
1 | P a g e  
 

Università di Pisa and Scuola Superiore 

Sant’Anna 
 
 
 

Master Degree in Computer Science and Networking 
 
 
 
 

MASTER THESIS 
 
 
 
 

Packet Filtering Module for PFQ Packet Capturing 
Engine 

 
 
 
 
CANDIDATE                   SUPERVISOR 

 

Venkatraman Gopalakrishnan                  Stefano Giordano                    

Gregorio Procissi 

                      Nicola Bonelli 

 
Academic Year 2010/2011 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14704950?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 | P a g e  
 

Table of Contents 

 

 

Abstract          8 

 

Chapter 1: Introduction to traffic monitoring on commodity hardware 

1.1    User and Kernel Space          11 

1.2    Linux Socket System Call         11 

1.3    Software on Linux: the default PF_PACKET socket          13 

1.4    Configuring Commodity Hardware as a Monitoring  

         tool with PF_PACKET          14 

1.5    Pcap Library          18 

1.6    Understanding of NAPI          20 

1.7    Disadvantages of NAPI          23 

1.8    Linux Kernel and the new NAPI context          23 

1.9    Packet Capture Performance (Polling Vs No polling)          24 

1.10  Beyond Device Polling          25 

1.11  PF_RING          26 

 

Chapter 2: Multi-core Architecture and 10G NICs with Multiple 

Hardware Queue support (MSI-X) 

2.1    Introduction          29 

2.2    Today‘s Multi-core Architecture          29 

  

 

 



3 | P a g e  
 

Table of Contents 

 

 

2.3     Load Balancing Technologies  

2.3.1  Capture accelerators          30 

2.3.2  Receive Side Scaling           30 

2.4     Challenges in exploiting the Parallel Architectures 

2.4.1 General Challenges          31 

2.5     Pitfalls in Monitoring Application Architecture        32 

2.6     TNAPI   34 

 

Chapter 3: PFQ kernel module on multi-core architecture 

3.1     Drawbacks of existing Monitoring   applications          36 

3.2     PFQ          36 

 3.3     PFQ Packet Capturing Engine 

3.3.1  Driver Awareness          38 

3.3.2  Packet Fetcher          38 

3.3.3  Packet Steering Block          39 

  3.3.4  Multiple Provider Double Buffer Socket queue          41  

3.4     PFQ Performance Analysis 

  3.4.1  Experimental Setup          42 

  3.4.2  Parallel Setup          43 

 

Chapter 4: PFQ Packet Filter Design and Implementation 

4.1      What is Packet Filter?          45 

4.2      Filtering Techniques 



4 | P a g e  
 

Table of Contents 

 

  4.2.1   CMU/Stanford Packet Filter          47 

  4.2.2   The BSD Packet Filter          47 

  4.2.3 Just in Time BPF 49  

4.2.4 Dynamic Packet Filters 49 

4.3      Linux Packet Filter          50 

4.4      PFQ Packet Filter          51 

4.5      Bloom Filter          51 

4.6      Working of Bloom Filter          52 

4.7      Calculating probability of false positive          55 

4.8      Why PFQ Packet Filter uses Bloom Filter?          56 

4.9      Functioning of PFQ Packet Filter          58 

4.10    Rule Insertion and Inspection 

  4.10.1  Outline of Rule Insertion procedure          65   

  4.10.2  Filtering Procedure          66 

 

Chapter 5:  

PFQ Filter – Software Development and Performance Analysis 

5.1     Bloom Filter Design          68 

5.2     Data Structure          69 

5.3     Filter Specific Options          70 

5.4     User API          72 

5.5     Kernel level Implementation 

  5.5.1    PFQ Setsockopt()          75 

5.5.2    PFQ GetSockopt()          76 



5 | P a g e  
 

Table of Contents 

 

5.6     Performance Analysis 

  5.6.1    Experimental Setup          78 

  5.6.2    CPU load          79 

5.6.3    Percentage of Packet lost/Packet Offered          80 

 

Future work          81 

References          81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 | P a g e  
 

List of Figures 

 

 

1 Packet Processing Chain 17 

 

2 The NAPI Context 21 

 

3 Packet Capture Performance 25 

 

4 Vanilla PF_RING 26 

 

5 PF_RING with DNA driver 27 

 

6 Design Limitation in existing Networking Monitoring  

Architecture 32 

 

7 Multi-queue aware packet capture design 34 

 

8 PFQ Architecture 39 

 

9 Complete parallel processing paths 43 

 

10 Complete parallel processing paths (CPU Consumptions)  44 

 

11 BPF Architecture 48 

 

12 Empty Bloom Filter of 1 byte width 53 

 

13 Bloom Filter after insertion of element y and z 53 

 

14 The maximum number of elements that can be stored  

 



7 | P a g e  
 

List of Figures 

 

 

 

by a 512K cache 57 

 

15 Visualization of Ranking Mechanism 62 
 
16 PFQ Packet Filter 69 
 
17 CPU Load 79  
 
18 Percentage of Packet Captured versus Packet Offered 80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 | P a g e  
 

Abstract 

 The evolution of commodity hardware is pushing parallelism forward 

as the key factor that can allow software to attain hardware-class 

performance while still retaining its advantages. On one side, commodity 

CPUs are providing more and more cores (the next-generation Intel Xeon E 

7500 CPUs will soon make 10 cores processors a commodity product), with 

a complex cache hierarchy which makes aware data placement crucial to 

good performance. On the other side, server NIC‘s are adapting to these new 

trends by increasing themselves their level of parallelism. While traditional 

1Gbps NICs exchanged data with the CPU through a single ring of shared 

memory buffers, modern 10Gbps cards support multiple queues: multiple 

cores can therefore receive and transmit packets in parallel. In particular, 

incoming packets can be de-multiplexed across CPUs based on a hash 

function (the so-called RSS technology) or on the MAC address (the VMD-q 

technology, designed for servers hosting multiple virtual machines). The 

Linux kernel has recently begun to support these new technologies. Though 

there is lot of network monitoring software‘s, most of them have not yet 

been designed with high parallelism in mind. Therefore a novel packet 

capturing engine, named PFQ was designed, that allows efficient capturing 

and in-kernel aggregation, as well as connection-aware load balancing. 

Such an engine is based on a novel lockless queue and allows parallel 

packet capturing to let the user-space application arbitrarily define its 

degree of parallelism. Therefore, both legacy applications and natively 

parallel ones can benefit from such capturing engine. In addition, PFQ 

outperforms its competitors both in terms of captured packets and CPU 

consumption. In this thesis, a new packet filtering block is designed, 



9 | P a g e  
 

implemented and added to the existing PFQ capture engine which helps in 

dropping out unnecessary packets before they are copied into the kernel 

space thus improves the overall performance of the user space applications 

considerably. Because network monitors often want only a small subset of 

network traffic, a dramatic performance gain is realized by filtering out 

unwanted packets in interrupt context. 

 

 

 

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 | P a g e  
 

Chapter 1 

Introduction to traffic monitoring on commodity hardware 

Traffic monitoring is performed to collect data that describes the use 

and performance of the network. Network Traffic Monitoring is needed, not 

only to fix network problems on time, but also to prevent network failures, 

to detect inside and outside threats, and make good decisions for network 

planning. Network traffic monitoring helps us to avoid bandwidth and 

server performance bottlenecks, discover which applications use up your 

bandwidth, be proactive and deliver better quality of service to users, 

reduce costs by buying bandwidth and hardware according to actual load 

and easily troubleshoot network problems. Generally speaking, it is a 

necessary practice for the network administrators.  

Traffic monitoring on commodity hardware is the process of 

gathering information out of packets received through one or more network 

interfaces. From a practical point of view, an application performing traffic 

monitoring on commodity hardware (say, PCs) must somehow to interface 

with lower level functionalities and, in particular, with the kernel of the 

operating system.  

Commonly, monitoring applications run in the user space and can 

access the packets entering the system through the physical interfaces only 

with the support of kernel modules. The system calls provide that interface 

between any user space application and the kernel (as discussed in section 

1.1). A socket API is an application programming interface (API), usually 

provided by the kernel, that allows application to control and use network 

sockets. 

http://www.paessler.com/windows_vista_network_troubleshooting


11 | P a g e  
 

Within the kernel and the application that created a socket, the 

socket is referred to by a unique integer number called socket 

identifier or socket number. The kernel forwards the payload of incoming IP 

packets to the corresponding application by extracting the socket address 

information from the IP and transport protocol headers and stripping the 

headers from the application data.  

1.1 User and Kernel Space 

 Before discussing about socket() library function which internally 

invokes sys_socket system call, understanding of user space and kernel 

space is required. Kernel space and user space is the separation of the 

privileged operating system functions and the restricted user applications. 

The separation is necessary to prevent user applications from ransacking 

our computer. Kernel space is strictly reserved for running the kernel, 

kernel extensions, and device drivers. In contrast, user space is the memory 

area where all user mode applications work and this memory can be 

swapped out when necessary. User space programs cannot access system 

resources directly so access is handled on the program's behalf by the 

operating system kernel. The user space programs typically make such 

requests of the operating system through system calls. System calls are 

requests in a Unix-like operating system by an active process for a service 

performed by the kernel, such as input/output (I/O) or process creation. 

1.2 Linux Socket System Call 

       Socket is an abstraction that allows user processes to create endpoints 

for communication. Creating a socket from user space is done by socket() 

system call. 

 



12 | P a g e  
 

#include <sys/types.h> 

#include <sys/socket.h> 

int socket(int domain, int type, int protocol); 

On success, a file descriptor for the new socket is returned which is 

used for communication from that point [1]. 

Parameter Description: 

  (1) The first parameter, domain, is also sometimes referred to 

as family. The domain argument specifies a communication domain; this 

selects the protocol family which will be used for communication. Most 

common domains are AF_INET for IPv4 protocol, AF_INET6 for IPv6 protocol 

and PF_PACKET for low level packet interface which will be seen in detail in 

the following section. 

  (2) The second parameter, type, specifies the communication 

semantics. Most commonly used types are SOCK_STREAM which provides 

sequenced, reliable, two-way, connection-based byte streams, 

SOCK_DGRAM which supports datagrams (connectionless, unreliable 

messages of a fixed maximum length) and SOCK_RAW which provides raw 

network protocol access. Some socket types may not be implemented by all 

protocol families. So understanding of which protocol goes with which type 

is important. 

  (3) The protocol parameter specifies a particular protocol to be 

used with the socket. Normally only a single protocol exists to support a 

particular socket type within a given protocol family, in which case protocol 

can be specified as 0. However, it is possible that multiple protocols may 

exist, in which case the particular protocol must be specified. 

 



13 | P a g e  
 

1.3 Software on Linux: the default PF_PACKET socket 

 As mentioned earlier, PF_PACKET is one specific communication 

domain for low level packet interface on device level which is of our interest 

here. Packet sockets are used to receive or send raw packets at the device 

driver (OSI Layer 2) level. They allow the user to implement protocol 

modules in user space on top of the physical layer. This family allows an 

application to send and receive packets dealing directly with the network 

card driver, thus avoiding the usual protocol stack-handling (e.g., IP/TCP or 

IP/UDP processing). That is, any packet sent through the socket will be 

directly passed to the Ethernet interface, and any packet received through 

the interface will be passed to the application [2]. 

  

#include <sys/socket.h> 

 #include <netpacket/packet.h> 

 #include <net/ethernet.h>     /* the L2 protocols */ 

 packet_socket = socket(PF_PACKET, int socket_type, int protocol); 

 

The socket_type is either SOCK_RAW for raw packets including the 

link Level header or SOCK_DGRAM for cooked packets with the link level 

header removed. The link level header information is available in a common 

format in the sockaddr_ll structure. Protocol field is the IEEE 802.3 protocol 

number in network order. See the <linux/if_ether.h> include file for a list of 

allowed protocols. When protocol is set to htons(ETH_P_ALL) then all 

protocols are received.  All incoming packets of that protocol type will be 

passed to the packet socket before they are passed to the protocols 



14 | P a g e  
 

implemented in the kernel. Only processes with effective uid 0 or the 

CAP_NET_RAW capability are allowed to open packet sockets. 

        SOCK_RAW packets are passed to and from the device driver without 

any changes in the packet data.  When receiving a packet, the addresses 

are passed form/to the user space application through the sockaddr_ll 

address structure. When transmitting a packet, the user supplied buffer 

should contain the physical layer header. The packet is then queued 

unmodified to the network driver of the interface defined by the network 

interface specified in the sockaddr_ll data structure. Some device drivers 

always add other headers.   

        SOCK_DGRAM operates on a slightly higher level. The physical header 

is removed before the packet is passed to the user. Packets sent through a 

SOCK_DGRAM packet socket get a suitable physical layer header based on 

the information in the sockaddr_ll destination address before they are 

queued. 

 By default all packets of the specified protocol type are passed to a 

packet socket. To get packets only from a specific interface, bind it to the 

interface of interest by specifying an address in a struct sockaddr_ll. Only 

the sll_protocol and the sll_ifindex address fields are used for purposes of 

binding. 

 

1.4 Configuring Commodity Hardware as a Monitoring tool with 

PF_PACKET 

The PF_PACKET family allows an application to retrieve data packets 

as they are received at the network card level, but still does not allow it to 

read packets that are not addressed to its host. As we have seen before, this 



15 | P a g e  
 

is due to the network card discarding all the packets that do not contain its 

own MAC address—an operation mode called non-promiscuous, which 

basically means that each network card is minding its own business and 

reading only the frames directed to it. There are three exceptions to this 

rule: a frame whose destination MAC address is the special broadcast 

address (FF: FF: FF: FF: FF: FF) will be picked up by any card; a frame 

whose destination MAC address is a multicast address will be picked up by 

cards that have multicast reception enabled, and have subscribed to a 

particular multicast group and a card that has been set in promiscuous 

mode will pick up all the packets it sees. To set a network card to 

promiscuous mode, all we have to do is issue a particular ioctl() call. Since 

this is a potentially security-threatening operation, the call is only allowed 

for the root user [3]. 

When executed as a root user with PC connected to LAN, you will be 

able to see all the packets flowing on the cable, even if they are not sent to 

your host. This is because your network card is working in promiscuous 

mode. This has laid the environment setup for network monitoring. If the 

number of nodes in the LAN grows, then the resulting traffic of the network 

also increases. Then follows the problem. The sniffer will start losing 

packets, since the PC will not be able to process them quickly enough. 

           struct ifreq ethreq; 

           int sock;   

    if ( (sock=socket(PF_PACKET, SOCK_RAW, hons(ETH_P_IP)))<0) { 

      perror("socket"); 

      exit(1); 

      } 



16 | P a g e  
 

  /* Set the network card in promiscuos mode */ 

  strncpy(ethreq.ifr_name,"eth0",IFNAMSIZ); 

  if (ioctl(sock,SIOCGIFFLAGS,&ethreq)==-1) { 

        perror("ioctl"); 

        close(sock); 

        exit(1); 

  } 

  ethreq.ifr_flags |=IFF_PROMISC; 

  if (ioctl(sock,SIOCSIFFLAGS,&ethreq)==-1) { 

       perror("ioctl"); 

       close(sock); 

       exit(1); 

  } 

The solution to this problem is to filter out non interesting packets, 

and process out information only on those you are interested in. One idea 

would be to insert an ―if statement‖ in the sniffer's source; this would help 

polish the output of the sniffer, but it would not be very efficient in terms of 

performance. The kernel would still pull up all the packets flowing on the 

network, thus wasting processing time, and the sniffer would still examine 

each packet header to decide whether to process out the related data or not. 

The optimal solution to this problem is to put the filter as early as 

possible in the packet-processing chain [Figure 1]. The Linux kernel allows 

us to put a filter, called an LPF, directly inside the PF_PACKET protocol-

processing routines, which are run shortly after the network card reception 

interrupt has been served. The filter decides which packets shall be relayed 

to the application and which ones should be discarded. 



17 | P a g e  
 

 In order to be as flexible as possible, and not to limit the programmer 

to a set of predefined conditions, the packet-filtering engine is actually 

implemented as a state machine running a user-defined program. The 

program is written in a specific pseudo-machine code language called BPF 

(for Berkeley packet filter). BPF actually looks like a real assembly language 

with a couple of registers and a few instructions to load and store values, 

perform arithmetic operations and conditionally branch. 

 The filter code is run on each packet to be examined, and the 

memory space into which the BPF processor operates are the bytes 

containing the packet data. The result of the filter is an integer number that 

specifies how many bytes of the packet (if any) the socket should pass to 

the application level. This is a further advantage, since often you are 

interested in just the first few bytes of a packet, and you can spare 

processing time by avoiding copying the excess ones.  

 

                               Figure 1: Packet Processing Chain 



18 | P a g e  
 

1.5 Pcap Library 

Pcap (packet capture) consists of an application programming 

interface (API) for capturing network traffic. All packets on the network, 

even those destined for other hosts, are accessible through this mechanism. 

Unix-like systems implement Pcap in the Libpcap library; Windows uses a 

port of Libpcap known as WinPcap [5]. 

Libpcap is a system-independent interface for user-level packet 

capture. Libpcap provides a portable framework for low-level network 

monitoring. In Linux, Libpcap uses PF_PACKET sockets. 

 Applications such as Intrusion detection systems, Security 

Monitoring tools, packet analyzers, Network Debuggers, Network Statistics 

Collection (example) tcpdump, snort, wireshark, Nmap uses BPF, in the 

form of libpcap, to capture and filter packets. Even if the BPF language is 

pretty simple and easy to learn, most of us would probably be more 

comfortable with filters written in human-readable expressions. Libpcap 

helps us to avoid learning BPF language. 

 The Libpcap library is an OS-independent wrapper for the BPF 

engine [6]. When used on Linux machines, BPF functions are carried out by 

the Linux packet filter (LPF). One of the most useful functions provided by 

the libpcap is pcap_compile(), which takes a string containing a logic 

expression as input and outputs the BPF filter code. Tcpdump uses this 

function to translate the command-line expression passed by the user into 

a working BPF filter. The filter code is however not always optimized, since 

it is generated for a generic BPF machine and not tailored to the specific 

architecture that runs the filter engine. 



19 | P a g e  
 

 Depending on the operating system, libpcap implements a virtual 

device from which captured packets are read from userspace applications. 

Despite different platforms provide the very same API; the libpcap 

performance varies significantly according to the platform being used. On 

low traffic conditions there is no big difference among the various platforms 

as all the packets are captured, whereas at high speed the situation 

changes significantly. 

 The following table reported in a study of Luca Deri in [7], shows the 

outcome of some tests performed using a traffic generator on a fast host 

(Dual 1.8 GHz Athlon, 3Com 3c59x Ethernet card) that sends packets to a 

mid-range PC (VIA C3 533 MHz2, Intel 100Mbit Ethernet card) connected 

over a 100 Mbit Ethernet switch (Cisco Catalyst 3548 XL) that is used to 

count the real number of packets sent/received by the hosts [7]. 

 

It is found that  

(1) At 100 Mbit using a low-end PC, the simplest packet capture 

application is not able to capture everything (i.e. there is packet loss). 

(2) Linux, a very popular OS used for running network appliances, 

performs very poorly with respect to other OSs used in the same test. 

 

Traffic Capture 

Application 

Linux 

2.4.x 

FreeBSD 

4.8 
Windows 2k 

Standard Libpcap 0.2% 34% 68% 

Mmap Libpcap 1%   



20 | P a g e  
 

Kernel Module 4%   

 

Table 1: Percentage of Captured Packets (generated by tcpreplay) 

 (3) Libpcap-mmap [libpcap-mmap], a special version of libpcap, 

which is now the current implementation, exploits the mmap() system call 

for passing packets to user space, does improve the performance, but not 

significantly. 

This means that Linux spends most of its time moving packets from 

the network card to the kernel and very little from kernel to userspace. The 

reason is because of the occurrence of interrupt livelock. Device drivers 

instrument network cards to generate an interrupt whenever the card needs 

attention (e.g. for informing the operating system that there is an incoming 

packet to handle, or when a packet transmission acknowledgment is 

received or when transmission error occurs). In case of high traffic rate, the 

operating system spends most of its time handling interrupts leaving little 

time for other tasks. A solution to this problem is something called device 

polling. 

1.6 Understanding of NAPI 

 NAPI ("New API") is a modification to the device driver packet 

processing framework, which is designed to improve the performance of 

high-speed networking. 

The only hardware requirement is that an interface is able to own 

DMA hardware [4]. However, in order to accommodate devices not capable 

of DMA, the old interface is still available for drivers. A new API is added to 

the driver interface. 



21 | P a g e  
 

 

Figure 2: The NAPI Context 

NAPI works through: 

  

(A) Interrupt mitigation  

     High-speed networking can create thousands of interrupts per 

second, all of which tell the system something it already knew: it has lots of 

packets to process. NAPI allows drivers to run with (some) interrupts 

disabled during times of high traffic, with a corresponding decrease in 

system load. Polling is an alternative to interrupt-based processing. The 

kernel can periodically check for the arrival of incoming network packets 

without being interrupted, which eliminates the overhead of interrupt 

processing. Establishing an optimal polling frequency is important, 

however. Too frequent polling wastes CPU resources by repeatedly checking 

for incoming packets that have not yet arrived. On the other hand, polling 



22 | P a g e  
 

too infrequently introduces latency by reducing system reactivity to 

incoming packets, and it may result in the loss of packets if the incoming 

packet buffer fills up before being processed. Given the same workload (i.e., 

number of frames per second), the load on the CPU is lower with NAPI. This 

is especially true at high workloads.  

 

(B) Packet throttling  

     When the system is overwhelmed and must drop packets, it's 

better if those packets are disposed of before much effort goes into 

processing them. NAPI-compliant drivers can often cause packets to be 

dropped in the network adaptor itself, before the kernel sees them at all. 

  

(C) More careful packet treatment, with special care taken to avoid 

reordering packets. Out-of-order packets can be a significant performance 

bottleneck. 

 

(D) Balance between latency and throughput 

  

(E) Is independent from any hardware specifics 

 

 

 

 

 

 

 



23 | P a g e  
 

1.7 Disadvantages of NAPI 

 (1)  In some cases, NAPI may introduce additional software IRQ 

latency.  

 (2) On some devices, changing the IRQ mask may be a slow 

operation, or require additional locking. This overhead may negate any 

performance benefits observed with NAPI 

1.8 Linux Kernel and the new NAPI context 

 Linux Kernel and the new NAPI context packet processing mainly 

differ in the reception and the way of handling of the packets received. The 

following steps are followed when a packet is received: 

 (a) Packets are first received by the card. They are put in the rx_ring 

using DMA for recent cards. The size of the ring is hardware dependent. 

Older cards, which do not support DMA, use the PIO scheme: it is the host 

CPU which transfers the data from the card into the host memory; 

 (b) The card interrupts the CPU, which then jumps to the driver 

ISR(Interrupt Service Routine) code. Here arise some differences between 

the old subsystem and NAPI. 

  For the older subsystem, the interrupt handler calls the 

netif_rx() kernel procedure. netif_rx() enqueues the received packet in the 

interrupted CPU's backlog queue and schedules a softirq, responsible for 

further processing of the packet (e.g.TCP/IP processing). The backlog size 

can be specified in /proc/sys/net/core/netdev_max_backlog. When it is 

full, it enters the throttle state and waits for being totally empty to reenter a 

normal state and allow again an enqueue by calling netif_rx(). If the backlog 

is in the throttle state, netif_rx drops the packet. Backlog stats are available 

in /proc/net/softnet_stats: one line per CPU, the first two columns are 



24 | P a g e  
 

packets and drops counts. The third is the number of times the backlog 

entered the throttle state. 

  NAPI drivers act differently: the interrupt handler calls 

netif_rx_schedule(). Instead of putting the packets in the backlog, it puts a 

reference to the device in a queue attached to the interrupted CPU. A softirq 

is schedules too, just like in the previous case. To insure backward 

compatibility, the backlog is considered as a device in NAPI, which can be 

enqueued just as an another card, to handle all the incoming packets. 

netif_rx() is rewritten to enqueue the backlog into the poll_list of the CPU 

after having enqueued the packet in the backlog; 

 (c) When the softirq is scheduled, it executes net_rx_action(). Since 

the previous step differs between the older network subsystem and NAPI, 

this one does too. For older versions, net_rx_action pulls all the packets in 

the backlog and calls for each of them the ip_rcv() procedure or another one 

depending on the type of the packet: arp, bootp, etc. For NAPI, the CPU 

polls the devices present in his poll_list to get all the received packets from 

their rx_ring or from the backlog. The poll method of the backlog or of any 

device calls, for each received packet, netif_receive_skb() which roughly calls 

ip_rcv(). 

1.9 Packet Capture Performance (Polling Vs No polling) 

 It can be noticed from the graph that, as long as the system has 

enough CPU cycles to handle all the traffic, there is not much difference 

between the different setups [7]. However for non-polling systems there is a 

maximum full-capture speed after which the system spends most of the 

available cycles to handle interrupts leaving little time to other tasks, hence 

the packet loss. 



25 | P a g e  
 

 

Figure 3: Packet Capture Performance 

Source: L.Deri, Improving Passive Packet Capture: Beyond Device Polling 
 

1.10 Beyond Device Polling 

  Device Polling is not the ultimate solutions. The packet 

capturing engines has to be designed with further considerations 

 (1) Design a solution for improving packet capture performance that 

is general and not locked to a specific driver or operating system 

architecture 

 (2) Device polling proved to be very effective; hence (if available) it 

should be exploited to improve the overall performance. 

 (3) For performance reasons, it is necessary to avoid passing 

incoming packets to the kernel that will pass then to userspace. Instead a 

straight path from the adapter to the user space needs to be identified in 

order to avoid the kernel overhead. 



26 | P a g e  
 

1.11 PF_RING 

 PF_RING is a type of network socket that improves the packet 

capture speed. PF_RING can be used with vanilla kernels (i.e. no kernel 

patch required); PF_RING is device driver independent, Kernel-based packet 

capture and sampling modules, which can be used for effective content 

inspection, so that only packets matching the payload filter are passed [8]. 

It also provides an ability to work in transparent mode in which the packets 

are forwarded to upper layers and the applications will work as usual. 

PF_RING polls packets from NICs by means of Linux NAPI. This means that 

NAPI copies packets from the NIC to the PF_RING circular buffer, and then 

the user space application reads packets from ring.  

 

Figure 4: Vanilla PF_RING 

                         Source: http://www.ntop.org/products/pf_ring/ 

PF_RING has three operational modes. Transparent mode 0 is the 

standard NAPI polling. Transparent mode 1, in which PF_RING-aware driver 



27 | P a g e  
 

copies the packets into PF_RING, while the same packet is passed to Linux 

kernel and Transparent mode 2, in which PF_RING aware driver copies the 

packets into PF_RING. Note that transparent mode 1 and 2 are meaningless 

on non PF_RING-aware drivers.  

Advantage in this scenario is that PF_RING can distribute incoming 

packets to multiple rings (hence multiple applications) simultaneously. In 

this scenario, the drawback is that there are two poller‘s, both the 

application and NAPI and this results in CPU cycles used for this polling 

resulting in performance degradation. 

 

Figure 5: PF_RING with DNA driver 

Source: http://www.ntop.org/products/pf_ring/ 

 

PF_RING DNA (Direct NIC Access) is a recent mechanism added to some 

specific device drivers that map NIC memory and registers to user space so 



28 | P a g e  
 

that packet copy from the NIC to the DMA ring is done by the NIC NPU 

(Network Process Unit) and not by NAPI [8]. This results in better 

performance as CPU cycles are used uniquely for consuming packets and 

not for moving them off the adapter.       

The drawback is that only one application at time can open the DMA 

ring (note that modern NICs can have multiple RX/TX queues thus you can 

start simultaneously one application per queue), or in other words that 

applications in user space need to talk each other in order to distribute 

packets. 

 The main limitations are that, as NAPI polling does not take place in 

DNA mode, packet filtering is not supported as well as multi-core 

architecture is not completely exploited. 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 | P a g e  
 

Chapter 2 

Multi-core Architecture and 10G NICs with Multiple Hardware 

Queue support (MSI-X) 

 

2.1 Introduction 

 Network speeds have been increasing at an incredible rate, doubling 

every 3-12 months. This is even faster than one version of ―Moore‘s Law‖ 

which states that processing power doubles every 18-24 months; an 

observation made in 1965 which is still remarkably accurate. Moreover, 

although disk sizes have been increasing dramatically, disk and bus 

bandwidth have been increasing almost linearly; much more slowly than 

the exponential growth in other areas. In short, the disparity between 

network, CPU, and disk speeds will continue to increase problematically. 

 

2.2 Today’s Multi-core Architecture 

Today‘s COTS hardware offers features and performance that just a 

few years ago were only provided by expensive special purpose hardware. 

The desktop machines are becoming advanced multi-core or even multi-

processor parallel architectures capable of concurrently execute multiple 

threads at the same time. Modern network adapters feature several 

independent transmission (TX) and reception (RX) queues, each mapped on 

a separate core. Initially designed for facilitating the implementation of 

virtual machine supervisors, network queues can also be used to accelerate 

network traffic tasks, such as routing by processing incoming packets into 

concurrent threads of execution. 



30 | P a g e  
 

Although operating systems were adapted a long time ago to support 

multi-processing, kernel network layers have not yet taken advantage of 

this new technology. The result is that packet capture, the cornerstone of 

every network monitoring application is not able to capitalize of these 

breakthrough network technologies for traffic analysis, thus dramatically 

limiting its scope of application. 

2.3 Load Balancing Technologies  

2.3.1 Capture accelerators 

 Capture accelerators based on FPGA, implement filtering 

mechanisms at the network layer by means of rule sets (usually limited to 

32 or 64) similar to BPF. Filtering runs at wire-speed. As the rule set is not 

meant to be changed at runtime, its scope of application is drastically 

limited [9]. Often traffic filtering is used to mark packets and balance them 

across DMA engines. Capture accelerators supporting multiple ring buffers 

implement in firmware the logic for balancing the traffic according to traffic 

rules, so that different processes or threads receive and analyze a portion of 

the traffic.  

 

2.3.2 Receive Side Scaling 

 Intel‘s Receive-side scaling (RSS) is a network driver technology that 

enables the efficient distribution of network receive processing across 

multiple CPUs in multiprocessor systems. RSS enabled network adapters 

include the logic for balancing incoming traffic across multiple RX queues 

[9]. This balancing policy is implemented in hardware and thus RSS is not 

as flexible as rule based systems. However, this simple policy is effective in 



31 | P a g e  
 

practice also for network monitoring applications, as most of them though 

not bi-directional are flow-oriented. 

 

2.4 Challenges in exploiting the Parallel Architectures 

 Primary concern in designing an optimized monitoring application 

lies in overcoming the challenges introduced by the parallel architecture 

under consideration.  

2.4.1 General Challenges 

 (1) Packet capture applications are memory bound, but memory 

bandwidth does not seem to increase as fast as the number of core 

available. 

 (2) Balancing the traffic among different processing units is 

challenging, as it is not possible to predict the nature of the incoming 

traffic. 

 (3) Exploiting the parallelism with general-purpose operating systems 

is even more difficult as they have not been designed for accelerating packet 

capture. 

 (4) The operating system scheduler is completely unaware of the 

workload and in some cases it does not have the knowledge to relocate 

threads on the right core/processors. 

 (5) Balancing the workload among processors is not straightforward, 

as the workload depends on the incoming traffic, which cannot be 

predicted. 

 (6) Preserving the cache locality is a prerequisite in order to achieve a 

good scalability on modern parallel architectures and to overcome the 

bandwidth limitations. 



32 | P a g e  
 

2.5 Pitfalls in Monitoring Application Architecture  

Though the commodity CPUs are providing more and more cores and 

the modern NICs are supporting multiple hardware queues that allow cores 

to fetch packets concurrently (in particular, this technology is known as 

Receive Side Scaling, henceforward RSS), the current network monitoring 

and security software is not yet able to completely leverage the potential 

which is brought on by the hardware evolution: even if progress is actually 

being made (multiple queue support has been included in the latest 

releases of the Linux kernel), much of current monitoring software has been 

designed in the pre multi-core era. 

 

Figure 6: Design Limitation in existing Networking Monitoring Architecture 

Source: http://www.ntop.org/products/pf_ring/tnapi/ 

http://www.ntop.org/products/pf_ring/tnapi/


33 | P a g e  
 

Though modern network adapters are trying to improve network 

performance by splitting a single RX queue into several queues, each 

mapped to a processor core and also to balance the load, both in terms of 

packets and interrupts, across all cores hence to improve the overall 

performance, the device drivers are unable to preserve this design up to the 

application: they merge all queues into one as it used to happen with legacy 

adapters featuring only one queue [10]. This limitation is a major 

performance bottleneck, because even if a userland application uses several 

threads to consume packets, they all have to compete for receiving packets 

from the same socket resulting in Single Resource Competition.  

Competition is costly as semaphores or similar techniques have to be 

used in order to serialize this work instead of carrying it out in parallel, as 

happens at the kernel level. In multi-core systems, this problem is even 

worse because it is not often possible to map the monitoring application on 

the same core from which packets are coming. In addition the use of 

semaphores that, as a side effect, invalidates the processor‘s cache, which 

represents the basic ingredient for preserving multi-core performance. In a 

nutshell, current network layer design needs to ―merge and split‖ packets a 

couple of times and access them using semaphores, instead of providing a 

straight, lock-less path to the application with no performance limitation 

due to cache invalidation. 

 

 

 

 

 



34 | P a g e  
 

2.6 TNAPI  

     

Figure 7: Multi-queue aware packet capture design 

     Source: http://www.ntop.org/products/pf_ring/tnapi/ 

 

TNAPI overcomes the problems imposed by the normal monitoring 

architecture like 

 Distribute the traffic across cores for improving scalability. 

 Poll packets simultaneously from each RX queue for fetching packets 

as fast as possible hence improve performance. 

 Through PF_RING, expose the RX queues to the user space so that 

the application can spawn one thread per queue hence avoid using 

semaphores at all. 

http://www.ntop.org/products/pf_ring/tnapi/


35 | P a g e  
 

TNAPI achieves all this by starting one thread per RX queue. 

Received packets are then pushed to PF_RING (if available) or through the 

standard Linux stack. However in order to fully exploit this technology it is 

necessary to use PF_RING as it provides a straight packet path from kernel 

to user space [10].  

Though TNAPI solves the problems faced by the existing monitoring 

modules, it is based on a heavily customized driver, which detaches parallel 

polling threads instead of relying on NAPI. Besides, its heavy use of kernel 

level polling leads to high CPU utilization. 

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 | P a g e  
 

Chapter 3 

PFQ kernel module on multi-core architecture 

 

3.1 Drawbacks of existing Monitoring Applications  

Though the solutions proposed above have many advantages they all 

have some drawbacks in common (i.e.) either they don‘t exploit the parallel 

architecture properly or significant modification in existing device driver 

required and doesn‘t have beneficial improvement in case of vanilla drivers 

or High CPU Utilization. 

 

3.2 PFQ 

To overcome the disabilities encountered by existing packet 

capturing engines, a novel packet capturing engine, named PFQ is designed 

to allow efficient capturing and in-kernel aggregation, as well as connection-

aware load balancing [11]. This engine is based on a novel lockless queue 

and allows parallel packet capturing to let the user-space application 

arbitrarily define its degree of parallelism. Therefore, both legacy 

applications and natively parallel ones can benefit from such capturing 

engine. PFQ outperforms its competitors both in terms of captured packets 

and CPU consumption. 

PFQ is designed with an aim that allows parallelizing the packet 

capturing process in the kernel and, at the same time, to split and balance 

the captured packets across a user-defined set of capturing sockets. PFQ 

allows application writers to arbitrarily choose its level of parallelism, hiding 

within the kernel the full parallelism of the system. In particular, an 



37 | P a g e  
 

application can either use a single capturing socket (as in the case of legacy 

applications) or have PFQ balance incoming frames across a configurable 

set of collection points (sockets) or even use a completely parallel setup, 

where packets follow parallel paths from the device driver up to the 

application. In all of those cases, PFQ yields better performance than its 

competitors, while burning a lower amount of CPU cycles. Differently from 

many existing works for accelerating software packet processing, PFQ does 

not require driver modification (although a minimal few lines patch in the 

driver can further improve performance). Scalability is achieved through 

batch processing (which, in turn, leverages the hierarchical cache structure 

of modern CPUs) and through lockless techniques, which allow multiple 

threads to update the same state with no locking and minimal overhead. In 

particular, we designed a novel double buffer multi-producer single-

consumer lockless queue which allows high scalability. 

 

3.3 PFQ Packet Capturing Engine 

 PFQ Engine is made up of the following components: the packet 

fetcher, the de-multiplexing block and socket queues [11]. The fetcher 

dequeues the packet directly from the driver, which can be a standard 

driver or a patched aware driver, and inserts it into the batching queue. The 

next stage is the de-multiplexing block, which is in charge of selecting 

which socket(s) need to receive the packet. The final component of PFQ is 

the socket queue, which represents the interface between user space and 

kernel space. All of the kernel processing (i.e.) from the reception of the 

packet up to its copy into the socket queue is carried out within the NAPI 



38 | P a g e  
 

context; the last processing stage is completely performed at user space, 

thanks to memory mapping.  

3.3.1 Driver Awareness 

 PFQ embodies a patched version of the ixgbe driver that just involves 

minimal code modifications (around a dozen lines of code); such a simple 

patch can be easily applied to new and existing drivers. This block is 

completely optional as PFQ shows good performance with vanilla drivers 

too. 

This driver directly forwards the packet to the capturing module 

instead of passing it to the standard Linux networking stack thus improving 

performance. On the other hand, the capturing module has exclusive 

ownership of the packet, which is invisible to the rest of the kernel when at 

least one PFQ socket is open for monitoring a given device. Otherwise, the 

packet is forwarded to the Linux kernel and receives the classical default 

processing. 

3.3.2 Packet Fetcher 

 The packet fetcher acts on every packet that is received. It receives 

the packets and inserts the associated pointer into its batching queue. Once 

such a queue (whose length is configurable) is filled, all of its enqueued 

packets are processed by the next block in a single batch [11]. Batch 

processing turns out to be more efficient in that, it improves the temporal 

locality of memory accesses, thus reducing the probability of both cache 

misses and concurrent access to shared data. In particular, a significant 

advantage comes from de-allocating packets in batches that, according to 

our measurements, can reduce the de-allocation cost by as much as 75%. 



39 | P a g e  
 

Notice that, as the packet is time stamped before queuing, this component 

does not influence timing accuracy.  

3.3.3 Packet Steering Block 

The steering block selects which sockets need to receive the captured 

packets. Although this is a single functional block, the steering processing 

is completely distributed and does not represent a serialization point. It 

uses a routing matrix to flexibly dispatch the incoming packets across 

multiple capturing sockets [11]. 

 

Figure 8: PFQ Architecture 

Source: PFQ: a Novel Architecture for Packet Capturing 

On Parallel Commodity Hardware 



40 | P a g e  
 

In particular, such a matrix associates each reception queue of each 

handled card with one or more capturing sockets. Such sockets can be 

independent from each other (thus receiving one copy of the packet each) or 

can be aggregated into a load balancing group. In this latter case, a hash 

function is computed for each packet and only one socket in the balancing 

group is chosen. An additional advantage of such approach is the 

possibility of performing a bidirectional load balancing. As described in the 

previous section, RSS (Receive side Scaling) performs its native form of load 

balancing by computing a hash function over the 5-tuple of incoming 

packets. However, such scheme may not be appropriate for some 

applications, as RSS is not symmetric. For example, applications that 

monitor TCP connections need to observe packets from both directions 

which RSS would dispatch to different cores. For this reason, the packet 

steering block re-computes a symmetric hash function that will rebalance 

the packets with small overhead. Notice that load balancing and copy are 

not mutually exclusive: packets from the same hardware queue can be 

copied to a set of sockets and load-balanced across a different group. In 

greater detail, the de-multiplexing block is composed by a bit -field matrix 

and a load balancing function. The switching matrix stores, for each queue, 

a bitmap specifying which sockets have to receive its packets. Such a 

design allows dynamic insertion and removal of sockets with no need for 

mutexes on the fast data path allowing a great performance optimization. 

No serialization of threads of executions running on different cores is 

required. 

 

 



41 | P a g e  
 

3.3.4 Multiple Provider Double Buffer(MPDB) Socket queue 

 It is the last component of our architecture and the only one which 

is subject to inter-core contention. Our design shares some similarities with 

that of the FreeBSD zero-copy packet filter, but it improves the state of the 

art by introducing a wait-free solution which is optimized for a multi-core 

environment. Indeed, the whole mechanism implements a multiple 

producer - single consumer wait-free queue. The main components of this 

block are two memory mapped buffers: while one of them is being filled with 

the packets coming from the de-multiplexer, the other one is being read 

from the user application. The two buffers are periodically swapped through 

a memory mapped variable that stores both the index of the queue being 

written to and the number of bytes that have been already inserted (in 

particular, its most significant bit represents the queue index). Each 

producer (i.e. a NAPI kernel thread) reserves a portion of the buffer by 

atomically incrementing the shared index; such reservation can be made on 

a packet by packet basis or once for a batch. After the thread has been 

granted exclusive ownership of its buffer range, it will fill it with the 

captured packet along with a short pseudo header containing meta-data 

(e.g. the timestamp). Finally, it will finalize it by setting a validation bit in 

the pseudo header after raising a write memory barrier. Notice that, when 

the user application copies the packets to a user space buffer, some NAPI 

contexts may still be writing into the queue. This will results in some of the 

slots being half filled when they reach the application; however, the user-

space thread can wait for the validation bit to be set. On the application 

side, the user thread which needs to read the buffer will first reset the index 

by specifying another active queue (so as to direct all subsequent writes to 



42 | P a g e  
 

it). Subsequently, it will copy to the application buffer a number of bytes 

corresponding to the value shown by the old index. Such copy will be 

performed in a single batch, as, from our past measurements, batch copy 

can be up to 30% faster. Alternatively, packets can be read in place in a 

zero-copy fashion. 

 

3.4 PFQ Performance Analysis 

In [11], performance of PFQ system was assessed under several 

configurations and it was mainly compared against PF RING because it was 

the obvious competitor for PFQ, in that it is a general architecture that 

increases the capturing performance with both vanilla and modified drivers. 

Two main performance metrics were taken into consideration: number of 

captured packets and average CPU consumption. 

 

3.4.1 Experimental Setup 

The testbed for experiments consists of two identical machines, one 

for generating traffic, and the other in charge of capturing. Both of them 

come with a 6 cores Intel X5650 Xeon (2.66 Ghz clock, 12Mb cache), 12 GB 

of DDR3 RAM, and an Intel E10G42BT NIC, with the 82599 controller on 

board. In order to test our system with the maximum degree of parallelism, 

we kept Intel Hyperthreading enabled, thus carrying out the experiments 

with 12 virtual cores. Due to the high cost of hardware based traffic 

generators and to the limited performance of software based ones, self 

written generators were used.  It was able to generate up to 12 Millions 

minimum-sized packets per second.  Lets us consider only the parallel 

setup and for any further reading refer to [11]. 



43 | P a g e  
 

3.4.2 Parallel Setup 

In this scenario each hardware queue is associated with its own user 

space thread, so that the processing paths of packets are completely 

parallel. Notice that in this scenario recently introduced quick mode option 

of PF_RING is used, which allows avoiding per-queue locks.  

 

 
Figure 9: Complete parallel processing paths 

 
 

The results shown in figure 10 show that, although PF_RING 

manages to achieve good performance by preventing locking, PFQ still 

outperforms it. Besides, PFQ shows the same behavior with both vanilla 

and aware drivers (apart from a scale factor), while PF_RING only scales 

well with aware drivers. 



44 | P a g e  
 

Notice that PFQ is able to capture all of the incoming packets with 10 

cores (its throughput steadies because there is no additional traffic to 

capture); unfortunately, our generator is not able to produce more input 

traffic and, therefore, we can only obtain a lower bound of PFQ's 

performance. 

 

Figure 10: Complete parallel processing paths (CPU Consumptions) 
 
 

 

From figure 11, we can understand the CPU utilization (in the case of aware 

drivers): while PF_ RING saturates the CPU, the global CPU consumption in 

the case of PFQ is roughly constant and well below 20%. 

 



45 | P a g e  
 

Chapter 4 

PFQ Packet Filter Design and Implementation 

4.1 What is Packet Filter? 

When a packet reaches the interface, the node decides whether the 

packet belongs to it or it should be dropped in case it is not destined for it 

based on packet's header information. This is the basic routing principle. 

When packet filtering is added to routing devices, another level of packet 

analysis is done. Each packet will be put through the normal routing 

analysis and when determined that it has to be processed, the routing 

device applies the filter rules. Filter rules normally reflect security policies, 

which services are allowed, where they are allowed, which are not, which 

types of packets can reach a target device, which should be dropped, etc. 

So, packet filtering is the process of passing or blocking data packets, based 

on a set of user-provided rules, as they pass through a network interface. 

  In recent years, with dramatically increasing network speed and 

escalating protocol complexity, packet filters have been facing intensified 

challenges posed by more dynamic filtering tasks and faster filtering 

requirements. However, existing packet filter systems have not yet fully 

addressed these challenges in an efficient and secure manner. 

Packet filtering can also be defined as the selective passing or 

blocking of data packets as they pass through a network interface. Filter 

rules specify the criteria that a packet must match and the resulting action, 

either block or pass, that is taken when a match is found. Filter rules are 

evaluated in sequential order from first to last. Packet Inspection criteria‘s 



46 | P a g e  
 

are generally based on the Layer 3 and Layer 4 headers. The most often 

used criteria are source and destination address, source and destination 

port, and protocol(the so-called canonical 5-tuple). 

Many versions of UNIX provide facilities for user-level packet 

capture, making possible the use of general purpose workstations for 

network monitoring. Because network monitors run as user-level processes, 

packets must be copied across the kernel/user-space protection boundary. 

This copying can be minimized by deploying a packet filter, which discards 

unwanted packets as early as possible. A packet filter can be implemented 

as a single predicate, that is a function returning a Boolean value on the 

basis of a set of filter rules when applied to a given packet. If the value of 

the function is true the kernel copies the packet for the application; if it is 

false the packet is discarded. 

Because network monitors often want only a small subset of network 

traffic, a dramatic performance gain is realized by filtering out unwanted 

packets in interrupt context. Thus, if the packet is not accepted, only those 

bytes that were needed by the filtering process are received by the host. 

Packet filtering techniques have evolved over time in order to cope up 

with the increasing speed of the interface and increasing traffic rate. 

 

4.2 Filtering Techniques 

Filter rules normally reflect security policies, which services are 

allowed, where they are allowed, which type of packets can reach a target 

device, which ones should be dropped, etc. So, packet filtering is the 

process of passing or blocking data packets, based on a set of user-provided 

rules, as they pass through a network interface. There are many 



47 | P a g e  
 

approaches to packet filtering. As the main focus of this thesis is on traffic 

monitoring, we are merely interested in packet filtering as a simple function 

that drops/accepts packets out of a network interface. Several filtering 

techniques are well known in literature: some of the most frequently used 

filtering approaches are BPF, CMU Filter and Dynamic Packet Filter.  

 

4.2.1 CMU/Stanford Packet Filter 

CMU/Stanford Packet Filter (CSPF) is the first user-level packet 

filter. For the existing computers in that era, CSPF performed efficiently and 

provided flexibility in the environment, with an interpreter based filter 

mechanism. The specified filter language is stack based, and operates on 

binary expressions as well as Boolean operators. It uses a tree model to 

configure its filter engine. It believes that user-level de-multiplexing will 

incur more context switches and inter-processes. In order to provide both 

flexibility and efficiency, CSPF specifies filter in user-level and processes in 

kernel-resident using a specific packet field as a key. The problem of this 

approach is the bottleneck in operations that has a data structure of 16-bit 

words array. 

 

4.2.2 The BSD Packet Filter 

 The BSD Packet Filter (BPF) is a more efficient interpreter 

than CSPF. It is an interpreter based on a register-based filter mechanism. 

BPF with register-based and assembly-like language can access more 

instructions, multiple registers, one input data and a scratch memory. It 

uses a computationally equivalent directed acyclic control flow graph, in 

order to avoid redundant computation [14]. It learns packet parse states in 



48 | P a g e  
 

the graph, so it reduces some paths and comparisons. It also uses a 

Boolean expression tree. The major performance improvements of BPF 

comparing to CSPF, are due to architectural improvements (registered 

based RISC CPU). 

 When a packet arrives at a network interface the link level 

device driver normally sends it up the system protocol stack. But when BPF 

is listening on this interface, the driver first calls BPF. 

 

 

Figure 11: BPF Architecture 

Source: The BSD Packet Filter: A New Architecture for User-level 

Packet Capture 



49 | P a g e  
 

BPF feeds the packet to each participating process filters. This user-

defined filter decides whether a packet is to be accepted and how many 

bytes of each packet should be saved. For each filter that accepts the 

packet, BPF copies the requested amount of data to the buffer associated 

with that filter. The device driver then regains control. If the packet was not 

addressed to the local host, the driver returns from the interrupt. 

Otherwise, normal protocol processing proceeds. 

 

4.2.3 Just in Time BPF  

Similar to the normal BPF, but it adds a just-in-time compiler into 

the kernel to translate BPF code directly into the host system's assembly 

code. The simplicity of the BPF machine makes the JIT translation relatively 

simple; every BPF instruction maps to a straightforward machine 

instruction sequence. There are a few assembly language helpers which 

help to implement the virtual machine's semantics; the accumulator and 

index are just stored in the processor's registers. The resulting program is 

placed in a bit of vmalloc() space and run directly when a packet is to be 

tested. A simple benchmark shows a 50ns savings for each invocation of a 

simple filter - that may seem small, but, when multiplied by the number of 

packets going through a system, that difference can add up quickly. 

 

4.2.4 Dynamic Packet Filters 

Dynamic Packet Filter (DPF) approaches are currently the state of 

the art in the packet filtering world. DPF provides the most wanted 

flexibility of packet filters and the speed of hand-crafted demultiplexing 

routines. DPF filters are the fastest packet filters available. DPF achieves 



50 | P a g e  
 

high performance by using a carefully-designed declarative packet filter 

language that is aggressively optimized using dynamic code generation. The 

declarative packet filter language is used by protocols to describe the 

message headers that they are looking for. 

 

4.3 Linux Packet Filter 

Functioning of a Linux packet filter can be explained in a nutshell as 

follows [3] 

 Creates a special-purpose socket (i.e., PF_PACKET) 

  Attach a BPF program to the socket using the setsockopt system call 

  Sets the network interface to promiscuous mode with ioctl 

  Read packets from the kernel, or send raw packets, by 

reading/writing to the file descriptor of the socket using 

recvfrom/sendto system calls 

Sample Usage: 

static void attach_filter(void) { 

struct sock_fprog filter; 

if ((sock = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL)))== -1) 

{ 

(void)fprintf(stderr, "Error: %s\n", strerror(errno)); 

exit(4); 

          } 

if (ioctl(sock, SIOCGIFFLAGS, &req) == -1){ 

(void)fprintf(stderr, "Error: %s\n", strerror(errno)); 

exit(4); 



51 | P a g e  
 

           } 

req.ifr_flags |= IFF_PROMISC; 

if (ioctl(sock, SIOCSIFFLAGS, &req) == -1){ 

(void)fprintf(stderr, "Error: %s\n", strerror(errno)); 

exit(4); 

 } 

filter.filter = bpf_code; 

filter.len = FT_LEN; 

if (setsockopt(sock, SOL_SOCKET, SO_ATTACH_FILTER, &filter, 

sizeof(filter)) == -1){ 

(void)fprintf(stderr, "Error: %s\n", strerror(errno)); 

exit(4); 

 } 

return; 

} 

4.4 PFQ Packet Filter 

 Packet filtering module in PFQ Engine is located right after the NIC 

(Network Interface Card) in order to drop unnecessary packets before being 

copied into kernel buffer. The aim of this thesis is to implement a bank of 

bloom filters for the PFQ in order to speed up packet processing by 

discarding unwanted packets. 

4.5 Bloom Filter 

As the speed of the network interfaces are increasing drastically, a fast, 

time and space efficient strategy is required to check whether a rule is 



52 | P a g e  
 

defined on a particular interface or not to speed up packet filtering. Bloom 

filter is a space-efficient probabilistic data structure for group membership 

query. It is widely used in network monitoring applications which involve 

the packet header/content inspection. To provide fast membership query 

operation, this data structure resides in the main memory in most of its 

applications. Each membership query consists hashing for a set of memory 

addresses and memory accesses at these locations. The space efficiency is 

achieved at the cost of a small probability of false positive, that is, an 

element may be announced as in the set while it is not. By exploiting the 

probabilistic nature of this data structure, the probability of false positive, 

i.e., false positive rate, is usually very small and outweighed by the space 

saving. 

In Bloom filters, False positives are possible, but false negatives are not; i.e. 

a query returns either "inside set (may be wrong)" or "definitely not in set". 

Elements can be added to the set, but not removed (though this can be 

addressed with a counting Bloom filter). More the elements are added to the 

set, the larger the probability of false positives. The size of the bloom filter is 

to be selected in such a way that the false positive is below a certain level. 

4.6 Working of Bloom Filter 

A Bloom filter consists of a bit array of m bits, which are all initially 

set to 0. Adding the elements of a set S = {x1, x2 , ….. xn } of n elements is 

done as follows. For each element xi that is added, k different hash 

functions h1, …., hk each with a range {1,…,m} are used to calculate k 

different hash values h1(xi),…..hk(xi). We assume that these hash functions 

map each element to a random number uniform over their range. Then, the 



53 | P a g e  
 

bits hj(xi) are set to 1, for j = 1, 2, …., k. The bits in the Bloom filter can be 

set to 1 multiple times, but only the first time this has effect. 

For example, consider a bloom filter of 8 bits which is all set to zero 

at the startup. Consider two hash functions h1 and h2 which returns values 

between 1 and 8 inclusive. Given an element y=4 to be inserted, hashing 

using both the functions h1 and h2 are done. 

 

0 0 0 0 0 0 0 0 

 

Figure 12: Empty Bloom Filter of 1 byte width 

 

Let us suppose that h1(y)=4 and h2(y)=2 , then bit 4 and 2 are set in 

the bloom filter indicating that the membership of the element is marked. 

Similarly consider the insertion of another element say z=6. Let‘s suppose 

that the result of hashing is h1(z)=7 and h2(z)=4 . 

 

0 1 0 1 0 0 1 0 

 

Figure 13: Bloom Filter after insertion of element y and z 

 

It can be noted that, though h1(y) = h2(z) = 4, it is set only once. If a 

bit is set once, setting it again doesn‘t have any effect. Once an element is 

inserted into the bloom filter it cannot be removed which signifies that, a bit 

set in the bloom filter cannot be cleared because some other element might 

have set the same bit as a result of hashing during its insertion. 



54 | P a g e  
 

When we want to check if a certain element is in our Bloom filter, a 

similar approach is used as during the addition of elements. The same k 

hash functions are calculated over the element y. Then we test if the bits 

hi(y) for i=1, 2, …., k are equal to 1. If one or more of these bits are still 0, 

the element is certainly not in the set. If all bits are 1, the element was 

probably in the set, although there is a small probability that the tested bits 

were set to 1 due to the addition of different elements. Then we have a false 

positive. 

For example, suppose we search for the element x. we perform the 

hash of x and we get h1(x) =2 and h2(x) =7. After checking the bloom filter to 

determine whether the corresponding bits are set or not, we find that they 

are set. It means x may be present because there may be some other 

element which could have set these bit positions. In this case these bits are 

set by y and z.  From this we can clearly say that there is some probability 

of false positive but false negative can never occur in the bloom filter which 

is an important feature of bloom filter.       

An interesting property about Bloom filter is that, any Bloom filter 

can represent the entire universe of elements. In this case, all bits are 1. 

Another consequence of this property is that add never fails due to the data 

structure "filling up." However, the false positive rate increases steadily as 

elements are added until all bits in the filter are set to 1, so a false response 

is never returned. At this point, the Bloom filter completely ceases to 

differentiate between differing inputs, and is functionally useless. 

 

 



55 | P a g e  
 

4.7 Calculating probability of false positive 

There is a trade-off between the probability of false positives and the size of 

the Bloom filter. The false-positive probability can be calculated from m and 

k in the following way. 

Assume that a hash function selects each array position with equal 

probability. If m is the number of bits in the array, the probability that a 

certain bit is not set to one by a certain hash function during the insertion 

of an element is then 1 – (1 /m). 

If there are k hash functions, then the probability that it is not set by 

any of the hash functions is 1- (1/m) k. If we have inserted n elements, the 

probability that a certain bit is still 0 is (1 – (1/m)) kn. The probability that it 

is 1 is therefore 1 - (1 – (1/m)) kn. 

Each of the k array positions computed by the hash functions is 1 with a 

probability as above. The probability P of one of the m bits still being zero 

after the addition of n elements is 

P = (1- (1/m))kn  ≈ e-(kn/m) 

The probability of a false positive f is then equal to the probability that all 

the k bits that we test are equal to 1, which is equal to 

f = (1 – P )k ≈ (1 – e-kn/m )k 

By taking the derivative of above equation, from simple calculations it 

follows that for a given m and n, the value of k that minimizes the false-

positive probability f is equal to 

k = (m / n) ln 2 



56 | P a g e  
 

A proper and careful design helps to minimize the probability of false 

positive. 

4.8 Why PFQ Packet Filter uses Bloom Filter? 

Bloom filters have a strong space advantage over other data 

structures for representing sets, such as self-balancing binary search trees, 

tries, hash tables, or simple arrays or linked lists of the entries. Most of 

these require storing at least the data items themselves, which can require 

anywhere from a small number of bits, for small integers, to an arbitrary 

number of bits, such as for strings (tries are an exception, since they can 

share storage between elements with equal prefixes). Linked structures 

incur an additional linear space overhead for pointers. An important 

property of bloom filter that makes it efficient is that the elements 

themselves are not stored in the Bloom filter, only their membership is 

stored. Hence it is space efficient. 

Bloom filters also have the unusual property that the time needed 

either to add items or to check whether an item is in the set is a fixed 

constant, O(k), where k is the number of hash functions and is completely 

independent of the number of items already in the set. 

It is possible to store the entire bloom filter in the cache and lookup 

can be done much faster without moving the structure between primary 

and secondary memory when compared to other data structures which 

often requires that. Hence bloom filter possesses an extremely efficient 

Cache Utilization. 

The following graph taken from [15] shows that, even for a cache size of as 

small as 512 KB, many number of rules can be stored in the bloom filter for 



57 | P a g e  
 

a given false positive percentage. Actually speaking, it is much more than 

the requirement in this scenario, because no more than 1, 00, 000 rules 

will be inserted even by a high end network monitoring application. Hence 

bloom filter is chosen for implementing a filter module on top of PFQ. 

 

 
 
Figure 14: The maximum number of elements that can be stored by a 512KB cache 
 
Source: F Chang, K Li, W Feng, Approximate Packet Classification Caching, 
IEEE INFOCOM 2004 
 
 
 



58 | P a g e  
 

4.9 Functioning of PFQ Packet Filter 
 

To start with, PFQ must be enabled by the network monitoring 

application. Once the PFQ is enabled, the fetcher dequeues the packet 

directly from the driver, which can be a standard driver or a patched aware 

driver, and inserts it into the batching queue. Then the de-multiplexing 

block, selects which socket(s) need to receive the packet and steers the 

packets to respective socket queue, which represents the interface between 

user space and kernel space. The entire kernel processing (from the 

reception of the packet up to its copy into the socket queue) is carried out 

within the NAPI context;  

After enabling PFQ, the next stage is to enable the bloom filter using 

the provided user space library function which is similar to enabling the 

PFQ itself. Once enabled, the kernel internally sets up the environment by 

allocating space for the PFQ packet filter for each interface and enables the 

filter on all interfaces. 

Once enabled, the monitoring application can now start inserting the 

rules. The rule to be inserted is a combination of rule and its corresponding 

signature. Rule is nothing more than the usual 5-tuple (Source IP, 

destination IP, Source Port, Destination Port, Protocol) information. The 

signature for a rule is a provision to provide the mask for the corresponding 

field in the rule 5-tuple. The possible rule and signature combination that 

any network monitoring application will use is one among the following: 

(1) The mask for Source and Destination IP field will be the subnet 

mask. And this field can generally vary from /8 to /32. If the monitoring 

application is looking for a specific IP address then corresponding mask will 

be /32 else if it is looking for a range of IP addresses, then the 



59 | P a g e  
 

corresponding subnet mask has to be set as the mask. For example, if the 

application is looking for traffic from a source IP 131.114.53.2 then it must 

use a mask of 32 and if it interested in traffic from a range of IP say, 

195.114.53.1 through 195.114.53.254, then it has to use a mask of 24.  

(2) Similarly the network monitoring application may be either 

interested in a particular source or destination port else it may want to 

listen any port. If the application wants to listen to a specific port then the 

mask used is 16 which is the width of the port (number of bits) field in TCP 

or UDP header else if doesn‘t care about the port, then it can denote the 

wildcard behavior by setting the port mask as 0. If the mask is ‗0‘, then it 

means that the application will accept traffic from any port number.  

(3) Similarly the network monitoring application may be either 

interested in a particular higher layer protocol say, TCP/UDP/ICMP or it 

doesn‘t worry about the type of the higher layer protocol. If the application 

is protocol specific, then the mask for protocol is set to 8 which is the width 

of the protocol (number of bits) field in IP header. If the application is not 

protocol specific, then it means it accepts packets from any layer 4 

protocols which are specified by setting the mask as 0 indicating the 

wildcard behavior.   

An example of a rule, signature combination is as follows 

 Rule Signature/Mask 

Source IP 10.99.124.99 32 

Destination IP 87.16.135.137 32 

Source Port Any 0 (*) 

Destination Port Any 0 (*) 



60 | P a g e  
 

Protocol TCP(6) 8 

 

According to the above rule, the PFQ filter will check all incoming 

packets to determine whether it is from a source with IP 10.99.124.99 to a 

destination with IP 87.16.135.137 irrespective of what the source port and 

destination port is and the protocol must be TCP. If a packet passes the 

above check, then it will be forwarded to the monitoring application(s).  

After inserting the required rules with its corresponding signatures, 

the monitoring application must invoke the sort function defined in the PFQ 

user library. The job of the sort function is to order the signatures in such a 

way that most of the matches of the incoming packets occurs at the 

beginning of the signature list during the filtering phase. Internally, the 

unique signatures are stored as a list in order to be memory efficient. List 

implementation doesn‘t have any memory overhead as it doesn‘t require any 

pre-allocation of memory. As and when a new signature is to be inserted, 

the space is allocated for it dynamically. 

This trivial sorting function used sorts the signature in such a way 

that more specific signature requirements are moved to the end of the list 

and those signatures with few or all wildcard options set appear at the 

beginning of the list. It uses a simple ranking method that provides highest 

ranking to the more specified signatures and least ranking to less specified 

or wildcard signatures and are sorted in increasing order of their ranks. The 

ranking algorithm is as follows 

typedef int rank_t 

rank_t rank(struct signature *sign)     { 



61 | P a g e  
 

return (sign->source_ip_mask) + (sign->destination_ip_mask) 

+ (sign->source_port_mask) + (sign->destination_port_mask) 

+ (sign->protocol); 

} 

For example say if the monitoring application has two rules as follows 

Rule 1: 

 Rule Signature/Mask 

Source IP 10.99.124.99 32 

Destination IP 87.16.135.137 32 

Source Port Any 0 (*) 

Destination Port Any 0 (*) 

Protocol Any 0(*) 

 

The ranking function returns 64 for rule 1 as its rank. 

Rule 2: 

 Rule Signature/Mask 

Source IP 12.0.0.0 8 

Destination IP 87.16.0.0 16 

Source Port Any 0 (*) 

Destination Port Any 0 (*) 

Protocol Any 0(*) 

 

For rule 2 the ranking function returns 24 as its rank. So after sorting the 

rule 2 will appear ahead of rule 1 in the signature list.  



62 | P a g e  
 

In order to understand why less specified rules are sorted to appear ahead 

of more specified rules, consider the following scenario. Since it is difficult 

to visualize the problem in five dimensions (Source IP, Destination IP, 

Source port, Destination port, Protocol) which is a Hyper-Cube, let us 

consider only two dimensional (Source and destination IP) representation in 

order to better understand the scenario. Let us assume the random 

distribution of packet (i.e) the incoming packet is random and probability of 

a packet with any (source IP, destination IP, source port, Destination port 

and protocol) of the 5-tuple combination is equal. 

 

 

                                                                                        2D space of less                                                

                                                                                          Specified rule 

Incoming Random 

Packet                                                                            2D space of well 

                                                                                      Specified rule 

                   Figure 15: Visualization of Ranking Mechanism 

 

In order for a filter to be fast and efficient it should be able to return true or 

false in minimum comparisons. It can be seen that, it is more probable for a 

random packet to fall into 2D space of less specified rule than into the 2D 

space of well specified rule. Hence in order for the filter to be optimal, it is 

therefore logical to place less specified signature above the more specified 

signature. 

For example, if the Rule 1 and Rule 2 above mentioned are taken 

into account, then a randomly generated packet is more likely to be of type 



63 | P a g e  
 

Rule 2 because the 2D space of Rule 2 is much bigger than the Rule 1 and 

the packets are likely to fall into that space. 

This is further optimized by removing the signature subset problem. 

For example, there can be a more specific rule defined earlier. And followed 

by its definition there can be a new rule definition which is a wildcard one 

and it also encompasses the space of the previously defined rule. So in this 

case instead of storing both the rules signatures we can only store the 

superset of both the rules in the signature set as the number of different 

signatures affects the performance of the system. 

For example, if we have two rule as follows 

Rule 1: 

 Rule Signature/Mask 

Source IP 10.99.124.99 32 

Destination IP 87.16.135.137 32 

Source Port 80 16 

Destination Port 8080 16 

Protocol TCP(6) 8 

 

Rule 2:  

 Rule Signature/Mask 

Source IP 10.99.124.0 24 

Destination IP 87.16.0.0 16 

Source Port Any 0(*) 

Destination Port Any 0(*) 

Protocol Any 0(*) 



64 | P a g e  
 

In above example, it is clearly visible that Rule 1 is a subset of Rule 

2. Hence instead of storing both the signatures in the signature set only the 

Rule 2 signature will be stored. There is an obvious tendency to think 

whether the corresponding rule of the signature which is dropped will also 

be omitted. The answer is no. Here our consideration is only the signature 

and not the rule. Always all the rule are set. There can be any number of 

rules and it doesn‘t affect the performance of the system. It is only the 

number of signatures which determines the performance of the system 

because as the number of signatures increases it is possible that for each 

and every packet received we may have to traverse the entire signature list 

if there is no match found. So, it is always desirable to minimize the 

number of signatures by merging few of them. It may result in explosion 

with respect to the number of rules. But since the number of rules set 

doesn‘t affect the systems performance it is not of much significance until 

the number of rules doesn‘t exceeds the bloom filter threshold. 

It can be assumed that logically each different signature inserted is 

associated with a bloom filter. Whenever there is an exact signature match 

during insertion, their corresponding rules are stored in the same bloom 

filter. The procedure for rule insertion is discussed in the next section. In 

practice, these logical bloom filter‘s can be realized using a single large 

bloom filter such that the probability of false positive in it is below the 

expected threshold offered by the logical bloom filter‘s.  

Once the rules are inserted then it is left to the PFQ to handle things. 

PFQ inspects the incoming packets and when the inspection succeeds then 

it forwards the packet to the monitoring application for further processing. 



65 | P a g e  
 

If not, the packet is dropped because if the inspection failure, it indicates 

that no monitoring application is interested in this packet.  

 

4.10 Rule Insertion and Inspection 

4.10.1 Outline of Rule Insertion procedure   

Once the monitoring application specifies the filtering rules, then 

those rules are sorted in such a way that more specified rules are moved 

below and the less specified rules are retained at the top of the list. After 

the sorting is performed, the rules which are subset of other rules are 

merged. Now the rules and its corresponding signatures are sent to PFQ 

filter module which performs the insertion signature as follows 

(1) Check whether both PFQ as well as PFQ Bloom filter is enabled. If 

not, no rule insertion is performed and all the packets are forwarded to the 

monitoring applications without filtering. 

(2) Determine the interface for which the rule is set. Check the filter 

corresponding to the interface to determine whether the signature to be 

inserted is already present in the signature list of the interface. If yes goto 

step3. Else, insert the current signature in the signature list. 

(3) perform a bit-wise AND operation of the rules and its 

corresponding mask. Some shift are done on certain fields of the outcome in 

order to stretch the 32 bit AND operation to a width of 64 bits.  

(4) The hash function is a simple XOR of the obtained 5-tuple 

information which is the result of previous AND operation. The obtained 64-

bit hash value is split into four 16-bit hash values and the corresponding 4 

(even if not optimal, is chosen here as the number of k hash functions for 

simplicity) bits are set in the filter of the specified interface. The signature 



66 | P a g e  
 

count is also increased for that particular interface if a new signature is 

appended to the list.  

 

4.10.2 Filtering Procedure 

 After setting the rules in the bloom filter corresponding to each 

interface specified by the monitoring application, the following task is 

implemented to carry out the filtering functionality. 

When the packet is received by the network card, the device driver creates a 

socket buffer called sk_buff, puts the packet into it and passes it to the 

Linux networking stack for further processing. Sk_buff structure contains 

all the information about the received packet including the interface 

through which the packet was received. 

1. The PFQ filter first checks whether the bloom filter is enabled or not. 

If it is not, then it returns true else continue to step 2. 

2. Get the interface index of the packet received from sk_buff structure 

and check whether the filter is enabled for such interface. If not 

returns true else continue to step 3. 

3. Get the higher level protocol from the Ethernet header. If it is not IP 

then returns true else go to step 4. 

4. Get the higher level protocol from the IP header. If it is not TCP or 

UDP then returns true else go to step 5. 

5. Extracts the 5 tuple(Source IP, destination IP, Source Port, Destination 

Port, Protocol) Information and perform a bit-wise AND operation with 

the corresponding mask fields in the current signature set element, 



67 | P a g e  
 

then perform the hashing which is nothing more than a simple XOR 

of all the 5 tuple resulted from the previous AND operation . The 

obtained 64-bit hash value is split into four 16-bit hash values. The 

filter corresponding to the packet‘s received interface is examined for 

all these 4 bit positions. Goto step 6. 

6. If all the 4 bit positions are set in the filter, then return true because 

a matching rule is present for the interface and the packet has to be 

allowed. If not make the current signature to be the next signature in 

the set and goto step 5. If the signature set is empty, then return 

false because no match for the packet is found and hence it should 

not be allowed as the application monitoring is not interested in this 

packet. 

7. Repeat the above steps 1 through 6 for each of the received packet to 

perform the filtering.  

 

 

 

 

 

 

 

 

 



68 | P a g e  
 

Chapter 5 

PFQ Filter – Software Development and Performance Analysis 

 

5.1 Bloom Filter Design 

 

In the case of four hash functions and a false positive probability of 

0.2%, the number of bits to be in the bloom filter is calculated as 65535. 

The device considered has 64 interfaces which can be modified depending 

on the requirement. The PFQ filter is defined in the next section.                             

  The Packet Filter Module allows the network monitoring applications 

to specify a set of rules and uses these rules to take respective actions on 

each incoming packet. Figure 17 depicts the filtering mechanism. The 

filtering module allows the user to specify the rules, which is the 5-tuple 

with the corresponding masks and wildcards thus providing additional 

provisioning. The masks are considered as signatures of the rules. Given 

the set of rules and their corresponding signatures, the signature insertions 

into the kernel space are sorted out in a manner according to certain 

ranking criteria such that most of the packet matches with the initial 

signature in the signature set thus reducing the number of per packet 

comparison resulting in improved throughput as discussed in the previous 

chapter. 

Before insertion of the signatures into the signature set, care is taken 

to determine whether any signature is a subset of an already existing 

signature for a given interface. If so, it is eliminated or else is accepted to be 

a part of signature set for that interface. 



69 | P a g e  
 

 

 

 

 

 

Incoming Packets                     Insp   

                                                                                                                       

                                                                    

 

              (Packet Dropped) 

 

                       

 

Figure 16: PFQ Packet Filter 

5.2 Data Structure 

 In this section the main data structures used in the PFQ filter are 

examined in detail. 

typedef struct Filter { 

char filter[8192]; 

MASKSET *signature_set; 

int signature_set_count; 

bool enabled; 

int rule_count; 

}FILTER; 

extern FILTER packet_filter[NO_INTERFACES]; 

  

  Inspect Incoming         

          Packet 

 

Signature set and Rules 

F
a
ls

e
 

True 



70 | P a g e  
 

The bloom filter is defined for each interface and it consists of 5 fields 

as defined above. The maximum number of interface in the system is 

configured to 64. It can be changed depending on the requirement. Each 

interface consists of a filter which is the bloom filter itself, enabled flag to 

check whether filter is enabled for that interface or not. The rule_count 

member is used to determine the number of rules set for this interface. If 

rule_count reaches a certain limit, rule insertion for that interface is not 

allowed and a notification is raised indicating that further addition of rules 

to the bloom filter will increase the false positive. signature_set contains the 

list of signatures that are inserted for this particular interface and 

signature_set_count contains the number of signatures set for this interface. 

Of course point to be noted here is that the signatures and the rules are not 

be confused. The system performance is not affected by the numbers of 

rules set but it depends on the number of signatures present. In a normal 

scenario, one can assume that only a limited number of signatures are 

required. 

5.3 Filter Specific Options 

For the Bloom filter that has been defined, a few set of get and set socket 

options at the socket level to perform the required operations. 

#define SO_GET_BLOOM_RULE_COUNT 129  

To check if a maximum rule is reached in the bloom filter or not in 

order to guarantee requested false positive percentage (%). This is done for 

each and every rule insertion performed by the monitoring application to 



71 | P a g e  
 

ensure that the rule count doesn‘t exceed the maximum allowed to 

maintain the false positive probability below the threshold. 

#define SO_GET_BLOOM_STATUS 130  

To check whether bloom filter is enabled or not.  

#define SO_GET_BLOOM_SIGNATURE_COUNT 131  

Returns the number of signatures set for this interface 

#define SO_TOGGLE_BLOOM  108  

To enable or disable bloom filter. Enable = 1, Disable =0 

#define SO_SET_BLOOM 109  

To apply a rule by performing hash function and enabling the 

corresponding bits in the bloom filter 

#define SO_RESET_BLOOM 110  

Reset Bloom filter is about clearing bloom filter and the signature list 

for all the interfaces. This consists of performing a set of actions on each 

interface. 

(1) If the signature set for that interface is not empty, then traverse 

along the signature list and free each and every element in the list 

(2) Reset all the bits in the bloom filter to 0 

(3) Set signature_set_count and rule_count to 0. 



72 | P a g e  
 

(4) Set the enabled flag for that interface to false. 

 

#define SO_RESET_BLOOM_INTERFACE 111 

 This is variation of SO_RESET_BLOOM in that, it allows to reset 

bloom filter and the signature list on a specific interface. 

5.4 User API 

 Before monitoring applications set their rules on bloom filter 

corresponding to their respective interfaces, the rules and signature 

manipulations are to be done. These manipulations consists of ordering the 

signatures in an optimal way such the matching occurs in the initial part of 

the signature list and also the handling of signature subset elimination 

problem. To support these manipulations, pfq_trivial_merge class is defined 

which contains the methods to handle signature sorting and signature 

subset elimination problem. 

 To begin with, an instance of pfq_trivial_merge class is defined and 

all the rules are inserted. The insertion method is as follows 

 pfq_trivial_merge m; 

 m.insert(address("10.99.124.54",source_mask), 

address("131.114.55.255.137",destination_mask),any<port_t>(), 

any<port_t>(), protocol(17)); 



73 | P a g e  
 

Here source_mask and destination_mask is the required subnet mask 

for source and destination IP (or sub network) the monitoring application is 

looking for. source_mask and destination_mask can take any value between 

8 and 32.  

   template <typename Tp> 

inline std::pair<Tp, int> any() { 

return std::make_pair(0,0); 

                       } 

any<T>() is a generic template function which can be used by both 

protocol and port fields. Depending on the whether the port or protocol type 

is passed as type, the corresponding type mask pair is returned. 

inline std::pair<std::string, int> address(std::string addr, int 

mask) { 

return std::make_pair(std::move(addr), mask); 

} 

 

inline std::pair<uint16_t, int>  port(uint16_t p)   { 

return std::make_pair(p, 16); 

} 

 

inline std::pair<uint8_t, int>  protocol(uint8_t p)     { 

return std::make_pair(p, 8); 

} 

 

The above are the other methods that assist the insertion of the rules. After 

the insertion, the sort function is invoked. As discussed in the previous 

chapter, each of the signatures is assigned a rank and they are sorted in 

the increasing order so that less specified signature comes ahead of the 



74 | P a g e  
 

more specified rule. Once this is done, then the signature subset problem 

has to be solved as discussed in the previous chapter. Now, the monitoring 

applications are ready to go on with setting the rule in the corresponding 

interfaces. 

           The monitoring applications are provided with a set of simple API to 

work with the filters. As of now, few API‘s are available. One for enabling the 

bloom filter for all the interfaces, one for setting the bloom filter for the 

specified interface with the corresponding rule, one for determining the 

number of rules set for that interface, one for determining the number of 

unique signatures set for that interface and the final API for disabling the 

bloom filter for all the interfaces. Setsockopt() and getsockopt() are used to 

pass user space information to the kernel space and vice versa.  

void setBloom(int interface,SIGN_AND_RULES sign_rules); 

where SIGN_AND_RULES is a structure which consists of both the rules 

and signatures as is defined as follows. 

typedef struct sign_and_rule { 

 RULES rule; 

 MASK mask; 

}SIGN_AND_RULES; 

RULES and MASK by themselves are five member structures which 

contains both the 5-tuple information and their corresponding masks.  



75 | P a g e  
 

When setBloom() API is called, it internally first checks whether the 

bloom filter is enabled or not. If not, returns run time error else invoke the 

Setsockopt() with SO_SET_BLOOM option and the SIGN_AND_RULES 

structure information is passed to kernel space with opval and oplen 

parameters.  

5.5 Kernel level Implementation 

5.5.1 PFQ Setsockopt() 

Static int pfq_setsockopt(struct socket *sock, int level, int optname, 

                   char __user * optval, unsigned int optlen) 

Parameter Description 

Level   

The level at which the option is defined. Here in this case it is PF_Q 

level. 

optname 

The socket option for which the value is to be set (for example 

SO_TOGGLE_BLOOM,SO_SET_BLOOM,SO_RESET_BLOOM). 

The optname parameter must be a socket option defined within the 

specified level, or behavior is undefined. 

optval  

A pointer to the buffer in which the value for the requested option is 

specified. 

optlen  

The size, in bytes, of the buffer pointed to by the optval parameter. 



76 | P a g e  
 

 

When the optname is SO_TOGGLE_BLOOM, copy the optval from 

user space and checks whether it is set or not. If optval is set, then filter is 

cleared, enabled flag is set to true and rule_count is set to 0 for all the 

interfaces. This option just enables the bloom filter for all the interfaces. 

When the optname is SO_RESET_BLOOM, reset all the interfaces 

filter, set enabled to false and rule_count to 0. 

When the optname is SO_SET_BLOOM, copy the optval from the user 

space using copy_from_user() system call. Now, the optval contains the 

SIGN_AND_RULES structure which contains two 5-tuple information. One 

is the rule (Source IP, destination IP, Source Port, Destination Port, Protocol) 

and other is the corresponding signature (Source IP Mask, destination IP 

Mask, Source Port Mask, Destination Port Mask, Protocol Mask) information 

and the interface for which the rule is to be enabled. The point to be noted 

here is that all the duplicate and subset signatures are removed by 

functions implemented in PFQ user space library before passing the 

signatures to kernel space as discussed in the previous section. Now, 

perform a bit-wise AND operation of the rules and its mask received. The 

hash function is a simple XOR of the obtained 5-tuple information which is 

the result of previous AND operation. The obtained 64-bit hash value is 

split into four 16-bit hash values and the corresponding 4 bits are set in the 

filter of the specified interface. The signature_count is increased for that 

particular interface if it is a unique signature. The rule_count is also 

incremented irrespective of whether the signature is unique or not. 

 



77 | P a g e  
 

5.5.2 PFQ GetSockopt() 

Static int pfq_getsockopt(struct socket *sock, int level, int optname, 

                   char __user * optval, int __user * optlen) 

 

Parameter Description 

level [in] 

The level at which the option is defined. Example. Here in this case it 

is PF_Q level. 

optname [in] 

The socket option for which the value is to be retrieved. 

Example: SO_GET_BLOOM_RULE_COUNT,SO_GET_BLOOM_STATS,

SO_GET_BLOOM_SIGNATURE_COUNT.  The optname value must be 

a socket option defined within the specified level, or behavior is 

undefined. 

optval [out] 

A pointer to the buffer in which the value for the requested option is 

to be returned. 

optlen [in, out] 

A pointer to the size, in bytes, of the optval buffer. 

 When optname is SO_GET_BLOOM_RULE_COUNT, then the interface 

index for which the rule count is to be determined is copied from user space 

by using the call copy_from_user() and then the rule count for that interface 

is returned to the user space using copy_to_user() system call. 



78 | P a g e  
 

When optname is SO_GET_BLOOM_SIGNATURE_COUNT, then the 

interface index for which the signature count is to be determined is copied 

from user space as before and then the signature count for that interface is 

returned to the user space using copy_to_user() system call. 

When optname is SO_GET_BLOOM_STATUS, then a Boolean value 

indicating whether the bloom filter is enabled or not for the system is 

returned to the user. 

5.6 Performance Analysis 

5.6.1 Experimental Setup 

Traffic generator used generates around 14 million packets per 

second. In order to consider the possible worst case, each packet is of 

minimum size which is not the case in real traffic. If a real time traffic is 

considered then the number of packets in the worst case will be around 1-2 

million per second which is far lower than the scenario that is considered 

for study. A twelve core processor is used as a part of this experimental 

setup. 

In order to understand the performance of the system in the 

presence of signature set on per interface basis, a worst case analysis is 

done by traversing through all the signatures on per packet basis even if a 

signature match occurs earlier in the signature list. Two characteristics are 

analyzed for determining the performance.  

 



79 | P a g e  
 

5.6.2 CPU load 

The number of different signatures that are inserted is increased 

linearly and the CPU load under each case is evaluated. It can be seen that 

as the number of signature increases, the CPU load also increases until a 

threshold which is 12 and then there is a drastic increase in the CPU load. 

CPU load reaches 100% when the number of signatures is 26. Another 

important point to be noted is that this 26 is the worst case threshold since 

in normal scenarios the whole signature list is generally not checked on a 

per packet basis. The signatures are ordered in such a way that most of the 

matches happen in the beginning of the list itself. In average case the 

number of signatures supported can be much higher. 

 

Figure 17: CPU Load  



80 | P a g e  
 

5.6.3 Percentage of Packet lost/Packet Offered 

Similar to the previous analysis, the same experimental setup is maintained 

and the percentage of packet lost over packet offered is analyzed. It can be 

noted that we have loss of packet right from the point where signature 

count is zero. This is due to the Intel driver used because it is a default 

driver which is not optimized for high traffic load. Here the maximum traffic 

captured by the PFQ engine is 78.5% of the traffic generated. It was found 

that till the number of signature count reached 20, there was no loss due to 

the signature checking but still the initial losses due to the driver remained. 

When the signature count starts increased above 25, the packet loss begins 

and the loss increases. 

 

Figure 18: Percentage of Packet Captured vs Packet Offered 



81 | P a g e  
 

 When the number of signature count is set to 500, only 10% of the total 

packet generated is captured. As mentioned in the CPU load analysis, it has 

to be noted that this is the worst case behavior and not all the signatures 

are verified for each packet. Hence in the average case, it can be expected 

that the packet capturing rate will be closer to 80%, just as in the best 

case.  

Future work 

In this thesis, the algorithm used for selecting the signatures 

associated with Bloom filters out of the ruleset specified by the user 

level applications is rather simple and does not reflect the actual 

statistical distribution of field‘s prefixes. The most natural step 

ahead for this research is to investigate upon possible optimization 

mechanisms in the selection of the best signatures to represent the 

whole ruleset. This may involve the use of operational research 

methods as well as clustering techniques to derive the ―best‖ 

signatures according to the statistics of prefixes distribution within 

the rules database. 

 

References: 

. [1] http://www.gsp.com/cgi-bin/man.cgi?section=2&topic=socket 

[2] http://swoolley.org/man.cgi/7/packet 

 [3] http://www.linuxjournal.com/article/4659 

[4] J. H. Salim, R. Olsson, A. Kuznetsov. Beyond Softnet. Proceedings 

of the 5th Annual Linux Showcase & Conference 2001. 

[5] http://en.wikipedia.org/wiki/Pcap 



82 | P a g e  
 

[6] Libpcap. Homepage http://www.tcpdump.org. 

[7] L. Deri. Improving passive packet capture: beyond device polling. 

Proc. of SANE, 2004. 

[8] http://www.ntop.org/products/pf_ring/  

[9] M. Dashtbozorgi, and M. A. Azgomi. A high-performance and 

scalable multi-core aware software solution for network monitoring 

[10] L. Deri Exploiting Commodity Multi-core Systems for Network 

Traffic Analysis 

[11] N.Bonelli, A. Di Pietro, S. Giordano, and G. Procissi.PFQ: a Novel 

Architecture for Packet Capturing on Parallel Commodity Hardware. 

[12] N.Bonelli, A. Di Pietro, S. Giordano, and G. Procissi. Packet 

capturing on parallel architectures. In IEEE workshop on 

Measurements and Networking, 2011. 

[13] Intel. Accelerating high-speed networking with intel I/O 

acceleration technology. White Paper, 2006. 

[14] S. McCanne, and V.Jacobson. The BSD Packet Filter: A New 

Architecture for User-level Packet Capture, USENIX conference, 1993 

[15] Francis Chang, Kang Li, Wu-chang Feng,  Approximate Packet 

Classification Caching, IEEE INFOCOM 2004 


