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Abstract

Some of the most common decisions to be taken within a logistic systems at an oper-
ational level are related to the design of the vehicle routes. Vehicle Routing Problems
and Arc Routing Problems are well-known families of problems addressing such de-
cisions. Their main difference is whether service demand is located at the vertices or
the edges of the operating network.

In this thesis we focus on the study of several arc routing problems. We concen-
trate on three families of problems. The first family consists of Multi Depot Rural
Postman Problems, which are an extension of Rural Postman Problems where there
are several depots instead of only one. The second family of problems that we study
are Location-Arc Routing Problems, in which the depots are not fixed in advance, so
their location becomes part of the decisions of the problem. We finally study Target-
Visitation Arc Routing Problems, where the service is subject to an ordering prefer-
ence among the connected components induced by demand arcs. Different models
are studied for each considered family. In particular, two different Multi Depot Rural
Postman Problem models are considered, which differ in the objective function: the
minimization of the overall transportation cost or the minimization of the makespan.
Concerning Location-Arc Routing Problems, we study six alternative models that dif-
fer from each other in their objective function, whether there is an upper bound on
the number of facilities to be located, or whether there are capacity constraints on the
demand that can be served from selected facilities. Finally, two Target-Visitation Arc
Routing Problem models are studied, which differ from each other in whether or not
it is required that all the required edges in the same component are visited consecu-
tively.

The aim in this thesis is to provide quantitative tools to the decision makers to
identify the best choices for the design of the routes. To this end and for each con-
sidered problem, we first study and analyze its characteristics and properties. Based
on them we develop different Integer Linear Programming formulations suitable for
being solved trough branch-and-cut. Finally, all formulations are tested trough exten-
sive computational experience. In this sense, for Multi Depot Rural Postman Prob-
lems and Location-Arc Routing Problems we propose natural modeling formulations
with three-index variables, where variables are associated with edges and facilities.
For some of the models we also present alternative formulations with only two-index
variables, which are solely associated with edges. Finally, for the Target-Visitation Arc
Routing Problems we propose three different formulations, two alternative formula-
tions for the general case, and one for the clustered version, where all the edges in the
same components are served sequentially, which exploits some optimality conditions
of the problem.
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Resum

Algunes de les decisions més habituals que es prenen en un sistema logístic a nivell
operatiu estan relacionades amb el disseny de rutes de vehicles. Els coneguts Vehi-
cle Routing Problems i Arc Routing Problems són famílies de problemes que s’ocupen
d’aquest tipus de decisions. La principal diferència entre ambdós recau en si la de-
manda de servei es troba localitzada als vèrtexs o a les arestes de la xarxa.

Aquesta tesi es centra en l’estudi de diversos problemes de rutes per arcs. Ens
centrem en tres famílies de problemes. La primera família consisteix en els Multi De-
pot Rural Postman Problems, que són una extensió del Rural Postman Problem on hi ha
diversos dipòsits en lloc d’un de sol. La segona família de problemes que estudiem
són els Location-Arc Routing Problems, en els quals els dipòsits no estan fixats amb
antelació i, per tant, la seva ubicació esdevé part de les decisions a prendre en el prob-
lema. Finalment, estudiem els Target-Visitation Arc Routing Problems, on el servei està
subjecte a una preferència d’ordenació entre les components connexes induïdes pels
arcs amb demanda. S’estudien diferents models per a cadascuna de les famílies con-
siderades. En particular, es consideren dos models diferents per al Multi Depot Rural
Postman Problem, que es diferencien en la funció objectiu: la minimització del cost gen-
eral de transport o la minimització de la ruta més llarga. Pel que fa als Location-Arc
Routing Problems, estudiem sis models alternatius que difereixen en la seva funció ob-
jectiu, considerant si hi ha un límit màxim sobre la quantitat de dipòsits a ubicar o
si hi ha restriccions de capacitat sobre la demanda que es pot servir des dels dipòsits
seleccionats. Finalment, s’estudien dos models de Target-Visitation Arc Routing Prob-
lem, que es diferencien en si es necessari que totes les arestes requerides en la mateixa
component es visitin de forma consecutiva.

L’objectiu d’aquesta tesi és proporcionar eines quantitatives als responsables, que
permetin identificar les millors opcions de disseny de les rutes. Per això, i per a cadas-
cun dels problemes considerats, primer estudiem i analitzem les seves característiques
i propietats. A partir d’aquestes, desenvolupem diferents formulacions de Progra-
mació Lineal Entera, adequades per a la seva solució mitjançant un branch-and-cut.
Finalment, totes les formulacions són provades mitjançant un ampli testeig computa-
cional. En aquest sentit, per als Multi Depot Rural Postman Problems i els Location-Arc
Routing Problems, proposem formulacions naturals amb variables de tres índexs, on
les variables estan associades a les arestes i als dipòsits. Per a alguns dels models
també presentem formulacions alternatives, amb variables de només dos índexs, que
només estan associades a les arestes. Finalment, per als Target-Visitation Arc Routing
Problems proposem tres formulacions diferents, dues formulacions alternatives per al
cas general i una per a la versió en clúster, on totes les arestes de la mateixa compo-
nent es serveixen seqüencialment, cosa que explora algunes condicions d’optimització
pròpies.
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Resumen

Algunas de las decisiones más habituales que se toman en un sistema logístico a nivel
operativo están relacionadas con el diseño de rutas de vehículos. Los conocidos Vehi-
cle Routing Problems y Arc Routing Problems son familias de problemas que se ocupan
de este tipo de decisiones. La principal diferencia entre ambas reside en si la demanda
de servicios está localizada en los vértices o en las aristas de la red.

Esta tesis se centra en el estudio de diversos problemas de rutas por arcos. Nos
centramos en tres familias de problemas. La primera familia consiste en los Multi De-
pot Rural Postman Problems, que son una extensión del Rural Postman Problem donde
hay varios depósitos en lugar de solamente uno. La segunda familia de problemas
que estudiamos son los Location-Arc Routing Problems, en los que los depósitos no es-
tán fijados con antelación y, por lo tanto, su ubicación se convierte en parte de las
decisiones a tomar en el problema. Finalmente, estudiamos los Target-Visitation Arc
Routing Problems, donde el servicio está sujeto a una preferencia de ordenación entre
las componentes conexas inducidas por los arcos con demanda. Se estudian diferentes
modelos para cada una de las familias consideradas. En particular, se consideren dos
modelos diferentes para el Multi Depot Rural Postman Problem que se diferencian en la
función objetivo: la minimización del coste general de transporte o la minimización
de la ruta más larga. En cuanto a los Location-Arc Routing Problems, estudiamos seis
modelos alternativos que difieren en su función objetivo, en si hay un ímite máximo
sobre la cantidad de depósitos a ubicar, o en si hay restricciones de capacidad sobre
la demanda que se puede servir desde los depósitos seleccionados. Finalmente, se
estudian dos modelos de Target-Visitation Arc Routing Problem, que se diferencian en
si es necesario que todas las aristas requeridas en la misma componente se visiten de
forma consecutiva.

El objetivo de esta tesis es proporcionar herramientas cuantitativas a los respons-
ables, que permitan identificar las mejores opciones de diseño de las rutas. Por ello,
y para cada uno de los problemas considerados, primero estudiamos y analizamos
sus características y propiedades. A partir de estas, desarrollamos diferentes for-
mulaciones de Programación Lineal Entera, adecuadas para su solución mediante
un branch-and-cut. Finalmente, todas las formulaciones son probadas mediante un
amplio testeo computacional. En este sentido, para los Multi Depot Rural Postman
Problems y los Location-Arc Routing Problems, proponemos formulaciones naturales con
variables de tres índices, donde las variables están asociadas a las aristas y a los de-
pósitos. Para algunos de los modelos también presentamos formulaciones alternati-
vas con variables de sólo dos índices, que sólo están asociadas a las aristas. Final-
mente, para los Target-Visitation Arc Routing Problems proponemos tres formulaciones
diferentes, dos formulaciones alternativas para el caso general y una para la versión
en clúster, donde todas las aristas de la misma componente se sirven secuencialmente,
lo que explora algunas condiciones de optimización propias.
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Preface

Currently, the management of logistic systems has become a crucial aspect for
the efficient organization of industrial companies and service delivery. More
and more, the aggressive competition in national and international markets
has led companies to realize the need of adopting integrated logistic systems
in order to survive successfully. Such systems allow to achieve a greater degree
of efficiency and competitive advantage over potential competitors, since they
reduce costs, save operational time, and optimize resources and processes. In
its turn, such savings imply a positive impact on the quality of the customers
services, the brand image, and the corporate reputation.

In this context, the staff responsible for the management of logistics sys-
tems must take decisions at strategic, tactical, and operational levels, involv-
ing long, medium, and short term financial impact respectively. Even if these
decisions depend on the nature of the company, most often they involve lo-
cation and sizing of facilities, materials management, production planning,
order processing, inventory management, storage systems, transport system
and return management.

Operations Research is a versatile discipline that provides quantitative tools
to the decision makers to identify the best choices. It is within this framework
that in this thesis we apply operation research techniques to study some deci-
sions concerning logistic systems, in particular, those related to the design of
routes.

Routing problems define one of the main classes of problems arising at tac-
tical or operational levels within logistics. The choice of the routes for vehicles
involve the assignment of users to facilities and/or vehicles. Given a set of
demand customers, a set of open facilities and a fleet of vehicles with a spe-
cific structure, routes must be established for attending the existing demand,
in order to optimize the selected optimization criterion, which often considers
the minimization of transportation costs. The family of problems that address
such issues is known as Vehicle Routing Problems or Arc Routing Problems
depending on whether the service demand is located at the vertices or edges
of the network’s graph.

In this thesis, we focus on three families of Arc Routing Problems. In par-
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Introduction

ticular, we study Multi Depot Rural Postman Problems, Location-Arc Routing
Problems, and Target-Visitation Arc Routing Problems. The motivation for
studying these problems comes not only from their theoretical interest, but
also from their potential applications. Similarly to other arc routing problems,
such applications appear in a wide variety of practical cases. Mail delivery,
garbage collection, road maintenance, snow plowing or pipelines inspection
are typical examples of real-life applications.

One the one hand, when considering large application areas for Arc Rout-
ing Problems, there is usually more than one depot from which service de-
mand can be satisfied. Such depots may be vehicle stations, dump sites, re-
plenishment points or relay boxes. For instance, in urban waste collection
companies usually operate from multiple depots. If the depot location are
known in advance, a possibility for handling such problems is to decompose
them in as many independent problems as depots, first allocating to the dif-
ferent depots demand sectors within smaller operating areas, and then finding
optimal routes within each sector. Such solution strategy is indeed suboptimal,
as it can be possible to obtain better solutions if a global approach is applied
in which the allocation and routing decisions are jointly addressed. There-
fore, an integrated joint approach is preferable, motivating the study of Multi
Depot Rural Postman Problems. Furthermore, the selection of the locations
for the depots is an strategic logistic decision, with an important impact on
the above mentioned tactical decisions. This suggests studying Location-Arc
Routing Problems to jointly address the location of facilities (depots) and the
design of service routes. On the other hand, the study of Target-Visitation Arc
Routing Problems is motivated by some practical applications in which ser-
vice demand is subjected to preferences concerning the order in which edges
with demand have to be traversed. For instance, in snow plowing or natural
disasters where it may be preferable to serve the demand of some edges or
clusters before others.

For the different classes of Arc Routing Problems that we study, we focus
on modeling aspects, suitable formulations, and efficient solution methods.
Different models are studied for each considered family. In particular, two al-
ternative Multi Depot Rural Postman Problems models are considered, which
differ in their objective function: the minimization of the overall transportation
cost or the minimization of the makespan. Concerning Location-Arc Routing
Problems, we study six alternative models that differ from each other in their
objective function, whether there is an upper bound on the number of facili-
ties to be located, or whether there are capacity constraints on the demand that
can be served from selected facilities. Finally, two Target-Visitation Arc Rout-
ing Problem models are studied, which differ from each other in whether or
not it is required that all the required edges in the same component are visited
consecutively.

For Multi Depot Rural Postman Problems we propose natural modeling
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formulations with three-index variables, where variables are associated with
edges and the facilities associated with the routes that traverse them. An alter-
native formulation with only two-index variables, associated with edges but
not with facilities, is presented for the model that minimizes the overall costs.
This approach indeed reduces the number of required variables at the expense
of presenting some additional difficulties for suitably defining the routes. To
this end, we introduce a new set of constraints guaranteeing that the routes are
consistent and return to the original depot. Three and two-index formulations
are also proposed for the different Location-Arc Routing Problems, taking into
account that the two-index formulation is only valid for models in which the
objective is an aggregate measure of all routes, and the feasibility of the solu-
cions can be derived form the aggregate information. Finally, for the Target-
Visitation Arc Routing Problems we propose three diferent formulations, two
alternative formulations for the general case, and one for the clustered version,
where all the edges in the same components are served sequentially, which ex-
ploits some optimality conditions of the problem.

All proposed formulations are suitable for being solved with branch-and-
cut algorithms. In each case, we present exact separation algorithms for the
families of inequalities of exponential size. The resulting algorithms have been
implemented and computationally tested. The obtained results are presented
and analyzed.

In the following chapters we describe in detail the studied problems, as
well as the proposed formulations and corresponding solution methods. The
structure of this thesis is as follows. In Chapter 1 we introduce some basic con-
cepts related to the developments of this thesis. An overview of the existing
literature related to the three families of studied Arc Routing Problems is pre-
sented in Chapter 2. Next, we define the Multi Depot Rural Postman Problems
under study and their properties in Chapter 3, where a disaggregate formula-
tion is proposed and a branch-and-cut is presented, together with the obtained
results. In Chapter 4 an alternative compact formulation for the min-cost Multi
Depot Rural Postman Problem is proposed, as well as its polyhedral analysis,
a branch-and-cut solution, and the results of extensive computational expe-
rience. The formal definition of the studied Location-Arc Routing Problems
and their solution methods are developed in Chapter 5, where six alternative
models are studied. In Chapter 6 we present two Target-Visitation Arc Rout-
ing Problems variants together with a preliminary computational experience.
We conclude this thesis with some remarks in Chapter 7.

Some of the results of this thesis have been published in journals or pre-
sented at conferences or workshops. The publications and conference partici-
pation are listed below:
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Chapter 1

Preliminaries

1.1 Graphs

In this section we introduce the notation and conventions that are used in this
thesis, related to graphs.

An undirected graph G = (V,E) is a pair of two finite sets: the set of ver-
tices, V = {1, 2, ..., n}, and the set of edges, E ⊆ {{i, j}|i, j ∈ V ; i < j}. The
graph is called complete when there is an edge connecting every pair of ver-
tices, E = {{i, j} ∈ V × V |i < j}. An edge e is incident to a vertex v, if v is
one of the end-vertices of e. The two vertices that define an edge are said to
be adjacent. The number of edges incident to a given vertex v or, equivalently,
number of vertices adjacent to v is referred to as the degree of v, |δ(v)|. The
vertex v is called even or odd if its degree is, respectively, even or odd.

Given an undirected graph G, a path connecting v0 and vl is a sequence of
edges from vertex v0 to vertex vl of the form {{v0, v1}, {v1, v2}, ..., {vl−1, vl}}.
The particular case in which the first and last vertices of the path are the same,
v0 = vl, defines a closed path known as tour, route, or cycle. If the tour visits
exactly once each edge it is called Eulerian tour, otherwise, if the tour visits at
least once each edge of set of edges, it is called a postman tour. A graph G is
connected when there is a path between every pair of vertices. When G is not
connected, each connected subgraph defines a connected component. A forest
is a subset of edges that no contains any cycle. Furthermore, if the subgraph is
connected, then is known as tree.

For a non-empty subset of vertices S ⊆ V we denote by γ(S) = {{u, v} ∈
E|u, v ∈ S} the set of edges with both vertices in S, and by δ(S) = {{u, v} ∈ E|
u ∈ S, v /∈ S}, the set of edges with one vertex in S and the other vertex
in S = V \ S, referred, also as edges of the cut of S. In addition, we will
use the following usual notation. For H ⊂ E we use δH(S) = δ(S) ∩ H
and γH(S) = γ(S) ∩ H . Furthermore, a vertex v ∈ V is H-odd if |δH(v)| is
odd; otherwise v is H-even. Finally, we use the standard compact notation
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f(A) ≡
∑

e∈A fe where A ⊆ E, and f is a vector or a function defined on E. If
f is only defined on subset B ⊂ E, we use f(A) ≡ f(A ∩B) ≡

∑
e∈A∩B fe.

A directed graph will be denoted by N = (V,A), where vertices are usually
called nodes and there is a set of arcs, A, with pairs of ordered vertices, a =
(i, j). To differentiate from the case of an undirected graph where edges are
unordered pairs of vertices, we use the convention of representing an arc a =
(i, j) as an ordered pair of nodes, where i is the starting node and j the end
node. Note that now the arc (i, j) is different from the arc (j, i). The set of
arcs with v as starting node is the set of arcs outgoing from v and is denoted by
δ−(v). Analogously, the set of arcs with v as end-node is the set of incoming arcs
of v, δ+(v). In a directed graph the degree of a vertex is divided into outdegree
and indegree depending on the number of outcoming and incoming arcs in the
vertex, respectively. All concepts above for undirected graphs can be extended
to directed graphs through a few natural adaptations.

1.2 Combinatorial Optimization

Combinatorial optimization (CO) is a broad area that deals with the study of
optimization problems in which feasible solutions can be expressed as combi-
nations of elements of a finite set. CO has multiple applications in operations
research, software engineering, artificial intelligence, etc. In general, CO prob-
lems are NP-hard (Wolsey and Nemhauser, 2014), so the enumeration of all
feasible solutions is unsuitable. There exist however several methodologies
for dealing with CO problems. Often CO problems can be stated as problems
on graphs so graph theory concepts can be used. Moreover, most CO prob-
lems can be formulated as 0-1 Linear Programs. Then techniques from discrete
optimization and, in particular, from integer programming can be applied to
address them. The basic theory of integer programming will be introduced
below.

1.2.1 Polyhedral combinatorics

In this section we summarize the main concepts of polyhedral combinatorics.
Most of this material has been taken from Grötschel and Padberg (1985).

Let x1, ..., xk ∈ Rn and λ1, ..., λk ∈ R, the vector x ∈ R with x = λ1x1 + ...+
λkxk is called linear combination of vectors x1, ..., xk. Furthermore, λ satisfies
λ1 + ...+ λk = 1, then x is an affine combination of the vectors x1, ..., xk.

A hyperplane is defined by the set {x ∈ Rn|ax = a0}, while the set {x ∈
Rn|ax ≤ a0} defines a halfspace. The intersection of finitely many halfspaces
characterizes a polyhedron P as P = {x ∈ Rn|Ax ≤ b}. This is also know as
H-representation or the outer description. The polyhedron P is called polytope
when it can be described by a convex hull, i.e. P = Conv(X). The dimen-
sion (denoted by dim) of a polyhedron or polytope is the maximum number of
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affinely independent points minus one. So, a polytope P is full-dimensional if
P ⊆ Rn and dimP = n

An inequality ax = a0 is valid for a polytope P if the inequality is satisfied
by all the points in P . The set f = P ∩ ax = a0, for a valid inequality ax = a0,
is a face of the polytope. When a face contains one element only (dimf =
0) it is called a vertex. Otherwise, a nonempty face which is maximal with
respect to set inclusion (dimf = dimP − 1) is named a facet. The inequality
associated with f is known as face-defining or facet-defining, respectively. Two
valid inequalities, {aTx ≤ a0} and {bTx ≤ b0}, are equivalent if they define the
same face, i.e. {x ∈ P |aTx = a0} = {x ∈ P |bTx = b0}. However, if exists λ > 0
that verifies aT > λbT and a0 ≤ λb0 ≤ then we said that aTx = a0 dominates
bTx = b0.

1.2.2 Integer Programming

Below we summarize some concepts of integer programming. Most of this
material has been taken from Wolsey (1998).

Integer Programming is one of the most relevant fields in operations re-
search and, in particular, in mathematical optimization. Its main goal is to
solve optimization problems with discrete or integer variables of the form:

(IP )Min cx (1.1)
s.t. Ax ≥ b

x ≥ 0 and integer

where c is a row vector in Rn, x is a vector of decision variables, A is a coef-
ficient matrix of dimension (m,n), and b is a independent term vector in Rm.
The linear function cx is the objective function and the inequalities Ax ≥ b con-
form the m constraints of the problem. The set of solutions that satisfies the
constraints, F := {x ∈ Zn+|Ax ≥ b} is known as the feasible set of solutions. A
feasible solution x∗ is an optimal solution if and only if cx∗ ≤ cx ∀x ∈ F . Note
that there may be alternative optimal solutions if there are more than one x ∈ F
with cx = cx∗. A Binary Integer Program (BIP) is a special case of integer pro-
gram where integer variables may only take the values 0 or 1. Such variables
are known as binary variables.

A problem (RP) zR = min{fx : x ∈ T ⊆ Rn} is a relaxation of an IP
z = min{cx : x ∈ X ⊆ Rn} if it has a larger set of feasible solutions, X ⊆ T ,
and the objective function has the same or a smaller value everywhere, fx ≤ cx
for all x ∈ X . One of the most useful and natural relaxations is the linear
programming relaxation. For an IP min{cx : x ∈ P ∩ Zn}, with P = {x ∈
Rn+ : Ax ≥ b}, the linear programming relaxation (LP) is the linear program
zLP = min{cx : x ∈ P}.
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Solving integer programs requires sophisticated algorithms, as Branch-and-
Bound, the cutting planes, and Branch-and-Cut (see 1.3).

1.3 Solution methods

The techniques for solving linear integer programs can be classified in exact
and heuristic methods. Many heuristic methods can be found in the literature.
In general, such methods do not guarantee the optimality of the obtained solu-
tions and are not further described in this section. The interested reader is ad-
dressed to Wolsey (1998). Most exact algorithms, some of which are described
next, are based on enumeration procedures, where non-optimal solutions are
eliminated by bounding procedures. In general, these algorithms do not have
polynomial complexity, but may work efficiently in practice.

1.3.1 Branch-and-bound

Broadly speaking branch-and-bound consists in splitting the problem into smaller
subproblems, which are solved or split again. This methodology is typically
represented by means of a search tree where the original problem is the root
node and each subproblem is represented by a node in the tree.

Branch-and-bound is a useful method for solving IPs. For that, the first
step is to solve the LP relaxation of the IP. If the solution to the LP has all the
variables with integer values, the solution obtained is optimal for the original
IP. Otherwise, some variable, xi, which has a fractional value, v, is selected to
create two new problems by adding a new constraint. In the first one, we add
the constraint xi ≤ bvc. In the second problem we add the constraint xi ≥ dve.
Then the new problems are recursively solved until all subproblems are exam-
ined. When a subproblem has an integer solution, the value of the solution
is kept as the incumbent, if it is better (lower) than the current best integer
solution. The value of the incumbent is used to discard subproblems whose
linear relaxation solution is equal or worse (greater) than the incumbent value,
reducing the number of subproblems to explore, at the same time as it reduces
the enumeration procedure.

The advantage of branch-and-bound lies in its simplicity. However it is
important to obtain good global upper bounds in short time, which allows to
build, in general, a smaller exploration tree than the tree produced by com-
plete enumeration. There are some methods to obtain good bounds, such as
applying heuristics or using a proper selection criteria of the subproblem, to
find a solution close to the optimum.

1.3.2 Cutting Planes

Cutting planes are broadly used for solving integer programs. The method op-
erates on a domain containing all feasible points, which is iteratively redefined
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by adding linear inequalities, called cuts. In many cases a family of inequal-
ities contains an exponential number of inequalities, so all of them cannot be
added a priori. In such a case it is better to add them iteratively. For this, the
first step is to solve the LP relaxation of the given IP and to obtain a solution
x∗. This solution is tested for being an integer. As long x∗ is not be integer, a
separation problem for x∗ is solved. If a violated inequality that separates x∗

from the convex hull is found, then this added to the current LP and resolved.
The process continues until the solution is fully integral.

The crucial point on this algorithm is to be able to apply cuts that approx-
imate the convex hull of the feasible set as much as possible. Thus, the best
inequalities that can be included are those defining facets of the polytope of
the original problem. In general, the knowledge about the studied optimiza-
tion problem and its associated polytope allows to obtain good inequalities.

1.3.3 Branch-and-cut

Branch-and-cut is commonly used to solve NP-hard combinatorial optimiza-
tion problems. This technique combines branch-and-bound with the gener-
ation of cutting planes to tighten the IP relaxations. Thus, a branch-and-cut
algorithm is a branch-and-bound algorithm in which cutting planes are gener-
ated throughout the branch-and-bound-tree. A branch-and-cut algorithm first
computes the LP relaxation of the IP. At that point, if the solution has a non-
integer value for some variable, a cutting plane phase is applied, and violated
or valid inequalities are added to the linear program to reinforce the relaxation,
as long as some violated or valid inequality is found. Then, two new subprob-
lems are defined according to the branching phase. The algorithm goes on,
successively, in each new subproblem.

1.4 Arc Routing Problems

Vehicle routing is a widely studied area within CO widely studied, which con-
sists in designing routes for a fleet of vehicles to serve a set of customers with
a demand to satisfy. According to Corberán and Laporte (2014), Arc Routing
Problems (ARPs) are characterized by the fact that service demand is placed
at the edges or arcs of a given network, instead of at the nodes. These prob-
lems present a wide variety of applications such as mail and newspaper de-
livery, waste collection, snow plowing, salt spreading, meter reading, lines
inspection, school bus route, and other pick up, delivery or services problems
through the links of a network.

The origin of this research field goes back to the 18th century with the
Königsberg bridges problem, but it is not until the late sixties of the 20th cen-
tury that it begins to be a strong field of interest for research groups. Over
the past years several variants of problems have been studied. However, three
basic arc routing problems can be distinguished:
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Chinese Postman Problem (CPP), consists in finding the minimum cost tour
that passes through each edge of a given graph at least once.

Rural Postman Problem (RPP), extends the CPP to serve only a required
subset of edges, while the rest are only traversed if it is necessary to
define the tour.

Capacitated Arc Routing Problem (CARP), generalizes the previous prob-
lems, with a fleet of vehicles that should satisfy the demand of the re-
quired subset of edges, bearing in mind the limited capacity of vehicles.

In the following we want to focus on the RPP, which is essential for this
thesis, since the studied problems are extensions of it. For more details of
ARPs, we refer the interested reader to Corberán and Laporte (2014), Dror
(2000), Eiselt et al. (1995a,b)

1.4.1 The Rural Postman Problem

The RPP is defined on an undirected graph G = (V,E), where V is the vertex
set, |V | = n and E is the edge set, |E| = m. We denote by R ⊂ E the set
of required edges that must be traversed, and by F = E \ R the set of unre-
quired edges. Each edge e ∈ E is associated with non-negative real cost ce.
The connected components induced by the required edges are referred to as
required components and denoted by Ck = (Vk, Rk), k ∈ K, so R =

⋃
k∈K Rk.

Let VR =
⋃
k∈K Vk. We denote by TC the Minimum Spanning Tree (MST) with

respect to cost function c, of the multigraph GC = (VC , EC) induced by the
connected components Ck, k ∈ K. VC contains a node representing each con-
nected component Ck, k ∈ K. For each pair of distinct components Ck and
Ck′ , EC contains an edge {ke, k′e} associated with each original edge e linking
Ck and Ck′ , i.e. each edge e ∈ δF (Vk) ∩ δF (Vk′), which inherits its cost from G.

The RPP consists of determining a minimum cost tour traversing all re-
quired edges at least once, or equivalently, determining a least cost set of dead-
head edges which, together with the required edges yields a tour. This NP-
hard problem was introduced by Orloff (1974) and its complexity was proven
by Orloff (1976). However, it may be solved in a polynomial time when the
graph induced by the required edges, R is connected, as it can be reduced to
the undirected CPP.

Usually the RPP is addressed on a transformed graph in which only the
required vertices, VR, are taken into account. To this end, the procedure de-
scribed in Christofides et al. (1981) is as follows. First, an edge between every
pair of vertices of VR is added to GR = (VR, R), having a cost equal to the
shortest path length on G. Then, all unrequired edges {i, j} ∈ F for which
cij = cik + ckj for some k ∈ V , are removed from G, as well as one of two
parallel edges whenever they both have the same cost. Hence the costs of the
simplified graph satisfy the triangle inequality.

10



1.4. Arc Routing Problems

1.4.1.1 Optimality conditions

Optimal RPP solutions satisfy a series of properties, which have been pro-
posed by Christofides et al. (1981), Corberán and Sanchis (1994), Ghiani and
Laporte (2000):

(O1) (Christofides et al., 1981). Every optimal solution satisfies that the max-
imum number of additional copies of an edge e to obtain an Eulerian
graph is 1 if e ∈ R, or 2 otherwise, e ∈ F .

(O2) (Corberán and Sanchis, 1994). Let e = {i, j} be an edge such its adjacent
vertices, i and j, belong to some connected component Ck. Then, in ev-
ery optimal solution, the number of additional copies of e is equal to 1.
Note that for edges e ∈ R the outcome is equivalent to previous one.

(O3) (Ghiani and Laporte, 2000). Let e(1), e(2), ..., e(l) be the edges having ex-
actly one vertex in a given component Ch and one vertex in another
given component Ck (h, k ∈ {1, ...,K}, h 6= k). In an optimal solution,
only and edge e(r) such c(e(r)) = min{c(e(1)), c(e(2)), ..., c(e(l))} can be
traversed twice. Consequently, no more than K(K − 1)/2 edges need to
be traversed twice in an optimal solution.

(O4) (Ghiani and Laporte, 2000). There exists an optimal solution in which at
most K − 1 edges are traversed twice.

(O5) (Ghiani and Laporte, 2000). The only edges e ∈ F that can be traversed
twice in an optimal solution, are those belonging to the TC .

1.4.1.2 Mathematical formulation

There are several formulations for the RPP. However, it is worth mentioning
the first pure binary integer lineal program introduced by Ghiani and Laporte
(2000). The variable xe represents the number of additional copies of edge
e ∈ E that must be added so that together with the set of required edges a
tour is defined. Let E012 (E01) be the set of edges that can be traversed at most
twice (once) in an optimal solution. For each edge e ∈ E012 the authors define
two binary variables x′e and x′′e . Let E′ (E′′) be the set of edges e′ (e′′), and let
Ē= E01 ∪ E′ ∪ E′′. Then, the formulation is as follows:

minimize
∑
e∈Ē

cexe (1.2)

subject to
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x(δ(S)) ≥ 2 S =
⋃
k⊂K

Vk, k 6= ∅ (1.3)

x(δ(i) \H) ≥ x(H)− |H|+ 1 i ∈ VR, H ⊆ δ(i), (1.4)
|H| odd if i is R-even,
|H| even if i is R-odd

xe = x′e + x′′e e ∈ E012 (1.5)
x′e, x

′′
e ∈ {0, 1} e ∈ E012 (1.6)

xe ∈ {0, 1} e ∈ Ē. (1.7)

In this formulation, constrains (1.3) force the solution graph to be con-
nected, while constraints (1.4) ensure the degree of each vertex to be even,
by imposing that, if an odd (even) number of edges e ∈ H are incident to a
R-even (R-odd) vertex i ∈ VR, then at least another edge has to be incident to
vertex i. The autors also presented an extension of the parity inequalities (also
called cocircuit inequalities) to non-empty subset S ⊂ VR:

x(δ(S) \H) ≥ x(H)− |H|+ 1 S ⊂ VR, H ⊆ δ(S), (1.8)
|H| odd if S is R-even,
|H| even if S is R-odd

Next we rewrite the above formulation with the notation that will be used
throughout this thesis. For this we slightly modify the meaning and the do-
main of the decision variables. In particular, two sets of binary variables are
considered, associated with the first and second traversal of edges, respec-
tively. We denote by Ey ⊂ E the set of edges that can be traversed twice in
an optimal solution. Ey consists of demand edges, R, plus the edges of TC ,
(corresponding to R ∪ E012). For each e ∈ E, let xe be a binary variable indi-
cating whether or not edge e is traversed. For each e ∈ Ey, let ye be a binary
variable that takes the value one if and only if edge e is traversed twice. Then
formulation (1.2)–(1.7) becomes:

minimize
∑
e∈E

cexe +
∑
e∈Ey

ceye (1.9)

subject to

(x+ y)(δ(S)) ≥ 2 S ⊂ V (1.10)
(x− y)(δ(S) \H) + y(H) ≥ x(H)− |H|+ 1 S ⊂ V, H ⊆ δ(S), (1.11)

|H| odd
xe = 1 e ∈ R (1.12)
ye ≤ xe e ∈ Ey (1.13)
xe ∈ {0, 1} e ∈ E (1.14)
ye ∈ {0, 1} e ∈ Ey. (1.15)
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Similarly to the previous formulation, constraints (1.10) force the solution
to be connected and cocircuit constraints (1.11) that each vertex or set S ⊂ V
has an even degree. Furthermore, it is now necessary to ensure that all re-
quired edges are traversed (1.12). Finally, the condition that the second traver-
sal can not be used unless the first traversal has been used is imposed in (1.13).

1.4.1.3 Separation of connectivity and parity constraints

The size of the families of connectivity and parity constraints (1.10) and (1.11),
respectively, is exponential in |V |. Thus, only a small subset can be included
in the initial formulation, whereas the remaining inequalities are only incor-
porated when violated by the solution to the current relaxation. As we next
see, for both families of inequalities the separation problem can be solved
exactly. Throughout, (x, y) denotes the current LP solution. Furthermore,
Gx,y = (Vx,y, Ex,y) denotes the support graph of the solution, obtained from G
by eliminating all edges in E with xe = 0 and all vertices that are not incident
with any edge of Ex,y.

Connectivity inequalities (1.10) The separation for inequalities (1.10) is to
find a set S ⊂ V \D, with (x+ y)(δ(S)) ≥ 2, or to prove that no such inequal-
ity exists. Violated connectivity constraints are associated with minimum cuts
in Gx,y relative to the capacities vector x + y. Thus, solving the separation
problem of (1.10) consists of building the tree of min-cuts T (see, for instance,
Gusfield, 1993) of Gx,y relative to x + y and of identifying each min-cut δ(S)
of T of value vV \D(S) < 2. The inequality (1.10) associated with such a cut-set
δ(S) is violated by the current solution (x, y).

It is possible to apply a heuristic separation of (1.10) looking for connected
components in the graph Gx,y, that contains only those edges with values
xe + ye ≥ ε, where ε is a given parameter. Then, we compute the real value
of the cut associated with each connected component C, where VC ⊂ V \ D.
If (x + y) (δ(V (C))) < 2, the connectivity inequality associated with V (C) is
violated by (x, y).

Parity inequalities (1.11) The separation problem for inequalities (1.11) is
to find S ⊂ V , H ⊆ δ(S), |H| odd such that

(x− y)(δ(S) \H) + y(H) < x(H)− |H|+ 1, (1.16)

or to prove that no such inequality exists. The procedure that we describe be-
low was introduced for other arc routing problems with binary variables by
Aráoz et al. (2009b).

Note that (1.16) can be written as

(x− y)(δ(S) \H) + |H| − (x− y)(H) < 1. (1.17)

13
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or equivalently as∑
e∈δ(S)\H

(xe − ye) +
∑
e∈H

(1− (xe − ye)) < 1. (1.18)

The above expression indicates that for a given set S ⊂ V , a set H ⊂ δ(S)
that yields the smallest value in the left-hand side is given by H = {e ∈ δ(S) |
1 − (xe − ye) < xe − ye}. Further, the value of the left-hand side of (1.17)
corresponds to the value of the cut-set δ(S) relative to a capacities vector be =
min{(xe−ye), 1− (xe−ye)}. Hence, the vertex set S ⊂ V , and associated edge
set H ⊂ δ(S), which minimize the left-hand side of (1.17) can be obtained by
finding the minimum cut in Gx,y relative to the capacities vector be as defined
above. Indeed, for a given set S the set H ⊂ δ(S) defined above need not be
odd. If |H| is even, the smallest increment in the value of the left-hand side of
(1.17) that guarantees that |H| is odd is obtained by either removing one edge
from |H| (and transferring it to δ(S)\H) or by adding to H one edge currently
in δ(S) \H . In particular, the smallest increment is obtained with

∆ = min {min{xe − ye : e ∈ δ(S) \H},min{1− (xe − ye) : e ∈ H}} .

When b(δ(S))+∆ < 1, the updated set H , together with S, defines an inequal-
ity (1.11) violated by the current solution (x, y).

Thus, the separation problem can be solved by finding the tree T of min-
cuts of the support graph Gx,y, for the capacities vector b defined above. It
is important to recall that the smallest value of the left-hand side of inequal-
ity (1.11) after making H odd is not necessarily associated with the smallest
min-cut of the tree. When T has a cut δ(S) of capacity smaller than one, i.e.
b(δ(S)) < 1, then the vertex set S, and the set of edges H = {e ∈ δ(S) |
(xe − ye) ≥ 0.5} are considered. If |H| is odd, H defines, together with S, a
violated inequality of type (1.11). Otherwise, if |H| is even, H can be trans-
formed to an odd set, as explained, by either removing one edge from H (and
transferring it to δ(S) \H) or by adding to H one edge currently in δ(S) \H .
Then, when b(δ(S)) + ∆ < 1, the updated set H defines a violated inequality
(1.11) for S in the current solution (x, y).

A heuristic procedure for the above separation problem consists of finding
the connected components in the subgraphGx,y induced by edges with values
be = min{(xe − ye), 1 − (xe − ye)} > ε, where ε is a given parameter. Then,
if S ⊂ V is the vertex set of one of the components, we proceed as indicated
above to identify its associated edge set H . If b(δ(S)) < 1 and |H| is odd, then
the parity constraint (1.11) associated with S and H is violated by (x, y). Oth-
erwise, if |H| is odd and b(δ(S)) + ∆ ≥ 1, then the heuristic fails.
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Chapter 2

Literature review

The nature of ARPs leads to a variety of related problems, some of which will
be developed over the course of this thesis. In this chapter we review the most
relevant literature related to the problems under study. It is structured in three
sections corresponding to the three types of problems that we have studied.
In Section 2.1 we present an overview of Multi Depot Arc Routing Problems
(MDARPs), in which the objective is to minimize the overall routing costs or to
minimize the makespan. Section 2.2 is devoted to Location-Arc Routing Prob-
lems (LARPs), which combine decisions for the location of multiple facilities
with arc routing decisions. Finally, Section 2.3 focuses on Target-Visitation Arc
Routing Problems (TVARPs), which incorporate ordering preferences to the
RPP.

2.1 Multi-Depot Arc Routing Postman Problems

MDARPs are the extension of ARPs, to the case when there are several depots
instead of only one. The literature on MDARPs is scarce. To the best of our
knowledge, the only existing exact algorithms for the Multi Depot Rural Post-
man Problem (MDRPP) have been developed in Fernández et al. (2016) and,
in relation to this thesis, in Fernández and Rodríguez-Pereira (2017), and Fer-
nández et al. (2018). A directed MDARP dealing with carriers collaboration
is considered in Fernández et al. (2016), where an exact branch-and-cut algo-
rithm is developed for a collaborative arc routing problem solving to optimal-
ity instances with up to 50 vertices and two depots. Fernández et al. (2018), and
Fernández and Rodríguez-Pereira (2017) propose exact algorithms to solve the
MDRPP on an undirected graph. A branch-and-cut based on a binary linear
formulation is proposed in Fernández and Rodríguez-Pereira (2017). The for-
mulation uses natural decision variables, which explicitly indicate the depot
with which each traversed edge is associated. On the contrary, Fernández
et al. (2018) use decision variables associated only with edges, but not with
the facilities. In Fernández and Rodríguez-Pereira (2017) instances with up to
100 vertices and four depots are solved to optimality, whereas in Fernández
et al. (2018) instances involving up to 744 vertices and four depots are solved
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to optimality.

Other than this, all previous work on MDARPs we are aware of has focused
on multi-depot capacitated arc routing problems (MDCARPs). Some theoreti-
cal aspects of MDCARPs are considered in Wøhlk (2004). A new formulation
and exact solution algorithm are presented in Krushinsky and Van Woensel
(2015) for the asymmetric MDCARP. Heuristics methods have been put for-
ward for both the undirected and the directed MDCARP. Sequential heuristics
for the undirected MDCARP are proposed in Amberg et al. (2000), Muylder-
mans et al. (2002), and Muyldermans et al. (2003). A cluster-first-route-second
strategy, where the assignment of arcs to depots is established before design-
ing the routes is applied in Amberg et al. (2000), and a route-first-cluster-
second strategy is used in Muyldermans et al. (2002), and Muyldermans et al.
(2003), where a single giant route is created first and later partitioned into
smaller routes. Population based heuristics have also been used for solving
MDCARPs. For the undirected case, two different ant colony strategies are
presented in Kansou and Yassine (2009), and a hybrid genetic algorithm with
perturbation that incorporates a local search, a replacement method, and a
perturbation mechanism is proposed in Hu et al. (2013). The directed case
is addressed in Xing et al. (2010), where an evolutionary approach is pre-
sented, which takes advantage of the extensions of the heuristics for the clas-
sical single-depot CARP Golden and Wong (1981).

Multi depot routing problems are indeed related to districting, where a set
of clusters or districts that suitably partition the demand set is sought. The
design of good districts, which takes place at a strategic level, where demand
points or edges are allocated to facilities, allows finding efficient routes in each
district at an operational in a later phase. There exists a rich districting liter-
ature in relation to arc routing. In fact, some of the above referenced works
stem from this research area. As an example, the heuristics of Muyldermans
et al. (2002, 2003) are devised as a second phases in districting design prob-
lems. Two recent works on districting for arc routing are Butsch et al. (2014),
and García Ayala et al. (2015). The interested reader is addressed to Muylder-
mans (2003), Muyldermans and Pang (2014) for further reading on this topic.

The MM-MDRPP deals with the minimization of the makespan. This min-
max objective has been notably less studied than the usual minimization of
the overall routing cost. The min-max objective was introduced by Freder-
ickson et al. (1976) for several arc and node routing problems to obtain bal-
anced routes. The MM-MDRPP is related to the the min-max K-Rural Post-
man Problem (MM-K-RPP), which is a particular case of the MM-MDRPP, by
considering K depots co-located at the same vertex. The MM-K-RPP is an
uncapacitated arc routing problem, with one single depot and a fixed number
of vehicles, K. Each vehicle must perform a tour starting and ending at the
facility. The objective is to minimize the length of the longest among the K
routes. This has been studied by several authors for different types of graphs
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Benavent et al. (2009, 2010, 2011, 2013, 2014), Willemse and Joubert (2012).

2.2 Location-Arc Routing Problems

LARPs combine location and routing decisions in contexts where some arcs of
a given network must be serviced. LARPs were formally introduced by Ghi-
ani (1998), but an earlier publication by Levy and Bodin (1989) describes an
application in the United States Postal Service in which a postman parks his
van in several locations from which he proceeds to deliver mail on foot.

LARPs are the arc routing counterpart of Location Routing Problems (LRPs)
arising in node routing contexts (see Albareda-Sambola, 2015, Drexl et al.,
2013, Min et al., 1998, Nagy and Salhi, 2007, Prodhon and Prins, 2014, for sur-
veys), but have ben less extensively studied. According to Albareda-Sambola
(2015), this may be due to the fact that ARPs can often be transformed into
node routing problems, as in Baldacci and Maniezzo (2006), Longo et al. (2006),
Pearn et al. (1987). To the best of our knowledge, Ghiani and Laporte (1999)
and Arbib et al. (2014) presented the only exact algorithms for uncapacitated
LARPs. Ghiani and Laporte (1999) reduce the original problem to an undi-
rected RPP and solve it by means of an exact branch-and-cut algorithm. Arbib
et al. (2014) present a mathematical programming formulation and a branch-
and-cut algorithm for a directed profitable LARP in which the facilities are
located at both endpoints of the selected arcs according to the facility opening
costs, to the profit collected on these arcs, and to the cost of traversing them.

Some authors have focused on capacitated LARPs. Hashemi Doulabi and
Seifi (2013) present two formulations on mixed graphs: one for the general
case, and one for the case of a single facility. They propose a simulated anneal-
ing heuristic, which incorporated several arc routing heuristics. Lopes et al.
(2014) present a four-index flow formulation as well as constructive, classi-
cal improvement heuristics and metaheuristics. Several authors have studied
extensions of the CARP with a location component. In Ghiani et al. (2001) lo-
cation decisions are related to intermediate facilities at which vehicles such as
garbage trucks can unload in order not to exceed their capacity. Pia and Filippi
(2006) consider a CARP with mobile depots, Amaya et al. (2007) solve a CARP
in which extra vehicles replenish the main fleet at meeting points to be located.
The authors formulate the problem and solve it by means of a cutting plane
algorithm. Salazar-Aguilar et al. (2013) study a related problem in the context
of road marking.

2.3 Target-Visitation Arc Routing Problems

TVARPs, are the arc routing counterpart of Target Visitation Problems (TVPs),
which combine routing and the Linear Ordering Problem (LOP) (see Martí and
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Reinelt, 2011). In TVARPs the targets are associated with the edges of the net-
work instead of with the nodes.

The literature on TVPs is limited since they are a relatively new problems.
These problems were introduced by Grundel and Jeffcoat (2004) for planning
optimal routes for unmanned aerial vehicles in military missions. Hilden-
brandt and Reinelt (2015), and Hungerländer (2015) present exact algorithms
for the TVPs. In Hildenbrandt and Reinelt (2015) a branch-and-cut algorithm is
developed for solving the problem to optimality, while in Hungerländer (2015)
an exact semidefinite optimization approach is proposed. Other than this, all
previous work on TVPs we are aware of has focused on heuristic methods.
Arulselvan et al. (2007) propose two genetic algorithms, one focusing on a hy-
brid genetic algorithm and the second one dealing with a random key genetic
algorithm. Blázsik et al. (2006) also propose some heuristics methods. To the
best of our knowledge there is no research besides these mentioned papers,
especially in what respects to the arc routing version.

TVARPs are connected to ARPs with hierarchies on the set of arcs, where
the order in which the demand must be visited is established in advance. The
Hierarchical CPP (HCPP) was introduced by Dror et al. (1987) and studied by
other authors Cabral et al. (2004), Ghiani and Improta (2000), Korteweg and
Volgenant (2006). Another related problem is the RPP with deadline classes
which has been studied by Letchford and Eglese (1998). The HCPP and the
RPP with deadlines consider a single-vehicle arc routing problem in which the
required edges are partitioned into a number of classes according to priorities,
each class having its own order or deadline, respectively. More recent works
of this related problems are Colombi et al. (2016) and Colombi et al. (2017).
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Multi-Depot Rural Postman
Problems

In this chapter we present MDRPPs on undirected graphs. Similarly to other
arc routing problems, in MDRPPs service demand is placed at a subset of
edges. The distinguished feature of MDRPPs is that there are several depots
instead of just one. MDRPPs involve two types of decisions: the allocation
of the demand edges to the facilities and the construction of the set of routes.
Thus, feasible solutions are given by sets of routes, each of them starting and
ending at one of the depots, where each demand edge is traversed at least once
by some route.

We consider two different MDRPP models, which differ from each other
in the objective function. The first model uses a min-cost objective where the
goal is to determine a set of routes of minimum total cost and will be referred
to as MC-MDRPP. The MC-MDRPP extends to several depots the well-known
undirected RPP, which considers one single facility.

The second model that we study uses a min-max objective where the goal
is to minimize the makespan, that is the length of the longest route, and will be
referred to as MM-MDRPP. In contrast to the MC-MDRPP, which minimizes
the overall routing costs, but may produce routes, which are unbalanced in
terms of their length, the MM-MDRPP can be suitable when balanced routes
are sought. The MM-MDRPP is related to the MM-K-RPP, which considers K
facilities co-located at the same vertex.

For each of the models that we study we introduce a Mixed Integer Linear
Programming (MILP) formulation, referred to as tree-index or disaggregate,
where variables are associated with edges and depots. Moreover, a branch-
and-cut algorithm has been implemented and tested on a large set of bench-
mark instances. Most of the content of this chapter has been published in
Fernández and Rodríguez-Pereira (2017).
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3.1 Formal definition

MDRPPs are defined on an undirected connected graph G = (V,E), where V
is the vertex set, |V | = n, and E is the edge set, |E| = m. We denote by D ⊂ V
the set of depots, by R ⊂ E the set of required edges, and by F = E \ R the
set of unrequired edges. Like in the RPP, the connected components induced
by the required edges are referred to as required components and denoted by
Ck = (Vk, Rk), k ∈ K, so R =

⋃
k∈K Rk, and VR =

⋃
k∈K Vk. Let c be a non-

negative real cost function defined on the edges of G. Again we denote by
TC the MST with respect to cost function c, of the multigraph GC = (VC , EC)
induced by the connected components. Unless otherwise stated, we assume
that G has been simplified like in the RPP (see Chapter 1).

We use the term route to denote a closed path, not necessarily simple, that
starts and ends at the same facility d ∈ D. When the facility associated with
the route needs to be explicit we say that the route is rooted at depot d. We say
that a required edge e ∈ R is served by a route, if the route traverses e at least
once. As usual, the cost of a route is the sum of the costs of the edges in the
route, where the cost of each edge is counted as many times as it is traversed
in the route.

Definition 3.1.1.

• The MC-MDRPP is to find a set of routes, one from each depot, that serve all
the required edges at minimum total cost.

• The MM-MDRPP is to find a set of routes, one from each depot, that serve all
the required edges and minimize the length of the longest route.

3.1.1 Modeling assumptions

In our study of the MDRPP we assume with respect to the set of depotsD, that
no component has more than one depot, although it is possible that a compo-
nent contains no depot, i.e. |Vk ∩D| ≤ 1 for all k ∈ K. Therefore, in no case an
edge connecting two depots belongs to the set of required edges, R. Note that
this assumption implies that a route rooted at depot d does not traverse any
other depot different from d.

Regarding the service of demand, we consider that required edges in the
same component can be served from different facilities. The effect of this
assumption is illustrated in Figure 3.1.a that shows the input graph, which
has two required components with one depot in each of them (v1 and v2, re-
spectively). Black lines represent required edges, while unrequired edges are
drawn in light grey. The numbers next to the edges indicate their costs. Figure
3.1.b shows the optimal solution when it is imposed that all required edges in
the same component are served from the same depot, of cost z = 23. The route
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of v1 (represented with solid lines), which serves the demand of the required
edges of C1, consists of edges {v1, A}, {A, B}, and {v1, B}. The route rooted at
depot v2 (represented with dotted lines), which serves the required edges of
C2, consists of edges {v2, E}, {C, E}, {C, D}, {D, E}, {E, F}, and {v2, F}. Figure
3.1.c shows that a better solution of cost z = 19 can be obtained if we allow to
split the components and serve required edges in the same component from
different facilities. Now all the required edges of C1 and some required edges
ofC2 are served in the route rooted at depot v1 defined by edges {v1, A}, {A, C},
{C, E}, {D, E}, {B, D}, and {v1, B}. The remaining required edges of component
C2 are served in the route rooted at depot v2, which consists of edges {v2, E},
{E, F}, and {v2, F}.

Figure 3.1: Example that allowing to split demand components among routes
may produce better solutions

Note that, as a consequence of this modeling assumption, feasible routes
are not necessarily vertex-disjoint.

3.1.2 Complexity and optimality conditions

The MC-MDRPP and the MM-MDRPP are NP-hard. It is easy to see that the
RPP is a particular case of both problems when |D| = 1. Thus, since the RPP is
an NP-hard problem (Orloff, 1976), also the MC-MDRPP an the MM-MDRPP
belong to the same class.

As it is usual in other related uncapacitated arc routing problems on undi-
rected graphs, the feasibility of MDRPP solutions is basically established via
connectivity and parity conditions, in addition to the requirement that all de-
mand edges are served. Thus it is not surprising that, similarly to other such
problems with min-cost objectives, when non-negative costs satisfy the trian-
gle inequality, optimality conditions can be extended or adapted for the MC-
MDRPP, considering the properties of each route. These optimality conditions
will alow us to derive formulations using binary variables only. Furthermore,
these properties can also be used or readapted for the MM-MDRPP.
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(O1) MC-MDRPP and MM-MDRPP. There exists an optimal solution in which
no edge is traversed more than twice in each route. Otherwise, two
copies of the same edge can be removed without affecting neither the
requirement that all demand edges are served, nor the parity of the ver-
tices or the connectivity with the depot.

(O2) MC-MDRPP and MM-MDRPP. There exists an optimal solution where
no non-demand edge with the two end-nodes in the same component
(e ∈ γF (Vk)) is traversed more than once in each route. Otherwise, two
copies of such an edge can be removed without affecting the feasibility
of the solution. Furthermore, because of the triangle inequality, the only
edges of γF (Vk), that are used, are those connecting two R-odd vertices.

(O3) There exists an optimal solution in which the only non-demand edges
that are traversed twice in the same route are of one of the following
types:

(a) MC-MDRPP. Edges of TC .
It is clear that any MST ofGC will use only least cost edges between
pairs of components. Let T ∗ be an MST of GC , and suppose an
edge e∗ ∈ E connecting components Ck and Ck′ is traversed twice
in an optimal MC-MDRPP solution s∗, but {ke∗ , k′e∗} is not a least
cost edge of GC connecting nodes Ck and Ck′ . Then, adding edge
e∗ to T ∗ produces a cycle in GC , in which cê < ce∗ , where ê denotes
a least cost edge in such cycle. In this case replacing in s∗ the two
copies of edge e∗ by two copies of ê produces a feasible solution:
the parity of the vertices of the original graph G does not change
and the connectivity of the new solution is guaranteed by the two
copies of ê. It is possible that in the new solution some edges are
served from a different facility than in the original solution s∗, but
this does not affect to its feasibility either. The fact that the cost of
the new solution is smaller than that of the original one, contradicts
the optimality of the original solution.

(b) MM-MDRPP. Least cost edges connecting pairs of vertices of the
multigraph graph GC = (VC , EC).
As shown in the example of Figure 3.2 the edges of TC are not
enough in the case of the MM-MDRPP, where an optimal solution
may have two copies of a non-demand edge connecting two differ-
ent components, which does not belong to TC . Thus the adaptation
of this condition to the MM-MDRPP must take into account all least
cost edges connecting any pair of components.

(O4) MC-MDRPP and MM-MDRPP. There exists an optimal MDRPP solu-
tion in wich each demand edge is served by exactly one route.

(O5) MC-MDRPP and MM-MDRPP. There exists an optimal solution in which
no edge is traversed more than the number of possible traversals in each
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route times the number of depots. That is, 2|D| times for the required
edges as well as for the edges that satisfy O3, and |D| times for all other
edges.
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(a) Input graph
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(c) Optimal solution

Figure 3.2: Optimal MM-MDRP solution using twice an edge not in TC .

We note that the above conditions are valid for problems stated on any
undirected connected graph. Stronger optimality conditions can be derived
for the case when G=(V, E) is a complete input graph. In that case all shortest
paths connecting each pair of vertices are represented by some edge of E, so
multiple traversals of edges can be hidden by such edges. This implies that the
number of times that each edge can be traversed in an optimal solution is in-
dependent of the number of depots. In particular:

(O6) MC-MDRPP and MM-MDRPP. If G=(V, E) is a complete graph, there
exists an optimal solution in which no edge is traversed more than twice.

(O7) MC-MDRPP and MM-MDRPP. If G=(V, E) is a complete graph, there ex-
ists an optimal solution in which the only edges that are traversed twice
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are required edges connecting twoR-odd vertices plus edges that satisfy
O3.

3.2 Worst-case analysis

In this section, we make a worst-case comparison between the MC-MDRPP
and the RPP. We close the section with an analysis of the improvement that
can be obtained due to the modeling hypothesis that allows to split the de-
mand and serving the edges of a required component from different depots.
Throughout the section we denote by z∗(MC −MDRPP ) the optimal value
of an MC-MDRPP instance and by z∗(RPP ) the optimal value of the same in-
stance with only one depot. Note that the optimal value z∗(RPP ) of an RPP
instance on a given graph is independent of the location of the facility. We will
also use the notation z(H) to indicate the total cost of the edges in H ⊂ E, for
an MC-MDRPP or an RPP instance.

The costs savings that can be obtained with the MC-MDRPP with respect
to the RPP with one single depot can be arbitrarily large. The highest sav-
ings are achieved when a depot is located in each component. Then z∗(MC −
MDRPP ) is the sum of the optimal Chinese Postman solution values on each
component. Figure 3.3 illustrates one such example, which we will use in the
proof of Theorem 3.2.1.

di di

di di
MM

M Mdi

M didi
M

M
d d

M
dj di

Figure 3.3: Potential savings of the MC-MDRPP relative to the RPP

Theorem 3.2.1. There exists no finite bound for the ratio z∗(RPP )/z∗(MC−MDRPP ).

Proof. Consider an MC-MDRPP instance like the one depicted in Figure 3.3,
defined on a graph G = (V,E), where each required component Ck, k ∈ K,
contains a depot, represented by a grey square, and its required setRk consists
of a triangle (solid lines). One required component is located at the center
of an imaginary circle and the remaining |K| − 1 components are displayed
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around its circumference. The set F of unrequired edges are |K| − 1 radii of
the circle, each of them connecting the center component and one of the other
components (dotted lines). The cost of each unrequired edge is M . It is clear
that the optimal value of the MC-MDRPP is the sum z(R) of the costs of all
required edges. It is also easy to see that the cost of the RPP with only one
depot is z∗(RPP ) = z(R) + 2z(F ) = z(R) + 2(|K| − 1)M . Therefore

z∗(RPP )

z∗(MC −MDRPP )
=
z(R) + 2(|K| − 1)M

z(R)
,

which tends to∞when M →∞. �

Despite the above result, it is also possible that z∗(MC − MDRPP ) be
higher than z∗(RPP ). Broadly speaking, this will happen when the need of
using all the depots worsens the potential quality of a solution. Below we give
a lower bound on the ratio z∗(RPP )/z∗(MC −MDRPP ).

Theorem 3.2.2. z∗(RPP )/z∗(MC −MDRPP ) ≥ 1/2, and the bound is asymp-
totically tight.

Proof. To see that z∗(MC −MDRPP ) ≤ 2z∗(RPP ) we observe that a feasible
solution for a given MC-MDRPP instance can be obtained from an optimal
RPP solution as follows:

(i) Replicate all the edges of the RPP solution.

(ii) Eliminate all pairs of unrequired edges connecting two components, both
containing one depot.

(iii) For each component containing no depot, retain one dipath connecting
it with some component with a depot, and eliminate all remaining such
dipaths if they exist.

The cost of the solution after (i) is 2z∗(RPP ). Thus if z∗ denotes the cost
of the feasible MC-MDRPP solution at the end of the process we have z∗ ≤
2z(RPP ). Since the optimal MC-MDRPP value cannot be greater than z∗ we
have z∗(MC −MDRPP ) ≤ z∗ ≤ 2z∗(RPP ). To see that the bound can be
attained asymptotically we provide an example.

Consider an MC-MDRPP instance like the one depicted in Figure 3.4a de-
fined on a graph G = (V,E), where each required component consists of one
single edge represented by a solid line, Rk =

{
{uk, vk}

}
of cost M , and con-

tains a depot (gray square) located at its leftmost vertex uk. Suppose that all
required edges are parallel. The set of unrequired edges (dotted lines) contains
edges connecting the leftmost and rightmost end-vertices of each consecutive
pair of edges, i.e. F =

{
{uk, uk+1}: 1 ≤ k < |K|

}
∪
{
{vk, vk+1}: 1 ≤ k < |K|

}
.

Let us finally suppose that the cost of each unrequired edge is ε. In the optimal
MC-MDRPP solution to the above instance, each required edge is traversed
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twice and no unrequired edge is used. Hence, z∗(MC −MDRPP ) = 2|K|M .
The optimal RPP solution (see Figure 3.4b) traverses each required edge only
once and connects each pair of consecutive components with one small unre-
quired edge (in total |K| − 1 such edges) of cost ε. Finally, the last and first
components are connected with a path of unrequired edges, which traverses
all the components (in total |K| − 1 small edges again). The value of the opti-
mal RPP solution is thus z∗(RPP ) = |K|M + 2(|K| − 1)ε. Therefore, for the
instance described above we have

z∗(RPP )

z∗(MC −MDRPP )
=
|K|M + 2(|K| − 1)ε

2|K|M
,

which tends to 1/2 when ε→ 0. �
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Figure 3.4: Potential savings of the RPP relative to the MC-MDRPP.

We conclude this section by comparing the value of the MC-MDRPP, in
which required edges in the same component can be served from different de-
pots, with its clustered version MC-MDRPPC , in which it is imposed that all
the required edges in the same component are served from the same depot.
Denote by z∗(MC −MDRPPC) the optimal value to a given MC-MDRPPC
instance. Since any feasible solution to the MC-MDRPPC is feasible for the
MC-MDRPP, we have that z∗(MC−MDRPP ) ≤ z∗(MC−MDRPPC). Thus
a lower bound for the ratio z∗(MC−MDRPPC)/z∗(MC−MDRPP ) is one. It
is easy to construct examples for which both problems have the same optimal
solution, so that this lower bound is tight. Below we give a result on an upper
bound of the ratio z∗(MC −MDRPPC)/z∗(MC −MDRPP ) and shows that
the bound is asymptotically tight.

Theorem 3.2.3. z∗(MC −MDRPPC)/z∗(MC −MDRPP ) ≤ 2, and the bound
is asymptotically tight.

Proof. To see that z∗(MC −MDRPPC) ≤ 2z∗(MC −MDRPP ) it is sufficient
to observe that replicating all the edges in an optimal MC-MDRPP solution
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3.2. Worst-case analysis

yields a solution in which the edges of each required component define an Eu-
lerian graph, and all the edges connecting two different components, are used
an even number of times. It is thus sufficient to remove two copies of some of
the edges connecting two different components to obtain a feasible solution to
the MC-MDRPPC .

The example of Figure 3.5a shows that the bound is asymptotically tight.
Consider a graph with an even number of required components, where each
required component consists of two edges depicted with solid lines: a small
one, {uk, vk} of cost δ, and a long one, {vk, wk} of cost M . Suppose that the
required edges in each component are aligned and that all required compo-
nents are parallel. Each component contains a depot represented with a light
gray square. The depot of component one is located at its rightmost vertex w1,
whereas the depots of all other components are located at their leftmost vertex
uk. The unrequired edges are shown by dotted lines. They connect pairs of sim-
ilar vertices in consecutive components, i.e. F =

{
{uk, uk+1}: 1 ≤ k < |K|

}
∪{

{vk, vk+1}: 1 ≤ k < |K|
}
∪
{
{wk, wk+1}: 1 ≤ k < |K|

}
. The cost of each unre-

quired edge is ε.

An optimal solution to MC-MDRPPC is obtained replicating all required
edges, since all the edges of each required component must be served from its
depot. The value of this solution is z∗(MC −MDRPPC) = 2|K|(δ +M).

∶ 

u2 v2 w2 

u3 v3 w3 

M 
w1 v1 u1 

 

u3 v3 w3 

u3 v3 w3 

u3 v3 w3 

 

(a) Input graph

∶ 

u2 v2 w2 

u3 v3 w3 

w1 v1 u1 

uk vk wk 

(b) Optimal MDRPP solution

Figure 3.5: Potential savings due to splitting the demand of components.

Figure 3.5b depicts an optimal MC-MDRPP solution to the above instance.
Small required edges {uk, vk} in all components different from the first one
are served from their depot and are traversed twice. The large required edges
{vk, wk} are traversed once in one single route associated with the depot of
the first component. This route also traverses the small required edge {u1, v1}
twice, traverses the unrequired edges {vk, vk+1} and {wk, wk+1} once if k is
odd, and traverses the unrequired edges {wk, wk+1} twice if k is even. Hence,
z∗(MC −MDRPP ) = 2|K|δ + (|K|M + 2(|K| − 1)ε). Therefore, for the in-
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stance described above we have

z∗(MC −MDRPPC)

z∗(MC −MDRPP )
=

2|K|(δ +M)

2|K|δ + (|K|M + 2(|K| − 1)ε)
,

which tends to 2 when δ → 0 and ε→ 0. �

3.3 Three-index formulations

The natural modeling option when dealing with routing problems with multi-
ple depots is to make use of binary variables that associate arcs or edges with
facilities, and then define the routes of each one. This offers two main advan-
tages. On the one hand, in absence of capacity or other type of constraints,
the feasibility of a route associated with a given depot is guaranteed through
the imposition of connectivity and parity constraints. On the other hand, the
routes can be easily constructed once the values of the decision variables are
known. The obvious disadvantage of this modeling approach is that the num-
ber of variables increases with the number of depots, and therefore the success
of exact solution methods on large size instances becomes a challenge. Below
we present a formulation for each of the proposed models.

3.3.1 Formulation for the Min-cost Multi-Depot RPP

The disaggregate MILP formulation for the MC-MDRPP exploits the optimal-
ity conditions. Condition O1 implies that we only need two sets of binary vari-
ables, associated with each depot, for the first and second traversals of edges,
respectively. We denote by Ey ⊂ E the set of edges that can be traversed twice
in an optimal MC-MDRPP solution, which consists of all demand edges plus
the edges of the MST of GC (see condition O3a). In each set, variables are as-
sociated with the depot of the route that traverses the edges. Hence, the sets
of binary decision variables are the following:

For all e ∈ E, d ∈ D,

xde =

{
1 if edge e is traversed by the route rooted at depot d
0 otherwise.

For all e ∈ Ey, d ∈ D,

yde =

{
1 if edge e is traversed twice by the route rooted at depot d
0 otherwise.

Then, a MILP for the MC-MDRPP is as follows:

minimize
∑
d∈D

(∑
e∈E

cex
d
e +

∑
e∈Ey

yde

)
(3.1)

subject to
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(xd + yd)(δ(d)) ≥ 2 d ∈ D (3.2)

(xd + yd)(δ(S)) ≥ 2xde d ∈ D, S ⊆ V \ {d}, (3.3)
e ∈ γ(S)

(xd − yd)(δ(S) \H) + yd(H) ≥ xd(H)− |H|+ 1 S ⊂ V, H ⊆ δ(S), (3.4)
|H| odd, d ∈ D∑

d∈D
xde = 1 e ∈ R (3.5)

yde ≤
∑
d∈D

xde e ∈ Ey, d ∈ D (3.6)

xde ∈ {0, 1} e ∈ E, d ∈ D (3.7)

yde ∈ {0, 1} e ∈ Ey, d ∈ D. (3.8)

Inequalities (3.2) and (3.3) ensure that all facilities are used and the connec-
tivity of each route with its associated depot, respectively. This later condition
is imposed by stating that if an edge is traversed by the route associated with
depot d ∈ D, then at least two edges must cross the cut-set of any vertex set
containing its two end-nodes, and not containing the depot d. Inequalities (3.4)
ensure the parity of every subset of vertices and, in particular, at every vertex.
Broadly speaking, they impose that if a solution uses an odd number of edges,
H , incident to a set of vertices S, then the solution uses at least one additional
traversal of some edge in the cut-set δ(S). In our case, we further exploit the
precedence relationship of the x variables with respect to the y variables im-
posed by constraints (3.6). Thus, the additional edge will be either a second
traversal of some edge of H or a first traversal of some edge of δ(S)\H . In-
equalities (3.4) are an adaptation to the MDRPPs of those proposed in Aráoz
et al. (2006), Aráoz et al. (2009a), Aráoz et al. (2009b), for the Prize-collecting
and the Clustered RPP, which were later reinforced in Corberán et al. (2013) for
the Maximum Benefit CPP. Inequalities (3.2)–(3.4) jointly guarantee that any
solution defines |D| Eulerian circuits. Taking into account optimality condi-
tion O4, equalities (3.5) ensure that each required edge is served by one route.
As mentioned, inequalities (3.6) impose that a route cannot traverse an edge
for a second time unless the edge has been traversed for the first time. Binary
conditions on the x and y variables, derived from their definition are reflected
by constraints (3.7) and (3.8).

The above formulation has |E| × |D| x variables and |Ey| × |D| y variables.
There are |D| inequalities of type (3.2), |R| inequalities (3.5) and |Ey| × |D|
inequalities of type (3.6). The size of the families inequalities (3.3) and (3.4) is
exponential in |V |.

3.3.2 Formulation for the Min-Max Multi-Depot RPP

Similarly to the above formulation for the MC-MDRPP, the MILP formula-
tion for the MM-MDRPP uses the same sets of decision binary variables x and
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y, taking into account that the index set Ey for the variables associated with
edges that can be traversed twice in an optimal MM-MDRPP solution now
must be defined according to condition O3b. In addition, we define a new in-
teger variable w representing the length of the longest route, so the objective
becomes the minimization of w. The formulation inherits all constraints (3.2)–
(3.8), and includes a new family of constraints that relate the new variable w
to the lengths of the longest route (3.10).

The MM-MDRPP formulation is as follows:

minimize w (3.9)

subject to

(xd + yd)(δ(d)) ≥ 2 d ∈ D (3.2)

(xd + yd)(δ(S)) ≥ 2xde d ∈ D, S ⊆ V \ {d}, (3.3)
e ∈ γ(S)

(xd − yd)(δ(S) \H) + yd(H) ≥ xd(H)− |H|+ 1 S ⊂ V, H ⊆ δ(S), (3.4)
|H| odd, d ∈ D∑

d∈D
xde = 1 e ∈ R (3.5)

yde ≤
∑
d∈D

xde e ∈ Ey, d ∈ D (3.6)

w ≥
∑
e∈E

cex
d
e +

∑
e∈Ey

cey
d
e v ∈ D (3.10)

xde ∈ {0, 1} e ∈ E, d ∈ D (3.7)

yde ∈ {0, 1} e ∈ Ey, d ∈ D (3.8)
w ∈ Z+. (3.11)

3.3.3 Valid inequalities

Below we present some families of simple valid inequalities that we will use
to reinforce the LP relaxations of the above formulations for the MC-MDRPP
and the MM-MDRPP:

1. Aggregate connectivity constraints. By adding up over all depots, the
connectivity constraints (3.3) associated with subsets of nodes containing
no depots, and taking into account that all vertices, except possibly the
depots, are incident with some demand edge, and thus must be visited,
we obtain:∑

d∈D
(xd + yd)(δ(S)) ≥ 2 S ⊂ V, S ∩D = ∅. (3.12)
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Even if the family (3.12) is implied by the general families (3.3) and the
family (3.12) is also of exponential size, some small sub-families associ-
ated with particular subsets S can be very useful to reinforce the initial
LP relaxation when the general family (3.3) is relaxed:

• Singletons S = {v}, with v ∈ V \D:∑
d∈D

(xd + yd)(δ(v)) ≥ 2 v ∈ V \D. (3.13)

For singletons {v} = {d} with d ∈ D, corresponding to depots, the
inequalities (3.13) are also valid, although they are dominated by
the stronger constraints (3.2).

• End-nodes of demand edges. Se = {u, v}, with e = {u, v} ∈ R,
Se ∩D = ∅:∑

d∈D
(xd + yd)(δ(Se)) ≥ 2 e ∈ R, Se ∩D = ∅. (3.14)

• Vertex sets of connected components without depot, S = Vk, k ∈ K,
Vk ∩D = ∅:∑

d∈D
(xd + yd)(δ(Vk)) ≥ 2 k ∈ K, Vk ∩D = ∅. (3.15)

2. Aggregate parity constraints. Aggregate versions of the parity constraints
(3.4) are indeed valid for the MC-MDRPP and the MM-MDRPP. Similar
inequalities (but combining binary and general integer variables) have
been used for other ARPs with multiple vehicles, namely the MM-K-
RPP Benavent et al. (2009, 2014). For the MC-MDRPP and the MM-
MDRPP, for S ⊂ V , H ⊆ δ(S), |H| odd, the inequality that we obtain
is the following:∑

d∈D
(xd − yd)(δ(S) \H) +

∑
d∈D

yd(H) ≥
∑
d∈D

xd(H)− |H|+ 1 (3.16)

In particular, when S is R-odd, i.e. |δR(S)| odd, and H = δR(S), the
inequality (3.16) becomes∑

d∈D
(xd − yd)(δF (S)) +

∑
d∈D

yd(δR(S)) ≥ 1. (3.17)

3.4 Branch-and-cut Algorithm

We have implemented branch-and-cut solution algorithms, for the MDRPPs
defined in Section 3.1, based on the formulations proposed above. The families
of constraints of exponential size are relaxed and, at each iteration, inequalities
violated by the current LP solution are separated. Such inequalities are itera-
tively incorporated to the current formulation and the reinforced formulation
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resolved. For both formulations the two families of constrains of exponential
size that are initially relaxed are the connectivity and the parity constraints
(3.3) and (3.4), respectively. Below we give the details of the algorithm. In par-
ticular, we describe the initial formulation, as well as the procedure to separate
the violated inequalities (3.3) and (3.4).

3.4.1 Initial relaxation

The algorithm starts with the integrality conditions relaxed and only a subset
of constraints. For the MC-MDRPP, the initial subproblem includes constraints
(3.2), (3.5) and (3.6), whereas for the MM-MDRPP the initial set of constraints
consists of (3.2), (3.5), (3.6) and (3.10). A small subset of connectivity and parity
constraints are considered. In particular, the initial relaxations are reinforced
with the aggregate connectivity inequalities (3.13), (3.14) and (3.15), plus the
aggregate parity constraints (3.17), associated with R-odd singletons, i.e., S =
{v}with v ∈ V and |δR(v)| odd.

3.4.2 Separation of inequalities

Before presenting the separation procedures for connectivity and parity in-
equalities, we introduce some additional notation. Throughout (x, y) denotes
the current LP solution and, for each depot d ∈ D, (xd, yd) the partial LP so-
lution associated with depot d, i.e. the components of (x, y) associated with
d. Furthermore, Gdx,y = (V d, Exd,yd) denotes the support graph of the partial
solution (xd, yd) for depot d ∈ D, obtained from G by eliminating all edges in
E with xde = 0 and all vertices that are not incident with any edge of Exd,yd .

Separation of connectivity inequalities (3.3)
The separation problem for connectivity constraints associated with a given
depot d ∈ D can be solved similarly to the connectivity constrainrs of the RPP
(see Chapter 1.4.1.3). Thus, for each depot d ∈ D we first check if Gdx,y is
connected. If it is not, each connected component C with vertex set V (C) ⊆
V d \ {d} defines a violated connectivity constraint (3.3) for depot d. Otherwise
whenGdx,y is connected we build the tree of min-cuts T d ofGdx,y with capacities
given by xde +yde . Then, using an adaptation of Belenguer and Benavent (1998),
for each edge e = {u, v} in Exd,yd with u, v ∈ V \ {d}, the minimum cut δ(S)

such that e ∈ γ(S) is easily obtained from the min-cut tree T d. If the value of
the min cut is smaller than 2xde then the inequalities (3.3) associated with S and
d are violated by (xd, yd). This separation method is exact and similar to the
procedure used by other authors to separate connectivity constraints in other
ARPs Ahr (2004), Aráoz et al. (2009a), Corberán et al. (2011).

Separation of parity inequalities (3.4)
The algorithm that we use follows the spirit of the procedures used by other
authors with similar parity constraints for other ARPs with binary variables
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Aráoz et al. (2009a), Aráoz et al. (2009b), Corberán et al. (2011). Now the sep-
aration is applied for each d ∈ D. The algorithm starts by building the tree
of min-cuts of the support graph Gdx,y, T b, with capacities vector b defined as
be = min{(xde−yde), 1−(xde−yde)}. If the selected cut-set contains edge e, this cri-
terion dictates whether edge e should be assigned toH or to δ(S)\H in order to
obtain the smallest possible value of the left hand side of (3.4). When T b has a
cut δ(S) of capacity smaller than one, i.e. b(δ(S)) < 1, we consider its vertex set
S, and the set of edges H = {e ∈ δ(S) | (xde − yde) ≥ 0.5}, which, as explained,
produces the smallest possible value on the left hand side of (3.4). When |H| is
odd, H defines, together with S, a violated inequality of type (3.4). Otherwise,
if |H| is even, by moving one edge from H to δ(S) \H or viceversa, so the new
set H will be odd. Let ∆ the increment derived from the edge movement com-
puted as ∆ = min

{
min{xde − yde : e ∈ δ(S) \H},min{1− (xde − yde) : e ∈ H}

}
.

When b(δ(S)) + ∆ < 1, the updated set H defines a violated inequality (3.4)
for d and S for the solution (xd, yd).

It is possible that the minimum cut-set of T b does not produce a violated
inequality (3.4) even it exists. This could happen only if the set H associated
with the minimum cut in T b is even. Fortunately, in Letchford and Salazar-
González (2015) it is proven that exploring all cut-sets of T b as explained above
defines an exact algorithm for knowing whether a violated inequality (3.4) ex-
ists. The order of such an algorithm is dominated by that of the algorithm
that obtains the min-cut tree T b. In practice, however, this upper limit on the
order of the algorithm is very seldom reached. On the one hand, each con-
nected component of Gdx,y for the capacities vector b already defines some of
the subsets S of the tree T b and connected components can be obtained with a
small computational burden. On the other hand, when Gdx,y defines one single
connected component but a violated inequality exists, most often the cut-set
producing the violated inequality will be identified before completing the full
cut-tree T b. Thus, in most cases, only if no violated inequality (3.4) exists it
will be necessary to compute all the min-cuts that define T b.

3.5 Computational experience

In order to evaluate the performance of the branch-and-cut algorithms de-
scribed above, we have run a series of computational experiments. Programs
have been coded in C++ using CPLEX 12.5 Concert Technology for the solu-
tion of the LP relaxations. The maximum computing time has been set to four
hours. Moreover, the cuts generated by CPLEX have been disabled. The ex-
periments were run on an Intel Core 2 CPU, 2.67 GHz and 8.00 GB RAM.

3.5.1 Set of benchmark instances

Since there were no available MDRPP benchmark instances, we have gener-
ated test instances from 118 well-known RPP benchmark instances. The origi-
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nal RPP benchmark instances are divided in five groups. The first group ALB
contains two data sets ALBAIDAA and ALBAIDAB, obtained from the Al-
baida, Spain Graph (see Corberán and Sanchis, 1994, 1998). The second group
contains the 24 instances, labeled P, of Christofides et al. (1981). The last 3
groups contain instances from Hertz et al. (1999): 36 instances with vertices of
degree 4 and disconnected required edges sets (labeled D), 36 grid instances
(labeled G), and 20 randomly generated instances (labeled R). In all cases we
inherited the set of required edges and the cost function c from the original
RPP instances.

Concerning the set of depots, we have considered two different cases: two
and four facilities. Depots have been chosen randomly from the set of vertices,
fulfilling that no connected component has more than one facility. For this, for
each selected number of depots |D| ∈ {2, 4} we have proceeded as follows.
First, we randomly generate |D| different numbers, ki, i = 1, . . . , |D|, from an
integer uniform distribution U [1, |K|], which give the indices of the clusters
were the depots are located. Then, for each selected cluster, ki the index of the
vertex of Vki that becomes the facility is obtained by randomly generating a
number vi from an integer uniform distribution U [1, |Vki |]. In order to compare
the results obtained with 2 and 4 depots, the instances that have fewer than
four connected components have been removed from the experiment. Finally,
the experiments have been run with two groups of 103 instances each.

Table 3.1: Summary of the instances

] inst |V0| |E0| |R| |K| |V |/|V0| |E|/|E0|

ALB 2 90-102 144-166 88-99 10-11 1.00 0.99
P 17 7-50 13-184 7-78 2-8 1.00 0.99
D16 6 16 31 3-16 2-5 0.83 0.80
D36 9 36 72 10-38 4-11 0.78 0.79
D64 9 64 128 27-75 5-15 0.82 0.83
D100 9 100 200 50-121 9-22 0.85 0.87
G16 7 16 24 3-13 3-5 0.74 0.67
G36 9 36 60 11-35 5-9 0.79 0.75
G64 9 64 112 24-68 4-14 0.80 0.78
G100 9 100 180 41-113 4-20 0.83 0.83
R20 2 20 47-75 3-7 3-4 0.48 0.36
R30 5 30 70-112 7-11 4-6 0.47 0.41
R40 5 40 82-203 8-18 5-9 0.50 0.50
R50 5 50 130-203 13-20 6-12 0.50 0.54

Table 3.1 depicts information on these instances, which have been grouped
according to their characteristics and sizes. The meaning of the columns is
as follows: column under ] inst gives the number of instances in the group;
columns under |V0| and |E0| give, respectively, the number of vertices and
edges of the original graph; the columns under |R| and |K| give, respectively,
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the number of required edges and the number of connected components in the
graph induced by those required edges. In the above columns, when not all the
instances of the group had the same value, the minimum and maximum values
of the group are given. The remaining columns in the table give information on
the effect of the graph transformation. In particular, columns under |V |/|V0|
and |E|/|E0| respectively correspond to the average ratios of the number of
vertices or edges in the transformed graph related to the original graph. As
it is known, the transformed graph is considerably smaller than the original
graph, in terms of the number of vertices and edges.

3.5.2 Results for Min-Cost Multi-Depot RPP

The results for the MC-MDRPP for the instances with two and four depots are
summarized in Tables 3.2 and 3.3, respectively. For each group of instances,
columns 2-5 give information about the root node of the enumeration tree,
while columns 6-11 give the results of the search tree. Column under ]Opt0
shows the number of instances in the group that have been optimally solved
in the root node. Column under Gap0 gives the average percentage gap at the
root node with respect to the optimal or best-known solution at termination.
The following two columns, under CutsC0 and CutsP0 give the average num-
ber of connectivity (3.3), and parity (3.4) cuts generated at the root node, re-
spectively. Similarly, the next four columns under ]Opt, Gap, CutsC and CutsP
give the same information at termination: number of instances that have been
optimally solved, the average percentage gap with respect to the optimal or
best-known solution, and the average number of connectivity and parity cuts
generated after the root node, respectively. Column under Nodes shows the
average number of nodes that were explored in the search tree. Finally, the col-
umn under CPU (s) gives the overall computing time in seconds. These times
do not include the preprocessing time for the reduction of the graph neither
the time for loading the formulation, which are negligible as compared to the
solution times reported in the tables.

The results show that our algorithm found the optimal solution for almost
all benchmark instances, with the exception of some instances belonging to the
largest instance groups (D100 and G100). Particularly, for 36 2-depot instances,
a provable optimal solution was obtained already at the root node. While at
termination, optimality of the current solution was proven for 100 of the 103
2-depot instances. The unsolved instances are D35, G33, and G34 which, as
mention, belong to groups D100 and G100. Respectively, their percentage op-
timality gap at termination are 6.34%, 9.88%, and 15.36%. Instead, for the 4-
depot instances, optimality was proven at the root node for 53 instances and
at termination for 95 of the 103 benchmark instances. Furthermore, no feasible
integer solution was found within the time limit for any of the eight unsolved
instances: two instances in group D100 (D34, D35) and six instances in group
G100 (G30–G35).
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Table 3.2: Summary of results for MC-MDRPP for two-depot instances

]Opt0 Gap0 CutsC0 CutsP0 ]Opt Gap CutsC CutsP Nodes CPU(s)

ALB 0/2 2.40 3568 153 2/2 0 6889.50 311 10 200.18
P 5/17 2.97 472.47 33.71 17/17 0 318.06 50.24 1.81 1.87
D16 6/6 0 56.83 8.33 - - - - 0 0.03
D36 1/9 0.92 366.67 39.89 9/9 0 149 32.33 5.67 0.60
D64 0/9 1.59 1635.22 80.56 9/9 0 1516.33 178.67 20.22 16.24
D100 0/9 4.11 4392.78 135.56 8/9 0.70 26876.56 1483.89 376.67 2452.42
G16 5/7 1.52 23.14 12.29 7/7 0 12.71 7.14 1.43 0.03
G36 3/9 1.72 313.67 43.22 9/9 0 189.44 32.67 2.33 0.53
G64 2/9 1.75 1474.89 93.89 9/9 0 7733.11 662.11 164.11 156.77
G100 0/9 4.59 14368.89 422.44 7/9 2.80 59850.33 25381.78 337.44 4631.05
R20 2/2 0 7.50 5.50 - - - - - 0.02
R30 4/5 0.23 59.80 11.60 5/5 0 5.60 6.8 3 0.10
R40 4/5 0.09 330.60 23.60 5/5 0 100.40 18 3.4 0.28
R50 4/5 0.35 351.40 32.20 5/5 0 67.6 2.40 0.4 0.17

Table 3.3: Summary of results for MC-MDRPP for four-depots instances

]Opt0 Gap0 CutsC0 CutsP0 ]Opt Gap CutsC CutsP Nodes CPU(s)

ALB 0/2 1.8 18263 429 2/2 0 45754 1325 129 5476.70
P 11/17 0.73 455.94 49.88 17/17 0 2103.06 134.65 1.81 44.77
D16 6/6 0 0.50 1.33 - - - - - 0.01
D36 4/9 0.87 488.89 69.67 9/9 0 219.33 35.22 1.89 0.96
D64 1/9 2.27 4027 196.33 9/9 0 3509.78 1543.33 40.11 108.64
D100 0/9 24.60 17860.11 480.11 7/9 22.22 51504.33 1878.44 130 7085.23
G16 7/7 0 1.86 7.8 - - - - - 0.01
G36 5/9 1.56 340.78 69.78 9/9 0 795.22 98.22 45.44 10.50
G64 5/9 0.67 2636.67 196.89 9/9 0 16248.78 931.22 128 1835.31
G100 1/9 67.08 12813.33 548.22 3/9 66.67 56311.78 1341.67 38.33 9640.11
R20 2/2 0 1.5 7.5 - - - - - 0.02
R30 4/5 1.63 21.80 14.40 5/5 0 29.40 7.40 1.20 0.08
R40 4/5 0.13 352.60 42.20 5/5 0 20 4 1.80 0.35
R50 3/5 0.48 533.60 62.60 5/5 0 81.20 13.60 0.80 0.45

The computational effort required for solving the instances to optimality,
can be evaluated by the required computing times. In this sense, only 5 in-
stances with two depots and 14 of instances with four depots required more
than one hour (including those instances for which no feasible solution was
found within the time limit). Moreover, for 80% of two-depot and 74% of four-
depot instances, respectively, the optimal solution was found in less than 1
minute. Moreover, comparing the difficulty to solve instances with two and
four depots in terms of the required computing times, it can be seen that the
algorithm is, in general, faster when the instances have fewer depots. Nev-
ertheless, we can observe that the proposed algorithm was able to solve at
the root node more four-depot than two-depot instances, even if the former
involve a larger number of variables. A further analysis of those instances
reveals a pattern, being instances with a reduced number of vertices and con-
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nected components.

We finally point out the small effect the assumption that service to required
edges in the same connected can be split among different depots; in most so-
lutions all connected components are fully served from the same depot. In
particular, split components appear only in 22 of the two-depot instances and
in 30 of the four-depot instances. This represents 21% and 29%, of the total
number of consideres instances, respectively.

3.5.3 Results for Min-Max Multi-Depot RPP

A new series of computational experiments has been run for the MM-MDRPP.
For these experiments we have considered the 78 two-depot instances with
up to 64 nodes, and the 60 four-depot instances that consists of all instances
with up to 50 nodes. We have not considered the sets of larger instances, since
it was not possible to solve them to optimality within the time limit, and the
percentatge optimality gaps at termination were big. Moreover, in most cases,
even no feasible solution was known at termination. The results are summa-
rized in Tables 3.4 and 3.5. The columns information is the same as before.

Table 3.4: Summary of results for MM-MDRPP for two-depot instances

]Opt0 Gap0 CutsC0 CutsP0 ]Opt Gap CutsC CutsP Nodes CPU(s)

P 1/12 8.31 319.92 27.75 12/12 0 678.58 156.42 35.58 4.43
D16 3/6 3.97 69.50 17.17 6/6 0 35.17 21.67 5.17 0.14
D36 0/9 12.59 448.78 41.78 9/9 0 1310.44 193.11 44.44 4.66
D64 0/9 11.21 2084.78 88.33 8/9 0.11 17340.33 1484.22 1688.44 1866.19
G16 4/7 9.71 38.43 13.86 7/7 0 18.43 13 3.71 0.04
G36 2/9 6.12 379.67 43.78 9/9 0 1279.56 224.56 27.78 5.25
G64 0/9 7.82 2720.33 122.44 9/9 0 25627.78 2532.00 624.56 1665.05
R20 1/2 13.11 18.00 5 2/2 0 55.50 23.50 7 0.16
R30 1/5 10.00 112.20 16.40 5/5 0 92.40 10.80 3.40 0.15
R40 2/5 3.47 418.20 23.40 5/5 0 650 109.20 59 2.42
R50 0/5 18.49 538.00 25.20 5/5 0 2749.40 197.60 55.80 1.41

The proposed algorithm found the optimal solution for all the tested MM-
MDRPP instances but one, the exception being instance D26. The obtained
results are consistent with those obtained for the MC-MDRPP. In general, 2-
depot instances are easier to solve than 4-depot ones in terms of the size of
the exploration tree and the computing time. Likewise, there are more 4-depot
instances which are solved at the root node. This correspon also to small in-
stances with a reduced number of vertices and connected components.

A comparison of the results of both models shows that, in general, the gap
at the root node, the number of cuts, the number of explored nodes and the
computing times are worse in the MM-MDRPP than in the MC-MDRPP. An-
other aspect that is relevant in the comparison between both models is the
structure of the solutions. As could be expected, the overall routing costs
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Table 3.5: Summary of results for MM-MDRPP for four-depot instances

]Opt0 Gap0 CutsC0 CutsP0 ]Opt Gap CutsC CutsP Nodes CPU(s)

P 2/12 14.24 661.83 69.58 12/12 0 4578.58 661.67 1107 1227.46
D16 4/6 5.60 38.83 21.50 6/6 0 0 1.33 1.17 0.08
D36 1/9 20.06 1153.56 122.33 9/9 0 319.56 490.78 176.56 47.03
G16 6/7 3.17 11.86 13.43 7/7 0 0 0 0.14 0.02
G36 2/9 15.90 805.78 124.78 9/9 0 3662.22 679.78 295.22 1117.09
R20 2/2 0 19.50 16 - - - - - 0.05
R30 3/5 6.73 144.20 30.20 5/5 0 82 24.20 15.50 0.38
R40 0/5 31.09 638.20 61.80 5/5 0 2370.40 306.40 120 30.25
R50 0/5 36,78 1005.60 92.80 5/5 0 5808.60 1152,60 815.2 113.81

are, in general, higher in optimal MM-MDRPP solutions than in optimal MC-
MDRPP solutions. Even if there are 19 2-depot instances and 20 4-depot in-
stances where the overall length of all routes is the same in both models, the
average overall length increase is 13.09% for the 2-depot instances and 21.14%
for the 4-depot instances. The maximum increases are 52.80% in instance R17
with two depots, and 73.69% in instance R11 with four depots. Nevertheless,
we can also observe that optimal routes for MC-MDRPP tend to be unbal-
anced. In particular, when using model MM-MDRPP, the length of the max-
imum route usually decreases. On average the makespan decreases in 19%
for the 2-depot instances with a maximum decrease of 46.15% in instance G25,
and 27.20% for the 4-depot instances with a maximum decrease of 64.71% in in-
stance G16. In fact, only in 13 of the 2-depot instances and in 21 of the 4-depot
instances the length of the longest route remains the same on both models.

3.5.4 Balancing the length of the routes from one single depot

Finally, a last series of experiments has been run. In these experiments we have
solved the undirected MM-K-RPP, which considers K vehicles located at a one
single facility, and minimizes the length of the longest route. As mentioned in
the introduction, the MM-K-RPP is a particular case of the MM-MDRPP, by
considering K depots co-located at the same vertex and performing one sin-
gle route from each co-located depot. For the experiments, all instances with
up to 40 nodes have been considered, one of the facilities has been randomly
selected and replicated K times while all other previous depots have been ig-
nored.

Tables 3.6 and 3.7 summarize the results obtained for K ∈ {2, 4}. Com-
paring optimal solutions to the MM-K-RPP and the MM-MDRPP, we observe
that the cost of the longest route in optimal MM-K-RPP solutions increases
considerably in comparison to that of the MM-MDRPP. Consequently, the total
routing cost increases as well. The average makespan increases in 26.84% for
the two-depot instances and in 102% for the four-depot instances. This repre-
sents a total increase of the overall length of 31.29 % and 116.50% respectively,
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on average.

Table 3.6: Summary of results for MM-K-RPP for two-routes instances

]Opt0 Gap0 CutsC0 CutsP0 ]Opt Gap CutsC CutsP Nodes CPU(s)

P 0/12 24.29 788.33 39.58 12/12 0 2641.25 369.33 286.00 25.43
D16 0/6 30.80 125.00 17.67 6/6 0 317.50 117.83 52.17 0.55
D36 0/9 21.49 639.78 40.44 9/9 0 5104.67 703.89 858.00 1685.29
G16 1/7 30.43 67.86 18.29 7/7 0 135.43 37.86 27.14 0.23
G36 0/9 24.89 692.11 49.56 9/9 0 4032.22 556.00 252.67 368.37
R20 0/2 33.48 47.50 15.00 2/2 0 133.50 34.00 18.00 0.31
R30 0/5 22.35 147.60 21.40 5/5 0 473.80 77.40 57.80 0.88
R40 0/5 14.74 432.00 30.00 5/5 0 4079.40 441.60 414.80 28.81

Concerning the operational aspect, the computational effort required for
solving the MM-K-RPP instances to optimality is higher than in the previous
experiments, for instances of the same size and characteristics. In compari-
son with the MM-MDRPP, the computing time of the MM-K-RPP increases
around 1604% for two-depot instances and 644% for four-depot instances. Fur-
thermore, the number of instances that could not be optimally solved within
the time limit increased to eight for the four-depots instances. We attribute this
increase in the difficulty for optimally solving the instances to the symmetry
that now appears for the routes, as they can now be interchanged.

Table 3.7: Summary of results for MM-K-RPP for four-routes instances

]Opt0 Gap0 CutsC0 CutsP0 ]Opt Gap CutsC CutsP Nodes CPU(s)

P 0/12 37.57 1812.50 93.58 10/12 12.22 14981.33 1822.83 3422.25 3682.92
D16 0/6 48.76 236.17 42.50 6/6 0 1013.67 446.83 594.83 15.40
D36 0/9 36.27 2132.33 167.78 7/9 7.10 20157.67 2088.78 11910.89 3871.17
G16 1/7 32.54 153.86 57.57 7/7 0 301 112.86 72.71 2.10
G36 0/9 47.21 2974.44 204 8/9 3.54 14838.67 1694 1127 4502.25
R20 0/2 50.43 257.50 31.50 2/2 0 812.50 625 692.50 20.09
R30 0/5 47.38 448.80 47.40 5/5 0 2249.80 478.80 442.20 44.59
R40 0/5 40.99 1090 75.80 2/5 6.60 19397.40 2650 4209.40 3336.25
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Chapter 4

Aggregate formulation for the
Min-Cost Multi-Depot RPP

In this chapter we propose a compact integer linear programming formulation
for the MC-MDRPP. This formulation is based on an aggregate view of the
decision variables, which now only have two indices. Furthermore, a poly-
hedral analysis of the presented formulation has been developed, as well as
a branch-and-cut algorithm, which has been tested on a large set of bench-
mark instances, involving up to 744 vertices, 140 required components and
1000 required edges. Most of the content of this chapter has been published in
Fernández et al. (2018).

4.1 Aggregate decision variables

As an alternative to the natural modeling option where variables are associ-
ated with edges and facilities, the aggregate view yields to only two-index
variables, which are solely associated with edges, but not with facilities. This
modeling option reduces the number of decision variables. However, the de-
crease in the amount of decision variables comes at the expense of additional
difficulties.

Figure 5.2, where gray squares represent depots and solid lines the re-
quired edges, illustrates that, with the new view, connectivity and parity con-
straints are not sufficient to guarantee well-defined routes. Observe that the
displayed solution is not feasible despite being connected and of even degree
at all nodes, as it is not possible to decompose the solution into three routes,
each of them starting and ending at the same facility. In the formulation that
we propose, the difficulty for stating well-defined routes is overcome through
a new set of constraints, which can be separated in polynomial time and that
we present afterwards.

Taking into account the optimality condition O5 presented in Chapter 3.1.2,
in an optimal MC-MDRPP solution an edge can be traversed multiple times. In
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Figure 4.1: Infeasible solution satisfying connectivity and parity constraints

particular, required edges plus edges from the MST, TC can be traversed 2|D|
times, whereas the remaining edges can be traversed |D| times. Thus, unlike
the three-index formulation, the aggregate formulation can not use two sets
of binary variables unless we operate on a complete graph. As it was pointed
out at the end of Chapter 3.1.2 when G = (V,E) is a complete graph, optimal-
ity conditions O6 and O7 apply. Therefore, there exists an optimal solution to
MC-MDRPP in which no edge is traversed more than twice. Moreover, the
only edges that can be traversed twice are required edges connecting two R-
odd vertices plus edges satisfying O3.

In the reminder of this chapter, unless otherwise stagted, we assume that
G(V,E) is a complete graph.

4.2 Two-index formulation

Next we propose a formulation for the MC-MDRPP stated on a complete graph,
which uses two-index binary variables only. In particular, two sets of binary
variables are used, associated with the first and second traversal of edges. For
each e ∈ E, let xe be a binary variable indicating whether or not edge e is
traversed by some route. We denote by Ey ⊂ E the set of edges that can be
traversed twice in an optimal solution, which, according to the optimality con-
dition O7, consists of the required edges connecting two R-odd vertices plus
the edges of TC . For each e ∈ Ey, let ye be a binary variable that takes the value
one if and only if edge e is traversed twice.

Then, an integer linear program for the MC-MDRRP is as follows:
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minimize
∑
e∈E

cexe +
∑
e∈Ey

ceye (4.1)

subject to

(x+ y)(δ(d)) ≥ 2 d ∈ D (4.2)
(x+ y)(δ(S)) ≥ 2 S ⊆ V \D (4.3)
(x− y)(δ(S) \H) + y(H) ≥ x(H)− |H|+ 1 S ⊂ V, H ⊆ δ(S) (4.4)

|H| odd
(x− y)(Q) + y(H) ≥ x(H)− |H|+ |D′| S ⊂ V \D, (4.5)

D′ = {di}i∈I ⊂ D, |D′| > 1,

Hi ⊆ δ(S) ∩ δ(di), |Hi| odd,

H =
⋃
i∈I

Hi,

Q = (δ(S) \H) \
(
δ(D \D′)

)
xe = 1 e ∈ R (4.6)
ye ≤ xe e ∈ Ey (4.7)
xe ∈ {0, 1} e ∈ E (4.8)
ye ∈ {0, 1} e ∈ Ey. (4.9)

Inequalities (4.2) ensure that all depots are used. Constraints (4.3) are the
well-known connectivity inequalities. They impose that at least two edges
cross the cut-set δ(S) of any set of vertices S that does not contain a facility,
i.e. S ⊂ V \D. Inequalities (4.4) ensure the parity (even degree) of the solution
exploiting the precedence relationship of the x variables with respect to the
y variables imposed by constraints (4.7). Inequalities (4.5) are new and will
be referred to as Return-to-facility constraints (Rt-FCs). They impose that for a
given subset S ⊂ V \D of vertices not including any depot, the degree of its
cut-set with respect to each of the depots is even. As we will see in Proposi-
tion 4.2.1, this family of inequalities, jointly with the remaining connectivity
and parity constraints, also guarantees that each route starts and ends at the
same depot. Equalities (4.6) ensure that each required edge is served in the
solution, whereas inequalities (4.7) impose that an edge cannot be traversed
for a second time unless that it has been traversed for a first time. The binary
conditions of the variables x and y derived from their definition are imposed
by constraints (4.8) and (4.9).

The above formulation contains |E| x variables and |Ey| y variables. There
are |D| constraints of type (4.2), |R| equalities (4.6), and |Ey| constraints of type
(4.7). The size of the families constraints (4.3), (4.4), and (4.5) is exponential in
|V |.
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Proposition 4.2.1. Formulation (4.2)–(4.9) is valid for the MC-MDRRP.

Proof. We will show that if a solution (x, y) satisfying (4.2)–(4.4), (4.6)–(4.9) is
not feasible for the MC-MDRRP, then there exists a constraint (4.5) violated
by the solution. Let G(x, y) denote the support graph associated with (x, y).
Because of the connectivity and parity constraints (4.3)–(4.4), if (x, y) is not
feasible for the MC-MDRRP then there must be a simple tour T traversing
at least two facilities. Let d1, d2 ∈ D be two consecutive depots in one of
the orientations of T , and Pd1d2 the subpath of T connecting d1 and d2. The
result follows from the observation that the Rt-FCs (4.5) associated with S =
V (Pd1d2) \D, D′ = {d1, d2}, H1 = S ∩ δ(d1), H2 = S ∩ δ(d2) and Q = (δ(S) \
H) \ (δ(D \D′)) is violated by (x, y). �

Let us use again the example of Figure 5.2 for illustrative purposes. Con-
sider, for instance, the simple tour T = (11, 3, 10, 8, 9, 7, 5, 6, 1), d1 = 11, d2 = 8,
and P11,8 = (11, 3, 10, 8). Using the notation of the above proof, V (Pd1d2)\D =
{3, 10}, H1 = {(3, 11)}, and H2 = {(8, 10)} and Q = (δ(S) \H) \ (δ(D \D′)) =
{(4, 10)}. Indeed, the associated Rt-FCs inequality (4.5) is violated since x(H)−
|H|+ |D′| = 2, but (x− y)(Q) + y(H) = 1 < x(H)− |H|+ |D′|.

Remark 4.2.1. An additional consequence of the above proof is that the Rt-FCs
(4.5) associated with subsetsD′with two facilities are enough to guarantee that
the proposed formulation is valid.

4.2.1 Polyhedral analysis

Considering that all required edges must be traversed at least once, the MC-
MDRPP can be equivalently stated as the problem of determining a least cost
set of additional edges which, along with the required edges, define a con-
nected route from each facility. Accordingly, we can reformulate (4.2)–(4.9) by
slightly modifying the meaning and the domain of the variables. Now vari-
ables xe will have a different meaning depending on whether or not e is a re-
quired edge. For e ∈ R, xe = 1 indicates that required edge e is traversed one
additional time (second traversal), whereas for e ∈ E \R xe = 1 indicates that
unrequired edge e is traversed for the first time. Based on the optimality con-
ditions of Chapter 3.1.2, we redefine the domain of the x variables as E2

x ⊂ E,
which contains all required edges, plus the edges that satisfy condition O3, as
well as the unrequired edges connecting two end-vertices in different compo-
nents. Now the domain E2

y ⊂ E for the variables associated with the second
traversal of edges, contains only the unrequired edges that satisfy condition
O4, i.e. the unrequired edges of TC . In terms of these new sets of variables, the
MC-MDRPP can be expressed as:
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∑
e∈R

ce+ minimize

∑
e∈E2

x

cexe +
∑
e∈E2

y

ceye

 (4.10)

subject to

x(δ(d)) ≥ 2 d ∈ D (4.11)
(x+ y)(δ(S)) ≥ 2 S = ∪i∈K′Vi \D (4.3)

∅ 6= K ′ ⊂ K
(x− y)(δ(S) \H) + y(H) ≥ x(H)− |H|+ 1 S ⊂ V, R-even (4.4)

H ⊆ δ(S), |H| odd
(x− y)(δ(S)) ≥ 1 S ⊂ V, R-odd (4.12)
(x− y)(Q) + y(H) ≥ x(H)− |H|+ |D′| S ⊂ V \D, (4.5)

D′ = {di}i∈I ⊂ D, |D′| > 1,

Hi ⊆ δ(S) ∩ δ(di), |Hi| odd,

H =
⋃
i∈I

Hi,

Q = (δ(S) \H) \
(
δ(D \D′)

)
ye ≤ xe e ∈ E2

y (4.7)

xe ∈ {0, 1} e ∈ E2
x (4.8)

ye ∈ {0, 1} e ∈ E2
y . (4.9)

Next we study the polyhedral properties of (4.10)–(4.9). We denote by
P(MC−MDRPP ) the polytope defined by the convex hull of feasible solutions to
the above formulation: P(MC−MDRPP ) = conv{(x, y) ∈ {0, 1}|E2

x|+|E2
y | : (x, y)

satisfies (4.11)–(4.7)}.

In the proofs below we abuse notation and assume that there exists an edge
connecting each pair of vertices. When such edges are non-existing in E2

x, they
correspond to T -joins, connecting given pairs of vertices, that only use true
edges of the set E2

x. Examples of such non-existing edges are, for instance,
T -joins connecting two depots, or T -joins connecting two even-vertices in the
same component if the connecting edges do not exist in E2

x. Using edges asso-
ciated with such T -joins in the solutions that we will build, will simplify the
presentation of the proofs, but will have no effect on their validity, since the
parity of the intermediate vertices in the T -joins will not be affected.

Proposition 4.2.2. P(MC−MDRPP ) is full-dimensional if and only if every cut-edge
set δ(S) ⊂ V \ D has at least three edges, and every cut-edge set δ(S) such that
S =

⋃
i∈K′ Vi \D (∅ 6= K ′ ⊂ K) has at least four edges, where if e ∈ E2

x and e ∈ E2
y ,

then e is counted as two distinct edges.
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Proof. The condition is necessary. We follow the same idea as in Ghiani and La-
porte (2000) for the RPP. If there exists a cut edge-set with only one edge, then
e should be a required edge and xe = 1. Therefore, P (MC −MDRPP ) ⊂ {x :
xe = 1}. Assume now there exists a subset S ⊂ V \D, with δ(S) = {e(1), e(2)}.
If S = ∪i∈K′Vi \ D (∅ 6= K ′ ⊂ K), then P (MC −MDRPP ) ⊂ {x : xe(1) = 1
and xe(2) = 1}. Otherwise, if δ(S) is R-even, P (MC−MDRPP )⊂ {x : xe(1) =
xe(2)}, and if δ(S) is R-odd, P (MC − MDRPP ) ⊂ {x : xe(1) + xe(2) = 1}.
Finally, if S = ∪i∈K′Vi \ D (∅ 6= K ′ ⊂ K) or δ(S) = {e(1), e(2), e(3)}, then
P (MC −MDRPP ) ⊂ {x : xe(1) + xe(2) + xe(3) = 2}.

The condition is sufficient. Let us find |E2
x|+ |E2

y |+ 1 affinely independent solu-
tions satisfying the connectivity, parity and return-to-facility constraints.

The first solution, denoted by (x0, y0), contains one traversal of the edge
connecting each R-odd vertex with an arbitrarily chosen facility d0 ∈ D, plus
two traversals of all the edges of TC . To guarantee the parity of the depots
in the solution, it may be necessary to add some edges connecting some pairs
of facilities. The remaining |E2

x| + |E2
y | solutions, (xe, ye), e ∈ E2

x ∪ E2
y , are

obtained from (x0, y0) as follows:

a) Case e = {u, v} ∈ E2
x, with u, v in the same component.

a1) Case u, v R-odd. In this case x0e = 0 whereas the components corre-
sponding to edges eu = {d0, u} and ev = {d0, v}, take the value 1,
i.e. x0eu = x0ev = 1. We set xee = 1 − x0e = 1, xeeu = 1 − x0eu = 0, and
xeev = 1−x0ev = 0, so the parity of u and v does not change. All other
components remain unchanged, i.e., xef = x0f , for all f ∈ E2

x \ {e},
yef = y0f , for all f ∈ Ey.

a2) Case u, v R-even. In this case x0e = 0 whereas the components cor-
responding to edges eu = {d0, u} and ev = {d0, v}, take the value 0,
i.e. x0eu = x0ev = 0. We set xee = 1 − x0e = 1, xeeu = 1 − x0eu = 1, and
xeev = 1−x0ev = 1, so the parity of u and v does not change. All other
components remain unchanged, i.e., xef = x0f , for all f ∈ E2

x \ {e},
yef = y0f , for all f ∈ Ey.

a3) Case u R-odd and v R-even (or vice versa). In this case x0e = 0
whereas the components corresponding to edges eu = {d0, u} take
the value 1 and ev = {d0, v}, take the value 0, i.e. x0eu = 1 and x0ev =
0. We set xee = 1−x0e = 1, xeeu = 1−x0eu = 0, and xeev = 1−x0ev = 1, so
the parity of u and v does not change. All other components remain
unchanged, i.e., xef = x0f , for all f ∈ E2

x \{e}, yef = y0f , for all f ∈ Ey.

b) Case e = {u, v} ∈ E2
x \ E2

y , with u, v in different components. In this
case x0e = 0, and the components corresponding to edges eu = {d0, u}
and ev = {d0, v}, are at value 0 as well, i.e. x0eu = x0ev = 0. Again we
set xee = 1 − x0e, xeeu = 1 − x0eu , and xeev = 1 − x0ev , resulting now in

46



4.2. Two-index formulation

xee = xeeu = xeev = 1. As in the previous case, the parity of u and v does
not change. All other components remain unchanged, i.e., xef = x0f , for
all f ∈ E2

x \ {e}, yef = y0f , for all f ∈ E2
y .

c) Case e ∈ E2
x ∩ E2

y . Now x0e = y0e = 1. We now generate two solutions:
(xe, ye), associated with e ∈ E2

x, and (x′e, y′e), associated with e ∈ E2
y . For

(xe, ye) we keep xee = 1 but set yee = 0. Then we set xeeu = xeev = 1 where,
as before, u, v denote the two end-vertices of edge e, and eu = {d0, u},
ev = {d0, v}. This guarantees the parity of u and v and the connectivity
of the solution. All other components remain unchanged. For (x′e, y′e)
we set x′ee = y′ee = 0. This guarantees the parity of u and v although
the connectivity may be lost. If needed, additional edges are added to
recover connectivity (indeed it is possible to recover connectivity via a
triangle of edges connecting u and v to an arbitrary facility). All other
components remain unchanged.

Note that each of the feasible solutions obtained above contains at least one
component with a value that is different from the values of that component in
all other solutions. Therefore, the associated points are affinely independent
and the result follows. �

In the remainder of this section we study the conditions under which sev-
eral families of inequalities define facets of P(MC−MDRPP ). The proofs of these
results follow a similar spirit of those for the RPP in Ghiani and Laporte (2000).

Proposition 4.2.3. The inequality xe ≥ 0 defines a facet of P(MC−MDRPP ) if and
only if every cut-set δ(S) ⊂ V \D containing e has at least four edges and every δ(S)
such that S =

⋃
i∈K′ Vi \D (∅ 6= K ′ ⊂ K) has at least five edges.

Proof. The proof in Ghiani and Laporte (2000) directly applies to the MC-
MDRPP, independently of the number of depots. The face {x ∈ P(MC−MDRPP ) :
xe = 0} has the same dimension as the polytope associated with the MC-
MDRPP defined on the graph obtained after removing edge e from G. �

Proposition 4.2.4. The inequality xe ≤ 1 induces a facet of P(MC−MDRPP ) if and
only if every cut-set δ(S) containing e has at least four edges.

Proof. The condition is necessary. Suppose there exists a cut-edge set with only
three edges, δ(S) = {e, f, g}. Then, either {x ∈ P(MDRPP ) : xe = 1} ⊂ {x ∈
P(MDRPP ) : xe = 1, xf + xg = 1} if δ(S) is R-even, or {x ∈ P(MDRPP ) : xe =
1} ⊂ {x ∈ P(MDRPP ) : xe = 1, xf − xg = 0} otherwise.

The condition is sufficient. Under the hypotheses, it is easy to show that there
exist |E2

x|+ |E2
y | feasible and affinely independent solutions on the hyperplane

xe = 1. Let the first solution be solution (xe, ye) as defined in the proof of
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Proposition 4.2.2. Recall that xee = 1. The remaining |E2
x| + |E2

y | − 1 solutions
may be constructed following the same process as in Proposition 4.2.2, modi-
fying in each new solution one of the other components. �

Proposition 4.2.5. The connectivity inequality (4.3) associated with S =
⋃
i∈K′ Vi

(∅ 6= K ′ ⊂ K), S
⋂
D = ∅, induces a facet of P(MC−MDRPP ) if and only if the

graphs induced by the connected components G(S) and G(V \S) verify the following:
i)G(S) is connected and each connected component ofG(V \S) has at least one depot.
ii) For every subset of components in S′ ⊂ S (or S′ in V \S) with S′

⋂
D = ∅, it holds

that |δ(S′)\δ(S)| ≥ 2.

Proof. The condition is necessary. Suppose G(S) is not connected, and let S1 be
a component of G(S). Then the connectivity inequality (4.3) associated with
G(S) is dominated by the connectivity inequality (4.3) corresponding toG(S1).
A similar situation arises if some component of G(V \S) contains no facility.
Suppose now there exists a subset of components S′ ⊂ S such that there is
only one edge connecting S′ and S\S′. Then, the connectivity constraint asso-
ciated with G(S) is dominated by the sum of the connectivity constraints (4.3)
associated with S′ and S\S′.

The condition is sufficient. Under the hypotheses, there exist |E2
x| + |E2

y | feasi-
ble and affinely independent solutions on the hyperplane

∑
e∈δ(S)(xe+ye) = 2.

Consider a solution (x0, y0) that contains: i) one traversal of the edges con-
necting eachR-odd vertex with an arbitrarily even vertex i ∈ V in its own com-
ponent; ii) two traversals of one arbitrarily selected edge of TC , e0 = {u0, v0},
which belongs to the cut-set δ(S), i.e. e0 ∈ E2

y ∩ δ(S); and, iii) two traversals
of all the edges of TC that do not belong to the cut-set δ(S). By construction,
(x0 + y0)(δ(S)) = 2. The |E2

x|+ |E2
y | − 1 additional solutions are obtained from

(x0, y0) as follows:

a) Case e = {u, v} ∈ E2
x, with u, v in the same component. We proceed

exactly as in case a) in the proof of Proposition 4.2.2.

a1) Case u, v R-odd. In this case x0e = 0 whereas the components cor-
responding to edges eu = {i, u} and ev = {i, v}, take the value 1,
i.e. x0eu = x0ev = 1. Hence, we set xee = 1 and xeeu = xeev = 0, so
the parity of u and v does not change. All other components remain
unchanged, i.e., xef = x0f , for all f ∈ E2

x \{e}, yef = y0f , for all f ∈ E2
y .

a2) Case u, v R-even. In this case x0e = 0 whereas the components cor-
responding to edges eu = {i, u} and ev = {i, v}, take the value 0,
i.e. x0eu = x0ev = 0. We set xee = 1 − x0e = 1, xeeu = 1 − x0eu = 1, and
xeev = 1−x0ev = 1, so the parity of u and v does not change. All other
components remain unchanged, i.e., xef = x0f , for all f ∈ E2

x \ {e},
yef = y0f , for all f ∈ Ey.
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a3) Case u R-odd and v R-even (or vice versa). In this case x0e = 0
whereas the components corresponding to edges eu = {i, u} take
the value 1 and to edges ev = {i, v} take the value 0, i.e. x0eu = 1
and x0ev = 0. We set xee = 1 − x0e = 1, xeeu = 1 − x0eu = 0, and
xeev = 1−x0ev = 1, so the parity of u and v does not change. All other
components remain unchanged, i.e., xef = x0f , for all f ∈ E2

x \ {e},
yef = y0f , for all f ∈ Ey.

b) Case e = {u, v} ∈ E2
x \ E2

y with u, v in different components. In this case
x0e = 0, and there is an edge e′ = {u′, v′} ∈ Ey ∩ δ(S) with u′ in the same
component as u, and v′ in the same component as v with x0e′ = y0e′ = 1.
Note that it is possible that u′ coincides with u or that v′ coincides with v
(but not both simultaneously). Now we set xee = 1, yee′ = 0. Furthermore,
if u′ 6= u we set xeeu,u′ = 1. Similarly, xeev,v′ = 1, provided that v′ 6= v. Like
in the previous case, the parity of u and v does not change. All other
components remain unchanged (including xee′ = 1).

c) Case e = {u, v} ∈ E2
y \ {e0}. Now x0e = y0e = 1. We now generate two

solutions: (xe, ye), associated with e ∈ E2
x, and (x′e, y′e), associated with

e ∈ E2
y . Consider the following subcases:

c1) Case e = {u, v} ∈ δ(S). For (xe, ye) we set xee0 = yee0 = 0 and
xee = yee = 1. For (x′e, y′e), we set x′ee0 = y′ee0 = 0, x′ee = 1, and y′e = 0.
To recover the parity at the end-vertices of e and to guarantee the
connectivity of the new solution and (x′e + y′e)(δ(S)) = 2 we use
edges eu = {i, u} and ev = {i, v}, and set x′eeu = x′eev = 1. All other
components remain unchanged.

c2) Case e = {u, v} /∈ δ(S). For (xe, ye), we keep xee0 = yee0 = 1 and
set xee = yee = 0. Without loss of generality, we assume that u is
the end-vertex in the part that would be disconnected from the part
of the solution containing e0, if all other components remained un-
changed. This solution guarantees the parity of the vertices, but the
connectivity may be lost if some of the two split parts contains no
depot. In this case, to recover the connectivity of the solution we
use edges eu0 = {u, u0} and ev0 = {u, v0}, and set xeeu0 = xeev0 = 1.
All other components remain unchanged. For (x′e, y′e), again we
keep x′ee0 = y′ee0 = 1, but we now set x′ee = 1 and y′ee = 0. To recover
the parity of u and v, we now use the edges that connect each of
them with some vertex i, denoted by eu = {u, i} and ev = {v, i},
and set x′eeu = y′eev = 1. All other components remain unchanged. �

Proposition 4.2.6. The parity inequalities (4.4) and (4.12) induce facets ofP(MC−MDRPP )

if and only if the following conditions hold: i) for every subset S′ ⊂ S (or S′ in V \S)
with S′ ∩ D = ∅, then |δ(S′)\δ(S)| ≥ 2. ii) If |H| = 1, then S is not a set of
components (S cannot be expressed as S = ∪i∈K′Vi \D with ∅ 6= K ′ ⊂ K).
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Proof. The proof in Ghiani and Laporte (2000), based on Barahona and Grötschel
(1986), directly applies to the MC-MDRPP, independently of the number of de-
pots. �

Proposition 4.2.7. The Rt-FCs (4.5) induce facets of P(MC−MDRPP ) if and only if
for every subset S′ ⊂ S (or S′ ⊂ V \S) with S′ ∩D = ∅, then |δ(S′)\δ(S)| ≥ 2.

Proof. The Rt-FCs are an adaptation of the parity inequalities. So, as in the
previous case, the proof in Ghiani and Laporte (2000), based on Barahona and
Grötschel (1986), directly applies to the Rt-FCs. �

Note that in Proposition 4.2.7 condition ii) of Proposition 4.2.6 is no longer
needed. The reason is that inequalities (4.5) are defined for r > 1. Therefore,
they are never not dominated by the connectivity inequality (4.3) associated
with S, as it happens for inequalities (4.4) when condition ii) does not hold.

4.2.2 Dropping the completeness assumption for the input graph

As mentioned, the two-index formulation (4.2)–(4.9) operates on a complete
graph. Thus, the memory requirements of any solution algorithm based on
that formulatio, will become too high when the instance size increases. Un-
fortunately, when dealing with uncomplete graphs optimality condition O6
no longer holds. Therefore, MC-MDRRP cannot be modeled with binary vari-
ables x and y, as defined above, since non-required edges representing shortest
paths between any pair of vertices do not necessarily exist. Fortunately, it is
possible to adapt formulation (4.2)–(4.9) to the case of a generral undirected
connected graph, with the same meaning for the binary variables xe and con-
sidering general integer ye variables, whose meaning is now the number of
additional traversals of edge e ∈ E. The resulting formulation now reads:

minimize
∑
e∈E

cexe +
∑
e∈Ey

ceye (4.13)

subject to

(x+ y)(δ(d)) ≥ 2 d ∈ D (4.14)
(x+ y)(δ(S)) ≥ 2 S ⊆ V \D (4.15)
(x− y)(δ(S) \H) + y(H) ≥ x(H)− |H|+ 1 S ⊂ V,H ⊆ δ(S), |H| odd

(4.16)

(x− y)(Q) + (x+ y)(Q′) ≥ (x− y)(H)− |H|+ |D′| S ⊂ V \D, (4.17)
D′ = {di}i∈I ⊂ D,
|D′| > 1,
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Hi ⊆ δ(S) ∩ δ(di),

|Hi| odd, H =
⋃
i∈I

Hi,

Q = (δ(S)\H) ∩ δ(D′),
Q′ = (δ(S)\H)\δ(D)

xe = 1 e ∈ R (4.18)
ye ≤ 2|D|xe e ∈ E (4.19)
xe ∈ {0, 1} e ∈ E (4.20)
ye ∈ Z+ e ∈ E. (4.21)

Note that the polyhedral analysis of Chapter 4.2.1 for the formulation for
the complete graph, can be adapted to the general formulation since all solu-
tions used in the proofs, where some edge e are traverseed only one additional
time, ye = 1, are still feasible for the general formulation.

4.3 Branch-and-cut algorithm

In this section, we present an exact branch-and-cut algorithm for the MC-
MDRPP, based on the new aggregate formulation (4.2)–(4.9). As usual, the
families of constraints of exponential size, as connectivity (4.3), parity (4.4),
and Rt-FCs (4.5), are initially relaxed.

4.3.1 Initial relaxation

The algorithm starts with all integrality conditions relaxed and a subset of con-
straints. The initial formulation includes constraints (4.2), (4.6), and (4.7), plus
a reduced subset of connectivity (4.3) and parity (4.4) constraints. In partic-
ular, we consider two subfamilies of the connectivity constraints (4.3) and a
subset of the parity constraints (4.4). For connectivity inequalities, on the one
hand, we include the inequalities associated with the subsets defined by the
end-vertices of the edges not incident with any depot, i.e., S = {u, v ∈ V \D}.
On the other hand, we consider the inequalities associated with the subsets de-
fined by the vertices of each component without any depot, i.e. S = Vk, k ∈ K,
with Vk ∩ D = ∅. As for the parity constraints, initially, we only incorporate
the ones associated with R-odd singletons i.e., S = {v}with v ∈ V and |δR(v)|
odd.

4.3.2 Separation of inequalities

Let G(x, y) denote the support graph associated with the LP solution (x, y) at
any iteration of the algorithm. Inequalities (4.5) are only separated when the
LP solution (x, y) is integer, while inequalities (4.3) and (4.4) are also separated
when the LP solution (x, y) is fractional. In each case we proceed as follows.
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a) Case (x, y) is integer: Check for violated inequalities of types (4.3), (4.4)
and (4.5).

a1) Connectivity inequalities (4.3). Violated inequalities can be identi-
fied by finding connected components of G(x, y) containing no de-
pot. The vertex set of each such component defines a violated cut.

a2) Parity inequalities (4.4). Violated inequalities can be identified by
checking the parity of each vertex. In this case each vertex v ∈ V
with |(x+ y)(δ(E(v))| odd defines a violated cut.

a3) Return-to-facility inequalities (4.5). Violated inequalities can be eas-
ily identified by first finding a tour decomposition of the solution
(applying, for instance, Hierholzer’s algorithm Hierholzer, 1873)
and then checking if any of the tours contains a path Pd1d2 con-
necting two (consecutive) facilities. In this case D′ = {d1, d2} and
S = V (Pd1d2) \D′ defines a violated cut.

b) Case (x, y) is fractional: Check for violated inequalities of types (4.3) and
(4.4).

In each case, we first apply a heuristic and only resort to the exact sepa-
ration when the heuristic fails. For parity inequalities exact separation is only
applied if, in addition, some parity cut has been added in the last ten iterations
and the value of the objective function has increased by at least ϕ from the pre-
vious iteration, where ϕ is a given parameter. For both types of inequalities,
the heuristic looks for connected components in an ad hoc graph. Heuristic
and exact separation for each case are described below.

Separation of connectivity inequalities (4.3)
The separation for inequalities (4.3) is to find S ⊂ V \D, with (x+y)(δ(S)) < 2,
or to prove that no such inequality exists. As the example of Figure 4.2 shows,
violated connectivity constraints (4.3) are not necessarily associated with min-
imum cuts in G(x, y) relative to the capacities vector x + y. Thus, for solving
the separation problem for constraints (4.3) we cannot apply the usual tech-
nique, consisting of identifying the tree of minimum cuts for G(x, y) relative
to x + y. Instead, we will operate on the subgraph GV \D(x, y) induced by the
vertex set V \ D and look for minimum cut-sets relative to x + y. Indeed the
value of such cut-sets for GV \D(x, y) need not correspond to their real value
in G(x, y). Nevertheless if vV \D(S) denotes the value the min-cut of a vertex
set S ⊂ V \D for GV \D(x, y), then the real value for G(x, y) can be easily com-
puted as (x+ y)(δ(S)) = vV \D(S) + (x+ y) (δ(S) ∩ δ(D)).
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Figure 4.2: Violated connectivity constraint not associated with a min-cut

Heuristic separation: As usual, the heuristic for the separation of (4.3) looks
for connected components, but now, in the subgraph of GV \D(x, y), that con-
tains only those edges with values xe + ye ≥ ε, where ε is a given param-
eter. Then, we compute the real value of the cut associated with each con-
nected component C, which, by construction, contains no depots. If (x +
y) (δ(V (C))) < 2, the connectivity inequality (4.3) associated with V (C) is vi-
olated by (x, y).

Exact separation: The exact separation of connectivity constraints (4.3) in-
volves building the tree of min-cuts T of GV \D(x, y) with capacities given by
xe + ye. Since (x + y)(δ(S)) = vV \D(S) + (x + y) (δ(S) ∩ δ(D)), the min-
imum cut-set of T is not necessarily the cut-set with a minimum value of
(x + y)(δ(S)). Thus, it may be necessary to check more than one min-cut of
T . In particular, for each min-cut δ(S) of T of value vV \D(S) < 2, we check if
vV \D(S) + (x + y) (δ(S) ∩ δ(D)) < 2 as well. In this case the inequality (4.3)
associated with S is violated by (x, y).

Separation of parity inequalities (4.4)
The procedure for solving the separation problem of parity inequalities (4.4)
takes the same scheme as in the separation of (3.4).

Heuristic separation: The heuristic consists of finding the connected compo-
nents in the subgraph G(x, y) induced by edges with values be = min{(xe −
ye), 1 − (xe − ye)} > ε, where ε is a given parameter. Then, if S ⊂ V is the
vertex set of one of the components, we proceed as indicated above to iden-
tify its associated edge set H . If b(δ(S)) < 1 and |H| is odd, then the parity
constraint (4.4) associated with S and H is violated by (x, y). Otherwise, if
b(δ(S)) + ∆ < 1, the parity constraint (4.4) associated with S and the updated
set H is violated by (x, y). If |H| is odd and b(δ(S)) + ∆ ≥ 1, then the heuristic
fails.
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Exact separation: For the exact separation of the parity constraints (4.4) we
build the tree of min-cuts T b of Gx,y with capacities given by be. Let S1, ..., Sr

be the vertex sets of the minimum cuts of T b with values vS
i

= b(δ(Si)) strictly
smaller than one, ordered by non-decreasing order of their values, i.e., vS

1 ≤
· · · ≤ vSr

< 1. Then we proceed as follows:

end← false ; i← 1

while vS
i
< 1 and end = false do

Define H i ⊂ δ(Si).

if(|H i| odd then )
end← true (constraint (4.4) violated by (x, y) for Si and H i )

else
Compute
∆ = min

{
min{xe − ye : e ∈ δ(Si) \H i},min{1− (xe − ye) : e ∈ H i}

}
if (vS

i
+ ∆ < 1) then

end← true
(constraint (4.4) violated by (x, y) for Si and updated set H i)

else
if (i = r) then

end← true (no violated constraint (4.4) exists)
else
i← i+ 1

end-if
end-if

end-if

Summarizing, the exact separation for inequalities (4.4) reduces to finding
the set S such that δ(S) contains the best possible set H , and indicates that in
the worst case, this problem can be solved by finding the the complete tree
of min-cuts of the support graph G(x, y), for the capacities vector b defined as
be = min{(xe−ye), 1−(xe−ye)}. It is important to recall that the smallest value
of the left-hand side of inequality (4.4) after making H odd is not necessarily
associated with the smallest min-cut of the tree.

4.4 Computational experience

The branch-and-cut algorithm was coded in C++ using CPLEX 12.5 Concert
Technology for the solution of the LP relaxations. Default parameters were
used, except for the maximum computing time, which has been set to 4 or
24 hours depending on the instance size, and the cuts generated by CPLEX,
which have been disabled. After some tuning, we set the value ϕ = 0.25 for
the parameter that indicates whether or not to apply exact separation for the
parity inequalities (4.4). The values for the threshold ε used in the heuristic
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separation of connectivity (4.3) and parity (4.4) constraints are ε ∈ {0.1, 0.2}
and ε ∈ {0.1, 0.2, 0.3}, respectively. In both cases the heuristic starts with the
largest value and decreases it to the next value if it fails.

4.4.1 Set of larger benchmark instances

The algorithm was tested on two sets of benchmark instances. Both were
adapted to the MDRPP from well-known sets of RPP benchmark instances.
The first set, which contains 118 instances with up to 100 vertices, was al-
ready used in Chapter 3. The new set of benchmark instances contains larger
instances with up to 750 vertices, and have been adapted from the “ALBA”,
“GRP” and “MADR” General Routing Problem instances and from the “URP”
Undirected RPP instances Corberán et al. (2007).

The adaptation to the MC-MDRPP of the new set of instances preserves
the set of required edges and well as the edges costs. Like with the set of
smaller benchmark instances, two and four facilities have been arbitrarily cho-
sen as the depots of each new two- or four-depot instance. Table 4.1 pro-
vides information on the new set of instances, which are grouped according
to their characteristics and sizes. All the adapted instances are available at
http://www.eio.upc.edu/en/homepages/elena/mdarp-instances.

Table 4.1: Summary of the instances

# inst |V0| |E0| |R| |K| |V |/|V0| |E|/|E0|

ALB2 14/15 116 174 44–119 4–23 0.78 0.85
GRP 10/10 116 174 52–126 4–34 0.76 0.83
MAD 12/15 196 316 95–219 6–42 0.81 0.91
URP5 8/12 298–493 597–1403 206–672 5–99 1.00 1.00
URP7 8/12 452–744 915–2089 321–1003 16–140 1.00 1.00

4.4.2 Results for Min-cost Multi-Depot RPP

The set of small and medium instances with two and four depots was solved
with formulation (4.1)–(4.9). For this, the original input graph was first com-
pleted by adding edges representing shortest paths connecting pairs of ver-
tices not directly connected in the original graph. The results for the instances
with two and four depots are summarized in Tables 4.2 and 4.3, respectively.
For each group of instances, columns 2–6 give information about the root node
of the enumeration tree, while columns 7–11 give the results of the search tree.
As in Chapter 3, the column under #Opt0 shows the number of instances that
were optimally solved at the root node. The column under Gap0 gives the
average percentage gap at the root node with respect to the optimal or best
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known solution at termination. The following three columns, under the head-
ings CutsC, CutsP, and CutsD, give the average number of connectivity (4.3),
parity (4.4), and Rt-FCs (4.5) cuts generated, respectively. Similarly, the next
five columns give the same information at termination. Column under Nodes
shows the average number of nodes explored in the search tree. Finally, the
column under CPU (s) gives the total computing time in seconds.

As can be seen, the optimality of the current solution was proven for all the
instances, independently of the number of facilities. Optimality was proven at
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the root node for, respectively, 60 two-depot and 62 four-depot instances out
of the 103 instances considered in each case.

The computational effort required for solving the instances to optimality
can be evaluated by the required computing times. In this sense, the optimal
solution for nearly all the instances in this set, both with two and four depots,
was found within less than one minute. Among the two-depot instances, the
exceptions were one ALB instance, which required 70 seconds, and two D100
instances, which required around 400 seconds each one. The three four-depot
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D100 instances that exceeded one minute of computing time were optimally
solved within less than two minutes.

Similarly to the algorithm for the 3-index formulation, the algorithm is, in
general, faster for the two-depot instances than for the four-depot instances.
Nevertheless, for instances with few vertices and few connected components,
the algorithm is usually faster on the four-depot instances.

With respect to the number of added inequalities, there were considerably
more parity cuts than any other type of cuts, even when the number of added
cuts was not very large. The number of Rt-FCs (4.5) added is, on average,
smaller than three. In fact, for only 29 two-depot and 55 four-depot instances
was any cut of this type generated.

The good results obtained for small and medium size instances, encour-
aged us to solve larger instances. However, the amount of memory required
to complete the underlying graphs of these instances so as to solve them with
formulation (4.1)–(4.9) becomes unaffordable. Hence, the new set of larger in-
stances was solved with the general integer formulation (4.13)–(4.21). To this
end, for the new benchmark sets ALB2, GRP, MAD; URP5 and URP7, after
completing the input graph, we removed all unrequired edges {i, j} ∈ F for
which cij = cik + ckj for some k ∈ V , and one of two parallel edges whenever
they both have the same cost, resulting in a considerable reduction on the total
number of edges.

Tables 4.4 and 4.5 summarize the results obtained with the set of larger
two- and four-depot instances with 116 to 744 vertices.

As can be seen, all 44 instances with up to 500 vertices (ALB2, GRP, MAD,
and URP5) were solved to optimality for both two and four depots. For these
instances, a provable optimal solution was found at the root node for 19 and
18 instances with two and four depots, respectively.

Two different behaviors can be observed regarding the computational ef-
fort required to solve these groups of instances. On the one hand, most of the
instances with up to 200 vertices (ALB2, GRP and MAD), were solved within
less than two minutes. Only three MAD instances required up to five minutes
of computing time, whereas the most time consuming instance required nearly
30 minutes. On the other hand, the instances of group URP5 required several
hours to be solved. The average computing time to solve URP5 instances was
around three hours for the two-depot instances and 10 hours for the four-depot
instances. There are two and three two-depot instances, which could be solved
within less than one and two hours, respectively. The maximum computing
time for an instance of this group was around 13 hours. When four-depot in-
stances are considered, only one instance was solved in less than two hours,
and three of them required more than 12 hours. The maximum computing
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time was about 21 hours.

Preliminary experiments highlighted the difficulties of solving the URP7
instances as in several cases the algorithm terminated after 24 hours with-
out even finding a feasible solution. Therefore, for these instances, we imple-
mented a simple heuristic, which allowed us to provide an initial upper bound
to the branch-and-cut algorithm. The heuristic consists of two steps. First, to
ensure parity, we added to the set of required edges the edges of minimum
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Chapter 4. Aggregate formulation for the Min-Cost Multi-Depot RPP

cost perfect matchings in the subgraphs induced by the odd vertices of each
connected component. Then, we add two copies of the edges of TC , in order to
ensure connectivity. However, after the 24 hours limit time, only two instances
with two depots (UR732 and UR737) and one with four depots (UR732) were
solved to optimality. The algorithm could not find a feasible solution for all
the other instances, with the exception of the UR737 with four depots. For this
last instance, the gap in the root node was 1.28%, which was reduced to 0.42%
at the end. For the other instances, the gap (computed with the heuristic so-
lution) was nearly 28% either at the root node or at termination, because there
was almost no improvement in the value of the lower bound.

4.4.3 Comparison of results: three-index vs two-index

Tables 4.6 and 4.7 provide comparisons between the results obtained with the
disaggregate and aggregate formulations for instances with two and four de-
pots, respectively. In terms of computing times the comparison is fair since all
the experiments were performed on the same computer. Each table consists of
two blocks of three columns each, the first one for a summary of results from
the three-index formulation (3IF) and the second one for a summary of the
results with the current branch-and-cut algorithm (referred to as 2IF). Within
each block we present results on the number of instances solved to optimality
at the root node (#Opt0), the number of instances optimally solved at termi-
nation (#Opt) and the total computing time (CPU (s)).

Table 4.6: Comparison of tree- and two-index for two-depot instances

3IF 2IF
#Opt0 #Opt CPU(s) #Opt0 #Opt CPU(s)

ALB 0/2 2/2 200.18 1/2 2/2 45.67
P 5/17 17/17 1.87 8/17 17/17 1.01
D16 6/6 - 0.03 3/6 6/6 0.03
D36 1/9 9/9 0.60 7/9 9/9 0.22
D64 0/9 9/9 16.24 6/9 9/9 1.36
D100 0/9 8/9 2452.42 2/9 9/9 104.60
G16 5/7 7/7 0.03 6/7 7/7 0.02
G36 3/9 9/9 0.53 6/9 9/9 0.17
G64 2/9 9/9 156.77 7/9 9/9 0.52
G100 0/9 7/9 4631.05 0/9 9/9 6.67
R20 2/2 - 0.02 2/2 - 0.01
R30 4/5 5/5 0.10 3/5 5/5 0.02
R40 4/5 5/5 0.28 5/5 - 0.06
R50 4/5 5/5 0.17 4/5 5/5 0.06

As can be seen, the 2IF results notably outperform those of the 3IF. As men-
tioned, all instances are now solved in less than 400 seconds, whereas in the
disaggregate formulation only 95% of the instances were solved to optimality
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within the time limit of 14,400 seconds. Furthermore, the number of instances
optimally solved at the root node is notably larger than that of the three-index
formulation, increasing from 36 to 60 for two-depot instances, and from 53 to
62 for four-depot instances. The results also show a significant reduction in the
computing times of the two-index formulation with respect to the three-index
one. On average, computing time decreases from 638.39 and 1746.08 seconds
to 10.99 and 7.90 seconds, for the two and four depots instances, respectively.

Table 4.7: Comparison of tree- and two-index for four-depot instances

3IF 2IF
#Opt0 #Opt CPU(s) #Opt0 #Opt CPU(s)

ALB 0/2 2/2 5476.70 0/2 2/2 52.62
P 11/17 17/17 44.77 12/17 17/17 0.33
D16 6/6 - 0.01 6/6 - 0.00
D36 4/9 9/9 0.96 7/9 9/9 0.19
D64 1/9 9/9 108.64 3/9 9/9 4.03
D100 0/9 7/9 7085.23 0/9 9/9 56.30
G16 7/7 - 0.01 7/7 - 0.01
G36 5/9 9/9 10.50 6/9 9/9 0.13
G64 5/9 9/9 1835.31 5/9 9/9 0.95
G100 1/9 3/9 9640.11 4/9 9/9 15.89
R20 2/2 - 0.02 2/2 - 0.00
R30 4/5 5/5 0.08 4/5 5/5 0.01
R40 4/5 5/5 0.35 4/5 5/5 0.07
R50 3/5 5/5 0.45 2/5 5/5 0.28

61





Chapter 5

Location Arc Routing Problems

In this chapter we model and solve exactly several families of LARPs, which
extend the MDRPPs to the case where the depots are not fixed in advance. We
develop models that differ from each other in their objective function, whether
there is an upper bound on the number of facilities to be located, or whether
the facilities are capacitated. In particular, we consider two types of objective
functions: min-cost objectives aiming at minimizing the overall routing costs,
and min-max objectives aiming at minimizing the makespan. While some of
the models assume that there are no capacity limitations, we also study prob-
lems that include a cardinality constraint on the number of users that can be
served from an open facility. Finally some of the models ignore facilities set-
up cost but include a limitation on the maximum number of facilities to be
located, whereas in other models the number of open facilities is not limited
but the facilities set-up are included in the objective function.

Two alternative formulations are presented, which use binary variables
only. The first class uses disaggregated decision variables (three-index vari-
ables) that link routes with open facilities. All models can be handled with
this type of formulation. The second class of formulations aggregates the in-
formation of all the routes. This leads to two-index variables, associated with
the edges traversed by the routes, but that do not explicitly link them to the
depots from which the routes operate. Like in the case of MDRPPs, this ap-

Table 5.1: Summary of models

Objective function Capacity Limit on the number
of open facilities

MC-p-LARP Min routing cost No Yes
MM-p-LARP Min makespan No Yes
MC-LARP Min facilities set-up cost plus routing cost No No
MC-p-LARP-UD Min routing cost Yes Yes
MM-p-LARP-UD Min makespan Yes Yes
MC-LARP-UD Min facilities set-up cost plus routing cost Yes No
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proach reduces the number of required variables at the expense of presenting
some additional difficulties. On one hand, only models minimizing cost with-
out capacity constraint can be handled with this modeling technique. On other
hand, a new set of constraints guaranteeing that the routes are consistent and
return to their original depot is needed.

Both types of formulations are solved with branch-and-cut algorithms that
demostrate a good performance through the obtained results, where instances
with up to 200 vertices have been solved to optimality.

5.1 Formal definition

We consider LARPs defined on an undirected connected graph G = (V,E),
where V is the vertex set, and E is the edge set. Now, the set D ⊂ V denotes
a set of potential locations where facilities may be established. Like in the
previous chapters R ⊂ E denotes the set of required edges and the required
components are denoted by Ck = (Vk, Rk), k ∈ K. In addition to the traverasl
cost associated with each edge e ∈ E, there is now a value fd ≥ 0, associated
with each potential location d ∈ D, which indicates the set-up cost of opening
a facility at d. Let p be an upper bound on the number of depots to be located.
When there is a limitation on the service capacity of open facilities, we use bd
to denote the maximum number of required edges that can be served from a
depot located at d ∈ D.

Feasible LARPs solutions consist of a subset of open facilities D∗ ⊆ D, to-
gether with a set of non-empty routes, at least one for each selected facility,
that serve all the required edges. Alternative objective functions or additional
constraints characterize the different problems under study:

Definition 5.1.1.

• The MC-p-LARP is to determine a feasible solution with at most p open facilites,
i.e. |D∗| ≤ p, that minimizes the sum of the routing costs.

• The MM-p-LARP is to determine feasible solution with at most p open facilites,
i.e. |D∗| ≤ p, that minimizes the makespan.

• The MC-LARP is to determine a feasible solution that minimizes the sum of the
set-up costs of the selected facilities, plus the routing costs.

We also consider capacitated versions of each of the above defined prob-
lems, where we assume that each required edge has a unit demand, and for
each potential facility there is a constraint on the maximum demand that it can
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serve if it is opened. Since we consider unit demands, these capacitated ver-
sions reduce to cardinality constraints on the maximum number of required
edges served by each facility. We denote by MC-p-LARP-UD, MM-p-LARP-
UD, and MC-LARP-UD the capacitated versions of MC-p-LARP, MM-p-LARP,
and MC-LARP, respectively.

5.1.1 Modeling assumptions

In the remainder of this chapter we assume that all opened facilities will be
used, in the sense that there will be at least one non-empty route at each open
facility. Note that, except for the LARPs with facilities set-up costs (MC-LARP
and MC-LARP-UD), it is necessary to explicitly impose this condition since
otherwise, alternative optimal solutions could exist, where some facility is
open but never used. As we will see below, this basic requirement also justifies
the hypothesis that at most p facilities be used, instead of the usual condition
that exactly p facilities be opened. Intuitively, one could think that, when only
routing costs are considered, opening more facilities would necessarily lead
to solutions with smaller routing costs, since required edges could be served
from closer depots. However, imposing to open (and use) exactly p facilities,
may lead to suboptimal routing decisions or may even force the activation of
a route that does not serve any required edge and deteriorates the value of the
objective function. In 3.2 it was proven that the optimal value of an MDRPP
where all depots must be used can asymptotically be twice the optimal value
of the RPP on the same input graph. Indeed, this result can be extended to
the MC-p-LARP and one can find instances where, asymptotically, the opti-
mal value of an instance with p open facilities is twice the optimal value of the
same instance with just one open depot.

Also for the case of the MM-p-LARP, forcing exactly p facilities to be opened
may produce undesirable solutions. A simple example is given in Figure 5.1
which depicts two components and three potential locations for the facilities,
where the solid lines represent required edges and the dotted lines the remain-
ing edges. As can be seen, the optimal solution for the MM-p-LARP in that
instance, when exactly two facilities must be opened, will activate facilities
L1 and L2 and serve from each of them the required edges in their respective
components. The makespan of that solution is three. This solution has a bet-
ter objective than a solution in which three facilities are opened. Indeed when
p = 3, facility L3 must also be opened and a route must be associated with it,
for instance (L3, B, L3), which does not serve any required edge, and gives an
objective function value of four units.

Hence, we avoid potential awkward situations, like the one of the above
example, by assuming that p represents the maximum number of facilities that
can be opened, so the models that we study also dictate the optimal decision
in terms of the number of facilities to open.
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L3 22

L1

A B
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Figure 5.1: Example with better solution for p = 2 than for p = 3

Without loss of generality we also assume that |D| ≥ 3. Indeed, if |D| = 1
no location decision must be made, so we just have an arc-routing problem.
If |D| = 2 we can define an additional potential location placed at a fictitious
node and connect it with only one vertex of VR with an edge of cost greater
than twice the sum of the costs of all other edges. This hypothesis will be
used in the proofs of our polyhedral analysis, where we sometimes use three
different depots to obtain the number of points that are needed.

5.1.2 Complexity and optimality conditions

The MC-MDRPP where the location of the facilities is known in advance, is a
particular case of both the MC-p-LARP and the MC-LARP. Moreover, the MC-
MDRPP is also a particular case of the MC-p-LARP-UD and the MC-LARP-
UD, where the location of the facilities are known and there are no facilities
capacity constraints. Similarly, the MM-MDRP is a particular case of both the
MM-p-LARP and the MM-p-LARP-UD. Since the MC-MDRPP and the MM-
MDRP are known to be NP-hard (see, 3.1.2), we have the following results:

Proposition 5.1.2.

• The MC-p-LARP and the MC-p-LARP-UD are NP-hard

• The MM-p-LARP and the MM-p-LARP-UD are NP-hard.

• The MC-LARP and the MC-LARP-UD are NP-hard.

All the formulations that we propose for the LARPs that we study use only
binary variables. This follows from the optimality conditions that have been
established for uncapacitated MDRPPs in Chapter 3.1.2. Since these condi-
tions apply to the maximum number of times that edges are traversed in each
individual route in an optimal solution, and they obviously apply to LARPs.

Therefore, optimality conditions O1, O2, O3 and O4 from Chapter 3.1.2
also apply for the MC-p-LARP, the MC-LARP, and the MM-p-LARP.

The optimality condition O8 that we introduce below is based on the num-
ber of facilities that can be opened on optimal solutions to the MC-p-LARP and
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the MC-LARP.

(O8) MC-p-LARP and MC-LARP. There exists an optimal solution in which
every connected component of the graph induced by the edges that are
used contains exactly one open facility.

Property O8 is obviously true for the MC-LARP. If some component of the
graph induced by the edges used in an optimal solution contained more than
one open facility, closing one of them would produce a solution with a better
objective function value. In the case the MC-p-LARP a similar process will
produce an alternative optimal solution.

When dealing with min-cost LARPs (with or without set-up costs), the fact
that the number of operational depots is not known in advance allows us to
prove that there exist optimal solutions in which no edge will traversed more
than twice, provided that non-negative costs satisfy the triangle inequality,
independently of whether or not the graph is complete. This is a very use-
ful property, which makes a substantial difference with the case of MDRPPs
stated on non-complete graphs, where edges can be traversed up to 2|D| times
in optimal solutions, that we will exploit in some of the formulations that we
propose for min-cost LARPs.

Proposition 5.1.3.

• There exists an optimal MC-p-LARP solution in which no edge is traversed
more than twice.

• There exists an optimal MC-LARP solution in which no edge is traversed more
than twice.

Proof. First we note that, since capacity constraints are not present, we can
assume that only one route is carried out from each depot.

• Consider an optimal solution to a given MC-p-LARP in which an edge
e ∈ E is traversed by two routes T1 and T2, operating from two different
open facilities, d1, d2. The solution obtained by merging T1 and T2 into a
single route T , and arbitrarily closing one of the depots (for instance, d2)
is feasible for the MC-p-LARP, since the parity of the vertices does not
change and the connectivity of the merged route with the remaining de-
pot is guaranteed. Moreover, the merged solution is also optimal, since
its routing cost has not changed. Edge e is traversed exactly twice in the
merged route T , since otherwise two traversals of e could be removed,
contradicting the optimality of the solution. This process can be repeated
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until all the routes traversing the same edge have been merged.

• For the MC-LARP we proceed as above, but now closing at each step the
facility with the largest set-up cost. Moreover, the merged solution will
have the same routing cost and smaller set-up costs.

5.2 Three-index variable formulations

We now present a linear integer formulation for the LARPs we have defined,
which uses three-index variables, associated with the edges traversed in the
routes of the open facilities. This three-index variable formulation can be
adapted to all six LARPs defined in Chapter 5.1.

The formulation that we propose exploits the optimality conditions O2 and
O3 to identify the set of edges Ey that can be traversed twice in an optimal so-
lution. Recall that for the MC-p-LARP and the MC-LARP, Ey contains all the
required edges plus the edges of TC , whereas for the remaining modelsEy con-
tains all the required edges plus all edges connecting two distinct components.

Then, for each e ∈ E, let xde be a binary variable indicating whether or not
edge e is traversed by route from open facility d. For each e ∈ Ey, let yde be a
binary variable taking the value one if and only if edge e is traversed twice in
the solution by route from facility d. For each d ∈ D, let zd be a binary variable
designating whether or not facility d is opened.

1. MC-p-LARP

The MILP for the MC-p-LARP is as follows:

minimize
∑
d∈D

(∑
e∈E

cex
d
e +

∑
e∈Ey

yde

)
(5.1)

subject to

(xd + yd)(δ(d)) ≥ 2zd d ∈ D \ VR (5.2)

(xd + yd)(δ(S)) ≥ 2xde S ⊆ V \ {d}, (5.3)
e ∈ E(S), d ∈ D

(xd − yd)(δ(S) \H) + yd(H) ≥ xd(H)− |H|+ 1 S ⊂ V, d ∈ D (5.4)
H ⊆ δ(S), |H| odd∑

d∈D
xde = 1 e ∈ R (5.5)
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yde ≤
∑
d′∈D

xd
′
e e ∈ Ey, d ∈ D (5.6)

xde ≤ zd e ∈ E, d ∈ D (5.7)

yde ≤ zd e ∈ Ey, d ∈ D (5.8)
z(D) ≤ p (5.9)

xde ∈ {0, 1} e ∈ E (5.10)

yde ∈ {0, 1} e ∈ Ey (5.11)
zd ∈ {0, 1} d ∈ D. (5.12)

Inequalities (5.2) ensure that if a potential location is opened, then there
are at least two edges incident to it. Inequalities (5.3) are an adaptation
of the well-known connectivity constraints, and ensure the connectivity
of each route to its depot. This is guaranteed by imposing that if edge e
is traversed by the route associated with facility d ∈ D, then the cutset
of any vertex set containing the two end-nodes of e but not containing
d must be crossed by at least two edges of that route. Inequalities (5.4)
were presented and discussed in Chapter 3.3 for the MDRPPs and ensure
the parity of every subset of vertices. Constraints (5.5) impose that all re-
quired edges be served by one route and (5.6) that no edge is traversed
for the a second time unless it also has been traversed for a first time.
By (5.7)–(5.8) no edge is traversed by the route of a facility that has not
been opened. Inequality (5.9) means that at most p facilities are opened.
The domains of the variables x, y and z are defined in constraints (5.10)–
(5.12).

The above formulation contains |E||D| x variables, |Ey||D| y variables
and |D| z variables. There are |D \ VR| inequalities of type (5.2), |R|
inequalities (5.5), |Ey||D| inequalities of type (5.6), (|E|+ |Ey|) |D| in-
equalities of types (5.7)–(5.8). The size of the families inequalities (5.3)
and (5.4) is exponential in |V |.

2. MC-LARP

A formulation for the MC-LARP can be obtained from (5.2)–(5.12), by
removing constraint (5.9), which limits the number of facilities to open,
and adding the facilities set-up costs to the objective function, resulting
in

min
∑
d∈D

fdzd +
∑
d∈D

∑
e∈E

cex
d
e +

∑
d∈D

∑
e∈Ey

yde . (5.13)

3. MM-p-LARP

To formulate the minimization of the makespan is necessary to define a
new variable w that represent the length of the longest route. Hence, the

69



Chapter 5. Location Arc Routing Problems

objective function becomes the minimization of w, subject to (5.2)–(5.12).
Furthermore, a new family of constraints is needed, which relates the
new variable w to the route lengths. These inequalities, also ensure that
w represents the longest route:

w ≥
∑
e∈E

cex
d
e +

∑
e∈Ey

cey
d
e v ∈ D. (5.14)

4. MC-p-LARP-UD, MC-LARP-UD and MM-p-LARP-UD

Dealing with the unit customer demands and the maximum number of
customers to serve from each potential location bd only requires adding
to the corresponding uncapacitated formulation the following family of
capacity constraints, one for each facility:∑

e∈R
xde ≤ bdzd v ∈ D. (5.15)

5.2.1 Valid inequalities

We next introduce some families of valid inequalities that can be used to rein-
force any of the formulations presented above.

• Since all vertices incident to required edges must be visited, for single-
tons S = {i} with i ∈ VR the connectivity constraints (5.3) can be re-
placed with the tighter constraints∑

d∈D
(xd + yd)(δ(i)) ≥ 2. (5.16)

• The connectivity constraints (5.3) associated with components contain-
ing no potential facility can also be replaced with the tighter set of con-
straints. In particular for all k ∈ K such that Vk ∩D = ∅, we have∑

d∈D
(xd + yd)(δ(Vk)) ≥ 2. (5.17)

• One can also impose logical conditions relating x variables associated
with edges incident to potential facilities and z variables.

xde + zd + zf ≤ 2 e = {f, i} ∈ E, d, f ∈ D, d 6= f. (5.18)

Constraints (5.18) mean that no edge incident with potential facility f ∈
D can be traversed by the route of any other potential facility d ∈ D if fa-
cility f is opened. When both end-nodes of edge e are potential facilities,
i.e. i = d ∈ D, then inequality (5.18) can be reinforced to∑

d′∈D
xd
′
e + zd + zf ≤ 2 e = {f, d} ∈ E, d, f ∈ D, (5.19)
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so that no edge connecting two potential facilities can be traversed by
the route of any facility if both facilities are opened.

• In principle, only constraints (5.4) associated with singletons S = {v}
with v ∈ V , are needed to guarantee the parity of vertices in solutions.
However, they are also valid for general vertex sets S ⊆ V . Imposing
them for the general case leads to a formulation with a tighter LP relax-
ation. In fact, these inequalities can be further reinforced as we show
below:

Proposition 5.2.1. The inequality (5.4) associated with given d ∈ D, S ⊂ V ,
H ⊆ δ(S), with |H| ≥ 3 odd, is dominated by the valid inequality

(xd − yd)(δ(S) \H) + yd(H) ≥ xd(H)− |H|+ 2− zd. (5.20)

Proof. Let d ∈ D, S ⊂ V , H ⊆ δ(S), with |H| ≥ 3 and odd. To see that
(5.20) is valid, recall that zd ∈ {0, 1} in any feasible solution. If zd = 0,
then xde = yde = 0, for all e ∈ E, so (5.20) reduces to 0 ≥ −|H|+ 2, which
holds by hypothesis. When zd = 1, then (5.20) becomes (5.4). Indeed
(5.20) are tighter than (5.4) since 2− zd ≥ 1. �

Since the only inequalities (5.4) that are not dominated by the set (5.20)
are those associated with odd edge sets H ⊂ δ(S) with |H| < 3, in the
following we substitute the complete set of inequalities (5.4) by only its
small family corresponding to singletons S = {v} with v ∈ V , and sub-
sets H ⊂ δ(S) consisting of just one edge, i.e. |H| = 1, plus the complete
set of reinforced parity constraints (5.20).

5.2.2 Optimality condition for MC-p-LARP and MC-LARP

The optimality condition on the location variables O8 can be used to reinforce
the three-index formulations for MC-p-LARP and MC-LARP. Modeling prop-
erty O8 requires adding the following set of constraints:

z(Vk ∩D) ≤ 1 k ∈ K (5.21)

xde = zd e ∈ Rk, d ∈ D ∩ Vk, k ∈ K (5.22)∑
d∈D\Vk

xde + z(Vk ∩D) = 1 k ∈ K (5.23)

∑
d∈D\Vk

xde + z(Vk ∩D) ≤ 1 e ∈ (Ek \Rk) ∪ δ(Vk), k ∈ K (5.24)

xde ≤ xde′ e ∈ δ(Vk), e′ ∈ Rk, k ∈ K, d ∈ D \ Vk. (5.25)

By (5.21) at most one facility per component will be opened. Moreover,
(5.22) ensure that if a facility is opened in a component, then all the required
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edges tin that component will be served from that facility. In its turn, (5.24)
prevent any edge in the cut-set of a component where a facility is opened to
be served from any facility located at any other component. The correct prop-
agation of the route associated with an open facility is guaranteed by (5.25)
together with the original set of constraints (5.7). In addition the following
sets of inequalities can be used to reinforce the resulting formulation:

yde ≤ xde e ∈ Ey, d ∈ D (5.26)∑
d∈D\S

(
xd + yd

)
(δ(S)) ≥ 2 (1− z(D ∩ S)) S = ∪k∈K′Vk,K ′ ⊂ K (5.27)

z (Vk ∩ Vk′) +
∑

d∈(Vk∩Vk′ )

xde ≤ 2 e ∈ δ(Vk : Vk′), k, k
′ ∈ K, k 6= k′.

(5.28)

Inequalities (5.26) are a reinforcement of (5.6). They impose that if an edge
is traversed twice, both traversals belong to the route of the same depot. The
reinforced connectivity constraints (5.27) impose that if no open facility be-
longs to the group of components defining S, then the cutset of S must contain
at least two edges of some route associated with a depot that does not belong
to S. The set of inequalities (5.28) is generalization of (5.19).

5.2.3 Polyhedral analysis

In this section we study some properties of the polyhedron associated with
the three-index formulation (5.1)–(5.12). In the following, the convex hull of
vectors (x, y, z) with components in [0, 1] that satisfy (5.2)–(5.9) is denoted by
P(MC−LARP ). In the proofs below we assume that there exists an edge con-
necting each pair of vertices. Similarly to Chapter 4.2.1, when such edges are
non-existing in E, they represent, connecting given pairs of vertices, that only
use existing edges of the set E. As in the previous chapter, using edges as-
sociated with such T -joins in the solutions that we will build, simplifies the
presentation of the proofs, but has no effect on their. We also use O ⊆ V to
denote the set of R-odd vertices, and Ok = O ∩ Vk, k ∈ K.

Proposition 5.2.2. dim(P(MC−LARP )) = |E||D|+ |Ey||D|+ |D| − |R| if and only
if every cut-edge set δ(S) ⊂ V \ D contains at least three edges, and every cut-edge
set δ(S) such that S =

⋃
i∈K′ Vi \D, ∅ 6= K ′ ⊂ K, contains at least four edges.

Proof. The condition is necessary. We follow the same idea as before for the
MDRRP which, in turn, is based on Ghiani and Laporte (2000) for the RPP.
To simplify the presentation, e ∈ E and e ∈ Ey are counted as two distinct
edges.

• If there exists a cut-edge set with only one edge, then e should be a
required edge and

∑
d∈D x

d
e = 1. Therefore, P (MC − LARP ) ⊂ {x :∑

d∈D x
d
e = 1}.
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• Assume now there exists a subset S ⊂ V \D, with δ(S) = {e(1), e(2)}.

– If S = ∪i∈K′Vi \ D, ∅ 6= K ′ ⊂ K, then P (MC − LARP ) ⊂ {x :∑
d∈D x

d
e(1)

= 1 and
∑

d∈D x
d
e(2)

= 1}.
– Otherwise, if δ(S) is R-even, P (MC − LARP ) ⊂ {x :

∑
d∈D x

d
e(1)

=∑
d∈D x

d
e(2)
}, and if δ(S) isR-odd, P (MC−LARP )⊂ {x :

∑
d∈D x

d
e(1)

+∑
d∈D x

d
e(2)

= 1}.

• Finally, there exists S = ∪i∈K′Vi\D, ∅ 6= K ′ ⊂ K with δ(S) = {e(1), e(2), e(3)},
then P (MC−LARP )⊂ {x :

∑
d∈D x

d
e(1)

+
∑

d∈D x
d
e(2)

+
∑

d∈D x
d
e(3)

= 2}.

The condition is sufficient. Let us find |E||D|+ |Ey||D|+ |D|− |R|+ 1 affinely in-
dependent solutions satisfying the connectivity, parity inequalities, associated
with routes that start and terminate at the same open facility.

Consider a set of |D| reference solutions (x(d), y(d), z(d)), one associated
with each potential facility d ∈ D. The reference solution associated with a
given d ∈ D, consists of opening only facility d ∈ D, i.e. z(d)d = 1 and
z(d)d

′
= 0 for all d′ ∈ D \ {d}, together with a route carried out from d consist-

ing of: (i) a traversal of all the required edges; (ii) one traversal of edge {v, d}
with v ∈ O (this will be a second traversal for the required edges incident to d
if both end-vertices are R-odd); and, (iii) two traversals of all the edges of TC .
By construction any reference solution is feasible.

A sufficiently large set of additional solutions, all of them affinely inde-
pendent, can be obtained with slight modifications of the reference solutions.
These modified solutions are linked both to the facilities of their corresponding
reference solutions and to edges. We use the notation (x(d, e), y(d, e), z(d, e)),
to denote the solution linked to the reference solution of facility d ∈ D and
edge e ∈ E. In particular, x(d, e)d

′
e′ denotes the component corresponding to

the first traversal of edge e′ ∈ E in the route associated with facility d′ in the
solution linked to facility d and edge e. A similar notation will be used for
the y and z components. When the reference solution and edge linked to a
solution are clear from the context we will drop the parentheses and just write
xd
′
e′ . Let d0 ∈ D be an arbitrarily selected potential location. The set of affinely

independent solutions linked with each potential facility d ∈ D is defined be-
low:

a) For each non required edge e = {u, v} ∈ E \ R we generate one or two
solutions, depending on whether or not e ∈ Ey. In particular,

a1) if e = {u, v} /∈ Ey, then we generate just one solution (x(d, e), y(d, e),
z(d, e)) with xde = 1−x(d)de . Furthermore, to guarantee that the par-
ity of u and v does not change we also set xde{u,r} = 1 − x(d)de{u,r} ,
xde{v,r} = 1− x(d)de{v,r} . All other components remain as in the refer-
ence solution (x(d), y(d), z(d)).
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a2) if e = {u, v} ∈ Ey, then e is one of the edges of TC and x(d)de =
y(d)de = 1. In this case we generate two new solutions (x(d, e), y(d, e),
z(d, e)) and (x′(d, e), y′(d, e), z′(d, e)). For (x(e, d), y(e, d), z(e, d)), we
keep xde = x(d)de = 1 but set yde = 0. To guarantee the parity of ver-
tices u and v and the connectivity, the components corresponding
to edges eu = {d, u} and ev = {d, v}, take the value 1, i.e. xdeu =
xdev = 1. All other components remain as in the reference solution
(x(d), y(d), z(d)). For (x′(d, e), y′(d, e), z′(d, e)), we set x′de = y′de = 0,
so the parity is not compromised. In contrast, the connectivity may
be lost. To restore connectivity, it is enough to include the three
edges connecting vertices u, v and the potential facility d via a tri-
angle.

b) For each required edge e = {u, v} ∈ R we generate one or two solutions,
depending on whether or not d = d0. In particular,

b1) if d = d0, then we generate just one solution (x(d0, e), y(d0, e), z(d0, e))
with xd0e = x(d0)

d0
e = 1 and yd0e = 0, for all e = {u, v} ∈ R. Further-

more, we set xd0eu = 1−x(d0)
d0
eu and xd0ev = 1−x(d0)

d0
ev where, as before,

eu = (d0, u) and ev = (d0, v). This guarantees the parity of vertices
u and v and the connectivity of (x(d0, e), y(d0, e), z(d0, e)). All other
components remain as in the reference solution (x(d0), y(d0), z(d0)).

b2) if d 6= d0, then we generate two new solutions: (x(d, e), y(d, e), z(d, e))
and (x′(d, e), y′(d, e), z′(d, e)), with one and two traversals of edge e,
respectively. Solution (x(d, e), y(d, e), z(d, e)) is defined exactly as in
item b1). For (x′(d, e), y′(d, e), z′(d, e)) we open one additional po-
tential facility d′ 6= d, and define its associated route, taking into
account that it is not possible to visit d′ in the route from open facil-
ity d. For this d′ is arbitrarily selected from D \ {d} ensuring that is
not an end-vertex of edge e. Then, we open both facilities d and d′,
i.e. z′(d, e)d

′
= z′(d, e)d = 1. Furthermore, associated with facility

d, we set x′de = x′deu = x′dev = 1, and all other x′d and y′d compo-
nents at value zero. The first traversal of all other required edges is
allocated to facility d′. That is, x′d

′
e′ = 1 for all e′ ∈ R \ {e, eu, ev}.

To make consistent the route of facility d′, we also allocate to d′ one
traversal of each edge connecting an R-odd vertex with facility d′,
plus two traversals of all the edges of TC . All other components
take the value 0.

The number of solutions defined in each of the items above is |D| in the
reference set, (|E|− |Ey|)|D| in a1), 2(|Ey|− |R|)|D| in a2), |R| in b1), and
2|R|(|D| − 1) in b2). Hence, we have found |E||D| + |Ey||D| + |D| − |R|
affinely independent solutions that satisfying the connectivity and par-
ity inequalities. The remaining affinely independent solution consist of
opening exactly p locations d ∈ D and associate with each open location
a consistent route, guaranteing that all required edges incident a poten-
tial location are allocated to that facility. Two traversals of the edges of
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TC can be arbitrarily allocated to the depots in order to guarantee the
connectivity of the obtained solution. All the solutions considered are
affinely independent, since each of the |E||D| + |Ey||D| + |D| − |R| fea-
sible solutions obtained in item a) and b) above contains at least one
component with a different value from the values of that component in
all other solutions. �

Proposition 5.2.3. The inequality xde ≥ 0, e ∈ E, d ∈ D, defines a facet of
P(MC−LARP ) if and only if every cut-set δ(S) ⊂ V \ D containing e contains at
least four edges, every δ(S) such that S =

⋃
i∈K′ Vi \D (∅ 6= K ′ ⊂ K) contains at

least five edges.

Proof. The condition is necessary. The condition that every δ(S) such that S =⋃
i∈K′ Vi \D (∅ 6= K ′ ⊂ K) has at least five edges is already necessary for the

MDRPP when the set of available depots is fixed.

The condition is sufficient. If e ∈ E \R, the face {x ∈ P (MC − LARP ) : xde = 0}
has the same dimension as the polytope associated with the MC-LARP defined
on the graph obtained after removing edge e fromG. Suppose now that e ∈ R.
Observe that all the solutions obtained in the proof of Proposition 5.2.2 linked
to depots d′ ∈ D different from d satisfy x(d′, e′)de = 0, for all edges e′ ∈ E. The
number of such solutions depends on whether or not d = d0. If d 6= d0, this
number is (|D| − 1) (|E|+ |Ey|+ 1)−|R|, whereas if d = d0 this number will be
(|D| − 1) (|E|+ |Ey|+ 1). In order to generate additional solutions satisfying
xde = 0, affinely independent with the previous ones, let d′ ∈ D \ {d} be an
arbitrarily selected potential location, and consider the solution (x, y, z), where
only facility d′ is open, i.e. zd′ = 1 and zf = 0 for all f 6= d′. The route of facility
d′ traverses all required (xd

′
e′ = 1, e′ ∈ R), and contains one traversal of every

edge {v, d′} with v ∈ O, plus two traversals of all the edges of TC . Then,
for all e′ ∈ E, we proceed as in the proof of Proposition 5.2.2 for generating
solutions linked to facility d (all of them with x(d, e′)de = 0), using (x, y, z) as
reference solution. In this way, we will obtain |E| + |Ey| solutions if d 6= d0,
or |E| + |Ey| − |R| solutions when d = d0. In both cases we have obtained
|D| (|E|+ |Ey|+ 1)− |R| affinely independent solutions that satisfy xde = 0. �

Proposition 5.2.4. The inequality xde ≤ 1, e ∈ E, d ∈ D, induces a facet of
P(MC−LARP ) if and only if every cut-set δ(S) containing e contains at least four
edges.

Proof. The condition is necessary. Suppose there exists a cut-edge set with only
three edges, δ(S) = {e, f, g}. Then, either {x ∈ P(MC−LARP ) : xde = 1} ⊂ {x ∈
P(MC−LARP ) : xde = 1, xdf + xdg = 1} if δ(S) is R-even, or {x ∈ P(MC−LARP ) :

xde = 1} ⊂ {x ∈ P(MC−LARP ) : xde = 1, xdf − xdg = 0} otherwise.
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The condition is sufficient. Under the hypotheses, it is easy to show that there
exist |E||D|+ |Ey||D|+ |D|−|R| feasible and affinely independent solutions on
the hyperplane xde = 1. Let the first solution be solution (x, y, z), where only
facility d is open. Its associated route contains one traversal of all required
edges e ∈ R, one traversal of each edge {v, d} with v ∈ O, and two traversals
of all the edges of TC . In addition, if e does not belong to any of the previous
sets of edges, then the route also traverses edge e, to guarantee that xde = 1,
plus the two edges eu = {d, u} and ev = {d, v} to ensure parity. The remaining
|E||D|+ |Ey||D|+ |D| − |R| − 1 solutions can be obtaining following a similar
process to that applied in Proposition 5.2.2, where in each new solution one of
the components is modified. �

Proposition 5.2.5. The connectivity inequality (5.3) associated with S =
⋃
i∈K′ Vi

(∅ 6= K ′ ⊂ K), S
⋂
D = ∅, e ∈ E(S), induces a facet of P(MC−LARP ) if and only

if the graphs induced by the connected components G(S) and G(V \S) satisfy the
following: i) G(S) is connected and each connected component of G(V \S) contains
at least one open facility. ii) For every subset of components in S′ ⊂ S (or S′ in V \S)
with S′

⋂
D = ∅, the inequality |δ(S′)\δ(S)| ≥ 2, holds.

Proof. The condition is necessary. Suppose G(S) is not connected, and let S1 be
a component of G(S). Then the connectivity inequality (5.3) associated with
G(S) is dominated by the connectivity inequality (5.3) corresponding toG(S1).
A similar situation arises if some component of G(V \S) contains no open fa-
cility. Suppose now there exists a subset of components S′ ⊂ S such that there
is only one edge connecting S′ and S\S′. Then, the connectivity constraint
associated with G(S) is dominated by the sum of the connectivity constraints
(5.3) associated with S′ and S\S′.

The condition is sufficient. It is easy to show that under the hypotheses, the set of
|E||D|+ |Ey||D|+ |D|−|R| affinely independent feasible solutions with xde = 1
considered in the proof of Proposition 5.2.4 lie in the hyperplane

∑
e∈δ(S)(x

d
e′+

yde′) = 2xde . �

Proposition 5.2.6. The reinforced parity constraints (5.4) induce facets ofP(MC−LARP )

for S and H such that |δ(S)| ≥ |H|+ 1 and H ∩ δ(D) = ∅.

Proof. We first show that under the hypotheses, there exist |E||D|+ |Ey||D|+
|D| − |R| affinely independent feasible solutions that satisfy the inequality as
equality. For given sets S and H under the above conditions, let d ∈ D be an
arbitrarily selected potential facility and vk ∈ Vk an arbitrarily selected vertex
in component k ∈ K. Let also ê ∈ δ(S) \H and h1 ∈ H be arbitrarily selected
edges in their respective sets. Consider a feasible solution (x, y, z) in which d is
the only open facility and its associated route contains: i) one traversal of each
required edge e ∈ R; ii) one traversal of each edge {v, vk} with v ∈ Ok \ {vk}
(this will be a second traversal traversal for required edges with some R-odd
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end-vertex); iii) two traversals of all the edges of TC \ δ(S) (edges with both
end-vertices either in S or in V \ S); and iv) one traversal of edge ê ∈ δ(S) \H
and of all |H| edges of set H . By construction, (x, y, z) is feasible and satisfies
(x+y)(δ(S)) = |H|+1. The |E||D|+ |Ey||D|+ |D|−|R|−1 additional solutions
are obtained from (x, y, z), linked to the different edges e ∈ E as explained
next.

a) For all e = {u, v} /∈ H , we proceed as in the proof of Proposition 5.2.2
and for each depot d′ ∈ D, we obtain one or two points linked to edge e.
The number of points that be obtain for each depot, depends on the case
or subcase that applies to e depending on whether or not it belongs to R.
In total we obtain D points if e ∈ E \ R \ Ey, 2|D| points if e ∈ Ey, and
2|D| − 1 if e ∈ R.

b) For all e = {u, v} ∈ H we define solutions (x(d′, e), y(d′, e), z(d′, e))
linked to each d′ ∈ D and considered edge e, according to the follow-
ing subcases:

b1) e ∈ E \ Ey and d′ 6= d. Then xd
′
e = yd

′
e = 0. We set xd

′
e = 1 and we

use edges eu = {d′, u} and ev = {d′, v}, so we set xd
′
eu = xd

′
ev = 1. All

other components remain as in (x, y, z).

b2) e ∈ Ey \ R and d′ = d. Now xde = 1 and yde = 0. We set yde = 1 and
xdê = 0. All other components remain as in (x, y, z).

b3) e ∈ Ey\R and d′ 6= d. We now generate two solutions: (x(d′, e), y(d′, e),
z(d′, e)) and (x′(d′, e), y′(d′, e), z′(d′, e)). For the first solution, (x(d′, e),
y(d′, e), z(d′, e)), we set xd

′
e = 1 and traverse edges eu = {d′, u}

and ev = {d′, v} in order to guarantee the parity. Hence, we set
xd
′
eu = xd

′
ev = 1. All other components remain as in (x, y, z). For the

second solution (x′(d′, e), y′(d′, e), z′(d′, e)) we set x′d
′

e = y′d
′

e = 1.
Now the parity is guaranteed but connectivity may be lost. To re-
store the connectivity, it is enough to include the three edges con-
necting vertices u, v and the potential facility d via a triangle.

b4) e ∈ R and d′ 6= d. Now xde = 1 and yde = 0. We generate two
solutions: (x(d′, e), y(d′, e), z(d′, e)) and (x′(d′, e), y′(d′, e), z′(d′, e)).
For the first solution, (x(d′, e), y(d′, e), z(d′, e)), we set xd

′
e = 1 and

use edges eu = {d′, u} and ev = {d′, v}. Thus, we set xd
′
eu = xd

′
ev = 1.

We also set xde = xdê = 0. All other components remain as in (x, y, z).
For (x′(d′, e), y′(d′, e), z′(d′, e)) we set x′d

′
e = y′d

′
e = 1. We also set

x′de = x′dê = 0. Parity is guaranteed although connectivity may be
lost. To restore it, it is enough to include the three edges connecting
vertices u, v and the potential facility d via a triangle.

Furthermore, when e 6= h1 we generate the following additional points
linked to depot d and edge e, (x(d, e), y(d, e), z(d, e)), according to the
following subcases:
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b′1) e ∈ E \ Ey. We set xde = xdê = 0. All other components remain as in
(x, y, z).

b′2) e ∈ Ey \ R. We set xde = xdê = 0. All other components remain as in
(x, y, z).

b′3) e ∈ R. We set xde = yde = 1 and xdê = 0. All other components remain
as in (x, y, z).

In total we have generated |E||D| + |Ey||D| + |D| − |R| feasible solu-
tions, all of which satisfy the inequality (5.4) associated with S and H as
equality. The result follows, since all points are affinely independent. �

5.3 Two-index variable formulations

Similar to MDRPPs alternative modeling option to the one presented in the
previous section is to work with two-index variable formulations that aggre-
gate the information of all the routes. As before, such models are only valid for
problems in which the objective is an aggregate measure of all routes (MC-p-
LARP and MC-LARP), and the feasibility of the solutions can be derived from
the aggregated information. Therefore they are not valid if the objective is to
minimize the makespan, which reflects the cost of one specific route, or for
problems with capacity constraints, where the arcs traversed by each of the
routes need to be known.

Next we propose two-index variable formulation valid for MC-p-LARP
and MC-LARP. The formulations exploits Proposition 5.1.3: regardless of whether
or not G is a complete graph, there exists an optimal solution to both MC-p-
LARP and MC-LARP in which no edge is traversed more than twice. There-
fore, in both cases the total number of traversals of each edge can be repre-
sented by means of only two binary variables, one for the first one and one for
the second one. Since connectivity and parity conditions are not sufficient to
guarantee that the routes start and end at the same facility. We introduce an
extension of the set of constraints (4.5) proposed for the MDRPP, which now
integrate locational decision variables as well.

We use the same location variables as above so the binary variable zd, d ∈
D, indicates whether or not a facility is established at d. As for the routing
variables, let xe denote the binary variable for the first traversal of edge e ∈ E,
and ye the binary variable indicating whether or not edge e ∈ Ey is traversed
a second time.

5.3.1 Return-to-facility constraints

Before presenting the formulation we discuss the Rt-FCs which guarantee that
all routes start and end at the same facility. These are an extension of the Rt-
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FCs for the MDRPPs, which highlight that the set of open facilities involved in
the edges of the cut-sets is relevant to guarantee consistent routes in LARPs.
It is important to note that the Rt-FCs introduced for MDRPPs are no longer
valid for LARPs since they assume that the set of depots from which routes
originate is known. However, since the set of potential locations that will ac-
tually become depots for the routes is not known in advance for LARPs, lo-
cation variables are required in the proposed inequalities. As we will see, the
resulting inequalities are quite involved.

In Figure 5.2 the gray squares represent potential facilities and the solid
lines correspond to required edges. This figure illustrates not only that connec-
tivity and parity constraints are not sufficient to guarantee well-defined routes,
but also that the conditions needed to guarantee consistent routes in LARPs
necessarily depend on the set of open facilities. Observe that if only one or two
of the three potential locations opened, the displayed solution would be fea-
sible and, depending on the case, it would consist of one or two well-defined
routes. Instead, if all three potential facilities opened, the displayed solution
would be infeasible since it is not possible to decompose it into three routes,
each starting and ending at the same facility. Moreover, if all three potential
facilities opened, any feasible solution should have at least three more edges
(or additional traversals of the existing edges) in the cut-set of S = {1, 2}. This
idea is formalized below.

8

2

3

7

5

94

61

10

11

Figure 5.2: Infeasible solution satisfying connectivity and parity constraints

Consider a vertex set S ⊂ V \ D and a subset of potential facilities D′ =
{d1, . . . , dr} ⊂ D. Consider also a subset of edges H ⊂ δ(S) ∩ δ(D′). Denote
by Hi 6= ∅ the set of edges of H incident with facility i ∈ D′ and assume that
each Hi contains an odd number of edges. Finally, partition δ(S) \ H in the
following to sets: FD

′
S,H = (δ(S) \H) \ δ(D \ D′), the set of edges of δ(S) \ H
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that are not incident to any potential facility different from those of D′, and
QD

′
S,H = (δ(S) \H) ∩ δ(D \ D′), the set of edges of δ(S) \ H incident to some

potential facility not in D′. The inequality that we propose contains bilinear
terms that will be discussed and linearized later on.

Proposition 5.3.1. The RtFC

(x− y)
(
FD

′
S,H

)
+

∑
d∈D\D′

(1− zd)(x− y)
(
QD

′
S,H ∩ δ(d)

)
+ y(H) ≥ x(H)− |H|+ z(D′)

(5.29)

associated with S, D′, and H as defined above is valid for MC-p-LARP and MC-
LARP.

Proof. Let (z, x, y) be a feasible LARP solution and note that the RtFC (5.29)
is only active if x(H) − |H| + z(D′) > 0. Since x(H) − |H| ≤ 0, a necessary
condition is that z(D′) ≥ 1. Consider the following cases:

a) x(H) = |H| and z(D′) ≥ 1. The right-hand side of the RtFC reduces to
z(D′) ≥ 1. Since x(H) = |H|, then xe = 1, for all e ∈ Hi, i ∈ {1, . . . , r}.
Given that all the edges in each Hi are incident with the same potential
facility and |Hi| is odd, there must be at least one additional traversal
of some edge in the cut-set associated with each open facility of the set
D′. That is, in total z(D′) additional traversals are needed, which must
correspond either to second traversals of edges in H (term y(H)), or to
first traversals of edges in δ(S) \ H . In the latter case, the first traversal
may correspond to edges not incident with potential locations of D \D′,
represented by the first term of the left-hand side (x − y)

(
FD

′
S,H

)
, or to

potential locations of D \ D′, provided that the involved potential loca-
tions are not open, represented by the second term of the left-hand side∑

d∈D\D′(1− zd)(x− y)
(
QD

′
S,H ∩ δ(d)

)
. The bilinear terms are necessary

since the edges incident with potential locations inD\D′ may contribute
to the overall count only when the potential facility involved remains
closed.

b) x(H) = |H| − 1 and z(D′) ≥ 2. The right-hand side of the RtFC reduces
to z(D′)−1 ≥ 1. In this case exactly one of the edges ofH is not traversed
in solution (z, x, y). In full, let us assume that x(H1) = |H1| − 1 (which
is even), and x(Hi) = |Hi|, i ∈ {2, . . . , r}. Consider now D′ = D′ \ {d1},
and H = H \H1.

b1) The RtFC associated with S, D′, and H corresponds to case a), since
x(H \H1) = (|H \H1|) and z(D′) = z(D′ \ {d1}) ≥ 1. Therefore it is
valid.
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b2) The RtFC associated with S, D′, and H is dominated by the RtFC
associated with S,D′, andH . Both inequalities have the same right-
hand side, and the left-hand side of the former is weaker than the
right-hand side of the later since y(H) ≥ y(H) and (x−y)

(
FD

′
S,H

)
≥

(x− y)
(
FD

′

S,H

)
+ (1− zd1)(x− y) ((δ(S) \H) ∩ δ(d1)).

Hence, the RtFC associated with S, D′, and H is valid.

c) x(H) = |H|−2 and z(D′) ≥ 3. The right-hand side of the RtFC is z(D′)−
2 ≥ 1. There are exactly two edges of H , say e1, e2 that are not traversed
in the solution (z, x, y). Consider the two possible subcases:

c1) e1, e2 ∈ H1. Then, quite similarly to case b, the RtFC associated
with S, D′, and H is dominated by that associated with S, D′, H =
{H1, H2, . . . ,Hr}, with H1 = H1 \ {e1, e2}, which corresponds to
case a).

c2) e1 and e2 are incident with two different depots, i.e. e1 ∈ H1, e2 ∈
H2. Then, the RtFC associated with S, D′, and H is dominated by
that associated with S, H = H \ {H1, H2} and D

′
= D′ \ {d1, d2}

which also corresponds to case a).

Hence, the RtFC associated with S, D′, and H is valid.

d) All other cases can be handled similarly. �

For illustrative purposes, consider again the solution depicted in Figure
5.2 with two alternative values for the location variables: one where all three
potential facilities are open, i.e. z1L1 = z1L2 = z1L3 = 1 which, as explained, is
infeasible, and another one where only L1 and L2 are open, i.e. z2L1 = z2L2 =
1, z2L3 = 0, which is feasible. Consider the vertex set S = {1, 2}, H1 = {(1, L1)}
and H2 = {(2, L2)}. In both cases let D′ = {L1, L2}, so FD

′
S,H = {(2, 3)} and

QD
′

S,H = {(2, L3)}.

For the infeasible solution z1 we have z1(D′) = z1L1 + z1L2 = 2. Since

z1L3 = 1 we also have hd3(2,L3) = 0, so
∑

d∈D\D′ h
d
(
QD

′
S,H ∩ δ(d)

)
= 0. There-

fore, the associated RtFC (??) is violated since x(H) − |H| + z(D′) = 2, but
(x− y)

(
FD

′
S,H

)
+
∑

d∈D\D′ h
d
(
QD

′
S,H ∩ δ(d)

)
+ y(H) = 1.

If we instead consider the feasible solution z2, we also have z2(D′) = z2L1 +

z2L2 = 2, but now hd3(2,L3) = 1, since z2L3 = 0. Hence,
∑

d∈D\D′ h
d
(
QD

′
S,H ∩ δ(d)

)
=

1 and the left-hand side of the RtFC is becomes 1 + 1, which coincides with the
value of the right-hand side that does not change. Hence, as expected, the
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RtFC is not violated for this feasible solution.

In order to integrate the set of inequalities (5.29) within a MILP formu-
lation it is necessary to linearize the bilinear terms that they include. For
this we define additional decision variables representing the products hed =
(1 − zd)(xe − ye) for the edges e ∈ δ(d), with d ∈ D. These variables will
take the value 1 if and only if edge e, which is incident with potential facility
d, is traversed exactly once and the facility located at d is not open. Observe
that the number

∑
d∈D |δ(d)| of new variables is very moderate since we are

assuming that |Vk ∩D| ≤ 1, for all k ∈ K. This number is clearly smaller than
the number of two-index variables. The new set of variables h and variables
x, y and z can be related with the usual linearizing constraints:

hed ≤ (1− zd) d ∈ D, e ∈ δ(d) (5.30)
hed ≤ (xe − ye) d ∈ D, e ∈ δ(d) (5.31)
(1− zd) + (xe − ye) ≤ 1 + hed d ∈ D, e ∈ δ(d). (5.32)

5.3.2 MILP formulation for MC-p-LARP and MC-LARP

The MILP for the MC-p-LARP is presented below:

minimize
∑
e∈E

cexe +
∑
e∈Ey

ye (5.33)

subject to

(x+ y)(δ(d)) ≥ 2zd d ∈ D \ VR (5.34)
(x+ y)(δ(S)) ≥ 2(1− z(S)) S ⊆ V, S ∩ VR 6= ∅ (5.35)
(x− y)(δ(S) \H) + y(H) ≥ x(H)− |H|+ 1 S ⊂ V, H ⊆ δ(S), (5.36)

|H| odd

(x− y)
(
FD′

S,H

)
+

∑
d∈D\D′

hd
(
QD′

S,H ∩ δ(d)
)

+ y(H) ≥x(H)− |H|+ z(D′) (5.37)

D′ = {d1, . . . , dr} ⊂ D,
S ⊂ V \D, H = H1 ∪ . . . Hr,

Hi ⊆ δ(S) ∩ δ(di), |Hi| odd,
i = 1, . . . , r, r > 1

xe = 1 e ∈ R (5.38)
ye ≤ xe e ∈ Ey (5.39)
z(D) ≤ p (5.40)
hed + zd ≤ 1 d ∈ D, e ∈ δ(d) (5.41)
hed + ye ≤ xe d ∈ D, e ∈ δ(d) (5.42)
xe ≤ zd + ye + hed d ∈ D, e ∈ δ(d) (5.43)
xe ∈ {0, 1} e ∈ E (5.44)
ye ∈ {0, 1} e ∈ Ey (5.45)
zd ∈ {0, 1} d ∈ D (5.46)

82
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hed ∈ {0, 1} d ∈ D, e ∈ δ(d). (5.47)

Inequalities (5.34) ensure that open facilities are used and the family (5.35)
is an adaptation of the well-known connectivity inequalities: there must be at
least two edge traversals in the cut-set of a given set of vertices S containing no
open facility whenever S contains some vertex that must be visited. Inequal-
ities (5.36) have a similar explanation to that of (5.4) and ensure the parity
(even degree) of every subset of vertices. They have been used in the two-
index formulation for the MDRPP proposed in Chapter 4 (observe that they
do not involve any location variable). The RtFCs (5.37) have been discussed
above. Equalities (5.38) ensure that all required edges are served whereas con-
straints (5.39) mean that an edge cannot be traversed for a second time unless
it also has been traversed for the first time. The limit on the maximum number
of facilities that can be opened is imposed by (5.40). The linearization of the
set of new variables h and its relation to the other decision variables is given
in (5.41)–(5.43). Finally, the domains of the different sets of decision variables
are stated in (5.44)–(5.47).

The above formulation contains |E| x, |Ey| y, and |D| z variables. As men-
tioned, the number of h variables is

∑
d∈D |δ(d)|. There are |D\VR| inequalities

of type (5.34), |R| inequalities (5.38), |Ey| inequalities of type (5.39). The num-
ber of constraints in each family (5.41)–(5.43) is

∑
d∈D |δ(d)|. The number of

inequalities (5.35), (5.36), and (5.37) is exponential in |V |.

- MC-LARP
Since the domains of MC-p-LARP and MC-LARP are the same, except
for constraint (5.40) on the maximum number of open facilities, in order
to adapt the above formulation to the MC-LARP, we only need to discard
this constraint and to update the objective function to

min
∑
d∈D

fdzd +
∑
e∈E

cexe +
∑
e∈Ey

ye. (5.48)

Proposition 5.3.2. Formulation (5.34)–(5.47) is valid for the MC-p-LARP and for
the MC-LARP.

Proof. By Proposition 5.3.1 inequalities (5.37) are valid. Therefore, if a solution
(x, y, z) is feasible for the MC-p-LARP or the MC-LARP no violated inequal-
ity of this family exists. We now show that if a solution (x, y, z) satisfying
(5.34)–(5.36), (5.38)–(5.40), and (5.44)–(5.45) is not feasible for the MC-p-LARP
or the MC-LARP, then there exists a constraint (5.37) violated by the solution.
Because of the connectivity and parity constraints (5.35)–(5.36), if (x, y, z) is
not feasible then in any decomposition of the solution in edge-disjoint simple
tours, there is one simple tour T traversing at least two open facilities. Let
d1, d2 ∈ D be two open facilities that are consecutive in the tour T , and let
Pd1d2 the subpath of T connecting d1, and d2 and ST = V (Pd1d2) \D.
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• If the decomposition contains no simple tour T ′ incident with some ver-
tex of ST , i.e., ST ∩ V (T ′) 6= ∅, then the RtFC (5.37) associated with
S = ST , D′ = {d1, d2}, H1 = S ∩ δ(d1), H2 = S ∩ δ(d2), FD

′
S,H =

(δ(S) \H) \ δ(D \D′) and QD
′

S,H = (δ(S) \H) ∩ δ(D \D′) is violated by
(x, y, z), since all the terms in the left-hand side of (5.37) take the value
zero, but the right-hand side takes the value two, since zd1 = zd2 = 1.

• Suppose now that the decomposition contains a simple tour T ′ incident
with some vertex of S. Let {v} ∈ S ∩ V (T ′) (arbitrarily selected, if there
is more than one such vertex). Consider the following subcases:

– T ′ does not intersect with V (T ) \ Pd1d2 . Consider ST
′

consisting of
all vertices of V (T ′) which are not open facilities in z (possibly all
V (T ′)). Then the RtFC (5.37) associated with S = ST ∪ ST ′ , D′ =
{d1, d2},H1 = S∩δ(d1),H2 = S∩δ(d2), FD

′
S,H = (δ(S) \H)\δ(D\D′)

and QD
′

S,H = (δ(S) \H) ∩ δ(D \D′) is violated by (x, y, z). Again all
the terms in the left-hand side of (5.37) take the value zero,but the
right-hand side takes the value two.

– T ′ intersects with V (T ) \ Pd1d2 . Let {v′} ∈ V (T ′) ∩ (V (T ) \ Pd1d2).
If several such vertices exist v′ the first vertex after d2 following the
same orientation as that of Pd1d2 . Observe that now T ′ must tra-
verse some open facility, say d′ ∈ D ∪ V (T ′), different from those
of {d1, d2}. Otherwise a different decomposition of the solution of
simple tours would exist, where d1 and d2 are no longer consecutive
open facilities in the same simple tour. Consider now the subpaths
of T ′, Pv,v′ and Pv,d′ , and define ST

′
= V (Pv,v′) ∪

(
V (Pv,d′) \D

)
.

Then, the RtFC (5.37) associated with S = ST ∪ ST ′ , D′ = {d1, d2},
H1 = S ∩ δ(d1), H2 = S ∩ δ(d2), FD

′
S,H = (δ(S) \H) \ δ(D \D′) and

QD
′

S,H = (δ(S) \H) ∩ δ(D \D′) is violated by (x, y, z). Now the left-
hand side of (5.37) takes the value one (corresponding to the last
edge of the path Pv,v′ , but the left-hand side is two. �

Remark 5.3.1. An additional consequence of the above proof is that RtFC in-
equalities (5.37) associated with subsets D′ with two depots suffice to guaran-
tee that the proposed formulation is valid.

Modeling optimality condition O8 for the two-index formulations is not
easy. In fact, we do not know how to impose this condition without incor-
porating additional decision variables, and preliminary experiments clearly
indicate that such an alternative would not be competitive with the original
formulations.

84



5.4. Branch-and-cut algorithm

5.3.3 Valid inequalities

Some of the valid inequalities presented in Chapter 5.2.1 can be adapted to
reinforce the formulation above. In particular, the reinforced connectivity in-
equalities (5.16) associated with singletons that must be visited S = {i} with
i ∈ VR can be expressed in terms of the aggregated x and y variables as

(x+ y)(δ(i)) ≥ 2. (5.49)

Analogously, (5.17) can be expressed in terms of the aggregated x and y
variables to reinforce constraints (5.35) associated with components containing
no potential facility as

(x+ y)(δ(Vk)) ≥ 2. (5.50)

Finally, the logical relation between the z and x variables associated with
edges connecting two facilities (5.18) can be rewritten as

xe + zd + zf ≤ 2 e = {d, f} ∈ γ(D). (5.51)

5.4 Branch-and-cut algorithm

We have developed an exact branch-and-cut algorithm to solve each of the
models presented in this chapter, based on the formulations proposed above.
The overall solution algorithm is similar for three- and two-index formula-
tions. As usual, we initially relax the families of constraints of exponential
size. After each LP iteration these are then separated to detect whether or not
there are constraints of any of these families violated by the current LP solu-
tion. If so, the detected violated constraints are incorporated in the current
formulation, and the reinforced formulation is solved.

5.4.1 Initial relaxation

The algorithm starts with all integrality conditions relaxed and only a subset
of constraints. In the initial formulations we include all non-exponential sets
of constraints, plus a small subset of connectivity and parity inequalities. More
precisely, the initial connectivity constraints considered are associated with the
singletons that must be visited, i.e. S = {i}, i ∈ VR, and with the components
that contain no potential facility, i.e. S = Vk, k ∈ K, with Vk∩D = ∅. The initial
set of parity constraints is restricted to those associated withR-odd singletons.
That is, for the three-index formulations, constraints (5.3) are initially replaced
with (5.16)–(5.17) and the only parity constraints initially included are the in-
equalities (5.4) associated with R-odd singletons S = {v}, with |δR(v)| odd.
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Furthermore, all logical inequalties (5.18) and (5.19) are added. For the two-
index formulations, constraints (5.35)–(5.37) are initially replaced with (5.49)–
(5.50), the only parity constraints (5.36) initially included are those associated
with R-odd singletons S = {v} with |δR(v)| odd, and all logical inequalities
(5.51) are added.

RtFCs (5.37) are handled as lazy constraints, so they are only separated at
the nodes with an integer LP solution. In contrast, all other families of relaxed
inequalities are separated whenever the current LP solution is fractional. We
then first apply a heuristic separation and only resort to the exact separation
when the heuristic fails in finding any violated cut. Below we detail the sepa-
ration procedures that are applied in each case.

5.4.2 Separation of inequalities for the three-index formulations

Let (x, y, z) denote the current LP solution and letG(x, y) be the support graph
associated with (x, y) at any iteration of the algorithm. For each facility d ∈ D,
we denote by (xd, yd) the partial LP solution associated with the potential fa-
cility d and by Gdx,y = (V d, Exd,yd) its corresponding support graph, which can
be obtained from G by eliminating all edges in E with xde = 0 and all vertices
that are not incident with any edge of Exd,yd .

Separation of the connectivity constraints (5.3)
For each potential facility d ∈ D, we check whether Gdx,y is connected. If not,
each connected component C with vertex set V (C) ⊆ V d \ {d} defines a vio-
lated connectivity constraint (5.3). When the current LP solution is integer, i.e.
zd = 1, the above separation procedure is exact. However, when the current
LP solution is fractional, it may fail to find a violated constraint (5.3) even if
one exists. Therefore, when Gdx,y contains one single connected component we
search for connected components in the subgraph of Gdx,y that contains only
those edges with values xde + yde ≥ ε, where ε is a given parameter. We then
compute the current value of (xde + yde)(V (C)) for each connected component
C with vertex set V (C) ⊆ V d \ {d}. If for some edge e ∈ γ(V (C)) the inequal-
ity (xd + yd) (δ(V (C))) < 2xde is satisfied, then the connectivity inequality (5.3)
associated with V (C) is violated by (xd, yd). Finally, if no violated constraint
has been found with the above heuristic, we build the tree of min-cuts T d of
Gdx,y with capacities given by xde + yde . For each edge e = {u, v} in Exd,yd with
u, v 6= d, the minimum cut δ(S) such that e ∈ γ(S) is easily obtained from
the min-cut tree T d. If the value of the min-cut is smaller than 2xde , then the
inequality (5.3) associated with S and d is violated by (xd, yd). The above sep-
aration procedure is exact and similar to that applied in Chapter 3.4.2 to the
connectivity constraints of the three-index formulation for the MDRPPs.

Separation of the parity inequalities (5.20)
Since the initial formulation includes all parity constraints (5.4) associated with
singletons, for integer solutions (x, y, z) the reinforced parity inequalities (5.20)

86



5.4. Branch-and-cut algorithm

are always satisfied. When (x, y, z) is not integer, we first apply a heuristic and
we only resort to the exact separation if the heuristic fails. The heuristic and
exact method for inequalities (5.20) are adaptations of those applied in Chap-
ter 3.4.2 to the simple parity constraints (5.4) of the three-index formulation for
the MDRPPs, where now the right-hand side of the inequality is 2−zd, instead
of 1.

Concerning the heuristic for each potential facility d ∈ D, we find the con-
nected components of the subgraph Gd(x, y) induced by edges with values
bde = min{(xde − yde), 1 − (xde − yde)} > ε, where ε is a given parameter. Then,
if S ⊂ V is the vertex set of one of the components, its associated edge set is
H = {e ∈ δ(S) | 1 − (xde − yde) < xde − yde}. If bd(δ(S)) < 2 − zd and |H| is
odd, then the parity constraint (5.20) associated with S and H is violated by
(xd, yd, zd). If |H| is even, we obtain an odd set |H| by either removing one
edge from |H| (and transferring it to δ(S) \ H) or by adding to H one edge
currently in δ(S) \H . Again, the smallest increment is obtained with

∆ = min
{

min{xde − yde : e ∈ δ(S) \H},min{1− (xde − yde) : e ∈ H}
}
.

Then, if bd(δ(S)) + ∆ < 2 − zd, the parity constraint (5.20) associated with S
and the updated set H is violated by (xd, yd). Otherwise, the heuristic fails to
find a constraint violation.

The exact method constructs, for each d ∈ D, the tree of min-cuts T d of
the support graph Gd with capacities bd. When T d has a cut δ(S) of capacity
smaller than 2− zd, i.e. b(δ(S)) < 2− zd, we consider its vertex set S, and the
set of edges H = {e ∈ δ(S) | (xde − yde) ≥ 0.5}. If |H| is odd, then H defines,
together with S, a violated inequality of type (5.20). Otherwise, if |H| is even,
we update the set H to an odd set by moving an edge as mentioned above.
When bd(δ(S)) + ∆ < 2 − zd, the updated set H defines a violated inequality
(5.20) for d and S for the current solution (xd, yd).

5.4.3 Separation of inequalities for the two-index formulations

Let G(x, y) denote the support graph associated with the LP solution (x, y, z)
at any iteration of the algorithm.

Separation of the connectivity inequalities (5.35)
The separation of constraints (5.35) is an adaptation of the procedure presented
in Chapter 4.3.2 for the connectivity constraints of the two-index formulation
for the MC-MDRPP. Now we need to take into account that the right-hand side
is 2 (1− z(S)) instead of 2. We first check whether G(x, y) is connected. If not,
the vertex set of any component containing no depot defines a violated cut. As
before, when (x, y, z) is integer the above separation is exact, but it may fail for
fractional solutions. In such a case, the connected components are identified
in the subgraph of G(x, y) with only those edges with xe + ye ≥ ε, where ε is a
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given parameter. Then, the value (x+ y) (δ(V (C))) is computed for each com-
ponent V (C) and compared to 2(1− z(S)). If (x+ y) (δ(V (C))) < 2(1− z(S)),
the constraint (5.35) associated with V (C) is violated by (x, y, z).

For the exact separation we build the tree of min-cuts of G(x, y) with ca-
pacities given by xe + ye, and look for min-cuts δ(S) of value (x, y) (δ(S)) < 2.
When (x, y) (δ(S)) < 2(1 − z(S)), then the inequality (5.35) associated with S
is violated by (x, y, z).

Separation of the parity inequalities (5.36)
We use the separation of constraints (5.36) presented in Chapter 4.3.2 for the
two-index formulation for the MC-MDRPP. Since the initial formulation in-
cludes the inequalities associated with singletons, we only separate them at
fractional solutions. We first apply the heuristic and only resort to the exact
separation if it fails.

Separation of the return-to-facility inequalities (5.37) RtFCs (5.37) are
handled as lazy constraints, so they are only separated when the LP solution
(x, y, z) is integer. In such a case violated inequalities can be easily identified
by first finding a tour decomposition of the current solution and then checking
whether any of the tours contains a path Pd1d2 connecting two (consecutive)
open facilities. If so, D′ = {d1, d2} and S = V (Pd1d2) \ D′ defines a violated
cut.

5.5 Computational Experience

In this section we present the results of the computational experience we have
conducted to assess the behavior of our formulations on the different LARPs
studied. The tests have been run under the same settings as previous compu-
tational experiments for MDRPPs.

5.5.1 Set of benchmark instances

The sets of instances used in the computational experiments are adapted from
the MDRPPs benchmark instances used in Chapters 3.5.1 and 4.4.1. We have
preserved from the original instances the set of required edges and the routing
cost function c. The maximum number of facilities to be located has been fixed
to p = 4. The potential locations for the facilities were chosen randomly from
the set of vertices, ensuring that no component had more than one potential
location. Potential locations were assigned to components according to some
weights pk, k ∈ K, defined as the sum of a fixed parameter r = 0.2, plus a pa-
rameter based on the number of required edges, defined as the ratio between
the number of required edges in that component and the total number of re-
quired edges. That is pk = 0.2 + |Rk|/|R|, for all k ∈ K. For the considered
set of benchmark instances the resulting values were always smaller than one,
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so for each component k ∈ K, pk was taken as the probability that component
k hosted a potential facility location. Then, for each component a number rk
was randomly drawn from a continuous uniform distribution U [0, 1], and the
component was allocated a potential site when pk ≤ rk. In that case, the vertex
of Vk where the potential location was actually located was obtained by ran-
domly generating a number v from a discrete uniform distribution U [1, |Vk|].
To generate the set-up costs of the potential locations, for each instance I we
have taken from Chapter 4.4.2 the optimal value of the instance solved as an
MC-MDRPP with two and four depots, V 2

I and V 4
I , respectively. Then the

value VI = |(V 2
I − V 4

I )|/2 was taken as the average set-up cost per facility for
that instance. Thus, the values fd, d ∈ D for instance I have been randomly
generated from a discrete uniform distribution U [VI/2, 3VI/2]. Finally, the ca-
pacity of each potential location, bd,was randomly generated from a discrete
uniform distribution U [|R|/4, 3|R|/4]. Note that, on average, four open facili-
ties are sufficient to serve all the demand, which is consistent with the selected
value of p.

Table 5.2: Characteristics of the instances

|D| |D| |D| |D| |D|

D16 4–6 G16 4–7 R20 5–8 P 4–6 MAD 4-33
D36 4–10 G36 4–7 R30 5–8 ALB 5 URP5 5–37
D64 5–16 G64 5–15 R40 7–13 ALB2 4–26 URP7 7–43
D100 5–17 G100 5–18 R50 5–17 GRP 5–23

Table 5.2 shows the number of potential locations (|D|). When not all the
instances of the group have the same value, the minimum and maximum val-
ues are given.

5.5.2 Results for Min-cost p-LARP and Min-cost LARP

Tables 5.3 and 5.4 show, for MC-p-LARP and MC-LARP, respectively, the ag-
gregated results obtained, for each group of instances, with the three-index
formulation (3IF), its reinforcement with the optimality condition O8, (3IF-O8),
and the two-index formulation (2IF). As before, the columns under ]Opt0 and
Gap0 report the number of instances in the group that were optimally solved
at the root node and the average percentage gap at the root node with respect
to the optimal or best known solution at termination. Similarly, the next two
columns under ]Opt and Gap give the same information at termination: the
number of instances solved to optimality and the average percent gap with re-
spect to the optimal or best known solution. Columns under Nodes represent
the average number of nodes explored in the search tree. The columns under
CPU give the average of the total computing times in seconds. Finally, the
columns under ]D show the average number of opened facilities.
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Note that the last five sets corresponding to medium and large instances
were solved only with the two-index formulations. Furthermore, for these
sets, we also increased the maximum computing time to 24 hours.

Our results show that, both for MC-p-LARP and MC-LARP, the two-index
formulation is more efficient and faster than the two three-index formulations.
The formulation 2IF allowed us to solve all the small instances within a few
minutes, reducing the computing times of 3IF by 98%. In contrast, the three-
index formulations 3IF and 3IF-O8 could not find an optimal solution on 18
instances within the limit time of four hours (15 MC-p-LARP instances and
three MC-LARP instances). Moreover, with the two-index formulation 2IF we
could also solve all medium instances and one third of the large ones. Finally,
note that the number of nodes in the search tree is also smaller with 2IF. Com-
paring Tables 5.3 and 5.4, it can be observed that the results are quite similar
regardless of whether the number of facilities to be opened is restricted or set-
up costs are included in the objective function.

Comparing the two three-index formulations it is easy to see that 3IF-O8
outperforms 3IF, in terms of the number of instances solved to optimality and,
particularly, in terms of computing times. Nevertheless, as mentioned before,
the original two-index formulations still outperform the three-index formula-
tions even when these are reinforced with condition O8.

Table 5.5: Computational results for the MC-p-LARP-UD

]Opt0 Gap0 ]Opt Gap Nodes CPU(s)

D16 6/9 7.80 9/9 0 3.33 0.29
D36 1/9 6.77 9/9 0 297.11 127.77
D64 0/9 8.44 6/9 1.98 1630.89 7311.63
D100 0/9 13.87 0/9 12.19 498.89 14400.86
G16 5/9 11.14 9/9 0 15.44 0.62
G36 1/9 7.01 9/9 0 146.78 54.04
G64 0/9 8.26 6/9 4.43 978.67 4295.41
G100 1/9 68.15 1/9 68.15 210.22 13402.86
R20 4/5 1.94 5/5 0 3.00 0.49
R30 2/5 7.86 5/5 0 9.00 1.72
R40 1/5 8.77 5/5 0 493.40 1103.77
R50 0/5 9.35 5/5 0 45.00 111.91
P 9/24 4.12 23/24 0.10 164.25 613.53
ALB 0/2 50.65 1/2 50.00 192.50 7893.08

Tables 5.5 and 5.6 show the results for the models MC-p-LARP-UD and
MC-LARP-UD, respectively, which extend the previous models including car-
dinality constraints on the number of users that can be served from each open
facility. As mentioned above, these models were handled with the three-index
formulation for being able to reproduce the routes from each open facility once
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Table 5.6: Computational results for the MC-LARP-UD

]Opt0 Gap0 ]Opt Gap Nodes CPU(s)

D16 4/9 9.98 9/9 0 9.78 0.46
D36 1/9 6.91 9/9 0 334.89 131.88
D64 0/9 9.65 7/9 2.22 1413.89 6324.78
D100 0/9 12.37 0/9 10.45 499.11 14412.60
G16 5/9 5.32 9/9 0 13.67 0.61
G36 0/9 6.25 9/9 0 77.78 22.44
G64 0/9 10.33 6/9 5.99 1135.67 6562.05
G100 0/9 39.99 1/9 39.34 299.22 13551.45
R20 4/5 2.07 5/5 0 3.00 0.49
R30 1/5 1.77 5/5 0 9.00 1.93
R40 1/5 5.76 5/5 0 749.60 1626.61
R50 0/5 8.19 5/5 0 45.00 146.88
P 7/24 3.97 23/24 0.12 194.79 612.58
ALB 0/2 51.02 1/2 50.00 302.00 7694.61

the values of the decision variables are known. Like in the uncapacitated case,
the behavior of models MC-p-LARP-UD and MC-LARP-UD is similar. How-
ever, comparing the results with the corresponding version without cardinal-
ity constraints we can see, as expected, that the cardinality version is more
difficult. This translates into a lower number of instances optimally solved, a
larger number of explored nodes, and an increase in the computing time.

5.5.3 Results for Min-max p-LARP

Tables 5.7 and 5.8 report the results obtained with the three-index formulation
for the models in which the min-max objective function is considered.

Table 5.7: Computational results for the MM-p-LARP

]Opt0 Gap0 ]Opt Gap Nodes CPU(s)

D16 1/9 36.54 9/9 0 57.22 2.09
D36 0/9 51.44 6/9 5.29 2942.56 7995.30
D64 0/9 58.61 1/9 46.61 1610.78 12985.89
G16 2/9 31.39 9/9 0 34.56 3.90
G36 0/9 41.42 8/9 0.79 804.00 2222.10
G64 0/9 57.60 1/9 46.32 406.78 14400.20
R20 0/5 57.09 5/5 0 246.80 19.69
R30 0/5 53.26 5/5 0 622.40 158.98
R40 0/5 65.05 4/5 10.43 2174.00 7806.01
R50 0/5 73.01 1/5 60.49 284.00 11537.77
P 4/24 28.07 20/24 1.75 1143.00 3074.70
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Dealing with this kind of objective is typically difficult. Consequently, the
results obtained for these models are the worst ones, with the lowest number
of instances optimally solved and the largest computing times. In spite of this,
the proposed algorithm found a proven optimal solution for 70% of the tested
instances.

Table 5.8: Computational results for the MM-p-LARP-UD

]Opt0 Gap0 ]Opt Gap Nodes CPU(s)

D16 0/9 45.72 9/9 0 103.78 5.10
D36 0/9 49.33 5/9 5.14 3343.00 9091.33
D64 0/9 53.24 1/9 39.57 1025.67 1328.96
G16 1/9 32.15 9/9 0 17.22 2.77
G36 0/9 39.83 7/9 1.59 1405.00 6287.63
G64 0/9 55.52 0/9 42.98 296.00 14400.21
R20 0/5 58.32 5/5 0 253.40 25.01
R30 0/5 54.33 5/5 0 811.20 282.36
R40 0/5 67.10 4/5 14.28 2933.20 9769.81
R50 0/5 81.84 2/5 55.38 343.40 11333.67
P 1/24 34.49 19/24 1.73 1926.17 3284.99

5.5.4 Analysis of the solutions: cross-comparison of models

We close the computational experiments section by analyzing some charac-
teristics of the solutions produced by the different models. The results con-
cerning the number of facilities open in the optimal solutions of the differ-
ent formulations are summarized in Table 5.9. As could be expected, when
the objective takes into account the overall routing costs, models with facil-
ity set-up costs (MC-LARP and MC-LARP-UD) produce, in general, solutions
with a smaller number of open facilities than the models where the maximum
number of open facilities is only limited by the parameter p (MC-p-LARP, MC-
LARP). In particular, MC-LARP produces solutions which, on average, have
33% fewer open facilities than MC-p-LARP. This reduction is not so evident for
the corresponding models with unit demands and capacity constraints, where
MC-LARP-UD produces solutions which, on average, have a around 7% fewer
facilities than MC-p-LARP-UD. Similarly, models with unit demands (MC-p-
LARP-UD, MC-LARP-UD) produce, in general, optimal solutions with more
open facilities than their non-demand counterparts (MC-p-LARP, MC-LARP).
On the contrary, it can be observed that unit demand constraints have very
little effect on the number of open facilities in the optimal solutions of models
with a makespan objective. MM-p-LARP and MM-p-LARP-UD produce solu-
tions with a very similar number of open facilities; there are only five instances
out of 98 where the optimal MM-p-LARP-UD solution opens one more facility
than the optimal MM-p-LARP solution.
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Table 5.9: Average number of open facilities in the optimal solutions of the
different models.

MC-p-LARP MC-LARP MC-p-LARP-UD MC-LARP-UD MM-p-LARP MM-p-LARP-UD

D16 3.33 3.11 3.44 3.11 3.78 3.89
D36 2.56 1.56 3.78 3.44 4.00 4.00
D64 2.22 1.44 3.22 3.00 4.00 4.00
D100 3.67 1.89 3.67 3.00
G16 2.33 1.22 3.11 2.78 3.56 3.56
G36 2.56 1.22 3.56 2.78 4.00 4.00
G64 1.78 1.00 3.56 2.78 4.00 4.00
G100 2.56 1.11 3.00 2.83
R20 2.00 2.00 2.60 2.60 4.00 4.00
R30 2.60 2.20 3.00 3.20 4.00 4.00
R40 2.80 2.40 3.80 3.60 4.00 4.00
R50 3.20 2.40 3.40 3.40 3.75 3.67
P 3.38 1.13 3.42 2.63 3.58 3.50
ALB 3.50 3.00 2.00 3.00

Avg. 2.75 1.83 3.25 3.02 3.88 3.87

Since the models with capacity constraints have shown to be notably more
difficult to solve than their uncapacitated counterparts we have also investi-
gated how often optimal solutions to models without capacity constraints are
feasible (and therefore optimal) for their capacitated versions.
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Figure 5.3: Percentage of optimal solutions of uncapacitated models that are
feasible for the capacitated counterpart

Figure 5.3 illustrates that the makespan model is clearly more successful
in this respect, producing a percentage of feasible solutions for its capacitated
counterpart, which ranges in 60–100, depending on the type and size of the in-
stances. In contrast, the capability of producing feasible solutions for their ca-
pacitated versions of the models that include the overall routing costs in their
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objective is quite small, particularly for the more time-consuming instances. It
is worth noting that no optimal solution to MC-p-LARP or MC-LARP was fea-
sible for MC-p-LARP-UD and MC-LARP-UD, respectively, with the D64 and
the D100 sets of instances.

Finally, we also analyze the robustness of the uncapacitated models (MC-p-
LARP, MC-LARP, MM-p-LARP), measured in terms of their capability of pro-
ducing good quality solutions for the other models. For this, the optimal solu-
tions to each model in F = {MC−p−LARP,MC − LARP,MM−p−LARP}
have been evaluated relative to the objectives of the other models, and com-
pared to their optimal values. In particular, let xi, denote an optimal solution
to formulation i ∈ F for a given instance, and vi its optimal value. Let also
vij denote the objective function value of solution xi, relative to the objective
function of formulation j ∈ F, j 6= i. Table 5.10 gives, for each model i ∈ F,
the averages of the percentages 100(vij − vi)/vi, over all the instances of each
set of benchmark instances, for each model j 6= i.

Table 5.10: Cross-comparison of optimal values to the different models.

MC-p-LARP MC-LARP MM-p-LARP

MC-LARP MM-p-LARP MC-p-LARP MM-p-LARP MC-p-LARP MC-LARP

D16 1.20 12.63 3.25 20.00 9.64 8.82
D36 2.66 128.20 1.34 178.05 25.95 29.76
D64 1.08 104.65 0.50 138.48 40.08 43.11
D100 2.04 0.56
G16 9.61 63.89 5.00 187.96 29.26 49.09
G36 8.60 85.40 1.96 168.47 35.53 48.01
G64 3.36 130.23 0.51 159.87 16.39 25.90
G100 3.59 2.17
R20 1.38 55.06 1.78 55.06 18.10 30.29
R30 2.50 52.10 1.33 93.45 19.31 32.35
R40 1.40 118.75 1.19 138.99 21.68 20.41
R50 1.08 29.49 2.94 51.90 27.56 26.01
P 14.79 36.21 15.23 197.06 10.18 26.23

As can be seen from Table 5.10, the models that include the overall rout-
ing costs produce, in general, solutions that are not good for the makespan
objective. This is particularly true for MC-LARP, which includes the facilities
set-up cost in the objective. The converse holds since the makespan model
also produces optimal solutions that, in general, are not of good quality for
MC-p-LARP or MC-LARP. On the other hand, not surprisingly, MC-p-LARP
produces, in general optimal solutions that are good for MC-LARP, and vice
versa. In this sense, the obtained results show a slight superiority of MC-LARP
over MC-p-LARP.
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Chapter 6

Target Rural Postman Problems

In this chapter we introduce TVARPs on undirected graphs. These problems
combine arc routing and linear ordering decisions. Broadly speaking they are
single-depot ARPs that consist of finding a tour that starts at the depot, visits
all required edges according to some ordering and returns to the depot. The
objective aims at balancing two different criteria: the preferences associated
with the relative order in which the targets are visited, and the routing cost of
the tours that serve all the required edges. In the problems that we study the
targets correspond to the components defined by required edges.

We first consider a general TVARP model, referred to as Target-Visitation
Rural Postman Problem (TVRPP), with no specific constraints other than vis-
iting all required edges. In the second model that we address, referred to as
Clustered Target-Visitation Rural Postman Problem (CTVRPP), it is imposed
that all the edges in the same connected component are visited consecutively.
In both cases, the goal is to determine a route that serves all required edges
taking into account the routing cost of the traversed edges as well as the profit
associated with the preferences for the relative position of components in the
routes.

For each of the problems, mathematical programming formulations are
presented together with families of valid inequalities that reinforce their lin-
ear relaxation. Finally, numerical results obtained from branch-and-cut algo-
rithms based on the proposed formulations, are presented and analyzed.

6.1 Formal definition

TVARPs are defined on a undirected complete graph G = (V,E) where V is
the vertex set, |V | = n, and E is the edge set, |E| = m. As in all previous chap-
ters of this thesis, we denote by R ⊂ E the set of required edges, and by Ck,
k ∈ K the corresponding components. We assume there are at least three clus-
ters and C1 contains the depot, d = {1} ∈ V . Furthermore, there are two types
of weights: a non-negative real cost function c defined on the edges of G, and
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a non-negative real profit a associated with every pair of clusters, h, k ∈ K.
In particular, the profit ahk will be collected if the last required edge served in
cluster h is visited before the last required edge served in cluster k.

Again we assume that G has been simplified so that V is the set of ver-
tices incident to the edges of R, and E contains the edges of R plus addi-
tional unrequired edges, connecting every pair of vertices not connected with
an edge of R. In order to formulate the studied models, we transform the
undirected graph G = (V,E) to a directed graph N = (V,A), where each edge
e = {u, v} ∈ E is replaced by two arcs a = (u, v), a′ = (v, u) ∈ A. Hence, for
any non-empty vertex subset S ⊂ V , δ+(S) = {(u, v) ∈ A|u ∈ S, v ∈ V \ S}
denotes the set of arcs from S to V \S and δ−(S) = {(u, v) ∈ A|u ∈ V \S, v ∈ S}
denotes the set of arcs from V \S to S.

We use the term net profit to denote the difference between the total profit
for the collected preferences minus the cost of the route.

Definition 6.1.1.

• The TVRPP is to find a route that serve all the required edges at maximum net
profit.

• The C-TVRPP is to find a route that serve all the required edges at maximum
net profit imposing that edges in the same cluster are sequentially visited.

It is worth specifying when a profit preference is collected. For the C-
TVRPP where the required edges of a component are served consecutively,
the profit ahk is collected if all required edges of cluster h are served before
any required edge of cluster k.

6.1.1 Illustrative example

We next present a small example to illustrate the TVRPP and the C-TVRPP,
and to highlight the difference between both models. We consider the graph
depicted in Figure 6.1.a with with 16 nodes and four clusters. Solid lines rep-
resent the required edges and dotted edges non-required ones. To simplify
the picture only a few (dotted lines) are drawn. The routing cost of all edges
within a cluster is one, i.e., cij = 1 for all (i, j) ∈ Ek, k ∈ K. The routing cost of
all the edges connecting a given pair of components is the same, i.e. cij = Chk,
for all i ∈ Vh, j ∈ Vk, h, k ∈ K. These costs are shown in matrixC = (Chk)h,k∈K
below. The profit matrix A = (ahk)h,k∈K is also shown below.
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Figure 6.1: Illustrative example of TVARP models.

Figure 6.1.b shows an optimal solution for the TVRPP. If consists of the
route: (1, E), (E, I), (I, L), (L,M), (M, I), (I, J), (J,N), (N,O), (O, J), (J,K),
(K,G), (G,D), (D,H), (H,K), (K,J), (J, F ), (F,C), (C,B), (B, 1), (1, A),
(A,B), (B,E), and (E, 1). The cost of the route is 51 units, corresponding to
18 required edges with value 1, plus edges connecting clusters: (E, I), (I, J),
(J,K), (K,J), and (F,C) with cost: 20, 1, 1, 10, and 1, respectively. The order
in which service to clusters is completed is: C2–C4–C3–C1. Thus, the profits
that are collected are a24, a23, a21, a43, a41, and a31, with a total profit of 50
units. Thus, the net profit is -1.

Figure 6.1.c shows an optimal solution for the C-TVRPP. Now all required
edges in a cluster must be served consecutively. An optimal solution consists
of the route: (1, E), (E,B), (B, 1), (1, A), (A,B), (B,C), (C,F ), (F, J), (J,N),
(N,O), (O, J), (J, I), (I, L), (L,M), (M, I), (I,K), (K,G), (G,D), (D,H), (H,K),
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and (K, 1) with a cost of 25 units. The service order of the clusters is now: C1–
C3–C2–C4, with associate profit of 20. Thus, the corresponding net profit is -5.

Comparing both solutions, it can be seen that, not only the routes are dif-
ferent, but also the sequences of the service order to clusters are different as
well.

6.1.2 Complexity and optimality conditions

The TVRPP and the C-TVRRP are NP-hard, since they have as particular cases
the RPP and the LOP, which are NP-hard. It is easy to see that the RPP is a
particular case of both models when preferences are not considered (ahk = 0
∀h, k ∈ K). Likewise, it is easy to see that the LOP is also a particular case of
both problems when routing cost are not involved (ce = 0 ∀e ∈ E).

Note that the optimality conditions O1-O5 of the RPP (see Chapter 1.4.1.1)
naturally apply to the TVARP, since it is a single vehicle ARP with no capacity
constraints. However, a stronger optimality condition can be derived for the
C-TVRPP when G(V,E) is a complete input graph. In that case all shortest
paths connecting each pair of vertices are represented by some edge of E, so
multiple traversals of edges can be hidden by such edges. In particular, for
the C-TVRPP where all required edges in the same component are served con-
secutively, multiple traversals of edges that link connected component can be
avoided in optimal solutions.

(O9) C-TVRPP. There exists an optimal solution where no edge of TC is tra-
versed more than once. Since all the required edges in the same cluster
are served consecutively only one incoming and one outgoing arc to each
cluster will be traversed. Otherwise, if there is a second traversal of a in-
coming arc to a given cluster, this will be followed by an outgoing arc as,
that cluster has already been served. Since the graph is complete, there
the second traversal of the incoming arc belongs to some shortest path
terminating at a different cluster, which corresponds to some existing
edge.

6.2 Mathematical Formulation

We now present linear integer formulations that use binary variables only for
the TVARPs we have defined. In particular, we propose two alternative for-
mulations for the TVRPP and one formulation for the clustered version. The
main difficulty in these formulations is to compute the visiting order of the
clusters, specially when required edges in the same cluster are not necessarily
served consecutively.
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6.2.1 Formulation for the Target-Visitation RPP

The formulation for the TVRPP uses four sets of binary variables. We denote
by Ey ⊂ E the set of edges that can be traversed twice in an optimal solution,
and T the set of periods. The number of periods is upper bounded by the
number of possible traversals, |T | = |E| + |Ey|. For each e = {i, j} ∈ E and
t ∈ T , let xtij and xtji be binary variables indicating whether or not edge e is
traversed for first time in period t, in the direction from i to j and the direction
from j to i, respectively. For each e ∈ Ey and each t ∈ T , let ytij and ytji be
binary variables taking the value one if and only if edge e is traversed for the
second time in period t, in the direction from i to j or j to i, respectively. For
each h, k ∈ K,h 6= k, let phk be a binary variable that takes the value one if and
only if cluster h is served before cluster k, this means that the service to the last
edge of cluster h precedes service to the last edge of cluster k. For each k ∈ K,
and t ∈ T , otk indicates if the last required edge of cluster k has been served in
period t. Such time period will be referred to as the completion period of cluster.

Then, a MILP for the TVRPP is as follows:

maximize
∑
h∈K

∑
k∈K

ahkphk −
∑
t∈T

∑
e∈E

ce(x
t
ij + xtji)−

∑
t∈T

∑
e∈E

ce(y
t
ij + ytji) (6.1)

subject to

∑
t∈T

(xtij + xtji) = 1 e = {i, j} ∈ R (6.2)∑
t∈T

(xtij + xtji) ≤ 1 e = {i, j} ∈ E \R (6.3)∑
t∈T

(ytij + ytji) ≤ 1 e = {i, j} ∈ Ey (6.4)∑
t∈T

(xtij + ytij) ≤ 1 e = {i, j} ∈ Ey (6.5)∑
t∈T

(xtij + ytij)(δ
+(S)) ≥ 1 S ⊆ V \ {1} (6.6)

(xtji + ytji)(δ
−(i)) = (xt+1

ij + yt+1
ij )(δ+(i)) t = 1, . . . , |T | − 1, i ∈ V \ {1} (6.7)

ytij ≤
∑
t′<t

xt
′
ji e = {i, j} ∈ Ey, t ∈ T (6.8)∑

j∈V
x11j = 1 (6.9)

(xtij + xtji + ytij + ytji)(E) ≤ 1 t ∈ T (6.10)

phk + pkh = 1 h, k ∈ K, h 6= k (6.11)
phk + pkl + plh ≤ 2 h, k, l ∈ K, h 6= k 6= l (6.12)∑
t∈T

otk = 1 k ∈ K (6.13)
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∑
k∈K

otk ≤ 1 t ∈ T (6.14)

(xtij + xtji)(Rk) ≤
∑
t′≥t

ot
′
k k ∈ K, t ∈ T (6.15)

otk ≤ (xtij + xtji)(Rk) k ∈ K, t ∈ T (6.16)

phk + oth ≤
|T |∑

p=t+2

opk + 1 h, k ∈ K, h 6= k, (6.17)

t = 1, . . . , |T | − 1

xtij , x
t
ji ∈ {0, 1} e = {i, j} ∈ E, t ∈ T (6.18)

ytij , y
t
ji ∈ {0, 1} e = {i, j} ∈ Ey, t ∈ T (6.19)

phk ∈ {0, 1} h, k ∈ K, h 6= k (6.20)

otk ∈ {0, 1} k ∈ K, t ∈ T (6.21)

Equalities (6.2) guarantee that all the required edges are served in some pe-
riod in one of the two possible directions. Inequalities (6.3) ensure that edges
belonging to E \ R are traversed at most in one direction and period. Con-
straints (6.4) impose that at most one direction can be used for the second
traversal of an edge, whereas (6.5) force that an edge is not traversed twice
in the same direction. Inequalities (6.6) are the well-known connectivity con-
straints. They impose that, at any time period, at least one edge crosses the
cut-set δ(S) from S to its complement. Constraints (6.7) ensure that in each
vertex the number of incoming edges in period t is equal to the number of
outgoing edges in period t − 1. These constraints also guarantee the parity of
every vertex. Inequalities (6.8) impose that an edge cannot be traversed for a
second time unless that it has been traversed for a first time before in the oppo-
site direction. Equality (6.9) forces that the edge traversed in the first period is
incident with the depot. Constraints (6.10) guarantee that in each period only
one edge is traversed. Inequalities (6.11) are LOP constraints stating that for
any pair of clusters one must precede the other one. Dicycle constraints (6.12)
model the fact that it is not possible to order h before k, k before l, and l before
h. Inequalities (6.13) guarantee that each cluster serves is last required edge
in only one period. Constraints (6.14) force that in each period service is com-
pleted for, at most, one cluster. Constraints (6.15) and (6.16) give the relation
between variables x and o. Inequalities (6.15) force that the period in which
the completion period of a cluster should be greater or equal than the period
in which each of the edges of that cluster is served. Moreover, (6.16) impose
that completion period of a cluster is a period when some required edge of
that cluster is served. Constraints (6.17) model the relation between variables
p and o: if completion period of cluster h is period t, and cluster h is served
before cluster k, then completion period of cluster k must be in a period after
t. Binary conditions of the variables x, y, p, and o derived from their definition
are reflected in constraints (6.18)–(6.21).
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The above formulation contains |2(E × T )| x variables, |2(Ey × T )| y vari-
ables, |K × (K − 1)| p variables, and |K × T | o variables. There are |R| equal-
ities of type (6.2), |E \ R| constraints (6.3), |Ey| inequalities of types (6.4) and
(6.5), |(T − 1) × (V − 1)| constraints (6.7), |Ey × T | inequalities (6.8), |T | con-
straints of types (6.10), (6.14) and (6.16), |K × (K − 1)| inequalities (6.11),
|K×(K−1)×(K−2)| constraints of type (6.12), |K| inequalities (6.13), |K×T |
inequalities (6.15), and |K × (K − 1) × (T − 1)| constrains of type (6.17). The
size of the family constraint (6.6) is exponential in |V |.

6.2.1.1 Variable elimination

The nature of the TVRPP allows us to eliminate, a priori, the following vari-
ables:

• Since any feasible route starts at the depot, and we assume that the depot
is located at vertex i = 1, for the first period t = 1, only variables x11j ,
j ∈ V are defined. Hence, all variables x1ij , with i 6= 1 can be eliminated.
Furthermore, no variable y1ij is defined.

• The minimum number of periods needed to complete the service of clus-
ter k ∈ K is Rk. Hence, for cluster 1, we eliminate all variables ot1
with t < R1, and for all other clusters we eliminate all variables otk with
t < 1 +Rk.

• After completing the graph with shortest paths, we can assume that
no optimal solution will have two consecutive traversals without ser-
vice, since they can be concatenated into a single one. Hence, the max-
imum number of edges in an optimal solution is bounded by above by∑

k∈K |Rk|+
nodd
2 + 2|K| − 1, where nodd denotes the number of vertices

with odd R-degree. In practice, this is smaller that the previous bound
T = |E|+ |Ey|, so it allows to reduce the number of variables associated
with T .

6.2.1.2 Valid inequalities

Below we introduce some families of valid inequalities that can be used to
reinforce the LP relaxation of the formulation presented above.

• If the completion period of cluster h is smaller that the completion period
of cluster k, then there is an outgoing edge in any subset S ⊂ V \Vk, Vh ⊂
S:

phk ≤
∑
t

xt(δ+(S)) S ⊂ V \ Vk, Vh ⊂ S. (6.22)

• If the completion period of cluster h is t, then there is an outgoing edge
from cluster h in the next period, t+ 1:

oth ≤ xt+1(δ+(Vh)) h ∈ K, t = 1, . . . , |T | − 1. (6.23)
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• If the completion period of cluster h is t, then no incoming edge to cluster
h can be traversed in periods t or t+ 1:

oth+xt(δ−(Vh)) +xt+1(δ−(Vh)) ≤ 1 h ∈ K, t = 1, . . . , |T |−1(6.24)

• The number of periods between the completion periods of any pair of
clusters, h and k, must be at least one, corresponding with the traversal
of an edge belonging the cut-set. So, if the completion period of cluster
h is t, then the completion period of cluster k cannot be t + 1, and vice
versa:

oth + ot+1
h + otk + ot+1

k ≤ 1 h, k ∈ K, h 6= k, t = 1, . . . , |T | − 1(6.25)

• No two edges in the cut-set of some cluster can be traversed in consecu-
tive periods:∑

k∈K

(
xt(δ−(Vk) + xt+1(δ−(Vk))

)
≤ 1 t = 1, . . . , |T | − 1 (6.26)

• A connection of two clusters, h and k, in period t ∈ T must be preceded
by a service of required edge in cluster h in t−1 and followed by another
service of required edge in cluster k in period t+ 1:

xt(δ−(Vh : Vk)) ≤ (xt−1ij +xt−1ji )(Rh) k ∈ K, t = 2, . . . , |T |−1(6.27)

xt(δ−(Vh : Vk)) ≤ (xt+1
ij +xt+1

ji )(Rk) k ∈ K, t = 2, . . . , |T |−1(6.28)

• Inequalities (6.8) can be reinforced for second traversals of edges con-
necting two clusters (i.e. in the MST of GC), by taking into account that
no optimal solution will use two connecting edges in two consecutive
periods:

ytij ≤
∑
t′<t−1

xt
′
ji e = {i, j} ∈ Ey \R, t ∈ T (6.29)

6.2.1.3 Alternative definition of termination variables

Below we present an alternative formulation for the TVRPP where the time
completion variables o associated with clusters are redefined. For each cluster
k ∈ K and t ∈ T̃ = T ∪{|T |+1} let binary variable õtk take the value one if and
only if the completion period of cluster k is at least t. Using these variables we
can reformulate the TVRPP using the same meaning for the remaining vari-
ables, x, y and p as:

maximize
∑
h∈K

∑
k∈K

ahkphk −
∑
t∈T

∑
e∈E

ce(x
t
ij + xtji)−

∑
t∈T

∑
e∈E

ce(y
t
ij + ytji) (6.1)

subject to
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∑
t∈T

(xtij + xtji) = 1 e = {i, j} ∈ R (6.2)∑
t∈T

(xtij + xtji) ≤ 1 e = {i, j} ∈ E \R (6.3)∑
t∈T

(ytij + ytji) ≤ 1 e = {i, j} ∈ Ey (6.4)∑
t∈T

(xtij + ytij) ≤ 1 e = {i, j} ∈ Ey (6.5)∑
t∈T

(xtij + ytij)(δ
+(S)) ≥ 1 S ⊆ V \ {1} (6.6)

(xtji + ytji)(δ
−(i)) = (xt+1

ij + yt+1
ij )(δ+(i)) t = 1, . . . , |T | − 1, i ∈ V \ {1} (6.7)

ytij ≤
∑
t′<t

xt
′
ji e = {i, j} ∈ Ey, t ∈ T (6.8)∑

j∈V
x11j = 1 (6.9)

(xtij + xtji + ytij + ytji)(E) ≤ 1 t ∈ T (6.10)

phk + pkh = 1 h, k ∈ K, h 6= k (6.11)
phk + pkl + plh ≤ 2 h, k, l ∈ K, h 6= k 6= l (6.12)
(xt + xt)(Ek) + (yt + yt)(Rk ∩ Ey) ≤ õtk k ∈ K, t ∈ T (6.30)

õtk − õt+1
k ≤ xtij(Rk) k ∈ K, t ∈ T (6.31)

phk + õth ≤ õt+2
k + 1 h, k ∈ K, h 6= k, (6.32)

t = 1, . . . , |T |
õt1 = 1 t ≤ |R1| (6.33)
õtk = 1 t ≤ |Rk|+ 1, k ∈ K \ {1} (6.34)

õ
|T |+1
k = 0 k ∈ K (6.35)

õt+1
k ≤ ōtk k ∈ K, t ∈ T (6.36)
xtij , x

t
ji ∈ {0, 1} e = {i, j} ∈ E, t ∈ T (6.18)

ytij , y
t
ji ∈ {0, 1} e = {i, j} ∈ Ey, t ∈ T (6.19)

phk ∈ {0, 1} h, k ∈ K, h 6= k (6.20)

õtk ∈ {0, 1} k ∈ K, t ∈ T̃ (6.37)

Inequalities (6.2)–(6.12), referring to the design of the route and the prefer-
ences, as well as the domain of the variables x, y, and p (6.18)–(6.20) are exactly
the same as in the previous formulation. Constraints (6.30) and (6.31) give the
relation between variables x and the new variables õ. Inequalities (6.30) force
that if there some required edge of cluster k is traversed at period t, then the
completion period of cluster k is at least t, whereas, (6.16) impose that the com-
pletion period of a cluster corresponds to a period when one of its required
edges is served. Inequalities (6.32) model the relation between variables p and
õ: if the the completion period of cluster h is t, and cluster h is served before
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cluster k, then the completion period of cluster k is t + 2 or later. Constraints
(6.33)–(6.36) are derived from the nature of variables õ. Equalities (6.33) and
(6.34) model the fact that at least |Rk| periods are needed to finish the service
of cluster k, when it does not contain the depot. Equalities (6.35) ensure that
all clusters have been served by period T +1. Inequalities (6.36) guarantee that
if the completion period of a cluster is at least t+ 1, then its completion period
is at least t.

Some valid inequalities can be used to reinforce the LP relaxation of the
formulation (6.1)–(6.37).

• (6.30) can be reinforced by including the incoming edges in the cut-set of
δ−(Vk):

(xt + yt)(δ−(Vk)) + xt(Eh) + yt(Ek ∩Ey) ≤ õtk k ∈ K, t ∈ T (6.38)

• At each period at most one cluster will be terminated:∑
k∈K

(õtk − õt+1
k ) ≤ 1 t ∈ T (6.39)

6.2.2 Formulation for the Clustered Target-Visitation RRP

In order to formulate the C-TVRPP, we can exploit the fact that all required
edges in the same component must be served consecutively. This allows us
not to use the completion variables o and also not to use the time index t in the
routing variables. Thus, the ILP formulation for the C-TVRRP we give below
uses two sets of binary variables. For each arc (i, j) ∈ A, let xij be a binary
variable indicating whether or not arc (i, j) is traversed. For each pair of com-
ponents or clusters h, k ∈ K let phk be a binary variable that takes the value
one if and only if cluster h is served before cluster k.

The C-TVRRP formulation is as follows:

maximize
∑

h,k∈K:h6=k
ahkphk −

∑
{i,j}∈E

cijxij (6.40)

subject to

xij + xji ≥ 1 {i, j} ∈ R (6.41)
xij + xji ≤ 1 {i, j} ∈ E \R (6.42)
x(δ+(S)) ≥ 1 S ⊆ V \ {1} (6.43)
x(δ+(i)) = x(δ−(i)) i ∈ V (6.44)
x(δ+(Vk)) ≤ 1 k ∈ K (6.45)
p1k = 1 k ∈ K \ {1} (6.46)
phk + pkh = 1 h, k ∈ K (6.47)
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phk + pkl + plh ≤ 2 h, k, l ∈ K (6.48)
x(δ+(Vh : Vk)) ≤ phk h, k ∈ K \ {1} (6.49)
x(δ+(Vh : V1)) ≤ pkh h, k ∈ K 1 6= h 6= k (6.50)
xij , xji ∈ {0, 1} e = {i, j} ∈ E (6.51)
phk ∈ {0, 1} h, k ∈ K (6.52)

Inequalities (6.41) ensure that all required edges are served at least once
in some direction. Constraints (6.42) guarantee that no non-required edge is
traversed more than once. Recall, that the edges of TC will be traversed at
most once according to the optimality condition O9. Inequalities (6.43) are the
connectivity inequalities, which impose that at least one arc must cross the
cut-set δ+(S). Inequalities (6.44) ensure the parity of every vertex, through the
balancing of incoming and outgoing arcs. Constraints (6.45) force that there
is only one outgoing arc from each cluster. Equalities (6.46) force that cluster
1, where the depot is located, is served before any other cluster. Constraints
(6.47) guarantee that either cluster h precedes cluster k or vice versa. Con-
straints (6.48) are the dicycle inequalities (6.12). Inequalities (6.49) impose that
if there is some arc in the cut-set from cluster h to cluster k, then h is served be-
fore k. Binary conditions of the variables x and p derived from their definition
are reflected in constraints (6.51) and (6.52).

6.2.2.1 Valid inequalities

Below we introduce some families of valid inequalities to reinforce the LP re-
laxation of the formulation (6.40)–(6.52).

• If cluster h is served before k, then there is an outgoing arc in any subset
S ⊂ V \ Vk, Vh ⊂ S:

phk ≤ x(δ+(S)) S ⊂ V \ Vk, Vh ⊂ S (6.53)

• If service to cluster h is completed immediately before cluster k, and ser-
vice to cluster k is completed before service to cluster l, then service to
cluster h is completed before service to cluster l:

x(δ+(Vh : Vk)) + pkl ≤ 1 + phl h, k, l ∈ K (6.54)

6.3 Branch-and-cut for TVARPs

In this section, we present a branch-and-cut algorithms for the TVARPs based
on each of the formulations above. In each case, the families of connectivity
constraints (6.6) and (6.43), which have exponential size, are initially relaxed
and, at each iteration, inequalities violated by the current LP solution are sep-
arated and reincorporated.
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In each case, the solution algorithm starts with the integrality conditions
relaxed, a subset of connectivity constraints, and the incorporation of some
valid inequalities to reinforce the solution. In particular, we include connec-
tivity inequalities associated with the subsets defined by the vertices of each
cluster, and the valid inequalities (6.25), (6.26), (6.29), and (6.39) for the TVRPP,
and (6.54)for the C-TVRPP.

For the TVRPP, the separation problem for the connectivity constraints (6.6)
can be solved similarly to the connectivity constraints of the RPP (see Chap-
ter 1.4.1.3). Thus, we first check the connected components in the graph in-
duced by the solution. If there is more than one, each connected component
C does not contain the depot, V (C) ⊆ V \ {d}, defines a violated constraint
(6.6). Otherwise, we build the tree of min-cuts T relative to capacities given by∑
t∈T

(x̄tij + ȳtij). Then, if the value of a min-cut, δ(S), is smaller than 1, the in-

equalities (6.6) associated with the subset S is violated by the current solution.

The above procedure can be adapted to the case of the connectivity con-
straints of the C-TVRPP, (6.43). Now the tree of min-cuts is computed relative
to the capacities vector given by x̄ij .

6.4 Computational experience

In this section we present the results of the computational experiments in or-
der to evaluate the performance of the branch-and-cut algorithms. The tests
have been run under the same settings as the computational experiments de-
scribed in the previous chapters. The maximum computing time has been set
to four hours. Moreover, the branching rule has been modified to prioritize
the variables p associated with precedences information.

6.4.1 Set of benchmark instances

The algorithms were tested on some of the smallest benchmark instances used
in the previous Chapters. The set of required edges, the routing cost function
c, and the depot d = 1 are preserved from the original instances. To define
the profit function ahk associated with every pair of clusters h, k ∈ K we have
considered the prize-collecting instance associated with each original RPP in-
stance (Aráoz et al., 2009b) and computed for each cluster k ∈ K the overall
profit of its required edges, Pk. Then, the profit ahk associated with the pair of
clusters h, k ∈ K, takes value 1 if Ph ≥ Pk, and 0 otherwise.

6.4.2 Results for Target-Visitation RPP

Table 6.1 shows the results obtained for the TVRPP with the two alternative
formulations, depending the definition of variables o. As before, ]Opt0 and
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Gap0 report the number of instances in the group that were optimally solved
at the root node and the average percentage gap at the root node with respect
to the optimal or best-known solution at termination. Similarly, ]Opt and Gap
give the same information at termination. Column under Nodes shows the
average number of nodes explored in the search tree, and column under CPU
gives average total computing times in seconds.
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Our results highlight the difficulty of the studied problem. The number of
instances solved to optimally with each formulation is low, 33 and 37 out of
the set of 80 benchmark instances, respectively. In general, solved instances
are small ones with less than 30 vertices. Furthermore, no feasible integer so-
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lution was found within the time limit for 13 and 18 instances, respectively.

Note that the obtained results do not allow to conclude that any of the two
formulations outperforms the other one. On the contrary, both formulations
present similar results in terms of the number of solved instances, the values
of the gaps, and the computing times.

6.4.3 Results for Clustered Target-Visitation RPP

Table 6.2 shows the results for the C-TVRPP. The obtained results indicate that
the restriction that required edges in the same component must be served con-
secutively, leads to a easier problem than the non-clustered version. In par-
ticular, 96 instances out of the set of 118 benchmark instances are optimality
solved, 50 of which at the root node. It is worth mentioning, that the percent-
age optimality gap of the unsolved instances is nearly null.

Table 6.2: Computational results for the C-TVRPP

]Opt0 Gap0 ]Opt Gap Nodes CPU(s)

D16 8/9 0.00 9/9 0 3.78 0.08
D36 3/9 0.00 9/9 0 357.67 17.91
D64 1/9 0.01 6/9 0.00 9001.11 4914.55
D100 2/9 0.00 4/9 0.00 2642.56 8476.48
G16 8/9 9.44 9/9 0 0.33 0.06
G36 3/9 0.00 9/9 0 1191.67 59.68
G64 1/9 0.00 6/9 0.00 8460.11 4875.06
G100 3/9 0.00 4/9 0.00 2719.67 8579.38
R20 5/5 0 5/5 0 0 0.03
R30 4/5 0.06 5/5 0 3.00 0.07
R40 3/5 0.02 5/5 0 10.00 0.14
R50 3/5 0.02 5/5 0 22.00 0.70
P 6/24 37.66 20/24 0.00 14692.63 2940.28
ALB 0/2 0.01 0/2 0.01 4078.50 14401.57
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Conclusions

Some of the most relevant decisions to be taken at the operational level in the
management of logistic systems are related to the design of efficient service
routes. In this thesis, we have studied three optimization problems address-
ing this kind of decisions when the demand for service is located at the links of
a given network. In particular, we have studied several families of arc routing
problems, namely MDRPPs, LARPs, TVARPs.

The first group of problems analyzed in this thesis are MDRPPs, which
extend the RPP to the case of several depots. In particular, some proper-
ties and dominance relations have been studied for two MDRPP variants. In
one model the objective is to minimize the overall routing costs, whereas the
second model uses a min-max objective function aiming at minimizing the
makespan, the length of the longest route. A worst-case analysis of the Min-
cost MDRPP with respect to the RPP and other variations indicates that the
potential savings can be arbitrarily large, but also that in some cases the one-
depot RPP may produce better solutions.

Integer linear programming formulations, with three-index variables as-
sociated with the traversed edges and the depots where the routes start and
end, have been presented for both models where, as usual, the families of
constraints that enforce connectivity and parity of solutions are of exponen-
tial size. Moreover, an aggregate formulation containing only binary variables
has been proposed for the Min-cost MDRPP, in which the variables are associ-
ated only to the traversed edges. This alternative formulation includes a new
family of inequalities of exponential size that ensure that routes start and end
at the same depot. Furthermore, the properties of the polyhedron associated
with the compact formulation have been studied.

A branch-and-cut algorithm has been developed for each proposed formu-
lation, where the separation problems of constraints of exponential size are
solved heuristically and exactly. The performance of the algorithm has been
tested for the two proposed models. For this, in each case we have solved two
sets of instances, with two and four depots, respectively. The computational
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experience for the min-cost objective, shows the superiority of the two-index
formulation in terms of efficiency and speed with respect to the three-index
formulation. The disadvantage of the disaggregate formulation lies in the in-
crease on the number of variables with the instance size. In particular, for the
three-index formulation, 35% and 51% of two- and four-depot instances with
up 100 vertices were optimally solved at the root node and these percentages
raise to 97% and 92% of instances optimally solved at termination. The good
behavior of the compact formulation allowed us to solve larger instances in-
volving up to four depots, 744 vertices, 140 required components and 1000
required edges within reasonable computing times. Nearly 60% of the larger
instances were solved at the root node and this percentage increases to 96.4% at
termination. The numerical experiments when the objective is to minimize the
makespan, indicate that, computationally, this model becomes notably more
demanding. Nevertheless, the formulation for this min-max version is indeed
successful in producing balanced routes.

The second family of problems studied in this thesis are LARPs, in which
location and routing decisions are combined. We have modeled and solved
six LARPs with different characteristics. The models differ from each other in
their objective function, on whether the number of facilities to be located is up-
per bounded, or on whether the facilities are capacitated. We have considered
min-cost objectives aiming at minimizing the overall routing costs (possibly
incorporating facilities set-up costs as well), and min-max objectives aiming at
minimizing the makespan. Some of the studied models assume that there are
no capacity limitations, whereas other models include a cardinality constraint
on the number of users that can be served from an open facility.

Three-index variable formulations have been presented for all the mod-
els. The polyhedral analysis carried out for the three-index formulation of the
uncapacitated models proves that the main families of constraints are facet
defining. Moreover, a two-index variable formulation was also introduced for
the min-cost models without capacity constraints, which incorporates a new
set of constraints forcing the routes return to their departing facility. All the
formulations exploit optimality conditions, which allow using binary decision
variables only.

Exact and heuristic separation procedures have been studied for the large-
size families of inequalities and exact branch-and-cut solution algorithms have
been implemented for the solution of the proposed formulations. Our nu-
merical results demonstrate the good behavior of the algorithms, which were
tested on several sets of benchmark instances. For the uncapaciteted min-cost
models, where comparisons are possible, our results show the superiority of
the two-index formulation in terms of efficiency and speed with respect to
the three-index formulations. Thereby with the compact formulations, all in-
stances involving up to 200 vertices, as well as most instances with up to 744
vertices, were solved to optimality, while with the disaggregate one, not all
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instances involving up to 100 vertices were optimally solved. Despite the dif-
ficulty of the models with a makespan objective or with capacity constraints,
instances with up to 100 vertices were optimally solved for the makespan ob-
jective and for the capacitated versions of the min-cost models.

The last group of studied problems in this thesis are TVARPs, which com-
bine arc routing decisions with linear ordering preferences for the order in
which clusters are served. We have modeled and solved two alternative TVARPs:
the general case and a clustered version, where it is imposed that all the edges
in the same component are served sequentially.

Alternative formulations have been proposed in which all variables are bi-
nary. Two formulations model the general case, and use alternative variables
to identify the period when service of each cluster has been completed. The
third formulation models the clustered version of the target visitation problem.

Branch-and-cut algorithm has been developed for each proposed formula-
tion. The obtained results highlight the difficulty of these models, especially
in the general case. For that case, none of the proposed formulations shows
relevant differences in terms of the number of solved instances, the values of
the percentage optimality gaps, or the computing times. Still, the percentage
of instances solved to optimality for the general case and the clustered version
is 44% of instances and 81%, respectively.
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List of Abbreviations

ARPs Arc Routing Problems
BIP Binary Integer Program
CARP Capacitated Arc Routing Problem
CO Combinatorial Optimization
CPP Chinese Postman Problem
C-TVRPP Clustered- Target- Visitation Rural Postman Problem
HCPP Hierarchical Chinese Postman Problem
IP Integer Problem
LARPs Location Arc Routing Problems
LOP Linear Ordering Problem
LP Linear Programming
LRPs Location Routing Problems
MC-MDRPP Min Cost Multi- Depot Rural Postman Problem
MDARPs Multi- Depot Arc Routing Problems
MDRPP Multi- Depot Rural Postman Problem
MILP Mixed Integer Linear Programming
MM-K-RPP Min Max K- Rural Postman Problem
MM-MDRPP Min Max Multi- Depot Rural Postman Problem
MST Minimum Spanning Tree
RPP Rural Postman Problem
TVARPs Target- Visitation Arc Routing Problems
TVPs Target- Visitation Problems
TVRPP Target- Visitation Rural Postman Problem
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