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0 Introduction
0.1 Killing two birds with one stone
Two are the main objects of interest of this work, and they will be developed in parallel.
The first one is of geometrical nature, and is called Teichmüller dynamics. Teichmüller spaces,

namely the spaces of the complex structures on a fixed surface up to isotopies, are not quite
Riemannian manifolds, but a geodesic flow can nevertheless be defined. The interesting thing
is that this flow can be visualised very simply if one considers it as a flow among translation
surfaces, a special kind of flat Riemannian structures with a finite number of singularities. The
flow is usually considered not on Teichmüller spaces but on a quotient, namely moduli spaces.

The second object of interest will be the interval exchange maps, which are much simpler
to define: they are self-maps of an interval that divide it in sub-intervals and rearrange them
preserving the orientation. Rauzy dynamics is a dynamics among interval exchange maps,
obtained by considering the action of one of them on smaller and smaller portions of the
original interval.

These two settings may seem totally unrelated to each other, but an identification is possible
on two levels. If one considers a family of lines in a fixed direction on a translation surface,
and an orthogonal segment, an interval exchange map is induced on the segment: one starts
from any of its points and follows the corresponding line, until one gets back to the segment.
On the other hand, a section for the Teichmüller flow can be defined, and the associated return
map can be interpreted in terms of Rauzy dynamics.

The intensive study of Teichmüller/Rauzy dynamics began roughly in the 1970s-1980s with
the pioneering works of Katok, Keane, Masur and Veech and is now an extremely active field of
research with a growing number of contributors including several Field medalists (Kontsevich,
McMullen and Yoccoz, just to name a few) as well as some younger researchers (Avila, Bufetov,
Chaika, Matheus, Marchese, Ulcigrai. . . ).

In this chapter we briefly introduce some preliminary notions from the theory of dynamical
systems which will be used in this work; then we examine quickly two simpler kinds of objects
which motivate the study of the entities listed above: namely flat tori, and rotations of the
circumference. Chapter 1 is about the fundamentals of Teichmüller theory, and in Chapter 2
we give the basic notions needed to work with interval exchange maps.

After that, we begin talking about the results obtained in this twofold subject. Chapter 3
collects some ‘historical’ topics: ergodicity of the considered dynamics, and the properties of the
Kontsevich-Zorich cocycle; then we treat rather in detail the generalisations and implications
of the Khinchin theorem, investigated by Luca Marchese.

The Khinchin theorem, in its original version, is a theorem about a Diophantine condition
for real numbers. Let us fix a generic ϑ ∈ [0, 1), and a decreasing sequence ϕ(n): we ask, how
many times does it happen that {nϑ} < ϕ(n) (where {·} denotes the fractional part of a real
number)? The answer is, finitely many if

∑
ϕ(n) < +∞, infinitely many otherwise.

In Chapter 4 we will see that it is possible to define a condition regarding singularities

1



0.2 SMALL DICTIONARY OF ASYMPTOTIC PROPERTIES

of interval exchange maps, derived from the one considered by Khinchin. The number of
solutions to this condition will be finite or infinite again according to

∑
ϕ(n). The proof of

this result provides an example of the most commonly employed method for studying i.e.m.s
and related matters: “to plough in parameter space, and to harvest in phase space” (Adrien
Douady).

In Chapter 5 the geometrical implications of this generalised Khinchin theorem are analysed.
These ones include not only a mere geometrical restatement of the theorem found for interval
exchange maps; but also interesting information about how the geodesics on a translation
surface pass closer and closer to a fixed point; and a characterisation of how much the geodesic
flow in moduli space gets ≪far towards infinity≫ and then gets back.

Large portions of this work are meant as an overview. For this reason, several proofs are
only outlined; or also, deprived of the most technical parts, or totally omitted.

0.2 Small dictionary of asymptotic properties
This section collects some definitions and preliminary results related to the study of dy-

namical systems in general, before we describe the setting of our interest. The main source
for this quick overview is [CM08], whose viewpoint is that: “Roughly speaking, the goal of
the theory of dynamical systems is to understand most of the dynamics of most systems”. It
must not be forgotten that such abstract definitions may undergo modifications according to
the context.

§ 0.2.A Discrete vs. continuous A dynamical system is a transformation of some phase
space X, which is a set endowed with some structure e.g. a topology, a manifold structure,
a measure etc.; the most typical distinction is between discrete and continuous dynamical
systems.

A discrete (deterministic) dynamical system is given by a map f : X → X that ≪has a good
behaviour with respect to some of the structures on X≫, that is it may be continuous, differen-
tiable, measurable, etc. Fixed a point x ∈ X, its orbit is the sequence

(
f n(x)

)
n∈N given by the

images of x under iterates of f . When f is an invertible map, this is often called the positive
(half-)orbit, as one may also consider the biinfinite sequence

(
f n(x)

)
n∈Z.

A continuous dynamical system is defined on a phase space X with a topological (typically
a manifold, or orbifold) structure. Such a system may be identified with a flow, that is a
continuous (differentiable) mapΦ(x, t) = Φt(x), defined on an open set of X×Rwhich contains
X × {0}, and satisfying the semigroup laws Φ(·, 0) = IdX, Φ(x, s + t) = Φ(Φ(x, s), t). In particular,
each Φt is a homeomorphism (diffeomorphism) of X. When X is a differentiable manifold (or
orbifold), a flow is in turn identifiable with an unique vectorfield on X.

Starting from a flow, it is sometimes possible to define an associated discrete system: a
(cross-)section (when it exists) is a submanifold Y of X of codimension 1 that is transverse to the
flow, and intersects the orbit Φt(x) of each fixed x ∈ X for infinitely many t ∈ R. With such
hypotheses, a discrete dynamical system on Y is given by the first return map of the flow Φt

to Y. Conversely, a diffeomorphism f of a manifold Y can be associated with its suspension,
which is a continuous system such that f appears as a return map: let X = Y × R/ ∼ where
∼ is the equivalence relation generated by (y, t) ∼ ( f (y), t + 1). The desired flow is simply
Φt([x, u]) = [x,u + t].

§ 0.2.B Topological asymptotic properties Suppose that X is a (compact) metric space,
and f ∈ Homeo(X); in this case, several definitions are commonly used to describe the be-
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0.2 SMALL DICTIONARY OF ASYMPTOTIC PROPERTIES

haviour of the orbits of f . Recall that, given x ∈ X, its α-limit is the set of the points y of X such
that the negative orbit ( f−n(x))n∈N gets arbitrarily close to y for infinitely many n ∈N; similarly
its ω-limit is the set of the points y of X such that the positive orbit ( f n(x))n∈N gets arbitrarily
close to y for infinitely many n ∈N. A typical kind of considered property is whether an orbit
makes infinitely many returns near its initial point:

Definition 0.2.1. A point x ∈ X is positively recurrent if it is contained in its ω-limit; negatively
recurrent if it is contained in its α-limit; recurrent if it is contained in both.

Another kind of question is whether orbits visit all regions of the space:

Definition 0.2.2. A discrete dynamical system is called topologically transitive if one of its orbits
is a dense subset of X; and it is called minimal if each orbit is dense.

These definitions make sense, with minor modifications, for continuous systems as well.

§ 0.2.C Measurable systems Questions in the same spirit as above are most frequently
made in a statistical setting: that is, X is not only a metric space, but we also consider its Borel
σ-algebra. In the case of a discrete system specified by some measurable f : X → X, a frequent
request on the considered Borel measures (or, often, probabilities) is the following:

Definition 0.2.3. A Borel measure µ is f -invariant if, for any measurable E ⊆ X, we have
µ
(

f−1(E)
)
= µ(E). We also say that f preserves µ.

Note that this definition makes sense even if f is not invertible. In the case of a continuous
system specified by some flow Φ, we say that µ is Φ-invariant if it is Φt-invariant for all fixed t.

A well-known fact about f -invariant probabilities is the following:

Theorem 0.2.4 (Weak Poincaré recurrence). Let µ be a f -invariant probability measure. Then, for
every measurable E ⊆ X with µ(E) > 0, the (positive) orbit of almost any point of E returns infinitely
many times to E.

We denote M(X) the set of the Borel probabilities on X, and M f (X) the subset of the
f -invariant ones. According to a theorem of Krylov and Bogolubov, if f is a continuous
endomorphism of a compact metric space X then M f (X) is always nonempty; and it is not
difficult to see that it is a convex subset. A particular attention is given to its vertices, which are
measures ≪not decomposable with respect to the dynamics≫:

Definition 0.2.5. A f -invariant Borel probability measure on X is called ergodic if, for every
measurable E ⊂ X such that f−1(E) = E, one has either µ(E) = 0 or µ(E) = 1.

Given a function ϕ : X→ R, we define for any n ∈N its n-th Birkhoff sum as the function

Snϕ(x) B
n−1∑
j=0

ϕ
(

f j(x)
)
.

Ergodicity of probability measures is related with the asymptotic behaviour of Birkhoff sums:

Theorem 0.2.6 (Birkhoff ergodic theorem). Let µ be an ergodic Borel probability measure on X,
and let ϕ : X→ R be a measurable function. Then

lim
n→+∞

1
n

Snϕ(x) =
∫

X
ϕdµ

for µ-almost every x ∈ X.

3



0.3 FLAT TORI, ROTATIONS, AND THE MODULAR SURFACE

When E ⊆ X is measurable and we take ϕ = χE is its characteristic function, 1
n SnχE(x) is the

frequency of visit of x to E: Birkhoff theorem implies that, for µ-almost every x, this expression
goes to µ(E) for n → +∞. In particular two distinct ergodic measures are always mutually
singular. Note that the Poincaré recurrence theorem states that the orbit of a generic point of E
returns to E infinitely many times; whereas ergodicity implies that the orbit of a generic point
in the whole X enters E infinitely many times.

A particular case of ergodicity is the following:

Definition 0.2.7. A measurable f : X → X is uniquely ergodic if M f (X) consists of only one
probability measure µ.

In this case µ is necessarily ergodic. Birkhoff theorem now has a stronger statement:

Theorem 0.2.8. Let X be a compact metric space, and let f : X→ X be an homeomorphism. The map
f is uniquely ergodic if and only if, for every continuous function ϕ : X → R, there is a constant cϕ
such that

lim
n→+∞

1
n

Snϕ(x) = cϕ uniformly for all x ∈ X.

In this case the unique f -invariant measure µ is the one such that cϕ =
∫

X ϕdµ.

All the discussions above only regarded discrete dynamical systems, but are easily adapted
to continuous ones. In particular Birkhoff sums are replaced by integrals on finite segments of
orbit,

∫ T

0 ϕ
(
Φt(x)

)
dt.

0.3 Flat tori, rotations, and the modular surface
This work is concerned with the study of objects like translation surfaces, the Teichmüller flow,

interval exchange maps. Since their definitions, and the relations between them, may appear
rather technical, we try to clarify them with a quick description of the simplest case, which
involves flat tori, the geodesic flow on the modular surface, and the rotations of T.

§ 0.3.A Flat tori Take ζβ, ζα ∈ R2 � C a positive basis of R2; and consider the quotient
C�Zζβ ⊕Zζα.

Topologically this is a closed 2-manifold of genus 1, but several other structures are specified
on it:
• a preferred couple of generators of its fundamental group;
• a flat Riemannian metric;
• a structure of Riemann (i.e. complex) surface;
• a canonical complex 1-form, obtained by projection of the form dz on C;
• for each direction ϑ, a partition (called foliation) of the torus in (oriented) parallel lines in

direction ϑ—inherited from straight lines of R2.
We call such a structure a flat torus; flat tori are parametrised by the couple (ζβ, ζα), so their

set can be identified with GL+(2,R).
When two couples are related by (ζβ, ζα) = v(ζ′β, ζ

′
α) for some v ∈ C∗, the underlying

complex structures are isotopic. This implies that the set of the complex structures one can put
on a topological torus, considered up to isotopies, has a one-to-one correspondence with

GL+(2,R)�omotheties and rotations �
SL(2,R)�SO(2,R),

4



0.3 FLAT TORI, ROTATIONS, AND THE MODULAR SURFACE

0

ζα

ζβ

Figure 0.1: A fundamental domain for a flat torus

but, on the other hand, it has a bijection with the possible ratios w = ζα/ζβ (seen as complex
numbers) up to conjugation: therefore

SL(2,R)�SO(2,R) � {w ∈ C|ℑ(w) > 0} =H2.

If ζβ = (aβ, bβ) and ζα = (aα, bα), the corresponding element of GL+(2,R) is
(

aβ aα
bβ bα

)
∈

GL+(2,R). For any t ∈ R, let us consider multiplication on the left by diag(et, e−t) ∈ SL(2,R);
this gives new vectors ζα(t), ζβ(t), and their ratio as complex numbers is

w(t) =
e2taα + ibα
e2taβ + ibβ

,

which parametrises a geodesic ofH2; if we vary ζα, ζβ so that their ratio w ∈ H2 stays constant
— i.e. we consider all the flat tori inducing the complex structure which corresponds to w —
all the non-costant geodesics passing through the point w ∈ H2 are obtained. Therefore we
can identify the space of flat tori, namely GL+(2,R), with the (complex) tangent bundle (deprived
of the zero section) to the space of Riemann tori, identified with H2; and the geodesic flow
on the tangent bundle can be seen as a deformation of a flat torus: its horizontal foliation is
progressively ‘stretched’, while its vertical one is ‘shrunk’ by the same factor.

§ 0.3.B The modular surface Suppose two couples (ζβ, ζα), (ζ′β, ζ
′
α) ∈ GL+(2,R) generate

the same lattice: Zζβ ⊕ Zζα = Zζ′β ⊕ Zζ′α; this is equivalent to say that a matrix A ∈ SL(2,Z)
exists such that (

ζβ
∣∣∣ζα ) A =

(
ζ′β

∣∣∣ζ′α ) .
The structures listed in paragraph 0.3.A that are induced on each of the two generated

flat tori, except for the basis for the fundamental group, correspond under a diffeomorphism
between them. Therefore the space of flat tori up to diffeomorphisms is

GL+(2,R)�SL(2,Z)
and, similarly, the space of Riemann tori up to diffeomorphisms is

H2
�SL(2,Z) =

H2
�PSL(2,Z),

where the action of SL(2,Z) is performed through Möbius tranformations (hence the equality
between the two quotients). The latter quotient is called the modular surface and it is an orbifold,
that is, it is a manifold ≪with finite-type singularities≫, which arise at the points obtained by
projecting i, eiπ/3 ∈ H2. Indeed the action of SL(2,Z) at these two points is non-free, the point
i being fixed by an element of order 2, and the point eiπ/3 being fixed by an element of order
3 (this means that the corresponding Riemann structures have non-trivial automorphisms).
Moreover the modular surface has a cusp.

The modular surface inherits a geodesic flow from H2. However, any geodesic in H2

5



0.3 FLAT TORI, ROTATIONS, AND THE MODULAR SURFACE

T

J

i eπi/3e2πi/3

1/2−1/2 0

i

T−1

Figure 0.2: The first picture shows a fundamental domain for the action of SL(2,R) onH2,
and how are its edges identified under T(z) = z + 1 and J(z) = −1/z (which
generate SL(2,Z)) to obtain the modular surface. The second and the third
picture compare the behaviours of a geodesic ofH2 and of its projection in the
modular surface.

simply goes to infinity, whereas all geodesics in the modular surface which are not obtained
by projection of a vertical geodesic of H2 make infinitely many ‘excursions’ to the cusp and
then get back. Figure 0.2 shows a fundamental domain inH2 for the definition of the modular
surface, and an example of geodesic.

§ 0.3.C Vertical flows and rotations of T Let us consider, for instance, a flat torus ob-
tained by taking ζα = 1: the curve obtained from projection of the segment [0, 1] ⊂ C can be
considered as an embedding of T = R/Z in the torus. Starting from a point x ∈ T, one can
follow the vertical foliation of the flat torus upwards, until one gets back to T, and precisely in
a point x+ ϑ. One sees easily that ϑ does not depend on x, therefore the first return map of the
vertical flow on T is a rotation rϑ.

The dynamical properties of rϑ are very different according to ϑ: when ϑ ∈ Q/Z, every
point is q-periodic, where q is the least possible denominator of ϑ. Otherwise — therefore for
almost every ϑ in the sense of Lebesgue measure — it is a well-known fact that each orbit of rϑ
is dense, that is the map rϑ is minimal. This implies that the vertical flow on the flat torus has
the same property.

Furthermore, again for irrational ϑ, each orbit is equidistributed, that is for each continuous
function ϕ : T→ R and any x ∈ Twe have

lim
n→+∞

1
n

n−1∑
j=0

ϕ(x + jϑ) =
∫
T

ϕ(x)dx.

According to the stronger version of the Birkhoff Theorem 0.2.8, this means that rϑ is uniquely
ergodic, and the Haar (i.e. Lebesgue) measure on T is the only f -invariant one.

The rotation rϑ can also be regarded as a self-map T of the fundamental domain I = [0, 1) ⊂
R. Let us consider I divided into two sub-intervals It

α = [0, 1−ϑ) and It
β = [1−ϑ, 1); and also in

Ib
β = [0, ϑ) and Ib

α = [ϑ, 1): the map T translates the sub-interval It
α onto Ib

α, and the sub-interval

It
β onto Ib

β; that is, it exchanges the two sub-intervals It
α and It

β.

§ 0.3.D Exchanges of two intervals Motivated by the viewpoint described above, let
us consider a map T on a generic interval I = [0, λα + λβ) which translates the sub-interval
It
α = [0, λα) onto Ib

α = [λβ, λα + λβ); and the sub-interval It
β = [λα, λα + λβ) onto Ib

β = [0, λβ).

A similar map is derived from T with the following proceeding of truncation, valid for
λα , λb (see Figure 0.3): remove from I the shorter between its sub-intervals on the right, It

β

6



0.3 FLAT TORI, ROTATIONS, AND THE MODULAR SURFACE

T :

It
α It

β

Ib
β Ib

α

0 λα λα + λβ

λβ

RT :

I′α
t I′β

t

I′β
b I′α

b

0 λα

λβ

λα − λβ

Figure 0.3: Graphical representation of the process of truncation, in the case λα > λβ.

and Ib
α, and call I′ the resulting interval. Let RT : I′ → I′ be the first retun map of T in I′, that

is for x ∈ I′ we define RT(x) as the first point of its positive orbit under T that lies again in I′.
According to the Poincaré recurrence Theorem 0.2.4, this is a good definition for almost every
x ∈ I′; in this case, actually, the map is defined for every point.

If λβ > λα, the map RT is again an exchange between the sub-intervals [0, λα) and [λα, λβ);
if λβ < λα, RT exchanges the sub-intervals [0, λβ) and [λβ, λα). When λβ/λα is irrational, the
truncation algorithm can be iterated infinitely many times.

We can also consider a faster version, that is: if λα > λβ we call r the largest positive integer
such that λ′∗ B λα − (r− 1)λβ > 0. We set I′ = [0, λ′∗) and we denote R∗T : I′ → I′ the first return
map of T; that is, we set R∗T = RrT. In the case λβ > λα we proceed in a similar way.

§ 0.3.E A suspension construction Given T an exchange of two intervals whose lengths
are λα and λβ respectively, one can construct a flat torus with a marked horizontal segment
such that T appears as a return map.

Take two real numbers τα > 0 > τβ, and set ζα B λα+ iτα, ζβ B λβ+ iτβ. ThenC/(Zζα⊕Zζβ)
is a flat torus with the following property: let H be the horizontal segment on the torus obtained
from projection of [0, λα + λβ) ⊂ R ⊂ C. Then the map T on H is the first return map of the
vertical upgoing flow on the torus, i.e. its foliation in direction π/2. This is easily seen if one
considers the torus as the quotient of the parallelogram whose sides are specified by ζα and ζβ
(see Figure 0.4 on the left).

0

ζα

ζβ

λα
λβ λα + λβ

0

ζα

ζβ

1 0

ζα

ζβ

1

Figure 0.4: The picture on the left shows an example of suspension construction; the
pictures on the right illustrate the two possibilities for a preferred basis as
defined in Lemma 0.3.1.

This construction also establishes a relationship between geodesic flow on the unit tangent

7



0.3 FLAT TORI, ROTATIONS, AND THE MODULAR SURFACE

bundle of the modular surface (namely SL(2,R)/SL(2,Z), or the space of the flat tori up to
diffeomorphisms) and the truncation algorithm above described. An element of the former
can be identified with a lattice inC (without any preselected basis) with covolume 1; we restrict
our attention to irrational lattices, i.e. lattices intersecting R and iR only in 0 (which are the
typical ones).

For each lattice as above we select a preferred basis, according to the following

Lemma 0.3.1. For each Λ irrational lattice in C with covolume 1 there exists an unique basis ζα =
λα + iτα, ζβ = λβ + iτβ such that one of the two following conditions holds:
• λα ≥ 1 > λβ > 0 and 0 < τα < −τβ;
• λβ ≥ 1 > λα > 0 and 0 < −τβ < τα.

The two possibilities are shown in Figure 0.4 on the right. In particular a preferred basis is
one that makes a flat torus appear as obtained from suspension of an exchange of two intervals.
How do those preferred bases behave under the geodesic flow? Recall that, at the time t (which
we suppose > 0), it stretches horizontal lengths (and in particular the λ’s) by a factor et, while
it shrinks vertical ones (and in particular the τ’s) by the same factor. Denote gt the geodesic
flow, and ζ(t) the preferred basis for the flat torus gt(C/Λ), where Λ is a lattice as above.

For sufficiently small t > 0, the preferred basis ζ(t) is simply gt
∗ζ(0). In particular this is true

for all t ∈ [0, t0), where t0 B − log
(
min{λα, λβ}

)
> 0. At the time t0 this is not true anymore, as

the real part of both vectors of the basis is at least 1.
Suppose for instance that λα > λβ, so that the preferred basis for Λ satisfies the first of the

two conditions in the Lemma; we set
ζ′α B gt0

∗ (ζα − rζβ)
where r is the maximum positive integer such that ζ′α still has a positive real part; and we
set ζ′β B gt0

∗ (ζβ). This basis for the lattice gt0
∗ (Λ) is the preferred one, as it satisfies the second

condition in the Lemma: and it has been obtained following the same instructions that define
the fast version of truncation. The same holds in the case λβ > λα. In any case, since we started
from an irrational lattice, infinite iteration of truncation is allowed.

To summarise: after we have selected a preferred basis for each irrational element of
SL(2,R)/SL(2,Z), we have a way to define a map from ≪almost all≫ the unit tangent bundle of
the modular surface to the set of the exchanges of two intervals. If we follow an orbit of the
geodesic flow, the associated exchange map is piecewise constant; where a discontinuity takes
place, it changes according to the fast truncation R∗, up to a scale factor.
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1 What is Teichmüller dynamics?

As we already announced, our first aim is to generalise the arguments developed in section
0.3. More precisely we want to consider:
• orientable surfaces whose genus is more than 1;
• maps of the interval that behave as an exchange of more that two sub-intervals.

This chapter focuses on the former; the following one will focus on the latter, and on their
relationship with the geometrical objects we are going to build.

The path towards generalisation requires us to go beyond several obstacles. Of course one
can define the space of the complex structures on a topological surface up to isotopies, the
so-called Teichmüller space, but in the case of the torus it has been largely helpful that this space
is naturally identified with the hyperbolic planeH2: a structure of Riemannian manifold, and
therefore a notion of geodesic, was already given.

We will see that there is a natural topology on the Teichmüller space, according to which it
is a manifold (actually, homeomorphic to some Rn). Teichmüller space is not endowed with a
Riemannian structure, but we will get close to it (at least for what concerns us): it is a geodesic
metric space, with special properties.

While working to define a distance on the Teichmüller space, we will encounter a sort of
tangent space at every point, which specifies the possible ‘directions’ of geodesics starting at
that point. In the case of complex tori, we already know that this role is played by the set of
the flat tori inducing the considered complex structure. For surfaces of higher genus this is
still true: a notion of flat surface can be defined, even if we are forced (for instance, because of
the Gauss-Bonnet theorem) to admit singularities on those structures. The geodesic flow, made
up by the curves such that the length of their short portions equals the distance between their
endpoints, results to be described by the action of diag(et, e−t) on flat structures, as it is the case
for tori.

Another similarity with H2 emerges: this Teichmüller geodesic flow does not present
any recurrence property. In the case of the torus we preferred to project that flow on (the
tangent bundle to) the modular surface, therefore to interpret it as a flow among flat tori up
to diffeomorphism. In the same way, we project the Teichmüller flow on the moduli spaces,
namely the spaces of complex structures up to diffeomorphisms.

Similarly as the modular surface, moduli spaces are orbifolds, and are noncompact as they
own a cusp. There is plenty of invariant subsets of the tangent bundle which are invariant under
the geodesic flow (such subsets are called strata); our attention will be directed in particular
to the ones made up of flat structures with a property of orientability: this is necessary for the
formalism we are going to develop.

This chapter is not a complete exposition of the standard Teichmüller theory: our purpose
is to present it rapidly in order to motivate our further discussions. We will mostly adapt the
approach used in [FM11] and [Mar12].
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1.1 TEICHMÜLLER AND MODULI SPACES: CLASSIC DEFINITIONS

1.1 Teichmüller and moduli spaces: classic definitions
§ 1.1.A Riemann structures up to homotopy Let S be a smooth closed oriented surface.
A Riemann structure on S is a pair (X, ϕ) where X is a Riemann surface (i.e. a complex 1-
manifold) andϕ : S −→ X (called amarking for X) is an orientation-preserving diffeomorphism.
We say that two Riemann structures (X1, ϕ1) and (X2, ϕ2) on S are homotopic if there exists a
biholomorphism f : X1 −→ X2 such that the following diagram commutes up to homotopy of
maps:

X1 X2

Sg

................................................................................................................................................................... ............
f

...................................................................................
....
............

ϕ1
....................................................................................... ........

....

ϕ2

(1.1)

This notion of homotopy is an equivalence relation on the set RS(S) of the Riemann struc-
tures on S, so we can define:

Definition 1.1.1. The Teichmüller space of a surface S is the quotient set

Teich(S) B RS(S)�homotopy.

Equivalently, let Diff+(S) be the Lie group of the orientation-preserving diffeomorphisms
of S; and let Diff0(S) < Diff(S) be the connected component of IdS, i.e. the subgroup of the
diffeomorphisms which are isotopic to identity. Diff(S) naturally acts on RS(S) on the right by
(X, ϕ) · f = (X, ϕ ◦ f ), and we have

Teich(S) = RS(S)�Diff0(S).

Remark 1.1.2. When S = S1 is the torus, this formal definition of Teichmüller spaces actually
corresponds to the construction given in paragraph 0.3.A. Indeed, let us fix a basis γα, γβ for
π1(S1) � Z2. A positive basis ζα, ζβ forR2 can be interpreted as the markingϕ(S1)→ C/(Zζα⊕
Zζβ) which transforms γα in the closed curve obtained by quotient of the segment from 0 to
ζα; and the same for γβ (the homotopy class of such a marking is uniquely determined). The
markings associated to (ζα, ζβ) and (ζ′α, ζ′β) are homotopic if and only if (ζ′α, ζ′β) = v(ζα, ζβ) for
some v ∈ C∗; and each marked Riemann torus is, up to homotopy, obtained this way. Thus,
recalling the arguments we developed, we have a natural identification Teich(S1) �H2. ^

§ 1.1.B The algebraic topology We are talking about Teichmüller spaces and not simply
about sets, as they can be endowed with several additional structures. First of all there is an
intrinsic way to define a so-called algebraic topology on Teich(S). Rather than giving its formal
definition, we will describe it in a more concrete way.

The algebraic topology on Teich(S1) coincides with the topology of H2. For higher genus
surfaces, let us recall that their Euler characteristic χ(S) is negative; and that such a surface
can be always endowed with (several) hyperbolic structures, namely Riemannian structures with
constant Gaussian curvature −1. By ‘structure’ we mean, as before, the specification of a
marking from S to a hyperbolic surface diffeomorphic to S.

Every hyperbolic structure induces a conformal structure, therefore a complex one. This
yields a one-to-one correspondence between the set of such structures and RS(S). Therefore we
can identify

Teich(S) = {hyperbolic structures on S with finite area}�Diff0(S).

Let g be the genus of S respectively, and let γ1, . . . , γ3g−3 be simple, closed, essential curves
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1.1 TEICHMÜLLER AND MODULI SPACES: CLASSIC DEFINITIONS

Figure 1.1: On the left: a pant decomposition for the closed surface of genus 3. On the
right: two gluings of the same pants, but with different twist angle. The lines in
the drawings are each one the only geodesic segment which is perpendicular to
the boundary components it connects: it is evident that the hyperbolic metrics
differ according to the twist angle.

on S which cut it in a collection of pants (i.e. topological spheres deprived of three open disks;
see Figure 1.1 on the left).

It can be proved that a unique hyperbolic structure (up to isotopies) is determined on a
pant if we require its boundary components to be geodesics, each of them with an assigned
length. So, different hyperbolic structures are obtained on S according to the length we assign
to each boundary component of the glued pants; but also according to how much we twist a
collar neighbourhood of two boundary components before gluing (see Figure 1.1 on the right).

The Fenchel-Nielsen coordinates on Teich(S) are defined as follows. For each X = [(X, ϕ)] ∈
Teich(S) and 1 ≤ j ≤ 3g − 3, define ℓ j(X) ∈ R+ as the length of the only hyperbolic closed
geodesic on X which is homotopic to ϕ ◦ γ j. A neighbourhood of this geodesic results from
gluing collars of two boundary components of pants: we call ϑ j(X) the angle we have to twist
one of them in order to obtain the desired structure X.

Such coordinates provide an extremely natural way to see the algebraic topology:

Theorem 1.1.3 (Fricke). The map given by the Fenchel-Nielsen coordinates,
FN : Teich(S) −→ R6g−6

X 7−→ (log ℓ1(X), . . . , log ℓ3g−3, ϑ1(X), . . . , ϑ3g−3(X))
is one-to-one. If Teich(S) is endowed with the algebraic topology, it is also a homeomorphism.

The Fenchel-Nielsen coordinates can be defined also for non-closed surfaces: if we consider
a surface of genus g with b boundary components and n punctures, again with negative Euler
characteristic, we will have 3g−3+2b+2n length coordinates, and 3g−3+ b twist coordinates.
Fricke’s theorem will still hold.

§ 1.1.C Moduli spaces We now define the generalisation of the modular surface. Recall
that the mapping class group of S is the quotient group Mod B Diff+(S)/Diff0(S) whose elements
are isotopy classes of diffeomorphisms of S.

Definition 1.1.4. The moduli space of S is the set

M(S) B RS(S)�Diff+(S) =
Teich(S)�Mod(S).

Put into words, M(S) is the set of the Riemann structures on S up to orientation-preserving
diffeomorphisms.
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1.2 FLAT AND TRANSLATION STRUCTURES

It is a theorem of Fricke that the action of Mod(S) on Teich(S) is properly discontinuous,
though it is not free in general. So, M(S) has a structure of orbifold, that is to say for each
X ∈M(S) there is a local chartRd/ΓX → UX (with d = 6g−6), where ΓX < O(n) is a finite group,
and it is nontrivial only for a closed, nowhere dense subset of M(S). In this case of moduli
spaces, those singular points come from the [(X, ϕ)] ∈ Teich(S) that admit some nontrivial
automorphism.

1.2 Flat and translation structures
§ 1.2.A Flat surfaces and singular foliations We have seen in paragraph 0.3.A that a flat
torus, obtained as the quotient of C by a lattice Λ, is a topological torus endowed with a flat
Riemannian metric; moreover, for each ϑ ∈ S1, the family of parallel lines in C in direction ϑ
induces a partition of the torus in parallel geodesics.

According to the Gauss-Bonnet and Poincaré-Hopf theorems, no closed surfaces of higher
genus can be endowed with such structures. This leads to the following definitions, which
introduce the possibility of having singularities.

Definition 1.2.1. Let S be a smooth closed surface. A flat structure on S is specified by:
1. a finite subset Σ = {p1, . . . , ps} ⊂ S, whose elements are called singular points;
2. an atlas ζ = {(Uα, ϕα)}α for S\Σ, made up of charts ϕα : Uα → C such that the coordinate

changes are of the form ϕβ ◦ ϕ−1
α : z 7→ ±z + cβα, where cβα are constants; we also require

this atlas to be maximal among the ones with this property;
3. for each j = 1, . . . , s there is an integer k j ≥ 2 such that the flat structure defined by means

of the above atlas has a conical singularity of angle k jπ; moreover k j = 1 is allowed only
if p j is a puncture for S.

A flat surface will be denoted (S,Σ, k, ζ), where k = (k1, . . . , ks).

It is worth spending some words about what a conical singularity of angle k jπ at a point p j

is exactly. Take k j copies Π1, . . . ,Πk of a straight angle with horizontal sides, no matter which
half-plane of R2 it spans; let ai and bi be their respective edges. Then glue each bi with ai+1

for i = 1, . . . , k − 1, and bk with a1. Call Π the resulting space, and 0Π its point coming from
the vertices of the straight angles Πi; Π will have a natural flat metric out of 0Π. The conical
singularity is then described by a map ϕ j : U j → Π such that: U j is a neighbourhood of p j

in S not containing other points of Σ; ϕ j(p) = 0Π; ϕ j(U j) is an open subset of Π and ϕ j is a
homeomorphism with its image; for each V ⊆ U j \ {p j} open set such that ϕ j(V) is contained in
the union of two consecutive half-planes, the restriction ϕ j|V is a chart in the flat atlas ζ.

To be precise, since we are talking of a ‘structure’ on the topological surface S, we would
expect that a marking is defined: indeed we can take the tautological one given by the identity
map

S as a topological surface→ (S,Σ, k, ζ).

With this definition, a flat structure induces a partition in curves in every direction, but
each of these ones has still singularities in Σ:

Definition 1.2.2. Let (S,Σ, k, ζ) be a flat structure, and let ϑ ∈ T. The singular foliation for that
structure in direction ϑ is a partition of S \Σ in curves (called leaves) such that, for every chart
(Uα, ϕα) ∈ ζ, they appear as the partition of ϕα(Uα) in straight lines in direction ϑ.
The foliation in direction ϑ = 0 is called horizontal, the one in direction ϑ = π/2 is called
vertical. A leaf (in any direction ϑ) having an endpoint in a singularity is called a separatrix; a
leaf connecting two singular points is called a saddle connection.
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1.2 FLAT AND TRANSLATION STRUCTURES

Figure 1.2: Vertical foliations in the neighbourhood of a singularity with k j = 3 and k j = 4,
respectively.

In other words, in the neighbourhood of any regular point for the flat structure, a singular
foliation simply appears as parallel lines. In the neighbourhood of a singular point, instead,
each of the above foliations appears as the level curves of a saddle with k j separatrices (see
Figure 1.2). Note that flat structures give natural ways to calculate lengths of curves and areas.

Remark 1.2.3. A flat structure on a surface S specifies a Riemann atlas on S \ Σ; but its
singularities in the points of Σ are all removable, so a (canonical) Riemann atlas on the whole
S is induced. We attach to it again the tautological marking given by the identity map

S as a topological surface→ S with this Riemann atlas;
this way every flat structure induces an element of RS(S). ^

A generalisation of the Poincaré-Hopf theorem gives the following constraint for combina-
torial data of flat structures:

Proposition 1.2.4 (Euler-Poincaré formula). Let (S,Σ, k, ζ) be a flat surface. The following relation
holds:

s∑
j=1

(2 − k j) = 2χ(S) = 4(1 − g).

§ 1.2.B Quadratic differentials Flat structures also have an alternative description:

Definition 1.2.5. Let (X, ϕ) be a Riemann structure on a closed surface S. A holomorphic
quadratic differential q is a holomorphic section of T∗X ⊗ T∗X (where we see X as a complex
1-manifold), such that q(p) is a symmetric 2-form for each p ∈ X.

For what we will need, if {wα} is an atlas of local charts for X, q is simply a collection
{qα(wα)dw2

α}α where qα are holomorphic functions, defined on the images of the charts wα, such
that when applying a coordinate change we have

qβ(wβ)
(

dwβ

dwα

)2

= qα(wα) (1.2)

From now on we will omit the word ‘holomorphic’. Suppose q . 0; then, for each p ∈ X,
there is a chart z centred at p such that q(z) = zkp−2dz2, for a kp ∈ Z, kp ≥ 2; actually kp > 2 only
if p is a zero for q. This is called a natural chart. The coordinate change between two natural
charts has always the form z 7→ ±z + c.

If we set Σ B ϕ−1 ({zeros for q}) ⊂ S, a flat structure on S with singularities at points of Σ is
naturally induced: it suffices to take as an atlas the set of all the natural charts z ◦ ϕ centred at
points of S \ Σ; each point ϕ−1(p) ∈ Σ is the vertex of a conical singularity of angle kpπ.
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1.2 FLAT AND TRANSLATION STRUCTURES

Conversely, start from a flat structure on S with atlas ζ: according to Remark 1.2.3, it induces
a Riemann structure (X, IdS) on S. A nonzero quadratic differential, holomorphic with respect
to the Riemann structure X, is obtained on X \Σ by setting it locally equal to dz2

α for each chart
zα ∈ ζ; formula 1.2 gives an unique way of extending it to the complex charts centred at points
of Σ. Therefore, the set of quadratic differentials on X is in one-to-one correspondence with
the set of flat structures on S which induce the Riemann structure X.

We will denote QD(X) the vector space of all quadratic differentials on the Riemann surface
X. Using complex-analytic arguments, it can be shown that

Theorem 1.2.6. Let X be a closed Riemann surface of genus g. Then
dimCQD(X) = 3g − 3.

§ 1.2.C Construction via polygons An easy way to construct flat structures is the fol-
lowing: every topological closed surface can be obtained from a polygon P ⊆ R2 (even a
disconnected one) whose sides are parallel in pairs, by identifying each side with its parallel.

If we call S the quotient topological surface, and Σ the projection of the vertices of P, a
translation structure is induced on S with Σ its singular set: it is enough to take the interior of
P as one of the translation charts; and to add charts to cover the interiors of the sides of P.

Conical angles at points of Σ are necessarily multiples of π, the only attention required is
that we would like them to be at least 2π wide. Anyway, it can be seen easily that every flat
structure on every surface can be obtained with this construction.

§ 1.2.D The orientable version Let us introduce a slight modification in the definition
of flat structure with stronger requests:

Definition 1.2.7. Let S be a closed surface. A translation structure on S is almost the same as a
flat structure (Definition 1.2.1), except that:
• in condition 2, we require the coordinate changes to be of the form ϕβ ◦ϕ−1

α : z 7→ z+ cβα
(i.e. to be translations in C);

• angles at conical singularities have to be 2h jπ, for some integers h j ≥ 1.
A translation surface will be denoted (S,Σ, h, ζ), where h = (h1, . . . , hs). We will sometimes call
h the vector of indices.

The notion of conical singularity is now better described if we take as a reference model the
gluing Π of h j copies of a full angle whose sides coincide with the positive real half-line in C;
a ramified covering ρ : Π→ C is naturally defined. The structure of conical angle at p j will be
specified by a map ϕ j : U j → Π which satisfies the same requests as before, except for the last
one: we will require that for each open subset V ⊆ U j \ {p j} such that (ρ ◦ ϕ j)|V is injective we
have (ρ ◦ ϕ j)|V ∈ ζ.

These new hypotheses imply that foliations are oriented: that is, each leaf in the ϑ-foliation
can be oriented so that, in every chart of ζ, it appears directed in direction ϑ (rather than −ϑ).
In other words, leaves in direction ϑ become geodesics of the flat surface, in direction ϑ and with
unit speed. In a small neighbourhood of each singularity, they appear as trajectories around
a saddle point with an even number of separatrices; these ones are alternatively incoming the
singularity and outgoing from it (see Figure 1.3). From now on, by vertical flow we will always
mean the one in direction ϑ = π/2 i.e. the one going upwards; by horizontal flow we will mean
the one in direction ϑ = 0 i.e. the one going rightwards.

Translation structures inducing a Riemann structure X on S naturally correspond to Abelian
differentials on X, namely holomorphic 1-forms: a translation structure induces the 1-form ω
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1.3 THE TEICHMÜLLER FLOW

Figure 1.3: The horizontal (ϑ = 0) and vertical (ϑ = π/2) flows on a translation surface, in
the neighbourhood of a singularity with h j = 3.

that can be written as dzα for each chart zα ∈ ζ, and extended to the whole S; conversely, each
1-formω admits natural charts in which it can be written as zhp−1dz, which induce a translation
structure. If fα(wα)dwα is a local expression for an Abelian differential ω in some chart for X,
its square fα(wα)2dw2

α is a local expression for the quadratic differential corresponding to the
same flat structure.

On a translation surface not only lengths of curves are well-defined, but each of them is
associated with a vector in C:

Definition 1.2.8. Letγ : I→ (S,Σ, h, ζ) be a simple, smooth curve; letω the Abelian differential
associated to the translation structure. The holonomy of γ is the number

Hol(γ) B
∫
γ
ω =

∫
I
γ∗ω.

1.3 The Teichmüller flow
§ 1.3.A Teichmüller maps It is time to recover, on the Teichmüller space of a closed
surface of arbitrary genus, structures which resemble the ones of H2 we used in an essential
way in section 0.3.

Definition 1.3.1. Let Flat(S) be the set of all flat structures that can be put on S; and let
Σ = {p1, . . . , ps} ⊂ S; k = (k1, . . . , ks); ε = ±1. The stratum of flat structures related to the triple
(Σ, k, ε) is the set Flat(S,Σ, k, ε) ⊂ Flat(S) whose elements are flat structures with Σ as set of
singular points, πk j the conical angle at p j for each j, which are also, or are not, translation
structures, according to ε (of course, if k has an odd entry and ε = 1 the stratum is empty).

Linear transformations of R2 act on each of these sets on the left: for A ∈ GL(2,R) and
ζ ∈ Flat(S), we define A ·ζ as the translation atlas obtained from ζ by replacing each of its charts
ϕα with A ◦ ϕα. This action preserves each stratum; moreover, if we restrict it to A ∈ SL(2,R),
also areas of flat structures are preserved.

In particular, for K ∈ R+, the matrix

AK B
( √

K 0
0 1/

√
K

)
∈ SL(2,R)
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1.3 THE TEICHMÜLLER FLOW

has (similarly as for flat tori) the effect of stretching the horizontal foliation of ζ by a factor
√

K
(we are supposing K > 1), and of shrinking the vertical one by the same factor. The identity
map (S,Σ, h, ζ) → (S,Σ, h,AK · ζ), i.e. the natural map from the old flat surface to the newly
created one, is called a Teichmüller map; K is its dilatation factor.

Such a map also changes the underlying Riemann structure X induced on S by the flat
structure ζ; we denote AK ·X the new Riemann structure obtained by completing the complex
atlas AK · ζ to cover the whole S.

Teichmüller maps are canonical representatives for homotopy classes of homeomorphisms
between Riemann surfaces. We state this result directly in the language of Teichmüller spaces:

Theorem 1.3.2 (Teichmüller’s existence and uniqueness theorems). X and Y be closed Rie-
mann surfaces of genus g > 1, and let f : X → Y be a homeomorphism between them. Suppose
a marking ϕ : S→ X is fixed. Then there exist, and are unique:
• a Riemann structure (Y′, ψ′) on S with [(Y′, ψ′)] = [(Y, f ◦ ϕ)] ∈ Teich(S);
• a couple of quadratic differentials qX ∈ QD(X) and qY′ ∈ QD(Y′)

such that the corresponding flat structures on S are obtained one from another with a Teichmüller map
(which is itself unique).

The statement still holds for g = 1, except that we have uniqueness up to translations of
complex tori.

§ 1.3.B The metric We can now define a metric on Teich(S). Fix two elements X =
[(X, ϕ)],Y = [(Y, ψ)] ∈ Teich(S); then, according to the Teichmüller’s theorem above, there
is a unique way of taking another representative (Y′, ψ′) of Y, and two flat structures on S
which induce the Riemann structures (X, ϕ) and (Y′, ψ′) respectively, such that there exists a
Teichmüller map from the first to the second. Let K be its dilatation factor: the Teichmüller
distance between X and Y is then

dTeich(X,Y) B
1
2
| log(K)|.

The Teichmüller theorem implies that it is a good definition; and it is easily seen that it
actually gives a distance (triangular inequality holds essentially because dilation factors are
sub-multiplicative under composition of maps). Moreover, if S is the torus, it coincides with
the metric onH2.

Remark 1.3.3. We completely hid a notable fact in the discussions above. The distance dTeich

is a quantitative answer to the question: given two (isotopy classes of) Riemann structures
X and Y on the surface S, how much is a homeomorphism between them far from being a
biholomorphism?

Recall that holomorphic maps coincide with conformal maps, i.e. maps ≪which preserve
angles≫. One says that a map is quasi-conformal if it ≪distorts angles by a bounded factor≫.

Figure 1.4: The action of a Teichmüller map on two portions of the horizontal foliation.
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1.3 THE TEICHMÜLLER FLOW

The dilatation factor K actually derives from this bounded factor; in the statement of Theorem
1.3.2, we didn’t mention that Teichmüller maps are the ones which minimise K within their
homotopy class: this is the real reason why they are preferred representatives. ^

It can be proved that

Proposition 1.3.4. The distance dTeich is complete and induces the algebraic topology on Teich(S).

§ 1.3.C Geodesics Even if Teichmüller spaces are only topological manifolds with an
additional structure of metric space, a geodesic flow, called the Teichmüller flow, can be specified
on them, using flat structures and Teichmüller maps.

Definition 1.3.5. Let X = [(X, ϕ)] ∈ Teich(S), and let q ∈ QD(X) \ {0}. We consider on X the flat
structure given by q. The Teichmüller line starting at X in direction q is the map

LX,q : R −→ Teich(S)
t 7−→ [(Ae2t · X, ϕ)]

We note that, for each t1, t2 ∈ Rwe have dTeich

(
LX,q(t1),LX,q(t2)

)
= |t2−t1|: therefore Teichmüller

lines are geodesic, in the sense of metric spaces. Now we define what we would like to be an
exponential map at a point X (we don’t care whether it parametrizes each Teichmüller line the
right way):

EX : QD(X) −→ Teich(S)
q 7−→ LX,q (1)

where we are setting conventionally LX,0(1) = X. A lemma required for the proof of the
Teichmüller existence theorem states that

Proposition 1.3.6. The map EX is a homeomorphism.

Moreover, we have the following result:

Proposition 1.3.7. Let X,Y,Z ∈ Teich(S) be distinct. The following assertions are equivalent:
• d(X,Y) + d(Y,Z) = d(X,Z);
• there exists a Teichmüller line containing the three points X,Y,Z; and Y lies between the other

ones.
In this case, such a line is unique.

To sum up: the mentioned results imply that geodesic segments in Teich(S) for the distance
dTeich are exactly the segments of Teichmüller lines. In particular, all geodesic lines are defined
on the whole R, according to the completeness of Teich(S), in an Hopf-Rinow Theorem’s
fashion. Moreover two elements in Teich(S) are always connected by a geodesic because of
Teichmüller’s Theorem 1.3.2; and this geodesic is unique.

The direction of a Teichmüller line is specified by a quadratic differential: so, for each point
X = [(X, ϕ)], the vector space QD(X) can be identified with the tangent space of Teich(S) at X;
actually, it is generally seen as a cotangent space.

Proposition 1.3.6 implies that a geodesic on Teich(S) cannot have any recurrence properties.
Since each geodesic is the image under the map EX of a line in QD(X) � R6g−6, it simply ≪goes
to infinity≫ in both directions. The Teichmüller flow has much more interesting properties
when projected to the moduli space.
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§ 1.3.D Switching tomoduli spaces It can be proven that Mod(S) acts through isometries
on Teich(S): this means that M(S) inherits the Teichmüller metric, as well as a notion of geodesic.
The asymptotic properties of geodesics will be one of our main concerns in the remainder of
this work (even if with a different formalism, more suitable for our investigations). In this
paragraph we talk about some similarities of M(S) with the modular surface. First of all:

The moduli space of a closed surface of any genus ≥ 1 has an infinite diameter.

At the beginning of this chapter we anticipated that ≪infinity is in a single direction≫, since the
moduli space has sort of a cusp, like the modular surface.

It is useful to recall that, if S is a closed surface of genus g ≥ 2, its moduli space M(S)
coincides with the set of the hyperbolic structures on S up to diffeomorphisms. Therefore, for
each X ∈M(S) represented by some hyperbolic structure X, we can define ℓ(X) as the minimum
length of a closed geodesic in X. We have

Theorem 1.3.8 (Mumford). For any ε > 0 the subspace
Mε(S) B {X ∈M(S)| ℓ(X) ≥ ε}

is compact. Therefore the family
{
M1/n(S)|n ∈N}

is an exhaustion in compact sets for M(S).

So, a sequence in M(S) ≪goes to infinity≫, i.e. escapes from all compact subsets, if and only if
evaluation of ℓ on this sequence goes to zero.

The following remarkable result is that:

Fix any ε > 0 and suppose X,Y ∈ Teich(S) are such that their projections in M(S) are not contained in
Mε(S). Then X and Y are connected by a path in Teich(S) such that its projection in M(S) lies entirely
outside Mε(S).

This fact implies easily that M(S) has a ‘cusp’, in the sense of the definition below.

Definition 1.3.9. A locally compact topological space X is said to have one end if, for any
compact subset K ⊆ X, the complement X \ K has only one connected component such that
its closure in X is noncompact.

The cusp of the modular surface has the same interpretation: it suffices to consider the unit
area flat structures on the torus rather than the hyperbolic ones, and repeat the same arguments
as above.

§ 1.3.E A setting for the Teichmüller flow Our discussions so far suggest that the quo-
tient spaces

Flat(S)�Diff0(S) and Flat(S)�Diff+(S).

provide natural notions for tangent bundles, respectively, to Teich(S) and M(S), deprived of their
zero sections. We have seen, indeed, that geodesics coincide with Teichmüller lines, which
can be lifted to these two spaces in a natural way, resulting in a Teichmüller flow. However, in
paragraph 1.3.A we mentioned that there is plenty of subsets of Flat(S), the strata, which are
invariant under action of GL(2,R); so, it is more natural to take such sets as the theatre for the
Teichmüller flow. Definitions may differ from an author to another one, but identification of
quadratic differentials with tangent vectors to Teichmüller spaces is usually forgotten. Follow-
ing a well-established custom, the Teichmüller flow at the time t ∈ Rwill be denoted gt on any
of the spaces on which it is defined.

We describe the spaces used in our main reference texts, [Yoc07] and [Mar10]. They only
regard translation structures and Abelian differentials: indeed in the next chapter we will
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1.3 THE TEICHMÜLLER FLOW

introduce a comfortable formalism to study Teichmüller dynamics, but it works only in this
setting.

We fix a (topological, or smooth) surface S, a singular locus Σ = {p1, . . . , ps} and a vector
h of indices of singularities; we will quotient the related stratum of translation structures in
a sligthly different way than prescribed in the classic definitions of Teichmüller and moduli
spaces. The notation Diff(S,Σ) will stand for the Lie group of diffeomorphisms of S which are
the identity on Σ; Diff+(S,Σ), Diff0(S,Σ), and Mod(S,Σ) will have analogous definitions.

Definition 1.3.10. The set
T(S,Σ, h) B Flat(S,Σ, 2h, 1)�Diff0(S,Σ)

is called a stratum in the Teichmüller space of translation structures; and

H(S,Σ, h) B Flat(S,Σ, 2h, 1)�Diff+(S,Σ) =
T(S,Σ, h)�Mod(S,Σ)

is called a stratum in the moduli space of translation structures.
Recall also that, if we restrict the action to SL(2,R), areas of flat structures are also preserved.

In particular areas are preserved under the Teichmüller flow, so it makes sense to define an
≪unit area version≫of strata. Let Flat(1)(S,Σ, k, ε) ⊂ Flat(S,Σ, k, ε) be the subset of the unit area
flat structures belonging to a fixed stratum; we define the normalised strata of Teichmüller and
moduli spaces as

T(1)(S,Σ, h) B Flat(1)(S,Σ, 2h, 1)�Diff0(S,Σ);

H(1)(S,Σ, h) B Flat(1)(S,Σ, 2h, 1)�Diff+(S,Σ) =
T(1)(S,Σ, h)�Mod(S,Σ).

Remark 1.3.11. When dealing with strata of flat non-translation surfaces, most authors also
admit conical singularities of angle π, which correspond to simple poles for the associated
quadratic differential. Such quadratic differentials are to be included in the cotangent bundle
to Teich(S) in order to generalise the theory developed in this chapter to punctured surfaces.^
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2 The formalism of
interval exchange maps

In the previous chapter we only accomplished the first half of the work needed to generalise
section 0.3. We are going to introduce interval exchange maps, namely self-maps of an interval
that can be described as a rearrangement of sub-intervals (in general, more than 2), and therefore
are completely determined once a set of parameters, belonging to some parameter space, has
been chosen: the following exposition will be particularly detailed about the notations used for
parameters. A property of ‘irrationality’ can be defined for such maps as well as for rotations
(even if in this case it is only a sufficient condition for minimality); and all our arguments will
need us to restrict to the i.e.m.s which satisfy this property.

The truncation proceeding we introduced in paragraph 0.3.D for exchanges of two intervals
can be generalised without difficulties to the Rauzy-Veech algorithm for i.e.m.s. Its iteration
originates a dynamical system in the parameter space: in other words, we have two levels of
dynamical systems. The situation resembles what happens for translation structures: there are
flows on each structure, and there is also a flow among structures. In the following chapters
we will obtain results that mostly regard generic i.e.m.s, in the sense of Lebesgue measure in
the parameter space; and it is remarkable that the kind of arguments we will use will be more
about the dynamics in the parameter space, than about the dynamics of i.e.m.s themselves.

Let us consider a translation surface, and a horizontal segment on it: the vertical flow on
the surface induces a return map on the selected segment that is an i.e.m.; and, if we consider
the return map on an appropriate initial sub-segment of the previous one, the new i.e.m. is
obtained from the previous one with the Rauzy-Veech algorithm. Conversely, starting from
an irrational i.e.m., one can apply a generalised version of the suspension construction in
paragraph 0.3.E, and find a translation surface such that the considered i.e.m. appears as a
return map. The parameters associated to this i.e.m. play the role of ≪horizontal lengths≫ in
this construction, therefore one can apply it only after some additional parameter, specifying
≪vertical lengths≫, has been chosen.

This construction gives a way for passing from translation surfaces to i.e.m.s and conversely;
so, an augmented parameter space for i.e.m.s can play the role of a local chart for a stratum,
and also carry the Lebesgue measure on it. The way charts are glued altogether can also be
deduced. In particular one may restrict to a subset, called box, of the augmented parameter
spaces, with two boundary components. There is a way of gluing boxes altogether along their
boundaries; in so doing, we obtain a model for almost all of a moduli stratum.

When considering this model, the relationship between translation surfaces and i.e.m.s
appears again between the dynamical systems at the upper level: that is, the Rauzy-Veech
algorithm coincides with the return map for the Teichmüller flow on the boxes’ boundaries.

This chapter follows mainly [Yoc07]. All the proofs omitted in this chapter can be found
there, unless otherwise specified.
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2.1 INTERVAL EXCHANGE MAPS. RAUZY-VEECH ITERATION

A B C D

ABCD

Figure 2.1: An interval exchange map of 4 sub-intervals. Its restriction to each sub-interval
is a translation.

2.1 Interval exchange maps. Rauzy-Veech iteration
We give immediately the formal definition of the real protagonist of this work:

Definition 2.1.1. Let I = (0, λ∗) ⊂ R be a bounded open interval. An interval exchange map
(i.e.m.) on I is a one-to-one map T : I \ At −→ I \ Ab such that:
• At,Ab ⊂ I are two finite subsets with the same cardinality;
• when T is restricted to each connected component of I \At, it is a translation onto some

connected component of I \ Ab.
The points of At are called singularities of T (so, the points of Ab are the singularities of T−1).

Remark 2.1.2. The way of treating singularities may differ slightly according to the author:
someone, for instance, prefers to define an i.e.m. as a bijective self-map of I = [0, λ∗): this
is subdivided in left-open, right-closed intervals such that restriction of the i.e.m. to each of
them is a translation. In other words, each singularity is regarded as attached to the interval
on its right.

From now on, for a simpler exposition, we will not exclude singularities explicitly: we
may talk about i.e.m.s and their iterations as self-maps of intervals, even if they shall be
always meant to be defined out of a finite set of singularities. ^

§ 2.1.A Parameters for an i.e.m. An i.e.m. T is completely described by some combina-
torial data, namely the lengths of its sub-intervals and the way they are arranged.

Definition 2.1.3. A marked permutation on d letters is a triple (A, πt, πb) where:
• A, called alphabet, is a set of d elements, called letters;
• πt, πb : A→ {1, . . . , d} are bijections.

A marked permutation may be represented concisely as

π =

(
(πt)−1(1) · · · (πt)−1(d)
(πb)−1(1) · · · (πb)−1(d)

)
.

Each i.e.m. T can be associated with a marked permutation (A, πt, πd), where A is an
alphabet of d = #At + 1 letters and, for each α ∈ A, T sends the πt(α)-th connected component
of I \At (counting from the left) onto the πb(α)-th connected component of I \Ab. Two marked
permutations (A1, π1

t , π
1
b) and (A2, π2

t , π
2
b) represent the same permutation of sub-intervals if

and only if there exists a bijection i : A1 → A2 such that π1
t = π

2
t ◦ i and π1

b = π
2
b ◦ i. Anyway,

from now on, we will not consider this indefiniteness: every time we will consider an i.e.m., it
will always come with a selected marked permutation.

Remark 2.1.4. The rearrangement of sub-intervals performed by T could be described also
using a ‘standard’ permutation i.e. a self-bijection of {1, . . . , d}. The advantage of a marked
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2.1 INTERVAL EXCHANGE MAPS. RAUZY-VEECH ITERATION

A B C D

B A D C

A B C D

B AD C

Figure 2.2: The i.e.m. on the left is not admissible. The i.e.m. on the right is obtained
by varying lengths of the reference i.e.m. in Figure 2.1, and in particular it is
admissible; but it has a connection (ut

D, u
b
A, 0).

permutation is that it keeps a symmetry between T and T−1, indeed if (A, πt, πb) is a marked
permutation associated to T, then (A, πb, πt) is associated to T−1. The subscripts t and b stand
for ≪top (row)≫ and ≪bottom (row)≫ respectively. ^

For each α ∈ A, we denote It
α the πt(α)-th connected component of I \At, and Ib

α the πb(α)-th
connected component of I \ Ab. We denote λα = |It

α| = |Ib
α| their length, and define the length

vector associated to T as λ B (λα)α∈A ∈ RA
+ . The i.e.m. T is thus completely determined by,

and can be identified with, the pair (π, λ). We denotw ∆π B RA
+ the space of the (parameters

for) i.e.m.s which are associated with the marked permutation π: we will write indifferently
T ∈ ∆π or λ ∈ ∆π.

We also establish a standard notation for singularities of T±1: for each α ∈ A, we will denote
ut
α ∈ At ∪ {0} the left endpoint of It

α; and ub
α ∈ Ab ∪ {0} the left endpoint of Ib

α. Obviously,

ut
α =

∑
x:πt(x)<πt(α)

λx and ub
α =

∑
x:πb(x)<πb(α)

λx.

The number δα B ub
α − ut

α is the amount of the translation of It
α under T; the vector δ = (δα)α∈A

is called the translation vector associated to T.
It is also useful to denote ut

1 < . . . < ut
d−1 the ordered elements of At; and ub

1 < . . . < ub
d−1 the

ordered elements of Ab: in other words, ut
j = ut

(πt)−1( j+1)
; and ub

j = ub
(πb)−1( j+1)

, for j = 1, . . . , d − 1

(we may also denote ut
0 = ub

0 B 0 and ut
d = ub

d B λ∗).

Definition 2.1.5. A marked permutation (A, πt, πb) with #A = d is admissible (or irreducible) if,
for each 1 ≤ d′ < d, (πt)−1({1, . . . , d′}) and (πb)−1({1, . . . , d′}) are distinct subsets of A. An i.e.m.
is admissible if the associated marked permutation is.

Admissibility means that the marked permutation cannot be considered as the juxtaposition
of marked permutations on smaller alphabets (see Figure 2.2 on the left). From now on, unless
otherwise specified, we will only consider admissible marked permutations and i.e.m.s.

Definition 2.1.6. A connection for an i.e.m. T is a triple (ub,ut; n), with n ∈ N, ub ∈ Ab, ut ∈ At

such that
Tnub = ut.

If T has no connections, it is said to satisfy the Keane’s property.

Note that Keane’s property implies admissibility.

§ 2.1.B Rauzy-Veech algorithm We now give a formal definition of the truncation pro-
ceeding already introduced in paragraph 0.3.D. The Rauzy-Veech algorithm applied on an ad-
missible i.e.m. T gives a new i.e.m. T′ = RT defined on the interval

I′ B
(
0,max{ut

d−1,u
b
d−1}

)
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I′

A B C D A B C D

D C B A D A C B

R

Figure 2.3: The Rauzy-Veech applied on an i.e.m. T with the same combinatorial data as
in Figure 2.1. In this case a reduction of top type takes place, with winner D
and loser A. Therefore two iterations of the map T are required to let the points
of It

A return in the new interval I′.

as the first return map of the original i.e.m. T on I′. This is not a good definition for every
i.e.m., but only for generic ones (in the sense of the Lebesgue measure on ∆π), as the following
explicit construction proves.

Let αt and αb the rightmost letters for πt and πb respectively. If λαt > λαb , we have a
reduction of top type, with αt its winner and αb its loser. Conversely, if λαt < λαb , we have a
reduction of bottom type, with αb its winner and αt its loser. We do not define the algorithm for
the case λαt = λαb .

In the first case, I′ is obtained by eliminating from I\Ab its rightmost connected component.
The first return map of T to I′ is therefore given by

T′(x) B
{

T2(x) if x ∈ It
αb

;
T(x) if x ∈ I′ \ It

αb
.

(2.1)

A correction on the associated marked permutation is induced: it is natural to take A′ = A and
π′t = πt; but the old sub-interval Ib

αt
is now split in two: the left part is still associated with the

letter αt, the right one is the new bottom interval associated with αb. That is,

π′b(α) =


πb(α) if πb(α) ≤ πb(αt);
πb(αt) + 1 if α = αb;
πb(α) + 1 if πb(αt) < πb(α) < d.

(2.2)

and the new length data are obviously

λ′α =

{
λαt − λαb if α = αt;
λα otherwise. (2.3)

In the second case instead, I′ is obtained by eliminating from I \At its rightmost connected
component. The first return map of T to I′ is best described by giving its inverse (here the
symmetries of marked permutations become useful):

(T′)−1(x) B
{

T−2(x) if x ∈ It
αb

;
T−1(x) if x ∈ I′ \ It

αb
.

(2.4)

Now we take π′b = πb, and the old It
αb

is now split in two, so that

π′t(α) =


πt(α) if πt(α) ≤ πt(αb);
πt(αb) + 1 if α = αt;
πt(α) + 1 if πt(αb) < πt(α) < d.

(2.5)
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and the new length data are

λ′α =

{
λαb − λαt if α = αb;
λα otherwise. (2.6)

§ 2.1.C Iteration of the algorithm The Rauzy-Veech algorithm is usually applied iter-
atively, thus a family of i.e.m.s — an infinite one, under the conditions stated below — is
generated. The i.e.m. generated after r iterations is usually denoted T(r); and similarly all
the objects related to it are denoted adding a superscript (r) to the notations introduced in
paragraph 2.1.A (for instance, I(r) is the interval where T(r) acts, λ(r)

α are its length data, u(r),t
α its

singularities and so on).

Remark 2.1.7. For each r, T(r) is the return map of T on I(r). In particular, say that, at the
r-th step, we have a reduction of top type (with αt and αb the rightmost letters before the
reduction). Then all the top singularities u(r−1),t

α coincide with the respective u(r),t
α , whereas

u(r−1),b
αb

has become the right endpoint of I(r). As a consequence of formula 2.1, we have
u(r),b
αb
= T(r−1)u(r−1),b

αb
(while the other bottom singularities stay unchanged from the (r − 1)-th

step to the r-th).
It is easily checked by induction on the number of steps that

u(r),b
α = Tlub

α

where l ≥ 0 is the first entry time of ub
α into I(r) under iteration of T (i.e. the least integer j such

that T jub
α ∈ I(r)). Symmetrically,

u(r),t
α = T−hut

α

where h ≥ 0 is the first entry time of ut
α into I(r) under iteration of T−1.

Actually, the same holds for the whole sub-intervals of I(r) starting at those singularities:

I(r),b
α = Tl(ub

α,u
b
α + λ

(r)
α ) and I(r),t

α = T−h(ut
α,u

t
α + λ

(r)
α )

while Tk(ub
α, ub

α + λ
(r)
α ) ∩ I(r) = ∅ for 0 ≤ k < l (provided that l > 0), and similarly T−k(ut

α,ut
α +

λ(r)
α ) ∩ I(r) = ∅ for 0 ≤ k < h (provided that h > 0). ^

§ 2.1.D Rauzy diagrams and classes Starting from an alphabetA, a graph can be defined
taking as its vertices all the possible admissible marked permutations with alphabet A: each
of those vertices π = (πt, πb) will be the starting point of two arrows:
• a top type arrow arriving at π′ = Rtπ, defined by setting π′t = πt and π′b as in formula 2.2;
• a bottom type arrow arriving at π′ = Rbπ, defined by setting π′b = πb and π′t as in formula

2.5.
That is, the arrows represent abstractly the two possible outcomes of the Rauzy-Veech algorithm
starting from different length data. Each arrow has a winner and a loser, defined similarly as in
paragraph 2.1.B. It can be shown that Rt and Rb are bijective maps, so each π is also endpoint
for exactly a top type arrow and a bottom type one.

The connected component of this diagram to whom π belongs is called the Rauzy diagram
for π; its vertices make up the Rauzy class of π. A concatenation of arrows in a Rauzy diagram
is called a path.

The set of all possible finite paths in a Rauzy diagram D will be denoted Π(D); it will be
endowed with a partial ordering: γ0 ≼ γ1 ⇔ γ1 begins with γ0. Similarly, Ππ(D) will denote
the subset of paths starting from a fixed π ∈ C the Rauzy class underlying the Rauzy diagram
D.
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Figure 2.4: Three examples of Rauzy diagram (the third one includes our reference marked
permutation); top arrows are represented with a continuous stroke, bottom ar-
rows with a dotted one; the letter which accompanies an arrow is its winner.
The numbers in black boxes indicate the genus g and the number of singulari-
ties s of the translation surface obtained by means of the Veech construction (see
section 2.2) from i.e.m.s associated with marked permutations which belong
to the considered diagram.

A family of paths Γ ⊆ Π(D) will be called disjoint if, for any distinct γ0, γ1 ∈ Γ, neither
γ0 ≺ γ1 nor γ1 ≺ γ0 holds.

Remark 2.1.8. Each time we fix a Rauzy class C, all π ∈ C have the same leftmost letters on
both the top and the bottom row. We will denote them by tC and bC, respectively. ^

Lemma 2.1.9. If π and π′ belong to the same Rauzy class, then there exist a path from π to π′ and
another one in the opposite direction.

A natural question at this point could be: can any path in a Rauzy diagram be obtained by
reiterating the Rauzy-Veech algorithm on some suitable i.e.m.? The answer is the following:

Definition 2.1.10. A path γ in a Rauzy diagram D on some alphabet A is called complete if
every letter in A is the winner of at least an arrow in γ.
An infinite path γ is∞-complete if every letter in A is the winner of infinitely many arrows in
γ; or, equivalently, if γ is obtained by concatenation of infinitely many complete paths.

Proposition 2.1.11. Let γ be an infinite path in some Rauzy diagram. The path γ is ∞-complete if
and only if there exists an i.e.m. T such that Rauzy-Veech algorithm can be iterated infinitely many
times on T, and the n-th marked permutation touched by γ is the marked permutation associated with
RnT = T(n).

So, each finite path can be obtained by applying the iteration to some appropriate i.e.m. T
(because it can be continued in such a way to become∞-complete). Two sub-products of this
result are:
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Corollary 2.1.12. If the Rauzy-Veech algorithm can be iterated infinitely many times on an admissible
i.e.m. T, the length of the interval on which RnT acts goes to 0 as n→∞.

Corollary 2.1.13. The Rauzy-Veech algorithm can be iterated infinitely many times on an admissible
i.e.m. T if and only if T satisfies the Keane’s property.

We will denote γT(r) the finite path originated by iterating the Rauzy-Veech algorithm r
times, starting from the i.e.m. T (when this is possible); and if T satisfies the Keane’s property,
we will denote γT the path obtained by iterating the algorithm to infinity.

2.2 Veech construction
We now introduce the zippered rectangle construction, due to Veech, that is the generalisation

to the suspension construction described in paragraph 0.3.E for exchange maps of two intervals.
Given an admissible i.e.m. T, this construction produces translation surfaces such that T is the
return map of the vertical flow on an horizontal segment on the surface.

§ 2.2.A Details of the construction Similarly as in the case of two intervals, in order to
construct a surface we have to choose further parameters than the ones carried by T:

Definition 2.2.1. Let T be an i.e.m. inducing an admissible marked permutationπ = (A, πt, πb);
we will use the notations specified in paragraph 2.1.A. A suspension vector for T is a vector
τ ∈ RA such that

σt
α B

∑
x:πt(x)<πt(α)

τx > 0 and σb
α B

∑
x:πb(x)<πb(α)

τx < 0 for all α ∈ A.

Such a vector always exists: the canonical one is given by τcan
α = πb(α) − πt(α). We denote

σ∗ B
∑

x∈A τx. The set of all possible suspension data for the marked permutation π will be
denoted Θπ.

Once T = (π, λ) and τ ∈ Θπ have been chosen, the construction fixes some rectangles in
C � R2; then identifies couples of them and of portions of their boundaries. For each α ∈ A,
set:
• ζα B λα + iτα;
• ηα := σt

α − σb
α > 0;

• ξt
α B

∑
x:πt(x)<πt(α) ζx = ut

α + iσt
α; and ξb

α B
∑

x:πb(x)<πb(α) ζx = ub
α + iσb

α.
We define d rectangles in the upper half plane of C � R2 having the intervals It

α as edges, and
d in the lower plane having the intervals Ib

α as edges:
Rt
α B [ut

α,u
t
α + λα] × [0, ηα]; Rb

α B [ub
α,u

b
α + λα] × [−ηα, 0].

Roughly speaking, we would like to obtain a translation surface using the rectangles in
the upper plane, gluing their upper sides with portions of I according to how T exchanges
sub-intervals; and in so doing, we want the points ξt

α, and ξ∗ B λ∗ + iσ∗, to be projected to
singularities.

Starting from the disjoint union R =
⊔
α∈A;ε∈{t,b} Rεα, we perform the following identifications

on it (see Figure 2.5):
• every time a point of Ī × {0} appears in two rectangles, we identify these points;
• the same for every point of {ut

α} × [0, σt
α] and of {ub

α} × [σb
α, 0], for every α ∈ A;

• for each α ∈ A, the whole rectangle Rt
α is identified with Rb

α through a translation of
θα B ξb

α − ξt
α;
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Rt
A

Rt
B

Rt
C

Rt
D

Rb
ARb

BRb
C

Rb
D

0 = ξt
A = ξ

b
D

ζA

ζB

ζC

ζD

ζA

ζB
ζC

ζD

ξt
B

ξt
C

ξt
D

ξ∗

ξb
Aξb

B

ξb
C

ηA

ηD

Figure 2.5: The Veech construction performed on an i.e.m. with the same marked per-
mutation as in Figure 2.1 (but different length data), for which a suspension
vector τ has been chosen. Dotted lines stand for portions of border of adjoin-
ing rectangles that are glued together; moreover each of the top rectangles is
identified with the bottom one called by the same letter; and the grey arrow
shows the last identification of the list.

• if σ∗ = 0, we are done; otherwise: if σ∗ > 0, we identify {λ∗} × [0, σ∗] with its −θπ−1
b (d)-

translated, as we do with the bottom rectangle Rb
π−1

b (d)
; and if σ∗ < 0, we identify {λ∗}×[σ∗, 0]

with its θπ−1
t (d)-translated, as we do with the top rectangle Rt

π−1
t (d)

.

The quotient is a closed orientable topological surface, which we denote S: indeed, it is
simple to check that the boundary of each rectangle disappears when performing some of the
prescribed gluings. Let Σ = Σ(π, λ, τ) ⊂ S be the set of the point obtained by projection of the
ξt,b
α and ξ∗.

Note that
⊔
α Rt

α is a fundamental domain for the identifications we perform. So, the interior
of each top rectangle can be used as domain for natural local coordinates for S; and there is a
natural way to complete this construction to a translation atlas for S \Σ (it is a different version
of the instructions given in paragraph 1.2.C; in this case we are able to define charts ≪around
the vertices of the rectangles≫, but we have to exclude the points ξt,b

α and ξ∗).
The translation structure we just defined — from now on we will denote it X(π, λ, τ) —

has conical singularities at points of Σ: indeed, if we start turning around one of (the pre-
images of) such points, remembering to switch from a rectangle to another one according to
the identifications specified above; and we remember the Euler-Poincaré formula (Proposition
1.2.4), we recognize that:

Lemma 2.2.2. Let X(π, λ, τ) be the translation surface obtained with the Veech construction from
an i.e.m. T = (π, λ) and a suspension vector τ. The genus g of X(π, λ, τ), its number of conical
singularities s and the associated vector of indices h only depend on π. Moreover, the following
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2.2 VEECH CONSTRUCTION

equality holds:

d − 1 =
s∑

j=1

h j, therefore d = 2g + s − 1.

Now, let Ĩ ⊂ S be the horizontal segment obtained by projection of I ⊂ C. It is easy to check
that the vertical flow on S according to the translation structure just defined induces a return
map on Ĩ that is exactly T.

Remark 2.2.3. One might think that the same surface is obtained if one does not use the
rectangles Rt,b

α , but simply joins the points ξt,b
α and ξ∗ with segments, that is considers the

polygon traced in Figure 2.5, and then identifies the couples of sides corresponding to the
same ζα.

This is true if
∑
α τα = 0: otherwise it may happen that this polygon presents auto-

intersections, as in Figure 2.6. ^

ζA

ζB
ζC

ζD

ζB

ζC
ζA

ζD

Figure 2.6: Autointersection in the polygon obtained from the marked permutation(
A B C D
C A D B

)
and the choice of some ‘critical’ length and suspension

vectors.

Remark 2.2.4. A technical remark: for eachα ∈ A, the point ξt
α is always contained in ∂Rt

α; but,
let α′ be the letter just before α in the top row of π (we suppose α not to be the leftmost one):
when does ξt

α ∈ ∂Rt
α′? This equivalent to say σα ≤ ηα′ , and performing some calculations, one

sees that this does not happen only in one case, that is, when α′ is the rightmost letter in the
bottom row of π, and

∑
x τx > 0.

Similarly, let α′′ be the letter just before α in the bottom row of π (when it is not the
leftmost). Then ξb

α < ∂Rb
α′′ only if α′′ is the rightmost letter of the top row, and

∑
x τx < 0.

In conclusion, at most one among the points ξt,b
α does not belong to the boundary of the

rectangle on its left. ^

§ 2.2.B Rauzy-Veech iteration for suspension data The Rauzy-Veech algorithm can be
defined not only on (almost all) admissible i.e.m.s, but also on an augmented parameter space
made up by triples (π, λ, τ) where π is an admissible marked permutation, λ ∈ ∆π, τ ∈ Θπ. It
suffices to transform τ the same way as λ according to the type of the reduction; that is
• if λαt > λαb we set τ′αt

B ταt − ταb ; and τ′α = τα for all α , αt;
• if λαt < λαb we set τ′αb

B ταb − ταt ; and τ′α = τα for all α , αb.
We denote (π′, λ′, τ′) = R(π, λ, τ) as before. It is worth noting two facts:
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Lemma 2.2.5. If there is an arrow from π to π′, then the Rauzy-Veech algorithm sends Θπ onto:
• Θπ′ ∩

{∑
α τ
′
α < 0

}
if the arrow is of top type;

• Θπ′ ∩
{∑

α τ
′
α > 0

}
if the arrow is of bottom type.

Lemma 2.2.6. There is a canonical isomorphism between the surfaces X(π, λ, τ) and X(π′, λ′, τ′)
obtained by means of the Veech construction from the two triples.

This isomorphism can be recognised directly from the construction (see Figure 2.7): appli-
cation of the Rauzy-Veech algorithm to the data (π, λ, τ) means, for instance in the case of a
reduction of top type, that Rt

αt
is vertically cut in two rectangles; the one on the right has width

λαb , and it is removed from there, to be placed above the rectangle Rt
αb

. The rectangle Rb
αt

is
accordingly cut into two rectangles, and below the one on the right we glue Rb

αb
, which has

been removed from its original, rightmost position.
The identifications we have to perform between couples of these new rectangles are obtained

in the most natural way from the ones performed between the old ones. So, the canonical
≪piecewise isomorphism≫ between the two sets of rectangles, which also makes each marked
point ξb,t

α correspond with the relative ξ′α
b,t, passes to an isomorphism between X(π, λ, τ) and

X(π′, λ′, τ′).

Figure 2.7: The Rauzy-Veech algorithm for suspension data: what happens to the top
rectangles in the Veech construction when a step of the algorithm (in this case
of top type) is applied.

§ 2.2.C Keane’s theorem By means of the Veech construction, a result regarding min-
imality of i.e.m.s can be easily proven. In the setting of translation surfaces, the following
proposition holds:

Proposition 2.2.7. Let X be a translation surface of genus> 1. If there is no vertical saddle connection
on X, then the vertical flow is minimal.

The proof of this result is completely geometrical: if an half-orbit is not dense, there exists an
horizontal segment disjoint from it. But one proves that the absence of vertical connections
implies that the union of the orbits which are disjoint from this segment is a cylinder. If we
enlarge it until we meet some obstacle (i.e. a singularity), its boundary will be made up of
vertical connections, and this is absurd.

If T is an admissible i.e.m. and we consider a translation surface X built from it after some
suspension vector has been chosen, there is a natural correspondence between connections for
T and vertical saddle connections for X. And, since minimality for a flow implies minimality
for return maps,
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Theorem 2.2.8 (Keane). If an i.e.m. has no connection, then it is minimal.

This is the simplest example of how the Veech construction is exploited to make the setting
of translation surfaces communicate with the one of i.e.m.s: and this is a very common way to
investigate both of them.

Remark 2.2.9. We have seen that an exchange map of two intervals is identifiable, up to a scale
factor, with a rotation ofT; in particular, minimal i.e.m.s can be identified with rotations by an
angle having an irrational ratio with π. So, Keane’s property can be seen as a generalisation
of the concept of irrationality for general i.e.m.s.

Furthermore, let us fix a marked permutation π: the set of the i.e.m.s T ∈ ∆π such that
(ut
α,ub

β,n) is a connection for T has codimension 1, and in particular its Lebesgue measure
is zero. Thus, the set of the i.e.m.s which satisfy the Keane’s property is complementary to
a countable union of sets with measure zero: therefore almost every i.e.m. is minimal, as it
happened in the case d = 2. ^

In this context, another notable result is:

Proposition 2.2.10. If the length data of an i.e.m. T are independent over Q, then T satisfies the
Keane’s property.

2.3 Additional structures on strata
The Veech construction provides the most natural way to parametrise locally the Te-

ichmüller strata, and to define a measure on them. Indeed the construction is, to some extent,
invertible:

Proposition 2.3.1. Let (S,Σ, h, ζ) be a translation surface without any saddle connections for its
vertical foliation; and let H∞ be an outgoing separatrix for the horizontal flow. Suppose that there
exist an open bounded initial segment H ⊆ H∞ such that its right endpoint lies on a vertical separatrix
which does not meet H. If this is not true, then H∞ is a horizontal separatrix, and we set H B H∞.
In both cases, the return map of the vertical flow to H is an admissible i.e.m. T = (π, λ) on H such that
the given translation surface is isomorphic to X(π, λ, τ) for some appropriate τ ∈ Θπ.

We now define a local parametrisation of T(S,Σ, h) based on the parameters chosen for the
Veech construction; it will be applicable everywhere except for a negligible subset, whose
elements are the translation surfaces with vertical saddle connections.

§ 2.3.A Veech coordinates Let us fix a topological surface S, a finite subset Σ ⊂ S and an
associated vector of indices h. Suppose that, starting from a translation structure on (S,Σ, h),
the proposition above gives an i.e.m. with an associated (admissible) marked permutation π.
For each α ∈ A we set λcan

α = 1, and τcan
α as immediately after Definition 2.2.1; according to

Lemma 2.2.2, the topological pair (X(π, λcan, τcan),Σ(π, λcan, τcan)) is homeomorphic with (S,Σ);
and we fix once and for all an identification between them.

Now, let us consider the translation surface X(π, λ, τ) obtained by choosing another pair
λ ∈ ∆π, τ ∈ Θπ. We would like to see it as another translation structure on the same topo-
logical couple (S,Σ) as before, in order to derive from it an element of T(S,Σ, h); in other
words, we want to find a canonical homeomorphism ϕλ,τ between (S,Σ) — or, to better say,
(X(π, λcan, τcan),Σ(π, λcan, τcan)) — and (X(π, λ, τ),Σ(π, λ, τ)). Then we use ϕλ,τ to pull the trans-
lation structure on X(π, λ, τ) back to X(π, λcan, τcan)
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2.3 ADDITIONAL STRUCTURES ON STRATA

For each α ∈ A, we denote γα the curve in X(π, λ, τ) with endpoints in Σ(π, λ, τ) which is
the projection, under the identifications prescribed by the Veech construction, of a curve γ̃α in
C, determined as follows. If α , αt, let α′ be the letter on its right.
• Suppose α′ is the letter appearing after α in the top row of π and that ξt

α′ < ∂Rt
α (this

happens for at most one letter α, according to Remark 2.2.4). Then γ̃α is the polygonal
path obtained by joining the segment in Rt

α from ξt
α to the top right vertex of the rectangle,

to the segment from this point to ξt
α′ .

• Otherwise, γ̃α is simply the segment in Rt
α from ξt

α to ξt
α′ .

For α = αt, we have again to distinguish between two cases:
• If

∑
x τx, we let γ̃αt be the polygonal path obtained by joining the segment in Rt

αt
from ξt

αt

to the bottom right vertex λ∗, to the segment from this point to ξ∗.
• Otherwise, γ̃αt is the segment in Rt

αt
from ξt

αt
to ξ∗.

In all cases, the projection of each of the curves γ̃α on X(π, λ, τ) is well-defined. We will
need the following, easy to prove, result:

The first relative homology group H1(S,Σ;Z) is isomorphic withZ2g+s−1 = Zd. A basis for it is given
by the elements [γα] represented by the curves defined above.

For α ∈ A, let γcan
α be the curve obtained, the same way as above, on the surface X(π, λcan, τcan).

We are now able to determine ϕλ,τ up to isotopy saying that, for each α ∈ A, we want the
curves ϕλ,τ(γcan

α ) and γα on X(π, λ, τ) to be isotopic with fixed endpoints.
The Veech coordinates related to the marked permutation π are defined as

Iπ : ∆π ×Θπ −→ T(S,Σ, h)
(λ, τ) 7−→

[
ϕ∗λ,τX(π, λ, τ)

]
.

§ 2.3.B A measure on Teichmüller strata The above discussion leads to a natural def-
inition for a measure on T(S,Σ, h): we would like the translation structures with vertical
connections to be a zero measure subset; and to identify the other ones with the triples (π, λ, τ)
which produce them, in order to put the 2d-dimensional Lebesgue measure on them.

Recall Definition 1.2.8, fixing an Abelian differential (therefore a translation structure) ω.
We notice that the holonomy of γ is invariant under the action of Diff0(S) on ω; and, moreover,
being ω a closed 1-form, it is also invariant when γ varies among the possible representatives
of [γ] ∈ H1(S,Σ;Z). So, a linear map is well-defined

Holω : H1(S,Σ;Z) −→ C
which can be identified with an element of H1(S,Σ;C) � Cd. The so-called period map is

P : T(S,Σ, h) −→ H1(S,Σ;C)
[ω] 7−→ Holω.

Proposition 2.3.2. The period map is a local homeomorphism. In particular, T(S,Σ, h) is a complex
manifold of dimension d = 2g + s − 1 (and H(S,Σ, h) is an orbifold of the same complex dimension).

To be precise, so far we haven’t defined yet any explicit topology on the strata T(S,Σ, h): we
may consider it determined by this proposition. Let dLeb be the standard volume form on
H1(S,Σ;C), normalised so that the lattice Hom (H1(S,Σ;Z);Z ⊕ iZ) has covolume 1. Then
dm B P∗dLeb is a volume form on T(S,Σ, h), which carries a measure m, called the Masur-Veech
measure.

If a translation structure, identified with an Abelian differentialω, has a vertical connection,
then Holω takes a purely imaginary value on some elements of H1(S,Σ;Z). For each x ∈
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H1(S,Σ;Z), the request Holω(x) ∈ iR defines a subset of H1(S,Σ;C) with measure zero; and
H1(S,Σ;Z) is countable. Therefore the set of the translation structures with a vertical connection
has zero measure in T(S,Σ, h).

The period map is strictly related to the local Veech coordinates defined in the previous
paragraph. Fix any marked permutation π such that the Veech construction gives a translation
surface X(π, λcan, τcan) which is homeomorphic with (S,Σ) (thus we fix an identification between
the two pairs); call vπ : H1(S,Σ;C)→ CA the isomorphism given by evaluation of a linear form
on the basis for H1(S,Σ;Z) given by the [γα]. Then the composition

vπ ◦ P ◦ Iπ : ∆π ×Θπ → T(S,Σ, h)→ H1(S,Σ;C)→ CA

is simply the identity map of its domain: indeed it takes each pair (λ, τ) to ζ = λ + iτ.

§ 2.3.C Derived measures One sees that the action of Mod(S,Σ) on T(S,Σ, h) preserves
the volume form dm; therefore H(S,Σ, h) inherits a volume form dµ. Moreover, let A :
T(S,Σ, h) → R be the area function. It can be proven to be a smooth function (after we
have verified that T(S,Σ, h) is a differential manifold; but this is not the point of this work), so
we can decompose

dm = dm(1) ∧ dA
A

and in so doing we obtain a volume form dm(1) on T(1)(S,Σ, h), which in turn can be pushed
forward to a measure on H(1)(S,Σ, h).

All the measures above defined, which are still called Masur-Veech measures, not only are
the most natural suggested by Veech construction, but are all preserved by the Teichmüller flow on
the respective spaces. So, we are allowed to study the latter in the language of ergodic theory.

§ 2.3.D A finite covering of strata Since the Veech construction always provides trans-
lation surfaces with a selected outgoing separatrix for their first singularity, a better repre-
sentation of this construction is obtained by also considering this separatrix. Imitating what
we did in paragraph 1.3.E, let F̃lat(S,Σ, 2h, 1) be the set of the translation structures on S with
singularities in Σ, conical angles 2πh j wide, and a marked outgoing horizontal separatrix H∞
which starts at the conical singularity p1 ∈ Σ.

We define the marked strata in Teichmüller and moduli spaces as

T̃(S,Σ, h) B F̃lat(S,Σ, 2h, 1)
�Diff0(S,Σ), and

H̃(S,Σ, h) B F̃lat(S,Σ, 2h, 1)
�Diff+(S,Σ) =

T̃(S,Σ, h)�Mod(S,Σ).

In these formulae, we mean that two marked translation structures project to the same point
if there is a map that makes the two translation atlases correspond, and also takes the marked
separatrix of the first structure to the marked separatrix of the second one.

It is easily seen that the obvious map T̃(S,Σ, h) → T(S,Σ, h) is a covering of degree h1; and
H̃(S,Σ, h)→ H(S,Σ, h) is a covering between orbifolds of the same degree; moreover, H̃(S,Σ, h)
is a manifold, because no element of T̃(S,Σ, h) may possess nontrivial automorphisms. Of
course, it is also possible to define the normalised marked Teichmüller and moduli strata
T̃(1)(S,Σ, h) and H̃(1)(S,Σ, h).

The covering maps can be used to pull the Masur-Veech measures, as defined above, back
to these new spaces. Moreover, since the Veech’s construction naturally induces an horizontal
separatrix for the first singularity of the obtained surface, the Veech local coordinates can be
lifted to T̃(S,Σ, h). If we restrict appropriately the domain of some Veech coordinates, they
can also be used as local coordinates for H̃(S,Σ, h), because the projection map is a local
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homeomorphism.

2.4 Rauzy dynamics as a return map
This sections shows how can the Veech local charts coming from a selected Rauzy class

be glued altogether, in order to describe a stratum entirely in terms of augmented parameter
spaces for i.e.m.s. The construction will also provide us a section for the Teichmüller flow such
that the return map can be described in terms of the Rauzy-Veech algorithm.

§ 2.4.A (Normalised) Rauzy dynamics Fix a Rauzy class C, with D the associated Rauzy
diagram. We have seen (cfr. paragraphs 2.1.B, 2.1.D, and 2.2.B) that the Rauzy-Veech algorithm
defines Lebesgue-almost everywhere a self-map R : Ω̃(D) → Ω̃(D), the Rauzy dynamics, of the
augmented parameter space, which is defined as

Ω̃(D) B
⊔
π∈C
{π} ×Ωπ, where Ωπ B ∆π ×Θπ.

Alternatively, the algorithm defines a self-map R : ∆̃(D) → ∆̃(D) of the standard parameter
space ∆̄(D) B

⊔
π∈C{π} × ∆π. Anyway, since iteration of the Rauzy-Veech algorithm causes

lengths to decrease to zero (Corollary 2.1.12), neither of these maps can have any remarkable
recurrence property.

It is then useful to proceed to a renormalisation. For each π ∈ C we define

∆(1)
π :=

{
λ ∈ ∆π

∣∣∣∣∑λα = 1
}

and Ω(1)
π :=

{
(λ, τ) ∈ ∆(1)

π ×Θπ
∣∣∣ Area (X(π, λ, τ)) = 1

}
;

In both cases, the restricted parameter spaces are zero loci of smooth functions on the original
ones (cfr. paragraph 3.1.B for the area’s formula): therefore they inherit the Lebesgue measure.
Now we set

Ω(D) B
⊔
π∈C
{π} ×Ω(1)

π and ∆(D) B
⊔
π∈C
{π} × ∆(1)

π .

The map RΩ : Ω(D)→ Ω(D) will be defined Lebesgue-almost everywhere by

RΩ(π, λ, τ) B (π′,
(∑

λ′α
)−1

λ′,
(∑

λ′α
)
τ′) where (π′, λ′, τ′) = R(π, λ, τ).

A similar formula without suspension data defines R∆ : ∆(D)→ ∆(D). Renormalisation could
also be defined using the projectivisation of ∆π and Θπ, rather than introducing corrective
constants as above.

Up to zero measure subsets, R∆ is two-to-one, because each of its components∆π is reached
both by a top type arrow and by a bottom type one. On the other hand, RΩ is (almost
everywhere) a bijective map, because according to Lemma 2.2.5, almost each triple (π′, λ′, τ′)
is reached only by a top arrow or a bottom one, depending on the sign of

∑
x τ
′
x. The maps RΩ

and R∆ define the renormalised Rauzy dynamics.
§ 2.4.B Globalisation of Veech coordinates Rauzy dynamics induces instructions to
‘glue’ altogether the Veech local charts coming from the vertices of a fixed Rauzy diagramD; this
time we will use them as coordinates for a marked Teichmüller stratum T̃(S,Σ, h). Let us fix an
admissible marked permutationπ such that X(π, λcan, τcan) belongs to this stratum, and fix once
and for all an identification of the topological pair (S,Σ) with (X(π, λcan, τcan),Σ(π, λcan, τcan)).
Let C be the Rauzy class of π, with D the related Rauzy diagram.

If γ : π′ → π′′ is an arrow in D, let λ′ ∈ ∆π′ , τ′′ ∈ Θπ′′ be parameters such that
R(π′, λ′, τcan

π′ ) = (π′′, λcan
π′′ , τ

′′). According to Lemma 2.2.6, a canonical isomorphism exists
between the translation surfaces obtained with the Veech construction from these parameters;
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of course, we can also regard it simply as a homeomorphism.
The latter induces a homeomorphism between the Teichmüller strata related to the two

(topological) surfaces:
jγ : T̃(X(π′, λ′, τcan

π′ ),Σ(π′, λ′, τcan
π′ ), h) −→ T̃(X(π′′, λcan

π′′ , τ
′′),Σ(π′′, λcan

π′′ , τ
′′), h).

We may consider as well γ−1 : π′′ → π′ the reverse of the arrow γ, even if it is not an arrow of
D; and define jγ−1 B j−1

γ . When γ is a ‘generalised path’ made up of arrows and their reverses,
we also define jγ by composition of the homeomorphisms related to each arrow of γ.

We set
U(π) B

∪
γ:π→π′

generalised path

j−1
γ (Iπ′(Ωπ′ )) ⊆ T̃(S,Σ, h)

where the Veech maps Iπ′ are not exactly the same as defined above, since they must be directed
towards the ‘right’ Teichmüller space, namely the image of jγ. In words, U(π) is the subset of
the considered Teichmüller stratum that we are able to cover using all the Veech coordinates
related to a Rauzy diagram D.

Proposition 2.4.1. Let C be a connected component of a marked stratum T̃(S,Σ, h); and let U ⊆ C be
the set of the translation structures that are obtained by means of the Veech construction (applied on the
i.e.m. specified by Proposition 2.3.1). Then U is an open subset of codimension ≥ 2; and there exists
some π on d = 2g+ s− 1 letters such that it is possible to identify (topologically) S = X(π, λcan, τcan);
and U = U(π).

In other words, for each connected component of a Teichmüller stratum there exists an
open subset with full measure that is covered by the Veech charts related with a single Rauzy
diagram.

§ 2.4.C Veech boxes Connected components of marked moduli spaces can be covered
in a similar, but better way than before, as they can be obtained by gluing portions of parameter
spaces along their boundaries. Moreover in the previous construction we had to consider a chart
for each generalised path; in the one we are going to introduce, instead, one for each element
of C is sufficient.

We fix (S,Σ, h) as usual, as well as a connected component of H̃(S,Σ, h). Its preimage in
T̃(S,Σ, h) will consist of one or more components; we take an admissible marked permutation
π as in Proposition 2.4.1 above for one of these connected components.

Let C be the Rauzy class π belongs to, and let D be its relative diagram. For each π′ ∈ C we
only consider a part of the possible length data:

∆̂π′ B
{
λ ∈ ∆π′ |1 ≤

∑
x λx ≤ 1 +min{λαt , λαb }

}
(where, as usual, αt and αb are the rightmost letters in the top and bottom row of π′, respec-
tively). The spaces Ω̂π′ B ∆̂π′ × Θπ′ ⊆ Ωπ′ are called Veech boxes. Each of them has an upper
boundary Uπ′ B

{∑
λx = 1 +min{λαt , λαb }

}
, and a lower boundary Lπ′ B {

∑
λx = 1}.

Let us identify each Veech box Ω̂π′ with its image in the Teichmüller stratum under Iπ′ .
The Teichmüller flow will act by exponentially stretching the λ component and shrinking the
τ component; therefore it rises from Lπ′ to Uπ′ . If we apply R to the point of Uπ′ we have
reached, we get a point in the lower boundary of some other Veech box Ω̂π′′ ; but, according
to Lemma 2.2.6, these two points represent the same translation structure. The flow continues
towards the upper boundary of this box, and so on.

We now make this construction formal. For each π′, the upper boundary of Ω̂′π is divided
into a top half Utπ′ B

{
(λ, τ) ∈ Uπ′ |λαt > λαb

}
; and a bottom half Ubπ′ B

{
(λ, τ) ∈ Uπ′ |λαb > λαt

}
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direction of the flow

τ

λ (up to scale)

upper boundary

lower boundary

Ubπ′
Utπ′

Lbπ′

Ltπ′

Figure 2.8: Graphical representation of a Veech box.

(the remainder is a subset of measure zero). The lower boundary is also divided in a top half
Ltπ′ B

{
(λ, τ) ∈ Lπ′

∣∣∣∑x τx < 0
}
, and a bottom half Lbπ′ B

{
(λ, τ) ∈ Lπ′

∣∣∣∑x τx > 0
}

(the remainder
has again measure zero; the reason for such a subdivision is Lemma 2.2.5).

Let us consider E =
⊔
π′ vertex of D ∆̂π′ × Θ̂π′ . For each π′ vertex of D,

• if (λ, τ) ∈ Utπ′ , then R(π′, λ, τ) = (Rtπ′, λ′′, τ′′) for some parameters (λ′′, τ′′) ∈ LtRtπ′ ; we
glue Utπ′ and LtRtπ′ identifying each pair (λ, τ) with its respective (λ′′, τ′′);

• if (λ, τ) ∈ Ubπ′ , then R(π′, λ, τ) = (Rbπ′, λ′′, τ′′) for some parameters (λ′′, τ′′) ∈ LbRbπ′ ; we
glue Ubπ′ and LbRbπ′ identifying each pair (λ, τ) with its respective (λ′′, τ′′).

Under such identifications we obtain a quotient set H(D).

Proposition 2.4.2. Using the notations established in paragraph 2.4.B, set

V(π) B
∪

γ:π→π′
generalised path

j−1
γ

(
Iπ′(Ω̂π′)

)
.

The set U(π) \ V(π) has zero measure, and there exists a unique continuous map
p : V(π) −→ H(D)

such that, locally where defined, each composition
p ◦ j−1

γ ◦ Iπ′ : Ω̂π′ → H(D)
is the inclusion. Moreover, p is a covering map, which identifies H(D) with the quotient of V(π)
under action of the subgroup Mod0(S,Σ) ≤Mod(S,Σ), whose elements are the mapping classes which
stabilise the connected component C of T̃(S,Σ, h) which contains U(π).

In other words, H(D) can be identified with an open subset of H̃(S,Σ, h) with full measure.
Now, let us restrict to unit area structures: the definition of Veech box can be adapted to this
case, adding restrictions on the parameters τ according to λ; and, if we repeat the construction,
we will obtain a space H(1)(D) which can be identified with a subset of full measure of a
connected component of H̃(1)(S,Σ, h). The following result is now straightforward:

Corollary 2.4.3. The identification, for each π′ ∈ C, of Ωπ′ with the lower boundary Lπ′ ⊂ Ω̂(1)
π′

induces a canonical inclusion Ω(D) ↪→ H(1)(D) ⊆ H̃(1)(S,Σ, h).
The return map of the Teichmüller flow on the section Ω(D) coincides with the normalised map RΩ
given in paragraph 2.4.A.
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3 Classical and preliminary results
Now that we have introduced properly all the fundamentals of the theory of i.e.m.s and

translation surfaces, it is time to look at some results obtained in this field. We do not move
immediately on our main concern, that is generalisations to the Khinchin theorem: this chapter
is dedicated to mention the most famous results in the subject, as well as to introduce technical
tools we will need later.

The first section explains how it is possible to deal with parameters related to i.e.m.s, and
with the Rauzy dynamics, in terms of linear applications. This formalism is able to describe
concisely a wide range of quantities related to i.e.m.s.; it is ubiquitous in the literature about
i.e.m.s, and we cannot disregard it.

The second one lists the results which are unanimously considered the classics of the subject:
the ones which prove ergodicity. First of all, it has been proved that almost every i.e.m., and
almost every flow on a translation surface, is uniquely ergodic. But there are also results about
the ergodicity of the ≪dynamics at the higher level≫, namely Rauzy and Teichmüller dynamics.
However, the former needs to be considered in a different, ‘accelerated’ version to be properly
considered an ergodic dynamics.

The third section is a quick overview of the Kontsevich-Zorich cocycle, namely a lin-
ear dynamical system defined over the Rauzy/Teichmüller dynamics: it describes how are
lengths/elements of homology transformed under the dynamics. We will only mention few
facts about its Lyapounov exponents, but we could add much more.

Finally, with the fourth section we prepare our work to generalise the Khinchin theorem:
we define the objects of our interest in this generalisation, and see how they are related with
the Rauzy-Veech algorithm.

Our main references for the first three sections are [Yoc07] and [MY12]. The fourth is taken
from Marchese’s paper [Mar11].

3.1 A linear-algebraic formalism
Almost everything in the definitions of i.e.m.s and the Rauzy-Veech iteration is, in some

adequate sense, linear; it is therefore natural to set up a language based on vectors in RA and
matrices in RA×A. We consider a fixed Rauzy class C with diagram D. If v ∈ RA, ∥v∥ will
always denote the 1-norm

∑
α∈A |vα|; if M is a matrix, ∥M∥ B max

{
∥Mv∥/∥v∥

∣∣∣ v ∈ RA, v , 0
}

will denote the induced norm.

§ 3.1.A The matrices Bγ If γ : π → π′ is an arrow of D, such that the letter α wins and
β loses, we set Bγ B Id + Eβα ∈ GL(RA), where the only nonzero entry of Eβα is an 1 at the β-th
row and the α-th column.

Suppose γ is the arrow crossed when one applies the Rauzy-Veech algorithm on an i.e.m.
T = (π, λ), resulting in RT = (π′, λ′): then λ = TBγλ′; and the behaviour is identical for
suspension data.
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3.1 A LINEAR-ALGEBRAIC FORMALISM

Take γ = γ1 · · ·γr ∈ Π(D) (where the γ j’s are arrows) a path starting at π and ending at π(r):
we set Bγ B Bγr · · ·Bγ1 . Of course all entries of Bγ are inN and, by induction on r, we have as
before

λ = TBγλ(r) and τ = TBγτ(r).

So, one can easily check that

The set ∆γ B TBγ∆π′ is the cone of the i.e.m.s T ∈ ∆π such that the Rauzy-Veech iteration on T is
defined for at least r steps, and γT(r) = γ. The set ∆(1)

γ B ∆γ ∩ ∆(1)
π is a simplex.

In particular, a family of paths Γ ⊆ Ππ(D) is disjoint (in the sense of paragraph 2.1.D) if and
only if, for any distinct γ0, γ1 ∈ Γ, we have ∆γ0 ∩ ∆γ1 = ∅.

§ 3.1.B The matrices Qπ For each π ∈ C we define the skew-symmetric matrix Qπ ∈
RA×A whose entries are

(Qπ)αβ B


+1 if πb(β) < πb(α) and πt(β) > πt(α);
−1 if πb(β) > πb(α) and πt(β) < πt(α);
0 otherwise.

This matrix represents the translations performed by an i.e.m. T = (π, λ), in the sense that the
translation vector δ defined in paragraph 2.1.A is obtained as δ = Qπλ. Recalling the notations
specified in paragraph 2.2.A for the Veech construction, in the same way we have

η = −Qπτ and θ = Qπζ.

Furthermore the area of the resulting surface is Tηλ = −TτTQπλ = TτQπλ.
One may check that, for each arrow γ of D from a vertex π to a vertex π′, it holds that

Qπ′ = BγQπ
TBγ; and arguing by induction, the same holds for any path. Let us consider the

trivial vector bundle ∆(D) × Rd over ∆(D): each of its fibres {(π, λ)} × Rd is endowed with
the singular 2-form given by the corresponding Qπ; and the transformation TB−1

γ takes Ker Qπ

onto Ker Qπ′ : thus a map {(π, λ)} × Rd/Ker Qπ → {(π′, λ′)} × Rd/Ker Qπ′ is induced, and it
is symplectic with respect to the structures induced by Qπ, Qπ′ respectively. If we identify
Rd/Ker Qπ � Im Qπ and Rd/Ker Qπ′ � Im Qπ′ , this transformation is represented by Bγ. It
defines the Kontsevich-Zorich cocycle, that we will discuss in section 3.3.

§ 3.1.C The vectors cγ For γ ∈ Π(D) going from a vertex π to some π′, we define

cγ B Bγ1⃗, where 1⃗ = (1, . . . , 1) ∈ RA.

When it is possible to deduce the path γ from the context, and γ0 ≺ γ has length r0 ≤ r, we will
also denote c(r0) = cγ0 . Since the entries of the matrices Bγ j are non-negative, for each ξ ∈ A and
r0 < r1 we have c(r0)

ξ ≤ c(r1)
ξ .

Some computations show that the entries of cγ are the right ‘renormalization factors’ for
the Rauzy-Veech algorithm:

Let {eα}α∈A be the standard basis ofRA, thus the set of the vertices of ∆(1)
π′ . Then the vertices of ∆(1)

γ are
vα = (cγα)−1TBγeα, for α ∈ A.

It is a matter of calculation also showing that they are return times:

Proposition 3.1.1. Take any i.e.m. T ∈ ∆γ, where the length of γ is r. Then the entry of Bγ in position
(α, β) is the time that any point of I(r),t

α spends in It
β under iteration of T, before coming back to I(r). In

particular the first return time to I(r) for such points equals cγα.
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3.2 ERGODIC PROPERTIES

Remark 3.1.2. It is worth noting that, for 0 ≤ k < cγα, TkI(r),t
α cannot contain singularities for

T, as they would have the effect of ‘splitting’ I(r),t
α before it returns to I(r); and this contradicts

the properties of the Rauzy-Veech algorithm. Similarly, for 0 < k ≤ cγα, TkI(r),t
α cannot contain

singularities for T−1.
Recalling Remark 2.1.7, observe that

T−lI(r),b
α = (ub

α,u
b
α + λ

(r)
α ) = T(ut

α,u
t
α + λ

(r)
α ) = Th+1I(r),t

α .

So, being c(r)
α the first return time of points of I(r),t

α into I(r), it must equal l + h + 1. ^

3.2 Ergodic properties
§ 3.2.A Unique ergodicity of i.e.m.s and foliations In paragraph 0.3.D we recalled that
all irrational rotations of T are both minimal and ergodic. For generic i.e.m.s things are not so
simple, since it is not true that all minimal i.e.m.s are also ergodic. However:

Theorem 3.2.1. For each admissible marked permutation π and for almost any choice of the length
data λ ∈ ∆π, the resulting i.e.m. T is uniquely ergodic (with respect to the adequate renormalization
of Lebesgue measure on the interval where T acts).

This has been proved independently by Masur ([Mas82]) and Veech ([Vee82]); we give quickly
the idea for a possible proof (see [Yoc07] and [MY12]). Let γ be the infinite Rauzy path
originated by Rauzy-Veech iteration on T, and let ∆γ =

∩
γ′≺γ finite path ∆γ′ be the subset of ∆π

whose elements are the i.e.m. which still originate the path γ. Each T-invariant measure on
I = (0, λ∗) can be seen as the Lebesgue measure on another interval Ĩ where a new i.e.m. T̃ ∈ ∆γ
acts: it suffices to distort the lengths of the sub-intervals. So, T is uniquely ergodic if and only
if ∆γ has a unique element with λ∗ = 1, i.e. ∆γ is only a ray in ∆π.

One can show that, for almost any T, there exists a finite path γ0 which appears infinitely
many times in γ (i.e. γ = γ1γ0γ2γ0γ3 · · · ) and such that Bγ0 has only positive entries: therefore
for each path ν starting where γ0 ends, ∆γ0ν is strictly ‘narrower’ than ∆ν. In particular
∆γ =

∩
n Bγ0 Bγn · · ·Bγ1 Bγ0 must be a single ray because it is the intersection of countably many

cones, each one obtained by shrinking the previous one by a factor bounded from below.
As one could expect, there exist also results of almost sure unique ergodicity for translation

structures; we cite the following by Kerckhoff, Masur, and Smillie ([KMS86]):

Theorem 3.2.2. Let S be a Riemann surface, and let q be a quadratic differential on S. Then, for
almost every ϑ ∈ T, the foliation induced by q on S in direction ϑ is uniquely ergodic.

This theorem also covers non-orientable foliations (in this case, ergodicity and invariance of
the Lebesgue measure are meant with respect to the natural local flow which parametrises the
foliation). Its proof does not make use of i.e.m.s, in fact i.e.m.s relate only with translation surfaces.

§ 3.2.B Zorich acceleration for a finite volume We would also like to study the ergodic
properties of the dynamical systems we defined ≪on the higher level≫, namely the Teichmüller
flow on moduli spaces and the renormalised Rauzy dynamics R∆ and RΩ. In paragraph 2.4.C
we saw that the Teichmüller flow on each connected component of H̃(1)(S,Σ, h) admits as a
section Ω(D), where D is an appropriate Rauzy diagram; and RΩ is the related return map.
Thus the dynamical properties of the Teichmüller flow and of Rauzy dynamics are strictly
related.

In section 2.3 we defined the Masur-Veech measure on strata (of any kind), which is merely
a globalisation of the Lebesgue measure on the parameter spacesΩπ for the Veech construction.

38



3.2 ERGODIC PROPERTIES

It is easily checked that it is invariant under the Teichmüller flow, and one can prove that

Proposition 3.2.3. H(1)(D) (as well as the corresponding connected component of H̃(1)(S,Σ, h)) has
a finite volume.

Starting from this measure, a RΩ-invariant measure on Ω(D), equivalent to the Lebesgue
measure, can be defined: but, unfortunately, this one has an infinite volume: therefore ergodic-
theoretical observations have less significance with respect to it. For this reason, a smaller
section for the Teichmüller flow is defined, and it corresponds to an acceleration of the Rauzy-
Veech algorithm.

From Proposition 2.1.11 we know that iteration of Rauzy-Veech algorithm on an initial T
with the Keane’s property generates an∞-complete Rauzy path γ: in particular it must happen
infinitely many times that γ arrives to a marked permutation π′ with a top arrow, and leaves
it with a bottom one; or vice versa. Let r be the least positive integer such that the type of the
(r + 1)-th arrow of γ is the opposite of type of the r-th one: we set R∗T = RrT. The map R∗ is
called Zorich acceleration of the Rauzy-Veech algorithm. The renormalised R∗

∆
: ∆(D)→ ∆(D) is

naturally defined.
For what concerns acceleration of the algorithm with suspension data, Ω(D) has a subset

such that Zorich acceleration appears as a first return map. Suppose that iteration of RΩ,
at a certain stage, is passing through an element (π′, λ′, τ′) ∈ Ω(D). Then the couple (π, λ)
determines the type of the next arrow; but, moreover, recalling Lemma 2.2.5, we know from
the sign of

∑
α τ
′
α what type has been the last arrow. Therefore, we consider the subsetΩ∗(D) ⊂

Ω∗(D) made up of the points such that the arriving arrow and the leaving one are of different
types: the return map of RΩ to Ω∗(D) will be a renormalised version of Zorich acceleration.

The explicit construction of Ω∗(D) is as follows: for each fixed π ∈ C, let αt and αb be the
rightmost letters in its top and bottom row respectively. Set

Ω(1),tb
π =

{
(λ, τ) ∈ Ω(1)

π

∣∣∣∑x τx < 0, λαt < λαb

}
and Ω(1),bt

π =
{
(λ, τ) ∈ Ω(1)

π

∣∣∣∑x τx > 0, λαt > λαb

}
.

The above mentioned subset is then Ω∗(D) B
⊔
π∈C{π} × (Ω(1),tb

π ⊔Ω(1),bt
π ).

§ 3.2.C Uniqueness of the a.c.i.p. A R∗
Ω

-invariant measure can be defined on Ω∗(D),
again regarding it as a section for the Teichmüller flow in some H̃(1)(S,Σ, h). This measure is
again equivalent to the Lebesgue one, and now it holds that

Ω∗(D) has a finite volume.

The study of the ergodic properties of the invariant, finite measures the spaces of our
interest are provided with has been performed by Veech ([Vee86]) and Zorich ([Zor96]). We
cite the main result(s):

Theorem 3.2.4. The space Ω∗(D) admits an unique absolutely continuous R∗
Ω
-invariant probability;

this one is, actually, equivalent to the Lebesgue measure.

This probability measure is, of course, (a scaling of) the one mentioned above. The uniqueness
of the a.c.i.p. immediately implies its ergodicity (if it were not ergodic, there would be two
complementary invariant subsets with nonzero measure: by restricting and scaling the a.c.i.p.
previously found, two other ones would be obtained). It follows easily:

Corollary 3.2.5. The map R∗
∆

: ∆(D) → ∆(D) admits an unique a.c.i.p. (actually equivalent to the
Lebesgue measure).

and recalling that Ω∗(D) is a section for the Teichmüller flow:
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3.3 THE KONTSEVICH-ZORICH COCYCLE

Theorem 3.2.6. Each connected component of a marked moduli stratum of unit area translation
surfaces, H̃(1)(S,Σ, h), has an unique a.c.i.p.. It is a scaling of the Masur-Veech measure.

Remark 3.2.7. To be precise, the map RΩ : Ω(D) → Ω(D), and the map R∆ : ∆(D) → ∆(D),
also have an unique continuous invariant measure (as a consequence of the uniqueness of the
a.c.i.p. for the Teichmüller flow), even if it has not finite mass. So, these two maps are also
‘ergodic’, in a weaker sense. ^

3.3 The Kontsevich-Zorich cocycle
§ 3.3.A The continuous version The continuous Kontsevich-Zorich cocycle is a way to keep
track of the automorphisms induced by Teichmüller flow on the homology of the considered
topological surface. Its definition goes as follows: the Teichmüller flow gt on a marked
Teichmüller stratum T̃(1)(S,Σ, h) can be extended trivially to a flow KZt on the product

T̃(1)(S,Σ, h) ×H1(S,Σ, h)
simply setting its first component equal to gt, and the second one to be the identity. Let
us consider the (relative) mapping class group Mod(S,Σ): we already know how its acts on
T̃(1)(S,Σ, h); and a natural, nontrivial action on H1(S,Σ;Z) is defined as well. Therefore the
space

H̃+(S,Σ, h) B T̃(1)(S,Σ, h) ×H1(S,Σ;Z)�Mod(S,Σ)
is a vector bundle over the marked moduli stratum H̃(1)(S,Σ, h), with fibres isomorphic to Rd

(where d = 2g + s − 1). The Kontsevich-Zorich cocycle is then the flow obtained as projection
of KZt on this bundle.

Instead of considering relative homology, one could also take the absolute one H1(S;Z) �
R2g (which can be seen as a subgroup of the former): this defines the restricted version of the
cocycle.

a0
b0

bt

at

ρ∗(bt)
ρ∗(at)

gt

ρ

gt

Figure 3.1: A pictorial representation of the continuous Kontsevich-Zorich cocycle: con-
sider a fundamental domain for the action of the mapping class group on
a Teichmüller stratum. Starting from two (independent) elements a0b0 ∈
H1(S,Σ;Z), the Teichmüller flow carries them in a trivial way until it reaches
the boundary of the fundamental domain. Afterwards, if we want to see the
flow in the same fundamental domain, we need to apply some ρ ∈Mod(S,Σ),
which transforms at, bt into two new (independent) elements of the homology
group.
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3.3 THE KONTSEVICH-ZORICH COCYCLE

§ 3.3.B The discrete version There is also a discrete version of the Kontsevich-Zorich
cocycle, in defining which we will be more explicit. In general, given a measurable map
f : X → X, where X is endowed with an f -invariant measure, a linear cocycle over f is defined
formally as a map

X ×Rd −→ X ×Rd

(x, v) 7−→ (
f (x),A(x)v

)
where d is a positive integer and A : X → GL(d,R) is a measurable map. We denote An(x) B
A( f n−1(x)) · · ·A(x).

When the dynamical system considered is some version of the renormalised Rauzy dynam-
ics, we have a natural choice for the map A: the extended discrete Kontsevich-Zorich cocycle over
some ∆(D) is the map we already introduced in paragraph 3.1.B

KZ∆ : ∆(D) ×Rd −→ ∆(D) ×Rd

((π, λ), v) 7−→
(
R∆(π, λ),Bγv

)
where d = #A, andγ is the arrow ofD that is crossed when applying the Rauzy-Veech algorithm
on (π, λ). Of course we can define in the same way a cocycle KZΩ over the augmented parameter
spaceΩ(D). Moreover, according to what we saw in paragraph 3.1.B, we can define a restricted
version of the cocycle (which is the interesting one) by restricting each fibre to the corresponding
Im Qπ.

The continuous and discrete versions of the cocycle are related:

Let us consider the inclusionΩ(D) ↪→ H̃(1)(S,Σ, h) of Corollary 2.4.3; and letΩ+(D) be the pre-image
of Ω(D) in the bundle H̃+(S,Σ, h). Then we can identify Ω+(D) with Ω(D) ×Rd in such a way that
the return map of the continuous Kontsevich-Zorich cocycle KZt onΩ+(D) coincided with the discrete
version KZΩ. This identification also makes the restricted versions correspond.

We can also define the Zorich-accelerated versions of the cocycle: for instance,
KZ∗
∆

: ∆(D) ×Rd −→ ∆(D) ×Rd

((π, λ), v) 7−→
(
R∗
∆

(π, λ),Bγv
)

where γ if again the path spanned in D when applying the accelerated algorithm, made up of
arrows which are all of the same type, and have the same winner.

§ 3.3.C Lyapounov exponents The most natural question about a cocycle is, what hap-
pens to a vector v ∈ Rd under reiteration of the map? We recall the statement of the classical
multiplicative ergodic theorem:

Theorem 3.3.1 (Oseledets). Let X be a probability space; suppose that f : X → X is an ergodic
transformation, and that a linear cocycle over f is determined by a map A : X → GL(d,R) such that
log ∥A∥ and log ∥A−1∥ are both integrable; then the following property holds.
For almost every x ∈ X, there exists an unique filtration Rd = E0(x) ) E1(x) ) . . . ) Er(x) = {0} such
that:
• r is independent of x;
• the E j are measurably dependent from x, and such that A(x)E j(x) ⊆ E j( f (x));
• r real numbers λ1 > · · · > λr exist such that, for almost every x ∈ X and any v ∈ E j−1 \ E j, we

have

lim
n→+∞

1
n

log ∥An(x)v∥ = λ j.

The λ j’s are called Lyapounov exponents of the cocycle. If A were a constant map, they would
correspond to the logarithms of the absolute values of the eigenvalues.
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The (extended discrete) Kontsevich-Zorich cocycle, when defined on the accelerated maps
R∗
∆

or R∗
Ω

(beacuse a finite total mass is needed), can be seen to satisfy the property of integra-
bility required to apply the Oseledets’ theorem. Moreover the following can be proven:

For each π vertex of D, a basis of Rd/Im (Qπ) can be chosen such that, under such choice of bases, for
each γ : π → π′ arrow in D, the application Bγ : Rd/Im (Qπ) → Rd/Im (Qπ′ ) is expressed with the
identity matrix.

Thus, the cocycle obtained with this quotient has 0 as unique Lyapounov exponent; whereas
(see [AV07])

Theorem 3.3.2 (Avila-Viana). The Lyapounov spectrum associated to the restricted Kontsevich-
Zorich cocycle is simple.

3.4 Reduced triples, detection and production
We are done with presenting the most classical facts about i.e.m.s and Teichmüller dynamics;

we finally prepare the ground to give a generalisation of the Khinchin theorem. Before doing
this, we introduce the main tool we will use, namely reduced triples for i.e.m.s.

§ 3.4.A Terminology We fix a Rauzy class C with diagram D, and consider i.e.m.s whose
associated marked permutation belongs to C. When not explicitly stated, we will use all the
notations for elements of an i.e.m. established in the previous chapter.

We will be particularly interested in sub-intervals with a good behaviour under the Rauzy-
Veech iteration:

Definition 3.4.1. Let T be an admissible i.e.m., acting on an interval I. We will call an element
(β, α; n) ∈ A2 ×N a triple if β , bC the leftmost letter of the bottom row, α , tC the leftmost
letter of the top row (see Remark 2.1.8), and (ub

β,u
t
α; n′) is not a connection for any n′ ≤ n. We

denote I(β, α; n) the open sub-interval of I whose endpoints are ut
α and Tnub

β.
Moreover, we say that a triple (β, α; n) is reduced if, for any j ∈ {0, . . . , n}, T− j (I(β, α; n)

)
does

neither contain any singularity of T, nor of T−1.

Roughly speaking, a triple is reduced if the first n iterations of T−1 take I(β, α; n) onto
intervals, whose endpoints are Tn− jub

β and T− jut
α.

Reduced triples are ‘seen’ by the Rauzy-Veech algorithm: let us introduce two definitions.

Definition 3.4.2. Let (β, α; n) be a triple as above. We say that the triple is detected by Rauzy-
Veech iteration at the r-th step if, using the standard notations for the obtained i.e.m.s, we
have

u(r),b
β − u(r),t

α = Tnub
β − ut

α.

We say that the triple is produced by the Rauzy-Veech iteration at the r-th step if there exists a
letter ξ ∈ A such that

|I(β, α; n)| = λ(r)
ξ .

§ 3.4.B Reduced triples are detected All reduced triples are seen by the algorithm in
the first sense:

Proposition 3.4.3. Let T be an i.e.m. satisfying the Keane’s property, and let (β, α; n) be a reduced
triple for T. Then (β, α; n) is detected by the Rauzy-Veech iteration on T, at some step r.
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3.4 REDUCED TRIPLES, DETECTION AND PRODUCTION

Proof. Let m ∈ {0, . . . ,n} such that Tn−mub
β is leftmost among the T jub

β varying j ∈ {0, . . . , n}. Since
the considered triple is reduced, T−mut

α is also leftmost among the T− jut
α varying j ∈ {0, . . . ,n}.

We will prove that the triple is produced at the step
r B max{k| I(k) contains both Tn−mub

β and T−mut
α}.

For simplicity, let us suppose Tn−mub
β > T−mut

α, the other case being totally similar. Therefore

I(r+1) = Tn−mub
β, and this interval is obtained from I(r) truncating it at the rightmost singularity

of (T(r))±1; in particular, each such singularity has to be ≤ Tn−mub
β.

Recalling Remark 2.1.7, since Tn−mub
β (resp. T−mut

α) is a point of I(r) obtained by iteration of

T (resp. T−1) on ub
β (resp. ut

α), L,H ∈N can be found such that

Tn−mub
β = (T(r))Lu(r),b

β and T−mut
α = (T(r))−Hu(r),t

α .

If we show that L = H = 0, we are done. By contradiction, if L > 0, then

u(r),b
β = Tn−m−l′ub

β > Tn−mub
β

where, in the first equality, the existence of such a 0 < l′ < n − m is again a consequence of
Remark 2.1.7; and the inequality follows from the definition of m. But the expression above
contradicts that any singularity for (T(r))±1 must not be on the right of Tn−mub

β. And if H > 0,
then

Tn−mub
β > u(r),t

α = T−m+h′ut
α > T−mut

α

where the first inequality is again because of how singularities of (T(r))±1 are placed, and the
other ones are as above (with 0 < h′ < m). But this contradicts the reducedness of (β, α; n). �

§ 3.4.C How to produce reduced triples When dealing with (β, α) ∈ A2 with α , tC,
β , bC, the arguments we will use in our proofs differ according to the existence of a marked
permutation in C that shows them in particular positions.

Definition 3.4.4. Let (β, α) be as above. We say that this couple is of:
• type A if a π ∈ C exists with its top row ending with α, and its bottom row ending with β;
• type B if it is not of type A and a π ∈ C exists such that the bottom row ends with α, the

top one ends with a letter v , α, β, and
{x ∈ A|πb(x) ≤ πb(β)} = {x ∈ A|πt(x) ≤ πt(α)} ∪ {v}.

In both cases, we will call π a preferred marked permutation for (β, α).

In the second case, the letter just before β in the bottom row of π will be called q: we will have
q , v, otherwise π is not admissibile. To sum up, in this case π appears like:

π =

(
· · · q · · · α · · · v
· · · v · · · q β · · · α

)
The technical fact below will be essential for several arguments in what follows (we omit

its proof):

Proposition 3.4.5. Each couple (β, α) ∈ A2 with α , tC, β , bC is either of type A or of type B.

Our definitions of type A and B exclude each other only for a simpler exposition.
Now, we fix (β, α) and explain how to find an n and a set of i.e.m.s that have (β, α; n) as a

reduced triple produced by the Rauzy-Veech algorithm.
Let us start from type A: we fix a finite path η = η(β, α) ∈ Π(D) such that a preferred marked

permutation π appears in η, reached with an arrow of bottom type; then the letter α wins; and
then it loses letting another letter w ∈ A win; at this stage, η ends.
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Lemma 3.4.6. Let (β, α) be a couple of type A and let η(β, α) be defined as above. Let γ ∈ Π(D) be
any path ending with η, made up of r arrows. Then a positive integer n ≤ ∥cγ∥ exists such that, for
any T ∈ ∆γ, the triple (β, α; n) is reduced for T, and |I(β, α; n)| = λ(r)

α .

Proof. Let us fix T ∈ ∆γ. Since in the last arrow of γ the letter α loses against a letter w,
and in the previous one it has won against the letter β, we must have πb(w) = d − 1; and
λ(r)
α = λ

(r−1)
α = λ(r−2)

α −λ(r−2)
β = u(r−2),b

β −u(r−2),t
α . According to Remark 2.1.7, positive integers l and

h exist such that u(r−2),t
α = T−hut

α; and u(r−2),b
β = Tlub

β. So, we have that

Tlub
β − T−hut

α = λ
(r)
α

Set n B l + h. We have ∥cγ∥ ≥ ∥c(r−2)∥ > l + h (because of Remark 3.1.2). Now we only have to
prove that the open interval J bounded by Tlub

β and T−hut
α is such that Tk J does not contain any

singularity of T±1 for any −l ≤ k ≤ h: in this case we have I(β, α; n) = Th J and assertions about
its length and the reducedness of the triple are obvious.

We already know what are the winner and the loser of two steps of the Rauzy-Veech
algorithm starting from T(r−2). If w , β, this knowledge implies u(r−2),b

w < u(r−2),t
α < u(r−2),b

β ,

with u(r−2),t
α the rightmost singularity for T and u(r−2),b

w ,u(r−2),b
β the two rightmost for T−1; so

J ⊂ I(r−2),t
α ∩ I(r−2),b

w . Otherwise u(r−2),b
α < u(r−2),t

α < u(r−2),b
β , with u(r−2),t

α the rightmost singularity for

T(r−2) and u(r−2),b
α ,u(r−2),b

β the two rightmost for (T(r−2))−1; so J ⊂ I(r−2),t
α ∩ I(r−2),b

α .

In the first case: from Remark 3.1.2, we know that Tk J ⊂ TkI(r−2),t
α contains no singularities of

T for 0 ≤ k < c(r−2)
α , hence it does not contain singularities of T−1 for 0 < k ≤ c(r−2)

α ; using the same
argument on T−1, we get that Tk J ⊂ TkI(r−2),b

β contains no singularities of T−1 for 0 ≥ k > −c(r−2)
w ,

nor singularities of T for 0 > k ≥ −c(r−2)
w .

If h < c(r−2)
α and l < c(r−2)

w both hold, we are done. The first inequality is again a consequence
of Remark 3.1.2; whereas, for the second one, we proceed by contradiction. If l ≥ c(r−2)

w , set
l′ = l − c(r−2)

w ≥ 0. As l is the first entry time of ub
β in I(r−2) under iteration of T, all the iterates Tk

for 0 ≤ k ≤ l must be continuous in a neighbourhood of ub
β. But, u(r−2),b

β being the right endpoint

of I(r−2),b
w , Tl′ub

β should be (by local continuity) the right endpoint of I(r−2),t
w , so it should be a

point of I(r−2): and this is absurd.
In the second case: the arguments above stay almost unchanged, except that in this case

l′ ≥ 0 implies that Tl′ub
β is the right endpoint of I(r−2), and this implies that π has been reached

with an arrow of top type, contrarily to our assumptions on η(β, α). �

An analogous result holds for couples of type B: in this case, let again π be a preferred
marked permutation for (β, α); we will consider a path η = η(β, α) ∈ Π(D) such that its last
arrow is the arrow starting from π with winner α. The same result as above holds, provided
we add an hypothesis to the considered i.e.m.s:

Lemma 3.4.7. Let (β, α) be a couple of type B, and let η(β, α) be defined as above. Let γ ∈ Π(D) be
any path ending with η, made up of r arrows. Then a positive integer n ≤ ∥cγ∥ exists such that, for
any T ∈ ∆γ yielding λ(r)

v < λ(r)
q , the couple (β, α; n) is reduced for T and |I(β, α; n)| = λ(r)

v .

Proof. Let T be as in the statement. From the Rauzy-Veech dynamics we have λ(r)
v = λ

(r−1)
v ; the

definitions of, π, v and γ imply u(r−1),t
α + λ(r−1)

v = u(r−1),b
β . Again because of Remark 2.1.7 two
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non-negative integers l and h exist such that u(r−1),t
α = T−hut

α; and u(r−1),b
β = Tlub

β; therefore

Tlub
β − T−hut

α = λ
(r)
v .

The same way we did for type A, we set n B l + h, so ∥cγ∥ ≥ ∥c(r−1)∥ > l + h as desired; and
we have to prove that the open interval J bounded by Tlub

β and T−hut
α is such that Tk J does not

contain singularities of T, for all −l ≤ k < h.

Now, the fact that α wins on v allows us to say that λ(r−1)
v < λ(r−1)

α . On the one hand, this
yields u(r−1),t

α < u(r−1),b
β < u(r−1),t

α + λ(r−1)
α . On the other hand, the bottom singularity preceeding

u(r−1),b
β is u(r−1),b

q = u(r−1),b
β −λ(r−1)

q < u(r−1),b
β −λ(r−1)

v = u(r−1),t
α . So, this time the interval J is contained

in I(r−1),t
α and in I(r−1),b

q . The proof goes on similarly as in the first case for the type A. �

§ 3.4.D Sequences of produced reduced triples The result we can obtain about the pro-
duction of reduced triples is someway weaker than about their detection:

Proposition 3.4.8. Let (β, α) ∈ A2 be such that β , bC and α , tC; and fix π0 ∈ C. Then, for
Lebesgue-almost any T ∈ ∆π0 , two sequences of positive integers, (r j) j∈N and (n j) j∈N, can be found
such that: the first one is increasing; and for all j ∈ N we have n j < ∥c(r j)∥, and (β, α; n j) is a reduced
triple for T, produced by the r j-th step of the Rauzy-Veech iteration on T. More precisely:
• if (β, α) is of type A, we can take r j to be the instants when γT(r j) ends with η(β, α) as previously

defined. In this case |I(β, α; n j)| = λ(r j)
α ;

• if (β, α) is of type B, we can take r j to be the instants when γT(r j) ends with η(β, α) as previously
defined, and λ(r j)

v < λ
(r j)
q . In this case |I(β, α; n j)| = λ(r j)

v .

Proof. Let us consider the Zorich acceleration of the Rauzy-Veech renormalised algorithm
defined in paragraph 3.2.B. According to Corollary 3.2.5, R∗

∆
: ∆(D)→ ∆(D) is an ergodic map

with respect to a measure which is equivalent to the Lebesgue one. Let E ⊆ ∆(D) be a subset of
positive measure (equivalently for the Lebesgue measure or for the invariant measure). Recall
that almost every i.e.m. (on the unit interval) satisfies the Keane’s property, so the map R∗

∆

can be iterated infinitely many times; and, because of the ergodicity, for almost every i.e.m. T
among these ones, the R∗

∆
-positive orbit of T visits infinitely many times the region E.

Now, if (β, α) is a couple of type A, we take E = ∆η(β,α). Every visit to the region means that
an instant r j exists such that γT(r j) ends with η. We conclude by applying Lemma 3.4.6, with
γ = γT(r j).

Similarly, if (β, α) is a couple of type B, we take E = ∆η(β,α) ∩ TB−1
η {λv < λq} and, arguing as

before, Lemma 3.4.7 implies our statement. �
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4 Khinchin theorem and i.e.m.s
A stronger property than topological transitivity (Definition 0.2.2) for dynamical systems

could be that an orbit not only passes near a selected point infinitely many times; but that,
at those passages, the selected point is approached at some selected speed: a shrinking target
property (cfr. [Ath08]) is a formalisation of this situation.

A classical theorem by Khinchin is concerned with a Diophantine condition: starting from a
real number, consider the fractional part of its integer multiples. Given a decreasing sequence
ϕ(n), we ask whether there are infinitely many of those fractional parts that are less than
the corresponding ϕ(n). Khinchin’s answer is: yes if the sequence has divergent sum, no
otherwise. The reason for this dichotomy is the Borel-Cantelli theorem: the numbers ϕ(n) are
indeed ‘proportional’ to the probability of the event “the n-th fractional part is less than ϕ(n)”.

Anyway, this Diophantine condition can be interpreted as a property of the rotations of
T, that is i.e.m.s on 2 intervals. Luca Marchese proved that it is possible to generalise it to
a property of reduced triples of general i.e.m.s, subject to the same dichotomy; and it may be
regarded as a shrinking target property for singularities.

In this chapter we outline the proof of Marchese’s theorem. As it is a common practice in
the setting of i.e.m.s, we use dynamics in the parameter space to prove properties of single
i.e.m.s. The convergent case is obtained from Borel-Cantelli after having proved that we are
dealing with a sequence of events whose probabilities are proportional with ϕ(n). In so doing
we will use the fact that reduced triples are detected (Proposition 3.4.3).

The divergent case, instead, is more complicated, and we will only give a partial proof. The
statement of the theorem is implied by the production of reduced triples (Proposition 3.4.8)
together with a shrinking target property for the Rauzy dynamics. This time it is not sufficient
to show that the probability of the targets is proportional to ϕ(n): we need to prove explicitly
that their supremum limit has probability 1.

The treatment of the Marchese’s theorem in this chapter follows loosely the original work
[Mar11]. The last section, which summarises [Mar], is about a theorem of Jon Chaika, according
to which a shrinking target property involving generic points, rather than singularities, holds
for i.e.m.s. A simple trick allows consideration of regular points as additional singularities,
and therefore Marchese’s result implies a weaker version of the one of Chaika.

4.1 Shrinking triples
§ 4.1.A Using Borel-Cantelli to check chaoticity We recall the statement of one of the
most classical theorems in probability theory:

Theorem 4.1.1 (Borel-Cantelli). Let (Ω,F,P) be a probability space; and let (An)n∈N be a sequence
of events. Then we have the following dichotomy:
• if

∑
n P(An) < +∞, then almost every x ∈ Ω belongs to only finitely many of those events;

• if (An)n∈N is an independent family of events and
∑

n P(An) = +∞, then almost every x ∈ Ω
belongs to infinitely many of those events.
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4.1 SHRINKING TRIPLES

Suppose that we have a measurable and P-invariant f : Ω→ Ω; we fix a sequence of events
(Bn)n∈N, and then consider the events An B f−n(Bn). According to Borel-Cantelli, if we have∑

n P(An) =
∑

n P(Bn) < +∞, then for almost every x ∈ Ω there will exist only finitely many
n ∈N such that x ∈ An, i.e. f n(x) ∈ Bn.

But if we have
∑

n P(Bn) = +∞, and at the same time f n(x) ∈ Bn happens infinitely often
(for some subset of x ∈ Ω), a look at the statement of Borel-Cantelli yields the intuitive
conclusion that the events f−n(Bn) make up a ‘weakly independent’ family, that is iteration of
f shows a random-like behaviour with respect to this sequence. This is particularly significant
if the family of events (Bn) is decreasing (according to the partial ordering ⊆) and such that
P(Bn) → 0 for n → +∞. Such (Bn) is called a family of shrinking targets for the considered
dynamical system, and the x ∈ Ω which belong to infinitely many f−n(Bn) are said to satisfy a
shrinking target property.

§ 4.1.B Khinchin’s dichotomy A classical theorem of Khinchin ([Khi97]) about a Dio-
phantine condition shows, in fact, an example of shrinking target property:

Theorem 4.1.2 (Khinchin). Let ϕ = (ϕ(n))n∈N be a positive sequence; let us consider the solutions
n ∈N to the inequality

{nϑ} < ϕ(n) (4.1)
where ϑ ∈ [0, 1) is a fixed number, and {·} denotes the fractional part of a real number. Then
• if

∑
n ϕ(n) < +∞, then for almost any ϑ ∈ [0, 1) there are only finitely many solutions to

inequality 4.1;
• if (nϕ(n))n∈N is a decreasing sequence, and

∑
n ϕ(n) = +∞, then for almost any ϑ ∈ [0, 1) there

are infinitely many solution to inequality 4.1.

Even if this is not exactly the situation described above, it is quite clear that we are consid-
ering the dynamics induced by a rotation of angle 2π(1 − ϑ) on T = R/Z: we know that, for
almost every ϑ (namely the irrational ones), this rotation is minimal; but the theorem says at
what ‘speeds’ the point 0 is approached by its own orbit.

Equivalently, this is a theorem about i.e.m.s on d = 2 intervals, with length data (ϑ, 1 − ϑ).
Since the possible triples (in the sense of Definition 3.4.1) for the considered i.e.m. are associated
with intervals whose length is |ϑ − {n(1 − ϑ)}| = {(n + 1)ϑ}, the theorem is actually telling what
conditions should the sequence ϕ satisfy, so that intervals generated by triples are able to
shrink infinitely many times according to it. Equivalently, it says how should the targets
Bn = (ϑ − ϕ(n), ϑ + ϕ(n)) shrink if we want the point 1 − ϑ to satisfy the shrinking target
property.

§ 4.1.C What about i.e.m.s? Khinchin’s theorem has been generalised by Luca Marchese
to an analogous result for general i.e.m.s:

Theorem 4.1.3 (Marchese). Let π0 be an admissible marked permutation belonging to a Rauzy
class C; and let ϕ = (ϕ(n))n∈N be a positive sequence. Given an i.e.m. T, we consider the triples
(β, α; n) ∈ A2 ×N such that α , tC and β , bC the leftmost letters of the two rows of π0 (see Remark
2.1.8), which are solutions for the inequality

|I(β, α; n)| = |Tnub
β − ut

α| < ϕ(n). (4.2)
• Suppose that ϕ is decreasing, and

∑
n ϕ(n) < +∞. Then, for almost any i.e.m. T ∈ ∆π0 , there

are only finitely many triples (β, α; n) as above which are solutions to inequality 4.2.
• Suppose instead that (nϕ(n))n∈N is decreasing, and

∑
n ϕ(n) = +∞. Then, for any fixed (β, α)

as above, and almost any i.e.m. T ∈ ∆π0 , there are infinitely many n ∈N such that (β, α; n) is a
reduced triple for T, and a solution to inequality 4.2.
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This statement is about shrinking target properties for singularities of an i.e.m.: we already
know from Keane’s Theorem 2.2.8 that an i.e.m. without connections is minimal; therefore the
orbit of each bottom singularity approaches each of the top ones arbitrarily, even if the two
points have to stay distinct. Here we get an answer to whether the orbit under T of a singularity
for T−1 is able to pass nearer and nearer a selected singularity of T at a selected ‘speed’ — in other
words, whether there is a sequence of integers that ‘approximates’ a connection between the
two selected singularities as well as desired.

Remark 4.1.4. A restatement of the divergent case is that, for sequencesϕ as above, for almost
any T, and for any (β, α), we have

lim inf
n→+∞

|Tnub
β − ut

α|
ϕ(n)

≤ 1.

But, for any ε ≥ 0, the sequence εϕ satisfies the same hypotheses of ϕ, so that inferior limit is
≤ ε; that is, it is zero. ^

In order to give a (partial) proof of this theorem, we will need to work in a more ‘proba-
bilistic’ setting, so we will concentrate on normalised i.e.m.s.

Lemma 4.1.5. Suppose a statement analogous to Theorem 4.1.3 is true, but replacing ∆π0 with ∆(1)
π0

.
Then Theorem 4.1.3 holds.

Proof. For any i.e.m. T = (π0, λ) ∈ ∆π0 and any κ ∈ R+, set Tκ B (π0, κλ); and set ϕκ(n) B κϕ(n)
for all n ∈ N. It is easily checked that (β, α; n) is a solution to inequality 4.2 for the i.e.m. T if
and only if it is a solution to inequality

|Iκ(β, α; n)| < ϕκ(n).
related to the i.e.m. Tκ. Moreover, obviously

∑
n∈N ϕ(n) < +∞ if and only if

∑
n∈N ϕκ(n) < +∞;

and ϕ [resp. (nϕ(n))] is decreasing if and only if ϕκ [resp. (nϕκ(n)] is decreasing.

The map K : ∆(1)
π0
×R+ → ∆π0 given by (λ, κ) 7→ κλ is bijective and a subset of ∆(1)

π0
×R has

measure zero, or full measure (i.e. its complement has measure zero), if and only if the same
holds for its image under K.

Let us suppose that ϕ is a decreasing sequence with finite sum. Then, according to what
we are supposing, the sets Aκ ⊆ ∆(1)

π0
of the normalised i.e.m.s T which have only finitely many

solutions to
|I(β, α; n)| < ϕ1/κ(n)

are full measure subsets; so, because of Fubini’s theorem,
⊔
κ∈R+ Aκ × {κ} is subset of ∆(1)

π0
×R+

with full measure, and also its image under K in ∆π0 has full measure. But the latter is made
up exactly of those i.e.m.s T which have finitely many solutions to 4.2.

In the other case, when (nϕ(n)) is decreasing and ϕ as infinite sum, we can fix any triple
(β, α) and argue similarly as before. �

§ 4.1.D Measures on simplices Let us specify some matters and notation related to mea-
sures. First of all, we will put on every simplex ∆(1)

π the standard Lebesgue measure (even if it
is not the a.c.i.p., see paragraph 3.2.C), normalised so that its total mass is 1. So, we will often
use the notation P for that measure — without any explicit reference to π, as it is irrelevant.
If γ ∈ Ππ(D) is a Rauzy path, we will also denote p(γ) B P(∆(1)

γ ); and, if Γ ⊆ Ππ(D), also

p(Γ) B P
(∪

γ∈Γ ∆
(1)
γ

)
. As a consequence of the formula for vertices seen in paragraph 3.1.C, we
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have

p(γ) =

∏
x∈A

cγx


−1

. (4.3)

If ν ∈ Π(D) is a path with r arrows, which starts at π and ends at π′, we will also use the fol-
lowing notation: given a measurable E ⊆ ∆(1)

π′ , call Ẽ = R−r
∆

(E)∩∆(1)
ν =

TBν(cone over E in RA
+ )∩

∆(1)
π ⊆ ∆(1)

ν . We set
Pν(E) B P(Ẽ)/P(∆(1)

ν ). (4.4)
Similarly we can define pν for (families of) paths starting at π′. In particular if γ ∈ Ππ′(D) then

pν(γ) =
p(νγ)
p(ν)

=
∏
x∈A

cνx
cνγx
. (4.5)

4.2 Convergent case of Marchese’s theorem
We fix an admissible marked permutation π0 ∈ C, and a decreasing sequence ϕ such that∑

n ϕ(n) < +∞. This section is devoted to prove that, for almost any i.e.m.s T ∈ ∆(1)
π0

, there are
only finitely many solutions to inequality 4.2.

§ 4.2.A Minimal detecting paths Let us fix a triple (β, α; n). We define ∆π0 (β, α; n) as the
set of the i.e.m. T ∈ ∆(1)

π0
which satisfy the Keane’s property and such that (β, α; n) is a reduced

triple for T.
We also define Γ(β, α; n) ⊆ Ππ0 (D) as the set of the minimal paths (with respect to the ordering

≺) which detect (β, α; n) according to all the possible choices of λ ∈ ∆π0 (β, α; n); so, Γ(β, α; n) is
a disjoint family. For γ ∈ Γ(β, α; n), we set ∆∗γ = ∆γ ∩ ∆π0 (β, α; n).

Let us summarise some easy-to-prove property of Rauzy paths γ ∈ Γ(β, α; n) that will be
useful afterwards. Let r be the length of γ.

The last arrow of γ is either a top arrow with loser β, or a bottom arrow with loser α.

As γ is a minimal path that produces (β, α; n), we cannot have both u(r−1),b
β = u(r),b

β and u(r−1),t
α =

u(r),t
α ; so the property above must be true. An immediate corollary is that:

Recalling Remark 2.1.7, let l, h; l′, h′ ∈N be such that

u(r),b
β = Tlub

β; u(r),t
α = T−hut

α; u(r−1),b
β = Tl′ub

β; u(r−1),t
α = T−h′ut

α.

Let w be the winner of the last arrow of γ. Then either l = l′ + cγw, h = h′; or l = l′, h = h′ + cγw.

Indeed, if u(r−1),b
β , u(r),b

β then u(r),b
β = T(r−1)u(r−1),b

β = Tcγw (Tl′ub
β) according to Proposition 3.1.1; and

similarly if u(r−1),t
α , u(r),t

α .

Define l, h as above. Then l + h = n.

This would be true if the construction performed in the proof of Proposition 3.4.3 yielded the
minimal detecting path; we call l0 and h0 the exponents it gives. In any case, the minimal
detecting path is an initial subpath of the one found with this construction. This means that the
associated exponents are some l ≤ l0 and h ≤ h0. In particular l ≤ n, so u(r),b

β −u(r),t
α = Tnub

β−ut
α =

Tlub
β − Tl−nut

α = u(r),b
β − Tl−nut

α; therefore u(r),t
α = Tl−nut

α and l − n = −h.

No singularities for (T(r))±1 lie between u(r),t
α and u(r),b

β .
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We have just seen that the interval between u(r),t
α and u(r),b

β is exactly T−hI(β, α; n). A singularity

for (T(r))±1 in this interval would either be the image under T−h of a singularity for T lying in
I(β, α; n); or the image under Tl of a singularity for T−1 lying in T−nI(β, α; n). Both situations are
impossible.

It holds max{cγα, c
γ
β} > n/2, so in particular max cγ > n/2 (this notation meaning the maximum entry

of a vector).

Since l + h = n, one between l and h must be ≥ n/2; and according to Remark 3.1.2, in the first
case cγβ > n/2; in the second one cγα > n/2.

Let w be the winner of the last arrow of γ. Then cγw ≤ n.

We have seen that l + h = n; moreover, above is stated that either cγw = h − h′ or cγw = l − l′. So,
in both cases it is ≤ n.

§ 4.2.B Reducing to an estimate on measures of simplices Now the proof of our state-
ment may begin.
Step 1 –We only consider reduced triples: Let us fix an i.e.m. T: the finiteness of the number of
triples for T which solve inequality 4.2 is equivalent to the finiteness of the number of reduced
triples which do so.

Indeed, given a non-reduced triple (β, α; n) which is solutions, there are two cases:
• if I(β, α; n) contains one or more singularities for T, let ut

α̂ be the closest to Tnub
β and

consider the new triple (β̂, α̂; n̂) = (β, α̂; n);
• otherwise, let 0 ≤ j ≤ n be the least such that T− j(I(β, α; n)) contains one or more singu-

larities for T−1 (being j the least possible, T− j(I(β, α; n)) is still an interval); among those
singularities let ub

β̂
be the one which is closest to the endpoint Tn− jut

α, and consider the

triple (β̂, α̂; n̂) = (β̂, α; n − j).
In both cases, (β̂, α̂; n̂) is a triple such that

|I(β̂, α̂; n̂)| < |I(β, α; n)| < ϕ(n) ≤ ϕ(n̂)
and reiterating this step up to n times, we obtain a reduced triple (β′, α′,n′) that is still solution
to inequality 4.2. If we had a sequence of distinct triples (βk, αk; nk)k∈N which solve inequality
4.2, then the lengths of the corresponding intervals would go to zero; and the same would hold
for the intervals corresponding to the reduced triples (β′k, α

′
k; n′k): this means that we would

have infinitely many reduced solutions to 4.2.
Step 2 – Application of Borel-Cantelli: So, it suffices to prove that, for each fixed couple (β, α),
and for almost any T ∈ ∆(1)

π0
, there are only finitely many n ∈ N such that (β, α; n) is a reduced

triple which satisfies 4.2. And, according to the convergent case of the Borel-Cantelli Theorem
(4.1.1), it is enough to show that the sets

An B
{
λ ∈ ∆(1)

π0

∣∣∣(β, α; n) is reduced for T = (π0, λ), and |I(β, α; n)| < ϕ(n)
}
,

satisfy
∑∞

n=0 P(An) < +∞. We immediately replace each An with its subset made up by the
i.e.m.s satisfying the Keane’s property, which has the same measure.

Since we know that reduced triples are detected, we divide An according to the minimal
path which detects (β, α; n): An =

⊔
γ∈Γ(β,α;n) ∆

(1)
γ ∩An. We would like to bound the measures of

the sets in this union from above.
Let us fix a path γ ∈ Γ(β, α; n), with r its length and π its ending point. We set σβα B∑

πb(x)<πb(β) ex−
∑
πt(x)<πt(α) ex (the ex’s being the standard basis ofRA) and observe that, if T ∈ ∆∗γ,
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then
|I(β, α; n)| = |u(r),b

β − u(r),t
α | = |⟨λ(r), σβα⟩| = |⟨λ,B−1

γ σβα⟩|.
Step 3 – A combinatorial property of π: We claim that two letters ξ+, ξ− ∈ A exist such that
⟨eξ± , σβα⟩ = ±1. Indeed, we saw above that γ ends either with a top arrow with loser β, or a
bottom one with loser α. We only consider the first case, the other one being similar. In this
case we can set ξ+ = w(γ) the winner of the last arrow of γ: it will be at the rightmost position
in πt, and just before β in πb.

The absence of a letter ξ− as required would mean that, for each ξ ∈ A such thatπt(ξ) < πt(α)
one also has πb(ξ) < πb(β). In particular u(r),t

α < u(r),b
β . The position of w implies u(r),t

α > u(r),b
w ,

because no singularity lies between u(r),t
α and u(r),b

β . And, since πt(w) = d > πt(α), then for each

ξ ∈ A such that πt(ξ) < πt(α), we have πb(ξ) < πb(w). But this contradicts u(r),b
w < u(r),t

α : our
claim is proved.

Step 4 – The sum is finite: If eξ is any vertex of ∆(1)
π , then one among eξ, (eξ + eξ+ )/2, (eξ + eξ− )/2

belongs to ∆(1)
π ∩ σ⊥βα. So, ∆(1)

π ∩ σ⊥βα is a (d − 2)-simplex, and it is not contained in ∂∆(1)
π .

Now, forλ ∈ ∆(1)
γ , we have ⟨λ,B−1

γ σβα⟩ = ⟨TB−1
γ λ, σβα⟩, thus∆(1)

γ ∩(B−1
γ σβα)⊥ also has dimension

d − 2, and is not contained in ∂∆(1)
γ . Let us consider the vertex vw = (cγw)−1TBγew of ∆(1)

γ :
then ⟨vw,B−1

γ σβα⟩ = ±(cγw)−1; in particular vw < (B−1
γ σβα)⊥; we write vw = v′w + v′′w, where

v′′w ∈ ∆(1)
γ ∩ (B−1

γ σβα)⊥. This yields{
T ∈ ∆(1)

γ ∩ ∆∗γ
∣∣∣ |I(β, α; n)| < ε

}
=

{
T ∈ ∆(1)

γ ∩ ∆∗γ
∣∣∣ |⟨λ,B−1

γ σβα⟩| < ε
}
⊆

∆(1)
γ ∩ (B−1

γ σβα)⊥ + (−εcγw, εcγw)v′w.

Therefore the measure of the set on the left hand side is < 2εcγwp(γ) — up to a possible
multiplicative constant, independent of ε and γ.

The key result to end the proof will be proven in the following paragraph:

Proposition 4.2.1. A constant C > 0, only depending on d = #A, exists such that, for all positive
integers N, the following inequality holds:

2N−1∑
n=2N−1

∑
γ∈Γ(β,α;n)

cγw(γ)p(γ) ≤ C2N.

According to this statement, we have∑
n∈N

P(An) =
∑
n∈N

∑
γ∈Γ(β,α;n)

P(An ∩ ∆(1)
γ ) ≤ 2

∑
n∈N

ϕ(n)
∑

γ∈Γ(β,α;n)

cγw(γ)p(γ) (because of the estimate

above) ≤
∑
N>0

ϕ(2N−1)
2N−1∑

n=2N−1

∑
γ∈Γ(β,α;n)

cγw(γ)p(γ) ≤ 2C
∑
N>0

2N−1ϕ(2N−1) (because cγw(γ) ≤ n)

Since ϕ is a decreasing sequence, the fact that
∑
ϕ(n) < +∞ is equivalent to the finiteness of the

last summation above. �

§ 4.2.C Proof of the estimate
Step 1 – First grouping: Let’s do some manipulations on the sum. First of all we restrict the
inner sum only to those γ such that their last winning letter is a fixed one w; if the inequality
is true after this modification, the original one, which is obtained by summing over w, is also
true. Now we subdivide the set of the minimal detecting paths in

Γn,k B {γ ∈ Γ(β, α; n)|γ ends with an arrow whose winner is w, and 2k ≤ cγw < 2k+1}.

51



4.2 CONVERGENT CASE OF MARCHESE’S THEOREM

As a consequence of the last property mentioned in paragraph 4.2.A is that Γn,k = ∅ for k > log n
(where log is the logarithm in base 2). So,

2N−1∑
n=2N−1

∑
γ∈Γ(β,α;n)

with last winner w

cγwp(γ) ≤
2N−1∑

n=2N−1

∑
0≤k≤log n

2k+1p(Γn,k) =
N−1∑
k=0

2N−1∑
n=2N−1

2k+1p(Γn,k)

(indeed the inner sum should be performed for max{2k, 2N−1} ≤ n < 2N, and the lower bound
equals 2N−1).
Step 2 – Second grouping: We now group together some of the sets Γn,k varying the index n
rather than k: we set Gk,i B

⊔2N−1+(i+1)2k−1
n=2N−1+i2k Γn,k (for the i’s such that it makes sense: 0 ≤ i <

2N−k−1). To go on with the proof we need these new families of paths to be disjoint, in the
sense of paragraph 2.1.D. That is, we need to show that for γ0 ∈ Γn0,k and γ1 ∈ Γn1,k, with
2N−1 + i2k ≤ n0 < n1 < 2N−1 + (i + 1)2k, we have γ0 ⊀ γ1. Indeed we cannot have γ1 ≺ γ0:
we saw in paragraph 4.2.A that, if r0, r1 are the lengths of the two paths, then u(r j),b

β = Tl j and

u(r j),t
α = T−h j with l j + h j = n j for j = 0, 1; and clearly γ1 ≺ γ0 ⇒ l1 ≤ l0, h1 ≤ h0 ⇒ n1 ≤ n0.

But if γ0 ≺ γ1, we use again the results in paragraph 4.2.A: first of all, we have either
l1 = l′1 + cγ1

w , h1 = h′1, or l1 = l′1, h1 = h′1 + cγ1
w (where l′1 and h′1 are the exponents associated to ≪γ1

deprived of its last arrow≫). In both cases, n1 = l1+h1 = l′1+h′1+cγ1
w ≥ l0+h0+cγ0

w ≥ 2N−1+i2k+2k,
a contradiction.

Thus, Gk,i is a disjoint family of paths, therefore p(Gk,i) =
∑2N−1+(i+1)2k−1

n=2N−1+i2k p(Γn,k) and we can
rewrite the last double summation above:

N−1∑
k=0

2N−1∑
n=2N−1

2k+1p(Γn,k) =
N−1∑
k=0

2N−k−1−1∑
i=0

2k+1p(Gk,i).

Step 3 – Effective estimate: To complete the proof, we will lean on an estimate by Avila,
Gouëzel and Yoccoz ([AGY06]):

Theorem 4.2.2. There exist two constants C, θ > 0, only depending on d = #A, with the following
property. Let A′ ⊂ A be a nonempty proper subset, 0 ≤ m ≤ M be integers, ν ∈ π(D) be a path
starting from π0 and ending in π1. Then the following inequality holds:

pν
{
γ ∈ Ππ1 (D)

∣∣∣∣∣ max Bγcν > 2M max cν; max
A′

Bγcν < 2M−m max cν
}
≤ C

(m + 1)θ

2m

where we denote maxA′ c = maxξ∈A′ cξ and max c = maxξ∈A cξ.

In our case, we take A′ = {w} and ν the null path, so that cν is the vector with all entries
equal to 1, and Bγcν = cγ. For any γ ∈ Γn,k (where 2N−1 ≤ n < 2N is variable, whereas we
suppose k fixed) we have (according to paragraph 4.2.A) max cγ > n/2 ≥ 2N−2, while cγw < 2k+1.
Therefore, if we take M = N − 2 and m = N − k − 3, then for all indices i considered above,
Gk,i is a family of paths contained in the one considered in the estimate by Avila, Gouëzel and
Yoccoz: this means that

p(Gk,i) ≤ C
(N − k − 3)θ

2N−k−3

or, at least, this is true when k ≤ N − 3; but no problems arise if we trivially bound p(GN−2,i),
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p(GN−1,i) ≤ 1. We can conclude our estimate:
N−1∑
k=0

2N−k−1−1∑
i=0

2k+1p(Gk,i) ≤ C
N−3∑
k=0

2k+1
2N−k−1−1∑

i=0

(N − k − 3)θ

2N−k−3
+ 2N−1 + 2N =

= C2N
N−3∑
k=0

(N − k − 3)θ

2N−k−3
+ 2N−1 + 2N ≤ (CK + 2)2N

where K =
∑

m≥0 mθ/2m < +∞ only depends on θ, which in turn only depends on d. �

4.3 Divergent case of Marchese’s theorem
Our proof of the divergent case of Theorem 4.1.3 will be only partial: we will restate it as a

new shrinking target property, and we will not show that ≪the targets do not shrink too quickly≫.
We fix an admissible marked permutation π0 ∈ C; and a positive sequence ϕ = (ϕ(n))n∈N such
that (nϕ(n))n∈N is decreasing and

∑
ϕ(n) = +∞. Our claim is: for each couple of letters α, β ∈ A

letters with α , tC, β , bC, and for almost any i.e.m. T ∈ ∆(1)
π0

, there exist infinitely many n ∈N
such that (β, α; n) is a reduced triple for T such that |I(β, α; n)| = |Tnub

β − ut
α| < ϕ(n).

§ 4.3.A Neat, positive, and reference paths The proof of the statement above is based on
the production of reduced triples, with particular requests. We begin by requiring something
more than before to the paths η(β, α) defined in paragraph 3.4.C.

Definition 4.3.1. A path γ ∈ Γ(D) is called neat if none of its initial sub-paths equals its ending,
i.e. each time we have an equality γ = γ1γ2 = γ3γ1, either γ1 is trivial or γ2 and γ3 are.
The path γ is called positive if the entries of the matrix Bγ all are positive integers.

A path γ is neat if and only if ∆(1)
γ ∩ R

j
∆
∆(1)
γ = ∅ for each 0 < j < length of γ. Indeed, a

nonempty intersection for some j exactly means that, when we eliminate from γ its first j
arrows, we obtain again the beginning of γ.

Definition 4.3.2. Let (β, α) be a couple with α , tC and β , bC. A path η = η(β, α), whose
ending part is as described in paragraph 3.4.C, is called a reference path for the couple if it
satisfies the further requests below:
• its starting point is π0;
• it is neat and positive;
• in case (β, α) is of type A, it contains at least 2 arrows with winner α;
• in case (β, α) is of type B, it contains at least d arrows with winner v.

A reference path always exists: the conditions in paragraph 3.4.C only specify its ending
part, and the other ones are satisfied if we choose its initial arrows (even a large number of
them) in a careful way. Then we connect the head with the tail in any way. We now fix a couple
(β, α) and a reference path η = η(β, α); and we call π1 its ending point.

According to Theorem 3.2.4, the mapR∗
∆

: ∆(D)→ ∆(D) is ergodic with respect to an a.c.i.p..
Since ∆(1)

η and ∆(1)
π1

are two subsets of ∆(D) with positive measure (equivalently with respect to
the measure specified in paragraph 4.1.D, or to the a.c.i.p.), almost every T ∈ ∆(1)

π1
has an orbit

under R∗
∆

that eventually enters ∆(1)
η ; so, this must also be true if we consider the orbits under

R∆. So, we define the first entering map E : ∆(1)
π1
→ ∆(1)

η which associates, to almost every λ, the
first point of ∆(1)

η that appears in its R∆-orbit. If ℓ is the length of η, we also have a bijection
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Rℓ
∆

: ∆(1)
η → ∆(1)

π1
. So, the map

Fη B Rℓ∆ ◦ E : ∆(1)
π1
→ ∆(1)

π1

is defined for almost every point. If we denote
MPη B {γ ∈ Π(D)|γ starts in π1, ends with η, and contains no other copy of η},

then the connected components of the domain of Fη are exactly the ∆(1)
γ , varying γ ∈ MPη.

Similarly, if MPk
η is the set of the paths in D which are concatenation of k paths of the family

MPη, then the connected components of the domain of Fk
η are the ∆(1)

γ varying γ ∈MPk
η.

§ 4.3.B A stronger statement The proof of the divergent case of the Marchese’s theorem
is based on a stronger result. To state it we need:

Lemma 4.3.3. Let T ∈ ∆(1)
π0

be an i.e.m. which satisfies the Keane’s property, and let rk be the
(increasing) sequence of instants such that the Rauzy path γT(rk) ends with η. Then a constant θ > 1
exists (independent of T) such that ∥cγT(rk)∥ < θk for all k big enough.

Proof. If we take a generic T, we can suppose that the Rauzy algorithm on it can be iterated
infinitely many times, with infinitely many returns to ∆(1)

η . For each rk, we call r′k ≥ rk the
integer such that the arrows of γT from the rk-th to the r′k-th are all of the same type, while the
(r′k+1)-th is of the opposite type. That is, γT(r′k) is the minimal path containing γT(rk) which can
be obtained by Zorich-accelerating the Rauzy algorithm on T. Observe that γT(r′k) still contains
exactly k copies of η, because the arrows composing the latter do not all have the same winner.

There is an unique decomposition γT = γ̃1 · · · γ̃ j · · · where the γ̃ j’s are maximal concate-
nations of arrows of the same type; let us suppose that γT(rk) is the concatenation of the first
N = N(k) ones. Then

∥c(rk)∥ ≤ ∥c(r′k)∥ ≤ ∥Bγ̃N · · ·Bγ̃1∥ · ∥1⃗∥
and if ν is the biggest Lyapounov exponent of the discrete Kontsevich-Zorich cocycle (see para-
graph 3.3.C), then for N = N(k) sufficiently big a number ε > 0 exists such that ∥Bγ̃N · · ·Bγ̃1∥ ≤
e(ν+ε)N.

Now, if N(k) grows at most linearly in k, we are done. Let χ be the characteristic function of
∆(1)
η , and S̃N denote the N-th Birkhoff sum for the iteration of R∗

∆
; because of Birkhoff ergodic

Theorem 0.2.6, for N big enough and for a generic T a (small) δ > 0 exists (independent of
T) such that S̃Nχ(T)/N ≥ µ(∆(1)

η ) − δ. On the other hand, as η is a neat path, we know that∑r′k−1
j=0 χ(R j

∆
T) = k, so S̃Nχ(T) ≤ k and N ≤ k/

(
µ(∆(1)

η ) − δ
)
. �

The divergent case of Marchese’s theorem is a consequence of the following ≪shrinking
target style≫ statement. We extend our sequence ϕ to a function ϕ : [1,+∞) → (0,+∞) such
that tϕ(t) is decreasing.

Proposition 4.3.4. Let M B ∥Bη∥, θ be as above, and for each k ∈N set

ψk B
θkϕ(θk)

dM
.

Then, for almost every T ∈ ∆(1)
π1

, there exist infinitely many k ∈N such that:
• Fk

ηT ∈
{
λ ∈ ∆(1)

π1
|λα < ψk

}
, if (β, α) is of type A;

• Fk
ηT ∈

{
λ ∈ ∆(1)

π1
|λv < min{ψk, λq}

}
, if (β, α) is of type B.

We prove that this proposition implies the original statement only for (β, α) of type A, the
other case being totally similar.
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Step 1 – Recalling the production of triples: Take T0 = (π0, λ) ∈ ∆(1)
π0

, and let r j be the (increasing
and, for a generic T0, infinite) sequence of instants such that γT0 (r j) ends with η; then, according
to Proposition 3.4.8, fro each j a nonnegative integer n = n( j) < ∥c(r j)∥ exists such that (β, α; n) is
a reduced triple for T0, and |Tn

0 ub
β − ut

α| = λ
(r j)
α . But, since T1 B Rr1

∆
T0 ∈ ∆(1)

π1
, it holds that Rr j

∆
T0 =

F
j−1
η (T1). So, according to the proposition above, for a generic T1 (and a generic T0), there

exist infinitely many j ∈ N such that (β, α; n) is a reduced triple and R
r j

∆
T0 ∈

{
λ ∈ ∆(1)

π1
|λα < ψ j

}
,

therefore such that |Tn
0 ub

β − ut
α| = λ

(r j)
α < ∥λ(r j)∥ψ j.

When (β, α) is of type B, the same argument holds, except for some minor modification
needed because the r j’s are defined so to take into account the further condition λv < λq.
Step 2 – Lengths shrink as claimed: Now we only have to check that the lengths of our intervals
satisfy the required bounds. We start a chain of inequalities:

|Tn
0 ub

β − ut
α| < ∥λ(r j)∥

θ jϕ(θ j)
dM

≤ ∥λ(r j)∥∥c
(r j)∥

dM
ϕ(∥c(r j)∥)

(the last one holds because of Lemma 4.3.3, and because tϕ(t) is decreasing).

Remark 4.3.5. Let γ be any path ending with η, so we write γ = γ′η. Since the entries
of Bη are all positive integers, each component of cγ is ≥ ∑

x cγ
′

x = ∥cγ
′∥; but, on the other

hand, ∥cγ∥ ≤ M∥cγ′∥ and the same upper bound holds for every component of cγ. So, two
components of cγ always satisfy cγξ ≤M∥cγ′∥ ≤Mcγx ; and summing over ξ, ∥cγ∥/(dM) ≤ cγx . ^

Recalling that n = n( j) < ∥c(r j)∥:

∥λ(r j)∥∥c
(r j)∥

dM
ϕ(∥c(r j)∥) ≤

∑
x

λ
(r j)
x
∥c(r j)∥
dM

ϕ(n) ≤
∑

x

λ
(r j)
x c(r j)

x ϕ(n) =

= ⟨λ(r j), c(r j)⟩ϕ(n) = ⟨TB−1
γT(rk)λ,BγT(rk)1⃗⟩ϕ(n) = ⟨λ, 1⃗⟩ϕ(n) = 1 · ϕ(n)

and the implication is proved. �

§ 4.3.C A controlled shrinking is sufficient Let us define, for each ε > 0, the set

Eε B


{
λ ∈ ∆(1)

π1
|λα < ε

}
if (β, α) is of type A;{

λ ∈ ∆(1)
π1
|λv < min{ε, λq}

}
if (β, α) is of type B.

By means of rather technical arguments (see [Mar11]), one can prove that

Proposition 4.3.6. A constant C > 0, only depending on d = #A, exists such that for every ε > 0 it
holds that

P(Eε) > Cε.

It is in the proof of this result that the last request of Definition 4.3.2 becomes necessary. We
now explain how the proposition above is needed in proving Proposition 4.3.4.
Step 1 – An explicit formula: If we denote Em B Eψm , the claim of Proposition 4.3.4 is that

P
(
lim sup

m→+∞
F−m
η (Em)

)
= P

∩
m∈N

∪
j≥m

F
− j
η (E j)

 = 1

or, setting Nk B ∆
(1)
π1
\ Ek, that for every k ∈N we have

P

∩
j≥m

F
− j
η (N j)

 = 0.
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We begin by making estimates for a finite intersection
∩n

j=m F
− j
η (N j). An i.e.m. T ∈ ∆(1)

π1

(which we assume to satisfy the Keane’s property) appears in this intersection if and only if there
exist γm ∈ MPm

η , and γ( j) ∈ MPη for each m < j ≤ n, such that, if we set γ j = γmγ(m + 1) · · ·γ( j)
and call r j the length of γ j, then

• T ∈ ∆γm ;
• R

r j

∆
T ∈ N j ∩ ∆γ( j+1) for all m ≤ j < n;

• Rrn
∆

T ∈ Nn;

indeed this means exactly that

• γT begins with γn;
• ≪at the end of each sub-path≫, Rauzy iteration gives a R

r j

∆
T ∈ N j.

Therefore, the probability of this intersection is, recalling equation 4.4:

p(m,n) B
∑

P(∆γm )Pγm (Nm ∩ ∆(1)
γ(m+1)) · · ·Pγn−1 (Nn−1 ∩ ∆(1)

γ(n))Pγn (Nn),

where the sum is meant over all the possible paths γm, γ(m + 1), . . . , γ(n).
Step 2 – Measure distortions are bounded: Now, our aim is to prove that p(m,n) ≤ ∏n

j=m(1 −
C′ψ j) (where C′ is a suitable constant). We already know that P(N j) < 1 − Cψ j, but now we
need an estimate for the ‘relative’ probabilities Pγ j .

Let ν ∈ Ππ1 (D) be any path, and let γ be any path ending with η. According to the equality
4.5, we have Pγ(∆(1)

ν ) =
(∏

ξ cγξ
) /(∏

ξ cγνξ
)
. Now, recalling Remark 4.3.5, we have

cγνξ =
∑

x

(Bν)ξxcγx ≤
∑

x

(Bν)ξx

 max cγ ≤ cνξ ·Mcγξ,

thus Pγ(∆(1)
ν ) ≥ ∏

ξ(cνξ/M) = M−dP(∆(1)
ν ). Since it can be seen that the simplices ∆(1)

ν are a basis

for the Borel σ-algebra of ∆(1)
π1

, the same inequality holds for the targets Eε: so, a corollary of
Proposition 4.3.6 is that a constant C′ = M−dC, only depending on the matrix Bη, exists such
that Pγ(N j) < 1 − C′ψ j: in particular it does not depend on γ.
Step 3 – Upper bound for finite intersection: We can now prove the estimation stated at the
beginning of the previous step: we proceed by induction on n −m. If n −m = 0 then p(m,m) =∑

P(∆(1)
γm

)Pγm (Nm); but
⊔
γm∈MPm

η
∆(1)
γm
= ∆(1)

π1
(up to subsets of measure zero), so evidently p(m,m) ≤

1 − C′ψm.
Now suppose we have proven the desired inequality for p(m,n − 1); then

p(m,n) ≤
∑

P(∆γm )Pγm (Nm ∩ ∆(1)
γ(m+1)) · · ·Pγn−1 (Nn−1 ∩ ∆(1)

γ(n))(1 − C′ψn)

and
⊔
γ(n)∈MPη(Nn−1 ∩ ∆(1)

γ(n)) = Nn−1 (up to subsets of measure zero), so the right hand side is

≤ (1 − C′ψn)
∑

P(∆γm )Pγm (Nm ∩ ∆(1)
γ(m+1)) · · ·Pγn−1 (Nn−1) = (1 − C′ψn)p(m,n − 1)

and we apply the inductive hypothesis.
Step 4 – Conclusion: To conclude, it is sufficient to note that ψ is a decreasing sequence with∑+∞

j=m ψ j = +∞, and this is equivalent to
∏+∞

j=m(1 − C′ψ j) = 0.

The sequence of the finite intersections
(∩n

j=m F
− j
η (N j)

)
n≥m

is decreasing with respect to
inclusion, so the limit of their probabilities, which is evidently 0, is the probability of the
intersection

∩
j≥m F

− j
η (N j) (for all m ∈ N). Proposition 4.3.4 is proved, and so is the divergent

case of Marchese’s theorem. �
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4.4 A theorem of Chaika
§ 4.4.A Singularities vs. generic points The study of shrinking target properties for
i.e.m.s also led to other kinds of results. An approach different than Marchese’s one has been
followed at the same time by Boshernitzan and Chaika [Cha11]:

Theorem 4.4.1 (Chaika). Let ϕ =
(
ϕ(n)

)
n∈N be a decreasing positive sequence with

∑
n∈N ϕ(n) =

+∞; and let π0 be an admissible marked permutation. Then, for almost every i.e.m. T ∈ ∆π0 , and any
y ∈ I the interval where T acts, the set

lim sup
n→+∞

T−n
(
y − ϕ(n), y + ϕ(n)

)
is a subset of I with full Lebesgue measure.

This statement is a shrinking target property for generic points of I, whereas we noted that
(the divergent case of) Theorem 4.1.3 gives a sort of shrinking target property for singularities:
the two theorems appear to be complementary to each other. But it is easy to obtain a slightly
weaker version of Chaika’s theorem from Marchese’s one:

Corollary 4.4.2. Let ϕ =
(
ϕ(n)

)
n∈N be a positive sequence such that (nϕ(n))n∈N is decreasing, and∑

n∈N ϕ(n) = +∞; and let π0 be an admissible marked permutation. Then, for almost every i.e.m.
T ∈ ∆π0 , and almost every pair of points x, y ∈ I, there exist infinitely many n ∈N such that

|Tnx − y| < ϕ(n).
Similarly, for almost every x ∈ I there exist infinitely many n ∈N such that

|Tnx − x| < ϕ(n).

According to Remark 4.1.4, the first statement is equivalent to

lim inf
n→+∞

|Tnx − y|
ϕ(n)

= 0

and similarly for the second one.

§ 4.4.B The proof The main idea to prove Corollary 4.4.2 is a principle of
virtual singularities: that is, we will mark two points x and y of I as if they were singulari-
ties, and this will lead to an augmented parameter space; applying Marchese’s theorem here
we will get our claim.
Step 1 – The augmented space: We begin the proof of the first statement. We fix two letters
β, α ∈ A, and would like to take y ∈ Ib

β, x ∈ It
α. To be simple, we suppose for now α , β. We

denote
∆××π0;β,α B

∪
λ∈∆π0

{λ} × Ib
β × It

α

where the intervals It
α and Ib

β are meant with respect to the length data λ. Now, if we consider
x and T−1y as two additional singularities for T (and therefore Tx and y as two additional
singularities for T−1), we can regard it as an i.e.m. on d + 2 sub-intervals, indexed by the
alphabet A′ = A ⊔ {α′, β′}.

The associated marked permutation will be an (admissible) π′0 which is obtained from π0

by replacing α with the couple αα′ and β with the couple β β′, both in its top row and in its
bottom one. The length data λ′ are obtained from λ by splitting the sub-interval It

β at the point
T−1y, and the sub-interval It

α at the point x. This leads to a measurable bijection ∆××π0;β,α → ∆π′0 ,
which makes the subsets of measure zero on the two sides correspond.
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4.4 A THEOREM OF CHAIKA

If we have α = β, some more care is required, as we have to distinguish the two cases
x < T−1y, x > T−1y, i.e. we define two distinct spaces ∆××π0;α+ and ∆××π0;α−. In both cases we obtain
a bijection as above with someπ′0 marked permutation on the same alphabet A′ = A⊔{α′, β′} as
before (we name the new sub-intervals so that the left endpoint of It

α′ is x and the left endpoint
of Ib

β′ is y).

Step 2 – Application of Fubini’s theorem: However π′0 has been defined, it is an admissible
permutation; therefore, according to the divergent case of Theorem 4.1.3, for almost any length
data λ′ ∈ ∆π′0 there exist infinitely many n ∈N such that

|Tnub
β′ − ut

α′ | < ϕ(n)

but, by construction, ub
β′ = y and ut

α′ = x. Because of the bijection above described, the triples
(λ, y, x) which satisfy our claim make up a full measure subset of ∆××π0;β,α (or of ∆××π0;α±). Using
Fubini’s theorem we deduce that, for almost any λ, the claim must be true for almost any (x, y).
The first statement of the Corollary follows by varying β, α ∈ A.
Step 3 – The second statement: The proof of the second statement goes similarly as the
previous one. This time we only have to choose α ∈ A, and take x ∈ It

α. The augmented space
is

∆×π0;α B
∪
λ∈∆π0

{λ} × It
α,

and regarding x as a singularity of T we obtain a marked permutation π′0 on the alphabet
A′ = A ⊔ {α′}. Theorem 4.1.3 applied to the marked permutation π′0, to the couple (α′, α′) and
to the sequence ϕ̃(n) B ϕ(n + 1) yields that for almost any T ∈ ∆π′0 � ∆

×
π0;α there exist infinitely

many n ∈N such that
|Tnub

α′ − ut
α′ | < ϕ̃(n), that is |Tn+1x − x| < ϕ(n + 1)

and the statement follows again by application of the Fubini’s theorem. �
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5 Khinchin theorem and
translation surfaces

Marchese’s Theorem 4.1.3 for i.e.m.s was concerned with reduced triples. When we relate
i.e.m.s with translation surfaces by means of the Veech construction, a saddle connection on the
surface projects to the interval associated with a triple (β, α; n); and the length of this interval
is exactly the real part of the holonomy (Definition 1.2.8) of the saddle connection, that is ≪the
connection itself, seen as a vector in C≫.

This correspondence suggests that the Diophantine condition whose solutions were the
concern of Marchese’s theorem can be transformed to fit the setting of translation surfaces.
More precisely, this becomes a condition about holonomies:

∣∣∣ℜ (
Hol(γ)

)∣∣∣ < ϕ (|Hol(γ)|). The
solutions to this condition are finitely, or infinitely many, according to the same dichotomy
seen in the previous chapter. The first two sections of this chapter follow [Mar10] and are
dedicated to this result. The convergent case will be again an application of Borel-Cantelli,
whereas the proof of the divergent case will require us to exhibit a saddle connection for every
reduced triple.

The third section states a version of Chaika’s theorem that appears as a shrinking target
property for the vertical flow on translation surfaces. Following [Mar], we will use — similarly
as in the previous chapter — a ≪principle of virtual singularities≫ to obtain a weaker version
of Chaika’s theorem from Marchese’s result for saddle connections.

The last section, again inspired by [Mar10], passes to the upper level, namely uses the
theorem for saddle connections to derive a new dichotomy, as well as a logarithm law, for
the Teichmüller flow. One defines the systole of a translation surface as the minimum length
of a saddle connection; the decrease of the systoles for a sequence of translation structures
can be interpreted as a measure of how much is this sequence going far towards the infinity.
Recurrence of the Teichmüller flow in a moduli stratum implies that it cyclically makes a
wandering towards a cusp and then gets back, and the theorem uses systoles to quantify this
phenomenon. Its proof is not difficult and involves, above all, investigation of the trends
followed by holonomies under the Teichmüller flow.

5.1 A change in the language
In this section we introduce the most natural re-statement of Theorem 4.1.3 in the setting of

translation surfaces; and prove its easy half. Before doing this, we have to spend some words
about frames.

§ 5.1.A Framed translation surfaces In paragraph 2.3.D we defined marked translation
surfaces and marked strata, which are a finite covering of ‘standard’ strata. We would like
now to repeat exactly the same construction, except that we mark a separatrix for each point
of Σ. So, a framed translation structure on a surface is specified by a translation structure and by
the choice, for each point p j ∈ Σ, of a horizontal separatrix H j outgoing from p j. We denote
F̂lat(S,Σ, 2h, 1) the set of the framed translation structures on S with singularities in Σ and
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5.1 A CHANGE IN THE LANGUAGE

conical angles 2πh j wide; and we set

T̂(S,Σ, h) B F̂lat(S,Σ, 2h, 1)
�Diff0(S,Σ), and

Ĥ(S,Σ, h) B F̂lat(S,Σ, 2h, 1)
�Diff+(S,Σ) =

T̂(S,Σ, h)�Mod(S,Σ).

We call them framed strata in Teichmüller and moduli space, respectively.
As usual, there are also the unit area versions T̂(1)(S,Σ, h) and Ĥ(1)(S,Σ, h). Similarly as the

case of marked strata, the obvious maps from framed strata to standard ones are coverings of
degree h1 · · · hs; so, a canonical measure and a volume form on each of these new spaces can be
defined via pullback.

If X̂ is (a representative of) an element of Ĥ(S,Σ, h), we can evaluate slopes of segments
at a point p j ∈ Σ from the selected separatrix H j counterclockwise. We call bundles of saddle
connections the sets B

pi,l
p j,m(X̂) (where p j, pi ∈ Σ; 1 ≤ m ≤ h j; 1 ≤ l ≤ hi) whose elements are the

saddle connections on X̂ which start at the point p j with an angle φ0 ∈ [2π(m − 1), 2πm), and
end at the point pi with an angle φ1 ∈ [2π(l − 1), 2πl). We also denote

Holpi,l
p j,m(X̂) =

{
Hol(γ)

∣∣∣∣γ ∈ Bpi,l
p j,m(X)

}
where Hol(γ) is the holonomy of γ (Definition 1.2.8); and similarly we call Hol(X) the set of all
holonomies of saddle connections, regardless to the bundle (this also makes sense when X is a
[class of] non-framed surface). All these sets are at most countable.

Remark 5.1.1. The Teichmüller flow gt on a framed stratum preserves each bundle, in the
sense that for each t ∈ R, and X̂ ∈ Ĥ(S,Σ, h), one has gt

(
B

pi,l
p j,m(X̂)

)
= B

pi,l
p j,m(gtX̂). Indeed

horizontal segments on a translation surface do not change their direction under action of
the Teichmüller flow; and any saddle connection either is an horizontal segment, or has both
endpoints lying between two fixed horizontal separatrices: both properties are preserved by
the flow. ^

§ 5.1.B The theorem We are now ready to state Marchese’s generalisation of Khinchin-
like dichotomy for saddle connections:

Theorem 5.1.2 (Marchese). Let S be a topological surface, with S ⊃ Σ = {p1, . . . , ps} and h ∈ Ns
∗;

moreover let ϕ : [0,+∞)→ (0,+∞) be a function. We consider the solutions to the inequality∣∣∣ℜ(z)
∣∣∣ < ϕ (|z|) . (5.1)

• Suppose that ϕ is a decreasing function, and
∫ +∞

0 ϕ(t)dt < +∞. Then, for almost any X ∈
H(S,Σ, h), there are only finitely many z ∈ Hol(X) which are solutions to inequality 5.1.

• Suppose instead that tϕ(t) is a decreasing function and
∫ +∞

0 ϕ(t)dt = +∞. Then, for almost
any X̂ ∈ Ĥ(S,Σ, h), and for any p j, pi ∈ Σ, 1 ≤ m ≤ h j, 1 ≤ l ≤ hi, there are infinitely many
z ∈ Holpi,l

p j,m(X̂) which are solutions to inequality 5.1.

The statement of this theorem totally looks alike Theorem 4.1.3; of course now ϕ has to be a
function rather than a sequence. When we stated Marchese’s theorem for i.e.m.s, we remarked
that its statement concerned approximations of connections for i.e.m.s. But, when one obtains
an i.e.m. as a return map of the vertical flow of a translation surface, connections for it
come from vertical saddle connections for the translation surface: it is therefore natural that
the theorem above mentioned concerns sequences of saddle connections between two fixed
singularities, whose horizontal projections go to zero. In this correspondence, the choice of a
bundle has the same role of the choice of (β, α) in the previous chapter (we will make it precise
in paragraph 5.2.A).
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5.2 PARAPHRASING THE DIVERGENT CASE

Proof (of the convergent case). If X ∈ H(S,Σ, h) and ϑ ∈ T, we call Rϑ ∈ SL(2,R) the rotation of
angle ϑ; so, RϑX ∈ H(S,Σ, h) is the (class of) the translation structure obtained from X according
to the action described in paragraph 1.3.A. We claim that for every fixed X ∈ H(S,Σ, h), for
almost every ϑ ∈ T (according to the Haar measure P), the set Hol(RϑX) = e2πiϑ · Hol(X) has
only finitely many solution to inequality 5.1. The statement of the convergent case will follow
from application of Fubini’s theorem.

For every z ∈ Hol(X), we call I(z) B
{
ϑ ∈ T

∣∣∣ |ℜ(e2πiϑz)| < ϕ(|z|)
}
. If we are able to show that∑

z∈Hol(X) P (I(z)) < +∞, then the convergent case of the Borel-Cantelli Theorem (4.1.1) implies
our claim.

We observe thatℜ(e2πiϑz)/|z| = cos(ϑ+arg(z)), so I(z) =
{
ϑ ∈ T

∣∣∣ | cos(ϑ + arg(z))| < ϕ(|z|)/|z|
}
.

Since the function ϕ(|z|) is bounded for |z| → +∞, then for |z| big enough a constant ε > 0
(independent of |z|) exist such that P(I(z)) < (2 + ε)ϕ(|z|)/|z|.

Now we need a result of Masur (see [Mas88]):

For any translation surface X, let NX(L) be the number of saddle connections on X whose length is at
most L. Then two constants 0 < cX < CX exist such that cXL2 ≤ NX(L) ≤ CXL2 for any L big enough.

We split the sum into two parts:∑
z∈Hol(X)

P (I(z)) =
∑

z∈Hol(X)
|z|<2k0

P (I(z)) +
∑
k≥k0

∑
z∈Hol(X)

2k≤|z|<2k+1

P (I(z)) .

The first sum is finite, and we choose k0 sufficiently big for the following arguments to hold.
For 2k ≤ |z| < 2k+1, we have P(I(z)) < (2 + ε)ϕ(2k+1)/2k; according to Masur’s result stated
above, there are at most CX22(k+1) such values of z ∈ Hol(X). So, the second sum is bounded by
C′X

∑
k 2k+1ϕ(2k+1); and, ϕ being a decreasing function, finiteness of

∫ +∞
0 ϕ(t)dt is equivalent to

finiteness of that sum. �

The next section is concerned with proving the divergent case using the divergent case of
Theorem 4.1.3.

5.2 Paraphrasing the divergent case
§ 5.2.A Bundles in the Veech construction Let X be a translation surface obtained with
the Veech construction from an admissible marked permutation π on an alphabet A and
belonging to a Rauzy class C, length data λ ∈ ∆π and suspension data τ ∈ Θπ.

If Σ = {p1, . . . , ps} is the set of the singularities for X and h is the associated vector of indices
of the singularities, then each singularity p j ∈ Σ possesses exactly h j outgoing horizontal
separatrices. So, according to Lemma 2.2.2, the total number of horizontal separatrices is d− 1.

Recall the notations we introduced in paragraphs 2.1.A and 2.2.A. We will use also another
convention: we will see the vectors δ = (δα)α∈A, η = (η)α∈A and θ = (θ)α∈A as functions on
the interval I that are constant on each sub-interval It

α, i.e. x ∈ It
α ⇒ θ(x) B θα (and similar

formulae). Therefore their Birkhoff sums under T will make sense as well.
If, for each α ∈ A \ {tC}, we call Ht

α the horizontal half-line in C which goes from ξt
α

rightwards, we obtain d − 1 lines, each of which projects to an outgoing separatrix of the
horizontal flow on X. No two of them can project to the same, since their initial segments are
contained in the interiors of pairwise different top rectangles in the Veech construction, which
are a fundamental domain for the projection.

Since the horizontal separatrices on X are as many as these lines, a natural correspondence
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5.2 PARAPHRASING THE DIVERGENT CASE

between letters of A \ {tC} and horizontal separatrices of X is set up. In the same way we define
the half-lines Hb

β for β ∈ A \ {bC}, and we establish a correspondence between this set and the
horizontal separatrices of X.

For any pair α, β ∈ A with α , tC and β , bC, we call Bα
β (X) the set of the saddle connections

that start at the singularity corresponding to ξb
β, making an angle φβ ∈ [0, 2π) with Hb

β counter-
clockwise; and end at the singularity corresponding to ξt

α, making an angle φα ∈ [0, 2π) with Ht
α

clockwise.
If we fix a frame for X, each of the bundles B

pi,l
p j,m(X) coincides with some of the Bα

β (X),
establishing a one-to-one correspondence.

§ 5.2.B Reduced triples correspond to saddle connections We now prove that reduced
triples for the i.e.m. T = (π, λ) are ‘horizontal projections’ of some saddle connection (at least,
except for some particular cases).

Proposition 5.2.1. Suppose that T = (π, λ) satisfies the Keane’s property; let X be the surface obtained
from the Veech construction on T and some suspension data τ ∈ Θπ, and let α , tC, β , bC be letters
of A. Then a number n0 = n0(X) ∈ N exists such that, for any n ≥ n0 such that the triple (β, α; n) is
reduced, a saddle connection γ ∈ Bα

β (X) exists such that

Hol(γ) = ξt
α − ξb

β − Snθ(ub
β);

in particularℜ(Hol(γ)) = ut
α − Tnub

β.

Proof. We denote z B ξt
α − ξb

β − Snθ(ub
β) ∈ C and note that, for all n,ℜ(z) = ut

α − ub
β − Snδ(ub

β) =

ut
α − Tnub

β: this equality is easily obtained by induction on n.

Now let us suppose that (β, α; n) is reduced; to be simple, we will also suppose ℜ(z) > 0,
that is ut

α > Tnub
β; and we can also suppose n > 0. Consider the configuration in Cwhich gives

X by means of the Veech’s construction and let γ̃ be the half-line in C given by t 7→ ξb
β + tz,

for t ≥ 0. The initial segment of this line lies in Rb
β, thus it projects to the initial segment of

a geodesic γ in X. We claim that this geodesic is defined till to time 1, and at this instant it
reaches the singularity of X which is projection of ξt

α, making an angle with the separatrix Ht
α

as desired.
In order to analyse the behaviour of γ, we study how do γ̃, and the other curves which

project to pieces of γ, move inC. As said before, the initial part of γ̃ lies in the rectangle R0 = Rb
β.

Asℜ(γ̃(1)−γ̃(0)) = ut
α−Tnub

β and (β, α; n) is a reduced triple, the orthogonal projection of γ̃((0, 1))

over I coincides with T−nI(β, α; n) and is therefore strictly contained in Ib
β. Note, too, that the y

coordinate of γ̃ increases with t; γ̃ leaves R0 at an instant t0 < 1, because the explicit formula for
γ̃ implies that γ̃([0, 1]) covers a vertical gap bigger than σα; and when it does, it passes through
the interior of its upper edge.

Then γ̃, without having encountered any pre-image of the singular points, passes to some
upper rectangle Rt

x; but the Veech’s construction identifies Rt
x with Rb

x C R1, so we are allowed
to see γ as the projection of the line γ̃1 B γ̃ + θx = γ̃ + S1θ(ub

β). The orthogonal projection of

γ̃1 ((0, 1)) over I is T−n(β, α; n) + S1δ(ub
β) = T−(n−1)(β, α; n).

Because of reducedness, the latter is contained in the interior of Ib
x, which is the upper edge

of R1; γ̃1 leaves that rectangle at an instant t1 < 1, because the explicit formula for γ̃ implies
that γ̃([t0, 1]) covers a vertical gap bigger than the height of R1; and again, it leaves R1 passing
through its top edge.
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Figure 5.1: In this picture of a Veech construction the triple (A,B; 1) is reduced, and Propo-
sition 5.2.1 associates to it the saddle connection obtained by projection of the
segments γ̃, γ̃1, γ̃2. In particular the data we used made it necessary to define
the segment γ̃2, because ξt

B is not contained in ∂Rt
A.

We iterate this argument until it remains valid, that is until the n-th step: for j = 1, . . . ,n we
have a line γ̃ j = S jθ(ub

β) + γ̃ which projects to γ by means of Veech’s construction; the segment
γ̃ j([t j−1, t j]) is contained in a lower rectangle R j of the Veech’s construction; it enters R j from
its bottom edge, and leaves it through its top edge. All these segment project to X and join
together to give an initial segment of the geodesic γ: indeed, at this stage, no singularities of X
have been encountered yet.

What happens after γ̃n has left the last rectangle Rn (at the time tn < 1)? Of course it will
enter an upper rectangle Rt

χ and, again because of the reducedness of (β, α; n), the orthogonal
projection of γ̃n((0, 1)) over I is contained in It

χ; to better say, it is the rightmost part of this
interval, because γ̃n(1) = ξt

α. In particular, χ is the letter of A which appears just before α in
the top row of π. Now, we have two cases, according to Remark 2.2.4:
• ηχ ≥ σt

α. In this case γn, after having entered Rt
χ, does not leave its interior until it reaches

ξt
α. The geodesic γ has all the required properties.

• ηχ < σt
α, therefore χ is the rightmost letter of the bottom row of π, and

∑
x τx > 0 (see

Figure 5.1). We define γ̃n+1 B γ̃n + θχ = γ̃ + Sn+1θ(ub
β), and call υ the rightmost letter of

the top row of π. We have γ̃n+1(1) = ξ∗, and a segment γ̃n+1((1 − ε, 1)) is contained in Rt
υ.

If the slope of γ̃n+1, which is ℑ(z)/ℜ(z), is sufficiently high, the segment of γ̃n+1 which
immediately precedes this one lies in Rb

χ. Since Rb
χ gets identified with Rt

χ by the Veech
construction, this means that we are able to define the geodesic γ up to time 1 without
encountering singularities in the meanwhile.
The point γ(1) is the singularity of X obtained by projection of ξ∗. The identifications
performed in the case

∑
x τx > 0 imply that projection of ξt

α gives the same singularity;
and that the angles are the ones we desired.
The condition ≪slope high enough≫ is satisfied for all n big enough: indeed the real part
of z as a function of n is bounded (in modulus) by |I|, whereas the imaginary part contains
the summand Snη(ub

β) that grows to infinity.
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To complete the proof, we just remark that in the case ℜ(z) < 0 all the arguments before
can be adapted if we define the geodesic ‘backwards’, starting from ξt

α and going towards ξb
β.�

§ 5.2.C Proof of the divergent case Now that we are able to associate a saddle connec-
tion to (nearly) each reduced triple, we can proceed with the proof of the divergent case of
Theorem 5.1.2.
Step 1 – Restriction to the domain of a Veech chart: Let ϕ be a function [0,+∞)→ (0,+∞) such
that tϕ(t) is decreasing and

∫ +∞
0 ϕ(t)dt = +∞. The divergent case of Theorem 5.1.2 will be

proved if we do it ‘locally’ in a framed moduli stratum. Recall (Proposition 2.4.1 and below)
that almost every X̂0 ∈ Ĥ(S,Σ, h) (or, to better say, almost every non-framed translated surface
X0) is obtained by means of the Veech construction from some data (π0, λ0, τ0), with π0 an
admissible marked permutation on d = 2g + s − 1 letters, λ0 ∈ ∆π0 , τ0 ∈ Θπ0 .

Since Iπ0 : Ωπ0 → H̃(S,Σ, h) is a local homeomorphism whose domain is an open and
contractible set, it is possible to lift it to a local homeomorphism Îπ0 : Ωπ0 → Ĥ(S,Σ, h) which
includes in its image the point X̂0. Suppose we are able to prove that the theorem is true for the
(classes of) framed translation structures belonging to a subset of Îπ0 (U×V) with full measure,
where U ⊂ ∆π0 is an open and bounded neighbourhood of λ0, and V ⊂ Θπ0 is an open and
bounded neighbourhood of τ0. Then, by varying X̂0 among the framings of surfaces obtained
by Veech construction, we conclude.
Step 2 – Identification of the right i.e.m.s: Given any function ϕ as above, we will say that an
i.e.m. T = (π0, λ) is ϕ-good if T has the Keane’s property, is uniquely ergodic and satisfies the
statement of the divergent case of the Marchese’s Theorem 4.1.3 for triples, with respect to the
considered ϕ. For a fixed π0, ϕ-good i.e.m.s are a full measure subset of ∆π0 .

Now let us select a suspension data τ ∈ Θπ0 and call X̂ = X(π0, λ, τ) with a selected frame;
we also select a bundle B

pi,l
p j,m(X̂) = Bα

β (X̂). Recall Proposition 5.2.1: if n is big enough and

(β, α; n) is a reduced triple, then a saddle connection γn ∈ Bα
β (X̂) is associated to it; in particular

we have ℑ (
Hol(γn)

)
= Snη(ub

β) + σ
t
α − σb

β. Therefore

|Hol(γn)| =
√
ℜ(Hol(γn))2 + ℑ(Hol(γn))2 ≤

√
(λ∗)2 + (Snη(ub

β) + σ
t
α − σb

β)
2 = Snη(ub

β)

√√√
(λ∗)2 + (Snη(ub

β) + σ
t
α − σb

β)
2

Snη(ub
β)

2

and, since limn→+∞ Snη(ub
β) = +∞, the expression under square root goes to 1. We fix a (small)

ε > 0: we will have Snh(ub
β) > (1 − ε)|Hol(γn)| for n big enough. On the other hand, since T

is uniquely ergodic, we apply the stronger version of Birkhoff ergodic Theorem 0.2.8 on the
function η (it is not continuous, but we can adapt the theorem to this particular case): this
yields limn→+∞ Snη(ub

β)/n =
∫

I η = Area(X) and in particular Snη(ub
β) ≤ (1+ ε)nArea(X) for n big

enough. Thus

n ≥
Snη(ub

β)

(1 + ε)Area(X)
≥ 1 − ε

1 + ε
|Hol(γ)|
Area(X)

and combining Proposition 5.2.1 with compliance of Marchese’s statement, there are infinitely
many n ∈N such that∣∣∣ℜ(Hol(γn))

∣∣∣ = |I(β, α; n)| ≤ ϕ(n) ≤ ϕ
(

1 − ε
1 + ε

|Hol(γn)|
Area(X)

)
, (5.2)

and in particular the set of the z = Hol(γn) ∈ Holpi,l
p j,m(X̂) satisfying the inequalities above is
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infinite.
Step 3 – Selection of the neighbourhood: We are now ready for a ‘local’ proof of our theorem.
Recalling the conclusions of Step 1, we select the open sets U and V in order to have A0/2 <
Area(X) < 2A0, where A0 = Area(X0), for each X ∈ Iπ0 (U × V). Then we set

ϕ0(t) B ϕ
(1 + ε

1 − ε2A0t
)

;

ϕ0 : [0,+∞)→ (0,+∞) is still a function with infinite integral, and tϕ0(t) is decreasing. Accord-
ing to Step 2, the set U has a full measure subset U′ such that the resulting i.e.m.s are ϕ0-good;
and for each X̂ ∈ Îπ0 (U′ × V) there are infinitely many z ∈ Holpi,l

p j,m(X̂) satisfying∣∣∣ℜ(z)
∣∣∣ ≤ ϕ0

(
1 − ε
1 + ε

|z|
Area(X)

)
= ϕ

(
2A0

Area(X)
|z|

)
≤ ϕ(|z|).

The proof is complete. �

Remark 5.2.2. Note that the proof of the divergent case exploited in an essential way the Veech
construction, and in particular Proposition 2.3.1: this means that the set of full measure that
we have found does not contain any translation structure with vertical saddle connections.
Therefore, we actually find infinitely many solutions to 0 <

∣∣∣ℜ(z)
∣∣∣ < ϕ (|z|). ^

5.3 Chaika’s theorem for translation surfaces
Given X a translation surface, we denote Φt the flow of its vertical vectorfield at the time

t; RϑX will be the translation surface rotated by angle ϑ, as before; and B(p, r) will denote the
ball for the flat metric on X with centre p and radius r.

The flowΦt is obviously recurrent, since X is compact; but what shrinking target properties
can we expect it to satisfy? In [Cha11] Chaika, together with Theorem 4.4.1 for i.e.m.s, also
proves a version for translation surfaces:

Theorem 5.3.1 (Chaika). Letϕ : [0,+∞)→ (0,+∞) be a decreasing function, such that
∫ +∞

0 ϕ(t)dt =
+∞. Then, for any translation surface X, for almost any ϑ ∈ T, for any p ∈ X, if Φt is the vertical
flow on RϑX then the set

lim sup
t→+∞

Φ−tB(p, ϕ(t))

has full Lebesgue measure in X.

In section 4.4 we saw how introduction of virtual singularities in an i.e.m. makes it possible
to prove a weaker version of Chaika’s theorem for i.e.m.s from Marchese’s one. This time we do
quite the same thing: we mark non-singular points of a translation surface as new singularities
where the conical angle is 2π; and using Theorem 5.1.2 for holonomies of saddle connections,
we have the following

Corollary 5.3.2. Let ϕ : [0,+∞) → (0,+∞) be a function, such that tϕ(t) is decreasing and∫ +∞
0 ϕ(t)dt = +∞; and let H(S,Σ, h) be a stratum. Consider on S any measure that is locally

equivalent to the Lebesgue one.
Then, for almost any p, p′ ∈ S, and for almost any X ∈ H(S,Σ, h), if Φt is the vertical flow on (any
representative of the class) X, there exists an increasing sequence tn → +∞ such that

distX

(
Φtn (p′), p

)
< ϕ(tn).

Similarly, for almost any p ∈ X there exists an increasing sequence tn → +∞ such that

distX

(
Φtn (p), p

)
< ϕ(tn).
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If we argue similarly as in Remark 4.1.4, the first statement is equivalent to

lim inf
t→+∞

distX
(
Φtn (p′), p

)
ϕ(t)

= 0

and the same for the second one.

Proof. We begin from the first statement. We mark p and p′ as new singularities, that is we
set Σ′ = Σ ⊔ {p, p′} and define h′ as the vector of indices obtained from h by adding two
new entries 1, corresponding to the new singularities p and p′. This gives a natural map
H(S,Σ′, h′)→ H(S,Σ, h) which is obviously onto.

According to (the proof of) the divergent case of Theorem 5.1.2, for almost any X̂ ∈
Ĥ(S,Σ′, h′) there is in infinite set of n ∈ N such that the saddle connections γn in the bun-
dle B

p,1
p′,1(X̂), found according to Proposition 5.2.1, satisfy |ℜ(Hol(γn))| < ϕ(|Hol(γn)|).

Set tn B ℑ(Hol(γn)) → +∞. Then, following what happens in the Veech rectangles in a
way totally similar to what we did to prove Proposition 5.2.1, one checks the vertical flow of
p′ enters exactly the same rectangles as the geodesic γn, and that at the time tn the two points
Φtn (p′) and p lie in the same rectagle, on a horizontal segment. Therefore

distX(Φtn (p′), p) = |ℜ(Hol(γn))| < ϕ(|Hol(γ)|) ≤ ϕ(|ℑ(Hol(γn))|) = ϕ(tn).
The proof of the second statement is the same, except that we have to add only one virtual
singularity. �

5.4 Wanderings towards infinity for the Teichmüller flow
§ 5.4.A Logarithm laws The Teichmüller flow on each connected component of a stra-
tum of moduli spaces is, in general, an ergodic flow on a non-compact space whose diameter
is infinite. Therefore we have to expect that a generic orbit of this flow makes excursions
≪towards infinity≫ and then goes back near their initial point, infinitely many times. Such a
situation appears in various different settings, and a natural question is: with the passing of
time, ≪how farther towards infinity≫ do these orbit go? That is, if we take a sequence of points
on the orbit which goes to infinity, how rapidly does it diverge?

The answer is usually a logarithm law, namely fixed a point x0 in the space, for a generic
orbit Φtx of the flow, we have that something like

lim sup
t→+∞

dist(Φtx, x0)
log t

is finite and nonzero. In several settings one can relate logarithm laws with shrinking target
properties: and this is actually what we are going to do.

For the Teichmüller flow in moduli spaces, the following result holds ([Mas93]):

Theorem 5.4.1 (Masur). Let S be a surface; fix X ∈ M(S), and a q ∈ QD(X) with unit area. Let Rϑ
denote the rotation of angle ϑ, and gt

ϑX denote the point of the moduli space reached by the Teichmüller
flow starting from X in direction Rϑq at the time t. Then, for almost every ϑ ∈ T, it holds that

lim sup
t→+∞

d(gt
ϑX,X)

log t
= 1.

§ 5.4.B Systole function Our result regards the Teichmüller flow in strata of (framed)
translation structures and is a corollary of yet another theorem which states a dichotomy. We
need first of all a definition:
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Definition 5.4.2. Given a translation surface X, its systole is the length of the shortest saddle
connection of X:

Sys(X) B min {|z| | z ∈ Hol(X) } .
If X̂ is a framed translation surface, we may also define a systole for each bundle:

Syspi,l
p j,m(X) B min

{
|z|

∣∣∣∣ z ∈ Holpi,l
p j,m(X)

}
.

Of course, the systole function (of a bundle) is well defined on each (framed) stratum of moduli
spaces. Malher’s criterion states that it is the analogue for strata of the function ℓ introduced in
paragraph 1.3.D for moduli spaces:

A sequence (Xn)n∈N in a connected component of H(S,Σ, h) goes to infinity (that is, it eventually
leaves any fixed compact subset) if and only if Sys(Xn)→ 0.

Another similarity between classic moduli spaces and strata is the following (see [Boi10]):

Theorem 5.4.3 (Boissy). Each connected component ofH(S,Σ, h) has one topological end (Definition
1.3.9).

However, there is a way to subdivide the end of a connected component, namely specification
of what saddle connections have small holonomy (see [EMZ02]). Thus, if we know what are
the bundles such that Syspi,l

p j,m(Xn)→ 0, we have some information about ‘where’ is the sequence
diverging to.

Remark 5.4.4. If X ∈ H(S,Σ, h) has a vertical saddle connection, the latter is exponentially
shrunk by the Teichmüller flow: therefore Sys(gtX) → 0 for t → +∞ and, according to
Mahler’s criterion, its orbit diverges.

Otherwise, if X has no vertical connections, Proposition 2.3.1 states that X is obtained
my means of the Veech construction, starting from an i.e.m. with the Keane’s property. In
particular the orbit of X cannot diverge: a possible reason is that the orbit of X takes place
within the Veech boxes construction (paragraph 2.4.C), therefore its returns toΩ∗(D) make up
a recurrent map. ^

§ 5.4.C The theorems We are going to prove the following dichotomy, which is a con-
sequence of Theorem 5.1.2:

Theorem 5.4.5 (Marchese). Let ψ : [0,+∞) → (0,+∞) be a monotone decreasing function; more-
over, let S be a surface with Σ ⊂ S a finite set and h be a vector of indices.
• Suppose

∫ +∞
0 ψ(t)dt < +∞. Then almost every X ∈ H(1)(S,Σ, h) is the starting point of a

Teichmüller orbit which satisfies

lim
t→+∞

Sys(gtX)√
ψ(t)

= +∞.

• Suppose
∫ +∞

0 ψ(t)dt = +∞. Then almost every X̂ ∈ Ĥ(1)(S,Σ, h) is the starting point of a

Teichmüller orbit which satisfies, for every bundle of saddle connections Bpi,l
p j,m(X̂),

lim inf
t→+∞

Syspi,l
p j,m(gtX̂)√
ψ(t)

= 0.

In particular the second statement gives, for a generic orbit, a control about its excursions
towards each of the ‘cusps’. The theorem implies the following version of logarithm law:
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Corollary 5.4.6. For almost every X̂ ∈ Ĥ(1)(S,Σ, h), and every bundle of saddle connections Bpi,l
p j,m(X̂),

it holds that

lim sup
t→+∞

− log Syspi,l
p j,m(gtX̂)

log t
=

1
2
.

Proof. We prove the statement of the corollary holds for (classes of) framed translation surfaces
X̂ that satisfy
• the divergent statement of the theorem above for the function ψ(t) B min{1, t−1};
• the convergent statement of that theorem for all the functions ψa(t) B min{1, t−a} with

a ∈ Q ∩ (1,+∞).
The set of such classes is the intersection of countably many subsets of Ĥ(1)(S,Σ, h) with full
measure, so it also has full measure.

To be simple we denote s(t) B Syspi,l
p j,m(gtX̂). The hypotheses on X̂ imply that a sequence

tn → +∞ exists such that
s(tn)

t−1/2
n

≤ e−n for all n ∈N,

but on the other hand, it must also hold, for any a ∈ Q ∩ (1,+∞), that

lim
n→+∞

s(tn)

t−a/2
n

= +∞. (5.3)

Taking the logarithms of both expressions,

log s(tn) +
1
2

log tn ≤ −n; log s(tn) +
a
2

log tn → +∞.
For big values of n, we have log tn > 0; we divide by it and get, in particular, that

log s(tn)
log tn

+
1
2
< 0;

log s(tn)
log tn

+
a
2
> 0,

that is, 0 >
log s(tn)

log tn
+

1
2
> −a − 1

2
for all a ∈ Q ∩ (1,+∞), therefore

log s(tn)
log tn

→ −1
2
.

Moreover, if another sequence tn gave
log s(tn)

log tn
→ b < b′ < −1

2
then we would have s(tn) < tb′

n for n big enough, so equality 5.3 would be false for some a. The
corollary is proved. �

Remark 5.4.7. When we were developing Marchese’s Theorem 4.1.3 for i.e.m.s, we used
Lemma 4.1.5 to verify that one could talk indifferently of almost every i.e.m. or of almost
every i.e.m. on unit length intervals. In the same way, here and in Theorem 5.1.2 we can
indifferently talk of almost every X ∈ H(S,Σ, h) or almost every X ∈ H(1)(S,Σ, h). ^

§ 5.4.D Estimates for holonomies under the Teichmüller flow We already remarked
that the Teichmüller flow preserves saddle connections, as well as bundles (Remark 5.1.1).
If γ is a saddle connection on a (framed) translation surface X, then gtγ is a saddle connection
of the translation surface gtX; we will denote Holt(γ) = Hol(gtγ). The explicit formula of the
Teichmüller flow yields Hol(γ) = a + ib⇒ Holt(γ) = eta + ie−tb. We will call

A(γ) B |ℜ(Hol(γ))| · |ℑ(Hol(γ))| = |ℜ(Holt(γ))| · |ℑ(Holt(γ))| for all t; cott(γ) B
|ℜ(Holt(γ))|
|ℑ(Holt(γ))| .

The first fact to note is that

For all t, the equality A(γ) = |Holt(γ)|2 cott(γ)
1 + cott(γ)2 holds.
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We deduce from that:

Let t > 0 be an instant such that |Holt(γ)| < 1. Then t > log |Hol0(γ)|.

Indeed, from the equality above and the fact that cott(γ) = e2t cot0(γ), we have

|Hol0(γ)|2 1
1 + cot0(γ)2 =

A(γ)
cot0(γ)

= |Holt(γ)|2 e2t

1 + cott(γ)2 <
e2t

1 + cot0(γ)2 .

Now, we define τ = τ(X, γ) to be the instant when |Holt(γ)| reaches its minimum for t ∈ R.

The instant τ is uniquely determined and equals −(1/2) log cot0(γ). Moreover A(γ) = |Holτ(γ)|2/2 ≤
|Holt(γ)|2/2 for all t.

The instant τ is indeed the only one that satisfies 1 = cotτ(γ) = e2τ cot0(γ). The second part is
simply a consequence of the formula for A(γ) mentioned above.

Fix an ε > 0. Then for almost every X ∈ H(S,Σ, h), and for all but finitely many saddle connections
γ on X, it holds that τ(X, γ) ≤ (1 + ε) log |Hol(γ)|.

This statement is a consequence of the convergent part of Theorem 5.1.2 applied to ϕ(t) =
min{1, t−(1+2ε)}. Indeed it implies that all but finitely many saddle connections γ satisfy
|ℜ(Hol(γ))| ≥ |Hol(γ)|−(1+2ε), so

τ = −1
2

log
|ℜ(Hol(γ))|
|ℑ(Hol(γ))| ≤ −

1
2

log |Hol(γ)|−2(1+ε).

§ 5.4.E Proof of the convergent case
Step 1 – Statement of the contradiction: The statement of the theorem is equivalent to the
apparently weaker claim that, for almost every X, and t sufficiently big, one has

Sys(gtX)√
ψ(t)

≥ 1. (5.4)

Indeed suppose that, for every ψ as in the statement, this is true for a subset E(ψ) = H(1)(S,Σ, h)
of full measure (depending on ψ). Then the elements of

∩
N∈N E(N2ψ), which also has full

measure, satisfy the original statement.
Now, take X such that inequality 5.4 is false: so an increasing sequence tn → +∞ exists

such that Sys(gtn X) <
√
ψ(tn). For each n, let γn be a saddle connection on X such that

|Holtn (γn)| = Sys(gtn X). In particular the sequence
(
Holtn (γn)

)
n∈N is bounded.

Step 2 – Properties of the contradicting sequence: We now need some observations about the
saddle connections γn. First of all they have to be infinitely many distinct ones, because for a
single connectionγ it always holds that limt→+∞ |Holt(γ)| = +∞. Up to extracting subsequences,
we will also have |Hol0(γn)| → +∞, because, according to the Masur’s result we quoted in the
proof of the convergent case of Theorem 5.1.2, only finitely many saddle connections have
bounded holonomy; so, we suppose |Hol0(γn)| > 1 for all n.

We now see that, for each subsequence (γk) such that limk→+∞ cot0(γk) is defined, this limit
is either 0 or ∞. Indeed a subsequence with cot0(γk) → c ∈ R+ would yield A(γk) → +∞,
according to the formula given in paragraph 5.4.D; but we know that A(γk) ≤ |Holtk (γk)|2/2,
therefore the sequence of the areas is bounded.

But also cot0(γk)→ +∞ is impossible: in paragraph 5.4.D we saw that |Holt(γk)| reaches its
minimum for t = τn = −(1/2) log cot0(γn): so, the sequence τn would be negative from a certain
point on, and therefore |Holtk (γk)| > |Hol0(γk)| → +∞, contradicting our choice.
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Step 3 – Application of Theorem 5.1.2: Since cot0(γn)→ 0, for any ε > 0, and n big enough, we
have

|ℑ(Hol0(γn))|
|Hol0(γn)| >

1
1 + ε

and therefore

|ℜ(Hol0(γn))| = A(γn)
|ℑ(Hol0(γn))| < (1 + ε)

A(γn)
|Hol0(γn)| <

1 + ε
2
|Holtn (γn)|2
|Hol0(γn)| <

1 + ε
2

ψ(tn)
|Hol0(γn)| .

For n big enough being |Holtn (γn)| < 1, we must have tn > log |Hol0(γn)|, according to what
seen in paragraph 5.4.D. Hence

|ℜ(Hol0(γn))| < 1 + ε
2

ψ(log |Hol0(γn)|)
|Hol0(γn))| .

Remark 5.4.8. For any decreasing function ψ : [0,+∞)→ (0,+∞), if one defines ϕ : [1,+∞)→
[0,+∞) by setting ϕ(x) = ψ(log x)/x, then xϕ(x) will be decreasing.

Conversely, starting from a function ϕ such that xϕ(x) is decreasing, if one defines ψ(t) =
etϕ(et), this will be a decreasing function. For both constructions it will hold that

∫ +∞
0 ψ(t)dt =∫ +∞

1 ϕ(x)dx. ^

In conclusion, the set {Hol0(γn)|n ∈ N} ⊆ Hol(X) is an infinite set of solutions to |ℜ(z)| <
ϕ̃(|z|), where ϕ̃(x) = (1 + ε)ψ(log x)/(2x) is a multiple of the ϕ in the Remark above. According
to Theorem 5.1.2 (and to Remark 5.4.7), this can happen only for the X belonging to a subset of
H(1)(S,Σ, h) with measure zero. �

§ 5.4.F Proof of the divergent case
Step 1 – Explicit construction of a sequence: In the same way as before, it is sufficient to prove
a weaker claim, namely that for almost every X̂ one has

lim inf
t→+∞

Syspi,l
p j,m(gtX̂)√
ψ(t)

≤ 1.

Indeed if this is true for every X̂ belonging to a subset E′(ψ) with full measure, one has the
original statement for every X̂ in the set

∩
N∈N E′(ψ/N2). We fix an ε > 0, and define

ϕ̃(t) B
ψ

(
(1 + ε) log t

)
2t

;

up to multiplicative constants, this is the same as the function ϕ defined in Remark 5.4.8: thus
it satisfies the hypotheses on the function appearing in the divergent case of Theorem 5.1.2.

Hence — recalling also Remarks 5.2.2 and 5.4.7 — for every X̂ belonging to an appropriate
subset of Ĥ(1)(S,Σ, h) with full measure, the bundle B

pi,l
p j,m will contain infinitely many saddle

connections {γn|n ∈N} such that 0 < |ℜ(Hol(γn))| < ϕ̃(|Hol(γn)|). We consider X̂ as above.
For each n, let τn = τ(X, γn) be the instant when the length of γn reaches its minimum, as

defined in paragraph 5.4.D. We will show that the claim is verified by the sequence (τn).
Step 2 – Estimates: First of all, we need that the sequence τn goes to infinity: but, since{|Hol(γn)| | n ∈N }

is an infinite set, it is necessarily unbounded (again because of Masur’s
theorem used to prove Theorem 5.1.2). So, we can suppose |Hol(γn)| → +∞; whereas
|ℜ(Hol(γn))| < ϕ̃(|Hol(γn)|) is bounded independently of n, so τn = −(1/2) log cot0(γn)→ +∞.

We now perform some estimates: the bound on |ℜ(Hol(γn))| implies

Syspi,l
p j,m(gτn X̂)2 ≤ |Holτn (γn)|2 = 2A(γn) < 2|ℑ(Hol(γn))| ϕ̃ (|Hol(γn)|) < 2|Hol(γn)| ϕ̃ (|Hol(γn)|)

and we can suppose also that X̂ (or, to better say, its non-framed version) belongs to the set
of full measure such that the last statement in paragraph 5.4.D holds: for n sufficiently big
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we have τn ≤ (1 + ε) log |Hol(γn)|, that is |Hol(γn)| ≥ exp (τn/(1 + ε)). As tϕ̃(t) is a decreasing
function, we continue the chain of inequalities

2|Hol(γn)|ϕ̃ (|Hol(γn)|) ≤ 2 exp
(
τn

1 + ε

)
ϕ̃

(
exp

(
τn

1 + ε

))
= ψ(τn).

So, for n big enough we have Syspi,l
p j,m(gτn X̂) <

√
ψ(τn), as desired. �
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recognised that no written work may substitute a direct talk to understand the ideas and the
motivations concealed behind the statement, or the proof of a theorem. I sincerely thank him
for the further references he gave me, and for how confidential he has been with me.

I received other, very relevant, cues from the course kept by Jean-Christophe Yoccoz and
Carlos Matheus at the ICTP, Trieste in May 2012. Attendance of it has been very helpful for
me to appreciate some fundamental details.

Last but not least, I am grateful to my counter-supervisor, Carlo Carminati, for his quick
but thorough research for errors in this work.
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2007–2012
Pare proprio che la mia vita stia per cambiare capitolo. Certo non è la prima volta che mi capita,

ma credo che le volte precedenti nonmi sia mai dispiaciuto quanto ora. Imiei anni universitari sono
stati ricchissimi di nuove esperienze, e mi hanno cambiato nel profondo.

È pratica comune degli studenti universitari aggiungere alla parola “Pisa” un certo suffisso ben
preciso imparato dai Livornesi, ma la verità è che mi sono affezionato a questa cittadina. Non certo
perché la ritenga perfetta, ma perché associo a Pisa tante occasioni piacevoli, e il raggiungimento di
tanti obiettivi che per me erano importanti. Insomma, in qualche senso a Pisa ci sono cresciuto. Qui
ho avuto la mia prima vera esperienza di autonomia; e il suo bilancio mi rende davvero orgoglioso
di me.

Certo, la vita pisana mi ha fatto abbastanza sudare. Non so quante volte mi sono sentito un
prigioniero dello studio, ed ho temuto che a causa dei vincoli di tempo che la Normale mi imponeva
mi sarei perso gli anni migliori della mia vita; anche perché attorno a me ho visto persone la cui
esistenza è totalmente riempita dalla materia che studiano (magari insieme a qualche videogame o
qualche altro tipo di nerdata). Chi mi conosce sa che ho il vizio di piangermi addosso (magari una
volta più di adesso), però ora mi rendo conto che dopo lo sconforto mi sono sempre rimboccato le
maniche. Tra poco probabilmente me ne andrò via da questa città, a malincuore ma soddisfatto.

Sarò soddisfatto non solo di essere cresciuto (anche se ho capito che in realtà non sarò mai
maturo abbastanza), ma anche perché la multiforme vita universitaria mi ha consentito di diventare
meno provinciale e più aperto. Ci sono tante cose che non avrei imparato, tante realtà che non avrei
mai conosciuto restando a casa. Basti pensare alle cose più immediate: la musica, i fumetti, il cibo.
Oppure le tante gite che ho fatto (Firenze, Lucca, Castiglioncello, Siena), e i viaggi veri e propri che
ho fatto con i pisani (Ginevra, Parigi, Oslo). Per tutto questo, quando me ne sarò reso veramente
conto, mi farà male pensare che nella mia routine non ci saranno più il Dip, la Normale e la sua
mensa, il Carducci, la mia stanza al ponte Solferino, le Vettovaglie, Piazza della Pera, i lungarni.

Ma adesso veniamo al dunque, al vero motivo per cui tu lettore sei arrivato a questa pagina:
i ringraziamenti a tutte le persone che sono state significative per me in questi anni, siano essi
“pisani” o no. Una premessa necessaria: mi sono accorto di non essere in grado di gestire un grande
numero di relazioni sociali. Ho trascorso cinque anni praticamente senza stare fermo un attimo.
Cos̀ı facendo non solo ho trascurato un sacco di amici lontani (nonostante Facebook) ma, a causa
dello stress, anche molte delle mie conoscenze pisane. Mi dispiace molto di essermi allontanato da
svariate persone che stimavo e con cui forse avrei potuto coltivare rapporti migliori, ma c’est la vie.

Ogni serie di ringraziamenti che si rispetti non può che cominciare da papà Francesco e da
mamma Michelina. Non serve certo scriverlo qui per farglielo sapere, ma nessuno vuole loro bene
come i loro figli. Un’antica tradizione vuole che il genitore stia in continuazione a chiedere al figlio
lontano se ha mangiato e che tempo fa, e che questo faccia imbestialire il figlio che si sente trattato
come un bambino. Però questo non significa nulla: fa parte del gioco, e crescere significa anche
capire i tuoi genitori. La mia speranza è di essere un buon figlio, soprattutto da qualche mese a
questa parte. E spero i miei sappiano che, anche se sto cercando di costruirmi la mia vita da adulto,
e le cose da fare sembrano sempre troppe, non mi tirerò mai indietro per loro. E di nessun altro
potrò mai fidarmi come di loro.

Dai miei genitori passiamo, ovviamente, a mia sorella Maria. È bellissimo poco a poco scoprire
che la piccola della famiglia sta crescendo, e si sta costruendo una personalità piuttosto affascinan-
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te. Per me è un’esperienza nuova condividere un mucchio di interessi con mia sorella, scherzarci in
libertà, considerarla una persona responsabile. Mi avevano detto che sarebbe arrivato unmomento
in cui sarei diventato geloso di lei: e temo proprio che sia arrivato.

Ogni serie di ringraziamenti che si rispetti non può che continuare con la mia dolce (ma davvero
dolce) metà Elisa, una delle cose più belle che mi siano mai capitate. Spesso mi chiedo se, con i miei
modi di fare cos̀ı lunatici, con la totale cancellazione del concetto di relax dalla mia vita, mi merito
davvero una fortuna cos̀ı grande. E invece lei prima mi chiama ≪odioso≫, poi cerca le mie carezze.
Chi al suo posto avrebbe potuto darmi il sorriso in questi mesi cos̀ı complicati, semplicemente ac-
compagnando con il suo affetto e la sua bellezza la mia routine quotidiana? La nostra storia non è
cominciata tantissimo tempo fa, ma si fa presto ad abituarsi alle cose che fanno stare bene. Proba-
bilmente lei è fra i motivi per cui tanta gente, negli ultimi tempi, mi ha visto in giro molto di meno;
ma adorare la propria ragazza mi sembra una giustificazione validissima.

Da Elisa al principale responsabile della nostra storia il passo è breve. Il grande Michele (Maicol-
cercil) merita prima di tutto un enorme grazie per i consigli che mi ha dato, cos̀ı come per essere
stato un confidente schietto, pronto ad ascoltarmi quando mi è sembrato di trovarmi in un vicolo
cieco. E lo ringrazio anche per avermi datomodo di ricambiare, in tempi più recenti, la fiducia che gli
ho dato; o semplicemente per i pranzi a mensa, i giri di sera ritagliati nei buchi di tempo, l’escursione
alle Cinque Terre. Se la parola “amico” ha ancora un valore, lui merita questo appellativo.

Ma lo stesso posso dire del buon vecchio Gerardo (Oompa). Non esagero dicendo che mi ha
visto crescere, anche se per forza di cose non vedendoci molto spesso. A lui va un grande ringrazia-
mento soprattutto per avermi sempre tenuto in considerazione, ed essere stato spesso una “voce
della saggezza”molto più esperta di me. Tra i momenti passati con lui, meritano una citazione il gran
premio di Monza e due giri a Firenze. Ma non è l’unica persona importante rimastami dal gruppo
delle OliMat del liceo, che ogni tanto becco qui a Pisa o nella vecchia Benevento: indispensabile no-
minare il sempre indaffarato Teo (con grandi complimenti per i risultati di marcia, che con lui vanno
sempre di moda); quel sotterraneo nerd che è Valerio; Leucio e Cristian.

Grazie ai miei amici caudini, per la grande accoglienza che mi riservano ogni volta che scendo a
casa. Anche con loro i momenti passati insieme non sono frequenti, anzi tendono a diminuire con il
passare del tempo, ma sono sempre un’occasione immancabile per me: la prova vivente che le cose
semplici, siano esse una pizza, una gita o un giro in bici, sono le migliori. Facendo i nomi: Gabriele
ed Angelica (con una figlia appena arrivata o che sta per arrivare nel momento in cui discuto; e di
cui ancora mi vanto di essere stato testimone di nozze), Gianni (non scorderò mai il mio giro da lui in
Trentino), Titta, Teodora ed Antonio, Anna, Ciro e Carmelina (che domani si sposeranno in comune).
Nonché Edoardo e Gina, Mary, Elisabetta e Cesare.

Passiamo quindi ai matematici: il primo pensiero va sicuramente al vecchio gruppo dei “norma-
listi scialli”, che è scomparso pian piano: Nico (grazie al quale ancora oggi, ogni tanto, parlo mezzo
romano), Lin, il Marche, Riccardo/Zoidberg, tutti emigrati, e Matthew sono tra le persone con cui
ho potuto condividere di più nei primi anni di università. Soprattutto Nico e Lin per me rimango-
no esempi ineguagliati di come si può essere contemporaneamente dei grandi matematici e dei
cazzari ancora più grandi: spero mi abbiano insegnato qualcosa. A tutti loro devo aggiungere la
new entry Andre (universalmente noto come il Petracci), che è stato per me un importante punto di
riferimento in tempi più recenti; e la ragazza del Marche, Giulia.

C’è l’immensomondo di confine tra matematica e fisica: l’appartamento a Porta San Zeno di Leo,
Cek, Mauro e i Garfagnini, la cui ospitalità infinitami ha sempre colpito; e tutti i suoi frequentatori Fra
Avanzi, Pietro, Tommy, Marco, il Massei, il Borgo, Marco Mariti, Domenico, Fra Colangelo, il Marini; e
le ragazze Costy, Veronica, Eleonora, Sara, Annina, Elisa, Giulia (e tanti altri...). Mi dispiace di essere
subentrato abbastanza stabilmente in questo microuniverso solo in un secondo momento, e di non
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essere mai riuscito a cogliere fino in fondo lo sterminato bagaglio di citazioni demenziali che ogni
tanto qualcuno sfodera, ma ricordo comunque con grande piacere le epoche dellemanifestazioni; le
cene, vegane e non. . . e il giorno in cui Massei, Pietro eMarraccini mi diedero unamano a traslocare!

C’è il gruppone storico di matematica, anche questo molto rimaneggiato dai trasferimenti, al
quale ricollego una parte consistente dei miei ricordi dell’università, delle mie serate in compagnia,
e dei video di Maccio Capatonda: Luca (ottimo compagno di studio e per sparare cazzate, a cui
vanno ancora una volta infinite grazie per avermi spronato tanto in palestra da farmi perdere 20 kg)
e la sua ragazza Claudia; Umberto (l’inimitabile pivello spaccone, che ho rivisto con grande piacere
quando sono cascato a Trieste) e il suo coinquilino Biagio; il Paglia (un buon confidente; è stata
bella la zingarata al Woodstock 5 stelle a Cesena con lui, i suoi amici e il già citato Luca); Alex il Neri
e Aurora; Felice; Simone Lagrange; il Tambe e Clio; Sapio; il Mariotti.

Come non ricordare poi Eugenio (già noto come il Panda), anche se lo vedo una volta ogni morte
di papa; l’aula studenti, che ho ingiustamente abbandonato, a cominciare dai miei mentori Paoloa-
ceto e Springfield, e continuando con Agnese, Bob, Daniela, Matteo, Gloria, il Capu, il Monta, Giu-
lia, Michele, Carla, Cecilia, Sapiens, il Vecio, Augusto, Marcella, Aurora, Mufasa, il Sergente; gli altri
normalisti Maria, Eleonora, Roberto, Denis, e tanti altri: il Codenotti, il Grane, Tiz, Alberto, Danny,
Daniele, il Buono, Puppupulu, Gaia, Isotta, Lilla, Giulia, Silvia, Cecilia, Hjalmar, Scala, Veronica, Ales-
sandra, Leo Robol, Milena, Luigi, Sabino eccetera eccetera. Menzione d’onore per Alessandro Sisto:
devo a lui il consiglio di contattare il prof. Lackenby, che sarà il mio relatore ad Oxford. E parlando
di relatori, a due anni di distanza vorrei rinnovare la mia riconoscenza a Roberto Frigerio.

Se sei stanco di leggere mi dispiace, ma non ho ancora finito, perché esauriti i matematici mi
rimane sempre da ringraziare l’altro mondo, non meno importante, dei normalisti. Qui il primo
grazie va probabilmente a Casa Rainaldo (“Villa di Lato”): il sorridente ed enigmatico David, Chioma
“ngulo!”, l’inalberato Feller, Farace che ne sa a pacchi; e le rispettive “scucchie”. una massoneria più
che una casa, in cui chi è entrato non è mai più stato quello di prima, e che da un anno ci regala
aneddoti esilaranti ai limiti del reale.

Non ho citato Mattiacarlo per poterlo inserire in un altro gruppo, insieme a Greta, a Lucatosti, a
Süzzi. A tutti questi volevo dire che, anche se sono ancora convinti che il viaggio a Oslo per me sia
stato uno shock irreparabile, in realtà sarà un ricordo che conserverò volentieri.

Vado avanti con l’evanescente Ettore, Matteo Vezza, Sara: conoscenze che ho approfondito gra-
zie a Michele, e sono lieto di averlo fatto. Gli altri più o meno abitudinari del caffè dopo pranzo: il
tranquillissimo Bolzo, l’eigen Ilario, il Cera (che ringrazio anche per quella giornata in gruppo sulle
montagne liguri), Enri, Simo, Claudia, Nico Grilli, Laura, Brian De Palma, Yak; e poi gli altri del mio
anno: Mister Miazzi, l’Alf con le sue infinite fisse, Fede, il Soba, il Reca, Bruno, il Barat.

E poi il popolo dell’Ottantasette: Kerrison, Deriusrascian, Marco Peruzzi, ACM, Ugo, Gabbo, Lo-
renzo, Sophie, Simo, Mara, Cavazzani. Cercare di mettere ordine fra tutte le persone che ho citato
non ha veramente senso: con loro ho passato giornate di studio alleggerite dalla compagnia, al-
tre piccole scene di quotidianità, grigliate sul terrazzo del Carducci, pizzate di proporzioni enormi,
secchiate più o meno della stessa enormità, feste al Faedo.

Infine, meritano un grazie gli amici di Elisa: Elisabetta, Federica, Benedetta (x2), Ciccio, Dario,
Angelini, Nino, Benedetto; quelli dei biolochimici, in particolare Anastasia; gli schermidori: Cino e
Martina; i santannini: Lenzi, Wolf, Lorenzo, la Giunti, Benetton, Laura e chi più ne ha più ne metta.

In questa infinita carrellata di persone, vista l’ora in cui scrivo, avrò sicuramente dimenticato
qualcuno di importante; quando me ne accorgerò, mi chiederò come ho potuto.

Ancora grazie a tutti.
Antonio (Decan, Anthony Capuano, ’u prufssor, Antoniobiennio, biondo)
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