher throughput is necessary. Recent advances in 

other types of Raman spectroscopy are promising and potentially the solution to this issue. 

Further research towards the implementation of these novel techniques should be 

encouraged. Finally, we also demonstrate that Raman spectroscopy of microbial 

communities can be used to identify and quantify the present bacteria populations. In this 

chapter we proposed hyperspectral unmixing and showed that relatively good results could 

already be achieved. The main drawback of this approach is the underlying assumption of 

linearity which does not take biological and technical variations into account. Better results 

could be achieved using machine learning algorithms yet further research is necessary to 

prove this. 
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CHAPTER 

  6 
PHENOTYPIC PLASTICITY OF COCULTURES 

1 Abstract 

With the advent of single-cell technologies, the scientific focus in microbiology is increasingly 

on the individual cells. The multiple reports about the impact of phenotypic heterogeneity on 

microbial cultures emphasize the importance of this deeper level of microbial organization. It 

is now well-established that several mechanisms are responsible for the occurrence of 

phenotypic diversity and that this diversity is useful for bacteria to survive and to cope with 

environmental changes. Most observations and research of phenotypic heterogeneity is 

based on observations of axenic cultures while in nature, bacteria do not live as axenic 

populations but rather as communities. Furthermore, detecting phenotypic diversity is 

challenging and for practical reasons, a fast and single-cell technique should be used. Flow 

cytometry and Raman spectroscopy are ideal for this purpose and could help to understand 

how phenotypic heterogeneity affects cell populations in a community. In this chapter, we 

demonstrate that both flow cytometry and Raman spectroscopy are suitable to detect 

phenotypic changes and that both methods are complementary. For this we developed 

microcosms which allowed individual cell populations to interact while remaining physically 

separated. We found that both species adapted to the presence of the other and that the 

level of phenotypic plasticity1 was different for both species. 

 

 

 

 

 

Chapter redrafted after: 

Heyse, J., Buysschaert, B., Props, R., Rubbens P., Skirtach A., Boon, N. Phenotypic 
plasticity in cocultures. In preparation 
                                                           
1 Phenotypic plasticity refers to the changes in an organism’s phenotype due to its adaptation 
to a unique environment. 
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2 Introduction 

Phenotypic diversity has developed into a field of interest in microbiological research and a 

range of questions have emerged, such as whether this diversity is negligible in comparison 

to taxonomic diversity or diversity caused by environmental gradients, and how the 

properties of microbial communities are shaped by the fact that microbes act as individuals 

(Ackermann, 2013, Ackermann and Schreiber, 2015). 

Several mechanisms have been reported to induce cell-to-cell heterogeneity. A first 

mechanisms is related to the genetic differences but, as phenotypic differentiation occurs at 

rates higher than any known mutational mechanism and as it is robust against the 

suppression of mutational mechanisms, it cannot be considered as the most prominent 

cause (Ackermann, 2015). Another and more important mechanism is the stochasticity or 

noise in gene expression (Ansel et al., 2008, Fraser and Kaern, 2009, Avery, 2006). The 

level of stochasticity is an evolved trait that reflects the potential costs and benefits related to 

the gene expression. For example, proteins that signal responses to environmental 

perturbations are noisier compared to proteins for synthesis (Newman et al., 2006). 

Heterogeneity in cell properties causes some individuals to exhibit features that will allow 

them to persist during fluctuating or adverse conditions, such as during exposure to 

antibiotics (Balaban et al., 2004). This way heterogeneity might serve as a survival strategy. 

Another advantage is the potential to divide labor between phenotypes which then interact 

(Ackermann et al., 2008). For example, Veening et al. (2008) observed that only a part of a 

Bacillus subtilis population excreted an exoprotease while the entire population could benefit 

from the exoprotease activity. Even in ‘simple’ microcosms containing only a single carbon 

source, clonal populations can differ in gene-expression and metabolic activity (Nikolic et al., 

2013). Environmental factors, such as nutrient status, influence phenotypic heterogeneity in 

clonal populations as well (Schreiber et al., 2016). These studies have revealed that isogenic 

bacterial populations are not homogeneous populations, but rather communities consisting of 

different phenotypic subgroups, which can differ from each other both in a quantitative (i.e. 

continuous variation in phenotypic traits) and qualitative (i.e. distinct phenotypic states) way. 

Phenotypic diversity is a population property which manifests itself at the level of individuals. 

To assess this fine scale diversity, tools that can reliably measure characteristics of single 

cells without disturbing their biochemical state are necessary. Flow cytometry is a laser-

based technology that analyses individual cells by sending them through a beam of light by a 

fluid stream. Two types of optical properties can be detected in the flow cytometer, that is 

scattered light and fluorescence. In general, the scattered light provides information about 

the basic characteristics of the cells (e.g. size, intracellular properties) and the fluorescent 
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light provides additional information of the cell features that were stained. Another technique 

is single-cell Raman spectroscopy which assesses the chemical composition of a sample by 

evaluating the Raman scatter of the molecules (e.g. proteins, nucleic acids, fatty acids, etc.). 

This results in a very complex spectrum that can be interpreted as a chemical fingerprint of 

the cell (van de Vossenberg et al., 2013), which can be used for phenotypic characterization 

of bacteria (Read et al., 2013). 

In nature, bacteria are not encountered as axenic cultures, but they are part of a community 

where many microorganisms coexist. Phenotypic heterogeneity has been shown to play a 

role in the functionality and productivity of industrial cultures (Delvigne and Goffin, 2014, 

Muller et al., 2010). But, to our knowledge, little research has been performed on the role and 

occurrence of phenotypic diversity in natural microbial communities (Ackermann, 2013). In 

this chapter, we compared two bacteria strains under axenic conditions, as cocultures where 

both species were grown together while being physically separated by a membrane, and as 

a truly mixed culture. 

3 Materials and methods 

3.1 Isolates 

An Enterobacter sp. and a Pseudomonas sp. were selected from a set of drinking water 

isolates which were provided by Pidpa (Provinciale en Intercommunale Drinkwater-

maatschappij der Provincie Antwerpen, Belgium). The selection was based on two criteria: 

both bacteria had distinctly different cytometric fingerprints (Rubbens et al., 2017) and could 

reach the stationary phase within 24 hours. The isolates were identified with Sanger 

sequencing. 

3.2 Experimental set-up 

Before the start of the experiment, both bacteria were plated on nutrient agar plates (Oxoid). 

From each plate, a single colony was picked and transferred to liquid minimal medium (M9 

with 200 mg/L glucose as carbon source). After two days of incubation at 28°C, cell densities 

in the liquid cultures were determined by flow cytometry and the cultures were diluted to the 

desired starting cell densities in fresh medium. The required dilution was high enough to 

neglect differences in volume of fresh medium, and thus resources for growth, that were 

needed to prepare the cultures. The starting cell densities were set to have an initial cell 

density of 106 cells/mL in each microcosm. 
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Microcosms were prepared in transwell plates (Corning® Costar® 6-well cell culture plates, 

Corning Incorporated) where apical and basal compartments were created using cell culture 

inserts (ThinCert™ Cell Culture Inserts with pore diameter 0.4 μm, Greiner Bio-One). The 

membranes of the culture inserts were replaced by membranes with smaller pore sizes to 

avoid migration of bacteria between the two phases (Cyclopore® polycarbonate and polyester 

membranes with 0.2 μm pore size, Whatman). Four microcosms were created (Figure 6 - 1). 

Both isolates were grown in axenic conditions as a non-interacting reference. A coculture 

with a membrane between both taxa was prepared to study the community members 

separately while they could interact through the membrane. Lastly, a mixed culture without 

physical separation, representing ‘full interaction’, was made. Each microcosm was prepared 

in triplicate and randomized over the plates to account for plate effects. The plates were 

incubated at 28°C and gently shaken (25 rpm) to aid diffusion of the metabolites between the 

compartments. The communities were monitored over a period of 72 hours. Every 24 hours 

samples were analyzed by flow cytometry. After 72 hours, samples were also fixed and 

subsequently analyzed with Raman spectroscopy.  

 
Figure 6 - 1: Illustration of the experimental set-up. Bacteria in apical and basal phase can 
interact while they are physically separated by a membrane with a 0.22 μm pore size at the 
bottom of the cell culture inserts. Four microcosms were created: two axenic cultures, a 
coculture and a mixed culture. For each synthetic community biological triplicates were 
prepare. 

3.3 Raman spectroscopy 

The fixation protocol for Raman spectroscopy was adapted from a previously described 

protocol (Read and Whiteley, 2015). 1 mL of cell-suspension was centrifuged for five minutes 

at room temperature and 5000 g. The supernatant was discarded and the cell pellet was 

resuspended in cold, 0.22 μm-filtered PBS (4°C). The cell-suspension was again centrifuged 

for five minutes at room temperature and 5000 g. The supernatant was discarded and the 

cell pellet was resuspended in the fixative, 0.22 μm-filtered 4% (v/v) paraformaldehyde in 

PBS (pH 7.2). The sample was allowed to fix for one hour at room temperature, in the dark. 

The fixative was removed by centrifuging for five minutes at room temperature and 5000 g 

and resuspending the pellet in cold, 0.22 μm-filtered PBS (4°C), twice. The fixed sample was 

stored at 4°C. Prior to analysis, the fixed sample was centrifuged for five minutes at room 
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temperature and 5000 g and the pellet was resuspended in 0.22 μm-filtered milli-Q (4°C). 10 

μL of cell suspension was spotted onto a CaF2 slide (Crystran Ltd.) and allowed to dry. The 

dried sample was analyzed immediately using a WITec Alpha300 R+ confocal Raman 

microscope with a 100x/0.9NA objective (Nikon), a 785 nm excitation diode laser (Toptica) 

and a UHTS 300 spectrometer with a -60°C cooled iDus 401 BR-DD CCD camera (Andor 

Technology Ltd.). Laser power before the objective was measured daily and was about 150 

mW. Spectra were acquired in the range of 110-3375 cm-1 with 300 grooves/mm diffraction 

grating. For each single cell spectrum, the Raman signal was acquired over 40 seconds. All 

Raman samples were analyzed within one week after sampling, with minimal time between 

them to limit possible differences caused by differences in duration of the storage. For each 

population between 51 and 55 single-cell spectra were measured from a single biological 

replicate. To equalize the sample size, 51 spectra of each sample were selected for further 

analysis. Spectra with the lowest intensity were assumed to be of lesser quality, therefore the 

spectra with the lowest average intensity were discarded. 

3.4 Flow cytometry 

For flow cytometric analysis, the samples were diluted and stained with SYBR® Green I (SG, 

100x concentrate in 0.22 μm-filtered DMSO, Invitrogen). Staining was performed as 

described previously (Prest et al., 2013), with incubation for 20 min at 37°C in the dark 

Samples were analyzed immediately after incubation on a FACSVerse™ flow cytometer (BD 

Biosciences) with nine fluorescence detectors (527/32nm, 783/56 nm, 488/15 nm, 586/42 

nm, 700/54 nm, 660/10 nm, 783/56 nm, 528/45 nm and 488/45 nm), a scatter detector and a 

blue laser (20 mW, 488 nm), a red laser (40 mW, 640 nm), and a violet laser (40 mW, 405 

nm). 

3.5 Data analysis 

3.5.1 Phenotypic diversity analysis 

The data was imported in R v3.3.1 (R Core Team, 2015) using the flowCore package v1.40.3 

(B. Ellis). A quality control of the datasets was performed using the flowClean package 

v1.12.0 (Fletez-Brant et al., 2016). After quality control, the background of the fingerprints 

was removed by manually creating a gate on the primary fluorescent channels. The 

PhenoFlow package v1.1 (Props et al., 2016) was used to assess the phenotypic community 

structure of the bacterial populations. In short, for each bivariate parameter combination (e.g. 

scatter and fluorescence parameters) a binning grid is applied, this binning grid discretizes 
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the parameter space with each bin representing an operational phenotype. For each bin a 

kernel density estimation is applied. All density estimations are summed to the total density 

estimation of the community. The density values for each of the bins are then concatenated 

into a 1D-vector, which is called the ‘phenotypic fingerprint’. From this fingerprint, the alpha 

diversity (i.e. within sample diversity) is calculated by means of the Hill diversity numbers and 

beta diversity (i.e. between sample diversity) is evaluated using the Bray-Curtis dissimilarity. 

Prior to diversity estimation, all populations were subsampled to 20 000 cells in order to have 

similar uncertainty levels. 

3.5.2 In silico communities 

After gating, the data was exported from R under Flow Cytometric Standard (FCS) format. 

The files were converted to comma-separated values (CSV) files to be further analyzed in 

Python, using the InSilicoFlow pipeline (Rubbens et al., 2017). In short, a fingerprint of the 

axenic cultures that make up the synthetic community is made. Next, the data of the axenic 

cultures is aggregated to a so-called ‘in silico community’. This in silico community consists 

of labeled data, which allows the use of supervised machine learning techniques. A classifier 

is trained to learn the difference between the fingerprints of the community-members. The 

label to be predicted is the taxon and the predictors are the scatter and fluorescence 

parameters. Once this classifier has been trained on the dataset, it can be used to predict the 

relative abundances of the taxa in a mixture. For training of the random forest, the biological 

replicates were pooled together and 10 000 cells of both taxon A and taxon B were randomly 

sampled. The data was partitioned into a balanced (i.e. the cell numbers for taxon A and 

taxon B are equal in these datasets) training and test set of 70% and 30% respectively. For 

this the cytometric fingerprints of the cocultures at the corresponding time points were used. 

3.5.3 Raman data analysis 

The data was analyzed in R v3.3.1. Spectral preprocessing was adapted from the study of 

Berry et al. (2015), using the package MALDIquant v1.16 (Gibb and Strimmer, 2012). In 

short, baseline correction was performed using the statistics-sensitive non-linear iterative 

peak-clipping (SNIP) algorithm. Next, the biologically relevant part of the spectrum (600-1800 

cm-1) was selected, over which the spectra hold 333 data points. The spectra were 

normalized by surface normalization and the necessity for peak alignment was evaluated. 
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4 Results and discussion 

To assess the influence of cell-cell interactions on the phenotypic diversity of bacteria in 

microbial communities, microcosms with an Enterobacter sp. (bacterium A) and a 

Pseudomonas sp. (bacterium B) were prepared. One microcosm was prepared as coculture 

where the taxa were physically separated with a membrane but which allowed cell-cell 

communication. Another microcosm contained a mixed culture without physical separation 

between both taxa. The taxa were also cultured in axenic conditions as reference. To assess 

the changes in phenotypic diversity, both flow cytometry and Raman spectroscopy were 

used. 

4.1 Flow cytometry 

A comparison of the cytometric fingerprints based on the Bray-Curtis similarity measure 

shows that both taxa were clearly distinguishable when cultured in axenic conditions while 

the mixed culture was situated between both (Figure 6 - 2). The populations showed a 

significant shift in their cytometric fingerprints through time (p = 0.001, r2 = 0.158). In addition, 

there was a significant difference in the fingerprints of taxon A as axenic culture compared to 

taxon A as coculture (p = 0.001, r2 = 0.412). For taxon B the differences in the fingerprints 

between the axenic culture and the coculture were not significant (p = 0.089, r2 = 0.168). The 

mixed culture shifted from a community with a cytometric fingerprint that was more similar to 

taxon A after 24 hours, towards a community with a cytometric fingerprint that was more 

similar to taxon B after 48 and 72 hours of incubation. Using the method described by 

Rubbens et al. (2017), an estimation of the relative abundance of taxon A and taxon B in the 

sample could be made with a model trained with the cytometric profiles of the cocultures at 

the corresponding time points. The abundance of taxon A was estimated to be 63% after 24 

hours but decreased to 33% and 29% after 48 and 72 hours respectively. When the relative 

abundance of both taxa of the mixed culture were estimated with a model based on the 

cytometric fingerprints of the pure cultures at the corresponding time points or with a model 

based on the cytometric fingerprints of the pure cultures after 24 hours of incubation, the 

results showed to be different though all estimated a decrease over time of taxon A in the 

mixed culture suggesting that taxon B outcompeted taxon A in the mixed culture. Although 

this result showed to be consistent regardless of how the model was trained, care should be 

taken when considering the estimated relative abundance of both taxa as contact-dependent 

interactions could not be taken into account. In the cocultures no important decrease in cell 

density was observed over time for both taxa.  
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Figure 6 - 2: PCoA ordination of the Bray-Curtis dissimilarities between the phenotypic 
fingerprints for all individual bacterial taxa in communities of axenic cultures, cocultures and 
mixed cultures. There were biological triplicates for each community. ‘AB treated with fresh 
medium’ refers to the mixed community without physical separation between the taxa. ‘A 
treated with B’ refers to the cytometric fingerprint of taxon A in coculture with taxon B and ‘A 
treated with fresh medium’ refers to the fingerprints of taxon A as axenic culture. Similar 
nomenclature was used for taxon B. 

The changes of the of the Hill number diversity indices in function of time per taxon reveal 

that the cytometric diversity in axenic cultures was larger than the cytometric diversity per 

taxon in coculture (Figure 6 - 3). Moreover, the differences between the diversity indices of 

the axenic cultures and the cocultures became larger over time. This result suggests that 

also the phenotypic diversity per taxon was lower in cocultures than in axenic cultures. A 

contrast analysis of the cytometric fingerprints between the cocultures and the axenic 

cultures in function of time shows that the cell population of taxon A in coculture shifted 

towards a smaller and more fluorescent population as compared to the axenic culture 

(Figure 6 - 4). For taxon B the difference was limited, with a small enrichment of a population 

with lower fluorescence intensity. Both the similarity and the Hill number diversity indices (D0 

and D2) showed that the effect of microbial interaction on the phenotypic diversity was more 

pronounced for taxon A than for taxon B, indicating that both bacteria show phenotypic 

plasticity but that the taxa have different phenotypic responses to the interaction. 
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Figure 6 - 3: Hill diversity parameters D0 (richness) and D2 (diversity) for both individual 
bacterial taxa in communities of axenic cultures, cocultures and mixed cultures. Error 
intervals on the D2 are generated by bootstrapping (999 bootstraps). There were biological 
replicates (n = 3) for each community. The dashed lines indicate the average trend of the 
replicates. Results for D1 are not shown since D1 is highly correlated with D2 ( rp = 0.97). 

The contrast analysis of the cytometric fingerprints showed that the differences in scattering 

patterns were limited for both taxa, thus, there were no large changes in cell morphology 

(data not shown) but that the differences between the phenotypes was related to a higher 

fluorescence intensity of taxon A, and lower fluorescence intensity of taxon B. Since SG 

staining is a nucleic acid dye, a higher (or lower) fluorescence signal is directly related to a 

changed nucleic acid profile (Johnson and Spence, 2010). Two possible mechanisms could 

cause an increased fluorescence intensity, and inversely, a decreased fluorescence 

intensity. On one hand, the DNA copy number could have increased, increasing the 

fluorescence signal and suggesting cell replication. Although no growth was observed for 

both bacteria, it is possible that, under environmental stress, the bacteria adapt their cell 

cycle behaviour and chromosome content while maintaining a constant growth rate (Lieder et 

al., 2016). On the other hand, RNA yields weaker fluorescent signals upon binding with 

SYBR green I in comparison to dsDNA (Solopova et al., 2014, Johnson and Spence, 2010) 

and an increased fluorescence intensity could be attributed to a lower RNA content, 

indicating a shift in their gene expression. It has been established before that the gene 

expression shifts when bacteria are cocultured but no clear evidence whether the overall 

RNA content per cell increases or decreases has been reported (Sadabad et al., 2015, 

Gonzalez-Torres et al., 2015). Metabolic specialization could explain how certain genes can 

be upregulated while inducing an overall decrease in RNA concentration per cell (Johnson et 

al., 2012). 
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Figure 6 - 4: Contrast analysis of the cytometric fingerprints between the axenic cultures and 
coculture members for each time point. Contrasts were calculated for taxon A (A, upper 
row) and taxon B (B, lower row) and were averaged over the biological triplicates. The color 
gradient indicates whether populations in the coculture increased (purple) or decreased (dark 
green) relative to their respective axenic culture at the specified time point. Pale green 
indicates no or very limited changes. If the difference between the two communities is lower 
than 0.01 no contrast value is shown on the graphs, which causes the appearance of 
different clusters. 

4.2 Raman spectroscopy 

In parallel with flow cytometry, Raman spectroscopy was used to assess the phenotypic 

plasticity of both microbial taxa by measuring single-cell spectra of both taxon A and taxon B 

in the axenic cultures and in the coculture. A large peak in the range of 810 - 1030 cm-1 was 

present in the spectra of taxon A in the axenic culture, while this peak was not observed in 

any of the other populations. Intensity values showed large variability for this region. Since 

this might be the result of technical issues during fixation or storage of the sample, this 

region was excluded for further analysis (Figure 6 - 5).  
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Figure 6 - 5: Average Raman spectra of the single-cell measurements. The region of 810 - 
1030 cm-1 was excluded for analysis, since technical issues during fixation or storage of the 
sample might have influenced this region. Taxon A in axenic culture (A), taxon A in coculture 
(B), taxon B in axenic culture (C) and taxon B in the coculture (D) are illustrated. Colored 
bands indicate the standard deviations. All average spectra are based on 51 single cell 
measurements. 
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To gain insight in the difference between the phenotypes of each microcosm, spectra were 

visualized with PCA (Figure 6 - 6). The spectra of both taxa are separated well and the 

spectra of the same taxon with a different treatment are separated relatively well for taxon A, 

but not for taxon B. However, when performing PCA for each taxon separately, cells from 

each microcosm can be separated well (Figure 6 - 6b and c). Similar to the flow cytometric 

results, the differences were larger for taxon A than for taxon B. 

 
Figure 6 - 6: PCA for all single cell Raman spectra (A), for taxon A (B) and taxon B (C). 
There are 51 single cell measurements for each population. Spectra were scaled and 
centred before performing PCA.  

A comparison of the peak profiles between the taxa as axenic culture and their coculture 

counterpart provides an insight in the biological causes of the observed differences. For 

taxon A, a higher level of nucleic acids was observed for the coculture in comparison with its 

axenic counterpart (wavenumbers 1053 cm-1: nucleic acids; 1254 cm-1: thymine, cytosine, 

adenine, and amide III; 1304 cm-1: adenine, and amide III; 1486 cm-1: nucleic acid 

backbone). The higher fluorescence intensity detected by flow cytometry combined with 

evidence of an overall higher nucleic acid content suggests a higher cell replication of taxon 

A in coculture. For taxon B, a lower concentration of nucleic acids, lipids, and proteins was 

observed in comparison with its axenic counterpart (wavenumbers 665 cm-1: guanine; 779 

cm-1:nucleic acids; 1064 cm-1: C-N and C-C stretching; 1297 cm-1: CH2 deformation; 1441 
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cm-1: lipids ; 1675 cm-1: amide I) (Table 5 – 1, Chapter 5). Especially wavenumbers 1064 

cm-1 and 1441 cm-1 were important suggesting that especially the lipid concentration in of the 

cells was lower when taxon B was cocultured. These changes could be caused by a 

reduction of polyhydroxyalkanoic acids (PHAs) in the cells. PHAs are storage lipids and 

Pseudomonas sp. are known to synthesize them under several conditions. 

The results of both flow cytometry and Raman spectroscopy confirm that both taxa exhibit a 

different level of phenotypic plasticity. For flow cytometry, the phenotypic traits contributing to 

the fingerprints are both the scatter signals (cell size and morphology) and fluorescence 

(nucleic acid content) but contrast analysis of those fingerprints revealed that only the nucleic 

acid content caused the detection of the phenotypic plasticity. Taking only these traits into 

account is an abstraction of the phenotypic diversity of the bacteria. Moreover, any 

phenotypic trait which is not related to the nucleic acid content or cell size and morphology 

could potentially remain undetected. Raman spectroscopy is a holistic method as it provides 

a single-cell fingerprint based on all molecules in the cell. This makes it possible to give a 

better biological interpretation of the observed differences. The comparison of the spectra 

showed that taxon A had a higher concentration of nucleic acids when cocultured and that 

taxon B had a lower concentration of nucleic acids, lipids and possibly proteins when in 

coculture. Results were similar to the results provided by flow cytometry despite the higher 

information content of the spectra. This suggests that both nucleic acid composition and the 

physiology are correlated and that the sensitivity of SG for small changes of nucleic acid 

suffices for the detection of small changes in nucleic acid profiles. Although Raman signals 

are weaker for each molecule, the multitude of molecules contributing to the fingerprints 

compensate for the signal weakness. Several methods could be implemented to improve the 

Raman signal strength and subsequently the sensitivity of the method (Introduction). 

Another downside of the method is that Raman spectroscopy still suffers from a low 

throughput. Phenotypic plasticity has been observed before and a well-known example is the 

adaptation of rhizobia bacteria which differentiate in the roots of leguminous plants 

(Fabaceae) to nitrogen fixing phenotypes (Koch et al., 2010). In many cases, phenotypic 

plasticity is determined on one or a subset of specific genes or traits (Kummerli et al., 2009, 

Corno and Jurgens, 2006). Alternatively, transcriptomics or proteomics can be used (Koch et 

al., 2010, Barauna et al., 2017). Read et al. (2013) used Raman spectra of Campylobacter 

cells could be classified according to their host of origin and is to our knowledge, the only 

publication reporting phenotypic plasticity with Raman spectroscopy. 
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5 Conclusions and perspectives 

Flow cytometry and Raman spectroscopy have been proposed as fast and single-cell 

techniques for the phenotypic characterization of bacteria. In this chapter, we used both 

methods to determine the phenotypic diversity of two strains in a coculture. We showed that 

the bacteria exhibit phenotypic plasticity and that the adaption was different for the different 

species. Furthermore, we showed with flow cytometry that the phenotypic switch is related to 

a change in nucleic acid content though we could not precisely determine how the nucleic 

acid profile of the populations changed. Raman spectroscopy confirmed that the difference 

between the two populations of taxon A was due to an higher concentration in nucleic acids 

of the population grown in coculture which suggests a higher replication rate of taxon A in 

coculture. For taxon B, mainly a lower concentration in lipids was observed when in 

coculture. Finally, we conclude that Raman spectroscopy and flow cytometry are both useful 

for the phenotypic characterization of microbial cells.  
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CHAPTER 

  7 
SUBSTRATA DEFINE BIOFILM ECOLOGY IN WATER 

DISTRIBUTION SYSTEMS 

1 Abstract 

Microorganisms in drinking water distribution systems play an important role in the water 

quality. Biofilms harbor a large fraction of these bacteria and can cause problems to the 

water industry as they can be a potential source of bacterial contamination, affect taste and 

odor, and cause biocorrosion of pipe materials. Since sampling biofilms from a water 

distribution systems is difficult or impossible in practice, we investigated if the bulk water can 

be used to describe the biofilms. In this chapter, we attempted to establish the relationship 

between the flow cytometric fingerprints of the bulk water and the biofilm. We show that flow 

cytometry can be used to monitor biofilm growth and demonstrated that both microbial 

communities follow different dynamics. Furthermore, the influence of the source of water and 

the pipe materials on the cytometric fingerprints was illustrated in batch tests and, in the case 

of the piping materials, also with a lab-scale flow-through system. Results show that plastic 

materials supported more biofilm growth than metallic materials. Finally, we show that 

Enterobacter amnigenus type II, a common drinking water contaminant, was able to invade 

biofilms and grow in water. 
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2 Introduction 

Microbial quality of drinking water is of major importance to water distribution utilities as 

bacteria can affect the taste, color, and odor of drinking water. More importantly, pathogenic 

bacteria can lead to disease outbreaks and threaten public health. Between 2000 and 2007 

there were 354 outbreaks of waterborne diseases related to drinking water, resulting in over 

47 617 episodes of illness reported by 14 European countries (Miettinen, 2009). However, 

the presence of bacteria in drinking is inevitable. Typically, a distinction is made between 

three spatial locations for bacteria: the bulk water phase, the biofilms formed on the pipe 

surfaces and the sediments formed as a result of particle deposition (Prest et al., 2016). The 

bulk or planktonic water bacteria are the smallest fraction and concentrations between 103 

and 106 bacteria/mL, measured with flow cytometry, have been observed without adverse 

effect on human health (Hammes et al., 2008). Biofilms are putatively the largest fraction of 

drinking water bacteria (Flemming, 2002), but recent research showed that also the 

sediments contain an important fraction of the bacteria (Liu et al., 2013). Biofilm cell density 

can vary significantly with cell numbers in the range of 104
 to 108 cells/cm2 (Prest et al., 

2016). The formation of a biofilm starts with the initial attachment of the planktonic 

microorganisms to the pipe surface. After attachment to the surface, the bacteria undergo 

further adaptation and the biofilm growth and maturation begins. During the maturation, 

mushroom-like structures are formed in the biofilms and planktonic organisms detach from 

the biofilm and seed the bulk water (Garrett et al., 2008). At a certain point, a steady state is 

reached at which the biofilm itself does not grow but where the embedded bacteria actively 

grow, and disperse in the bulk water. Inversely, planktonic bacteria from the bulk water or 

pathogens can attach to preexisting biofilms where they integrate and survive for a prolonged 

period of time (Flemming and Wingender, 2010). In this way, biofilms can potentially act as a 

source of harmful organisms. To avoid the dispersion of unwanted organisms in the drinking 

water distribution systems (DWDS), DWDS are disinfected with biocides such as chlorine, 

chloramine or chlorine dioxide (White, 1988, Berry et al., 2015). However, the spatial 

structure of a biofilm, the occurrence of persister cells, and encapsulation of the bacteria in 

an extracellular polymeric substance make biofilms very resistant to disinfection or other 

types of treatment (Emtiazi et al., 2004, Tachikawa et al., 2005, Gagnon et al., 2005). Also, 

biocides can result in unwanted by-products (Bull, 1982) or deterioration of taste and odor 

(Bryan et al., 1973). 

The community composition of the biofilms varies depending on pipe materials, disinfection 

strategies, temperature, and the age of the biofilms. The most common materials used for 

DWDS are: galvanized steel, cast iron, copper, polyvinylchloride (PVC), unplasticized 

polyvinylchloride (UPVC), chlorinated polyvinylchloride (CPVC), polybutylene (PB) and 
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polyethylene (PE) (WHO, 2006). Metallic materials have been used to transport drinking 

water for quite a long time all over the world. Galvanized piping is often used around the 

world because of its low cost, but its popularity is declining due its susceptibility for damage 

in case warm water is used (Nielsen and Yding, 1983). Similarly, cast iron pipes often lead to 

water discoloration due to corrosion, especially in case of higher residence times. Copper 

pipes suffer less from corrosion than iron pipes (WHO, 2006). In contact with most drinking 

water supplies, copper is able to develop a protective layer of copper oxides and carbonates 

on the inside of the pipe. This layer limits the amount of copper that can dissolve in the water 

and ensures that the amount stays below the maximum of 2 mg/L, as mentioned in the 

Drinking Water Directive (EU, 1998). In general, metallic plumbing is mainly accepted for 

outdoor use, but, because of its high mass and inflexibility, it is not often applied for internal 

water plumbing. Also, a wide variety of non-metallic materials are applied in DWDS. CPVC 

and UPVC, both PVC derivatives, are more suitable for drinking water applications due to 

their smooth internal surface. They are also able to transport water for long distances without 

problems of pressure loss, pitting or scaling. Both plastics can become brittle when exposed 

to UV for a prolonged time which makes them more suitable for underground piping. 

Polyethylene (PE) is a commonly used type of material. It is very light and flexible and is the 

preferred material for long-distance transportation of drinking water (WHO, 2006). Besides 

pipe material, many other factors control the microbial growth in DWDS. A key aspect are the 

available nutrients in the water (e.g. carbon, nitrogen, and phosphorus) and microbial growth 

can thus be controlled by removing and limiting the available nutrients with adapted water 

treatment processes (Vanderkooij et al., 1982). Though drinking water distribution systems 

are commonly underground, they are still subject to temperature fluctuations (Liu et al., 

2013). These fluctuations can also have a significant effect on the biofilm formation and 

microbial growth. Pinto et al. (2014) showed that microbial communities in drinking water 

change seasonally, which is related to the competitive advantage of specific species in 

defined temperature ranges (Prest et al., 2016). Furthermore, also flow rate variations, pH, 

the age of the distribution system, and the source of water (e.g. ground water or surface 

water) play a role in the composition of microbial communities and in the structure of the 

biofilms. 

Because bacteria are ever-present and because disinfection alone is insufficient, a good 

monitoring of the microbial quality is necessary. Monitoring of bacterial communities can be 

done in a number of ways but conventionally, and for legislation, plating methods are used. 

Though plating methods are useful, they are not without limitations (De Roy et al., 2012, 

Wang et al., 2010) and alternative methods are explored. Flow cytometry has shown to be a 

promising method as it a fast and cheap method, able to quantify bacteria. Moreover, with 
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additional ‘fingerprinting’ algorithms, extra information can be extracted from each 

measurement (Prest et al., 2013, Props et al., 2016, Buysschaert et al., 2017). Props et al. 

(2016) and Koch et al. (2013c) both showed that when microbial communities changed, the 

subsequent fingerprint also changed. In this way, flow cytometry can be used to monitor the 

community dynamics of the bulk water in the DWDS. In practice biofilms are often impossible 

to sample for monitoring, yet their role in the drinking water quality is significant and it is 

hypothesized that they seed the microbial community of the bulk water by dispersion of 

bacteria from the biofilm. In this chapter, we attempted to establish the relationship between 

the flow cytometric fingerprints of the bulk water and the biofilm and demonstrate that both 

microbial communities follow different dynamics. Furthermore, the influence of the source of 

water and the pipe materials on the cytometric fingerprints was illustrated in batch tests and, 

in the case of the piping materials, also with a lab-scale flow-through system. The dynamic 

and protective nature of biofilms increases the risk for drinking water contaminants to 

colonize the biofilm and to subsequently jeopardize the water quality, regardless of the water 

treatment. We showed that Enterobacter amnigenus type II, a drinking water contaminant 

isolated from a DWDS, was able to colonize biofilms and to grow in clean water. 

3 Materials and methods 

3.1 Set-up 

3.1.1 Batch test with different sources of tap water 

A batch test was set up in glass vials. First, the vials were cleaned to remove the assimilable 

organic carbon (AOC) according to a previously described method (Charnock and Kjonno, 

2000). Briefly, vials and screw caps were washed once with detergent and once without, 

rinsed three times with milli-Q water, soaked overnight in 0.2 M HCl and again rinsed three 

times with milli-Q water. The glass vials were covered with aluminum foil and heated to 

550°C in a muffle oven for six hours to remove all trace organics. The screw caps were 

soaked in a 10% sodium persulphate solution at 60°C for at least one hour, rinsed three 

times with milli-Q water and finally air-dried. The AOC-free vials were filled with 15 mL of 

potable tap water from six different drinking water production plants. These production plants 

produce potable water of slightly different qualities from ground water in different regions 

(Table 7 - 1). To each type of water, coupons of PVC, CPVC, cast iron, and copper were 

added. Each coupon had a diameter of 12.7 mm and a surface of 1.26 cm². A series of 

blanks without coupon was included as well. The experiment was performed in 

quadruplicates for all materials. The vials were incubated at 21°C on a shaker at 90 rpm, 
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which resulted in an estimated water velocity of 0.15 m/s, for four weeks. After four weeks of 

incubation, the coupons were transferred in 50 mL milli-Q water and the biofilms were 

detached by sonication (Sonifier 250, Branson Ultrasonics) with a power of 200 W and an 

amplitude of 20 kHz for 80 seconds. Both the bulk water and the detached biofilms were then 

subsequently analyzed with flow cytometry. 

Table 7 - 1: Chemical and biological quality parameters from the water of the six different 
production plants. 

Region A B C D E F 

Origin 
  

ground 
water 

ground 
water 

ground 
water 

ground 
water 

ground 
water 

ground 
water 

E. coli CFU/ 100 mL <1 <1 <1 <1 <1 <1 
Enterococci CFU/ 100 mL <1 <1 <1 <1 <1 <1 

Total Coliformes CFU/ 100 mL <1 <1 <1 <1 <1 <1 
HPC (22°C) CFU/ 100 mL <1 4 3 3 4 <1 
Aeromonas CFU/ 100 mL absent absent 2 absent absent absent 
Conductivity μS/cm 401 223 320 466 389 479 
Temperature °C 12.7 12.9 12.9 12.5 12.4 11.8 

pH   7.7 8.2 7.7 7.8 8.1 7.5 
Free chlorine μg/L Cl2 <50 <50 <50 <50 <50 <50 
Total chlorine μg/L Cl2 93 <50 <50 <50 <50 90 

Nitrate mg/L 0.9 1.2 1.3 2 1.6 1.6 
UV254 abs/m 2.6 2.1 6.2 4.4 5.1 2.7 

3.1.2 Batch test with different materials 

Similarly to the previous test, a batch test was set up in AOC-free vials and filled with 15 mL 

of tab water. In this experiment, only one source of tap water was used. Coupons of PVC, 

CPVC, two types of UPVC, PE, PE80, PE100, PE100-RC, cast iron, and copper were added 

to the vials. Vials without coupons served as blanks. The experiment was performed in 

quadruplicates for all materials with the exception of UPVC type 2, PE80, PE100 and PE100-

RC, which were analyzed in duplicates. The vials were incubated at 21°C on a shaker (90 

rpm) for four weeks. The water was refreshed twice a week and subsequently analyzed with 

flow cytometry. After four weeks of incubation, the coupons were transferred in 50 mL freshly 

filtered milli-Q water and the biofilms were detached by sonication. The detached biofilms 

were also analyzed with flow cytometry. 

3.1.3 Lab-scale flow-through system 

A lab-scale flow-through system was built with six different pipes: PVC, CPVC, UPVC, PE, 

iron, and copper. All pipes had an inner diameter between 11.15 and 12.45 mm and were cut 

to the same length of approximately 1.5 m. The set-up was connected with an automatic 
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water distributor to a potable water tap. Every day, the six pipes were successively flushed 

for 15 minutes. The experiment was carried out for ten weeks (68 days). After a start-up 

period of 12 days, every two weeks, the stagnant bulk water inside the pipes was collected 

and biofilm samples were taken from every material. Biofilm samples were taken by cutting 

four pieces of 1.5 cm per pipe and biofilms were detached as described above. Both biofilm 

and bulk samples were analyzed in technical quadruplicates with flow cytometry. 

3.1.4 Microbial invasion 

A batch test was set up with four materials: PVC, CPVC, cast iron and copper. Again, AOC-

free vials were filled with a volume of 15 mL tap water. Of every material, four series of seven 

replicates were used: four replicates for flow cytometric analysis, one for fluorescence 

microscopy, a vial with autoclaved tap water and a blank vial without coupon. The 

experiment was performed in two parts. In the first part, a gfp-labeled Enterobacter 

amnigenus type II (see below), was added in vials containing clean and sterile coupons, 

while in the second part, the experiment was repeated with coupons that were already 

colonized by a four-week old biofilm and briefly rinsed with a 1.5 % (v/v) NaOCl solution 

before the experiment. All vials were incubated at 21°C on a shaker (90 rpm). After an initial 

incubation period of 12 days, the water of each vial was refreshed twice a week and 

analyzed on the flow cytometer. After 12 days and 19 days also the biofilms were analyzed 

with microscopy and flow cytometry (Figure 7 - 1). This was repeated for both parts of the 

experiment. 

 
Figure 7 - 1: Sampling frequency of the batch test for assessing Enterobacter amnigenus 
type II invasion of biofilms. This scheme was repeated for clean coupons and pre-colonized 
coupons. 

3.2 Transformation 

An Enterobacter amnigenus type II was isolated from a DWDS and identified by the drinking 

water company Pidpa (Belgium). To differentiate the strain from native drinking water 

bacteria, a fluorescent marker was inserted in the genome by introducing a gene that 
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encodes for a green fluorescent protein (GFP) with biparental bacterial conjugation. The 

Enterobacter amnigenus acceptor strain was first made resistant to 100 mg/L rifampicin (Rf) 

in Luria-Bertani (LB, Oxoid) broth medium. An Escherichia coli S-17 λ pir strain containing a 

pUT-miniTn5-Km plasmid with a GFP marker and resistance genes for kanamycin (50 mg/L 

Km) and ampicillin (50 mg/L Amp) acted as donor (Delorenzo et al., 1990). The donor was 

inoculated on a non-selective LB agar medium together with the resistant acceptor and 

incubated for 24 hours at 37°C. Subsequently, colonies were picked and transferred on LB 

agar medium with 50 mg/L Km (Sigma-Aldrich) and 100 mg/L Rf (Sigma-Aldrich). 

Successfully transformed bacteria were able to grow on both antibiotics. Fluorescence was 

assessed with UV illumination and with fluorescence microscopy. 

Before the experiment, the strain was grown on a selective LB agar medium with 50 mg/L 

Km and 100 mg/L Rf to ensure purity. After 24 hours of incubation at 37°C, the bacterial 

strain was incubated twice for 24 hours in M9 minimal medium containing 400 mg/L glucose. 

Subsequently, the bacterial suspension was centrifuged for ten minutes at 1500 g. The 

supernatant was removed and the bacterial pellet was resuspended in an equal amount of 

autoclaved and filtered tap water. This was repeated three times to ensure completely wash-

out of the growth media. After this washing step, 1 mL of the Enterobacter suspension, with a 

concentration of 5*108 cells/mL, was added to each vial. The Enterobacter concentration was 

assessed with flow cytometry during the test by comparing an unstained sample with an SG-

stained aliquot. 

3.3 Flow cytometry 

All samples were measured with a benchtop Accuri C6 cytometer (BD Biosciences). The 

stability of the instrument was controlled daily using 3 μm calibration beads (05-4018, 

Sysmex-Partec) and the instrument was calibrated according to the manufacturers standard. 

The blue laser (488 nm) was used for the excitation of the stains. The filters for the (fixed 

gain) photomultiplier detectors used during the measurements were 533 nm with a bandpass 

of 30 nm for the green fluorescence (FL-1) and 670 nm longpass filter for the red 

fluorescence (FL-3). The threshold was set on the 533/30 nm (FL-1) detector at the arbitrary 

unit of 500. Samples were stained with 10 μL/mL SYBR Green I staining solution (SG) to 

visualize the cells (Prest et al., 2013). 

3.4 Data analysis 

Unless mentioned otherwise, all data was extracted from the proprietary Accuri C6 Csampler 

software version 1.0.264.21 in the flow cytometry standard (FCS 3.0) format and 
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subsequently imported into R version 3.4.0 (R Core Team, 2015) through the functionality 

offered by the flowCore package v1.42.2 (B. Ellis et al.). Data was first log transformed and 

subsequently normalized by dividing all values by the maximum fluorescence intensity signal. 

No compensation was applied. Gating to reduce the background was performed in R studio 

using the flowCore package on all samples. A 0.22 μm-filtered control was used to determine 

the position of the background. Additionally, a stained sample of the dilution buffer was used 

to assess the quality of the dilution buffer and of the stain. Next, a single-step discretization 

(‘binning’) and Gaussian bivariate density estimation was performed on the selected 

parameters (green and red fluorescence, FSC-H and SSC-H) using the KernSmooth 

package (Wand, 2015). A binning grid of 128 x 128 was fixed for each bivariate density 

estimation (Props et al., 2016). All bivariate density estimations were concatenated to a one-

dimensional feature vector, which we refer to as the fingerprint. Subsequently, the 

dissimilarity of the fingerprints was calculated using the quantitative Jaccard distance 

measure (Ružička index) as implemented in the function vegdist from the vegan package 

v2.4-3 (Oksanen et al., 2016). Similarities were visualized with principal coordinate analysis 

(PCoA). Confidence ellipses were constructed at a confidence level of 95% and assumed a 

Gaussian distribution of the data. Cytometric diversity indices were calculated using the 

phenoflow package v1.1 (Props et al., 2016). Statistical significance between the samples 

was calculated using an analysis of variance (ANOVA) and, in the event of a significant 

contribution, pairwise comparisons were computed. The statistical significance was 

computed using Tukey’s post-hoc test and all differences resulting in p-values < 0.05 were 

considered significant. 

4 Results and discussion 

The impact of different sources of drinking water and piping materials on the flow cytometric 

fingerprints was assessed to evaluate how flow cytometry can be used as monitoring tool for 

DWDS. For this, batch tests with different types of drinking water and coupons of different 

commonly-used piping materials were set up. To mimic an actual distribution system, also a 

lab-scale flow-through system was built and used to monitor the changes of the biofilm and 

bulk water microbial community for different piping materials for a longer time-period. Each 

time both the cell density and the similarity between the cytometric fingerprints was 

evaluated. Finally, we studied the colonization potential of Enterobacter amnigenus, an 

indicator organism for drinking water quality, in the biofilms on different piping materials. 
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4.1 Source of water in relation to the type of piping material 

After incubating PVC, CPVC, copper, and cast iron coupons with water from six different 

drinking water production plants and sources, the cell density of both the bulk and biofilm 

microbial community were compared (Figure 7 – 2, a to f). Statistical analysis revealed that 

for both phases, the type of material contributed significantly to the cell density, regardless of 

the water source. For the bulk phase, CPVC showed significantly higher concentrations than 

copper and cast iron, while for the biofilm, both CVPC and PVC showed significantly higher 

concentrations than copper and cast iron. The source of water did not impact cell density of 

the biofilms though region E showed significantly higher concentrations in the bulk phase 

than regions A and B. For some sources of water, also blank samples without coupons were 

incubated and analyzed. The bacterial concentration in the bulk phase was consistently and 

significantly higher for the blanks than for the samples incubated with pipe coupons though 

the sum of all bacteria per batch, regardless of their phase, was higher when coupons were 

added to the water. The cell density in the blank samples after four weeks showed a similar 

pattern as the initial cell concentration in the different waters: higher concentrations for water 

sources C and E compared to sources D and F (Figure 7 - 2a). These differences could be 

explained by the differences in UV254 which are indicative of the concentration aromatic 

carbon molecules. For each source of water, the differences in cell density in both phases 

suggest that bacterial growth is promoted by the presence of pipe materials and especially 

plastic materials such as UPVC and, to a lesser extent, PVC. 

Plastic materials may be a source of organic compounds, such as plasticizers, stabilizers, 

softeners or coloring agents. These compounds can leach from the materials to the water 

and may be used by bacteria to support their growth in oligotrophic conditions and increase 

their capability to form biofilms (Rozej et al., 2015). CPVC is produced from PVC resin after 

an additional chlorination step. Due this additional treatment step, more additives are 

introduced in the material, possibly responsible for a higher organic compound leaching and 

subsequent microbial growth. However, other studies have observed less growth on 

polymeric pipes compared to corrosion-prone materials, such as cast iron (Kerr et al., 1999, 

Niquette et al., 2000). Similarly to our findings, van der Kooij et al. (2014) report a higher 

biofilm growth potential of PVC in comparison to copper and cast iron in a batch experiment 

without water refreshment. The authors also illustrate the importance of the treatment of the 

material with a cleaning step which could also explain why we found CPVC to have a higher 

biofilm production potential than previously reported. In contrast to the smooth surface of the 

polymeric materials, the pitted surface of metallic materials, due to corrosion, can enhance 

biofilm growth by protecting bacteria from physical perturbations and from chemical 

disinfection (Liu et al., 2016). Besides, the roughness of the iron surfaces can promote 
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microbial attachment and colonization due to the greater surface area. In contrast to the 

batch tests with smooth and new coupons performed in this study, the studies mentioned 

previously were also performed with a continuous flow which increases the abrasion force 

and creates a higher roughness of the iron materials. In addition, dissolved iron corrosion 

products, such as iron (oxy)hydroxides, can support the growth of specific biofilm-forming 

bacteria. The corrosion products can even retain nutrients, including carbon and phosphorus 

(Morton et al., 2005). Although the iron coupons used for this experiment were corroded after 

a few days, no dissolved iron was detected in the bulk water according to atomic absorption 

spectroscopy (AAS). This may explain the ‘lower’ biofilm cell density on iron coupons as no 

dissolved iron was present in the water. 

A comparison of the flow cytometric fingerprints with PCoA showed a varying distinction 

between the metallic and plastic coupons depending of the source of water (Figure 7 - 3). 

Especially cast iron coupons showed to be more different than the other materials which can 

be explained by the corrosion during the experiment. No clear distinction can be made 

between biofilm and bulk samples, which can be the result of an established equilibrium 

between both phases since the bulk water was not refreshed during the experiment. These 

results show that, apart from quantitative differences, that there are also qualitative 

differences between the cytometric fingerprints of the biofilms and the bulk water in function 

of the piping material and type of water. This suggests that the microbial community 

composition is different as flow cytometric fingerprints are known to differ according to the 

communities composition (Props et al., 2016), thus explaining the different growth potential. 

Correspondingly, De Roy et al. (2012) showed that different cytometric fingerprints were 

found for different brands of bottled water. To confirm the putative differences in community 

composition, sequencing-based analysis should be performed and results compared to the 

flow cytometric data. A combination of both techniques also enables in the absolute 

quantification of the microbial taxa which improves the understanding of the microbial 

dynamics (Props et al., 2017). 
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Figure 7 - 2: Cell concentration in the bulk phase (A) and in the biofilms (B) after four weeks 
of incubation without refreshing the bulk water. The cell concentrations are visualized on a 
logarithmic scale with the corresponding error bars (n=4) for the six different water treatment 
plants and sources. Blank samples contained no coupons and for two regions blank samples 
are missing.  
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Figure 7 - 3: Principal coordinate analysis (PCoA) of all biofilm and bulk cytometric 
fingerprints for the six different sources of water (A - F) after four weeks of incubation. The 
bulk water was refreshed twice a week. Similarity was calculated with the density-based 
Jaccard distance measure (Ružička index). The colors represent the material of the coupons 
and the shapes distinguish between bulk water samples and biofilm samples. Confidence 
ellipses were constructed with a confidence level of 95% for the metallic and plastic 
materials. 
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4.2 Effect of piping material 

In a second experiment, the cell density in the bulk water was evaluated each time the water 

was refreshed. For all plastic materials, the changes in cell density in bulk water over time 

were comparable with the changes in cell density of the blank samples without coupon, 

suggesting little or no effect of the coupon on the bulk water cell density. The samples with a 

cast iron or copper coupon, the bulk cell densities were generally higher than the other 

samples, though not significantly (Figure 7 – 4a). The absence of a growth-promoting effect 

on the bulk water can be explained by the frequent replacement of the bulk water. Also the 

cell densities of the biofilms showed few significant differences after four weeks due to the 

high variability between replicates of PVC, PE80, and PE100. However, when comparing the 

average values, results are comparable to previous experiment where both PVC and CPVC 

yield more biofilm than copper or cast iron. The highest average density was found for the 

CPVC coupons (4.12*107
 ± 1.07*107

 cells/cm²) (Figure 7 – 4b). Cell densities on the PVC, 

UPVC, PE80, PE100, and PE100-RC coupons varied around approximately 2*107 cells/cm². 

Only the cell density on the CPVC coupons showed to be significantly higher than PE and 

UPVC type 1. Biofilm growth on UPVC was lower compared to PVC and CPVC. UPVC is 

unplasticized polyvinyl chloride and is totally free of plasticizers, thus reducing leaching of 

organic compounds, which may be responsible for the lower biofilm formation potential. 

Polyethylene (PE) showed noticeably lower biofilm cell density although Niquette et al. 

(2000) found a similar density of biomass growing on PVC and PE materials though after 

several months. No distinction between PE80, PE100, and PE100-RC could be made but, as 

the only difference between the materials is the polymerization process resulting in different 

flexibility, no big differences were expected. The repartition of the bacteria between the 

biofilm and the bulk did not provide a clear pattern distinguishing the different types of 

materials. In contrast to previous experiment, the bulk water was refreshed twice a week, 

which might explain why in this experiment less significant differences were observed 

altogether. 
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Figure 7 - 4: Cell concentration in the bulk phase (A) and in the biofilms (B) after four weeks 
of incubation. The cell concentrations are visualized on a linear scale with the corresponding 
error bars (n=4) for all coupon materials. Blank samples contained no coupons.  

When the flow cytometric diversity indices (D2) of all samples from the bulk water are 
compared over time, a distinction can be made between the water incubated with plastic or 
metallic coupons. Plastic coupons show dynamics similar to the blank samples, with the 
exception of PVC for the first seven days and PE80 between 11 and 14 days (Figure 7 - 
5b,c and d). Copper and especially cast iron show different dynamics after seven days 
(Figure 7 - 5a). The differences between cast iron and, to a lesser extent, copper with the 
other materials is also illustrated by the similarity between the fingerprint of all samples after 
27 days (Figure 7 - 6). Furthermore, a good distinction can be made between the group of 
bulk samples and the group of biofilm samples, suggesting a different microbial community 
composition in the two phases. However, no relation can be established between the biofilm 
and the bulk water for each material. As the bulk water in combination with plastic materials 
seemed the least affected by the biofilm growth, based on the cytometric diversity, the plastic 
materials could be considered as the best materials to transport clean water. For cast iron, a 
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noticeably higher phenotypic diversity was observed, especially at the end of the experiment. 
As the cast iron coupons were completely corroded and little pieces of iron were released in 
the water, possibly also parts of the biofilm were released in the bulk water. Since biofilms 
are considered to have a higher taxonomic diversity due to a higher number of niches, and 
since a higher taxonomic diversity is partially linked with a higher phenotypic diversity, this 
can explain the higher diversity indices (Stewart and Franklin, 2008, Props et al., 2016). On 
the other hand, for bulk waters with copper coupons, phenotypic diversity was noticeably 
lower compared to phenotypic diversity of the blanks after day 11. A possible explanation is 
that only specific phenotypes can grow in bulk water in the presence of copper coupons, 
which are known to have antimicrobial properties (Beeton et al., 2014). In general, the cell 
concentrations and phenotypic diversity indices of the bulk samples showed a high 
variability, indicating that the microbial both biofilm and bulk water did not stabilize. This 
suggests, similar to literature, that biofilm growth is a long-term process and that longer test 
periods are needed for stable conditions (Martiny et al., 2003). 

 

Figure 7 - 5: Diversity indices D2 of the bulk water for cast iron and copper (A), PVC and 
CPVC (B), UPVC type 1 and 2 (C), and PE, PE80, PE100 and PE100-RC (D). The blank 
samples were incubated without coupon and included in each plot to compare dynamics (A-
D). The colored ribbons represent the standard deviation (n=4). 
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Figure 7 - 6: Principal coordinate analysis (PCoA) of both biofilm and bulk samples of all 
materials after 27 days. Similarity was calculated with the density-based Jaccard distance 
measure (Ružička index). The colors represent the material of the coupons and the shapes 
distinguish between bulk water samples and biofilm samples. Ellipses illustrate the distinction 
between bulk samples (dashed line) and biofilm samples (full line).  

4.3 Effect of the piping material in a flow-through system 

Similarly to the batch test, the cell densities of the bulk water and the biofilms were measured 

with flow cytometry for every time point in a lab-scale flow-through system. The cell densities 

of the bulk water in combination with copper, cast iron, and PE pipes were in generally higher 

than the cell densities of the bulk water in combination with PVC, UPVC, and CPVC pipes. 

On the other hand, the biofilm density on the CPVC, UPVC, PE, and iron pipes was generally 

higher than for PVC. Biofilm growth on copper coupons was noticeably lower than other 

materials for all the time points, possibly due to the antimicrobial effect of copper. No clear 

increase in cell density was observed for the bulk water or biofilms between day 12 and 68, 

except for the biofilm on the cast iron pipes. Large standard deviations and no significant 

differences were observed in the cell density of either the bulk or the biofilms for any 

materials at the start of the experiment. In time, progressively more significant differences in 

the cell concentrations were observed. This suggests that more stable conditions can be 

created and that more relevant conclusions can be made when the biofilm is more mature. 
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The ratio between the cell density of the biofilm and the bulk fluctuated at all times around 

one for iron, PE, and PVC. CPVC showed to have proportionally more biofilm while copper 

showed, at all times, less biofilm with a ratio of 0.9 (Figure 7 - 7a). UPVC showed to have 

more biofilm in the beginning of the test and at the end, an equal ratio between both was 

measured. 

 
Figure 7 - 7: Ratio of the total cell density in the biofilm to bulk, calculated per pipe section 
for every material (left). Sum of the cell density in the biofilm and the bulk water per pipe 
section (right). 

Dynamics in community composition can be assessed with flow cytometric diversity index 

(D2) and show, similarly to previous test, different dynamics for both copper and cast iron in 

comparison to the other materials (Figure 7 - 8a,b) (Props et al., 2016). The bulk water with 

the PVC, CPVC, and UPVC coupons first showed similar dynamics relative to the inflowing 

water, though they were more diverging towards the end of the experiment (Figure 7 - 8d,e 
and f). In the same way, the bulk water incubated with the PE coupon initially showed a 

trend similar to the blank sample, yet cytometric diversity increased markedly towards the 

end of the experiment (Figure 7 - 8c). Biofilms on the coupons of all materials showed 

different dynamics for each coupon material, yet cytometric diversity was always higher than 

the diversity of the bulk water or the inflowing water which is in line with the expected higher 

taxonomic diversity of biofilms (Besemer, 2015). When the similarities between cytometric 

fingerprints are visualized with principal coordinate analysis, a clear distinction between 

biofilm and bulk fingerprints can be made at all times (Figure 7 - 9), but no relation between 

the diversity dynamics in bulk and biofilm can be established per material. In comparison to 

other materials, cast iron yielded very different fingerprints for both bulk and biofilm water in 

comparison to all other materials. The corrosion of the iron pipes caused for more 
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background fluorescence in the cytometric fingerprints and could not be removed completely. 

No clear difference between the plastic materials can be observed at all times based on the 

similarity of their cytometric fingerprints. The bacteria concentration in bulk was comparable 

for both plastic and metallic materials, although the materials influenced the biofilm formation 

during the experiment. When considering the dynamics of the cytometric fingerprints, the 

plastic materials showed to remain be more similar to the incoming water than the metallic 

materials in this flow-through experiment. This suggests that the microbial community 

composition is less altered by the plastic materials than by the metallic materials for the 

duration of this experiment. But, as this experiment was performed for a short period of time 

and because there are big quality differences between plastics or between manufacturers, 

results should be interpreted with caution. Furthermore, confirmation with sequencing 

methods should confirm this hypothesis. 
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Figure 7 - 8: Phenotypic diversity (D2) dynamics in time for both biofilm and bulk water. 
Phenotypic diversity of the incoming water was included as blank (pink). The standard 
deviation is represented as colored ribbons (n=4). Results are shown separately for the 
biofilms (full line) and the bulk water (dashed line) for iron (A), copper (B), PE (C), PVC (D), 
CPVC (E), and UPVC (F). 
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Figure 7 – 9: PCoA of the bulk and the biofilm samples for the six different pipe materials 
used of the lab-scale piping experiment (n=4). Similarity was calculated with the density-
based Jaccard distance measure (Ružička index). Results are shown with iron (left) or 
without iron (right) for 12 (A, B), 26 (C, D), 40 (E, F), 54 (G, H), and 68 (I, J) days. 
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4.4 Microbial invasion in biofilms 

Bacteria from the bulk water or pathogens can attach to biofilms where they can integrate 

and survive for a prolonged period of time which can impact the water quality (Flemming and 

Wingender, 2010). An Enterobacter amnigenus type II has been isolated from a DWDS and 

caused recurrent water contamination. To assess the biofilm-formation capacity of E. 

amnigenus, a batch test was set up with clean coupons of four different materials: cast iron, 

copper, PVC, and CPVC. The bulk water and biofilms were both analyzed after 12 and 19 

days of incubation. After the initial incubation period of 12 days, the bulk water was refreshed 

twice a week. A genomic gfp construct helped to distinguish E. amnigenus from the native 

microbial community. 

Flow cytometric cell density measurements showed that biofilms grew for all coupons during 

the experiment, yet no statistically significant different biofilm concentration between the 

materials could be found (Figure 7 - 10b). In the bulk water, no clear microbial growth was 

noticed between 12 and 19 days for any sample, though copper supported the highest 

growth in the bulk water and PVC or CPVC the least (Figure 7 - 10a). E. amnigenus was 

present in all samples after 12 days of incubation in both the biofilm and the bulk water, 

suggesting the Enterobacter successfully colonized the biofilm. When the bulk water was 

refreshed twice a week, the concentration of Enterobacter in the bulk water decreased and, 

after 19 days, no Enterobacter could be detected with flow cytometry. Also, no 

autofluorescent cells were measured in the biofilm with flow cytometry. Microscopy showed 

that Enterobacter was still present in the biofilms though in low abundance (Figure 7 - 11). 

Copper and cast iron supported a visually higher concentration of Enterobacter in the biofilm. 

As flow cytometry cannot detect cell concentrations below approximately 103 cells/mL with 

our settings and instrumentation (Hammes et al., 2012), we assume the cell concentration 

was below this level. The EU drinking water legislation states that no Enterococci should be 

detected with plating in a sample of 100 mL (EU, 1998) and, although the concentrations of 

Enterobacter in our samples were small and could not be detected with flow cytometry, they 

would lead to positive plate counts considering the high culturability of Enterobacter. In case 

autoclaved tap water was used to refresh the water, PVC and CPVC showed no wash-out of 

Enterobacter in both the bulk and the biofilm. Cast iron and copper showed no Enterobacter 

biofilm and the concentration in the bulk water decreased over time but remained detectable 

with flow cytometry suggesting Enterobacter amnigenus grew in the bulk water. This is in 

contrast to the vials with non-sterile tap water, where fluorescent Enterobacter was not 

always observed. An explanation is that Enterobacter can fully develop in the autoclaved tap 

water since no other living bacteria were present. The autoclaved tap water offers an ideal 

environment for the Enterobacter without competitors for nutrients. Moreover, the autoclaved 
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tap water contained dead bacterial biomass which Enterobacter amnigenus could use as 

substrate and nutrient source to grow in bulk water or develop biofilm structures on the 

different materials. This phenomenon has been reported before by Temmerman et al. (2006) 

with Legionella pneumophila and was referred to it as necrotrophic growth. This suggests 

that unsuccessful disinfection could enhance the growth of an introduced contaminant by 

making more nutrients available. Furthermore, the presence of other bacteria in the water 

could be important to suppress the growth of specific drinking water contaminants by 

competing for common resources. These hypotheses match with the established concept of 

biologically stable water, where biological growth in the drinking water distribution systems is 

mitigated by reducing and limiting the available nutrients, rather than by disinfection (Prest et 

al., 2016).  

 
Figure 7 - 10: Total cell concentration in the bulk phase (A) and in the biofilms (B) after 12, 
15, and 19 days of incubation. the concentrations are visualized on a logarithmic scale with 
the corresponding error bars (n=4) for all materials. 
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Figure 7 - 11: Overlay microscopic pictures of biofilms grown on the four different piping 
materials. Cells were stained with DAPI and appear blue. The green cells are fluorescent 
Enterobacter amnigenus type II cells. All coupons were cleaned prior this experiment. Water 
was refreshed twice between day 12 and day 19. 

In a second part, the biofilms were briefly disinfected before repeating the experiment. The 

Enterobacter concentration in the bulk water was higher for PVC, CPVC, and cast iron after 

12 days of incubation, though also decreasing in time. Higher total cell densities were found 

for all biofilms after disinfection, which could be explained by the presence of dead cells on 

the pre-colonized biofilm. These dead cells could either be incorrectly counted as live cells or 

they could have been used as carbon source and substrate, resulting in additional growth. 

Microscopy revealed the presence of Enterobacter in all biofilms with a decreasing 
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concentration over time (Figure 7 - 12). The copper and cast iron biofilms showed a visually 

higher concentration in the same way as without pre-colonization. No Enterobacter cells 

were detected with flow cytometry in the samples where autoclaved tap water was added. 

This result is in contradiction with previous results. These results suggest that E. amnigenus 

can colonize biofilms in DWDS and that extensive disinfection can promote the invasion of 

pathogens instead of preventing it. To confirm this, further research is necessary. 

 
Figure 7 - 12: Overlay microscopic pictures of biofilms grown on the four different piping 
materials. Coupons were pre-colonized for 20 days and then briefly rinsed with 1.5 % NaOCl 
before this experiment. Cells were stained with DAPI and appear blue. The green cells are 
fluorescent Enterobacter amnigenus type II cells. Water was refreshed twice between day 12 
and day 19. 
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5 Conclusions and perspectives 

In this chapter, the purpose was to determine if flow cytometric fingerprinting could be used 

to monitor the biofilm and bulk microbial community in drinking water distribution systems. 

Our findings showed that biofilm growth could be monitored with flow cytometry provided a 

proper sample preparation by means of sonication. Although cytometric background noise 

was important for biofilm samples, results were in line with comparable research in literature. 

Several factors showed to affect the flow cytometric fingerprints of both the bulk and the 

biofilm samples. For example, drinking waters produced with different treatment methods or 

coming from different sources showed to have a different bacterial growth potential for both 

the biofilm and the bulk water during a period of four weeks. Flow cytometric fingerprinting 

and cell density measurements showed that, not only the water itself, but also the pipe 

material influenced the microbial communities in the biofilm and in the bulk water, both in 

terms of the community composition and cell concentration. We can conclude that, during the 

limited period of our experiments, plastic material induced more biofilm growth than the 

metallic materials, though less in the bulk water phase. The results from the flow-through 

experiment show that the difference in cell concentrations between the different materials 

changed over time. The phenotypic diversity of both the biofilms and the bulk waters also 

varied over time but was noticeably higher for the biofilms. This indicates that the microbial 

communities were continuously adapting to the changing conditions in the drinking water 

systems. Because of the short duration of our experiments, we cannot extrapolate our results 

to water distribution systems with a mature biofilm. For this, more research with older biofilms 

should be done.  

Another objective of this study was to establish the relation between biofilm and bulk 

microbial communities with flow cytometry in order to determine if cytometric fingerprinting of 

the bulk water could be used to monitor the microbial community in the biofilms. However, 

our results showed no correlation between the dynamics of the bulk and biofilm fingerprints 

between four weeks to maximum 68 days. This suggests that the phylogenetic dynamics and 

composition of the biofilm and the bulk microbial communities are different. This is in line with 

previous research and could be validated by sequencing the samples of this experiment. The 

behavior of a typical drinking water contaminant Enterobacter amnigenus was evaluated 

during a batch test. The Enterobacter seemed to grow better in biofilms on metallic 

compared to plastic materials, but the difference was not statistically significant. The 

influence of disinfection on the Enterobacter invasion potential was unclear, and requires 

further research but suggests that the Enterobacter could grow better when more nutrients 
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are available and when no competition is present. This finding is in accordance with the 

concept of biologically stable water and illustrates the usefulness of biologically stable water.  
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CHAPTER 

  8 
ONLINE FLOW CYTOMETRIC MONITORING FOR 

MICROBIAL QUALITY ASSESSMENT IN A FULL-SCALE 
WATER TREATMENT PLANT 

1 Abstract 

The ever-increasing need for high-quality drinking and process waters and the growing public 

awareness about possible contaminations drive the efforts to further development of 

automated control of water treatment plants. For example, membrane filtration processes 

and reverse osmosis in particular, are generally regarded as a safe barrier for inorganic, 

organic and microbial contamination. Yet, to ensure the final water quality and to increase 

the confidence of the end-user, intensive and preferably online monitoring should be further 

implemented as an early-warning tool to control membrane integrity and to prevent microbial 

regrowth in the distributing network, especially when non-traditional water resources such as 

wastewater are (re)used. In previous chapter, flow cytometry has been used for the 

monitoring of drinking water quality. In this chapter, we tested how a fresh water microbial 

community responded to the addition of different types of nutrients and demonstrate the 

applicability of flow cytometry and cytometric fingerprinting for a full-scale water treatment 

plant. 
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2 Introduction 

Bacteria in water are an important aspect of the water quality and may, when present in too 

high concentrations, lead to biofouling, microbiologically induced corrosion or even the 

spreading of pathogens. A close and online monitoring of the microbial quality of the water is 

thus a necessary tool to improve water quality and reduce downstream costs or to mitigate 

health hazards. One of the main challenges is the unwanted growth of biofilms on 

surfaces known as biological fouling (Chien et al., 2012b) which occurs mainly in 

recirculating systems such as cooling towers. Especially open cooling water systems 

provide a favorable environment for microorganisms because they scrub microorganisms 

from the air and concentrate the nutrients present in remaining water by evaporation, 

resulting in faster microbial growth (Liu et al., 2009). Biofilms can damage equipment 

through microbial induced corrosion (MIC), by clogging, and lead to an increased energy 

consumption due to decreased heat transfer (Meesters et al., 2003, Bott, 1995). 

Biofouling and clogging leads to an increased pressure drop in ion exchangers and to 

increased resistance in membrane filters, which may also cause membrane 

breakthrough (Mcdonogh et al., 1994). Furthermore, pathogenic bacteria can nestle in 

these biofilms and contaminate the water through the natural shedding cycle of biofilms 

(Wingender and Flemming, 2011). A well-known example is the spreading of the 

pathogen Legionella pneumophila in the form of aerosols (Dondero et al., 1980, Keller et 

al., 1996). 

Membrane processes such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and 

reverse osmosis (RO) are commonly used in water treatment, including reuse applications 

(Jiang et al., 2017). MF is designed to retain most bacteria and suspended solids in the 

range of 0.1 to 5 μm. The other methods have pore sizes ranging from maximum 20 nm (UF) 

to pore sizes smaller than 1 nm (NF and RO) and are therefore supposed to retain all 

bacteria. However, the passage of microorganisms through filtration membranes has been 

reported (Ghayeni et al., 1999) and new research has demonstrated the existence of 

ultra-small bacteria in water (Brown et al., 2015, Luef et al., 2015). Also bacteria larger 

than the pore size are able to cross the membranes (Ghayeni et al., 1999). Possible 

explanations are abnormalities in the membrane structure and oversized pores that were 

considerably larger than the manufacturers stated nominal pore size. Intensive use of 

membranes might lead to an enlargement of the pore sizes, and incompatible chemical 

cleaning (e.g. oxidative damage) can cause pore expansion as well (Goosen et al., 2004, 

Hai et al., 2014). In addition, bacteria themselves can change in size in respond to 



Online flow cytometry 

183 

changing environmental conditions (Chien et al., 2012a) and may undergo size reduction 

in nutrient limited environments (Egli, 2010). The wall of most bacterial cells is not a rigid 

structure, but has a high flexibility and elasticity. This deformability, as well as the size of 

the bacteria, play an important role in their passage through filtration membranes (Wang 

et al., 2008). A last possibility is related to the breakthrough of membranes due to 

mechanical or chemical stress, resulting in the passage of unfiltered water. 

Biofilms are almost inevitable in piping systems and consist of complex and functionally 

organized microbial communities embedded in a matrix of extracellular polymeric 

substance (EPS) protecting the bacteria from environmental stresses (Flemming and 

Wingender, 2010). Typically, biocides such as 2,2-dibromo-3-nitrilopropionamide (DBNPA) 

or hypochlorite are added to the water to remove unwanted biofilms. Biocide dosage is 

not an ideal solution both because of the environmental impact of the biocides and 

because it enhances the corrosion of the equipment. Furthermore, a fraction of the 

bacteria in the biofilm are protected by the EPS layer and benefit from the nutrients from 

dead biofilm (Meesters et al., 2003). In oligotrophic environments, nutrients availability is 

a critical cause of microbial growth and nutrient limitation is therefore an alternative 

strategy to mitigate issues caused by microbial growth (Flemming, 2002). Since regrowth 

rather than contamination is the main cause of microbiological issues in water treatment 

and distribution, the quality of the end product must be monitored properly. Different 

techniques exist that characterize the aquatic bacteria. While the most commonly used 

method in drinking water is the heterotrophic plate count method (HPC), this method 

would be unsuitable for industrial applications due to the long incubation times and its 

labor intensive nature (De Roy et al., 2012). A more convenient technique is the is 

adenosine tri-phosphate (ATP) analysis which provides an estimation of the active and 

viable biomass (Hammes et al., 2010). The speed, robustness, easiness, and low cost 

make it a very appealing technique (Hammes et al., 2008, Velten et al., 2007), yet ATP 

analysis is less frequently used than would be expected (Hammes et al., 2010). A first 

issue is that ATP quantification is less precise for the low cell concentrations typically 

found water (Hammes et al., 2010). Also, ATP measurements do not make the 

distinction between intra- and extracellular ATP. This can significantly alter the results as, 

in certain biological matrices, the extracellular ATP concentration can be several orders 

of magnitude higher than the intracellular ATP concentration (Hammes et al., 2010, 

Sakakibara et al., 1997). Finally, differences in species, cell sizes, and physiological 

states can alter the ATP concentration per cell making the conversion from ATP to 

biomass concentration difficult (Eydal and Pedersen, 2007).  
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Flow cytometry is a fast and robust method to determine bacteria concentration in 

liquids. With the use of appropriate dyes, it can determine viability and activity, similarly 

to ATP analysis. The single-cell resolution and the high throughput of the technique 

make it robust and by-passes the bias of converting the output to biomass concentration. 

In this chapter, we characterized the changes in the flow cytometric fingerprints in 

function of specific nutrients and for different microbial communities. Finally, we applied 

online flow cytometry to monitor the microbial communities and dynamics in a full-scale 

water treatment plant. The water was monitored at different stages in the treatment plant. 

3 Materials and methods 

3.1 Batch experiments 

Set-up. Surface water from a river was collected for the experiments. For a first experiment, 

a dilution series of the water was prepared in 0.22 μm-filter sterilized bottled water (Evian). 

Immediately thereafter samples were taken for flow cytometry. Subsequently, nutrients were 

added as yeast extract (500 mg/L yeast extract or 195 mg/L C as final concentration, Oxoid) 

or as a mixture of acetate, NH4Cl, and K2HPO4 with a controlled molar C:N:P ratio of 20:5:1 

(200 mg/L C final concentration). The plates were then incubated at 28°C and after 24 hours, 

500 μL was transferred from each sample and prepared for flow cytometric analysis. A blank 

with no added nutrients was included. All samples were prepared in triplicates. 

For a second experiment, undiluted surface water was aliquoted in well-plates and 

subsequently nutrients or salt were added as NH4Cl, K2HPO4, NaCl, glucose, and yeast 

extract. An overview of the nutrients and the salt with the final concentration is given in Table 
8 - 1. 

Table 8 - 1: The concentrations of all nutrients added to the second batch experiment were 
chosen sufficiently high to induce an effect. 

Stock solution NH4
+ PO4

- NaCl C6H12O6 Yeast extract 

Concentrations [mg/L] 

0.5 0.65 100 2 5 
1 1.3 200 20 50 

1.5 2 500 200 500 
2 2.6 1000 
 3.2    
 3.9    
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TOC analysis. TOC analysis was performed using a TOC 5000 analyzer (Shimadzu). 

Basically, two standard series were made and measured on TC and TIC. Samples were 

diluted to a range of 1:50 mg/L TC and 1:2 mg/L TIC and analyzed on the TOC analyzer.  

3.2 Online measurements 

Online FCM measurements were performed at an industrial water treatment plant (Figure 8 - 
1). At this production site, four different water qualities are produced from brackish surface 

water (Rodenhuizendok, Port of Gent, Belgium). During a first measuring period of six days, 

surface water was monitored after pre-filtering through 300 μm strainers. During a second 

period of seven days water after ultrafiltration (UF) was measured continuously. The UF 

racks are built each with 40 Microza hollow fiber UNA modules (Pall) with a pore size of 0.1 

μm. UF rack 1 and 2 have one year old membrane modules, while UF rack three has 

membrane modules of more than three years. RO1D produces 90 m³/h single-pass RO 

permeate, using BW30XFR-400/34i brackish water membranes (Dow) in an two-stage 

configuration. The system is working at an 75% recovery rate, resulting in a <100 μS/cm 

demineralized water quality fit-for-use as cooling water. The cooling tower has an 1500 m³ 

open buffer, susceptible to contamination. After seven to eight times thickening, the cooling 

water (<800 μS/cm) is continuously discharged at about 7,5 m³/h from the tower and reused 

again as feed water for the UF in the water treatment plant (cooling water return). An OnCyt© 

staining robot coupled to an BD Accuri C6 Plus flow cytometer (BD Biosciences), as 

described by Besmer et al. (2014), was used for continuous FCM measurements. Every 16 

minutes a fresh sample was taken and stained. 

 
Figure 8 - 1: Schematic overview of the water treatment plant with the flow cytometry 
sampling points. 
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3.3 Flow cytometry 

Staining protocol. An optimized staining protocol was used from Van Nevel et al. (2013). 

Bacteria were stained with 10 μL/mL of SYBR Green I (SG, Invitrogen, 100x diluted in DMSO 

from stock) for total cell counting. The samples were then incubated for 20 minutes at 37 °C 

inside the online robot to optimize the staining. 

Data analysis. All data was extracted from the proprietary Accuri C6 CSampler software or 

FACSuite software in the flow cytometry standard (FCS 3.0) format and subsequently 

imported into R v3.4.0 (R Core Team, 2015) through the functionality offered by the flowCore 

package v1.42.2 (B. Ellis et al.). Data was first log transformed and then normalized by 

dividing all values by the maximum fluorescence intensity signal. No compensation was 

applied. Gating to reduce the background was performed in R studio using the flowCore 

package on both SG and SGPI stained samples. A 0.22 μm-filtered control was used to 

determine the position of the background and a heat-killed sample was used to determine 

the position of the permeabilized cell population (Berney et al., 2007). Based on this, a 

universal gate was constructed to remove as much background as possible. The data quality 

was evaluated and improperly acquired data was cleaned using the flowAI package v1.4.3 

(Monaco et al., 2016) in order to remove anomalies in the data related to changes in flow 

rate, unstable signal or outliers in the lower limit of the dynamic range. Samples which failed 

the QC were removed from the dataset. This was done after background was removed with 

the universal gate. Next, a single-step discretization (‘binning’) and Gaussian bivariate 

density estimation was performed on the selected parameters (green and red fluorescence, 

FSC-H and SSC-H) using the KernSmooth package v2.23.15 (Wand, 2015). An equally 

spaced grid (binning grid) of 128 x 128 was fixed for each bivariate density estimation using 

the flowFDA package v1.0 available at https://github.com/lievenclement/flowFDA. All 

bivariate density estimations were concatenated to a one-dimensional feature vector which 

we refer to as the fingerprint. Subsequently, phenotypic alpha diversity was calculated 

according to the publication of Props et al. (2016) where Hill diversity indices are applied to 

describe the diversity of conceptual phenotypes within and between samples. The code is 

available at https://github.com/rprops/Phenoflow_package. 

4 Results and discussion 

Initially, lab experiments were performed to determine the ability of flow cytometry to detect 

fresh water community dynamics. For this, fresh water microbial communities were spiked 

with different nutrients and concentrations. Online flow cytometric measurements were then 

performed in a full-scale water treatment plant. Cell concentrations and Hill number diversity 
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indices were calculated for raw surface water after filtration with 300 μm strainers, after 

ultrafiltration, reverse osmosis, and finally also for recirculated wastewater from a cooling 

tower. The aim of this research was to demonstrate the usefulness of online flow cytometry 

to monitor and operate a full-scale water treatment plant. 

4.1 Reactivity of the aquatic microbial community 

Filtration resembles a dilution process in a way that less microorganisms will be present after 

dilution or filtration. Moreover, small tears in the filtration membranes can actually cause a 

dilution of the raw water. Therefore, surface water was incrementally diluted up to 1:5000 to 

approximate a filtration process and the different microbial communities were studied to 

understand how fast the flow cytometric fingerprints of the aquatic microbial communities 

reacts to the introduction of nutrients. Nutrients are the most important aspect inducing 

microbial regrowth and more specifically the presence of the elements C, N, and P are vital 

for microbial life. For this, a defined and complex medium were added to a freshwater 

community under the form of a C:N:P mixture with a ratio of 20:5:1 on one hand and yeast 

extract on the other hand. A comparison of the different diversity indices as described by 

Props et al. (2016) shows that D0 is the only parameter that decreases with increasing 

dilution at the start of the experiment (Figure 8 - 2).  

 
Figure 8 - 2: Alpha diversity parameters in function of initial dilution. The bands represent 
standard deviations, calculated from biological triplicates. Arbitrary units [A.U.] were rescaled 
to a [0-1] scale. 

As D0 represents the number of positive bins in the flow cytometry bi-plots, it is logical that it 

is most sensitive to the decreased cell density. D1 and D2 on the other hand also take the 

density into account and give more weight to the most abundant phenotypes. The fact that 
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they are not influenced by the dilution illustrates that throughout the dilution series, the most 

abundant microbial phenotypes are still present. For the first 60 hours of incubation, samples 

were taken regularly to monitor the microbial growth and results showed that the effect of the 

nutrient addition was most visible after 20-30 hours and that it was the result of microbial 

growth. However, this incubation time can differ across microbial communities and we found 

that the aquatic microbiota from the same river reacted differently across seasons (data not 

shown). 

When looking at the similarity between the cytometric fingerprints after 24 hours of 

incubation, the difference between the different sample types is clear (Figure 8 - 3). The 

further away the samples are from the control samples, the bigger the differences. This 

shows that yeast extract resulted in the biggest change of cytometric fingerprint which was 

also confirmed by ANOSIM (Appendix Table 8 - 1). Samples incubated with a defined 

nutrient source changed less than the samples incubated with a complex nutrient source. 

The controls changed after 24 hours of incubation. 

 
Figure 8 - 3: Non-metric multidimensional scaling between samples on different time points 
and with different perturbations. “T24 YE” represents the yeast extract perturbation after 24h 
of incubation, “T24 CNP” the controlled perturbation with C:N:P ratio of 20:5:1 after 24h of 
incubation, “T24 Control” the control without perturbation after 24h of incubation and “T0 
Control” the initial community before incubation. The smaller the shape size, the more 
diluted the initial sample. 

The changes in of the cytometric fingerprints can be explained by the microbial growth 

(Figure 8 - 4). The cell density of all control samples increased after 24 hours of incubation 
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due to growth on the nutrients already present in the water. However, when additional 

nutrients were added to the water, growth was six to ten times higher than without nutrient 

addition for the defined and complex nutrient source respectively. The discrepancy between 

both nutrient sources is likely due to the lack of certain elements or compounds (e.g. sulphur, 

magnesium) and the type of carbon-, nitrogen-, or phosphorus sources which do not promote 

optimal growth for all species present. 

 
Figure 8 - 4: Cell concentration in function of the dilution for different perturbations. “YE T24” 
represents the yeast extract perturbation after 24h of incubation, “CNP T24” the controlled 
perturbation with C:N:P ratio of 20:5:1 after 24h of incubation, “Control T24” the control 
without perturbation after 24h of incubation and “Control T0” the initial community before 
incubation. 

To look further into the effect of the dilution in relation to diversity, the cell concentration of all 

samples can be compared to the richness D0 which was most sensitive to cell concentrations 

(Figure 8 - 5). The results show that, per condition, D0 differs in function of the dilution. This 

is not always reflected in cell densities as can be seen for the samples incubated with yeast 

extract. After diluting the initial microbial community, different microbial communities were 

created by diluting out the least abundant species. Though the most diluted samples showed 

strong regrowth, this did not result in an important increase of phenotypes as no new species 

were introduced into the system. This illustrates that both the cell density and the diversity 

parameters are necessary to understand the dynamics of the microbial community. 
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Figure 8 - 5: Cell concentration of all samples (in cells/μL) in function of the logarithm of the 
richness of each sample. “T24 YE” represents the yeast extract perturbation after 24h of 
incubation, “T24 CNP” the controlled perturbation with C:N:P ratio of 20:5:1 after 24h of 
incubation, “T24 Control” the control without perturbation after 24h of incubation and “T0 
Control” the initial community before incubation. The smaller the picture size, the more 
diluted the initial sample. 

In a second experiment, the different compounds of the carbon source were tested 

individually and also different concentrations of the carbon sources were added to raw 

surface water to estimate how sensitive the microbial community was to a perturbation. The 

compounds added to the water were NH4
+, PO4

3-, glucose and yeast extract. Besides 

nutrients, also the influence of NaCl was assessed as it is a common indicator of RO break-

through. The diversity indices D0, D1 and D2, expressed relatively to the control (  diversity), 

for the samples where yeast extract or glucose was added, differed from the diversity of the 

control samples from 20-30 hours on (Figure 8 - 6). For all other nutrients, there was no 

visible change in diversity indices relative to the control samples (Appendix Figure 8 - 1). 

Also no important differences could be noticed between the two types of carbon sources 

though the highest concentration of yeast extract yielded a much stronger fluctuation in all 

indices than the other concentrations. In the case of glucose addition, the indices changed 

proportionally to the concentration. Both yeast extract and glucose contained approximately 

the same concentration of organic carbon. The lowest concentration of glucose or yeast 

extract increased the TOC concentration with 2 mg/L in water which already contained 13.09 

± 6.82 mg/L TOC. This shows that even small concentrations (± 15%) of TOC can lead to 

microbial growth in a period of 24 hours and that flow cytometry can be used to detect 
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microbial regrowth after minor organic contamination of a water sample which makes it 

applicable for water treatment monitoring as well. 

 
Figure 8 - 6: Diversity for both glucose (left) and yeast extract (right) in function of time for 
three different concentrations. The three different indices were calculated DD0 (A), DD1 (B) 
and DD2 (C). The colored bands represent the standard deviations (n=3). The dashed line 
represents the case in which no change relative to the control sample would be observed. 
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4.2 Online monitoring in a full-scale water treatment plant 

In a full-scale water treatment plant, the incoming surface water was monitored after passing 

through 300 μm strainers and prior to the ultrafiltration step (Figure 8 - 1). Cell 

concentrations fluctuated between 5.0*106 and 1.7*108 cells/mL (Figure 8 - 7b). After the first 

and the fourth day of measurement, two tailing peaks in cell density were observed. As the 

water is pumped from a dock, boats near the treatment plant’s water inlet roiling the water 

could cause the sudden changes in cell density though this could not be confirmed by the 

turbidity measurements alone. However, the cytometric diversity showed not to be influenced 

by the increased cell concentration (Figure 8 - 7a,c and d). On the other hand, neither the 

peaks in the cell concentration measured by flow cytometry nor the peaks in feed water 

turbidity seem to result in an increased conductivity (Figure 8 - 7c). The conductivity 

measurements showed a large variability at the end of the experiments which is also 

reflected in the flow cytometry data. No clear explanation could be found for this observation. 

These results show that turbidity measurements and cytometric Hill diversity indices are not 

always correlated to cell density, and that conductivity and turbidity alone are not sufficient as 

parameters for monitoring the incoming water quality of a treatment plant. Other parameters 

influencing the microbial (re)growth, such as organic carbon (TOC and DOC), should be 

monitored as well.  
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Figure 8 - 7: Flow cytometric Hill number diversity D2 (A) for surface water in function of 
time. Resulting cell concentration expressed in cells/mL (B), the turbidity (C) and conductivity 
(D). The surface water was strained with 300 μm sieves prior sampling. The sampling, 
staining and incubation was fully automated. 

In a second stage, the filtrate after UF was monitored for two different racks. The cell 

concentration after UF was approximately 3*104 cells/mL for rack 2 and 2.5*104 cells/mL for 

rack 3. Though the pore size of the racks was 100 nm, not all bacteria in the water could be 

removed. As mentioned above, there are several possible explanations for the occurrence of 

bacteria after filtration. Aside from an impaired membrane integrity, also the presence of 

small bacteria in the surface water could cause the higher concentrations of bacteria. Luef et 

al. (2015) showed that ultra-small bacteria or ultramicrobiota can be found in ground water, 

Ghai et al. (2013) showed the same for sea water, and Wang et al. (2007) demonstrated 

their presence in surface water. The range and dispersion of these small bacteria is still 

unclear but Ghai et al. (2013) estimated their relative abundance to be ~4% while Wang et al. 

(2007) estimated their relative abundance to be 0.2% of the aquatic bacteria. Assuming that 

all bacteria after UF are ultra-small bacteria, their relative abundance would be ~1% for this 

surface water entering the treatment plant, which is in accordance with results published 

previously. However, to proof this, confirmation with molecular techniques and microscopy is 

necessary. Furthermore, a periodic pattern in the cell concentration was observed on both 
racks (Figure 8 - 8b,e). For rack 2, a decrease in the concentrations was observed while for 
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rack 3, an increase in the cell concentration was observed. These peaks, for both racks, 

indicate a prolonged chemical cleaning of the membranes by recirculation of a cleaning 

solution. During the cleaning, the permeability increase (Figure 8 - 8c,f). The cleaning 

procedure typically lasts one hour and is done with a concentrated hypochlorite solution. 

Hypochlorite, an oxidizing agent, bleaches fluorochromes such as SG, making the bacteria 

undetectable with flow cytometry which explains the results for UF rack 2. Despite the 

cleaning, filtration units get dirtier over time and an accumulation of organic dirt, inorganic 

precipitates, and biofilms reduces the overall efficiency of the filtration unit and increases the 

need for maintenance as for rack 3. The latter was chemically cleaned every seven hours 

while UF rack 2 was only cleaned once daily. It is reflected in the lower permeability of UF 

rack 3 as well, an average 70 lmh/bar compared to 100 lmh/bar for UF rack 2. Because of 

the high degree of fouling on UF rack 3, it seems likely that, during the chemical cleaning, the 

accumulated organics react with the hypochlorite and that SG is subsequently not bleached. 

As dirt and bacteria detach from the filters, an increase in the cell concentration is visible in 

the recirculating cleaning solution. Aside from chemical cleaning, also backwashes are 

programmed regularly as can be seen by the frequent drops and surges in permeability 

(every 30 minutes for both racks). Yet, no effect of the backwashes was observed in 

microbiological parameters. Similarly to the surface water, the cytometric Hill number 

diversity did not reflect the fluctuations in the cell concentration and the permeability though 

after the last cleaning step of UF rack 1, a consistent decrease was noticed in the diversity 

suggesting a change in the community composition, which was not reflected in the cell 

number (Figure 8 - 8a,d). This change could however not be linked to any straightforward 

operational parameter. 

Similarly, the cell concentration and the Hill number diversity indices were monitored over 

time for recirculated condensed cooling water and for the RO permeate. A concentration of 

approximately 107 cells/mL was measured for the recirculation water, which is likely caused 

by microbial regrowth after recirculation in the open cooling tower. In the RO permeate, a 

concentration of approximately 104 cells/mL was measured which is slightly lower, though 

comparable to the cell concentrations found after UF. In contrast to UF, it is unlikely that 

bacteria would pass through the membranes with pores smaller than 1 nm unless 

membranes are impaired. Dewettinck et al. (2001) and Kumar et al. (2007) reviewed the 

importance of integrity monitoring for RO membranes and reported that challenge tests 

resulted in a log removal value (LRV) for bacteria between 2.9 and 5.4. Considering that the 

bacteria concentration in the RO concentrate can mount up to 106 CFU/mL (Ridgway et al., 

1983), we estimate the bacteria concentration to be 108 cells/mL, assuming only 1% of the 

bacteria can be cultured (Ridgway et al., 1983, Hammes et al., 2008). The cell concentration 
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we measured after RO would result in a LRV of four which is in accordance to what was 

reported before (Kumar et al., 2007). An alternative hypothesis for the presence of bacteria 

after RO filtration could be related to the regrowth of bacteria in the distribution system and 

the shedding of bacteria from biofilms formed on the permeate side of the filter units. Tang 

(2011) reported the presence of biofilms at the permeate side of RO membranes in dairy 

industry but, to our knowledge, no reports of biofilms on the permeate side of RO 

membranes have been published in the field of water treatment. To measure a concentration 

of 104 cells/mL in the bulk water, an estimated biofilm density of 107 cells/cm² is required 

considering that the RO module comprised 126 filter units, and assuming a biofilm growth 

rate of 0.03 day-1 (Boe-Hansen et al., 2002). This biofilm density appears possible when 

comparing it to the biofilm density in drinking water distribution systems (Prest et al., 2016). 

Finally, a possible contamination of the sampling line and sampling port cannot be excluded 

but a decrease in the cell concentration would then be expected in function of time. This was 

not noticed during the measurement period. A control test with the sample lines also gave no 

clear indication of contamination. For both RO and the recirculation water, no patterns were 

found in the cell concentrations. Furthermore, also no patterns could be discerned from the 

Hill number Diversity indices and no relationship could be established between the 

microbiological parameters and operational parameters (data not shown). 

For all stages in the water treatment plant flow cytometry showed that bacteria were present 

in concentrations far above the theoretically expected level. Though membrane processes 

commonly used for water production and reuse applications cannot be expected to produce 

pure and sterile water as small particles and molecules can pass through the membranes in 

several ways as discussed above. Routine membrane integrity tests are thus necessary to 

ensure the proper functioning of the membranes. Direct integrity tests such as the pressure 

decay test, which measures the rate of decline of pressure across a membrane require the 

membrane unit to be offline. Therefore, indirect methods are chosen for continuous online 

monitoring during production. Turbidity is an example of such an indirect test but we show 

here that it is not sufficient to monitor the microbial quality of the water alone. Based on our 

findings, we argue that cell concentrations, measured with flow cytometry, give additional 

information about the water quality which other methods cannot provide. In this respect, flow 

cytometry could be used as an indirect membrane integrity test, and can serve as a tool to 

understand and control bacterial regrowth in the distribution network in order to ensure the 

final water quality for the end-user. Our results also showed that cytometric fingerprints, in 

the form of Hill number diversity indices, did not show important fluctuations. This is because 

of the short timespan at which the tests have been performed and because the water 

treatment operated properly during the whole experimental period. More variation should be 



Chapter 8 

196 

expected over longer periods of time (i.e. months) as research has shown that fresh water 

communities exhibit seasonal community composition fluctuations (Pinto et al., 2014). In the 

lab experiments described before, we demonstrate with dilution that the diversity indices 

change when the microbial community changes which was also proven with by comparing 

the cytometric fingerprints with sequencing data of cooling water (Props et al., 2016).  
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Figure 8 - 8: Flow cytometric Hill number diversity D2 (A, D) of the UF filtrate in function of 
time. Resulting cell concentration expressed in cells/mL (B, E), and the permeability (C, F). 
The surface water was strained with 300 μm sieves prior sampling. Results are shown for UF 
rack 2 (left) and rack 3 (right). The sampling, staining and incubation were fully automated. 

 

 

UF Rack 2 UF Rack 3 
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Figure 8 - 9: Flow cytometric Hill number diversity D2 (A) of the RO permeate in function of 
time. Resulting cell concentration expressed in cells/mL (B), and the permeate conductivity 
(C). 
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5 Conclusions and perspectives 

In this chapter, we showed that flow cytometry is a good method to monitor fresh water 

communities online and automatically. We demonstrated in a full-scale water treatment plant 

that bacteria are present after every filtration step and that bacteria concentrations in the 

water are directly related to process operations. For example, we showed that prolonged and 

chemical membrane cleaning can lead to an increase of bacteria concentrations in the 

recirculation cleaning solution, while backwashing did not affect the cell concentration. As 

bacterial concentrations gave a better insight in the microbiological dynamics than e.g. 

turbidity measurements alone, we suggest that online flow cytometry could be used to 

indirectly monitor the membrane integrity and the changed microbial quality in the final water. 

With lab experiments we demonstrated that flow cytometry is able to detect both quantitative 

and qualitative changes in the fresh water communities. We also show that these changes 

are different depending on the type of microbial community and nutrient added.  
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7 Appendix– Supplementary information for chapter 8 

Appendix Table 8 - 1: Separation metric R between the control samples at the beginning of 
the experiment (T0) and after 24h (T24) between the control samples and samples perturbed 
with a controlled C:N:P ratio of 20:5:1 or a yeast extract perturbation. 

ANOSIM T0 Control T24 Control 

T24 Control R = 0.3766 
P < 0.001 NA 

T24 C:N:P R = 0.6005 
p < 0.001 

R = 0.2361 
p < 0.001 

T24 Yeast Extract R = 0.8995 
p < 0.001 

R = 0.5902 
p < 0.001 

 

 

 

Appendix Figure 8 - 1: Diversity (D0, D1, D2) for three perturbations (left: PO4
3-; middle: 

NH4
+; right: NaCl) in function of time for different concentrations. The colored bands 

represent the standard deviation, calculated form biological triplicates. The striped horizontal 
line represents the case in which no change relative to the control sample would be 
observed. 
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CHAPTER 

  9 
GENERAL DISCUSSION 

1 Positioning of the research 

Microbial ecology is more relevant than ever before as, besides earth’s biogeochemical, also 

many industrial applications are facilitated or affected by microorganisms. These applications 

can be based on complex microbial communities such as wastewater treatment, 

bioremediation, bioleaching or bioaugmentation (Bertrand et al., 2015). Also more simple 

ecosystems such as pure culture, co-culture or multispecies fermentation play a crucial role 

in the biotechnological production of fine chemicals, food and pharmaceutical products. In 

the future, the importance of bioprocesses is likely to increase due to the technological, 

economical, and ecological benefits of microbiologically-driven techniques (Soetaert and 

Vandamme, 2010). On top of that, the sensitive and reactive nature of microbial communities 

makes them good indicators of how processes operate. For almost a century, water quality is 

monitored based on the absence or presence of certain indicator organisms. 

To improve these bacteria-driven processes by making them more resistant or resilient, or to 

improve the monitoring of the communities to predict and avoid failures, the characterization 

of the microbial communities is vital. Verstraete et al. (2007) proposed the concept of 

microbial resource management (MRM) for this purpose. To put this concept into practice on 

an industrial scale, a method to quickly characterize microbial communities, regardless of 

their taxonomic or phenotypic complexity, is necessary. The advent of molecular tools has 

significantly improved our understanding of how microbial communities work but they remain 

complex, time-consuming, and expensive (Singer et al., 2017). Flow cytometry is a fast and 

cheap method that can analyze 10 000 cells in a few seconds without requiring complex 

sample preparation and can be used as alternative to rapidly characterize microbial 

communities. In this doctoral research, we further developed the cytometric fingerprinting 

pipeline as described by De Roy et al. (2014a) and Van Nevel (2014), and tested the 

sensitivity at which flow cytometry could characterize microbial communities. Furthermore, 

we applied our fingerprinting technique for the monitoring of the water quality in a drinking 

water network (Van Nevel et al., 2016a, Van Nevel et al., 2016b) and in a full-scale industrial 

water production plant. On the other hand, we also applied our flow cytometry pipeline for the 
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monitoring of an E. coli batch fermentation. In parallel, a Raman spectroscopy pipeline was 

developed for community characterization because it is non-destructive and non-invasive 

method, capable of providing complementary information to flow cytometry. 

2 Main research outcomes 

Microbial ecosystem all constitute of one or more species. Because pure cultures can be 

considered as the most simplified form of a microbial community, flow cytometry and Raman 

spectroscopy for community characterization were first tested and developed based on pure 

cultures and cocultures. In a second part, the applicability of flow cytometric fingerprinting for 

the monitoring of aquatic microbial communities as tool for water quality assurance was 

evaluated with lab experiments and finally, also on a full-scale water treatment plant. 

2.1  PART 1: Pure and (co)cultures 

Because of their small size, bacteria cannot be detected by flow cytometers unless they are 

stained with a fluorochrome. Many dyes have been developed through the years, but few 

staining protocols are standardized and few truly multicolor protocols have been developed 

with the available dyes. In Chapter 2, several multicolor protocols were developed and 

compared. This was done with both a Gram positive and a Gram negative bacteria species 

to make the protocol universal. Not all multicolor dyes were suitable for high throughput and 

automated analysis as some dyes showed poor stability over time. The most stable dyes 

were SG and SGPI and were therefore used for all other experiments in this work. 

In Chapter 3, the flow cytometric fingerprinting toolbox was improved with a similarity based 

tool to compare the fingerprints. This fingerprinting technique was applied on the cytometric 

data of 29 taxonomically related Lactobacillus strains and species to demonstrate that the 

strains could be discriminated with high accuracy. Both a mixture of beads and a mixture of 

two bacteria populations show that changes between 1% and 5% of the events are detected 

by the algorithm. By repeating the experiment three times, we showed that the method is 

also reproducible when a standardized growth protocol is used. To illustrate the impact of the 

microbial growth phase on the fingerprints, a batch culture was monitored at different time 

points and results showed that the fingerprinting algorithm could make a distinction between 

the growth phases. 

In Chapter 4, a classic E. coli batch fermentation was monitored with flow cytometry to find 

out why the cytometric fingerprints change in function of their growth stage. The comparison 

between the dynamics in the fingerprints and the dynamics of reactor parameters, suggests 
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that the cytometric fingerprints change due to a phenotypic change caused by substrate 

depletion. Furthermore, the phenotypic switch detected by flow cytometry occurred before 

the change in respiration rate, which is considered to be the fastest method to detect the 

metabolic activity of a fermentation culture. This demonstrates that flow cytometric 

fingerprinting is also able to detect changes in phenotypes and that it could be applied for the 

monitoring and operational control of bioreactors. 

Fluorochromes are necessary to make bacteria detectable for flow cytometers. This 

additional step increases the analysis time significantly and reduces the physiological 

information acquired to those features highlighted by the fluorochromes. In Chapter 5, 

Raman spectroscopy, a label-free alternative to flow cytometry, was tested for the detection 

of phenotypic diversity. A comparison between several data-analysis pipelines showed that 

for both explorative and predictive experiments, Raman spectroscopy could successfully be 

used to discriminate among phenotypes. Finally, Raman spectroscopy was also successfully 

used to estimate the relative abundance of a mixture of two microbial strains. 

In order to determine what the impact is of phenotypic diversity in microbial communities, fast 

single-cell techniques capable of revealing this lowest level of diversity are required. In 

Chapter 6, results show that both flow cytometry and Raman spectroscopy are suitable 

methods to detect phenotypic changes despite their different working principle. For this, 

microcosms were developed which allowed individual cell populations to interact while 

remaining physically separated. Both methods suggest that each species adapted to the 

presence of the other and that the level of phenotypic plasticity was different for both 

species. 

2.2  PART 2: Environmental microbiology 

Water distribution systems are fundamental for drinking water or process water distribution. 

In both cases, the water quality is important and microbial regrowth in the distribution system 

should be limited as much as possible. The biofilms on the pipe walls are an important 

fraction of the bacteria in the water but are hard or impossible to monitor. In Chapter 7, the 

possibility to monitor the microbial community in the biofilms by fingerprinting the planktonic 

microbial community in the bulk water was investigated. For this, a series of batch tests and 

a lab-scale flow-through experiment were set up. Also, different piping materials and water 

from different water treatment plants were used. The microbial community in bulk water and 

the biofilm showed different dynamics, suggesting that both phases evolve in a different way 

and have a different community composition. Furthermore, the pipe materials and the type of 

water impacted the cytometric fingerprint of the communities, also suggesting a different 
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community composition. Finally, we tested how a drinking water indicator organism, 

Enterobacter amnigenus, can colonize biofilms and eventually lead to a persistent 

contamination of the drinking water. Again the type of pipe material played an important role 

but more importantly, when sterile water was added, the bacteria grew much more and could 

form biofilms more easily. This supports the concept of biostable water, where the purpose is 

to mitigate microbial growth by reducing the available carbon sources and to reduce 

disinfection as the native microbial community acts as a buffer against invasive species 

(Prest et al., 2016). 

In Chapter 8, the sensitivity of flow cytometric fingerprinting towards the addition of elements 

which could be used as nutrients by the microbial community in the water was tested and 

results showed that the fingerprint changed when growth was induced by a carbon source. 

Other nutrient sources showed no effect. A dilution experiment also demonstrated that the 

type of microbial community has an effect on the reactivity of the fingerprints towards the 

addition of a carbon source. Finally, an online flow cytometer was installed in a full-scale 

water treatment plant to demonstrate the practical application of flow cytometry and 

cytometric fingerprinting at the different stages of the water treatment. Results showed that 

after every filtration stage, regardless of the type of membrane, bacteria could be detected 

and that the cell concentration could be related to the age of the filters and the operation of 

the treatment plant. This suggests that flow cytometry could be used as an online tool to 

monitor the performance of the filtration procedures and eventually also as an early-warning 

system. 

3 Phenotypic diversity as extra dimension of community structure 

The term phenotype refers to the observable characteristics of an individual resulting from 

the interaction of its genotype with the environment and was coined for the first time by 

Johannsen (1911) based on his observations of plants. Since then, phenotypic heterogeneity 

has been observed in all taxonomic domains. Genetically identical bacteria populations are 

known to exhibit a range of phenotypic differences, even under controlled laboratory 

conditions (Ceuppens et al., 2013, Elowitz et al., 2002). This diversity can greatly benefit the 

microbial population as a whole, especially if this population is confronted with sudden 

environmental changes. Subpopulations, resistant to these changes, can ensure the survival 

of the entire population. This survival strategy is referred to as bet-hedging and is 

independent of environmental cues. Alternatively, phenotypic heterogeneity can be driven by 

environmental changes encountered by a subset of the microbial community which adapts 

accordingly (Davis and Isberg, 2016). The adaptability of the population is referred to as 

phenotypic plasticity. Based on the definition of phenotypes, also the genotypes can be 
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considered as phenotypes and the phenotypic diversity could be viewed as a deeper level of 

community organization. Phenotypic heterogeneity is a potentially important component of 

biological diversity; it arises at the level of individual microbial cells and provides groups of 

microorganisms with added functionality (Ackermann, 2015). For pure cultures, the impact 

of phenotypic diversity has been shown before (Delvigne and Goffin, 2014, Muller et al., 

2010), but little research is done on the impact of phenotypic diversity on microbial 

communities. Questions such as whether this diversity is negligible in comparison to 

taxonomic diversity, and how the properties of microbial communities are shaped by the fact 

that microbes act as individuals should be answered. Given the high taxonomic diversity in 

natural samples, it seems evident that phenotypic diversity is a negligible level of diversity. 

But, natural environments are inherently heterogeneous; they are characterized by 

microenvironments and fluctuating conditions both in space and time. This already results in 

a certain level of phenotypic heterogeneity as result of the phenotypic plasticity of the 

bacteria. Moreover, also phenotypic heterogeneity caused by bet-hedging is expected. This 

additional level of diversity also increases the fitness of a microbial community to survive 

fluctuating conditions. In contrast to genotypic diversity, phenotypic diversity endures as long 

as the genotype is present (Ackermann, 2015). Another advantage is the possibility of an 

‘unfair’ division of labor. Labor division and microbial collaboration can sometimes result in 

two populations of which one does not benefit, which reduces the growth and reproduction of 

that population (Ackermann et al., 2008, Mrak et al., 2007, Nikel et al., 2014). In case this 

population is another genotype, it cannot persist. But in case this population is a 

subpopulation of distinct phenotype, the subpopulation can be replenished continuously as 

long as the genotype persists.  

The complex origin of phenotypic diversity makes it difficult to hypothesize about the 

relationship between genotypic and phenotypic diversity in a natural ecosystem (Figure 9 - 
1). As phenotypic diversity is the consequence of the genotypic make-up of a cell, at least as 

many phenotypes are expected. As bet-hedging is an inherent trait of a population, its 

contribution to the overall phenotypic diversity in a community could be considered as 

constant. Another factor influencing the diversity is the number of available niches in the 

environment. These niches are inherent to the environment (e.g. microenvironments) and 

limit the diversity as two phenotypes cannot coexist if they occupy exactly the same niche 

based on the competitive exclusion rule. But, an overlapping niche can also result in two 

niches based on resource partitioning (Hardin, 1960) and the number of niches is therefore 

expected to increase with increased diversity though at a decreasing rate. The total number 

of phenotypes is then always equal to, or lower than the available niches, regardless of the 

ecosystem complexity. When considering the phenotypic diversity at the level of a single 
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population within a microbial community, the phenotypic diversity is expected to decrease 

with an increased genotypic diversity. In case of highly diverse ecosystems, the contribution 

of phenotypic diversity due to bet-hedging is supposed to be unaltered, while the contribution 

of the phenotypic plasticity to the population diversity would be low or negligible. For 

communities with low genotypic diversity, the individual phenotypic diversity might increase 

as microbial interactions could create new niches for which new phenotypes can adapt. In 

Chapter 6, we also showed that the individual phenotypic diversity of two bacteria taxa 

decreased when the bacteria were grown as cocultures. 

 
Figure 9 - 1: The hypothesized relation between genotypic and phenotypic diversity on the 
community level (A) and on population level (B). A: The minimal phenotypic diversity is 
always equal to the genotypic diversity as the former is a consequence of the latter (blue 
line). The expected phenotypic diversity would be larger than the genotypic diversity due to 
both bet-hedging and phenotypic plasticity (green line). B: The phenotypic diversity of an 
individual population in a microbial community will decrease with increased genotypic 
diversity. This can either be a continuous decrease (blue line) or a show a local increase 
when the genotypic diversity results in the creation of additional niches due to microbial 
interactions (green line). In both cases, the minimal phenotypic diversity will be equal to the 
bet-hedging capacities of that population (orange line). 

Recent advances in single-cell technologies have allowed to assess the heterogeneity 

between microbial cells. Populations can, for example, be divided in subpopulations 

depending on their nucleic acid content, based on their Raman profiles or based on the 

expression level of certain target genes (Chapter 6). According to the method, different 

observable characteristics are accounted for and the phenotypic diversity is defined in a 

different way, which impedes direct comparison between methods and quantification of 

phenotypic diversity. On top of that, the underlying mechanisms regulating phenotypic 

heterogeneity will always result in a continuous spectrum of phenotypes which calls for a 

more practical definition of a phenotype. Similarly, microbial species are defined as bacteria 
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of which the 16S rRNA genes show a certain, and arbitrary level of similarity. This species 

definition is still debated but its value for research is inestimable (Doolittle and Papke, 2006). 

For this purpose, a holistic and single-cell technique is necessary such as Raman 

spectroscopy. However, the method shows too many sources of variability (see section 5) 

and more research should be done to resolve this issue. Alternatively, another technique 

could be proposed for this. Nevertheless, as shown in Chapter 4,5, and 6, both flow 

cytometry and Raman spectroscopy can be used to monitor changes in phenotypic 

heterogeneity and dynamics, which could help to answer the questions what the relation is 

between the genotypic and phenotypic diversity in communities, and which could also help to 

understand what the link is between community functionality and phenotypic diversity. 

4 Flow cytometry 

4.1 Financial aspects today and in the future 

16S rRNA gene sequencing is considered as the golden standard technique for microbial 

community characterization because it allows to identify bacteria making up the microbial 

community and because it is a very sensitive and accurate technique. The technological 

advances have made sequencing equipment affordable and many research centers are able 

to perform sequencing, increasing the methods popularity. The possibility to outsource this 

task, could open the possibility of the wider application of sequencing for industry. Today, 

this is not the case because of the cost and the complexity of the method. In comparison, 

flow cytometry provides information of a different nature and at a lower resolution but it is 

cheaper and the implementation of an automated and online device is merely a technical 

challenge. To compare and estimate the applicability of both methods for industrial 

applications, the balance between price, information, time consumption, complexity, and 

accuracy should be made (Table 9 - 1). 

Table 9 - 1: Comparison of next generation sequencing (Illumina) and flow cytometry in 
terms of price, time consumption, complexity, and accuracy. 

Technique Price         
per sample 

Time        
per sample 

Sample preparation 
(96 samples) 

Staff 
costs Complexity Accuracy 

NGS (Illumina) € 65 > 35 hours 8 hours  € 400 +++ +++ 
FCM € 0.11 < 25 min 1 hour  € 50 + ++ 
 

Sequencing is, regardless of technological advances, still a complex technique. Though the 

actual analysis could be outsourced, a DNA extraction, amplification, and purification would 

be necessary. These steps are complex and time-consuming and require specialist skills to 
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perform. Furthermore, these preparation steps as well as the actual outsourcing would take 

some time, and it is not uncommon to wait several weeks after sampling to obtain results. 

We estimate that for 96 samples, eight working hours are required for the sample 

preparation. The overall process would require more time as also the incubation time, for the 

polymerase chain reaction (PCR) for example, should be taken into account. Considering an 

average labor cost of €50/h, the estimated cost is €400 for one batch. The cost of the actual 

sequencing can vary, depending on the number of samples but we estimate that €60 per 

sample is a realistic price. The combined cost of the DNA extraction and amplification is €5 

per sample. Flow cytometry also requires some sample preparation and when done 

manually, one hour is sufficient for 96 samples. The cost of the consumables and reagents is 

about €0.11 per sample. For both methods the data analysis is difficult but, in both cases, an 

automated processing pipeline could be developed, facilitating the workflow. Based on the 

costs per sample, flow cytometry is by far the cheapest technique and it can already be 

automated (Besmer et al., 2014, Brognaux et al., 2013). Though sequencing is more 

accurate, the major constraint is the sample preparation, which is labor intensive and thus 

costly. Also, much time is lost when outsourcing the sequencing. For sequencing to be 

usable as monitoring technique, a simplified sample preparation in combination with an easy-

to-operate device is necessary. The development of next-generation chip sequencing 

technology (Ion-torrent, minION) presents an opportunity for very cheap sequencers which 

could be used with minimal skills, although DNA still needs to be extracted, amplified, and 

purified to sequence the correct DNA fragments (Quail et al., 2012, Ashton et al., 2015, 

Rothberg et al., 2011). Also flow cytometers could be developed further as early-warning 

systems; and even hand-held prototypes have been made though the resolution for 

microbiological applications is still insufficient (Im et al., 2015, Zhu and Ozcan, 2015, 

Koydemir et al., 2015). 

4.2 What flow cytometry can and cannot reveal 

Flow cytometry is an optical technique which relies, in this work, on nucleic acid dyes (i.e. SG 

and PI). Staining of bacteria is a complex interaction between the dye, the bacteria, and the 

matrix in which the bacteria are suspended. The information within the cytometric fingerprint 

is dependent on this interaction and provides more information about both the physiology 

and the taxonomy. 
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4.2.1 Taxonomy 

The kingdom of bacteria is very diverse and bacteria do not only differ in their shape and 

size, but also in the size of their genome and their metabolic potential. In Chapter 3 we 

showed that flow cytometric fingerprinting could discriminate among microbial species and 

strains. While flow cytometers cannot perceive the similarity between 16S rRNA gene 

sequences used for taxonomic classification, the fingerprints were different in their 

fluorescence intensity because the species selected for the experiment differed in their DNA 

content. Based on these results, we can state that flow cytometry can perceive taxonomic 

differences, provided the dye(s) used to stain the bacteria can visualize these differences. 

Rubbens et al. (2017) demonstrated that models, trained with in silico mixtures of bacteria 

pairs, could estimate the relative abundance of each species of an in vitro mixture. The 

precision differed for each pair and, similarly to our findings, these differences can be 

attributed to the differences in genome size. For example, a pair of Pseudomonas 

fluorescens and Pseudomonas putida cannot be resolved successfully as their genome size 

is very similar in size (approximately six million bp), while a pair of Micrococcus luteus and 

Shewanella oneidensis can be resolved due to the important difference in genome size (2.5 

million bp and 5 million bp respectively). 

For mixed microbial communities, where multiple species are present, the dynamics of the 

flow cytometric fingerprints can be used to approximate the dynamics in the community 

composition. Props et al. (2016) compared the diversity dynamics of sequencing data and 

flow cytometry fingerprints and showed a good relation between both (Figure 9 - 2). Similarly 

to the results presented in Chapter 3 and by Rubbens et al. (2017), the relation between 

both can be explained by the fact that different species can have a different amount of 

nucleic acids, which is translated by subpopulations with different fluorescence intensities. A 

change in community composition will then result in changes of these subpopulations. 

However, flow cytometry and sequencing are fundamentally different and a perfect 

correlation cannot be expected.  
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Figure 9 - 2: Relation between species diversity and phenotypic diversity for the three Hill 
number diversity indices (D0, D1 and D2). During the experiment, water of a cooling water 
tower was analyzed during two operation cycles. Species diversity was modeled by a 
generalized linear mixed model. The phenotypic diversity calculated based on the green and 
red fluorescence parameters and the scatter signals in the same way as all previous 
chapters. A significant correlation was found for all diversity indices (Props et al., 2016). 

On the same samples published by Props et al. (2016), we calculated the correlation 

between the diversity indices of sequencing, denaturing gradient gel electrophoresis 

(DGGE), and flow cytometry. Based on the second order Hill number diversity (D2), no 

significant correlation between DGGE and sequencing could be established, while a good 

and significant correlation was established between flow cytometry and Illumina sequencing 

(Spearman’s ρ = 0.769, p-value < 0.0001) (Figure 9 - 3). Based on these results we argue 

that flow cytometry is a better alternative than DGGE for community fingerprinting.  
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Figure 9 - 3: The Hill number diversity index D2 calculated for flow cytometry, sequencing, 
and DGGE on the samples of one cooling tower cycle as published by Props et al. (2016). 
Flow cytometry and sequencing showed a good Spearman’s correlation (Spearman’s ρ = 
0.769, p-value < 0.0001) while sequencing and DGGE showed no significant correlation 
(Spearman’s ρ = 0.182, p-value = 0.2725). 

This relationship between cytometric fingerprints and community composition was confirmed 

independently by Koch et al. (2013c), who compared the changes of the flow cytometric 

fingerprints in function of the community composition determined by tRFLP. Because Koch et 

al. (2013c) used a different instrument, fingerprinting approach, and nucleic acid dye, it can 

be stated that the correlation is robust. To improve the correlation between both methods, 

the dye characteristics and the sensitivity of the detectors are important. A promising 

combination of dyes would be acridine orange (AO) and 7-aminoactinomycin D (7-AAD) for 

example. Acridine orange is a nucleic acid dye with a strong affinity for AT-rich sequences 

and is green fluorescent when bound to DNA, while 7-AAD has a strong affinity for the GC-

rich sequences and is red fluorescent when bound to DNA. As a result, the cell populations 

would be partitioned based on both the nucleic acid content and relative GC/AT ratio.  

4.2.2 Physiology 

The relationship between the flow cytometric fingerprints and the cell physiology is well-

established and evident. A plethora of fluorescent dyes have been developed in the last 

decades targeting different aspects of the cell physiology. In Chapter 2, we attempted to 

optimize and develop multicolor protocols to increase the amount of physiological information 

of the fingerprints. The most important issue with dyes is their complex chemistry, resulting in 
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small changes of the cytometric fingerprints which are not important for the classical gate-

based processing of the data, but which impact the fingerprinting approach considerably. As 

we demonstrated in Chapter 3, a change of 1.2% of the events is already sufficient for the 

fingerprints to be considered different. A better characterization and the development of more 

stable dyes could improve the resolution of the cytometric fingerprinting. Other important 

aspects of the dyes are the quantum yield, the sensitivity, and the spectrum of the 

fluorochromes. Fluorochromes with a high quantum yield produce brighter fluorescent 

signals, and are therefore better for the reduction of background fluorescence. Also the 

sensitivity of the fluorochrome is important because brightly fluorescent signals are not 

sufficient for the accurate detection of cellular features. SG for example, is a very bright and 

sensitive fluorochrome and both characteristics explain the success of SG for flow cytometric 

fingerprinting. Another important issue about multicolor protocols is the overlap in emission 

spectra, which severely restricts the number of possible combinations. Much research has 

been done on Qdots with very narrow emission spectra to make multicolor flow cytometry 

possible. But, Qdots have to be coupled to antibodies for targeted staining which makes 

staining protocols more costly and complex. Because staining is one of the most important 

sources of variability, and because staining and the subsequent incubation step are an 

important time loss for monitoring (Chapter 4), a label-free approach is favored. As most 

bacteria are not autofluorescent, flow cytometry should rely on the scattered light which we 

found to be insufficient for accurate fingerprinting in all the experiments. We also found that 

the scatter detectors were not the most important contributors to the fingerprints but that this 

depended on the instrument used (data not shown). Good quality scatter detectors could 

therefore make a difference.  

4.3 Caveats 

In order to perform fingerprinting in a reproducible way, several aspects should be taken into 

account which, when unaccounted for, may lead to incorrect results or decrease the quality 

of the results. A first important aspect which may influence the results, is the number of cells 

on which the fingerprints are based. While for some applications the relative concentration 

can be considered as a source of variability inherent to the set-up and meaningful for 

comparison, care should be taken when directly comparing the cytometric fingerprints. Props 

et al. (in preparation) demonstrated on lake water samples that the number of cells per 

sample can have an influence on the Hill number diversity indices and their standard 

deviation. A sample size of 10 000 cells is therefore recommended as a minimum, although 

for the higher order diversity indices (D1 and D2) 1000 cells could suffice (Figure 9 - 4). The 

practical implications of this effect are important for set-ups where samples with low cell 
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concentrations are measured such as clean water in a water treatment plant (Chapter 8). 

Experiments in which we measured the regrowth potential of milli-Q water illustrate this effect 

(Figure 9 - 5). 

 

Figure 9 - 4: Influence of the number of cells used for flow cytometric fingerprinting for robust 
calculation of all Hill number diversity indices. Cells were randomly selected from a same 
sample for each specific sample size and the Hill number diversity indices were calculated 
for 100 bootstrap samples. The calculation of the fingerprints was identical to the pipeline 
used in previous chapters (Props et al., in preparation). 

A second important aspect influencing the fingerprints, is the background. In Chapter 3, we 

demonstrated that the background reduces the accuracy of the classification of the 29 

Lactobacillus species. The background is a very variable part of the cytometry data but 

cannot be ruled out completely when working with a standardized protocol. In Chapter 7, we 

reported that the background was important for most biofilm samples and that not all 

background could be removed with a universal gate. Based on our findings in Chapter 3 and 
7, we argue that background reduces the accuracy of the fingerprinting because of its 

variability. At the same time, we argue that the cytometric fingerprinting algorithm were not 

affected much by the sometimes very important fraction of background. Because of this, a 

closer look into the causes of background can help explain the nature of background and its 

consequences for fingerprinting. 
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Figure 9 - 5: Hill number diversity indices calculated for milli-Q water in function of time 
where 262 μg/L and 1310 μg/L of yeast extract was added. After 42 hours, growth was 
measured, based on the cell concentration, in both waters where yeast extract was added. 
After 64 hours, also some growth was measured in the water in which nothing was added. At 
first the cell numbers were too low to produce robust Hill number diversity indices. After 
approximately 64 hours, the Hill number diversity indices became less variable as the 
fingerprints were calculated on a sufficient number of cells. 

The background is a group name for all events originating from the instrument (instrument 

noise), from artifacts, which are added by accident to the sample, and from the sample itself. 

The instrument noise is generally constant and originates from the electronics but it can 

increase due to improper maintenance. Artifact background can be caused by many things 

and Van Nevel (2014) provides an overview and good illustrations of different causes of 

artifact background. Much of this background can be avoided by filtering all liquids used 

during the analysis and by using clean and disposable plastic lab consumables. Other 

sources of artifacts are experiment specific and will not be discussed further. The sample 

background is more complex to characterize as many things are thought to contribute. A 

complete characterization of the background is impossible but we found that in combination 

with the nucleic acid dyes SG and PI, mainly organic matter causes background noise. Van 

Nevel (2014) showed that free DNA, humic acids, sodium thiosulphate (Na2S2O3), and 

complex media (e.g. Luria Bertani broth, yeast extract, casitone, and tryprone) contribute to a 

higher background in combination with SG and SGPI. Presumably because of the free DNA 

which also binds to the nucleic acid dyes, though with lower quantum yields. Similarly, we 

tested commercially available corrosion inhibitors and biocides for use in demineralized 

process water and also found an important contribution to the cytometric background. 



General discussion 

219 

Additionally, we also performed tests with CaCO3, CaSO4, FeSO4, Na2CO3, NaCl, Na2SO4, 
NH4Cl, and (NH4)2SO4 with concentrations up to four times the maximum allowed 

concentration in drinking water and found no meaningful effect on the fingerprints. To 

conclude, background is undesirable as it reduces the performance of the fingerprinting. But, 

the majority of the background can be removed with a universal gate as we have done 

throughout this doctoral research. Nevertheless, preliminary experiments showed that the 

background was different for different compounds which suggests that there is more to 

background than expected. Preliminary results also showed that the background is very 

variable which makes the concept of background characterization difficult. 

5 Raman spectroscopy 

Whereas flow cytometry relies on staining protocols, Raman spectroscopy is a non-invasive, 

non-destructive, and label-free technique. On top of that, Raman spectroscopy can make 

single-cell fingerprints based on all molecules in the cell, which makes it more 

comprehensive, sensitive, and accurate than flow cytometry. A comparison between flow 

cytometry and Raman spectroscopy revealed that both methods were sensitive enough to 

detect the phenotypic plasticity of two bacteria taxa (Chapter 6). The most important 

difference between the methods is related to the number of cells measured for both. While 

with flow cytometry 10 000 cells can be measured, the throughput of Raman spectroscopy is 

much lower and approximately 50 cells per sample were measured (Chapter 5 and 6). 

There are two reasons for this lower throughput; the longer acquisition time and the lack of 

automation. The acquisition time was 45 seconds per cell in our experiments and is the 

consequence of the weak Raman signals. Shorter acquisition times are possible but the 

quality of the spectrum decreases and subtle differences between cells, proper to phenotypic 

differences, are not measured. Research has shown that an acquisition time of 10 seconds 

with spontaneous Raman scatter is sufficient for species characterization (Almarashi et al., 

2012). The possibility to increase the signal strength with SERS or CARS, could improve the 

methods throughput. Besides the acquisition time, also the method automation hampers the 

high throughput. Song et al. (2017) recently published a method for automated single-cell 

detection and sorting of bacteria. Yet, they also reported an acquisition time of five seconds 

per cell. Alternatives are laser tweezers Raman microspectroscopy (LTRS), which uses 

optical trapping of individual bacteria in an aqueous solution to focus the cells in the laser 

beam (Ma et al., 2013, Xie et al., 2005). Alternatively, chip-based methods can also be used 

(Walter et al., 2011). Watson et al. (2008) published an interesting application of a chip-

based system where both flow cytometry and Raman spectroscopy were combined. But, as 

microbial flow cytometry relies on fluorescent probes, and as Raman spectroscopy is 
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sensitive to fluorescent signals, a combination of CARS and flow cytometry would be most 

suitable for bacteria. Automation solutions to increase the throughput go hand in hand with 

signal enhancement. Attempts to increase the throughput have been made but the 

throughput remains low (i.e. approximately hundred cells) in comparison to methods such as 

flow cytometry. The sensitivity of Raman spectroscopy is the method’s strength but also 

increases the necessity of standardized protocols to ensure reproducibility. Hutsebaut et al. 

(2005) provides a good overview on how to properly calibrate instruments but also the impact 

of sample preparation, fixation and storage should be researched (Chapter 5) (Read and 

Whiteley, 2015). 

6 Applications 

The characterization of microbial communities is useful in many applications and for different 

types of industry to gain insight in the microbial dynamics for monitoring. Single-cell optical 

techniques are fast methods and could therefore be implemented as early-warning methods, 

complementary to other established or more accurate methods. Depending on the 

complexity of the community and the goal of the characterization, different approaches can 

be proposed. Based on our findings, we argue that flow cytometry can, on the short term, be 

used as community characterization method for industrial applications. Raman spectroscopy 

still faces some technical difficulties to make it faster and high throughput, which makes it 

unsuitable for industrial applications at the moment. For research, both methods could 

already be used for community characterization. 

6.1 Low complexity microbial communities 

For research and for most types of fermentation in industrial biotechnology, microbial 

communities containing one or a limited number of species are used. Axenic isolates are the 

simplest type of microbial community and because the taxonomic diversity is known and 

invariable, monitoring such communities is putatively easier. But, research has shown that 

pure cultures are not as predictable and invariable as they seem and that that an isogenic 

bacteria population could be regarded as community of subpopulations (Elowitz et al., 2002). 

Furthermore, the presence of inefficient subpopulations can significantly impact the process 

performance (Muller et al., 2010). In Chapter 4, we illustrated the possibility to use flow 

cytometric fingerprinting for the characterization of and E. coli population during a batch 

fermentation. Flow cytometry was not only a fast, but also a very sensitive tool to detect the 

altered process conditions. Next to pure cultures, also cocultures (two or more species) are 

implemented for fermentation in industrial biotechnology because they offer the opportunity 
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to use cheap substrates, increase yields and product quality. Furthermore, the metabolic 

potential of a combination of organisms opens the possibility to develop new processes and 

products (Bader et al., 2010). Combining two or more species is complex and microbial 

interactions can have both positive and negative effects on the overall process performance. 

In Chapter 6, we showed that bacteria change their physiology when cultured together and 

the combination of both Raman spectroscopy and flow cytometry revealed how both bacterial 

populations changed their physiology. Complementary to our cytometry pipeline, the method 

described by Rubbens et al. (2017) allows to estimate the relative abundance of the bacteria 

present. Single-cell Raman spectroscopy is capable of detecting both phenotypes of bacteria 

and genotypes (Hutsebaut and Moens, 2005) and could be used to determine the relative 

abundance of different species and their phenotypes in a community. Absolute quantification 

is more difficult due to the small sample size as at least 400 cells should be measured to be 

accurate (Bolter et al., 2002). Relative species abundances could also be measured on bulk 

samples using unmixing algorithms with improved non-linear models. Alternatively, machine 

learning algorithms can be used to detect the relative amount of each bacteria in a group 

spectrum (Chapter 5). 

 

The most important challenge for the application of flow cytometry for reactor monitoring is 

the nature of the substrate and the microbial concentration. Substrates used during 

fermentation are often very complex and concentrated, which could interfere with the staining 

of the cells. For example, the presence of salts is known to reduce the binding efficiency of 

SG to DNA (Zipper et al., 2004) (Chapter 2). Furthermore, the presence of too much free 

DNA could also increase the background which would also reduce the fingerprinting 

accuracy (section 4.3). the high microbial concentrations are also a potential issue as 

concentrations above 106 cells/mL result in the inaccurate detection and counting of the cells 

by the flow cytometer. Furthermore, the chances of clogging the capillaries increase with 

highly concentrated samples. Generally, a dilution step is sufficient to reduce both the 

interfering chemical compounds and the microbial concentration. To summarize, flow 

cytometry allows the fast and online detection of physiological changes in the microbial 

communities and also allows the absolute quantification of the microorganisms.  

6.2 High complexity microbial communities 

Bacteria are present in water in the form of complex communities containing many species. 

Even in clean water, such as drinking water, bacteria are present (Luhrig et al., 2015, 

Hammes et al., 2008). Different qualities are required for the many industrial, agricultural, 

and domestic applications for which water is used. Microbiology is an important factor of the 
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water quality to reduce health hazards but also to avoid technical failures in industrial 

settings, such as microbially induced corrosion or biofouling. Monitoring of the microbial 

communities is typically done by using the heterotrophic plate count method (HPC) as it is 

also part of the EU and national drinking water quality regulations (EU, 1998). Additionally 

also the presence of indicator bacteria which, when present in water, indicate the poor water 

quality. For example, the presence of E. coli in water indicates that the water can be 

hazardous for human consumption. The presence of indicator organisms does not provide 

full certainty about the water quality as only some E. coli species are pathogenic and as not 

all E. coli species are indicators of human or animal contamination (Levy et al., 2012). 

Furthermore, legislation does not provide an upper limit of the number of colony forming units 

(CFU) detected because this is highly variably and cannot be generalized. But it does 

stipulate that ‘no abnormal changes’ should be observed (Van Nevel, 2014). Considering that 

maximum 0.1% of the bacteria present in water can be cultured, the accuracy of the method 

and its ability to be used as a quality indicator is questionable (Hammes et al., 2008). HPC is 

generally not used for monitoring of process water due to its slow speed and the labor 

requirements, and the microbial quality monitoring is thus often disregarded. Biocides or 

other disinfectants are generally added to mitigate microbiological issues. 

Flow cytometry is a fast, cheap, and automated method to detecting and count accurately all 

bacteria in the water. Guidelines and a standardized protocol were also introduced in the 

Swiss water legislation (SLMB, 2012). Also outside Switzerland, flow cytometry has been 

applied for the monitoring of drinking water quality, which illustrates the utility of and high 

demand for the method. The method is not limited to drinking water but can be used for any 

type of water where microbial quality is a relevant and useful parameter to monitor. Different 

types of information about the microbial communities in water can be obtained with flow 

cytometry depending on the operation of the instrument and the data processing. Total cell 

concentrations are the most straightforward information obtained with flow cytometry. 

Because the bacteria concentration is not directly related to health risks or operational risks, 

no upper limit can be set to ensure good water quality. Instead, risk assessment should be 

customized for each type of water, its treatment process, and its purpose, similarly to the 

CFU counts in drinking water (Sartory, 2004). Good water quality can be assured in case no 

abnormal changes in the cell concentration are detected after a reliable baseline has been 

established. For example, in Chapter 7 we showed that drinking water bacteria could grow 

when coupons of common pipe materials were added and that growth was dependent on the 

source of the water and the type of coupon. In Chapter 8, we saw that, during the short 

measurement period, the microbial load of the water entering the water treatment plant 

increased twice due to boats roiling the water in the docks. Furthermore, we could link the 
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bacteria concentration to the operation of the different filtration units in the treatment plant 

and suggested that the cell concentration could be used as an online tool to monitor the 

filtration efficiency and could serve as early-warning method in case of process failures such 

as membrane disruption. Also, in a drinking water distribution system we showed that cell 

concentrations could help to detect dead ends or points of contamination (Van Nevel et al., 

2016a, Van Nevel et al., 2016b). Flow cytometry can also reveal more about the microbial 

physiology besides simple enumeration. The response of bacteria to disinfection can be 

evaluated by using dyes such as SGPI (Van Nevel et al., 2016a). Finally, more information 

can be extracted about the aquatic microbial community by using fingerprinting approaches. 

Multiple methods are available but all intent to extract more information out of the complex 

cytometric patterns. With our fingerprinting pipeline we could demonstrate that, even when 

cell concentrations were comparable, the community composition was not always so similar. 

This can indicate that pipes containing dirty water should be flushed longer (Van Nevel et al., 

2016b) or that the water originates from a different source or came in contact with different 

materials (Chapter 7). Similarly to the bacteria concentration, a stable water quality could be 

guaranteed in case no abnormal deviations from the established baseline are observed. The 

combination of both cel concentration (i.e. regrowth or contamination) and fingerprinting (i.e. 

community dynamics) can be a useful approach for determining biological stability of water. 

7 Conclusions 

The increased necessity to monitor and characterize microbial communities for both research 

and industry calls for fast, cheap and uncomplicated methods for community 

characterization. Single-cell optical techniques such as flow cytometry and Raman 

spectroscopy are therefore promising tools. During this doctoral research, we further 

developed flow cytometric fingerprinting and added an explorative similarity based approach 

to the flow cytometric fingerprinting toolbox. As such, we showed that flow cytometry allows 

discriminating among different bacteria species and strains and that phenotypic diversity 

could be assessed with flow cytometric fingerprinting. We also showed that Raman 

spectroscopy is suitable for the detection of both taxonomic and phenotypic diversity but that 

Raman spectroscopy can also provide a biological explanation for the observed differences. 

For practical applications, flow cytometry is so-far the most convenient method and we 

successfully demonstrated the added value of this method as an early-warning system for 

the monitoring of microbial water quality in drinking water distribution systems and in a full-

scale water treatment plant. 
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SUMMARY 
 
 
Bacteria are ubiquitous on earth and typically form complex microbial communities of 

coexisting genotypes and phenotypes. These communities are important for our modern 

society as many different industrial applications are facilitated by bacteria. These applications 

range from the production of fine chemicals, pharmaceuticals, and food to wastewater 

treatment, bioremediation, bioaugmentation, and bioleaching. In the future, the importance of 

bioprocesses is likely to increase due to the technological, economical, and ecological 

benefits of microbiologically-driven techniques. Microbial communities are the result of the 

complex interactions among bacteria and between bacteria and their environment. They are 

therefore constantly in flux and react sensitively on changed conditions. As a consequence, 

microbial communities are also good indicators of how processes operate. For example, 

water quality is monitored based on the absence or presence of certain indicator organisms. 

To improve bioprocesses or to monitor microbial communities for quality purposes, 

techniques for community characterization are necessary. In this doctoral research we 

explored how flow cytometry could be used for this purpose. Existing fingerprinting methods 

were improved and the sensitivity of this technique was tested for the taxonomic and 

phenotypic characterization of microbial communities. Since flow cytometry relies on staining 

and since staining can decrease the resolution and speed of the method, Raman 

spectroscopy, a label-free alternative, was also investigated for community characterization. 

Bacteria are very small and fluorescent dyes staining a specific feature of microbial cells are 

necessary to detect them. The type of dye dramatically impacts the cytometric fingerprints as 

only the stained features are assessed. In Chapter 2 different multicolor staining protocols 

were compared to increase the amount of physiological information per cell and 

consequently to improve the fingerprints. We found that not only the number of dyes are 

important but also the stability of the dyes. Results showed that SG and SGPI are the most 

stable dyes and therefore favored for cytometric fingerprinting.  

In Chapter 3, the cytometric fingerprinting toolbox was improved with a similarity based 

approach. To test the sensitivity of this unsupervised approach, 29 Lactobacillus species and 

strains were compared. Results showed that 27 out of 29 species and strains could be 

discriminated with SG or SGPI staining. The sensitivity of the method was found to be 

between 1% and 5% of change in the fingerprints, depending on the overlap between the 

bacteria fingerprints. The method is also reproducible but a standardized growth protocol is 

necessary. To illustrate the possible impact of the different growth stages on the fingerprints, 
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a comparison of the fingerprints of a batch culture were compared. The results showed that 

the fingerprints did change sufficiently for the fingerprinting algorithm. 

To further investigate the impact of the microbial growth stage on the cytometric fingerprints, 

an E. coli batch fermentation was monitored over time (Chapter 4). Results showed that the 

fingerprints changed due to a phenotypic switch caused by substrate depletion. This switch 

occurred before conventional methods such as exhaust-gas analysis could detect the 

substrate depletion. As a consequence, we conclude that flow cytometric fingerprinting can 

be used as a monitoring tool for bioprocess operations. A contrast analysis shows that the 

sensitivity of the method is related to the sensitivity of the nucleic acid dyes to detect small 

changes in the nucleic acid composition. 

Because labeling bacteria with fluorescent dyes reduces the amount of physiological 

information comprising the fingerprints, an alternative label-free method such as Raman 

spectroscopy was evaluated (Chapter 5). Several data processing pipelines were compared 

and results showed that phenotypic differences could be detected by both supervised and 

unsupervised methods with high accuracy. Moreover, we developed and tested a new 

algorithm which quantifies bacteria species in a community based on the average spectrum 

of the community. Quantification with this algorithm is possible but different results were 

found for different bacteria mixes.  

To compare the sensitivity and the complementarity of flow cytometry and Raman 

spectroscopy, an experiment with microcosms was set up (Chapter 6). When two bacteria 

species were cocultured, they both changed their phenotypes though in different ways. This 

could be established with both flow cytometry and Raman spectroscopy but the combination 

of the two methods confirmed the observations. This also illustrates that the two methods are 

complementary. 

Microbiology is an important aspect of water quality. To reduce health risks, bacteria in 

drinking water are mitigated by disinfection but it is impossible to remove all bacteria. 

Therefore a good monitoring of the microbial quality, especially in drinking water distribution 

systems is necessary. In Chapter 7, we compared the planktonic microbial communities with 

the microbial communities in the biofilm which are putatively the most important fraction of 

bacteria in DWDS. Results showed that both the type of materials in contact with the water 

and the origin and treatment of the water influenced the cytometric fingerprints and hence the 

microbial community. No relationship could be established between the bulk and biofilm 

fingerprints. Furthermore, we tested if an Enterobacter amnigenus, a drinking water 

contaminant, could colonize biofilms and subsequently contaminate drinking water. Results 

showed that the Enterobacter could do this, regardless of the type of material or of a pre-
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existing biofilm. When Enterobacter was incubated with sterilized water, the bacteria grew 

better, probably because of necrotrophic growth or because of a lack of competition. 

In Chapter 8, we tested the sensitivity of cytometric community fingerprinting by adding 

elements which could be used by the aquatic microbial community to grow. We showed that 

the fingerprints are mainly sensitive to (re)growth of the microbial community. Finally, we 

installed an online flow cytometer in a full-scale water treatment plant to illustrate the 

potential of the method as early-warning system and as water quality monitoring tool. Water 

after different filtration steps was monitored and we showed that after every filtration unit (UF, 

RO), bacteria could be detected. The cell density was related to the type of filter, the age, 

and fluctuated in function of the operation of the treatment plant. 

To conclude, in this doctoral research we showed that flow cytometric fingerprinting can be 

used for community characterization and that it correlates with genotypic and phenotypic 

changes in the microbial community. The speed and automation of the method makes it an 

ideal candidate for industrial monitoring of bioreactors or water distribution systems. Raman 

spectroscopy is an alternative approach which is potentially more powerful as it is can easily 

discriminate among genotypes and phenotypes. Yet, Raman spectroscopy cannot be 

automated and more research is necessary to adapt it for industrial applications. However, 

the possibility to both characterize the species composition and the phenotypic composition 

of a community in less than a few hours makes it a promising tool for research.  
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SAMENVATTING 
 
 
Bacteriën zijn wijdverspreid op aarde en vormen complexe gemeenschappen waar 

verschillende genotypen en fenotypen samenleven. Die gemeenschappen zijn belangrijk 

voor onze moderne samenleving omdat veel verschillende industriële toepassingen door 

bacteriën worden bewerkstelligd. Die toepassingen gaan van de productie van 

fijnchemicaliën, farmaceutische producten, en voeding tot het opzuiveren van afvalwater, 

bioremediatie, bioaugmentatie, en bioleaching. In de toekomst zal het belang van dergelijke 

technologieën toenemen door de ecologische, economische en technologische voordelen 

die hen kenmerken. Microbiële gemeenschappen zijn het product van de complexe 

interacties van bacteriën onderling en van de bacteriën met hun omgeving. Ze zijn dus 

dynamisch en reageren snel op externe veranderingen waardoor ze ook goede indicatoren 

zijn voor tot dusver onopgemerkte veranderingen. Een voorbeeld hiervan is de 

kwaliteitsborging van water die berust op de aan- of afwezigheid van bepaalde microbiële 

indicatororganismen. Om biotechnologische processen te kunnen verbeteren of om 

microbiële gemeenschappen te kunnen monitoren voor kwaliteitsborging, is een techniek die 

de microbiële gemeenschappen kan karakteriseren noodzakelijk. Tijdens dit 

doctoraatsonderzoek heeft men onderzocht hoe flow cytometrie hiervoor kan worden 

gebruikt. Bestaande fingerprinting methoden werden verbeterd en de gevoeligheid van de 

methode voor het karakteriseren van microbiële gemeenschappen werd bepaald. Omdat 

flow cytometrie berust op het kleuren van de cellen en omdat die kleuring de resolutie en de 

snelheid van de methode verminderen, heeft men een kleurenvrij alternatief, nl. Raman 

spectroscopie, onderzocht voor het karakteriseren van microbiële gemeenschappen. 

Bacteriën zijn erg klein en fluorescente kleurstoffen zijn nodig om ze detecteerbaar te maken 

voor flow cytometrie. Het type kleurstof is cruciaal voor flow cytometrie en de fingerprinting 

algoritmen omdat enkel die gekleurde eigenschappen worden belicht. In Hoofdstuk 2 heeft 

men verschillende ‘multicolor’ protocollen met elkaar vergeleken om de fysiologische 

informatie van de fingerprints te verhogen. Een van de belangrijkste bevindingen is dat 

‘multicolor’ kleurstoffen vaak niet voldoende stabiel zijn voor fingerprinting en dat SG en 

SGPI de meest geschikte kleurstoffen zijn. In de rest van dit werk werd dan ook steeds voor 

deze kleurencombinaties gekozen.  

In Hoofdstuk 3 heeft men de mogelijkheden van flow cytometrische fingerprinting uitgebreid 

door de similariteit te berekenen tussen de fingerprints. Om de gevoeligheid van de methode 

te testen werden 29 verwante Lactobacillus species en stammen vergeleken. De resultaten 

gaven aan dat 27 van de 29 species en stammen van elkaar konden worden onderscheiden. 
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Met een combinatie van verschillende micropartikels en met een combinatie van 

verschillende soorten bacteriën werd de gevoeligheid van de methode geschat tussen de 1% 

à 5% veranderingen in de fingerprints. Mits een gestandaardiseerd groeiprotocol is de 

methode tevens reproduceerbaar. De gevoeligheid van de methode voor de fysiologische 

veranderingen tijdens de groei werd geïllustreerd door een cultuur op te volgen in de tijd.  

Om te kunnen verklaren welke fysiologische veranderingen aan de basis liggen van een 

veranderde fingerprint in functie van de groeifasen werd in Hoofdstuk 4 een E. coli batch 

fermentatie opgevolgd met flow cytometrie. De resultaten toonden aan dat de fingerprints 

veranderden op het moment dat het substraat op was. Die fenotypische switch werd eerder 

waargenomen dan de veranderingen gemeten door conventionele methoden zoals gas 

analyse. Verder heeft men met een contrastanalyse kunnen aantonen dat de gevoeligheid 

van de nucleïnezuurkleurstoffen voor kleine veranderingen in de samenstelling van de 

nucleïnezuren verantwoordelijk is voor de gevoeligheid van methode.  

Het gebruik van kleurstoffen voor het detecteerbaar maken van bacteriën vermindert de 

fysiologische informatie in de fingerprints en Raman spectroscopie werd verder onderzocht 

als kleuringsonafhankelijk alternatief (Hoofdstuk 5). Verschillende 

dataverwerkingsalgoritmen werden vergeleken en resultaten hebben aangetoond dat zowel 

met een supervised als met een unsupervised algoritme de genotypische en fenotypische 

verschillen tussen populaties accuraat konden worden waargenomen. Daarenboven heeft 

men een algoritme voorgesteld om op basis van het gemiddelde spectrum van een 

gemeenschap de species binnen de gemeenschap te kwantificeren. De resultaten waren 

succesvol maar verschillend afhankelijk van de bacteriën in de gemeenschap. 

Om de gevoeligheid en complementariteit van flow cytometrie en Raman spectroscopie te 

bepalen, werd een experiment met vereenvoudigd ecosysteem opgesteld (Hoofdstuk 6). 

Bacteriën die samen werden opgegroeid pasten hun fenotypen aan maar elk op een andere 

manier. Dit werd waargenomen door zowel flow cytometrie als Raman spectroscopie en de 

combinatie van beiden methoden bevestigde de waarnemingen hetgeen de 

complementariteit van beide illustreert. 

Bacteriën zijn een belangrijk onderdeel van waterkwaliteit. Om gezondheidsrisico’s te 

verminderen worden desinfectantia gebruik in het drinkwater distributienetwerk. Omdat de 

bacteriën nooit helemaal kunnen worden verwijderd, is een goede monitoring van de 

microbiële gemeenschap in het distributie netwerk noodzakelijk. In Hoofdstuk 7 heeft men 

de fingerprints van de planktonische microbiële gemeenschap vergeleken met de fingerprints 

van de microbiële gemeenschap in de biofilms die verondersteld is de belangrijkste fractie 

bacteriën te bevatten in het drinkwaternetwerk. Resultaten toonden aan dat zowel het type 
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leidingmateriaal als de bron en productie methode van het water een rol spelen in de 

vormgeving van de microbiële gemeenschap in het water en de biofilms. Nochtans kon er 

geen verband worden vastgesteld tussen de fingerprints van de biofilms en het bulk water. 

Verder heeft men ook aangetoond dat Enterobacter amnigenus, een typische 

drinkwatercontaminant, biofilms kon koloniseren ongeacht het type leidingmateriaal. Indien 

geautoclaveerd water gebruikt werd, groeiden de Enterobacter beter. Wellicht door 

necrotrofische groei of door een gebrek aan concurrerende bacteriën. 

In Hoofdstuk 8 heeft men de gevoeligheid van flow cytometrische fingerprinting getest door 

elementen toe te voegen aan het water die door de aquatische microbiële gemeenschap als 

substraat kon worden gebruikt. Dit heeft aangetoond dat de methode voornamelijk gevoelig 

is voor (her)groei van de microbiële gemeenschap en dat die voornamelijk door koolstof tot 

stand wordt gebracht. Finaal heeft men met een online flow cytometer een industrieel 

waterproductiecentrum gemonitord om te illustreren hoe flow cytometrie als vroege indicator 

voor kwaliteitsborging kan worden gebruikt. Het water werd gestest na verschillende stappen 

in het proces en men heeft aangetoond dat ook na filtratie (UF of RO) bacteriën aanwezig 

zijn in het water. De bacterie concentratie was afhankelijk van het type filter, de leeftijd en de 

manier waarom het water productie centrum bestuurd werd. 

In dit doctoraatsonderzoek kom men aantonen dat flow cytometrische fingerprinting een 

geschikte methode is voor het karakteriseren van microbiële gemeenschappen en dat het 

correleert met zowel genotypische als fenotypische veranderingen in de microbiële 

gemeenschap. De snelheid en automatisatie van de methode maken het reeds geschikt voor 

industriële toepassingen zoals voor het monitoren van bioreactoren of het bewaken van 

microbiële kwaliteit in een waterdistributienetwerk. Raman spectroscopie is een alternatieve 

methode die mogelijks krachtiger is omdat het moeiteloos genotypen en fenotypen kan 

onderscheiden. Echter, Raman spectroscopie kan nog niet worden geautomatiseerd en meer 

onderzoek is noodzakelijk eer het gebruikt kan worden voor industriële toepassingen. Maar 

de mogelijkheid om tegelijk de taxonomische en fenotypische samenstelling van een 

microbiële gemeenschap te bepalen in slechts enkele uren maakt deze methode uiterst 

geschikt voor onderzoek. 
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