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ABSTRACT 

The artificial creation of the simplest forms of life (minimal cells) is a challenging 

aspect in modern synthetic biology. Quasi-cellular systems able to produce proteins 

directly from DNA can be created by encapsulating a cell-free 

transcription/translation system (PURESYSTEM™) in liposomes (10-5 – 10-7 m 

diameter). It is possible to detect the overall protein production inside these 

compartments using DNA encoding for GFP and monitoring the fluorescence 

emission over time.  

The entrapment of solutes in lipid compartments is a complex process that creates a 

population of vesicles with different internal compositions of molecular species, 

which affects the final protein production. A complete understanding of the 

distribution of solutes inside the different compartments and on its effect on the 

course of internal reactions are two relevant and still open issues in the field. 

Stochastic simulation is a valuable tool in the study of biochemical reaction at 

nanoscale range; QDC (Quick Direct-Method Controlled), a stochastic simulation 

software based on the well-known Gillespie’s SSA algorithm, was used. 

A translation model of the PURESYSTEM™ previously built in our laboratory was 

improved to describe in detail a coupled transcription/translation system with 

simultaneous elongation events on the same molecule. The dynamical coupling 

between the transcription and translation systems was assessed using logical 

formulations allowed in QDC’s syntax, thus creating sequentially dependent 

processes in the concurrent-only environment of Gillespie’s algorithm. Stochastic 

simulations were performed in order to globally fit, by sigmoid curves, the entire 

experimental dataset for protein production, with the aim to describe how the 

different composition of species affects the overall translation process. 

To the best of our knowledge, the present work is the first one describing in detail the 

stochastic behavior of the PURESYSTEM™.  Thanks to our results, an experimental 

approach is now possible, aimed at recording the GFP production kinetics in very 

small compartment, and inferring, by using the simulation as a hypotheses test 

benchmark, the internal solutes distribution, and shed light on the still unknown 

forces driving the entrapment phenomenon. 



 

1   

   

 

INTRODUCTION 

 

 

General theories for the origin of Life 
 

Life is without doubt the most tangible example of complexity: every day we unravel 

new different kinds of elegant regulation of biological phenomena as modern 

technology advances at exponential rate. Despite this rapidly evolving scenario, there 

are several engaging challenges that modern biology is nowadays facing. The topic 

regarding the Origin of Life represents one of the most interesting field of biological 

research. Two fundamental hypotheses regarding the origin of life in Earth were 

proposed: the Abiogenesis hypothesis, which describes the formation of living matter 

from a molecular evolution of inorganic compounds (“α – βίος” = non - life”); the 

Panspermia hypothesis, stating that life itself, or its primary precursors, is present 

throughout the Universe (“πᾶν” = everything, “σπέρμα” = seed), and it is carried to 

different planets by space vectors as meteorites, asteroids and so on.  

Alexander Oparin, a Russian biochemist who first developed an abiogenetic theory, 

stated in 1922: “There is no fundamental difference between a living organism and 

lifeless matter. The complex combination of manifestations and properties so 

characteristic of life must have arisen in the process of the evolution of matter.” 

Later, in 1952, Stanley Miller’s experiment tested Oparin’s theory of chemical origin 

of life, reproducing in lab the hypothetical conditions thought at the time to be 

present on early Earth, and observing the production of amino acids from simple 

inorganic chemicals: water, methane, ammonia and hydrogen [4]; this experiment 

proved that environmental condition of ancient Earth (3.5 billion years ago) allowed 

the formation of most of the molecular precursors of life. 

The Panspermia theory, from the other hand, states that life came to planet Earth 

from outer space; anyway, modern theories in this field comprise different 

formulations of this general concept [5]: the “Strong Panspermia” theory simply 

removes the problem of the origin of life from our planet to some other unknown 
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place, drawing from the idea of Exogenesis 

(the theory that suggests life formation 

outside the planet Earth), which is 

scientifically very limited and gives us no 

answers about the chemical formation of life, 

representing a more suitable idea for a sci-fi 

movie… 

“Pseudo-panspermia” hypothesis (also called 

“Weak Panspermia”) deals instead with the 

delivery of complex organic compounds from 

space. This notion has become widely 

accepted, as it takes into account the Earth 

environmental conditions in its first billion 

year of existence (the Haedean and the first 

part of the Archaean aeons), which was a 

period of massive meteoritic impacts on the 

planetary surface due to the absence of a 

shielding ozone layer. Thus, different 

molecules were brought from space to our 

planet, and probably also different prebiotic 

compounds. Data supporting this theory 

comes from studies of the well-known 

Murchison meteorite, which is proven to harbor several organic compounds, such as 

aminoacids and even nucleobases (xanthine and uracil) [6]; moreover, components 

extracted from the meteorite can form vesicular structures [1], as shown in Fig.  1, 

strengthening the “Weak Panspermia” hypothesis for the extraterrestrial origin of 

prebiotic structures. However, both the compositions of the mixture extracted from 

the Murchison meteorite and that of Miller’s experiment comprise many of the 

biochemical “bricks” that form living matter; thus, the origin of Life problem seems 

to transcend the different explanations about the exact spatial origin of the single 

chemical species, but invites us to focus the attention on their organization and on 

the different properties that emerge from their complex interactions. 

 

 

Fig.  1: Membrane formation by 
compounds from Murchison 

meteorite[1]: the vesicular nature of 
such structures is clearly visible 
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The Minimal Cell 
 

 

Autopoiesis 

 

The real challenge in the study of the origin of Life aims to understand the primary, 

simple mechanisms underlying the emergence of the minimal life form, starting from 

few, simple chemical components, regardless of their origin. Speaking of primordial 

life form we clearly refer to the fundamental unit of all known organisms, the cell. A 

cell is an autopoietic (i.e. self-producing) enclosed system, that means it is capable of 

generating its own components via a network process that is internal to its boundary 

[7]. Equally important, but more subtle, is the definition of “living cell”. Autopoiesis 

is the primal property exhibited by living organisms, but we need to define other 

attributes to draw a line between the “living” and the “non-living”. To be considered 

“alive”, a cell must exert three fundamental properties: self-maintenance, self-

reproduction and evolvability [8]. The first two are summarized by the definition of 

autopoiesis (which also includes the concept of physiological homeostasis), and 

strictly depends on the composition of the single cells, while Darwinian evolution is a 

property observable when taking into account a population over time. The study of 

the evolution of a population of different protocells is an argument of outstanding 

interest, and the efforts of future research in synthetic biology will be probably 

addressed towards this topic. 

One of the major goals of scientific research is the synthesis of artificial life in the lab, 

trying to put into practice all the aforementioned theoretical concepts; the first 

critical step in this synthetic biology approach is the definition of the minimal cell 

and its components. 
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Self-organization  

 

A general definition of “minimal cell” is not a quite simple task: even the simplest 

known living organism presents an incredible level of complexity, encompassing 

hundreds of genes and proteins; during billion years of evolution a series of 

redundancies and metabolic loops arose, continuously adding chemical complexity 

and fine molecular regulations for disparate functions, from signal transduction to 

DNA replication; therefore, it is important to consider the nature of the molecular 

ensemble a candidate living cell is comprising.  

The condition of autopoietic enclosed system implies the presence of a physical 

boundary that confines the network of process that permits the self-maintenance of 

the system. In living cells this boundary is a lipid bilayer that acts as a semi-

permeable membrane, allowing the uptake of some substances but also acting as an 

impenetrable barrier for other compounds; the lipid molecules composing the 

membrane are amphipathic molecules, such as POPC (1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphatidylcholine), formed by an hydrophilic head and long aliphatic 

tails; thanks to this peculiar structural dichotomy, lipid molecules can self-organize in 

different stable molecular structures according to the chemical environment; despite 

the local increase in order, the overall formation process of these aggregates remains 

thermodynamically favorable: the lipid molecules organize themselves in closed 

structures that negate disadvantageous interactions between water molecules and  

the long aliphatic tail of fatty acids, thus maximizing the entropy increase for solvent 

molecules; moreover, this process is also auto-catalytic for some kind of aggregates: 

the organized structures speed up their own self-assembly once a membrane 'seed' 

has formed, resembling the phenomenon of nucleation in crystals [9]. Some 

examples of stable structures that lipid molecule can spontaneously form are 

micelles, liposomes, reverse micelles and monolayers; liposomes (or, in general, 

vesicles) are the most studied lipid aggregates, and take the shape of a spherical 

compartment with an internal cavity defined by a lipid bilayer membrane. 

Liposomes are prepared mainly with two procedures: by pouring a lipid-in-ethanol 

solution into an aqueous medium (injection method) or by rehydrating a previously 

dried lipid film (film rehydration). 

By changing experimental parameters (concentrations of species, pH etc…) it is 

possible to obtain liposomes with different size and shape, spanning from 20 nm to 2 
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µm of diameter. Thus, the range of internal volumes available goes from attoliters 

(10-18) to picoliters (10-12); it is also possible to obtain giant vesicles up to 100 µm of 

diameter using other techniques, such as electroformation [10]. 

Giant vesicles are often used in different areas of supramolecular chemistry as 

biomimetic models for the 

study of mechanical properties 

of lipid membranes. 

Thanks to their significant 

size, they allow a direct 

visualization of the reactions 

and transformation 

phenomena they carry inside 

by using common optical 

microscopy. Giant Unilamellar 

Vesicles (GUVs) have been 

extensively used also in the 

field of  artificial life synthesis; 

however, GUVs do not form spontaneously, and  the  available preparation methods 

are generally troublesome [11]; indeed, GUVs represent an excellent model for 

studying cell-scale phenomena, but smaller systems, like liposomes, can 

spontaneously form without any need of external treatment. 

Liposomes self-assembly is a fundamental property for the creation of artificial 

candidates for minimal synthetic life, as it is represents a completely spontaneous 

self-organization process, arising from few interactions between simple molecules. 

During their preparation, vesicles can comprise one or even more concentrically 

nested lipid bilayers, being called uni- or multi-lamellar vesicles  (Fig.  2); liposome 

size and lamellarity can be controlled in two ways: 

 

1) using a polycarbonate membrane and forcing liposomes extrusion through 

fixed size nanopores or by sonication; 

2) acting on the chemical conditions (lipid concentration, buffer, salts, pH, etc...). 

 

Fig.  2: Different types of vesicles classified according to lamellarity 
and size[3]: Small unilamellar vesicles (SUVs), large unilamellar 

vesicles (LUVs), multilamellar vesicles (MLVs), multivesicular vesicles 
(MVVs), and giant unilamellar vesicles (GUVs).  
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The extrusion methods allows us to obtain a narrowly distributed population of 

unilamellar vesicles, but the obtained liposomes are not reflecting the results of the 

completely spontaneous self-organizations process of liposomes formation, probably 

biasing the outcoming observations. 

Considering the philosophical strategy in the search for the spontaneous mechanisms 

for the emergence of minimal cells, the second method is then preferred.  

During their formation process, liposomes encapsulate the different molecules 

present in solution; moreover, the filled vesicles can fuse with cell membranes and 

release their inner content into the cytoplasm. Thanks to these useful properties, 

liposomes are massively used in wide areas of biotechnology and nanomedicine [12],  

as they represent excellent carriers for the most diverse molecules, from DNA to 

small chemicals. 

Besides their pharmaceutical applications, vesicles are valid biomimetic systems; 

liposomes are not living organisms, but the auto-organizing behavior of such 

structures is indeed a fundamental property in defining the mechanism of formation 

of the first precursors of living cells. In the search for the minimal synthetic living 

organism, liposomes technology can be applied to enclose the minimal biochemical 

machinery sufficient to assess self-maintenance and replication. 

In fact, by encapsulating enzymes and reagent molecules it is possible to carry 

biochemical reactions inside lipid compartments  

 

 

 

A Semi-Synthetic Approach 

 

Creating de novo (from scratch) an artificial living systems using simple biomolecules 

is a challenging goal; the self-organizing behavior of lipid molecules represents 

indeed a great advancement in the field, but it is not sufficient to define an “alive” 

system able to exhibit the three fundamental properties already mentioned (self-

maintenance, self-reproduction and evolvability); unfortunately, up to date, it has 

been impossible to create a biological systems able to exhibit full living properties.  

It is possible to attempt the creation of minimal cells with different approaches; a 

top-down philosophy aims at defining the minimal set of molecular species starting 

from known complex living organism. Many studies have investigated the minimal 
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genetic information required for sustaining life [13, 14] , or the minimal size that the 

system must reach to enclose all the molecular species, which is strongly related to 

the amount of DNA content [15]. All these attempts greatly improved our knowledge 

about the essential “ingredients” a system requires to be alive; but even comprising a 

minimal genome, the biological complexity of these organism is still high, they 

enclose different hundreds of molecular species, resulting in a practical unfeasibility 

for a wet-lab approach. 

Inversely, the bottom-up approach starts by describing simple systems as they 

increase in complexity, by adding new species and creating new interactions, with the 

aim to observe how emerging properties arise from the few elementary interactions of 

the whole system; anyway, different possible pathways can bring inorganic matter 

into simple organic molecules, and different pathways can bring simple organic 

molecules into different unknown prebiotic biochemical catalysts. 

One of the major assumptions regarding the presence of prebiotic catalytic molecules 

is given by the “RNA world” theory: some models describes as it is possible to achieve 

cellular life using very few RNA molecules as catalytic agents (ribozymes) involved in 

elementary reactions for continuous self-renewal of membrane and ribozymes 

themselves [16, 17]. 

These very interesting attempts, together with other studies involving self-assembling 

biological devices [18], absolutely deserve attention, as they show how protocellular 

systems could comprise very few molecular species thus moving closer to the 

definition of minimal living organism. 

Unfortunately, these approaches are often strictly theoretical, due to the fact that 

such species, as they are described (i.e. lipid-synthesizing ribozymes), do not exist in 

nature, and so they are of little use in the experimental realm of life synthesis in 

laboratory.  

Trying to overcome the disadvantages of both the top-down and bottom-up 

philosophies, a mixed strategy has been proposed to create the possibility to master 

the problem of the artificial life synthesis from an experimental point of view. This 

strategy aims at targeting extant molecular species which can carry out determined 

cellular functions, and trying to carry these reactions “in lipo” (inside a lipid 

compartment), with the purpose to obtain an adequately complex, tangible biological 

entity (a “quasi-cellular” system) able to exhibit interesting properties, having 
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incorporated a network of biochemical reactions involving the real molecular agents 

therein. 

This approach is called semi-synthetic because it makes use of liposome technology 

for the synthesis of artificial systems not present in nature, but uses molecular 

constituents isolated from extant living organism, which are not artificial molecules 

but represent the outcome of billions of years of evolution. In the past two decades, a 

lot of experimental work following this semi-synthetic approach produced a 

significant advancement in the study of biochemical reactions inside the confined 

medium of lipid systems. 

Initially the attention was drawn towards the production of nucleic acids in 

liposomes: the polymerization of short RNA and DNA sequences and even the 

Polymerase Chain Reaction (PCR) were carried inside vesicles[19-21]. In a very recent 

work, compartmentalized DNA amplification molecules via PCR was chemically 

linked with the self-reproduction of the vesicle itself, showing a chemical synergy 

between the two processes [22, 23]. This work represents indeed an important step in 

the construction of a minimal artificial cell, even if sharing the same fundamental 

problem with the previous given examples: the enzymes which catalyze the different 

reactions (i.e. polymerases) are not regenerated in situ, and after some division cycles 

many of the newly-formed vesicles lack the biochemical machinery they need to 

assess their physiological functions (the so-called “death by dilution” effect). To 

assess a complete (“core-and-shell”) reproduction of the entire system all the 

components must be regenerated from within, implying the presence of a 

biochemical apparatus able to regenerate both internal and membrane molecules. 

The scientific attention thus shifted to accomplish protein production inside vesicles 

from DNA/RNA sequences.  

The evolutionary process greatly awarded the use of nucleic acid sequences to store 

genetic information decipherable with the use of a reading code, ultimately resulting 

in protein production from nucleic acids molecules with a process called translation. 

The discussion about the origin of the genetic code and its relevance for the 

emergence of the first proto-cells is not simple and goes outside the purpose of this 

thesis, but it is important, again, to clarify the general strategy: artificial systems are 

created by encapsulating known biological processes (as translation) in vesicles, to 

investigate the behavior of such sufficiently complex networks in a 

compartmentalized environment, trying to infer the link between such processes and 
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vesicle behavior, in terms of biochemical functionality and possible evolution 

dynamics. 

It is possible to carry the translation process inside lipid compartment by using cell-

free systems constructed with cell lysates from different sources, as wheat germ, 

rabbit reticulocytes or E. coli [24]. However, these systems lack a full control of the 

translation reaction: only a minority of the molecular components present in the 

cellular extracts participates in the translation process, and many species (i.e. 

proteases, nucleases) greatly affect the final protein production, acting with protein 

modification/degradation reactions and on the overall energy availability.  

Considering the philosophy of the semi-synthetic approach, it is fundamental to use a 

completely controllable system with a low level of complexity, where the single 

components are known and can be easily manipulated; due to this necessity and to 

the incrementing use of such in vitro systems, a novel cell-free translation system was 

created in 2001 that found great applications in biotechnology and synthetic biology 

studies[25] [26]. 
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Table 1: The PURESYSTEM, from [27] 
 

The PURESYSTEM™ 

 

 “Protein synthesis using recombinant 

elements” (PURE) system is the name of 

the cell-free translation system created in 

2001 by Ueda and collaborators [28]; they 

individually overexpressed in E. coli all 

molecular species involved in the 

prokaryotic translation process, adding a 

His-tag to each protein for easy 

purification. The total ensemble contains 

(including tRNAs) 83 species (Table 1) 

representing the minimal collection of 

components able to afford protein 

production from a DNA sequence. The 

translation process, intended as the 

physical movement of the ribosome on the 

RNA molecule while incorporating 

aminoacids in the elongating peptide, 

involves the use of the translation factors 

and the ribosome. With the aim to assist 

and improve the protein production process 

three additional processes where included: 

 

 

 

 

 

 

 

 

Translation factors 

2.7 µM IF1 
0.40 µM IF2 

1.5 µM IF3 
0.26 µM EF-G 

0.92 µM EF-Tu 
0.66 µM EF-Ts 

0.25 µM RF1 
0.24 µM RF2 
0.17 µM RF3 

0.50 µM RRF 
Aminoacyl-tRNA synthetases 

1900 U/ml AlaRS 
2500 U/ml ArgRS 
20 mg/ml AsnRS 

2500 U/ml AspRS 
630 U/ml CysRS 

1300 U/ml GlnRS 
1900 U/ml GluRS 
5000 U/ml GlyRS 

630 U/ml HisRS 
2500 U/ml IleRS 

3800 U/ml LeuRS 
3800 U/ml LysRS 
6300 U/ml MetRS 
1300 U/ml PheRS 
1300 U/ml ProRS 
1900 U/ml SerRS 
1300 U/ml ThrRS 

630 U/ml TrpRS 
630 U/ml TyrRS 

3100 U/ml ValRS 
Other enzymes 

4500 U/ml MTF 
1.2 µM ribosomes 

4.0 µg/ml creatine kinase 
3.0 µg/ml myokinase 

1.1 µg/ml nucleoside-diphosphate kinase 
2.0 units/ml pyrophosphatase 

10 µg/ml T7 RNA polymerase 
Energy sources 
2 mM ATP, GTP 
1 mM CTP, UTP 

20 mM creatine phosphate 
Buffers 

50 mM Hepes–KOH, pH 7.6 
100 mM potassium glutamate 

13 mM magnesium acetate 
2 mM spermidine 

1 mM DTT 
Other components 

0.3 mM 20 amino acids 
10 mg/ml 10-formyl-5,6,7,8-tetrahydrofolic acid 

56 A260/ml tRNAmix (Roche) 
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1) Transcription: with the addition of the T7 RNA polymerase it is possible to 

accomplish protein production directly from the corresponding cDNA 

sequence. 

 

2) Aminoacylation of tRNAs: which allows the elongation of the nascent peptide 

directly with the added aminoacids, incorporating the native reactions for 

tRNA charging and ARSs aminoacylation. 

 

 

3) Energy recycling: myokinase, nucleoside-diphosphate kinase, creatine kinase 

and creatine-phosphate were added to the system in order to regenerate the 

tri-phosphate nucleotides (ATP, GTP) during the translation process. 

 

 

The procedure for protein production is very simple: a plasmid encoding for the 

desired protein must include a T7 promoter, a Shine-Dalgarno sequence upstream 

the ORF and a T7 terminator sequence downstream the stop codon. It is also possible 

to include chaperones or other agents to ensure the correct folding of the protein 

product [27]; different functional proteins were successfully produced in vitro using 

the PURESYSTEM™, starting from their respective cDNA sequences. 

By using the PURESYSTEM™ it is possible to accomplish protein production with a 

totally defined set of molecular reagents, minimized to produce proteins with a 

minimal set of molecular factors. This feature is really appreciated considering the 

philosophy of the semi-synthetic approach and the general tendency to achieve 

complete biological functions with a minimal molecular ensemble; accordingly to this 

observation, the PURESYSTEM™ was successfully encapsulated in vesicles [29, 30]. 

The use of a DNA sequence encoding for GFP (Green Fluorescent Protein) together 

with the transcription/translation system allows to detect and monitor the protein 

production over time. Based on the fluorescent emission, quantification the protein 

production of the encapsulated PURE system is calculable; the total protein yield in 

vesicles is relatively high [29, 31] considering that only a fraction of liposomes has 

entrapped all the molecular species the transcription/translation system comprises.  
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Using the PURE system it is possible to produce functional enzymes, as reported in 

different studies aiming at synthesizing candidate minimal protocells [32, 33].  

Of particular relevance is a paper [34] which describes the in lipo production of two 

membrane proteins involved in the lipid biosynthesis pathway: sn-glycerol-3-

phosphate acyltransferase (GPAT) and lysophosphatidic acid acyltransferase 

(LPAAT). The coupled activity of this two enzymes resulted in the production (from 

soluble precursors) of phosphatidic acid, an amphipathic molecule which becomes 

part of the liposome membrane. For the first time vesicle membrane components 

were formed using catalysts produced from the liposome itself, revealing again the 

importance of using a defined, full-controllable protein synthesis device in the 

synthesis of quasi-cellular systems.  

The possibility to obtain liposomes capable of genetic expression represented a 

critical step towards the synthesis of the first minimal cell: it is crucial to point out 

that RNA and protein metabolisms represent the major part of the essential process 

for bacterial life, constituting more than 50% of the essential genes in a minimal 

genome [8, 35]. Consequently, protein-producing liposomes do represent a good 

model for a full viable cell, thus opening the way for considerations about the generic 

features of minimal cells. 

A recent work [31] used the PURESYSTEM to obtain GFP-expressing POPC 

liposomes as cell models, with the purpose of enlightening the discussion about the 

minimal size of biological entities, to compare the observed data with other 

predictions coming from different approaches to the definition of minimal-sized 

organisms [15]. A remarkable, unusual observation came out considering the size of 

such protein-synthesizing vesicles: GFP fluorescence was measured in separated bulk 

solution containing liposomes with different sizes; unexpectedly, liposomes with a 

radius of 100 nm were able to produce functional GFP protein. 

POPC vesicles cannot fuse between each other and their lipid membrane is 

impermeable to nucleic acids, proteins, and small charged particles: this means that 

all the over 80 molecules species of the PURESYSTEM have been successfully 

entrapped in such tiny volume (<10-19 liters). 

Classical statistics for encapsulation (also known as “entrapment”)  events gives zero 

or negligible probability for the co-encapsulation of the entire molecular ensemble in 

such small volume, showing how the entrapment process exhibits unexpected 

interesting properties in the nanoscale range.  
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The “Entrapment Conundrum” 

 

The observation of GFP-expressing liposomes with 100 nm of diameter is in strong 

contrast with the hypotheses that defines the encapsulation of molecules as a purely 

random phenomenon. The solute distribution of water-soluble molecules in 

micrometric lipid vesicle has previously been assumed to follow as a Poisson 

distribution [30, 36-38], which describes the entrapment event as a discrete 

stochastic variable, in a pure probabilistic fashion. 

 

 

 

Entrapment as a random event (adapted from Souza, 2009) 

 

The average number a of internalized molecules is calculated by the a priori 

probability of entrapment, which is given by the concentration of the solution 

multiplied by the internal volume (vesicles are supposed to be spherical):  

 
Eq. 1:    

 

 𝒂 = 𝑪𝒂 ×  𝟒
𝟑
𝝅 �𝒅

𝟐
− 𝝆�

𝟑
  

 

where Ca is the concentration of the specimen is solution, d is the vesicle diameter 

and ρ is the bilayer thickness (3.8 nm for POPC vesicles). According to the Poisson 

distribution, the probability to find a vesicle with n molecules of a certain specimen is 

given by the formula: 
Eq. 2: 

 

 𝑷(𝜶,𝒏) =  𝒆−𝒂 𝒂
𝒏

𝒏!
 

 

Using the Eq. 2 we can easily estimate the probability to find a vesicles which has 

enclosed at least one molecule, by calculating the difference between 1 (total 

probability) and the probability to find an “empty” vesicle (if n = 0 →  
a0

0!
 = 1): 
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Eq. 3: 
 

  𝑷(𝜶,𝒏 ≥ 𝟏) =  𝟏 − 𝒆−𝒂 
 

Taking into account the presence of co-entrapment events it is possible to use Eq. 3  

to define the probability to find a vesicle which has enclosed at least one molecule of 

each of the k species of the PURESYSTEM (N = 83); the entrapment events are 

assumed to be independent, so the equation takes the form of a product of sequences: 

 
Eq. 4: 

 

   𝑷(𝜶𝒌,𝒏𝒌 ≥ 𝟏) =  �(𝟏 − 𝒆𝒂𝒌)
𝑵

𝒌=𝟏

 

 

As reported in Eq. 1 the a priori average number a of entrapped molecule is calculated 

by taking into account the internal volume and the concentration of the species. 

Then Eq. 4 can be transformed by writing ak explicitly:    

 
 

Eq. 5: 
 

𝑷(𝜶𝒌,𝒏𝒌 ≥ 𝟏) =  �(𝟏 − 𝒆−
𝟒𝝅𝑪𝒌
𝟑 �𝒅𝟐−𝝆�

𝟑

)
𝑵

𝒌=𝟏

 

 

 

It is clearly visible that such probability heavily depends on the vesicle diameter d 

and on the concentrations of the different species (Ck); considering that all the 

PURESYSTEM macromolecular species are present in solution (Table 1) with a 

concentration <10 µM, the probability to find a 100 nm (inner diameter) liposome 

capable to afford protein production is absolutely negligible (Fig. 3). Even considering 

a possible aggregation of the PURESYSTEM species into macromolecular clusters; 

the probability to find a 100 nm filled vesicle reaches 1% only by assuming an 

increase of concentration of all species of a factor 20, which is unquestionably hard to 

justify. 

This great deviation from the expected Poisson distribution fiercely questions the 

assumption of random and independent entrapment events, revealing the presence of 
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still unknown phenomena which drive the encapsulation of biomolecules at 

nanoscale range. As noted above, fluorescence signal was measured in bulk solution, 

representing the total fluorescence emitted by the totality of GFP-expressing 

liposomes. 

 

 
Fig. 3: Probabilities of co-encapsulation of the PURESYSTEM species vs. vesicle radius; the probability for a 100 
nm liposome (black arrow) is vanishingly small, even if considering the PURESYSTEM species as organized into 
50(A), 20(B) or 10(C) macromolecular clusters; the three curves a,b,c represents the chances to entrap 1, 2 or 3 

copies of each species. From Souza, 2009[31] 
 
 

Unfortunately, it is impossible to quantify the emission signal from single liposomes 

due to experimental limitations at such nanoscale range: flow cytometry, for example, 

has a limit of detection around 500 nm, making it impossible the detection of GFP 

production in 100 nm vesicles.  

Every attempt using classical optical microscopy cannot be used to investigate the 

behavior of such small liposomes, because the resolution limit of a light microscope 

using visible light is about 300 nm, being unfeasible even to distinguish two different 

100 nm-radius liposomes in the medium. 
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Trying to better clarify this curious phenomenon, a different approach was used to 

allow a direct visualization of nanoscale liposomes with their inner content: Cryo-

Electron-Microscopy (Cryo-EM). It uses 

a beam of electrons coming form an 

excited source (generally a tungsten 

filament) to illuminate a thin target 

sample at cryogenic temperature.  

Using electron microscopy the limit of 

detection is highly extended: electrons 

have wavelengths about 100,000 times 

shorter than photons (visible light has a 

wavelength from 740 to 380 nm), making 

it possible to achieve a resolution limit 

even below the nanometer range. 

 

 

Another great advantage of Cryo-EM is that there is no need to embed the sample in 

particular resins which can alter its macromolecular structure; the sample has to be 

frozen solid, in general by using liquid nitrogen (-191 C°). The immersion in a such 

low temperature solution causes the water to turn instantaneously in a vitreous state, 

avoiding the formation of ice crystals which can destroy the sample. Negative staining 

solution as uranyl acetate are often used in the sample preparation for transmission 

cryo-electron microscopy (Cryo-TEM) experiments, since molecules as uranium or 

lead have excellent scattering properties, ultimately producing clearer images with 

high contrast when visualized at the microscope. Electron microscopy was used to 

visualize and count the number of entrapped molecules inside liposomes, trying to 

understand if there is some general process of concentration enrichment at small 

volume level.  

By using big macromolecular species or molecules rich of heavy-metal ions enclosed 

in a liposome, it is possible to directly count the entrapped molecules skipping the 

staining process (Fig. 4), that could cause some problems by destabilizing liposomes 

structure or biasing the resulting images. As “reporter” molecule, ferritin was often 

Fig. 4: Cryo-TEM image of liposomes with their 
encapsulated content, from Souza 2011[2] 
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used to directly count entrapped molecules in liposomes [39], due to its iron 

phosphate core composed by circa 4500 iron atoms. 

Recently, two papers used ferritin [40] or ribosomes [2] as entrapped species to 

estimate the distribution of solutes inside nanoscale POPC liposomes, and they found 

in both cases a spontaneous regular deviation from the Poisson model, showing 

results much far from the assumption of randomness in entrapment process. 

 

 

Power-law distribution of entrapped solutes 

 

Results from the paper involving ferritin-containing liposomes [40] showed that the 

solute distribution in nanoscale liposomes follows the same behavior, even changing 

the initial solute distribution or the liposomes preparation method: the vast majority 

of liposomes is nearly as empty, with no entrapped molecules, while a small 

percentage of the vesicle has enclosed an unexpectedly high number of solutes: the 

occupancy distribution of the internalized solutes strictly follows the Zipf-Mandlebrot   

law, that is a power-law distribution: 

 
                                           Eq. 6: 

 

𝒇(𝑵) = 𝑨(𝑵 + 𝟏)−𝒒 
 

As shown in Eq. 6 the probability to find a vesicle with N entrapped particles is equal 

to the inverse of its power, with q<0 as the exponent of the power law distribution (A 

is a normalization constant); this means that it is very likely to find a vesicle with zero 

or few N entrapped molecule, but the probability to find a vesicle with a high N 

number of particles is still sufficient to be measurable, considering the high number 

of vesicle examined in every experiment (more than 7700 liposomes were 

individually examined [40]). 

The solute concentration in the filled vesicles over-exceeds the eternal one, showing a 

strong super-concentration effect in the few, but yet measurable, internally crowded 

liposomes; moreover, this interesting behavior seems to be independent by the initial 

ferritin concentration (Fig.  5). 
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Fig.  5: Solute frequency distribution in 100 nm liposomes with different initial ferritin concentration, according 

to the Poisson probability (open symbols) vs. experimentally observed solute distributions in 100 nm 
liposomes(filled symbols). The red line is a Power law curve, which nicely fits the experimental results (from Luisi, 

2010[40]) 
 

 

As said before, this strong deviation from the expected Poisson behavior has been 

observed at nanoscale level, while the encapsulation of biomolecules in femtoliter 

volumes (inside liposomes with 1 µm of diameter) acts according to Poisson statistics 

[36]; the volume dependency of this super-crowding phenomenon seems to follow a 

power law too, resulting to be extremely marked as the vesicle diameter decreases 

[40]. 

Another recent paper [2] confirmed the strong deviation from the Poisson 

distribution of entrapped species in nanoscale liposomes by using ribosomes as 

reporter molecule: ribosomes were chosen for their biological relevance and for their 

sufficient electron-dense properties, allowing, as for ferritin, a direct visualization 

using Cryo-TEM without the need for a staining process; the power-law trend, both 

considering the occupation frequency of ribosomes in liposomes and the size 

dependence of the super-concentration effect, is once again independent from the 

initial concentration of solutes. It is interesting to note that the final ribosome 
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concentration inside the super-crowded vesicles is similar to the concentration 

measured in E. coli. 

From these results a quite universal observation seems to emerge, which describes a 

spontaneous accumulation of biomolecules during the liposome formation, which 

acts in a size-dependent manner according to a power-law behavior; regarding the 

origin of life scenario, this super-crowding effect has a great relevance in the study of 

the formation of the first protocells. Lipid compartments could have enclosed several 

biomolecules, starting from a diluted but highly heterogeneous chemical 

environment, resulting in a functional vesicle containing an ensemble of different 

molecular species, with a local concentration high enough to permit biochemical 

reactivity.  

The compartmentalization of biomolecules is indeed the critical step in the formation 

of first presumable quasi-cellular systems, and very unusual event of super-

concentration become clearly visible in the nanoscale range; a quick discussion about 

the parameters which can affect the encapsulation in liposomes is thus required, 

trying to search for a possible link between the physical parameters affecting the 

entrapment process and the generative models for power-law distributions.  

 

 

 

Physical parameters and power-law generative models 

 

The entrapment phenomenon in vesicles has always been studied in terms of 

microencapsulation yield (entrapped molecules / total number of molecules in 

solution), since liposomes are used most as drug delivery vectors; several factors 

affect encapsulation of drugs in liposomes, such as liposome size and composition, 

charge on the liposome surface, bilayer rigidity, preparation method and other 

biophysical parameters [41]. However the correlation between some parameters 

(such as vesicle size) and the microencapsulation efficiency has not been thoroughly 

discussed, as they are aspects of minor importance concerning the pharmaceutical 

use of liposomes; on the contrary, one of the “hot” topics regarding the search for the 

simplest life form is about the minimal size of cellular systems [15]. 
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As previously stated, the super-crowding effect seems to act in a size-dependent 

manner, according to a power law behavior; this means that there is a direct relation 

with volume availability, suggesting a strong role of entropic forces in driving the 

entrapment phenomenon. 

Volume exclusion is strongly related to macromolecular crowding, which is known to 

greatly affect the encapsulation efficiency in lipid compartments [42]: polymeric 

crowding agents are volume excluders, and can enhance biomolecule encapsulation 

by reducing their hydrodynamic radius. Volume exclusion affects in a greater extent 

bigger molecules, driving their condensation in crowded solutions and thus greatly 

reducing their total radius. However this enhancement phenomenon has been 

observed using protein concentrations below micromolarity, and it is not clear if a 

high concentration of ferritin or ribosomes in the micromolar order can affect their 

encapsulation: ferritin and ribosomes are big complex molecules (they have a radius 

around 6 and 9 nm, respectively), and so they can presumably act as macromolecular 

agents in concentrated solutions enhancing their self-encapsulation.  

The contribution of macromolecular concentrations in determining the anomalous 

entrapment can be related to one of the generative models of power-law distributions 

[43-45]; the percolation model, where a systems undergoes a self-organization 

process when reaching a critical state (Note: a proper explanation of these 

mathematical models goes out the aim of this thesis, but it is important to evaluate 

how these models can point out which physical parameters can represent a key 

problem to understand the underlying unknown phenomena that drive the 

anomalous entrapment process).  

The percolation model is often represented by the presence of clusters on a lattice 

square, where each square has probability to be included in a cluster of squares; when 

this probability reaches a certain critical value, the distribution of the clusters on the 

lattice follows a power-law, independently by the size of the lattice, revealing the 

scale-free behavior typical of power-law distributions [46]. 

The percolation model, however, does not give a plausible explanation for real 

systems which exhibit a power-law behavior, but the notion of criticality as  

fundamental requirement for power-law generation allowed the formulation of an 

another generative model for dynamical systems, the self-organized-criticality (SOC) 

behavior: in this model the system oscillates around a critical point, encompassing 

multiple cycles of evolution, but ultimately developing a power-law distribution of the 
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species of the system, as explained in the well-known forest fire model [47]; with 

respect to the encapsulation processes, criticality can be represented by the 

thermodynamic state of the small enclosing liposome system, where a sufficiently 

high concentration of macromolecules in the surrounding environment determines a 

certain amount of volume exclusion, driving anomalous encapsulation of 

biomolecules in the forming small lipid vesicles. To test this hypothesis more 

experiment must be performed, using lower concentration of macromolecular 

solutes, to understand if the anomalous entrapment occurs also when the solutes are 

present in submicromolar concentration, thus lowering the crowding effect on the 

system. 

Power-law distribution may rise also when the system acts according to a Random 

Walk behavior: a Random Walk is a trajectory traced out by taking subsequent 

random steps. Many phenomena in the more disparate fields, from economy to 

physics, behave in a Random Walk-like manner: for example, Brownian motion, 

which is the path traced by a molecule in an aqueous solution, can be modeled as a 

Random Walk process. 

Brownian motion acts by distributing molecules in a random manner, causing local 

superconcentration effects that can become important when approaching the 

nanoscale range. This random behavior can presumably result in a marked inequality 

in solute distribution, which is subsequently reflected in the power-law distribution 

of liposome content. In the literature there are examples reporting the contribution of 

Brownian motion in biological processes [48], mainly for the actin-myosin molecular 

motor[49], showing how the stochastic behavior of particle trajectory can determine 

the velocity of transition between different molecular states and the direction along 

the filaments. However, at this level of magnification there are strong experimental 

restrictions that limit a complete understanding of the force-generating process; at 

nanoscale level stochastic fluctuations are absolutely fundamental, and so even an 

apparently non-significant mechanism as the Brownian motion can add its 

contribution in shaping the anomalous entrapment process. 

Maybe the most common generative models for power-law distribution is the Yule 

process, also known as preferential attachment [46], which is most studied in graph 

theory, as it explains how, following a stochastic random growth, small graphs turn 

into a network organized according to a power-law distribution, where the majority of 
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nodes has got few connections and few extremely important nodes (called “hubs”)  

are highly connected with the rest of the network. Preferential attachment was 

discovered studying the speciation process in higher organisms and it is considered a 

possible candidate for the generation of the most diverse phenomena, as the 

distribution of the wealth among individuals (the “rich get richer” process), the sizes 

of cities, the number of links to pages on the World Wide Web, which are all power-

law distributed [44, 46, 50].  

The distribution of the internalized molecules in the superfilled vesicle can be 

determined by a preferential attachment behavior of the enclosing liposome 

membrane. Theoretically, lipid molecules can take contact with the solutes, attracting 

other biomolecules in the enclosure process; the more biomolecules are contacting 

the lipid membrane, the more other molecules will probably take contact with the 

enclosing liposome, resulting in a supercrowded vesicle. However, in all the Cryo-EM 

experiments, no solute aggregates were found and neither ferritin or ribosomes have 

been observed as adsorbed to the lipid membrane. Notwithstanding this, interactions 

between the lipid membrane and solutes play indeed an important role in the 

encapsulation process, as reported for DNA encapsulation using anionic lipid 

molecules [22, 36] and for internalization of drugs in niosomes [51], which are non-

ionic surfactant-based liposomes. UV spectroscopy showed how the encapsulation 

efficiency in niosomes is strongly influenced by the formation of hydrogen bonds 

between the solutes and the membrane. Moreover, interactions between proteins and 

membrane probably affect the kinetics of liposome formation by slowing down the 

enclosure of vesicle [2], allowing the internalization of more biomolecules. 

The presence of co-operative mechanism is utterly deducible; anyway, more 

experiments has to be performed to study the behavior of single vesicles in different 

chemical environments and with different membrane composition, also trying to 

evaluate the exact kinetics of vesicle formation. Single vesicle experiments  shows a 

size dependency of entrapped solute concentration [52] and permits to evaluate the 

encapsulation efficiency; for example, by using an optical trap to immobilize single 

vesicles, it is possible to evaluate their entrapped content after a photolysis process 

using an high energy laser beam [53]. Anyhow, these powerful techniques require 

some preparation steps for the vesicles, as addition of chemicals (as sucrose) aiding 

the optical manipulation, or multiple freeze and thaw cycles after vesicle formation, 

that definitely spoil the spontaneous process of liposomes self-organization and 
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influence the resultant entrapment process; the adaptation of single vesicle detection 

techniques to the semi-synthetic approach requirements will surely improve our 

knowledge about the vesicle behavior at nanoscale sizes. 

 

All these different theories try to speculate on the still obscure phenomena that 

influence the encapsulation of macromolecules, and different experimental 

procedures aim at the detection of encapsulation efficiency in single vesicles. 

However, back to the synthetic biology scenario, the outstanding relevance of this 

property (the superconcentration effect) of nanoscale vesicles lies in the ability to 

create a real entity with a moderate level of biological complexity in one single step, 

that turns unorganized molecules into a functional biological architecture which 

approximates the definition of a real cell, able to afford complex biological processes; 

therefore, more efforts in the study of protein-producing liposomes will certainly 

guide the discovery of important phenomena in the emergence of biological 

complexity. 

 

The unknown processes that drive the unusual entrapment phenomenon for ferritin 

and ribosomes are presumably the same which permit the co-encapsulation of the 

over 80 PURESYSTEM species in 100 nm liposomes; the occupancy distribution of 

the translational mixture however is not easily verifiable, as Cryo-EM allows a direct 

clear visualization for some molecules but not for proteins as translation factors or 

polymerases, which anyway remain indistinguishable in the resulting image. Using 

the PURESYSTEM in Cryo-EM experiments, a small fraction of internally dark 

liposomes was observed, suggesting, once again, the presence of few (o.1%) super-

crowded vesicles [2], but a correct measurement of the internal distribution of the 

numerous different molecular species remains an inconceivable task. 

To overcome all the experimental limitations, it is indeed useful to characterize in 

detail the behavior of encapsulated biochemical networks such as the PURESYSTEM. 

Computational modeling of biochemical processes can help understand the 

properties of complex networks of biochemical reactions, providing different 

solutions as many useful features. 
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Computational modelling of biochemical systems 

 

Computational models have been used as useful investigation tools for the most 

diverse disciplines, from economics to astrophysics, encompassing social and life 

sciences; mathematical representations of processes are used to perform computer-

assisted (in silico) simulations of the modeled systems of interest under different 

circumstances, trying to describe its global properties and make reasonable 

predictions for possible future evolutions. 

Biochemical processes can be modeled according to different criteria, and each way 

provides some fundamental assumptions which gives different insights into the 

system; thus the mathematical formalism should be adequately chosen according to 

the final purpose, to give a realistic description of the phenomenon we are 

investigating. 

Historically, biochemical systems has been represented in a deterministic way, using 

differential equation and mass-action kinetics to obtain the time course of species 

concentrations;   
Eq. 7: 

𝒅𝒙𝒊
𝒅𝒕

= 𝒇(𝒙,𝒑, 𝒕) 

 

Following Eq. 7, the concentration of a specie xi is represented as a function of the 

different concentration of species x, the parameters p and time t; considering a 

simple reaction a): 

a) 𝑆 + 𝑅 
𝑘
→  𝑃  

 

b)   𝑑𝑆
𝑑𝑡

= −𝑘[𝑆][𝑅]   c) 𝑑𝑅
𝑑𝑡

= −𝑘[𝑆][𝑅]    d) 𝑑𝑃
𝑑𝑡

= 𝑘[𝑆][𝑅] 

 
the concentrations of the three species S, R and P at time t are calculated using the 

three differential equations b), c) and d); the system can be entirely described using 

as input parameters the initial concentration of S and P and the reaction rate 

constant k. Considering more complex biochemical reaction systems, an ODE 

(Ordinary Differential Equations) system comprising all the coupled differential 
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equation for the network reactions should provide a deterministic unique solution for 

the calculation of the species amount over time, after the definition of parameters, as 

the initial species concentrations and the reaction rate constants. 

The description of a biochemical network model that uses only differential equations 

implies that the systems evolves deterministically and continuously. A continuous 

description of the system evolution can be adequate when considering a huge number 

of molecules in large sizes (as a test tube or a bulk solution), but does not take in 

consideration that molecules react individually as integer entities; moreover, 

molecules do not react in a deterministic manner, but stochastically. Chemical 

reactions take place when reactant molecules randomly hit each other, and only a 

small percentage of the collision occur with the right orientation and with a sufficient 

“activation” energy to produce a structural rearrangement and the creation of new 

chemical bonds. 

This random scenario (also known as the “collision theory”) describing (bio)chemical 

processes has not a great consequence in the analysis of large systems, where a 

deterministic kinetic description is a good and numerically cheap approximation, but 

becomes fundamental at small scales, where random fluctuation in the low molecule 

numbers becomes fundamental describing the the overall system behavior. 

The most correct way to describe the evolution of chemical system is represented by 

Molecular Dynamics simulations, that allow to track the position and the linear 

momenta of all the particles in solution, simulating all the trajectory and collision 

between molecules. Unfortunately, the computational power required for molecular 

dynamics simulations is extremely high, being unfeasible for the analysis of complex 

biochemical networks.  

Anyway, considering that only a very few number of collisions result in a chemical 

reaction it is possible to ignore the vast majority of  molecular impacts; “non-

reactive” collision, even when not giving rise to chemical reaction, affect the state of 

motion of the particles, and neglecting their effect implies a random description of 

the position and velocity of molecules. This approximation result in a system 

representation where molecules are uniformly distributed in space (the “well-stirred” 

condition), and the system evolution is described by the molecule number during 

time. 
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As said before, the positions and thus the collisions between molecules are 

randomized, hence chemical reactions can be fully described as stochastic processes. 

The transition from a kinetic continuous equation to a stochastic formulation implies 

the definition of a state vector X comprising all the species concentrations, and a 

chemical reactions Rj is  defined as the transition event between the different states. 

Rj  is characterized by two parameters: a state-change vector vj which defines the 

stoichiometry of the reaction, and the propensity aj(x)dt that defines the probability 

that one Rj reaction will occur in the next time interval dt. In a well-stirred system, 

substrate molecules hit each other whit a rate proportional to their concentrations, 

hence the propensities are calculated according to the mass action law for the 

different orders of reactions (Table 2). 

 
Table 2: Conversion between reaction rate constant k and propensities for different orders of reactions, from 

Klipp, 2009 [54] 
 

Reaction order Formula Propensity  Scaling 

0 NULL -> … aj=cj cj=kj V 

1 A -> … aj=cj xA cj= kj 

2  A+B -> …  aj=cj xA xB cj= kj /V 

2 2A -> … aj=½ cj xA (xA-1) cj= kj /V 

 

However, this stochastic formalization implies the presence of irreversible reaction 

up to the second order: thus, equilibria or higher order reactions has to be formulated 

by splitting them in elementary one- or bimolecular unidirectional reactions. 

The probability for a certain state X (which comprises the molecular concentrations 

of all the chemical species xi) to change in the time interval dt is defined by the 

Chemical Master Equation (CME): 

 
Eq. 8: 

 

𝛿𝑃(𝑋,𝑡 |𝑋0,𝑡0)
𝛿𝑡

=  ∑ [(𝑎𝑗�𝑋 − 𝑣𝑗�𝑀
𝑗=1 𝑃�𝑋 − 𝑣𝑗 , 𝑡 �𝑋0, 𝑡0) −  𝑎𝑗(𝑋)𝑃(𝑋, 𝑡 |𝑋0, 𝑡0)]  

 

In the left positive term are enumerated the possibilities to enter the state X w with a 

reaction vj, while the negative term, to the right, collects all the realizations that exit 

from the state X. Every possible state X gives rise to a differential equation as the Eq. 

8 and obtaining analytical solution for the CME for every state X is a very difficult 
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task; for large systems, we can ignore fluctuations in molecule number, and the CME 

is reduced to the Reaction Rate Equation(Eq. 9), here written in terms of propensities 

and transition vectors: 
 

Eq. 9: 
 

𝑑𝑋(𝑡)
𝑑𝑡

=  �𝑣𝑗𝑎𝑗(𝑋(𝑡))
𝑀

𝑗=1

 

 

Anyway, as the molecule number becomes small, fluctuations cannot be ignored, and 

a deterministic description becomes uncorrect, thus the use of the RRE is unjustified. 

There are different methods that can describe the evolution of a system using the 

same formalization of the CME to define chemical reactions, but without the need to 

find analytical solutions or approximating to a purely deterministic behavior.  

 In 1976 Daniel Gillespie proposed a stochastic simulation algorithm [13] for chemical 

reactions with continuous time and treating molecular species as integer, discrete 

particles. 

 

 

 

Gillespie’s Stochastic Simulation Algorithm  

 

Individual random realizations of the system are calculated according to their 

probabilities, which are defined drawing from the same probability density function 

defined in the CME; properly distributed random numbers are generated to 

determine the time course of the different reactions: a first random number sets the 

time dt to the next reaction R, and another random value determines the index j of 

that reaction, thus defining the state-change vector vj and the evolution of the system 

to the next state: 

The variable τ defines the time to the next reaction,  and is randomly distributed with 

a mean that is the inverse of the total sum of propensities a0, as follows: 
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Eq. 10: 
 

𝜏 =  
−ln (𝑟1)
𝑎0

 

 

The first random number r1 thus defines the time evolution, while a second random 

number r2 is generated to determine the index j for the next reaction R that will occur 

in the previously chosen time interval τ: 

 
Eq. 11: 

𝑗 = 𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: �𝑎𝑘 > 𝑟2𝑎0

𝑗

𝑘=1

 

 

Once that the time interval and the reaction have been chosen, the reactions fires as 

an instantaneous process and the system is updated and the next transition is chosen 

this process is repeated iteratively until the end of the simulation, yielding a 

stochastic representation of the entire set of (bio)chemical reactions according to 

their probabilities; the overall time course of state transitions can be described in 

following steps: 

 

1) System initialization (t=t0); reactions, species and their amount are declared 

(X=X0) 

2) Propensities for all reactions are calculated 

3) Random variables  τ and j are calculated using the propensities as probability 

weights  

4) The reaction instantaneously occurs and the systems is updated (t=t0+ τ; 

X=X+vj) 

5) The algorithm outputs X and t  

6) Re-iterate from step 2) until the end of simulation. 

 

The step succession depicted above describes the Direct Method (DM) [55] 

implementation of the Gillespie’s algorithm, while similar formulations have been 

proposed, as the First Reaction Method (FRM) [56] or the Next Reaction Method 

(NRM) [57], which have a differ succession of the single computation steps, but are 
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proven to be equally exact realization of CME, being probabilistically correct and 

theoretically founded.  

DM first computes the total propensites, and then it defines separately the variables τ 

and j, while FRM computes one time τ for each reaction j, and then makes a selection 

for the smallest time with the corresponding reaction. NRM optimizes the FRM re-

computations. The choice between DM and FRM depends on the characteristic of the 

simulated system, but generally DM performs better than FRM [58] . 

In general, Gillespie’s SSA is simple to be implemented, but it requires a relatively 

high computational power and exhibits some problems (as ODE systems also do) 

when dealing with highly heterogeneous systems: since all the reactions take place as 

instantaneous events, there is no difference between very fast or slow reactions 

involving the time required for the reaction to take place, producing a common 

problem known as stiffness: time steps are dependent by the sum ao of all 

propensities (Eq. 10);  systems with very fast reactions result in very small time steps; 

only fast reaction are very likely to occur when the time step is small (Eq. 11). The 

combined effect of these phenomena cause the computation to take excessively 

smaller step sizes than what is necessary for the accuracy requirement to easily follow 

the system dynamics; trying to overcome these general drawbacks, different solutions 

were proposed, as the firing of reactions in a delayed fashion [59]. 

Another method, called the tau-leaping method [60, 61], sacrifices the exactness of 

the algorithm by simulating not individual events, but it considers a fixed time 

interval τ and compute an ensemble of multiple reactions that will occur in that time 

interval; this simulation approach is faster to compute than the standard SSA, but it 

represents an approximated method, because propensities are assumed to remain 

constants in the fixed time interval τ. Intuitively, as τ becomes large the 

approximation error increases, and the assumption of constant propensities can lose 

its justification; thus, the tau-leaping method is most used when working with large 

numbers of molecules. As the number of molecules increases, the SSA suffer the high 

computational cost, and other method can be used to easily compute the system 

dynamics.  

Some methods uses mixed approaches, with differential equations and Gillespie’s 

SSA used for different processes in the same system; as the particle numbers 

increases, other approaches can be used to describe system dynamics, as the 
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Chemical Langevin Equation (CLE) [62], a Stochastic Differential Equation which 

adds a random stochastic term of noise normally distributed (Gaussian white noise) 

to the deterministic formulation of chemical reactions, yielding a continuous, but still 

stochastic, description of the system. 

 
Fig.  6: Different mathematical formulations of chemical systems, with their assumptions and general features. 

 

These different mathematical formulations allow correct descriptions for many 

chemical systems, from small environments to large complex systems for a wide 

range of volumes, providing different solutions under different general assumptions 

(Fig.  6). Of course, the choice for a correct mathematical formulation has to be 

made purposefully: a biological problem can be realistically described considering its 

real characteristics, but the adequateness of a mathematical model principally 

depends on the particular aspects we are trying to elucidate, which determine the 

level of detail we are currently focusing on. 
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STATE OF THE ART AND THESIS AIM 

 

GFP-expressing nanoscale liposomes represent the smallest biological objects capable 

of genetic expression, opening the way for different consideration for the definition of 

minimal living organism. Different experimental restrictions are currently limiting 

the investigation on such synthetic systems at the nanoscale range, where stochastic 

simulation proved to be a valuable tool, providing a correct description of small 

chemical environments, where randomness and uncertainty cannot be described 

simply as an additive noise factor, but they represents the fundamental forces which 

drive the overall behavior of the system.  

A model for the transcription/translation module (PURESYSTEM) was previously 

published by our research team [63], comprising over 100 biochemical reactions with 

their kinetic coefficients; although this model is very complex, it was conceived to 

give a qualitative description of protein synthesis in different sized compartments, 

according to different entrapment models. As every first attempt, it contained some 

simplifications: 

 

1) the presence of multiple elongating ribosomes on the same RNA molecule was 

not described; 

2) protein production was conceived without taking into account aminoacids 

consumption; 

3) the transcription process was not included; 

 

These three problems are deeply intertwined, because the transcription and the 

translation processes are dynamically coupled: ribosomes bind to the Shine-Dalgarno 

sequence (the ribosomal binding site, or RBS) as soon as it is available, even if the 

complete RNA sequence has not been entirely produced yet. This means that the 

translation process begins as the RNA polymerase is still transcribing the RNA 

molecule, and the two processes (transcription and translation) cannot be treated 

separately.  

Moreover, different ribosomes were detected as progressing along the same RNA 

molecule synthesizing the same protein, forming a cluster of ribosomes named 
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polysome or polyribosome; the same phenomenon was observed for transcription: 

multiple RNA polymerases can simultaneously transcribe the same DNA molecule. 

The aim of my thesis was to create a suitable model for the PURESYSTEM reaction 

network that can describe correctly all these interdependent processes, to give 

subsequently, using stochastic simulation experiments, a quantitative description of 

the system behavior in different experimental conditions. 

Gillespie’s SSA describes a chemical environment were all the reactions compete with 

each other and are randomly chosen with a frequency which oscillates around a value 

defined by their propensity. This formulation depicts a concurrent-only environment, 

and a stochastic formalization of a system where sequential processes occur with a 

defined order of succession represents indeed a difficult task. 

This new improved in silico formalization of the PURESYSTEM has to account for a 

detailed description of the single molecular reactions; aminoacids and nucleotides 

must be consumed in the right quantities to ultimately produce proteins and RNA, 

permitting a correct evaluation of the system dependency by the initial amount of the 

different species, consumables included.  

Stochastic simulation experiments will determine how the different composition of 

species affects the overall GFP production kinetics in small volumes.  
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METHODS 

 

 

 

In silico experiments were performed using QDC (Quick Direct-method Controlled, 

http://gillespie-qdc.sourceforge.net/ ), a simulation software previously built in our 

lab to perform stochastic simulation of biochemical systems. QDC uses the Gillespie’s 

Stochastic Simulation Algorithm with the Direct Method implementation, yielding a 

correct description of small biochemical system as the one we are investigating, 

where molecules act as integer numbers and randomness represents an important 

force driving the biochemical reactions. 

 

 

 

QDC (Quick Direct-Method Controlled) 
 

 

Structure and Outputs 

 

QDC has a core written in the C++ language, represented by a single C++ source file, 

parser.cpp; when this file is compiled it generates an executable file (parser) which 

can accept the input file, creating another source file, named engine.cpp; the 

compilation of this additional source file creates the last executable file engine, that 

ultimately runs the simulation (Fig.  7).  

http://gillespie-qdc.sourceforge.net/
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Fig.  7: The architecture of QDC software (http://sourceforge.net/projects/gillespie-qdc/) 

 

The simulation is launched by specifying the total duration of the simulation and the 

sampling frequency by which the simulator outputs the system status, in three .csv 

(Comma-separated values) files, that can easily be imported in a spreadsheet, using 

familiar softwares such as OpenOffice Calc or Microsoft Excel™: 

 

<input_filename>_reagents.csv  

<input_filename>_reactioncounts.csv 

<input_filename>_reactions.csv  

 

where <input_filename> is the name of the input file used. 

 

The reagents.csv file contains the time course of the species during the simulation, 

reporting in columns the declared species and in rows their respective amount, 

written as integer numbers, according to the sample frequencies: a simulation of 

1000 simulated seconds with a sample frequency of 1 second outputs a reagents file 
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with 1000 rows, where the nth row contains the molecule amount after n seconds of 

simulations. 

The reactioncounts.csv file enumerates the sum of all the occurrence of each 

reactions during the simulation, while the reactions.csv file comprises the time 

course of the propensities of the different reactions. It is worth to specify that 

propensities and species amount are instantaneous values: for example, a value for 

the molecule a = 0 in a time interval  t1 – t2  does not imply that the reaction a -> b 

has never been fired in that time interval, because the reaction may have occurred 

with a velocity greater than the sample frequency; also the propensity for that 

reaction will be, of course, zero, and that is a typical situation where the 

reactioncounts file comes into help, reporting the cumulative number of the fired 

reactions, and thus avoiding possible misinterpretation about the system dynamics. 

 

 

 

SYNTAX AND USEFUL FEATURES 

 

QDC accepts as input file a normal ASCII text file, that can be easily written using a 

standard text editor; the file has to be structured in different blocks separated by a 

blank line; in the first block all the biochemical species of the system are declared, 

separated by a comma. 

The second block specifies the total volume of our system, measured in liters, which 

is subsequently used for the calculation of propensities (see Table 2). 

The third area contains all the biochemical reactions of the system: in each line, the 

first value represent the kinetic rate constant of the reaction, followed by the reagents 

species and their respective products, separated by the reaction arrow (the  “>” 

symbol); it is possible to simulate the exchange of molecule with the environment,  by 

using the “null” term in substitution of the reagents (uptake) or products (excretion); 

as specified in the previous chapters, only reaction up to the 2nd order are allowed, 

but QDC allows to write reactions with complex stoichiometry in form of “immediate” 

reactions, defined by the presence of the hyphen symbol (“-“) in substitution of the 

rate constant, but with reagents and products normally written as described before; 



36   

   

immediate reactions lack a real rate constant, and they are instantaneously fired 

once the reagents have reached the correct stoichiometric conditions; thus, 

immediate reactions are not real biochemical events that occur according to their 

probabilities, but they represents logical statements, allowing for description of 

complex events which cannot be easily included in form of standard biochemical 

processes (Fig.  8).  

The fourth block contains the number of molecules supplied to the system together 

with the time they are supplied (when time=0 the species are present from the 

beginning of the simulation); the last two blocks are optional, and concern the 

eventual presence of control variables: it is possible, for example, to simulate the 

addition of an effector molecule by changing the reaction rate of a desired equation at 

a specified time. 

 

 
Fig.  8: an example of immediate reactions with the resulting reagents.csv output file; the A molecule is 

continuously added by the uptake reaction:  null->A; the immediate reaction produces one C molecule every 30 A 
molecule; notice the resulting oscillatory behavior of the A specie. 

 

 

 

QDC proved to be an efficient stochastic simulation software when compared to other 

widely used biochemical simulator, and presents some very useful features, which 

allowed the construction of a realistic in silico model of the PURESYSTEM reactions 

network. 
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RESULTS AND DISCUSSION 

 

 

 

In Silico PURESYSTEM model 
 

The simultaneous elongation events present in the transcription/translation system 

depict a scenario with multiple sequential interdependent processes; Fig. 8 shows a 

representative case trying to clarify better this complex situation. 

 

 
Fig. 9: Multiple elongation events in transcription and translation processes, see text for details. 

 

As said before, a ribosome starts the translation process binding to the RBS, which is 

a RNA sequence produced in the initial stage of the transcription process; (A) the 

ribosome cannot incorporate aminoacids and subsequently move forward if the 

polymerase has not yet produced a sufficiently long RNA sequence; (B) as long as 

transcription continues, new nucleotides are incorporated, the RNA molecule is 

elongated, and the ribosome can continue the translation process and progress along 

the RNA strand, while a new polymerase bind to DNA and begins to produce a new 

RNA molecule, by keeping a certain distance from the other elongating polymerase 

due to steric repulsions. 

The correct spacing between polymerases and between ribosomes, and, subsequently, 

a consistent occupancy of RNA and DNA sites, can be fulfilled by splitting all the 

species involved in the elongation events (DNA, RNA, polymerases and ribosomes) 
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into different entities representing molecular states, and describing their evolution 

coherently (Fig.  10).  

  

 
Fig.  10: Transcription/translation events using multiple molecular states, see text for explanations. 

  

 

The progression from a state to another is thus easily defined: (A) a newly-bond 

polymerase (T7) can advance to the next DNA sequence (DNA1) which is free,  and 

the ribosome (RIB1) can begin to incorporate aminoacids and move forward, because 

the RNA sequence has been extended and the adjacent site (RNA2) is free; in the next 

stage (B), polymerases and ribosomes have advanced, consequently releasing the site 

they were previously occupying; accordingly, a new polymerase (T7) and a new 

ribosome (RIB) can bind to their respective target molecules, and start the elongation 

processes.  

The presence of multiple states allows a coherent description of the different steps, 

but the formalization of the events that describe the forward motion of ribosomes and 

polymerases it is not an easy task. As explained before, Gillespie’s SSA depicts a  

concurrent environment where all reactions are randomly chosen according to their 

propensities during the simulation. Transcription and translation are two processes 

which act in a sequential fashion, and the correct progression of the elongating 

molecules cannot be described using the standard notation for biochemical reaction. 

The solution to this problem was assessed using logical statements written in form of 

reactions present in the QDC syntax, the aforementioned immediate reactions, which 

were massively used in this new model to regulate the forward motion of polymerases 

and ribosomes, accounting for correct spacing and coupling. 

The DNA sequence encoding for GFP was divided, according its length, into different 

multiple species, each representing a 80 bp sequence; polymerases bind to the first 
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DNA sequence and start the transcription process, according to their efficiency; the 

polymerization process is divided into different reactions to describe a second-order 

reaction for nucleotide binding, and a first-order reaction for nucleotides 

incorporation which returns the polymerase molecule (which can bind to another 

nucleotide, see the blue arrows) and a “dummy” product, that allows to track the 

number of nucleotides incorporated in the RNA molecule (the term dummy comes 

from computer science language, where dummy variables are arbitrary chosen 

variable employed for temporary purposes); the immediate reactions determines the 

transition to the next step, ensuring the following conditions: a) an adjacent DNA site 

is available, b) a correct number of nucleotides has been added to the RNA sequence, 

c) the corresponding RNA sequence is produced, d) the previously occupied DNA site 

is released. Here it is an example for transcription process at the fourth step (GTP 

and ATP are considered): 

 

 

1000000, T7EL4 + GTP > T7pregEL4  

28, T7pregEL4 > T7EL4 + Pi + gtr4 

1000000, T7EL4 + ATP > T7preaEL4  

28, T7preaEL4 > T7EL4 + Pi + atr4 

-, 20 gtr4 + 20 atr4 + T7EL4 + DNA5 > T7EL5 + RNA4 + DNA3 

 

 

This reaction “box” was duplicated different times ensuring the correct succession of 

molecular states; when only one DNA molecule is available, the polymerases advance 

one by one, separated by at least one DNA site between each other (elongating RNA 

polymerases are separated each other by at least 80 bp). The transcription process 

thus developed was able to produce RNA molecules with an average transcription 

rate of 28-40 nucleotides per second (depending on the DNA concentration), which is 

in good agreement with data present in literature [64, 65]. 

The same strategy was used to describe the translation reactions (note, here the 

dissociation reactions are included due to their relevance for the overall translation 

process): 
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5000000, eR2 + EFaRGTP > EX2  

0.2, EX2 > eR2 + EFaRGTP 

30, EX2 > eRa2 + EFtuGDP + Pi 

5000000, eRa2 + EFgGTP > EXb2  

0.3, EXb2 > eRa2 + EFgGTP 

30, EXb2 > EFg + GDP + Pi + eR2 + tRNA + TRANSL2  

-, 27 TRANSL2 + RNA4 + PEPT1 + eR2 > eR3 + PEPT2 + RNA2 

 

An elongating ribosome (eR2) binds the complex which carry the aminoacid 

(EFaRGTP), after which moves to the next codon, aided by the elongation factor EFg 

charged with GTP (EFgGTP); this translocation reaction yield ad additional product 

which is used to regulate the progression to the next state. 

After a fixed number of translocation steps (the minimal space between two 

elongating ribosomes is, curiously as for polymerases, 80 nt ≈ 27 codons) an 

immediate reaction occurs in a similar fashion as seen for transcription: 1) the correct 

amount of aminoacids are incorporated, and thus consumed; 2) the next free RNA 

site is occupied and 3) the previous one is therefore liberated; 4) an entity named 

PEPT is also produced, allowing to calculate the length of the peptide sequence 

produced so far: for example, if 4 species named PEPT3 are present in a certain time 

of the simulation, this means that there are 4 peptides, still bound to the ribosomes, 

with a length spanning from 27 x 3= 81 to 27 x 4= 108 aminoacids. 

 

The portrayed model includes the single biochemical reactions comprised in the  

transcription\translation interaction network, avoiding the use of simplified average 

macroscopic measures for the formalization of initiation, elongation or termination 

events. Moreover, this formalization accounted for the presence of ordered sequential 

events: all the elongation processes take into account the steric repulsions between 

molecules and the correct sites occupancies. 

The introduction of new reactions during the simulation can depict the presence of 

multiple elongation events, as reported in other stochastic models [66].  

Anyway, the addition of new events at fixed times during the simulation can 

jeopardize the stochastic nature of biochemical processes, while in our formulation 

all these sequential dependencies were included inside the model using the 

immediate reactions. Here,  the dynamical coupling between the multiple elongation 
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events is accounted in the model formulation itself, and the system evolves, according 

to its stochastic nature, depending solely on its internal biochemical composition. 

 

As pointed out in the introduction, POPC vesicle do not fuse and their membrane is 

impermeable to big molecules and small charged particles, and therefore all the 

species are confined into the internal volume; thus the model for the encapsulated 

PURESYSTEM does not need to include any uptake or excretion reaction. 

The overall system behavior is of course influenced by its initial conditions, and all 

the species influence the overall kinetics of protein productions in different ways. 

 

 

 

 

Stochastic simulation experiments 
 

Stochastic simulations were performed to test how protein production kinetics are 

affected by the internal composition of the system; different input files were used, 

using the concentrations of the PURESYSTEM species as reported in Table 1, but 

lowering the initial quantities of DNA, total enzymes or consumables,  to 2/3 or 1/3 of 

their original value, for a total of 33=27 combinations; each combination is defined by 

a series of 3 digits, accounting for DNA, Enzymes or Consumables; each digit 

contains a number which is 0,1 or 2, meaning respectively 1/3, 2/3 or 3/3 of their 

normal concentration. 

For example, “201” means 3/3 of DNA, 1/3 of enzymes and 2/3 of consumables (see 

Table 3). The first set of simulation was performed simulating the PURESYSTEM in a 

compartment of 10-14 liters, representing a vesicle with ≈ 2µm of diameter, to study 

the general behavior of the system in presence of large number of molecules.  
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Table 3: Different combination of DNA, Enzymes of Consumables of the PURESYSTEM with the respective 
concentrations 

 

SAMPLE 
NAME DNA ENZYMES CONSUMABLES 

 
 

RNApol aaRS ribosome tRNA AAs NTPs 
 µM µM µM µM µM µM µM 

222 0,333 0,100 0,200 1,200 1,91 300 2000 
221 0,333 0,100 0,200 1,200 1,273 200 1333 
220 0,333 0,100 0,200 1,200 0,637 100 667 
212 0,333 0,067 0,130 0,800 1,91 300 2000 
211 0,333 0,067 0,130 0,800 1,273 200 1333 
210 0,333 0,067 0,130 0,800 0,637 100 667 
202 0,333 0,033 0,067 0,400 1,91 300 2000 
201 0,333 0,033 0,067 0,400 1,273 200 1333 
200 0,333 0,033 0,067 0,400 0,637 100 667 
122 0,214 0,100 0,200 1,200 1,91 300 2000 
121 0,214 0,100 0,200 1,200 1,273 200 1333 
120 0,214 0,100 0,200 1,200 0,637 100 667 
112 0,214 0,067 0,130 0,800 1,91 300 2000 
111 0,214 0,067 0,130 0,800 1,273 200 1333 
110 0,214 0,067 0,130 0,800 0,637 100 667 
102 0,214 0,033 0,067 0,400 1,91 300 2000 
101 0,214 0,033 0,067 0,400 1,273 200 1333 
100 0,214 0,033 0,067 0,400 0,637 100 667 
022 0,109 0,100 0,200 1,200 1,91 300 2000 
021 0,109 0,100 0,200 1,200 1,273 200 1333 
020 0,109 0,100 0,200 1,200 0,637 100 667 
012 0,109 0,067 0,130 0,800 1,91 300 2000 
011 0,109 0,067 0,130 0,800 1,273 200 1333 
010 0,109 0,067 0,130 0,800 0,637 100 667 
002 0,109 0,033 0,067 0,400 1,91 300 2000 
001 0,109 0,033 0,067 0,400 1,273 200 1333 
000 0,109 0,033 0,067 0,400 0,637 100 667 

 

Stochastic simulation experiments did not require high computational power: short 

simulation with low volumes and few particle numbers were performed using a 

standard dual-core CPU laptop, while calculations involving higher volumes and 

thousands of species were performed via remote access with a 8-core machine with 

medium computational power.  

The output files for each combination were imported in SigmaPlot™ (SyStat 

Software), and data for protein production over time was fitted by a 3-parameter 

Sigmoid Curve (Eq. 12) using the Nonlinear Regression tool: 
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Eq. 12: 
 

𝑦 =
𝑎

1 + 𝑒−(𝑥−𝑥0𝑏 )

 

 

The resulting estimated parameters represents:  

a = maximum value of protein produced 

x0= time value for y=a/2 

b = maximum slope of the curve (a low value for b indicates an high steepness) 
 

 
Fig.  11: Protein production curve using the 122 input file: data comes from 4 simulation replicates. 

 

Simulated data was nicely fitted (R2 > 0.98)  by the sigmoid curves (Fig.  11), except 

for cases in which the simulation yielded a low number of proteins (>10), where 

differences within replicates become significant.  

The parameter comparison for different inputs revealed how changes in the initial 

amount of species severely affects the overall protein production (Table 4). 
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Table 4: Parameter estimation for different protein production time-courses; in green-scale very low protein 
productions, in red-scale high protein yield.  Simulation were performed in 4 replicates for each input file 

 (volume = 10-14). 
 

Data Source: 000  Data Source: 001  Data Source: 002  

a 1,5014 a 40,6271 a 144,6786 

b 140,3791 b 603,8102 b 1059,195 

x0 2439,411 x0 3890,285 x0 5801,185 

Data Source: 010  Data Source: 011  Data Source: 012  

a 9,7658 a 269,8977 a 868,675 

b 113,8108 b 293,4997 b 528,8943 

x0 1125,974 x0 1986,326 x0 2774,823 

Data Source: 020  Data Source: 021  Data Source: 022  

a 39,3244 a 756,1448 a 2386,73 

b 75,1161 b 203,958 b 362,4964 

x0 760,8157 x0 1276,52 x0 1804,794 

Data Source: 100  Data Source: 101  Data Source: 102  

a 0,25 a 30,8911 a 105,6872 

b 0,0603 b 493,2288 b 799,1214 

x0 1392,439 x0 3267,887 x0 4683,551 

Data Source: 110  Data Source: 111  Data Source: 112  

a 2,9981 a 183,8399 a 658,9507 

b 53,143 b 229,806 b 394,3518 

x0 955,1248 x0 1645,187 x0 2297,454 

Data Source: 120  Data Source: 121  Data Source: 122  

a 16,7787 a 519,7821 a 1730,463 

b 55,6302 b 158,144 b 267,0586 

x0 640,5336 x0 1060,858 x0 1464,773 

Data Source: 200  Data Source: 201  Data Source: 202  

a 0,25 a 23,338 a 87,9321 

b 0,0521 b 444,6386 b 752,4419 

x0 1743,425 x0 2954,022 x0 4498,174 

Data Source: 210  Data Source: 211  Data Source: 212  

a 2,0019 a 156,3254 a 597,2295 

b 83,6926 b 203,526 b 361,6856 

x0 906,5084 x0 1543,768 x0 2148,991 

Data Source: 220  Data Source: 221  Data Source: 222  

a 9,2609 a 433,5804 a 1573,636 

b 44,0768 b 140,5483 b 240,864 

x0 594,6098 x0 999,6463 x0 1360,217 
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Not all the combinations led to an efficient protein yield, and parameters 

comparisons considering their outputs are obviously biased by the low numbers of 

proteins molecules produced. 

 

An high DNA concentration slightly accelerates the overall protein production 

(parameter b decreases); however, the overall protein yield (parameter a) diminishes 

as the DNA amount increases; in fact, although being a more rapid process, protein 

production with high DNA concentrations stops at lower time values (see parameter 

x0). 

Simulations carried with a lower amount of enzymes concentrations resulted in a 

strong decrease of protein yield: a change from 3/3 to 2/3 in enzymes concentration 

determined a reduction in protein yield to circa 38% of the total; an additional 

reduction in enzymes concentration to a 1/3 of the original value led to a 5,5% of 

produced protein if compared to the 3/3 of enzymes condition. Very slow kinetics 

(high values for b and x0) are observed as the enzymes concentration decrease. 

The amount of consumables is absolutely the determining factor for the overall 

production: input files with 1/3 of the concentrations of consumables yielded a 

maximum of 39 protein molecules (internal concentration ≈ 6nM),  in presence of 

high enzyme and low DNA amounts. 

The highest protein production is afforded when DNA is low and enzyme and 

consumables are present in maximum quantity (sample “022”), reaching a total of 

approximately 2380 proteins (final concentration = 0.39 µM) 

The different protein yields for the different PURESYSTEM combinations were tested 

also in small volumes (10-16 liters, corresponding to a vesicle with 570 nm of 

diameter); parameters were extracted after data fitting using the same procedure 

discussed before.  
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Table 5: Parameter estimation for different protein production time-courses; in green-scale very low protein 
productions, in red-scale high protein yield. Simulation were performed in 4 replicates for each input file 

 (volume = 10-16). 
 

Data Source: 000  Data Source: 001  Data Source: 002  
a 0 a 0,767 a 2,0714 
b 1 b 650,6759 b 1647,123 
x0 2 x0 3898,484 x0 5879,842 
Data Source: 010  Data Source: 011  Data Source: 012  
a 0,25 a 2,2798 a 9,5395 
b 0,0529 b 374,4029 b 425,8866 
x0 1266,554 x0 1902,351 x0 2381,602 
Data Source: 020  Data Source: 021  Data Source: 022  
a 0,25 a 6,7965 a 26,5048 
b 0,0555 b 199,6762 b 376,7406 
x0 783,5081 x0 1252,539 x0 1808,302 
Data Source: 100  Data Source: 101  Data Source: 102  
a 0 a 0,25 a 0,9845 
b 1 b 0,0597 b 866,2825 
x0 2 x0 2934,46 x0 4245,203 
Data Source: 110  Data Source: 111  Data Source: 112  
a 0 a 2,006 a 6,811 
b 1 b 204,4793 b 399,1548 
x0 2 x0 1318,435 x0 2236,633 
Data Source: 120  Data Source: 121  Data Source: 122  
a 0 a 3,7441 a 16,2867 
b 1 b 152,321 b 240,3424 
x0 2 x0 1014,37 x0 1461,434 
Data Source: 200  Data Source: 201  Data Source: 202  
a 0 a 0 a 1,0079 
b 1 b 1 b 455,6501 
x0 2 x0 2 x0 5001,928 
Data Source: 210  Data Source: 211  Data Source: 212  
a 0,25 a 1,7573 a 6,8644 
b 0,056 b 177,7419 b 466,6417 
x0 893,5071 x0 1553,995 x0 2141,824 
Data Source: 220  Data Source: 221  Data Source: 222  
a 0 a 2,7726 a 15,1471 
b 1 b 135,219 b 258,7586 
x0 2 x0 1044,23 x0 1388,208 
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Results show as only some combinations for system internal composition can 

efficiently afford protein synthesis (Table 5), reaching a maximum of approximately 

26 proteins (final protein concentration ≈ 0.44 µM) for the “022” sample, as seen also 

for simulations in higher volumes. The general trend for protein yield and its 

dependencies by DNA, enzymes and consumables concentrations are similar as 

described for higher volumes. 

 

Additional stochastic simulation were performed to evaluate the translation and 

transcription kinetics with lower DNA concentrations. Data for protein production, 

transcription reaction and GTP depletion rates was fitted as described before, and the 

extracted parameters were compared (Fig.  12). 

 

 

 
Fig.  12: Parameter comparison for simulated data using lower DNA initial amounts. Note that parameter b 

increases as the reaction kinetics become slower (see text for details). Volume 10-14 liters. 
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As DNA concentration decreases, the transcription process slows down, resulting in a 

minor GTP consumption (b parameters increases for both transcription and GTP 

depletion rates). GFP production kinetics are slower but the total protein yield is 

increased to a total of over 11.000 GFP molecules (≈ 1.8 µM). 

These preliminary results about the general behavior for different composition of the 

PURESYSTEM showed how the determining factor which guides the protein 

production efficiency is the energy availability. 

When DNA concentration is high, transcription produces immediately many 

ribosomal binding sites and the translation initiation (which is one of the rate-

limiting process of protein production) is more likely to occur, resulting in a more 

rapid protein production kinetic compared with inputs containing lower DNA 

concentrations; at the same time, the transcription process consumes a large amount 

of nucleotides during the RNA elongation process.  

Translation factors (IF1, Ef-Tu etc…) use GTP as energy donor, thus the lack of GTP 

molecules causes the translation process, and subsequently protein production, to 

stop. Nucleotide di-phosphate kinase can provide additional GTP molecule from the 

ATP pool, but the additional GTP is consumed by transcription or in the intermediate 

translation steps, unlikely resulting in the formation of a significant number of new 

complete proteins. 

When using lower initial DNA concentrations (>100 nM) this competition effect 

between the transcription and translation processes for energy resources becomes a 

clearer phenomenon: in fact, results from simulation performed using initial DNA 

concentrations of 50 and 10 nM showed how the lower transcription rate resulted in a 

minor GTP consumption, which allowed the translation process to continue. 

 The total protein yield reached a value up to 1.8 µM considering a compartment of 

10-14 liters of internal volume, which is in very good agreement with experimental 

measures in GFP-expressing giant lipid vesicles of equal volume [36].  

Although maximizing the protein yield, low DNA concentrations determine a slow 

kinetic of protein production: simulation performed using even lower DNA amounts 

resulted in unfeasibly slow GFP productions. Furthermore, protein production using 

very low DNA amounts encompasses several hours of time, and self-inactivating 

phenomena, which probably involve ribosomes inactivation, were experimentally 

observed after approximately 3 hours from the beginning of the experiment [67]. 
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Anyway, these phenomena are still not well described for the PURESYSTEM, and 

seems to have a significant effect only after different hours of protein production. 

 

For what concerns the other molecular participants, aminoacids concentration never 

drops to zero, even for low consumables combinations, exerting in this preliminary 

data a role of secondary importance in the determination of protein production 

kinetics.  

A small initial amount of enzymes resulted in slow kinetics with very low protein 

production, even in presence of low DNA concentration and medium energy 

availability; of course not all the enzymes do have the same effect of the system 

behavior: RNA polymerase is one of the key factor which determines the rate of GTP 

depletion from the system, exerting the same effect of DNA on the overall protein 

yield.  

 

 

Obtained results suggests how a high protein production yield can be afforded when 

DNA concentrations are low and enzymes are present in high quantity, while many 

other combinations resulted in very low protein productivity. 

These observations, which must still be experimentally validated, point out how 

vesicles do not need to encapsulate high amount of DNA to efficiently afford protein 

production, but that an high concentration of enzymes and nucleotides can determine 

a substantial rate of GFP production. More data about the entrapment phenomenon 

in liposomes has to be analyzed and discussed, with the aim to compare the behavior 

of the PURESYSTEM in small systems of different nature, such as water-in-oil 

droplets, which represent another interesting system for in lipo protein-expression 

studies [68].  
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CONCLUSIONS 

 

For the first time, a detailed stochastic description of the transcription/translation 

process was given. All the real topological constraints for the elongation reactions 

were included inside the model, allowing for the presence of sequential processes, 

and then yielding a more realistic picture of the overall phenomenon.  

Results obtained by the stochastic simulation experiments can surely aid studies 

about the entrapment phenomenon, by highlighting the presence of some “key” 

molecules which have a primal role in driving protein production, which can be a 

possible target for preferential encapsulation hypotheses.  

 

The creation of suitable models can be of great help in assisting experimentation, 

allowing to impose in silico perturbations on the system and make well-founded and 

testable predictions, where most information about the internal system dynamics are 

not accessible by experimental approaches.  
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APPENDIX 

 

PURESYSTEM model with its original composition, volume 10-16 liters (≈ 570 nm 

vesicle): 

 
DNA0, DNA1, DNA2, DNA3, 

DNA4, DNA5, DNA6, DNA7, 

DNA8, T7preEL, T7pregELa, 

T7pregELb, T7pregELc, T7, T7IN, 

T7EL, T7EL2, T7EL3, T7EL4, 

T7EL5, T7EL6, T7EL7, T7EL8, 

T7EL9, T7preaEL,  T7preaELa,  

T7preaELb,  T7preaELc, 

T7preaEL2, T7preaEL3, 

T7preaEL4, T7preaEL5, 

T7preaEL6, T7preaEL7, 

T7preaEL8, T7preaEL9, T7pregEL, 

T7pregELa, T7pregELb, T7pregELc, 

T7pregEL2, T7pregEL3, 

T7pregEL4, T7pregEL5, 

T7pregEL6, T7pregEL7, 

T7pregEL8, T7pregEL9, T7ELa, 

T7ELb, T7ELc, gtr1, gtr1a, gtr1b, 

gtr1c, gtr2, gtr3, gtr4, gtr5, gtr6, 

gtr7, gtr8, gtr9, atr1, atr1a, atr1b, 

atr1c, atr2, atr3, atr4, atr5, atr6, 

atr7, atr8, atr9, TRANSL1, 

TRANSL2, TRANSL3, TRANSL4, 

TRANSL5, TRANSL6, TRANSL7, 

TRANSL8, TRANSL9, RNATOT, 

PEPT0, PEPT1, PEPT2, PEPT3, 

PEPT4, PEPT5, PEPT6, PEPT7, 

PEPT8, RNA1, RNA2, RNA3, 

RNA4, RNA5, RNA6, RNA7, RNA8, 

RNA9, DNA, BS, R, RBS, RBS1, 

RBS2, RBS3, ATP, GTP, ADP, GDP, 

AMP, PPi, Pi, IF1, IF2, IF3, 

IF2GTP, IX, EFts, EFtu, EFtuGTP, 

EFtuGDP, EFg, EFgGTP, 

EFaRGTP, EFX, EX0, EX1, EX2, 

EX3, EX4, EX5, EX6, EX7, EX8, 

EX9, RF, RFGTP, TX, PROT, 

TRANSL0, RNAEND, preeR1, eR0, 

eR1, eR2, eR3, eR4, eR5, eR6, eR7, 

eR8, eR9, eRSTOP, eRa0, eRa1, 

eRa2, eRa3, eRa4, eRa5, eRa6, 

eRa7, eRa8, eRa9, tRNA, aa, Syn, 

aaSyn, aaAMPSyn, aatRNA, AX, 

AX2, PPase, AK, AKP, NDK, NDKP, 

CK, CKP, CrP, Cr, Q, W, Z, Y, D, H, 

C, N, J, K, L, M, Met, MSyn, 

aaMSyn, aaAMPMSyn, MtRNA, 

MetRNA, AMX, AMX2, MTF, 

MetMTF, FTHF, MetFMTF, 

fMetRNA, THF, EXb0, EXb1, 

EXb2, EXb3, EXb4, EXb5, EXb6, 

EXb7, EXb8, EXb9, tuts, EFY 

 

volume, 0.0000000000000001 

 

10000000, DNA0 + T7 > T7IN 

2.9, T7IN > DNA0 + T7  

-, DNA > DNA0 + DNA1 + DNA2 + 

DNA3 + DNA4 + DNA5 + DNA6 + 

DNA7 + DNA8 

0.36, T7IN > T7preEL 

-, T7preEL + DNA1 > T7EL 

1000000, T7EL + GTP > T7pregEL  

28, T7pregEL > T7EL + Pi + gtr1 

1000000, T7EL + ATP > T7preaEL  

28, T7preaEL > T7EL + Pi + atr1 

-, 5 gtr1 + 5 atr1 + T7EL > T7ELa 

1000000, T7ELa + GTP > 

T7pregELa 

28, T7pregELa > T7ELa + Pi + gtr1a 

1000000, T7ELa + ATP > 

T7preaELa 

28, T7preaELa > T7ELa + Pi + atr1a 

-, 5 gtr1a + 5 atr1a + T7ELa > 

T7ELb 

1000000, T7ELb + GTP > 

T7pregELb 

28, T7pregELb > T7ELb + Pi + 

gtr1b 

1000000, T7ELb + ATP > 

T7preaELb 

28, T7preaELb > T7ELb + Pi + 

atr1b 

-, 5 gtr1b + 5 atr1b + T7ELb > 

T7ELc 

1000000, T7ELc + GTP > 

T7pregELc 

28, T7pregELc > T7ELc + Pi + gtr1c 

1000000, T7ELc + ATP > 

T7preaELc 

28, T7preaELc > T7ELc + Pi + atr1c 

-, 5 gtr1c + 5 atr1c + T7ELc + DNA2 

> T7EL2 + DNA0 + BS + RNA1 

1000000, T7EL2 + GTP > 

T7pregEL2  

28, T7pregEL2 > T7EL2 + Pi + gtr2 

1000000, T7EL2 + ATP > 

T7preaEL2  

28, T7preaEL2 > T7EL2 + Pi + atr2 

-, 20 gtr2 + 20 atr2 + T7EL2 + 

DNA3 > T7EL3 + RNA2 + DNA1 

1000000, T7EL3 + GTP > 

T7pregEL3  

28, T7pregEL3 > T7EL3 + Pi + gtr3 

1000000, T7EL3 + ATP > 

T7preaEL3  

28, T7preaEL3 > T7EL3 + Pi + atr3 

-, 20 gtr3 + 20 atr3 + T7EL3 + 

DNA4 > T7EL4 + RNA3 + DNA2 

1000000, T7EL4 + GTP > 

T7pregEL4  

28, T7pregEL4 > T7EL4 + Pi + gtr4 

1000000, T7EL4 + ATP > 

T7preaEL4  

28, T7preaEL4 > T7EL4 + Pi + atr4 

-, 20 gtr4 + 20 atr4 + T7EL4 + 

DNA5 > T7EL5 + RNA4 + DNA3 

1000000, T7EL5 + GTP > 

T7pregEL5  
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28, T7pregEL5 > T7EL5 + Pi + gtr5 

1000000, T7EL5 + ATP > 

T7preaEL5  

28, T7preaEL5 > T7EL5 + Pi + atr5 

-, 20 gtr5 + 20 atr5 + T7EL5 + 

DNA6 > T7EL6 + RNA5 + DNA4 

1000000, T7EL6 + GTP > 

T7pregEL6  

28, T7pregEL6 > T7EL6 + Pi + gtr6 

1000000, T7EL6 + ATP > 

T7preaEL6  

28, T7preaEL6 > T7EL6 + Pi + atr6 

-, 20 gtr6 + 20 atr6 + T7EL6 + 

DNA7 > T7EL7 + RNA6 + DNA5 

1000000, T7EL7 + GTP > 

T7pregEL7  

28, T7pregEL7 > T7EL7 + Pi + gtr7 

1000000, T7EL7 + ATP > 

T7preaEL7  

28, T7preaEL7 > T7EL7 + Pi + atr7 

-, 20 gtr7 + 20 atr7 + T7EL7 + 

DNA8 > T7EL8 + RNA7 + DNA6 

1000000, T7EL8 + GTP > 

T7pregEL8  

28, T7pregEL8 > T7EL8 + Pi + gtr8 

1000000, T7EL8 + ATP > 

T7preaEL8  

28, T7preaEL8 > T7EL8 + Pi + atr8 

-, 20 gtr8 + 20 atr8 + T7EL8 > 

T7EL9 + RNA8 + DNA7 

1000000, T7EL9 + GTP > 

T7pregEL9  

28, T7pregEL9 > T7EL9 + Pi + gtr9 

1000000, T7EL9 + ATP > 

T7preaEL9  

28, T7preaEL9 > T7EL9 + Pi + atr9 

-, 20 gtr9 + 20 atr9 + T7EL9 > T7 + 

RNA9 + RNATOT + RNAEND + 

DNA8 

1000000, aa + Syn > aaSyn  

1, aaSyn > aa + Syn 

1000000, aaSyn + ATP > AX 

0.1, AX > aaSyn + ATP 

100, AX > aaAMPSyn + AMP + PPi 

1000000, aaAMPSyn + tRNA > 

AX2 

0.01, AX2 > aaAMPSyn + tRNA 

0.84, AX2 > aatRNA + Syn 

1000000, aatRNA + EFtuGTP > 

EFaRGTP 

1, EFaRGTP > aatRNA + EFtuGTP 

5000000, eR0 + EFaRGTP > EX0 

0.2, EX0 > eR0 + EFaRGTP 

30, EX0 > eRa0 + EFtuGDP + Pi 

5000000, eRa0 + EFgGTP > EXb0 

0.3, EXb0 > eRa0 + EFgGTP 

30, EXb0 > EFg + GDP + Pi + 

preeR1 + MtRNA + PEPT0 + 

TRANSL0 

-, TRANSL0 + RNA2 + preeR1 > 

eR1 

5000000, eR1 + EFaRGTP > EX1  

0.2, EX1 > eR1 + EFaRGTP 

30, EX1 > eRa1 + EFtuGDP + Pi 

5000000, eRa1 + EFgGTP > EXb1  

0.3, EXb1 > eRa1 + EFgGTP 

30, EXb1 > EFg + GDP + Pi + eR1 + 

tRNA + TRANSL1  

-, 27 TRANSL1 + PEPT0 + RNA3 + 

eR1 > eR2 + PEPT1 + BS + RNA1 

5000000, eR2 + EFaRGTP > EX2  

0.2, EX2 > eR2 + EFaRGTP 

30, EX2 > eRa2 + EFtuGDP + Pi 

5000000, eRa2 + EFgGTP > EXb2  

0.3, EXb2 > eRa2 + EFgGTP 

30, EXb2 > EFg + GDP + Pi + eR2 

+ tRNA + TRANSL2  

-, -, 27 TRANSL2 + PEPT1 + RNA4 

+ eR2 > eR3 + PEPT2 + RNA2 

5000000, eR3 + EFaRGTP > EX3  

0.2, EX3 > eR3 + EFaRGTP 

30, EX3 > eRa3 + EFtuGDP + Pi 

5000000, eRa3 + EFgGTP > EXb3  

0.3, EXb3 > eRa3 + EFgGTP 

30, EXb3 > EFg + GDP + Pi + eR3 

+ tRNA + TRANSL3  

-, 27 TRANSL3 + PEPT2 + RNA5 + 

eR3 > eR4 + PEPT3 + RNA3 

5000000, eR4 + EFaRGTP > EX4  

0.2, EX4 > eR4 + EFaRGTP 

30, EX4 > eRa4 + EFtuGDP + Pi 

5000000, eRa4 + EFgGTP > EXb4  

0.3, EXb4 > eRa4 + EFgGTP 

30, EXb4 > EFg + GDP + Pi + eR4 

+ tRNA + TRANSL4  

-, 27 TRANSL4 + RNA6 + PEPT3 + 

eR4 > eR5 + PEPT4 + RNA3 

5000000, eR5 + EFaRGTP > EX5  

0.2, EX5 > eR5 + EFaRGTP 

30, EX5 > eRa5 + EFtuGDP + Pi 

5000000, eRa5 + EFgGTP > EXb5  

0.3, EXb5 > eRa5 + EFgGTP 

30, EXb5 > EFg + GDP + Pi + eR5 

+ tRNA + TRANSL5  

-, 27 TRANSL5 + RNA7 + PEPT4 + 

eR5 > eR6 + PEPT5 + RNA5 

5000000, eR6 + EFaRGTP > EX6  

0.2, EX6 > eR6 + EFaRGTP 

30, EX6 > eRa6 + EFtuGDP + Pi 

5000000, eRa6 + EFgGTP > EXb6  

0.3, EXb6 > eRa6 + EFgGTP 

30, EXb6 > EFg + GDP + Pi + eR6 

+ tRNA + TRANSL6  

-, 27 TRANSL6 + RNA8 + PEPT5 + 

eR6 > eR7 + PEPT6 + RNA6 

5000000, eR7 + EFaRGTP > EX7  

0.2, EX7 > eR7 + EFaRGTP 

30, EX7 > eRa7 + EFtuGDP + Pi 

5000000, eRa7 + EFgGTP > EXb7  

0.3, EXb7 > eRa7 + EFgGTP 

30, EXb7 > EFg + GDP + Pi + eR7 

+ tRNA + TRANSL7  

-, 27 TRANSL7 + RNA9 + PEPT6 + 

eR7 > eR8 + PEPT7 + RNA7 

5000000, eR8 + EFaRGTP > EX8  

0.2, EX8 > eR8 + EFaRGTP 

30, EX8 > eRa8 + EFtuGDP + Pi 

5000000, eRa8 + EFgGTP > EXb8  

0.3, EXb8 > eRa8 + EFgGTP 

30, EXb8 > EFg + GDP + Pi + eR8 

+ tRNA + TRANSL8  

-, 27 TRANSL8 + RNA9 + PEPT7 + 

RNAEND +eR8 > eR9 + PEPT8 + 

RNA7 

5000000, eR9 + EFaRGTP > EX9  

0.2, EX9 > eR9 + EFaRGTP 

30, EX9 > eRa9 + EFtuGDP + Pi 

5000000, eRa9 + EFgGTP > EXb9  

0.3, EXb9 > eRa9 + EFgGTP 

30, EXb9 > EFg + GDP + Pi + eR9 

+ tRNA + TRANSL9  

-, 27 TRANSL9 + eR9 + PEPT8 > 

eRSTOP + RNA8 + RNA9  

0.18, IX > eR0 + IF1 + IF2 + IF3 + 

GDP + Pi 

100000, eRSTOP + RFGTP > TX 

1, TX > eRSTOP + RFGTP 

10, TX > R + RF + GDP + Pi + 

PROT + tRNA + RNAEND 

1000000, RBS + fMetRNA > IX 
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0.23, IX > RBS + fMetRNA 

100000, IF2 + GTP > IF2GTP 

1.8, IF2GTP > IF2 + GTP 

100000, IF1 + R > RBS1 

1, RBS1 > IF1 + R 

100000, RBS1 + IF3 > RBS3 

1, RBS3 > IF3 + RBS1 

100000, RBS3 + IF2GTP > RBS2 

1, RBS2 > IF2GTP + RBS3 

100000, RBS2 + BS > RBS 

1, RBS > RBS2 + BS 

50000, EFtu + GTP > EFtuGTP 

200000, EFtu + GDP > EFtuGDP 

1000000, EFtu + EFts > tuts 

0.002, EFtuGDP > EFtu + GDP 

10000000, EFtuGDP + EFts > EFX 

400, EFX > EFtuGDP + EFts 

175, EFX > tuts + GDP 

0.01, tuts > EFtu + EFts 

1000000, tuts + GDP > EFX 

400000, tuts + GTP > EFY 

90, EFY > tuts + GTP 

60, EFY > EFtuGTP + EFts 

10000000, EFtuGTP + EFts > EFY 

0.01, EFtuGTP > EFtu + GTP 

10000, EFg + GTP > EFgGTP 

1.8, EFgGTP > EFg + GTP 

100000, RF + GTP > RFGTP 

1.8, RFGTP > RF + GTP 

100, PPase + PPi > PPase + Pi + Pi 

100000, AK + ATP > Y 

40, Y > AK + ATP 

120, Y > AKP + ADP 

100000, AK + ADP > Z 

90, Z > AK + ADP 

120, Z > AKP + AMP 

100000, AKP + AMP > W 

40, W > AKP + AMP 

120, W > AK + ADP 

100000, AKP + ADP > Q 

90, Q > AKP + ADP 

120, Q > AK + ATP 

100000, NDK + ATP > D 

60, D > NDK + ATP 

60, D > NDKP + ADP 

100000, NDK + GTP > H 

60, H > NDK + GTP 

60, H > NDKP + GDP 

100000, NDKP + ADP > C 

60, C > NDKP + ADP 

60, C > NDK + ATP 

100000, NDKP + GDP > N 

100, N > NDKP + GDP 

60, N > NDK + GTP 

100000, CK + ATP > K 

1, K > CK + ATP 

120, K > CKP + ADP 

100000, CKP + ADP > J 

0.1, J > CKP + ADP 

480, J > CK + ATP 

100000, CK + CrP > L 

20, L > CK + CrP 

480, L > CKP + Cr 

100000, Cr + CKP > M 

20, M > Cr + CKP 

150, M > CK + CrP 

100000, Met + MSyn > aaMSyn 

0.9, aaMSyn > Met + MSyn 

100000, aaMSyn + ATP > AMX 

0.1, AMX > aaMSyn + ATP 

100, AMX > aaAMPMSyn + AMP + 

PPi 

100000, aaAMPMSyn + MtRNA > 

AMX2 

0.01, AMX2 > aaAMPMSyn + 

MtRNA 

2.5, AMX2 > MetRNA + MSyn 

100000, MetRNA + MTF > 

MetMTF 

0.01, MetMTF > MetRNA + MTF 

100000, MetMTF + FTHF > 

MetFMTF 

1, MetFMTF > MetMTF + FTHF 

1.3, MetFMTF > fMetRNA + THF + 

MTF 

 

DNA0, 0, 0 

DNA1, 0, 0 

DNA2, 0, 0 

DNA3, 0, 0 

DNA4, 0, 0 

DNA5, 0, 0 

DNA6, 0, 0 

DNA7, 0, 0 

DNA8, 0, 0 

T7pregELa, 0, 0 

T7pregELb, 0, 0 

T7pregELc, 0, 0 

T7preaELa, 0, 0 

T7preaELb, 0, 0 

T7preaELc, 0, 0 

T7ELa, 0, 0 

T7ELb, 0, 0 

T7ELc, 0, 0 

gtr1, 0, 0 

atr1, 0, 0 

gtr1a, 0, 0 

atr1a, 0, 0 

gtr1b, 0, 0 

atr1b, 0, 0 

gtr1c, 0, 0 

atr1c, 0, 0 

gtr2, 0, 0 

atr2, 0, 0 

gtr3, 0, 0 

atr3, 0, 0 

gtr4, 0, 0 

atr4, 0, 0 

gtr5, 0, 0 

atr5, 0, 0 

gtr6, 0, 0 

atr6, 0, 0 

gtr7, 0, 0 

atr7, 0, 0 

gtr8, 0, 0 

atr8, 0, 0 

gtr9, 0, 0 

atr9, 0, 0 

TRANSL0, 0, 0 

TRANSL1, 0, 0 

TRANSL2, 0, 0 

TRANSL3, 0, 0 

TRANSL4, 0, 0 

TRANSL5, 0, 0 

TRANSL6, 0, 0 

TRANSL7, 0, 0 

TRANSL8, 0, 0 

TRANSL9, 0, 0 

preeR1, 0, 0 

eR0, 0, 0 

eR1, 0, 0 
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eR2, 0, 0 

eR3, 0, 0 

eR4, 0, 0 

eR5, 0, 0 

eR6, 0, 0 

eR7, 0, 0 

eR8, 0, 0 

eR9, 0, 0 

eRa0, 0, 0 

eRa1, 0, 0 

eRa2, 0, 0 

eRa3, 0, 0 

eRa4, 0, 0 

eRa5, 0, 0 

eRa6, 0, 0 

eRa7, 0, 0 

eRa8, 0, 0 

eRa9, 0, 0 

EX0, 0, 0 

EX1, 0, 0 

EX2, 0, 0 

EX3, 0, 0 

EX4, 0, 0 

EX5, 0, 0 

EX6, 0, 0 

EX7, 0, 0 

EX8, 0, 0 

EX9, 0, 0 

EXb0, 0, 0 

EXb1, 0, 0 

EXb2, 0, 0 

EXb3, 0, 0 

EXb4, 0, 0 

EXb5, 0, 0 

EXb6, 0, 0 

EXb7, 0, 0 

EXb8, 0, 0 

EXb9, 0, 0 

RNATOT, 0, 0 

T7EL, 0, 0 

T7ELa, 0, 0 

T7ELb, 0, 0 

T7ELc, 0, 0 

T7EL2, 0, 0 

T7EL3, 0, 0 

T7EL4, 0, 0 

T7EL5, 0, 0 

T7EL6, 0, 0 

T7EL7, 0, 0 

T7EL8, 0, 0 

T7EL9, 0, 0 

T7pregEL, 0, 0 

T7pregELa, 0, 0 

T7pregELb, 0, 0 

T7pregELc, 0, 0 

T7pregEL2, 0, 0 

T7pregEL3, 0, 0 

T7pregEL4, 0, 0 

T7pregEL5, 0, 0 

T7pregEL6, 0, 0 

T7pregEL7, 0, 0 

T7pregEL8, 0, 0 

T7pregEL9, 0, 0 

T7preaEL, 0, 0 

T7preaELa, 0, 0 

T7preaELb, 0, 0 

T7preaELc, 0, 0 

T7preaEL2, 0, 0 

T7preaEL3, 0, 0 

T7preaEL4, 0, 0 

T7preaEL5, 0, 0 

T7preaEL6, 0, 0 

T7preaEL7, 0, 0 

T7preaEL8, 0, 0 

T7preaEL9, 0, 0 

PEPT0, 0, 0 

PEPT1, 0, 0 

PEPT2, 0, 0 

PEPT3, 0, 0 

PEPT4, 0, 0 

PEPT5, 0, 0 

PEPT6, 0, 0 

PEPT7, 0, 0 

PEPT8, 0, 0 

RNA1, 0, 0 

RNA2, 0, 0 

RNA3, 0, 0 

RNA4, 0, 0 

RNA5, 0, 0 

RNA6, 0, 0 

RNA7, 0, 0 

RNA8, 0, 0 

RNA9, 0, 0 

RNAEND, 0, 0 

DNA, 0, 20 

T7, 0, 6 

T7IN, 0, 0 

BS, 0, 0 

R, 0, 72 

RBS, 0, 0 

RBS1, 0, 0 

RBS2, 0, 0 

RBS3, 0, 0 

Cr, 0, 0 

ADP, 0, 0 

GDP, 0, 0 

AMP, 0, 0 

PPi, 0, 0 

Pi, 0, 0 

IF1, 0, 163 

IF2, 0, 24 

IF3, 0, 90 

IF2GTP, 0, 0 

IX, 0, 0 

EFts, 0, 39 

EFtu, 0, 55 

EFtuGTP, 0, 0 

EFtuGDP, 0, 0 

EFg, 0, 15 

EFgGTP, 0, 0 

EFaRGTP, 0, 0 

EFX, 0, 0 

RF, 0, 17 

RFGTP, 0, 0 

TX, 0, 0 

PROT, 0, 0 

Syn, 0, 54 

aaSyn, 0, 0 

aaAMPSyn, 0, 0 

aatRNA, 0, 0 

AX, 0, 0 

AX2, 0, 0 

PPase, 0, 5 

AK, 0, 6 

AKP, 0, 0 

NDK, 0, 1 

NDKP, 0, 0 

CK, 0, 3 

MSyn, 0, 3 

aaMSyn, 0, 0 

MTF, 0, 4 

MetMTF, 0, 0 

CKP, 0, 0 

eRSTOP, 0, 0 

ATP, 0, 120440 

GTP, 0, 120440 

CrP, 0, 1204400 

tRNA, 0, 5395 

aa, 0, 343254 

Met, 0, 18066 
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aaAMPMSyn, 0, 0 

MtRNA, 0, 135 

MetRNA, 0, 0 

AMX, 0, 0 

AMX2, 0, 0 

FTHF, 0, 1271966 

Q, 0, 0 

W, 0, 0 

Z, 0, 0 

Y, 0, 0 

D, 0, 0 

H, 0, 0 

C, 0, 0 

N, 0, 0 

J, 0, 0 

K, 0, 0 

L, 0, 0 

M, 0, 0 

MetFMTF, 0, 0 

fMetRNA, 0, 0 

THF, 0, 0 

tuts, 0, 0 

EFY, 0, 0 

 

 

PURESYSTEM reagents list, with a quick description of their biological counterparts: 

 
DNA --> DNA sequence 

T7 --> T7 RNA Polymerase 

T7IN --> T7 RNA Polymerase bound with DNA 

T7pre(g/a)EL --> T7 RNA Polymerase with bound ATP or GTP 

T7EL --> Elongating T7 RNA Polymerase 

(g/a)tr --> Fictitious species used to regulate transition steps during transcription 

TRANSL --> Fictitious species used to regulate transition steps during translation 

eR,, eRa, EX ,EXb --> Elongating ribosome at different stages (binding aminoacids, elongation factors etc..) 

RNA --> RNA sequence (RNATOT --> full length RNA sequence) 

PEPT --> Fictitious species used to track peptide elongation stages 

IF1, IF2, IF3   --> Translation Initiation Factors  

R  --> Free ribosome 

RBS, RBS1, RBS2, RBS3  --> Pre-initiation complex  

BS  --> Ribosome Binding Site (on RNA)  

aatRNA  --> Free aminoacyl-tRNA  

IX  --> Initiation Complex  

EFtu, EFts, EFg  --> Translation Elongation Factors  

EFX --> Guanosine exchange reaction intermediate  

EFaRGTP  --> Ternary complex (aminoacyl-tRNA + EF-Tu + GTP)  

tRNA  --> free tRNA  

eRSTOP  --> Ribosome with Stop codon in A-site  

TX  --> Translation termination complex  

RF  --> Ribosome Release Factors  

PROT  --> Complete protein  

aa  --> Free aminoacids  

Syn  --> Aminoacyl-tRNA synthetases  

aaSyn  --> Charging intermediate (aminoacid bound to aminoacyl-tRNA  synthetase)  

AX  --> Charging intermediate (ATP bound to aminoacyl-tRNA  synthetase)  

aaAMPSyn  --> Aminoacylation intermediate (AMP , aminoacid bound to   

aminoacyl-tRNA synthetase)  

AX2  --> Aminoacylation intermediate (tRNA bound to aminoacyl-tRNA  synthetase)  

PPase  --> Pyrophosphatase  

AK(P)  --> Adenylate kinase (phosphorylated)   
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NDK(P)  --> Nucleoside-diphosphate kinase (phosphorylated)  

CK(P)  --> Creatine kinase (phosphorylated)  

Cr(P)  --> Creatine ((phosphorylated)  

Met,  --> Free methionine  

MSyn,  --> Methionyl-tRNA synthetase  

aaMSyn,  --> Charging intermediate  

aaAMPMSyn,  -->  Aminoacylation intermediate  

MtRNA,  --> Free Met-anticodon tRNA  

MetRNA,  --> Free Met-acylated tRNA  

AMX,  --> Charging intermediate  

AMX2,  --> Aminoacylation intermediate  

MTF,  --> Methionyl-tRNA formyltransferase  

MetMTF,  --> Formylation intermediate  

FTHF,  --> 10-formyltetrahydrofolate  

MetFMTF,  --> Formylation intermediate  

fMetRNA,  --> Free formylmethionyl-tRNA  

ATP, ADP, AMP --> Adenosine tri-, di-, mono- phosphate  

GTP, GDP --> Guanosine tri-, di- phosphate  

THF,  --> Tetrahydrofolate  

Pi, PPi --> Inorganic phosphate, pyrophosphate  

Q, W, Z, Y, D, H, C, N, J, K, L, M   --> Energy recycling intermediates 
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