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Abstract

Optical trapping and manipulation have emerged as powerful tools to investigate single mi-
croscopic objects in a controlled environment. Using the momentum carried by light, forces
can be exerted to confine and manipulate objects in a wide range of conditions ranging from
liquid environments to high vacuum. In this thesis I implement different optical manipula-
tion schemes to trap nano-objects and coupled them to optical cavities, giving rise to a cavity
optomechanical interaction between the trapped object and the cavitymediated by the light’s
radiation-pressure.

In a first experiment I implement a mobile optical tweezer (MobOT) with nanometer
precision to place a levitated silica nanosphere at the standing wave of a high Finesse Fabry-
Perot cavity aiming to cool its center ofmassmotion to the ground state at room temperature.
To attain this goal I design a two step cooling process that starts with a parametrical modu-
lation of the optical trapping potential which pre-cools the center of mass motion along the
three axis. Then driving the cavity with a red-detuned laser furthers cool the particle motion
along the cavity axis via the optomechanical interaction. To monitor the particle motion in
the optical trap, I implement a highly robust and sensitive detection scheme that collects the
trap forward scattered field and sends it to a set of three balanced photodiodes. According to
a semiclassical model I present, this approach can resolve the nanoparticle motion down to a
single phonon excitation provided a shot noise limited balance detector.

I also study the use of plasmonic nanoapertures as a novel optomechanical system that
increases by 108 the single photon optomechanical coupling strength between the trapped
nanoparticle and the cavity. These experiments are performed in the overdamped regime and
result into a large optomechanical interaction that allows direct measurement of dynamical
modulation of the trapping potential due to the motion of the trapped object. Different
detuning regimes are studied aiming to improve the optical trapping performances at low
laser intensities. These findings are supported by finite element simulations.

Finally I have alsomade use of optical traps to perform non-equilibrium thermodynamic
processes with an optically trapped microparticle in a virtual thermal bath. The virtual bath
consists of an electrical white noise force. The agreement between the temperatures obtained
fromequilibriumandnon-equilibriummeasurements demonstrates the accuracyof thismethod.
Supported by theory and simulations, our experiments highlight the importance of properly
choosing the sampling rate and noise bandwidth for the validity of the method. We apply
this technique to study non-equilibrium isothermal compression-expansion cycles at differ-
ent temperatures ranging from room temperature to 3000K. We calculate some thermody-
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namic functionals for these processes such as work, heat and entropy. We show that work
distributions verify the Crooks fluctuation theorem, and that they fit well to a generalized
Gamma Function.
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Abstracte

L’atrapament i manipulació òptiques han esdevingut tècniques importants en la investigació
d’objectes microscòpics en condicions controlades. Gràcies al moment lineal de la llum, es
poden exercir forces per confinar y manipular aquests objectes en un ampli ventall de condi-
cions que van des de líquids a alt buit. En aquesta tesi he implementat diferents tècniques
de manipulació òptica per atrapar i acoblar nano-partícules a cavitats òptiques, donant lloc a
una interacció optomecànica a traves de la pressió de radiació de la llum.

Enunprimer experimenthe implementat unapinçaòpticamòbil ambprecisiónanométrica
per tal de posicionar una nano-esfera de SiO2 a l’ona estacionaria de una cavitat òptica Fabry-
Perot d’alta finesa amb l’objectiude refredar el seu centre demassa fins a l’estat fonamental. Per
aconseguir aquest objectiu he dissenyat un procés de refradament en dos passos. Primer acon-
seguim un pre-refredament de centre de masses en les tres direccions modulant paramètrica-
ment el potencial òptic. Després, fent us de la cavitat il·luminada amb un làser desplaçat cap
al vermell, aconseguim un refredament addicional en la direcció de l’eix òptic de la cavitat grà-
cies a la interacció optomecànica. Per registrar el moviment de la partícula a la trampa òptica,
implemento un sistema de detecció interferomètrica robust i sensible que recull els fotons dis-
persats per la nano-partícula i els envia a tres fotodíodes balancejats. D’acord amb un model
semiclàssic que presento, aquestmètode es capaç de resoldre elmoviment de la nano-partícula
fins al nivell de un sol fonó sempre i quan es disposi de detectors amb soroll electrònic inferior
al soroll quàntic de la trampa òptica.

També estudio l’ús de nano-apertures plasmòniques com a nou sistema optomecànic
que incrementa en un factor 108 la força d’acoblament optomecànic d’un sol fotó entre la
partícula i la cavitat. Aquests experiments són realitzats en condicions sobre-esmorteïdes i
aconsegueixenuna interaccióoptomecánicaprougran comper resoldre lamodulaciódinàmica
del potencial òptic causada pel desplaçament de la partícula atrapada. En aquest sistema es-
tudiem diferents condicions de des-sintonització per tal de millorar el rendiment d’aquestes
trampes amb potències de làser baixes. Aquests resultats els contrastem amb simulacions
d’elements finits.

Finalment també he fet servir trampes òptiques per estudiar processos termodinàmics
fora de l’equilibri amb una micropartícula en un bany tèrmic virtual. Aquest bany tèrmic
consisteix en una força electrònica amb un espectre blanc. La concordança entre les tem-
peratures obtingudes a través de mesures en processos d’equilibri i de no-equilibri demostra
precisió d’aquest mètode. Amb l’ajuda d’un model analític i de simulacions, els nostres ex-
periments remarquen la importància d’escollir adequadament la freqüència de mostreig i del
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soroll per tal de garantir la validesa d’aquest mètode. Fent us d’aquesta tècnica estudiem cicles
de compressió i expansió isotèrmics en el no-equilibri a temperatures que van des dels 300K
als 3000k. Calculant diferents funcionals termodinàmics com el treball i el calor demostrem
que les distribucions de no-equilibri satisfan el teorema de fluctuació deCrooks i que s’ajusten
a adequadament a una funció Gamma generalitzada.
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0
Introduction

Understanding nature directly from the study of its building blocks is the main goal of sci-
ence and its peers. Investigating the simplest systems and combining them to more complex
phenomena, gives us the possibility to describe and predict the concepts of nature not only
qualitatively but also quantitatively. While we aim to describe systems using the most uni-
versal laws, our physical theories have a limited range of applicability. For example classical
physics can accurately describemacroscopic systems at room temperature but fails to describe
the behaviour of single atoms and systems at extreme low energies. Similarly quantum me-
chanics describes well the behaviour of systems consisting of few atoms at low temperatures
but is impractical to describe macroscopic systems at room temperature. Although a priori
thismight seema formal problem, it is a fact is thatmacroscopic systemsdonot feature certain
quantum effects such as superposition.

The existence of this two distinguishable regimes arises several fundamental questions
reminiscent from the Schrödinger’s feline gedankenexperiment such as do the laws of quan-
tumphysics still hold formacroscopic objects? Does gravitation set a limit to quantum effects
for large masses? Can we achieve a state superposition of a living organism?
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Matter-wave interferometry experiments have shown agreement with the quantum predic-
tions for particles up to 104mass units. However, this figure is orders of magnitude lower
from where competing theories predict deviations from quantum physics. Extending these
experiments to larger masses requires the capability to find larger systems that can work suf-
ficiently decoupled from the environment in order for genuine quantum effects to emerge.

Optomechanical systems consisting of a mechanical resonator coupled to an electromag-
netic field are ideal candidates towards manipulation and control of the mechanical motion
in the quantum regime. There currently exist many different configurations of optomechan-
ical systems including micro-disks, membranes, cantilevers, etc. Such systems typically oper-
ate with mechanical frequencies comprised between kHz ∼ GHz and electromagnetic fields
from the microwave to the optical regime. A figure of merit that quantifies the decoupling
of the mechanical resonator with the environment is the so-calledQ × f product (Q being
the mechanical Q-factor and f its frequency). While f can be tuned by the geometry and
mode of the resonator,Q is mostly limited by the clamping of the device to its substrate and
material losses. As a result, only f ∼GHz resonators at cryogenic temperatures have been
brought to the mechanical quantum regime, and these remain still limited in terms of theQ
needed for some proposals.

Levitated Optomechanics

To suppress clamping losses a recent approach followed by different groups consists on us-
ing an optically levitated nanoparticle as a mechanical oscillator. Together with the large de-
tuning of the trapping laser to internal transitions and the frequency mismatch between the
lattice modes and the center of mass motion, the predictedQ× f ∼ 1018 is so large that al-
lows for ground state cooling at room temperature. Additionally, such all-optical approach
already presents a geometry compatible with matter-wave interferometry experiments.

Current efforts towards ground state cooling at room temperature using optically levi-
tated nanoparticles have been split in two approaches: the use of an active feedback and the
use of passive cavity cooling. On the one hand the active feedback continuouslymonitors the
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particle position along the three axes and then parametricallymodulates the potential at twice
the mechanical frequencies to extract energy from the centre of mass motion. On the other
hand, the cavity approach relies on trapping a levitated nanoparticle in the cavity standing
wave while using a detuned laser to damp its motion along the cavity axis via optomechanical
interaction. Although both approaches have shown great potential, due to intrinsic limita-
tions of each method they have been unable to reach ground state.

The main goal of this thesis has been to build an experimental platform that overcomes
these limitations aiming to reach and measure the mechanical ground state of an optically
levitated nanoparticle. Our approach has consisted on implementing and combining both
state-of-the art optomechanical cooling techniques to compensate for each other weaknesses.

Plasmonics and Optomechanics

Despite the clear benefits of this optical levitation approach, combining a microscopic res-
onator with a macroscopic cavity leads to an intrinsically weak optomechanical coupling
strength. Experimentally this is circumvented by using electromagnetic fields with large num-
ber of photons in the so-called linearised optomechanical regime. In this regime the mechan-
ical oscillator cannot resolve the individual cavity photons since optical losses are larger than
the coupling of a resonator phonon with a cavity photon. As a result this configuration ex-
cludes the use of optically trapped particles for single photon cavity optomechanics, where
non-linear quantum effects become observable.

To increase the optomechanical interaction of an optically trapped nanoparticle and a
cavity we need to shrink the later in order to maximise the ratio between the particle size the
cavity mode volume. Recent advances in nano-optics have shown how plasmonic nanostruc-
tures can be used to confine optical fields at sub-wavelength scales and used to trap nm-sized
objects. However, these plasmonic trap systems have never been characterized from the op-
tomechanics perspective, namely as a mechanical oscillator coupled to an optical resonator.

Therefore plasmonic nano-apertures as a novel geometry for cavity optomechanics with
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optically trapped particles have been studied.

Stochastic thermodynamics

Aside from our study of cavity optomechanics, we have used optical tweezers to study non-
equilibrium stochastic thermodynamics processes in a liquid environment. Optical traps
have been one of the main experimental driving forces in the field of stochastic thermody-
namics due to the fact that they only have six mesoscopic degrees of freedom (3 positions and
3 momenta) which are uncoupled. Together with a high position and time resolution, such
features allow to accurately measure the energy exchange between the system and the sur-
rounding thermal bath with ∼ kbT resolution. Additionally, the dynamics of an optically
trapped particle is analogous to the classical scheme of a piston filled with an ideal gas. As
a result optical tweezers emerge as an ideal platform to reproduce heat engines in the micro-
and nano-scales.

As for their macroscopic counterparts, microscopic heat engines can convert thermal en-
ergy into work by operating between two thermal baths at different temperatures. For the
case ofwater solutions however, fusion and evaporation temperatures set an upper and lower
bound to the temperatures of these thermal bath. To extend the upper bound of accessi-
ble temperatures of such systems, we have studied the use of additional random forces cou-
pling to the particle centre of mass as an additional heat source for both equilibrium and
non-equilibrium processes.

Thesis Outline

The manuscript is organised as follows:

• Chapter 1 covers the fundamental theory of optical trapping. We provide a derivation
from first principles of the optical forces acting on a particle and its resulting dynamics.
Thenwe describe how the scattered photons also generate a detection signal which can
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be calibrated using different methods. A short overview of the most common optical
trapping geometries for micro and nanoparticles is also provided. The basics of this
chapter will be used through the thesis.

• Chapter 2 is devoted to the study of random forces as an effective thermal bath. This
approach allows to study non-equilibrium stochastic thermodynamic processes at dif-
ferent temperatures in optical traps shedding light into how energy is exchanged on
the mesoscale between a single degree of freedom and the bath. The theory related to
stochastic thermodynamics is also provided. The main achievements are the demon-
stration that noise sources with a flat spectrum profile where the system responsivity is
high can be considered as thermal baths. This is then used to find the non-equilibrium
work distributions for isothermal compressions/expansion in an optical trap.

• Chapter 3 focuses on optically levitated nanoparticles coupled to a Fabry-Perot res-
onator as a cavity optomechanical system. In the first part of the chapter we give de-
tailed description of the system taking into account the detection and cooling limita-
tions imposed by the standard quantum limit (SQL). In the secondpartwe present the
current state of or levitation cavity optomechanics setup aiming to reach and measure
ground state in terms of sensitivity and optical cooling rates. We also discuss about
the advantages and disadvantages of the different cooling approaches. The main con-
tributions are the construction of a setup that achieves resolved sideband cooling of
a particle trapped in an optical tweezer and the design and implementation of mobile
optical traps (MobOT)

• Chapter 4 analyses plasmonic nano-cavities as a nanoscale optical trapping system also
featuring an optomechanical interaction. Applying previously developed concepts
and simulations, we show that such cavity miniaturisation allows to boost the op-
tomechanical coupling strength to unprecedented values and observe optomechani-
cal effects even in the overdamped regime. The main contributions are the demon-
stration of optomechanical interaction between optically trapped nanoparticle and a
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plasmonic nano-cavity with the highest experimental single photon optomechanical
coupling rate, allowing to directly measure the modulation of optical potential in a
plasmonic nano-cavity.
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One repays a teacher badly if one always remains nothing
but a pupil.

Friedrich Nietzsche, Thus Spoke Zarathustra

1
Theory of Optical Trapping

TheeffectsofradiationpressurewerefirstreportedbytheGermanastronomer
JohannesKeppler in 160960. Henoticedthatcometspresentedtwotailspoint-
ingaway fromthe sun: an iontail carriedawaybythe solarwindandadust
tailpushedbytheradiationpressure. Fewcenturieslater, JamesClerkMaxwell
coulddemonstratewithhis setof equations that ”electromagneticwaves
exertedapressure inthedirectionof propagationequaltotheenergycon-
tained in that volume”. Yet it was not until 1901 that Lebedev experimen-
tally verified its existence using a carefully calibrated torsion balance.
Thanks to the discovery of lasers later in the 70’s Arthur Ashkin was able
to show how to use light’s radiation pressure to manipulate matter in a
controlled manner 5,6,7. Using a strongly focused laser beam he was able to
trap6 and accelerate 5 micron sized particles in a liquid environment.
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1.1 Introduction

If we want to understand the physical mechanism behind optical traps, then we need to find
and characterize the forces exerted by a focused optical beam onto a small particle. We will
start by considering a simple analytic model that, based on the dipole approximation, cap-
tures most of the properties of optical trapping. Then we will consider a more general de-
scription of the optical potential to see when corrections should be considered. Finally we
describe the equations of motion and dynamics occurring in optical traps and how these can
be used for calibration of the optical potential.

Optical Forces in the Rayleigh and Paraxial Approximations

In this sectionwepresent adescriptionof the electromagnetic responseof adielectric nanopar-
ticle followed by its interaction with a focused optical beam. For a more detailed treatment
see references 17 and90.

Polarizability

Matter is formed by discrete electric charges: electrons and protons. When illuminated by an
electromagnetic wave at frequency ω, these electric charges are driven into an oscillatory mo-
tion by the incident electric field. For a simple atom under the illumination of a monochro-
matic field polarised along the x axis :

E⃗ = EoRe{e−iωt}u⃗x (1.1)

e can write the electron equation of motion as a damped harmonic oscillator (Lorentz
Model):
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mẍ+mγeẋ+mω2
ox = −eE (1.2)

Where e is the electron charge, m the reduced mass of the electron (m ≈ me), ωo the
frequency of its optical transition and the dissipation term γe accounts for the effects that
cause decoherence with the driving field (radiation of accelerating charges, absorption, colli-
sions...). Assuming that the electron oscillates with the electric field, the solution of Eqn.(1.2)
writes as 17

x(t) = xoEoRe{e−iωt} (1.3)

with
xo =

e/m

ω2 − ω2
o + iγeω

(1.4)

The dipole moment of the atom is d⃗ = e · x(t)u⃗x, and since the dipole is field induced,
we can rewrite d⃗ as:

d⃗ = α(ω)E⃗ (1.5)

where the linear response is accounted by the polarizability α(ω) is defined as:

α(ω) =
e2/m

ω2 − ω2
o + iγeω

(1.6)

The concept of polarizability can be extended to homogeneous objects larger than single
atoms, such a nanoparticle. It only requires the dipole approximation (Eq.1.1) to hold (i.e.
particle radius rp ≪ λ). In this case, the polarizability becomes a magnitude of the bulk
material and thus proportional to the volume of the nanoparticle. In the case of a sphere the
polarizability writes as 17:

αo(ω) = 4πr3p
ϵp(ω)− ϵm(ω)

ϵp(ω) + 2ϵm(ω)
(1.7)

Where ϵp(ω) and ϵm(ω) are the frequency dependant permitivities of the particle and sur-
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rounding medium respectively. This last expression also assumes that the optical field is far
detuned from internal resonances, and the dependence on the frequency comes from the
refractive index of the bulk material. As we will see later on, the polarizability is a critical pa-
rameter that determines how strong the light-matter interaction is for the nanoparticles we
work with.

Stiffness

Now we want to consider the Lorentz force acting on a dipole when the electric field is non-
uniform 52:

F⃗ = (d⃗ · ∇)E⃗ (1.8)

For the motion of small dielectric spheres, the fast oscillations of the optical field cannot be
resolved. As a result, only the time average force is observed:

⟨F⃗ ⟩ = 1

4
Re[α]∇E2 +

1

2
Im[α]E2∇ϕ (1.9)

where the terms in r.h.s. are the so called gradient and scattering forces respectively.

The gradient force is conservative and points towards the maximum of intensity of the
electric field, whereas the scattering force is non-conservative and pushes the particle along
the direction of local propagation field vector k⃗ (ϕ = k⃗ · r⃗). When dealing with dielectric
particles, typically Im[αo(ω)] ≈ 0, thus it becomes necessary to include the electrodynamics
correction to account for the de-phasing and interference between the incident and scattered
fields 52. Due to these effects, α differs from its static value αo 17:

α =
αo

1− (2/3)ik3αo
(1.10)
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Nowwe can finally rewrite these two force contributions as as a function of the field intensity:

F⃗grad(r) = [
2πr3p
c

ϵp − ϵm
ϵp + 2ϵm

]∇⟨I(r)⟩ = α′

4
∇Io(r) (1.11)

F⃗scat(r) = [
8π

3c
(k · r)3r3p

(
ϵp − ϵm
ϵp + 2ϵm

)2

⟨I(r)⟩]∇ϕ =
α′′

2
Io(r)∇ϕ (1.12)

where we have used the identity Io = cϵoE
2
o/2. Note that we have written the terms of

α explicitly to show the dependences on the rp and λ.
In our experiments we will mostly use Gaussian beams, which present a Gaussian intensity
profile for the intensity:

⟨Io(r, z)⟩ =
2P

πw2
o(1 + (z/zo)2)

e
− 2r2

w2
o(1+(z/zo)2) (1.13)

where P is the optical power in the beam and is related with the intensity at the focus as

P =

∫ ∞

−∞

∫ 2π

0

Idρdψ =
cϵoπw

2
oE

2
o

4
(1.14)

Combining Eqs.(1.11, 1.12 and 1.13) we find the following values for the optical forces:

Fgrad(ρ, z) = −α′Io(ρ)


r·z2o

w2
o(z

2+z2o)

0

z[( z
zo
)2 + (1− 2r

wo
)][ z2o

z2+z2o
]

 (1.15)

and

Fscatt(r, z) = α′′Io(r)k

 ( r
z(1+(zo/z)2)

0

1 + r2z2o
(z2+z2o)

2 − r2+2zzo
2(z2+z2o)

 (1.16)

If we consider particle displacements |r| ≪ λ we can expand the optical potential in
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terms of r/λ and keep the leading ones to obtain:

Fgrad(ρ, z) ≈ −

 κr (1− 2r2

w2
o
− 2 z

2

z2o
)r

0

−κz (1− 4r2

w2
o
− 2 z

2

z2o
)z

 (1.17)

Fscatt(r, z) ≈
α′′

α′ κz

 krz
0

γo + γzz
2 + γrr

2

 (1.18)

where we have defined γo, γz and γr as in43:

γo = zo(zok − 1) (1.19)

γz = (2− zok)/zo (1.20)

γr = k/2− 2(zo − kz2o)/w
2
o (1.21)

and

κr =
α′E2

o

w2
o

(1.22)

κz =
α′E2

o

2z2o
(1.23)

are the so called trap stiffness, that characterize the linear restoring constant of the optical
potential near the focus.

Discussion

In this derivation we have obtained a simple expression for the forces experienced by an ob-
ject smaller than the wavelength in a paraxial optical field. These are separated in two con-
tributions: Fscat(r, z) pushing the object along the direction of propagation of light, and
Fgrad(r, z) pulling the object towards the maximum of intensity. Consequently achieving a
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stable potential requires |Fgrad(r, z)| > |Fscat(r, z)|. When this is satisfied the equilibrium
position lies along the optical axis and slightly away from the focus due the contribution of
the scattering force. For small displacements the object experiences a linear restoring force
along each axis with a restoration constant(κi) proportional to the optical power and the par-
ticle volume. As a result trapping small nanoparticles requires high optical intensities (for
example to trap a silica nanosphere of r ≈ 70nm in air requires about 5 · 1010W/m2 that
correspond to 140mW of a 1550nm laser in a focal spot of 1µm waist).

Fields Beyond Paraxial Approximation

To achieve Fgrad(r) > Fscat(r) with a single beam optical trap, we need to focus the opti-
cal field to a diffraction limited spot, thus the paraxial approximation used to compute the
optical forces does not hold. We need a better description of the beam at the focus, which is
strongly dependent on the focusing optics and input beamboundary conditions. To describe
a strongly focused optical beam we follow the theory of Richards & Wolf95,128 that consider
an aplanatic lens as focusing optics. This focusing optics generates a focal sphere F centred
at the origin of coordinates and radius equal to the focal length (f ) of the system. In order to
get a sharp focus, the lens satisfies the Abbe sine condition:

h = f sin θ (1.24)

whichmeans that each ray that emerges from the focusing optics at heighthmeets at the focal
sphere at the same height (Fig.1.1a). Additionally, each surface of the focusing sphere needs
to conserve the intensity (i.e. energy needs to be conserved, Fig.(1.1.b), as a consequence

|E2| = |E1|
√
n1

n2

cosθ (1.25)

where theE1/2 and n1/2 are the amplitude of the electric field and refractive index of the op-
tics and focal sphere.
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Figure 1.1: Diagrams showing the Abbe sine condition (a) and energy conservation through the
focal sphere surfaces (b).

.

Under these assumptions, the focal field can be expressed in an angular representation90

as

E(ρ, ϕ, z) =
ikfe−ikf

2π

∫ θmax

0

∫ 2π

0

E∞(θ, ϕ)eikz cos θeikρ sin θ cos(ϕ−ψ) sin θdϕdθ (1.26)

Whereθmax represents themaximumcollection angle of the lens (NA=n2 sin θmax) andE∞(θ, ϕ)

represents the incoming field in spherical coordinates. In the experiments the incoming field
has a waist diameter larger than the entrance pupil of the focusing optics (i.e. we will over-
fill the focusing lens), thus we can approximate E∞ as a plane wave polarised along the x
direction:

E∞(θ, ϕ) = E0
1

2

(1 + cos θ)− (1− cos θ) cos 2ϕ)
−(1− cos θ) sin 2ϕ

−2cosϕ sin θ

√n1

n2

cos θ

Figure (1.2) shows an intensity map of E2 along the zy and xy planes for a strongly fo-
cused Gaussian beam polarised along the x direction. We see that the focus spot can be well
approximatedwith aGaussianprofile having a largerwidth along thepolarization axis. There-
fore the degeneracy in the radial optical forces thatwas found in the paraxial limit breaks. As a
result each axis now experiences a different restoring force, bringing 3 decoupled harmonic os-
cillators (one for each axis) into a single trap. Still, thex, y axis frequency degeneracy could be
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Figure 1.2: E2 maps of a tightly focused Gaussian beam in the zy (left) and yz (right) planes.
The input beam is linearly polarized along x, has a wavelength λ=1500nm and is focused using a
0.8NA lens. The black and red dashed lines represent an intensity decay 2/e and 1/e respectively for
a Gaussian approximated field. Note the elongation of the beam waist along the polarization axis x.

.

recovered by using an input field with rotational symmetry such a circularly polarized beam.
Additionally we find that in the focus, the field presents polarization vectors point in all di-
rections (Eq.(1.26)) due to the large angle of several of the incident rays.

Discussion

We have found the expression that describes the field profile of an optical beam focused by a
high NA optical system. Despite the accuracy of this model, trying to describe the focus of
an beam from first principles is not the best approach. First it can be difficult to know the
phase profile of the beam impinging on the focusing optics and then it is very complicated to
describe accurately the geometry of the focusing optics (specially if working with commercial
objectives). For this reason, the best approach to describe the field at the focus consists on
experimentally finding the optical restoring constants (κx, κy and κz) along each axis and
fitting them to amodified version of Eqn.(1.22) that takes account the waist asymmetry along
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each axis:

κx =
α′E2

o

w2
x

(1.27)

κy =
α′E2

o

w2
y

(1.28)

κz =
α′E2

o

2z2o
(1.29)

Then, we can reconstruct the intensity profile of our field at the focus as an elliptically
asymmetrical Gaussian beam:

⟨I(x, y, z)⟩ = 2P

πwxwy(1 + (z/zo)2)
e
− 2x2

w2
x(1+(z/zo)2)

− 2y2

w2
y(1+(z/zo)2) (1.30)

Mie Scattering Theory

Aswehave seen, trappingnanoparticles requires highoptical intensities, which often generate
heat and convection. This is problematic for applications such as single molecule manipula-
tion, the study of stochastic thermodynamics 83, trapping of photosensitive colour centres41

and even trapping of living cells 119,84. Therefore, in many cases it will be convenient to work
with bigger particles in order to be able to use lower optical powers. However, as particles
reach sizes r ≈ λ/2 the dipole approximation used to describe our system breaks. In this
cases we will need a more general theory to describe the optical forces acting on particles of
arbitrary size.

The most general approach to describe the forces between an optical field and an object
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is based on the momentum conservation law, that satisfies the following equation90:

(dPmec + Pfield)α
dt

=

∫
vol

∑
β

∂

∂β
Tαβ =

∫
A

∑
β

Tαβ · n⃗βdA (1.31)

where
Tαβ = ϵo[EαEβ + c2αBβ −

1

2
(E · E + c2B ·B)δαβ] (1.32)

is the Maxwell stress tensor, that accounts for the interaction between the electromagnetic
forces andmechanical momentum. Time averaging Eqn. (1.31) over one period of the electro-
magnetic wave, the change in the incident field momentum vanishes, thus we finally obtain:

⟨Fmech⟩ =
∫
A

⟨
∑
β

Tαβ · n⃗β⟩dA (1.33)
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Figure 1.3: Mie scattering of an optically trapped particle . (a) The E⃗i incoming field is scattered
by the particle into the E⃗s scattered field. The field inside the particle becomes E⃗p. The far
field consists on the superposition of the incoming and scattered fields E⃗i + E⃗s.(b)Transverse trap
stiffness (κ) as function of k · a(= 2πa

λ ) for a fixed wavenumber k = 7.8µm in a diffraction limited
optical trap using 60mW of power. The solid line corresponds to theoretical results using the Mies
scattering partial-wave expansion and circles to experimental values. Inset corresponds to transverse
trap stiffness as a functioon of k for a fixed radius a = 2µm. At large values of k · a the stifness
values oscillate due to optical resonances appearing inside the sphere. Figure adapted from79.

This last expression together with Eq.(1.32) show that optical forces can be computed by
knowing the fields at any surface surrounding the material (as long as the material is not de-
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formed). This fields need to be self consistent (i.e. we need to compute the field resulting
from the superposition the incident and scattered fields E = Ei + Es andB = Bi + Bs).
The computation canbe done following the procedure ofMazolli et al.79, which considered it
as aMie scattering field problem. Briefly, one first should expand the incident wave in a set of
vector spherical harmonics which are associated to the electric and magnetic multipole fields.
Then, using the incident fields and the boundary conditions at the surface of the sphere one
computes the coefficients for the scattered field in the same spherical harmonic basis. The
first coefficient is the one computed under the dipole approximation, and as particle size in-
creases one needs to compute more coefficients to obtain the correct field. Finally, one can
compute the field superposition, to obtain theMaxwell stress tensor and the optical forces 57.

Discussion

In this sectionwe have presented a general theory that describes the optical forces experienced
by particles of arbitrary size in an optical field. Despite Mie scattering theory is significantly
more complex than the analytical expression of the dipole approximation we obtain an im-
portant similarity: for small displacements fromthe centre of the trap, theparticle experiences
a linear restoring force along each axis. However, the dependence of κi with the particle size
shows important differences.
Fig.(1.3b) shows the transverse trap stiffness for different wavelengths and particle radius as
computed by asMazolli et al79. As predicted from the dipole approximation, the stiffness κi
at fixed power grows with the particle size up to rp ≈ λ/2. Conversely, when the particle
size is comparable to the wavelength (rp ∼ λ/2), κ decreases with the particle size due to
the influence of higher order Mie scattering terms. This leads to the fact that for an efficient
optical trap one should avoid working with particle sizes larger than λ. Interestingly for very
large particle sizes (r ≫ λ), the stiffness shows a periodic resonance profile every multiple of
λ/4 due to the appearance of whispering gallery modes inside the sphere.
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Dynamics in the Optical trap

The motion of a particle confined in the harmonic regime of the optical potential can be
described for each axis with an independent Langevin equation of the form (conveniently,
we will write all the equations for the x axis, which then can be straightforwardly generalised
to y and z):

m
d2x(t)

dt2
+ γm

dx(t)

dt
+ κxx(t) = ξ(t) (1.34)

where γm is the viscous drag from the surrounding environment and ξ(t) represents the ran-
dom kicks from the thermal environment, which are modelled as a Gaussian White noise
whose variance satisfies the fluctuation-dissipation theorem:

⟨ξ(t)⟩ = 0 (1.35)

⟨ξ(t)ξ(t′)⟩ = 2γmkbTδ(t− t′) (1.36)

with T the temperature of the thermal bath and kb the Boltzmann constant.

It is also useful to define the following quantities of the oscillator:

Γ =
γm
m

Dissipation rate (1.37)

Ωm =

√
κ

m
Mechanical frequency (1.38)

In the course of our experiments the mass is a direct property of the trapped particle
whereas γm depends on environment properties, and should be computed in a specific man-
ner depending on the regime we are working in.

We will always work in two well differentiated regimes: the so called overdamped regime
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and underdamped (inertial) regime. We consider the system to be overdamped when Γ ≫
Ωm (i.e. the dissipation rate is higher than the mechanical frequency) and underdamped
when Γ ≪ Ωm.

For an overdamped system,γ should be calculated according to Faxen’s Law 11, which de-
scribes the damping at lowReynolds number and takes into account the hydrodynamic effect
of nearby surfaces. For a sphere this is

γm ≈ 6πηrp
1− 9

16
( rp
h
) + 1

8
( rp
h
)3 − 45

256
( rp
h
)4 − 1

16
( rp
h
)5 +O(( rp

h
)6)

(1.39)

Where η is the viscosity of the fluid and h the distance from it’s centre to the surface.

On the other hand, in the underdamped regime, γ is computedusingKinetic gas theory 12,
where the damping is expressed as a function of the surrounding gas pressure:

γm = 6πηrp
0.619

0.619 +Kn
(1 + ck) (1.40)

whereKn = λfp/a is the Knudsen number, λfp = (η/P )(
√
πkbT2m) the mean free

path of the gas molecules and ck = 0.31Kn/(0.785 + 1.152Kn + Kn2) is a correction
factor that becomes relevant at pressures.

Overdamped Regime

In the overdamped regime, the viscous dissipation in the system is so large that the particle
never oscillates allowing us to us to drop the intertia term and rewrite the equation ofmotion
as:

γm
dx(t)

dt
+ κx(t) = ξ(t) (1.41)
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which corresponds to a diffusion equation in the harmonic potential. The solution of this
stochastic differential equation is 39:

x(t) = x(0)e−κt/γm +

√
kbT

γm

∫ t

0

et−t
′
ξ(t)dW (t) (1.42)

where dW (t) is the so called Wiener process 39.
For a deterministic or Gaussian distributed initial condition, x(t) follows a Gaussian distri-
bution, described by its mean and variance. The mean position of the particle respect to the
centre of the trap in the general case of an applied external force Fext is:

0 = ⟨Fext + ξ(t) + κx+ γẋ⟩ = ⟨Fext + κx⟩ −→ ⟨x(t)⟩ = −⟨Fi(t)
κ

⟩ (1.43)

The variance on the other hand can be obtained via the equipartition theorem as:

⟨x2(t)⟩ = kbT

κ
(1.44)

Finally to characterize the overdamped regime it is also useful to compute the Power Spec-
tral Density (PSD) of x defined asX(f) =

∫∞
−∞ x(t)ei2πftdt, that yields:

|X(f)|2 = kbT/γm
2π2(f 2

c + f 2)
(1.45)

where fc = κ/(2πγm) is the so called cutoff frequency. Note that in this case, the mass does
not play any role in the dynamics of the position.
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Discussion

All optical trapping experiments in liquid take place the overdamped regime, as well as trap-
ping experiments in air at atmosphere pressure. Working in the overdamped regime signifi-
cantly simplifies the analytical description of the system, specially while studying thermody-
namic processes in optical traps 110,32,76. From the experimental point of view, working in the
overdamped regime allows to study systems where the trapped object quickly equilibrates
with the environment at a rate given by fc, which can reach up to some kHz. Thus, by
virtue of Eq. (1.43), we can measure low frequency forces with up to kHz in real time by
measuring the average displacement of the trapped object from the centre of the trap. This is
the principle behind the photonic force microscope ? and also the reason why the biophysics
community has been using optically trapped particles as force probes for single molecule ex-
periments 16,75.

Underdamped regime

In the underdamped regime, trapped particles are able to oscillate due to the low dissipation
of the environment. This is achieved by trapping particles in air and pumping the system
to vacuum. In this case it is convenient to solve the equation of motion (Eq. 1.34) in the
frequency space considering a monochromatic driving force F (t) = Fo sin(Ωt) instead of
ξ(t). Using an ansatz of the form x(t) = A sin(Ωt+ ϕ), we obtain a steady state solution:

A =
Fo/m√

(Ω2
m − Ω2)2 + Ω2Γ2

(1.46)

ϕ = arctan(
−ΩΓ

Ω2
m − Ω2

) (1.47)

Similarly, the PSD of a thermally driven underdamped harmonic oscillator in angular fre-
quencies is:

|X(ω)|2 = Fth
m((Ω2

m − Ω2)2 + Ω2Γ2)
(1.48)
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With the definition Sxx(ω) =
∫∞
−∞ x(t)eiωtdt, and

Fth =
ΓkbT

π
(1.49)

Note that when compared to the overdamped expression we find |X(2πf)|2 = 2π|X(ω)|2

by taking the limitΩm ≪ Γ. *
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Figure 1.4: (a) PSD of an optically trapped nanoparticle with a mechanical frequency Ωm = 130
kHz for different levels of damping (Γ = 816·108, 816·104, 816·102 and 86 Hz). We can differentiate
between the overdamped regime (green and yellow curves) and the underdamped regime (red and blue
curves). The solid curves have been computed the full expression of the PSD (Eq.1.48) whereas the
dashed curves have been computed using the overdamped approximation (Eq.1.45). (b)Estimation
of the Q factor and linewidth (Γo) for a levitated nanoparticle using kinetic gas theory. The trapped
particle is assumed to have a radius of 72nm and oscillate along the x axis at Ωm = 2π · 130kHz.
We see that at 10−7 Pa the system achieves Q> 1010.

.

A useful quantity to describe an underdamped harmonic oscillator is its quality factor,
which defines how many oscillations it undergoes before loosing its coherence:

*Although itmight seem confusing to use the frequency f in the overdamped regime and angular frequency
Ω in the underdamped this follows a practical reason. On the one hand, the optical tweezers community has
always worked in the overdamped regime where particle oscillations do not take place and processes studied in
the time domain, which when inverted gives frequencies f . On the other hand, the optomechanical commu-
nity typically uses angular frequencies, so first vacuum optical trapping experiments and theoretical proposals
of optical levitation also took the angular frequency notation. Since these are two well differentiated optical
trapping communities it makes sense to write to each of them in their own formalism.
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Q :=
Ωm

Γ
(1.50)

One particular advantage of optically levitated systems is that being free from clamping
losses, only the pressure in the system plays a role in γm. Therefore arbitrarily high quality
factors could be achieved by lowering the pressure as shown in Fig. (1.4b). This is true from
the classical point of view, but as we will see later, the photon quantum noise in the trapping
beam eventually plays a role as a decoherence mechanism-.

Optical Detection

The next step in the description of optical traps is the method to transduce the particle mo-
tion into a measurable signal. There are several approaches in order to monitor the position
and dynamics of optically trapped objects, the most common being direct camera detection
with centroid fitting algorithms and interferometric detection schemes 88. In the course of our
experiments we have always used interferometric detection schemes as they provide higher
sensitivity and acquisition rates (∼ MHz) as compared camera detection (∼ kHz). The goal
of this section is to describe how a detection signal is generated and related to the dynam-
ics of the trapped object. We will follow the same paraxial description outlined in 46 adding
non-paraxials terms and extending it to the displacements along the optical axis as well.

Lateral Displacements

We start by considering the far field of a tightly focused Gaussian beam diverging with an
angle θ:

E⃗(r, θ) =
√
Po

−ikwo
r
√
πϵoc

eikr−k
2w2

oθ
2/4x⃗ (1.51)

Where the imaginary part in the numerator comes from the so called de Gouy phase 107
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Figure 1.5: Geometry of the BFP detection scheme with the trap centre at the coordinate origin.
A dipole-like scatterer in the focus of a Gaussian beam is displaced laterally by x. The far field of
the scattered and unscattered fields is observed in the backfocal plane at a radius f sin θ. Figure
adapted from46 .

.

(∆ψ(z) = arctan( z
zR
)) which adds a phase shift−π/2 to the trapping beam in the far field.

As a result the far fields of a dipole in the focus and the trapping beam result in an interfero-
metric signal with the trapping beam as reference or local oscillator.

For a small lateral displacement x of the dipole (see Fig. 1.5) the scattered far field at ob-
servation angle θ and ϕwrites as:

Es(r) =
k2α′

4πϵor
E(x)eik(r−x sin θ cosϕ) cos θ (1.52)

Similarly we can rewrite the unscattered field as a function of the beam intensity:

E(r) =
−ikwoI1/2tot

r
√
πϵscs

e−ikr−(kwoθ/2)2 (1.53)

Then the resulting intensity of the interference from the scattered and unscattered fields
yields:

I =
ϵoc

2
[E2

s + E2 + 2Re(EsE
∗)] (1.54)
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If we assume that the intensity noise of the trapping beam can be neglected and a weak scat-
tering (Es ≪ E), only the last term leads to a change in the intensity pattern:

δI = ϵocRe(EsE
∗) (1.55)

Combining Eqs. (1.52, 1.53 and 1.55) we obtain the δI(θ, ϕ) for lateral displacement x:

δI = Itot
2k3α

r24π2ϵo
e

−x2

w2
o · sin(kx sin θ cosϕ)e−(kwoθ/2)2 cos θ (1.56)

Using a suitable collection lens, we can project this pattern on a split photodiode oriented
to detect an intensity difference along thex axis. To obtain the detector responsewe integrate
Eq. (1.56) over θ and over two halves forϕ: I+ =

∫ ϕ=π
ϕ=0

and I− =
∫ ϕ=2π

ϕ=π
(one for each input)

and subtract them.

In the case of a low NA collection optics, the paraxial approximation yields:

I+ − I−
Itot

≈ 16√
π

kα′

w2
o

G(
x

wo
) (1.57)

whereG(u) = e−2u2
∫ u
0
e−y

2
dy and presents a slope≈ w−1

o at x = 0.

Displacements along the optical axis

The displacements along the optical axis z can be easily computed by considering the inter-
ference pattern between a local oscillator and second wavefront shifted by∆ϕ = π/2 + kz.
For a small displacement z along the optical axis(z < zo) the intensity change out of Eq.(1.56)
becomes:
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δI(θ) = Itot
2k3α

4π2ϵor2
sin(kz+arctan(z/zr)) cos θe−(kwoθ)2/4 ≈ Itot

2k4αz

4π2ϵor2
cos θe−(kwoθ)2/4

(1.58)
Hence, the intensity response is also linear for displacements along the optical axis. In this case
however, δI does not depend on ϕ. Thus, in order to reject the intensity term corresponding
to the local oscillator, the other port of the splitted detector needs to be illuminated with a
second beam with same power as the detection beam.

Discussion

Figure (1.6a) shows the expecteddetector response to the transverse displacementof ananopar-
ticle of 72nm radius in a 1550nmdiffraction limited optical trap using a 0.8NAfocusing and
collection optics. We see that for small displacements from the centre, the response is clearly
linear , similarly as we saw for the optical forces. These two features are actually related since
the imbalance in the observed photon flux corresponds to the optical force applied to the
particle by virtue of the momentum conservation (i.e. the transverse optical forces show the
same profile).
Using a paraxial approximation leads to an overestimation of the intensity response com-
pared to the numerical integration of Eq.(1.56) for a high NA. Nevertheless the simplicity of
the analytic expression (Eq.1.57) will be useful for further calculations, thus we suggest to use
a scaling factorM ≈ 0.675 matching the slope of the paraxial expression to the numerical
result at x = 0, which also achieves a good overlapping of both functions for displacements
around±nm.

Figure (1.6b) shows the expected detector response for an axial displacement of a nanopar-
ticle of 73nm radius in a 1550 nm diffraction limited optical trap using a 0.8NA focusing and
collection optics. We see that a dipole in the trap centre generates a signal that sits in the mid-
dle of the fringe of our interferometric detection, where the intensity response is linear. If the
particle is moved by several wavelengths, the interference fringes attenuate due to the lower
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Figure 1.6: (a) Relative detector response ( I+−I−
Itot

) vs. lateral displacement of the particle for
a paraxial analytic expression of the described model (purple), numerical calculation for the non-
paraxial case (blue) and paraxial scaled by a factor M ≈ 0.675 to match the slope of the non-paraxial
calculation at x = 0 . (b) Relative detector response vs. particle displacement along the optical axis.
The responses are calculated for a 72 nm radius particle in a 1550 nm diffraction limited trap using
a 0.8NA focusing and collection optics.

.

field intensity at the position of the dipole.

Remarkably, the BFP detection approach allows, with a single laser beam, to obtain a de-
tection signal for each of the 3 decoupled oscillatory motions taking place in the single beam
optical trap. Furthermore this position detection presents two main benefits that make it
very convenient for sensitive detection. First, we are using a diffraction limited spot (wo ≈ λ)

whosewavefront becomes spherical already at z ≈ 1mm,modematching the spherical wave-
front of the dipole emission from the trapped object and ensuring high fringe visibility. Sec-
ondly, since the scattered and unscattered photons follow the same optical path, this scheme
results extremely robust in terms of interferometric stability.

Finally, the fact δI(θ) is related to a change in photon momenta shows that optically
trapping an objects also performs a continuous position measurement of it. This should
not be surprising as a particle in the trap centre continuously scatters photons revealing its
position to an external observer.
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Optical Trap Callibration

Knowing the dynamics of our trapped particle and how its displacements correlate to a de-
tection signal allows us to calibrate our system. Namely, finding out the trap stiffness κ and
a factor Sx [m/V] that linearly converts the voltage output of a photodetector into a linear
displacement. Different methods can be used to calibrate the system depending on the trap-
ping regime (overdamped/underdamped) we work. Yet, all calibration techniques rely on
trapping a known particle and acquiring a longmeasurement of the particle thermally driven
motion. Afterwards, from the measured dynamics, the properties of the trapping potential
are inferred. In this section we will briefly describe the most common calibration methods
for optical traps. Readers looking for a more detailed treatment are referenced to 57.

Maxwell-Boltzmann distribution Method

The equipartition method is used in the overdamped regime and relies on fitting the mea-
sured position distribution of the trapped particle ρ(x) to the expectedMaxwell-Boltzmann
distribution for a harmonic potential:

ρ(x) = ρoe
−κx(x−xeq)

2

2σ2
x (1.59)

First though, we need to findSx. From the acquired time trace, we compute themean square
displacement (MSD) of the signal for short times (τ ≪ γ/κx):

MSD(τ) = [V (t+ τ)− V (t)]2 = 2
kbT

κ

(
1− e

− τκx
γV

)
≈ 2kbTγV τ (1.60)

where γV is the damping factor scaled by S2
x (this formula relies on the particle diffusive be-

haviour at short timescales). From γV and knowing γm from the object and environment
properties, we compute Sx =

√
γm/γV . Using Sx we transform the voltage time trace into

a position time trace and compute ρ(x) from where we extract the variance in the position
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σx. Finally, using the equipartition theorem leads to

⟨x∂H
∂x

⟩ = 1

2
κxσ

2
x =

1

2
kbT (1.61)

giving the trap stiffness κx = kbT
σ2
x
.

Autocorrelation Method

This method is based on computing the discrete autocorrelation function (ACF) of the ex-
perimental time trace. For a time trace with the positions xj = x(tj) with j = 1...N at
sampling times tj = j∆twe compute the ACF as:

Cx,exp(τ) =
1

N − k

N−k∑
j=1

xj+kxj (1.62)

which then can be fitted to the analytical expression:

Cx(τ) =
1

T

∫ T

0

x(t)x(t− τ)dt =
kbT

κ
e−

|τ |
γm/κx (1.63)

Thus fitting the the time constant of the exponential decay in the experimental dataweobtain
γm/κx. It is a rather simple method since only requires a linear fit. This method is useful if
one needs to deconvolve complex time dynamics going on the trap.

Power Spectral Method

This method can be used in both the overdamped regime and the underdamped regime (this
later requires knowing also themass of the trappedobject). It consists on computing and then
fitting the experimental PSD of the detection signalXV , which will be in units of V2/Hz

For the overdamped regime, we fit XV (f) to Eq.(1.45) with fc as fitting parameter (
Fig.1.7d). Then the stiffness of the system is given by κ = 2πfcγm. Computing the MSD

30



gives again the calibration factor that transforms |XV (f)| into the physical units m2/Hz so
the mean energy in the position degree of freedom of the oscillator satisfies the equipartition
theorem (Eq.1.59).
This is the most used by the optical trapping community as it also allows to detect and filter
different sources of noise that might distort the signal and there are several published rou-
tines 50 that simplify the fitting. Experimentally it is important to make sure that the acqui-
sition frequency is well above the Nyquist frequency to avoid artefacts on the experimental
PSD.

In the underdamped regime we fit theXV (ω) to Eq.(1.48) with Fth and Γ as fitting pa-
rameters. We obtain κx = mΩ2 directly from the maximum of the PSD and the known
mass. The conversion factor is obtained integrating the PSD XV (ω) to obtain ⟨V 2⟩ and
then scaling it to m2 so the mean energy satisfies the equipartition theorem (Eq.1.59):

⟨x2⟩ = S2
x⟨V 2⟩ = S2

x · 2
∫ ∞

0

XV (ω)
2dω =

kbT

mΩ2
m

(1.64)

Figure (1.7a) shows an experimental time trace for a 1µm particle in an optical trap in
the overdamped regime. Thenwe apply each of the calibrationmethods described above (1.7
b,c,d) to obtain κx ≈ 137pN/µm.

Drag Force Method

Thismethod relies on applying a constant force to the optically trapped particle by displacing
the surrounding medium. This can be achieved for example by creating a laminar flow in
a microfluidic chamber, resulting in a constant force acting on the particle or moving the
sample stage. Measuring the displacement from the center of the trap ∆x for a constant
force gives directly the stiffness κx = F/∆x.
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Figure 1.7: (a) Experimental time trace along x for a 1 µm silica particle optically trapped in water.
We illustrate three different methods to calibrate the trap stiffness: (b) shows the Equipartition
methods with the normalised histogram of position (green bins) and the fitted ρ(x).(c) shows the
experimental autocorrelation function (green dots) and the fit to an exponential decay (solid green
line). At short correlation times, the response can be linearised (black dashed line) with a slope
−κx/γm. (d) PSD method with the experimental PSD (green dots) and the Lorentzian fit (solid
green line). At low frequency the PSD saturates to 2kbT/(2π

2γmfc).

Trap calibration beyond the linear regime

In the experiments developed during this thesis we always try to work in the linear regime.
However, at large displacements fromthebeamfocus (∆x > wo) the restoring force looses its
linearity. In these cases, the abovemethods (except the drag force) are not suitable to calibrate
optical traps. To calibrate an optical trap beyond the linear regime it is necessary to follow a
two step calibration process. Firstwe startwith a high stiffness reference trap that is calibrated
using one of the described methods. Then we scan the trap we want to calibrate in the non-
linear regime across the high stiffness trap by steering a mirror conjugated with the BFP of
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the trapping lens. Note that the second trap needs to be attenuated so it has a relatively low
stiffness -this will not be a problem, since the potential scales with the optical power used in
the trap (Eq.1.29). Now one can reconstruct the optical potential of the weak trap using the
particle in the stronger trap as a force probe.

Optical traps

So far we have presented the general theory describing the underlying physics of optical trap-
ping: from optical forces to optical detection. With these physical principles there exist sev-
eral ways one can implement a stable optical trap, each of them with specific characteristics
that fit different experimental needs and limitations. For completeness we will show a quick
overview on these configurations. In the following chapters we will give a more detailed view
of the traps used in each experiment .

Single Beam Optical Traps

a

b

c

d

Figure 1.8: Basic elements required for a single beam optical trap: A collimated laser beam ( red
beama) is focused to a diffraction limited spot using a single element focusing optics (b). The
particle is trapped at the focus of the beam ( c) and the forward scattered (green waves d) and
unscatered fields propagate freely.

.
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A single beam optical trap relies on a laser beam tightly focused to a diffraction limited
spot inorder to achieveFgrad(ρ) > Fscat(ρ). This is themostwidely used typeof optical trap
and requires a single focusing element. Due to the high NA requirements for the focusing
optics (NA>0.7), optical traps are created close to the lens surfaces (100 µm to 2mm away),
thus limiting the geometry of the experiment. The basic elements of this configuration are
shown in Fig.( 1.8)
In this configuration the transverse stiffness (κx, κy) is typically 2-3 times larger than along
the optical axis (κz). The main advantage of this geometry is the direct access to the forward
scattered field of the particle, allowing for highly sensitive detection schemes. This geometry
has been used in our Mobile Optical traps in vacuum 81 as well as in our thermodynamics
experiments in liquid environment 83 and is also suitable for trappingwithmore exotic beams
carrying orbital angular momentum such as Laguerre-Gaussian beams 3.

Counterpropagating Optical traps

Counter-propagatingoptical traps consist on focusing two identical and counter-propagating
optical beams. In this configuration each beam has an opposed k⃗ vector resulting in the com-
pensation of the scattering forces in the centre. The particle is confined along the transverse
direction due to gradient forces, whereas along the optical axis both gradient and the oppos-
ing scattering force contribute to stability.

This approach has also been widely followed by several optical tweezers groups in the
field of biophysics 29,2 and more recently by some groups working in optical levitation of mi-
crospheres42,86,68 The main advantage of this approach is that due to the cancellation of scat-
tering forces the NA requirements of the focusing optics become less stringent. This allows
to work with lower optical intensities as well as trap the objects farther from the focusing op-
tics. These traps are also more robust against spherical aberrations but they requires some
extra optical elements in order to separate and control the beams polarization in the centre
of the optical trap.
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Figure 1.9: Basic elements required for a counter-propagating optical trap: Two counter-propagating
laser beams (k1 and k2) with orthogonal polarizations (E⃗1 and E⃗2) are focused into the same spot
to create a stable potential.

.

Cavity Standing wave

This approachmakes use of the spatial field gradient created by the intensity profile of a stand-
ing wave in an optical cavity as suggested by Chang et al. 26 and Romero et al. 101. It does not
require any focusing optics and little optical powers due to the field enhancement factor pro-
videdby the cavity. Due to the lowNAof the opticalmode in the cavities, transverse forces are
well described using the paraxial approximation discussed above. Regarding the axial forces,
we need to consider the gradient force on a standingwavewith a profileE(z) = Eo cos(k ·z).
This gives,

Fz = α′ · 2k
2Io
cϵo

z (1.65)

Consequently we can achieve very deep potentials along the optical axis due to the compen-
sation of the scattering forces and the force scaling with∝ λ−2 instead of z−2

o as in previous
cases. Technically this configuration requiresmore equipment in order to lock the laser to the
cavity during the experiment, which becomes increasingly challenging as the cavity Finesse in-
creases. This configuration was first implement to trap nanoparticles by Kiesel et al.62 in the
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context of vacuum optical traps and later also by our group 82.

Plasmonic Optical traps

This approach uses the rapidly decaying evanescent fields from plasmonic nanostructures to
create very large field gradients over distances L ≪ λ. This family of traps were first im-
plemented by Volpe et al. 124 in our group and have established themselves as subfield in the
plasmonics community.

a

c

b

Figure 1.10: Basic elements required for a plasmonic trap: An optical beam (a) is used to excite a
metallic structure in a substrate (b) surrounded by a liquid dispersion containing the sample to be
trapped. The light transmitted thruogu the nanostructure is collected and sent to a photodiode (c)
to monitor the dynamics of the trapped sample.

Ageneral configuration consists on patterning a dielectric surfacewithmetallic structures
usingnanofabrication techniques. Then, the patterned surfaces are coveredby a liquiddisper-
sion containing the sample and sealed for the experiments. The traps are created by exciting
plasmons in the patterned structure in a different ways 80,59. The main benefits of this ap-
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proach are the small size of the optical traps and the large field gradients, which allows them
to be used in integrated devices and trap smaller objects with lower optical powers. At the
same time, due to the poor control of the material geometry and properties in the subwave-
length scale, it becomes very challenging to obtain repeatable structures. Hence, quantitative
repeatability of results among experimental groups is still challenging. An added difficulty is
the non-existence of a standard trapping structure and detection schemes.
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It doॸ not matter how slowly you go ॷ long ॷ you do not
stop.

Confucius

2
Stochastic Thermodynamics with optical

tweezers

Stochastic Thermodynamics establishes a link between the stochastic dy-
namics of a system and Thermodynamics. This framework is particularly
wellsuitedtodescribethethermodynamicfunctionalsoftrappedmicropar-
ticles fromthe experimental observables that appear in the Langevin equa-
tion of motion our system. In this chapter, we will show how to compute
the thermodynamic functionals such as heat and work in an overdamped
optical trap using the stochastic thermodynamics framework. Then, we
will use our trap as platform to study non-equilibrium processes and we
present a new technique that extends the capabilities of optical traps to
study non-isothermal thermodynamics in the mesoscale.
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Stochastic Thermodynamics

Thermodynamics deals with the study of heat, temperature, energy and work of systems. Its
birth was motivated by the work of the French physicist Sadi Carnot who aimed to under-
stand and improve the efficiency of heat engines 22. One of its building blocks are the laws of
thermodynamics 117:

• Zeroth Law: If two systems are both in thermal equilibrium with a third one, both
have the same temperature.

• First law: In a closed system energy can be transferred in the form of work (W ) and
heat (Q). The total energy is conserved, but the internal energy of the closed system
changes as∆U = Q+W.

• SecondLaw: Anynon-equilibrium systemwill evolve towards a statewhichmaximises
its entropy∆S ≤ 0.

• Third Law: The entropy of a system approaches a constant value as the temperature
approaches absolute zero.

These laws allow us to predict how a system containing containingN ≈ 1023 particles
evolve as a parameter is changed, greatly reducing the degrees of freedom needed to describe
it. The evolution can be nicely expressed in the form of an equation of state such as the well
known Combined Gas Law 117:

P · V = N · kbT (2.1)

where P and V correspond to the pressure and volume of the system.

This reduction of degrees of freedom is justified by the so called Central Limit theorem70,
which states that the relative magnitude of fluctuations in the system will be proportional to
1/
√
N when coupled to a thermal bath. Hence systems containing many particles can be

described in terms of their ensemble average. This allowed physicists and engineers to gain
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understanding on how macroscopic systems such as heat engines exchange and transform
energy.

In the last decades, miniaturization and nanotechnology have enshrined the size of the
physical systemsdown to theµmandnmscales, creating anddiscovering aplethoraofnanoma-
chines77, specially in the field of biophysics 122 andmolecular motors 51. At these scale themag-
nitude of thermal fluctuations is comparable with the energy stored in the system thus the
classical description where thermal fluctuations are averaged out, fails. In fact even classical
laws of thermodynamics seem to fail during individual events on fluctuating systems 127. As
a result, we need a new framework to describe explicitly how the few degrees of freedom of
a microscopic system interact with a macroscopic thermal bath consisting of a large number
of inaccessible degrees of freedom.

THERMODYNAMICS

Micromechanics Stochastic Dynamics

Statistical
Mechanics

Stochastic
Energetics

Projection 
Methods

Figure 2.1: Conceptual map of the stochastic thermodynamics field. Systems can be described from
different perspectives as their thermodynamic behaviour, stochastic dynamics or micromechanics.
Different frameworks such as Statistical mechanics, Projection methods and stochastic energetics
allow to switch between the different descriptions.

During the 90’s this theoretical framework was developed with the theoretical contri-
butions of Gallavotti 38, Jarzynski 55, Sekimoto 111, Evans 108 and Crooks 30 under the name of
stochastic dynamics. Using this approach the microscopic system is described with a deter-
ministic equation of motion where the interactions from the thermal bath are added in the
form of fluctuating terms. The noise terms will be characterized by a statistical distribution
(for example, Gaussian white noise for thermal fluctuations, Poisson shot noise for photon

40



number fluctuations, etc...). Stochastic dynamics describes well the dynamics of our micro-
scopic sytems, but it does not account on how energy is exchanged with the thermal envi-
ronment along single realizations or trajectories of the microscopic system. This missing link
was established in the early 2000’s by the work of Sekimoto under the name of Stochastic
energetics 112, allowing to compute energy transfers (heat and work) along individual trajecto-
ries of a stochastic system. During the same period several experimental groups contributed
to demonstrate the validity of the non-equilibrium fluctuation theorems in colloidal 127 and
biological 29 systems derived by Jarzynski and Crooks.
In 2005Udo Seifert suggested that entropy could also be attributed to fluctuating trajectories
and gave the name of Stochastic Thermodynamics to this framework 109. This established the
necessary tools that have recently allowed to experimentally validate some fundamental as-
pects in the field such as the implementation of aMaxwell Demon by Toyabe et al. 120 and an
experimental proof of the Landauer principle by Berut et al. 14 with its generalization in the
symmetry breaking experiments of Roldan et al. 100

Heat and Work in the Mesoscale

Here we derive the concepts of heat and work in the mesoscale in order to understand and
describe the energy exchange in our microsystem. In this chapter we will restrict ourselves to
the overdamped regime. For an in-depth derivation including the inertial regime we refer to
Sekimoto’s work 112.
Our starting point is the overdamped Langevin equation of a spherical particle in an optical
potential U ::

0 =
∂U(x, a)

∂x
− γm

dx

dt
+ ξ(t) = −κ(a)x− γm

dx

dt
+ ξ(t) (2.2)

It contains the minimal triad of a system represented by x, a thermal environment (the
bath characterized by a temperature T and friction coefficient γm) and an external system (a
degree of freedom that controls the system through the parameter a). Energy is exchanged
between these three in the formof heat (Q) andwork (W ) according to the laws of thermody-
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namics. We start by considering the energy exchange of a particle with its environment upon
a change dx in the particle trajectory in a constant potential:

dU(x) ≡ ∂U(x)

∂x
◦ dx = −(−γ dx

dt
+ ξ(t)) ◦ dx (2.3)

where ◦ is a Stratonovich-type product. Combining this result with the first law of thermo-
dynamics allows us to define heat as:

dQ ≡ −(−γ dx
dt

+ ξ(t)) ◦ dx (2.4)

In other words, heat is the energy exchanged between the system and the bath eliminated
degrees of freedom.

Next we consider a potential that varies as a function of a controllable external degree of
freedom a(t). The energy exchange is:

dU(x, a) =
∂U

∂x
◦ dx+ ∂U

∂a
◦ da (2.5)

that together with Eqn.(2.3) and the 1st law yields:

dW ≡ ∂U(x, a)

∂a
◦ da (2.6)

Hence work is the energy change in the system related to changing a controllable degree of
freedom. These definitions of differential heat andwork allow us to compute the cumulative
heat and work along a trajectory as:

Q =

∫ xt

xo

∂U(x, a)

∂x
◦ dx (2.7)

W =

∫ at

ao

∂U(x, a)

∂a
◦ da (2.8)
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Fluctuations

When the work applied on a system out of equilibrium is on the order of the thermal fluctu-
ations kbT , it is possible for certain trajectories to violate the second law of thermodynamics.
The probability of such an event was derived by Evans and Searles 35:

ρ(∆s)

ρ(−∆s)
= e

∆s
kbT (2.9)

Where ρ(∆s) is the probability to observe and entropy change∆s. In other words, the prob-
ability to observe an entropy decrease decays exponentially. Note that, since entropy is an
extensive quantity, the 2nd law is recovered for large systems. This expression is valid for sys-
tems arbitrarily far from equilibrium and was first experimentally tested by Wang et al. by
using optically trapped particles 127.

Equation (2.9) is one of the non-equilibrium fluctuation theorems (FT) that describe the
statistical properties of thermodynamics functionals in the presence of thermal fluctuations.
Two other relations important for us are the Crooks Fluctuation Theorem and Jarzynski’s
equality:

Crooks’ Fluctuation Theorem

Consider a system in a stateA that evolves to state Bby changing a control parametera in time.
This process (forward) will be characterized by the work probability distribution ρF (W ).
Similarly we can bring back the system from state B to A by reversing in time the control pa-
rameter a and obtain a (backwards) work distribution ρB(W ). Then the Crooks fluctuation
theorem (CFT) establishes the following relation for these work distributions 30:

ρF (W )

ρB(−W )
= e

− (W−∆F )
kbT (2.10)

Where∆F is the free energy difference between the states A and B.
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Jarzynski’s Equality

The Jarzynski’s equality establishes that the average work done along a trajectory from states
A→ B and the free energy difference between them fulfils:

⟨e−
WA→B

kbT ⟩ = e
−∆FA→B

kbT (2.11)

Despite their validity out of equilibrium these expressions provide equilibrium informa-
tionof the system. Hence these theoremsbecome apowerful tools to that extract equilibrium
information of systems performing out of equilibrium. These will allow to cross-check our
experimental non-equilibrium and equilibrium measurements.

Description of the experiment

As we can see from in the literature 120,14,100,83, optical trapping experiments have been one of
themain driving forces in the field of stochastic thermodynamics. They offer a robust and ver-
satile platform for micromanipulation of a system consisting of few degrees of freedom and
enough accuracy to resolve energy fluctuations on the order of kbT . However, the study of
non-isothermal processes in optical traps has remained fairly limited due to the challenges of
controlling the temperature in themicroscale. These arise from the difficulty to isolatemicro-
scopic systems and to the presence of convection effects in fluids, thus temperature control in
optical traps could only achieve a range of few tenths of Kelvin around room temperature74.
To overcome this short range of accessible temperatures we suggest to use an additional ran-
dom force as a heat bath for a colloidal particle. Since the magnitude of the fluctuations is
related to the temperature, we will be able to control the effective temperature seen by our
particle by controlling the amplitude of the random forces. To verify this hypothesis we will
perform an extensive study of two different thermodynamic processes in order to check the
consistency of our thermal bath in and out of equilibrium. These will be a case where where
W depends on the temperature and a case where it does not.
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We start by adding an extra noise term ξE(t) to Eq.(2.2)

γẋ(t) + κx(x(t)− x0) = ξ(t) + ξE(t) (2.12)

Where ξ(t) and ξE(t) are uncorrelated and ξE(t) has also a Gaussian white noise (ther-
mal) spectra:

⟨ξ(t)ξE(t)⟩ = 0 (2.13)

⟨ξE(t)ξE(t′)⟩ = σ2δ(t− t′) (2.14)

⟨ξE(t)⟩ = 0 (2.15)

In the absence of external forces ξE(t) andκx andx0 fixed at a constant value, the particle
position fluctuation are Gaussian-distributed. The amplitude of these fluctuations depends
on the temperature of the surroundings T as predicted by equipartition theorem κx⟨(x −
x0)

2⟩ = kbT . If we now include the external random force ξE(t), the equipartition theorem
allows us to define a centre of mass temperature of the particle Tkin from the amplitude of its
motion,

Tkin =
κx⟨(x− x0)

2⟩
kb

= T +
σ2

2kbγm
(2.16)

We also want to find a way to measure this Tkin out of equilibrium. In this case, the CFT
shows that work fluctuations are not symmetric upon time-reversal of the protocol. Thus we
define the following asymmetry function40,

Σ(W ) =
W −∆F

kbT
. (2.17)

Which can be used to define an effective non-equilibrium temperature that we name Crooks
Temperature (TC) calculated from the slope ofΣ(W ) as a function ofW .

Tc =
W −∆F

kbΣ(W )
(2.18)
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The value of the effective Crooks temperature depends strongly on the properties of the ex-
ternal noise. In general Tc and its equilibrium counterpart Tkin do not coincide. However,
if the external force is an external Gaussian white noise we expect Tc = Tkin

78 . From the
experimental point of view we cannot generate a white noise due to the limited bandwidth
of our systems. Hence the optimal bandwidth for ξE(t) that guarantees it’s behaviour as a
thermal bath will also be studied.

Experimental Setup

Our optical trapping setup consists of an electrophoretic chamber to exert random forces on
the particles trapped in anoptical tweezermeasuring the position fluctuations. Themain idea
behind using elecrophoretic forces is that such a mechanism is decoupled from the optical
trapping mechanism.

Electrophoretic chamber

Dielectric particles acquire surface charge when they are suspended in a polar liquid like wa-
ter 34. Thismeans thatwe can exert themforces by applying electric fields. The electrophoretic
flow cell provides a stable trapping environment as well as the capability to exert high electric
fields on its centre. Themain requirement of the electrophoretic chamber is to produce high
and uniform electric fields in the trapping region. Repeatability of the channel in different
flow cells is not as important since forces can calibrated and tuned accordingly. This allows
us to use a simple and reliable fabrication technique 84.
Figure (2.2) shows a schematic designof the flow cell consistingof twowide reservoirswith an
electrode. The reservoirs are connected by a short (< 5mm) and narrow (< 2mm) channel.
This design fulfils two requirements: First the central channel provides higher resistivity than
the two reservoirs, achieving high E fields in the central trapping regions. Second, since the
radius of our particle (∼ µm) is much smaller than the channel features (mm), it experiences
a uniformE field along small displacements (≈ 250 nm).

The flow cell is cut in a piece of parafilm (using a sharp razor or a focused CO2 laser). A
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Figure 2.2: Diagram of the flow cell. The glass slides (a,d) sandwich a piece of parafilm (b) where
the reservoirs connected with a narrow channel have been cut (c). The electrodes are connected to
the high voltage amplifier in contact with the solution containing the suspended microparticles. On
the right we see an actual flow cell mounted in a metallic holder used in the trapping experiments.
The dashed lines mark the boundary of the channel.

100µmthick glass slidewith twoholes serves as inlet andoutlet of particles (holes canbemade
bymeans of a focusedCO2 laser, HF acid or sandblasting). At the edges of a second glass slide
we glue two electrodesmade by cutting a 0.5cm x 5cmpiece of a 50µmthick stainless steel foil.
Then, the chamber is sealed by sandwiching the parafilm mask between the two glass slides
while heating them on a hot plate. Finally, the tubing is attached to the top coverslip holes
using small plastic connectors glued with epoxy. For safer manipulation and clamping of the
flow cell we use the aluminium holder shown in Fig.(2.2).

The electrodes of the electrophoretic flow cell are connected to a high voltage amplifier
with amaximumoutput of 2000V* driven by an arbitrary waveform generator providing the
Gaussian white noise signal.

*TREK 623B 10kHz bandwidth
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Random forces generation

To generate a Gaussian white noise we use the Box-Muller algorithm ? . We generate a se-
quence of 106 random numbers {xi} with a normalised Gaussian distribution (⟨xi⟩ = 0

and ⟨xixj⟩ = δij) andwe load this sequence into thememory of the arbitrary waveform gen-
erator connected to the amplifier. Since the bandwidth of the amplifier is limited to 10 kHz,
we set the clock rate for the random voltage to 20ksamples/sec. This repeats the sequence
every 50s, which is enough to avoid artefacts and correlations. Note that with this configu-
rations one can also exert forces with an arbitrary distribution such as sinusoidal, ramps, etc.
and these are totally decoupled from the trapping mechanism.

Optical Tweezer

The electrophoretic flow cell is mounted on the self-built inverted microscope setup shown
in Fig. (2.3). To create the optical tweezer we use a fibre coupled high power laser 5W CW
†. After the fibre the beam is tightly collimated using a 40X achromatic objective (Edmund)
and sent through an acousto-optic-deflector (AOD) ‡. Using a λ/4waveplate prior the AOD
we maximise the diffraction efficiency. After the AOD a telescope expands the beam and
conjugates the crystal diffraction plane with the backfocal plane of the High NAmicroscope
objective (O1) §. This creates an optical trap in the channel of our electrophoretic flow cell
that can be displaced along one axis by changing the driving frequency of the AOD. Before
the objective we also place a λ/4 and λ/2 waveplates to set a linear polarization for our trap
and a polarizing beam splitter (PBS) that splits the beam to a photodiode monitoring the
power in the trap.

The position detection system consists of a green fibre laser collimated using a 10Xachro-
matic objective (Edmund optics) mounted on a z axis translation mount to adjust the diver-
gence of the beam at the entrance of the trapping objective. The forward scattered light of the

†ManLight, λ =1064nm
‡Isomet LS55-NIR
§Nikon CFI PL FL 100X, NA 1.3
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Figure 2.3: Schematics of the Optical tweezers setup combined with an electrophoretic flow cell. A
1064 nm laser beam is diffracted using an AOD and focused with a 100X objective (O1) to form an
optical tweezer. A second laser beam with at 532 nm is focused with the same objective (O1) and the
forward scattered light collected with a 10X objective and sent to a QPD for position detection. To
exert random forces the electrophoretic chamber electrodes are connected to a high voltage amplifier
(HV) that amplifies the signal of an arbitrary waveform generator.

detection beam is collected by a 10x objective (O2) and projected to a quadrant photodiode ¶.
To block the trapping beam and ambient lights we put a λ = 532nm laser line filter in front
of the photodetector. The x, y and z voltages from the photodiode are sent to a Labview
FPGA card (NI PXI-7842R,maximum acquisition frequency 200 kHz) for analog-to-digital
conversion.

The sample is illuminated by a white led lamp using the same 10x collection objective
from the detection. The image is collected using the same trapping objective and sent to a
CCD camera connected to an external monitor. Our sample consists of polystyrene micro-
spheres of radius 500± 25 nm (PPs-1.0, G.KiskerProducts for Biotechnology).

¶QPD, NewFocus 2911, 200 kHz bandwidth

49



0,0 0,1 0,2
0

10

20

30

40

0,0 4,0x105 8,0x105

500

1000

1500

2000

2500

3000(b)

 [p
N

·
m

]

Vmod [V]

(a)

T ki
n [

K
]

2
V [V2]

Figure 2.4: Calibration of the thermodynamic tweezers setup: (a) shows the stiffness of the optical
trap as a function of the modulation voltage Vt applied at the AOD, which agrees to the linear
fit κ = (−0.58 + 178.45Vt)pN/µm.(b) shows the temperature of the thermal bath experienced by
the particle Tkin as a function of the variance of the random voltage applied on the electrophoretic
chamber σ2

V . The black solid line corresponds to the linear fit Tkin =300K + 3274K
V 2 σ2

V .

Calibration of the Setup

The calibration of the setup follows two steps. First a standard calibration of the optical
tweezer and then a calibration for the temperatures of the virtual thermal bath. To the adjust
alignment between the QPD x axis and the forces generated in the electrophoretic chamber
we apply a sinusoidal signal at 18Hz to a trapped particle while monitoring the PSD of the
QPD signal for x and y (Sxx and Syy). Then we adjust the detector or the electrophoretic
chamber angle until the 18Hz peak is only visible in the Sxx.

The calibration of the optical tweezer is made using the PSDmethod. Since the intensity
of the optical trap is controlled by the modulation depth (Vmod) driving the AOD we repeat
this calibration at different values of Vmod. Fig 2.4 (a) shows the κ calibration curve as a func-
tion of Vmod showing good agreement with a linear fit.

The second calibration step allows us to obtain Tkin of the microparticle. Since the po-
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Figure 2.5: Position of the trap (green dashed curve) as a function of time and time traces of
the position of the particle sampled at 1 kHz (blue curve) and 10 kHz (red curve) in the dragging
experiment. The forward (A→ B) and backward (B→A) processes are illustrated on the right.

sitions histogram of a particle in a harmonic potential follows a normal distribution, we can
extract Tkin from the variance of the position distribution of the particle σ2

x as:

Tkin(σ
2
V ) =

κ (Vmod)σ
2
x (σ

2
V )

2kb
(2.19)

Where σ2
V is the variance of the voltage at the output of the waveform generator. Figure

(2.4b) shows a calibration curve for Tkin(σ2
V ) reaching up to 3000K which is a full order of

magnitude above room temperature. As expected for a thermal force, Tkin grows linearly
with the variance of the force fluctuations σ2 78. The slope of the calibration curve contains
all the geometric factors of the system that determine the intensity of electric field in the elec-
trophoretic chamber as well as the particle response to the electrical forces. In the case of
Fig.(2.4) it fits to Tkin = 300K + 3274K

V 2 σ2
V .

Experimental Results: Dragged Trap

Our first case of study consists of a particle that is driven out of equilibrium by dragging the
optical trap (κ = 18.0 ± 0.2 pN/µm) at constant speed v = 22 nm/ms. The protocol
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is shown in Fig.(2.5) together with a time series of the position of the particle sampled at
different acquisition frequencies. First the trap is held fixed with its centre at x0 = −55 nm
during τ1 = 7.5ms. Then the trap centre is displaced in the x−axis at a constant velocity
fromx0 = −55 nm tox0 = 55 nm in a time interval of τ2 = 5ms. The bead is then allowed
to relax to equilibrium by keeping the trap centre fixed at x0 = 55 nm for τ1 = 7.5ms
before the trap is moved back from x0 = 55 nm to x0 = −55 nm in τ2 = 5ms. The
duration of each cycle is τ = 25 ms and every cycle is repeated 12000 times, that is a total
experimental timeof300 s. Every300 s−cycle is repeated for different values of the amplitude
of the random force ξ(t), starting with the case where no external force is applied.

The relaxation time for the particle position is τr = γm/κx = 0.5ms where γ = 8.4

pN ms/µm is the friction coefficient. The time spent by the trap in the fixed stage of the
protocol then exceeds by oneorder ofmagnitude the calculated relaxation time,which should
be enough to make sure the particle reaches equilibrium before the next step of the protocol.
In the dragging steps, the viscous dissipation is of the order of ⟨Wdiss⟩ ∼ γm⟨ẋ⟩L78, where
L = 110 nm is the distance travelled by the trap, which yields ⟨Wdiss⟩ ∼ 20 pNnm ≃ 5 kT

indicating that the work dissipation cannot be neglected and the system is therefore out of
equilibrium. In this case, the control parameter is the position of the trap centre, λ = x0,
and therefore the work is calculated as

W =

∫
∂U

∂x0
◦ dx0(t) =

∫
−κ(x(t)− x0(t)) ◦ dx0(t), (2.20)

for every realization of the forward and backward processes.

Figure 2.6 shows the work distributions at different noise intensities for both forward
and backward dragging processes. When increasing the noise amplitude, the average work
remains constant but the variance increases. Since in this process, the free energy does not
change, ∆F = 0, the average work coincides with the average dissipation rate ⟨W ⟩ =

⟨Wdiss⟩. Therefore, the addition of the external random force does not introduce an addi-
tional source of dissipation. The work distributions at different noise amplitudes fit to theo-
retical Gaussian distributions obtained from reference.78 using TC as the only fitting param-
eter in the asymmetry function, as indicated by Eq. (2.18). Note also that both work distribu-
tions cross atW = 0, since∆F = 0.
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Figure 2.6: Work distributions in the forward (ρ(W ), filled symbols) and backward (ρ̃(−W ), open
symbols) dragging experiments depicted in Fig. 2.5. Different symbols and colours correspond to
different noise intensities, yielding the following values of the Crooks temperature: Tc = 525K (blue
squares) Tc = 775K (red circles) and Tc = 1010K (green triangles). Solid lines are the theoretical
values of the work distributions obtained for the same values of kinetic temperatures. Work was
calculated from trajectories sampled at f = 10 kHz.
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Discussion

As we discussed, if we want this technique to be applicable to the design of nonequilibrium
thermodynamic processes, we require that the equilibrium and nonequilibrium kinetic tem-
peratures, that is TCM and Tc, coincide within experimental errors. However, some discrep-
ancies were found in reference78 when the sampling frequency was changed, and their origin
could not be fully understood.

In order to clarify this issue, we now compare the values ofTkin andTc obtained for differ-
ent values of the noise amplitude and different acquisition frequencies, ranging from 1 kHz
to 10 kHz. Figure (2.7a) shows that equilibrium and nonequilibrium effective temperatures
do coincide within experimental errors when the sampling rate exceeds f = 2kHz. When
changing the position acquisition frequency, the value of TCM does not change, whereas Tc
changes significantly up to a saturating value, reached when f ≃ 2 kHz. This deviation be-
tween equilibrium and nonequilibrium kinetic temperatures for certain values of the data
acquisition rate could be a drawback for our setup to be applicable to design nonequilibrium
thermodynamic processes at the mesoscale.

We can get a deeper understanding of the mismatch between Tkin and Tc by simulating
the overdamped Langevin equation (1.34) and taking into account the cut-off of the random
force at fco = 3 kHz recently observed in reference.99. Simulations follow an Euler numer-
ical scheme92 with a simulation time step of ∆t = 10−3ms. The values of all the external
parameters are set to those of the experiment. The spectrum of the external force is flat up to
a cut-off frequency of fco = 3 kHz and its amplitude is arbitrarily set to a value σ such that
σ2/2kbγm = 500K. Such random force was attained by generating a Gaussian white noise
signal and applying a filter with a cut-off frequency fco = 3 kHz and followed by an inverse
Fourier transform.

With the simulationswe investigate if the difference betweenTc andTCM at low sampling
frequencies can be assessed by our model. Figure ( 2.7b) shows the values of the quotient
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Figure 2.7: a Comparative of the temperature found for an equilibrium (TCM ) and non equilibrium
process (TC). Different symbols correspond to results obtained for different sampling rates: 1 kHz
(blue squares), 2 kHz (red circles), 5 kHz (green triangles) and 10 kHz (magenta diamonds). Solid
black line corresponds to Tc = Tkin. b Values of the quotient Tc/Tkin in the dragging experiment
as functions of the sampling frequency for different values of the external field, corresponding to
the kinetic temperatures: Tkin = 525K (blue squares), Tkin = 775K (red circles), Tkin = 1010K
(green triangles) and Tkin = 1520K (magenta diamonds). We also show the value of Tc/Tkin as a
function of the sampling frequency obtained from numerical simulations of the overdamped Langevin
equation for an external noise with flat spectrum up to fco = 3 kHz and intensity σ2/2kγ = 500K
(black dashed curve). Inset: Tkin (blue squares) and Tc (red circles) as a function of noise intensity,
σ2/2kγ, for the experimental values of the experiment described in Ref.78. Solid lines are included
to guide the eye.
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Tc/TCM as a function of the sampling frequency plotted for different values of the external
field corresponding of those described in the caption of Fig. (2.6). The solid black line in
Fig. 2.7 shows that the value of Tc/Tkin as a function of the sampling frequency, as obtained
from the numerical simulations, is in well agreement with the experimental measurements.
The results in Fig. 2.7 indicate that sampling at frequencies above the noise cut-off frequency
does not yield any difference in the nonequilibrium measurements. When sampling close to
the corner frequency of the trap, fc = κ

2πγ
= 340Hz in this case, equilibrium and nonequi-

librium kinetic temperatures do not coincide, and Tc is above its equilibrium counterpart,
Tc > Tkin.

Interestingly, the opposite result (Tc < Tkin)was reported inRef.78 for a similar dragging
trap experiment. From the experimental point of view, wemay note that in the present work,
the noise cut-off frequency given by the amplifier is one order of magnitude larger than the
one in Ref.78, and therefore the drawbacks of a coloured spectrum of the noise are reduced.
In the inset in Fig. (2.7), we show that ourmodel predicts this different behaviourwhen using
the experimental data in the experiment in Ref.78 (fco = 1 kHz, κ = 6 pN/µm, τ1 = τ2 =

6.3msandL = 122 nmfor instance). Therefore, the relationbetweenTc andTkin is complex
and very sensitive to the values of the experimental parameters.

From this discussion, we can conclude that a sampling frequency f = 2 kHz is optimal
for the experiment we describe next, since it is below any relaxation of the external force (∼
3 kHz), above the corner frequency (∼ 300Hz) and does not unnecessarily store redundant
data.

Experimental Results: Isothermal Expansion

As a second application of our technique, we analyse a different thermodynamic process con-
sisting in a “breathing” harmonic potential, where the trap centre is held fixed but its stiffness
is changed with time from an initial κini to a final κfin value. Since the stiffness of the trap can
be thought of as the inverse characteristic volume of the system, κ ∼ 1/V 15, such process is
equivalent to an isothermal compression or expansion. At odds with the dragging process, in
this case the free energy changes along the process, yielding∆F = kTkin ln

√
κo/κf

112. This
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Figure 2.8: Position of the particle (blue line, left axis) and trap stiffness (green line, right axis)
as functions of time in the isothermal compression-expansion cycle. Sampling rate, f = 2 kHz. The
process is illustrated on the right panel.

process becomes significant for two reasons, first it has a free energy∆F ̸= 0 that depends on
the temperature. Secondly because is a thermodynamic process which can be used to extract
energy from a thermal bath thus having relevance in several heat engine cycles.

The experimental protocol is shown in Fig. 2.8, the trap is initially held fixedwith stiffness
κ1 = (16.5 ± 0.2)pN/µm for τ1 = 3.5 ms. Then, the system is isothermally compressed
by increasing the stiffness up to κ2 = (66.8 ± 0.2)pN/µm in τ2 = 2.5 ms. Further, the
particle is allowed to relax to equilibrium for τ1 = 3.5ms with the trap stiffness held fixed at
κ2 before the system is isothermally expanded from κ2 to κ1 in τ2 = 2.5ms. Every cycle lasts
τ = 2(τ1 + τ2) = 12ms and is repeated 24000 times for different values of the amplitude
of the external random force.

For every isothermal compression (forward process) and expansion (backward process),
the trap position is fixed, and κ our control parameter, thus we measure work as:

W =

∫
∂U

∂κ
◦ dκ(t) =

∫
1

2
x2(t) ◦ dκ(t), (2.21)

Figure (2.9) shows the distributions of the work (minus the work) in the forward (back-
ward) process of increasing (decreasing) the stiffness of the trap (see Fig. 2.8) for different
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Figure 2.9: Work distributions in the isothermal compression [ρ(W ), filled symbols] and isothermal
expansion [ρ̃(−W ), open symbols] for different values of the noise intensities corresponding to the
following nonequilibrium effective temperatures: Without external field, Tc = 300K (blue squares),
Tc = 610K (red circles), Tc = 885K (green triangles), Tc = 1920K (magenta diamonds) and
Tc = 2950K (orange pentagons). Solid and dashed curves are fits to Eq. (2.22). Vertical lines of the
corresponding color show the expected value for the free energy change at the given temperatures.
Data acquisition rate to calculate the work: f = 2 kHz.

values of the external noise amplitude are shown in Fig. 2.9. We notice that the work fluctu-
ations are non-Gaussian for both isothermal compression and expansion, as predicted theo-
retically in 113. We find that the work distributions can be fitted with a very good agreement
to generalized Gamma distributions,

ρ(W ) = CF W
zF e−W/αF , (2.22)

ρ̃(−W ) = CB (−W )zB eW/αB , (2.23)

where the fitting parameters CF , CB , αF and αB depend on the amplitude of the external
noise, but not zF and zB . The above result can be justified provided that the work along
isothermal compression and expansion is equal to the sum of squaredGaussian variables [see
Eq. (2.21)] which is Gamma-distributed 123. Interestingly, the distributions (2.22) and (2.23)
are analogous to that of the work in the adiabatic compression or expansion of a dilute gas 31.
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Discussion

The asymmetry between forward (compression) and backward (expansion) work distribu-
tions is an indicator of the irreversibility or the nonequilibrium nature of the process. In
Fig.(2.9) we show that the forward and backward work histograms cross at the value of the
effective free energy change ∆F = kTCM ln

√
κfin/κini in all cases, with Tkin equal to the

calibrated equilibrium kinetic temperature. The difference between ρ(W ) and ρ̃(−W ) is
quantifiedwith thework asymmetry function, Eq.((2.17)), whose values for different noise in-
tensities are shown in Fig. 2.10. The work asymmetry function depends linearly on the work,
with its slope equal to 1/kbTkin, or equivalentlyTc = Tkin. The inset in Fig. (2.10) shows that
this equality holds throughout the range of temperatures we explored up to 3000K. This re-
sult implies that our setup is suitable to implement nonequilibrium isothermal compression
or expansions in the mesoscale, with the externally controlled temperature verifying all the
requirements of an actual one.
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Figure 2.10: Experimental values (markers) and theoretical values (solid lines) of the work asym-
metry function obtained from the work distributions in Fig. 2.9. Theoretical curves are computed
using the values obtained for Tkin. Inset: Tc as a function of Tkin (open magenta circles, error bars
are smaller than the symbol size). The solid line has slope 1.
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Conclusions and Outlook

Throughout this chapterwe have presented the stochastic thermodynamics formalismwhich
allows us to compute the energy exchange of a microsystem in contact with a thermal bath.
Following this formalism, we have demonstrated the possibility to use random forces with a
Gaussian white noise spectra in order implement an additional thermal bath whose tempera-
ture can be tuned up to several thousands of K. By means of different experiments, we have
demonstrated that such a thermal bath provides a consistent temperature for both equilib-
rium and non-equilibrium processes. In one of these experiments we also found the work
distribution for isothermal compressions/expansions, which is a relevant thermodynamic
process involved in heat engine cycles. Using our approach it is possible to implement ar-
bitrary stiffness vs. temperature (pressure vs. temperature) curves using an optical trap as an
analogy of a piston with a single gas molecule, thus allowing to study the efficiency of heat
engines in the microscale. Using this same thermal bath approach two experimental heat en-
gines have been recently implemented: a Carnot cycle with a colloidal particle76 and an Otto
cycle with an single ion in a Paul trap 103 both showing unique features not comparable with
their macroscopic counterparts. Some recent proposals also suggested to extend the study
of thermodynamics with optical traps to the underdamped regime by following a cavity op-
tomechanics approach 32.

As an outlook we expect that, using the techniques presented in this chapter, it will be
possible to implement and test some open questions such as optimal protocols in both over-
damped and underdamped regime and in the long term optimize the efficiency of micro-
scopic heat engines in order to bring them from toy models to actual functional devices.

60



Love ॹ like... coupled harmonic oscillators.
Pau Mestres

3
Cavity Optomechanics with a Levitated

Nanoparticle

Thefieldofoptomechanicsstudies systemswhereanElectromagneticfield
interactswithamechanicaloscillator: photons interactingwithphonons.
By making use of a cavity this interaction can be enhanced and eventually
brought to a regime where the quantum properties of both mechanics and
opticsmanifestthemselvesevenatroomtemperature. Thischapterdiscusses
howtoachieveoptomechanicalcouplingbetweenacavityandanoptically
levitated nanoparticle aiming to cool its centre of mass and prepare a me-
chanical ground state at room temperature.
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Introduction

A typical optomechanical system is formed by a optical cavity with a movable end mirror.
The optomechanical coupling arises from the interaction between the endmirror and a light
field. The reflected field is phase shifted according to themirror displacement revealing its po-
sition while the field radiation pressure also transfers momentum to themirror disturbing its
motion. The combinationof these twophenomena imposes a limit for the sensitivity of these
measurements, the so called Standard quantum limit (SQL). The first to realise about it were
Braginsky 21 and Caves23 in the late 70’s. They shown that quantum-mechanical radiation-
pressure fluctuations of the light field imposed a limit of how accurately the position of a free
test mass could bemeasured, which caused great concern in the context of gravitational wave
interferometry. Although it did not limit the performance of interferometers back then, the
SQL had striking implications in the future design and implementation of nowadays gravi-
tational wave detectors.

During the 90’s the cavity optomechanical interaction was studied as a mechanism to
manipulate the quantum properties of the optical field. These include light squeezing 36,73,
quantum non-demolition measurement protocols 53,36and even preparation of non-classical
light-matter states in the case of strong interactions 19,72. Similarly the radiation pressure was
proposed as a mechanism to manipulate the mechanical motion of the end mirror and cool
or amplify it’s center of mass 126.

The first radiation pressure cooling experiment with a macroscopic oscillator was per-
formed by Cohandon et all. 28 in 1999 measuring the displacement of the mirror and apply-
ing feedback with an additional laser beam. Theymanaged to bring the vibrational modes of
a macroscopic mirror down to few K the at room temperature, limited by the signal readout
and coupling to the thermal environment.

The advent of micro and nanofabrication techniques in the 2000’s soon allowed to tailor
the properties of the mechanical oscillators and tune it’s integration with optical cavities in a
wide diversity of geometries such asmicromirrors at the end of a cantilever49,85, toroidal63 and
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discmicroresonators 10 containingwhispering gallerymodes, 1Dphotonic andphononic crys-
tals with co-localized defects 105, membranes capacitively coupled to microwave circuits94,114,
etc.
These micro-optomechanical systems allowed to enter a new regime where the delayed re-
sponse of the cavity field could be used as a cooling mechanism without need of applying
feedback. Additionally, the small size of these devices allowed them to be used in dilution
refrigerators greatly decreasing their initial phonon occupation. These two features eventu-
ally led to the ground state cooling of some of these optomechanical systems in cryogenic
temperature in 2011 by Chan et al. 24 and Teufel et al. 115.

In order to obtain a long livedmechanical quantum state, themechanical oscillator needs
to be decoupled from decoherence sources (typically clamping losses for solid state devices).
A figure ofmerit for this decoupling is given by theQ×f product. To reach higherQ factors,
two proposals 102? suggested in 2010 the use optically trapped nanoparticles in high vacuum
as a mechanical oscillator, which could then be coupled to a macroscopic Fabry-Perot cav-
ity. Actually, the predicted decoupling from the environment was so large that these systems
could be used to reach ground state even at room temperature.

Since then several groups started working with levitated nanoparticles using different ge-
ometries of optical trapping such as counter-propagating traps66,86,93, optical cavities62,82, sin-
gle beam optical tweezers 82,44,54, parabolic mirrors 125 and even Paul traps 87. These groups
have demonstrated feedback cooling, cavity cooling and optical manipulation of nanopar-
ticles in vacuum in many among other optomechanical features. Yet ground state remains
unachieved due to the technical demands of such experiment.

Here we present our work towards the milestone of ground state cooling at room tem-
perature. We will start with a semiclassical description of the elements in the experiment:
the optical cavity and a levitated nanoparticle. Then, we will consider different techniques
to cool the centre of mass of our particle and the different detection methods that provide
enough sensitivity to resolve the ground state, provided the SQL. Finally we will present our
setup where we have implemented several cooling techniques and give a current benchmark

63



of its capabilities that meet the needs to reach ground state.

Quantum harmonic oscillator

As in the case of classical physics, the harmonic oscillator is one of the few analytical solvable
systems in quantum mechanics. It has a huge impact in most of the branches of modern
physics - molecular spectroscopy, solid state physics, nuclear structure, quantum field theory,
quantum optics and so forth- and will be also describe our optically trapped particles and
light fields.

The basic Hamiltonian of a mechanical harmonic oscillator is

H =
p2

2m
+
mΩ2x2

2
(3.1)

wherem represents themass andΩ the frequency of the oscillator andwe have converted the
classical observables of momentum p and position x into Hermitian operators via canonical
quantization [x, p]=iℏ. We want also to define the annihilation a, creation a† and number
N operators as 106:

a =

√
mΩ

2ℏ

(
x +

ip
mΩ

)
(3.2)

a† =

√
mΩ

2ℏ

(
x − ip

mΩ

)
(3.3)

N = a†a (3.4)

that satisfy the following commutation relations:
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[N, a] = [a†a, a] = −a (3.5)[
N, a†

]
= [a†a, a†] = a† (3.6)

Using Eqs.(3.4-3.2) we can rewrite the Hamiltonian as:

H = ℏΩ
(
N +

1

2

)
(3.7)

which to satisfies the Schrödinger wave equation 106:

Hψn(x) =

(
n+

1

2

)
ℏΩψn(x) (3.8)

where we denoted the energy eigenfunctions by their eigenvalue n. This eigenfunction rep-
resentation is also known as Fock states.

The lowest energy level is ground state and itswavefunction in thex representations reads

ψ0(x) =

(
mΩ

πℏ

)1/4

e−
mΩ
2ℏ x

2 (3.9)

with energy ℏΩ/2 and the so-called zero-point fluctuations xzpf which corresponds to the
minimum displacement that satisfies the Heisenberg uncertainty principle 106:

xzpf =
√
(⟨x2o⟩ − ⟨xo⟩20) =

√
ℏ

2mΩ
(3.10)

Using the commutation relations in Eq.(3.6) we can find the nth eigenfunctionψn(x) by
recursively applying a†:

ψn(x) =

√
1

n!
(a†)nψ0(x) (3.11)
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To each eigenfunction ψn(x) corresponds an energy level
(
n+ 1

2

)
ℏΩ. This evenly spaced

energy levels correspond to the discrete quanta of excitation of the system, photons for a light
field and phonons for amechanical oscillator. Yet, these higher energy states do not agree very
well with ourmacroscopic experience of an harmonic oscillator consisting of a localized wave
packet oscillating in in space .

Coherent States

The quantum representation of a state that mostly resembles a classical oscillator is the so-
called coherent state which was described by Glauber47. This state describe well for example
the output field of a laser, and writes in the Fock state basis as 106:

|α⟩ = e−|α|2/2
∞∑
n=0

αn√
n!
|n⟩ (3.12)

Where α is the complex amplitude of the field in units of the mean number of quanta:

⟨N⟩ = ⟨α|N |α⟩ = ⟨α|a†a|α⟩ = α∗α =|α|2 (3.13)

When we measure the energy of a coherent state (e.g. a laser beam), the probability to find n
quanta (e.g. photons)is:

P (n) =|⟨n|α⟩|2 = e−|α|2 |α|2
n

n!
=
n̄n

n!
e−n̄ (3.14)

corresponding to a Poissonian distribution.
A physical picture of coherent states consists on a ground state that has been displaced to
higher energies bymeans of the displacement operatorD(α) = exp(α†a−α∗a)whilemain-
taining the minimum uncertainties according to Heisenberg’s uncertainty principle. This
higher energy state then oscillates periodically in the (p, q )space and can be related classical
picture of a particle oscillatingwith an amplitude equal to the displacement. An other impor-
tant feature of coherent states is that an attenuation transforms them into another coherent
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state with smaller relative amplitude9, which also agrees with the classical picture of motion
attenuation of an harmonic oscillator. and is what we do when cooling the centre of mass of
an optically trapped particles.

Quadrature Operators

Since field amplitudes are represented by a complex amplitude α, we use a two dimensional
representation. For a mechanical oscillator, one can use position and momentum as coordi-
nates; for the optical field we have the amplitude and phase. Unfortunately, phase operators
do not have a simple quantummechanical representation, thus it will be more convenient to
work with the quadrature amplitude operators (i.e. real and imaginary part of a):

p = a+ a† and q = i(a† − a) (3.15)

Whose uncertainty satisfies ⟨δp2⟩⟨δq2⟩ ≥ 1 (=1 for a coherent state). We can extend their use
in the semiclassical picture by taking the average ⟨a⟩ → α. Hence, we can use the quadrature
operators to characterize our system in both quantum and classical picture in a plot p vs. q.
For a coherent state this is an ellipse centred at (⟨p⟩, ⟨q⟩) with radius⟨p2⟩ and whose area
represents the uncertainty principle *.

Optical Cavities

Optical cavities are elements extensively used in optics experiments starting by their presence
in every laser. The simplest picture of a cavity consists of two opposed highly reflective mir-
rors with radius of curvature r1 and r2. In order for a cavity of lengthL to be stable, it needs
to satisfy the following stability criterion 107:

*This semiclassical picture is suitable to represent the so called Gaussian States (Ground State, coherent
states and even squeezed states), which are the ones we will work throughout this thesis. To represent other
quantum states such as Fock States one should useQuasi-Probability distributions such as theWigner Function
representation. We refer to 9 for more details
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Figure 3.1: 2D semiclassical representation of a Ground State (GS) and a Coherent state. Both of
them are represented by the same area uncertainty ellipse, but the coherent state has been displaced
to higher values of p and q. The coherent state rotates in the phase space diagram as our macroscopic
perspective of a mechanical oscillator.

0 ≤
(
1− L

r1

)(
1− L

r2

)
≤ 1 (3.16)

This criterion allows for several stable geometries as discussed in 107. We choose a confocal
geometry since they offer higher tolerances against misalignment.

The optical properties of a cavity are most easily derived using a classical picture of mul-
tiple interfering waves9. Consider an incident field at frequency ωL and amplitude αin. For
a coupling mirror with transmission T1, the amplitude transmitted into the cavity is αo =√
T1αin. Now, the field reflected in the cavity is attenuated every roundtrip by

gm =
√
R1R2AD (3.17)

where R1 and R2 are the mirror reflectivities, A the absorption and D the diffraction
losses. Additionally the field accumulates a phase δϕ = ωL2L/c mod. [2π]. As a result
the internal cavity field arises from the interference of the coupled field with its successive
reflections:
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Figure 3.2: Representation of a confocal optical cavity of length L. The cavity input mirror has a
transmission T1 and reflection R1, and the output mirror has a transmission T2 and R2. The cavity
also features absorption A and diffraction D losses. The amplitude of the different fields considered
for the cavity are αin for the field we send to it, αref for the reflected field, α and α′ as the intracavity
fields at different points of the roundtrip, and αtr as the cavity transmitted field and αvac as the
vacuum field fluctuations entering through the output mirror.

α =
∞∑
k=0

αo
(
gme

δϕ
)n

=
αo

1− gmeδϕ
. (3.18)

This leads to an intracavity power

Pcav =
|αo|2

|1− gmeδϕ|2
=

|αo|2

(1− gm)2 + 4gm sin2(δϕ/2)
= Po

1

1 + (2F/π)2 sin2(δϕ/2)
(3.19)

WherePo = (α/(1−gm))2 is themaximumpower at resonance andF is the so called cavity
finesse:

F =
π
√
gm

1− gm
(3.20)

The finesse is a measure of the cavity quality and typically is determined by the reflectivity
of the mirrors. Note however, that this not entirely true in the presence of an intracavity
medium and further losses included in the term gm.
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Equation (3.19) shows a periodic maximum cavity response with the field accumulated
dephase δϕ. These maxima correspond to the different cavity resonance frequencies ωc and
are spaced by the so-called free spectral range:

∆ωFSR = π
c

L
(3.21)

Equations (3.19, 3.23) also show that high Finesse cavities can build up very high intracav-
ity power when at resonance (δϕ = 0).
When the driving field αin of a resonant cavity is switched off α will decays at an exponen-
tional rate:

αcav(t) = αcav(t = 0)e−κt/2 (3.22)

with κ = (c/2L)(1− gm). In other words, κ are the losses during one cycle divided by the
roundtrip time.

Fiting this decay constant allows experimentally measure the cavity Finesse at high reflec-
tivities as

F = ∆ωFSR/κ (3.23)

For the specific case of high Finesse cavities (gm ≪ 1), losses can be considered small and
will come from the input T1 absorption (A), diffraction (D) and leakage of the field through
the end mirror (T2). Assuming these terms are small we can linearise and group them into a
loss term γo as

2γo = T1 + A+D + T2 = T1 + P (3.24)

gm = e−γo ≈ 1− γo (3.25)

(3.26)

where P combines the unwanted losses and the transmission of the output mirror. This
allows us rewrite the decay rate as

κ =
2γo∆ωFSR

π
(3.27)
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Cavity Equations of Motion

Input-Output formalism

In this section we want to derive the equations of motion of a High Finesse cavity fields that
will be necessary to describe the optomechanical interaction with our levitated nanoparticle.
We will use a semiclassical description where fields are linearised at their mean value and then
consider the quantum uncertainties as classical fluctuations. This assumptions are justified
since we will always consider optical fields with large number of photons (n ≫ 108). For a
full quantum description of the cavity we refer to9.

Figure (3.2) depicts a confocal Fabry Perot Cavity with the different fields considered. Us-
ing energy conservation at themirrorswe find the following field relations at the inputs/outputs
of the the cavity:

αref (t) =
√
T1α(t)−

√
1− T1αin(t) (3.28)

αtr(t) =
√
Pα(t)−

√
1− Pαvac(t) (3.29)

Next we consider the evolution of the intracavity fieldα(t)when the cavity experiences a
change δx(t) in its optical lengthL(t). If this change is small compared with λ/F , the cavity
roundtrip time remains τ ≈ 2L/c and the field gains phase Φ = 2kδx. This modifies the
circulating amplitude as :

α(t+ τ) = α(t)eiΦ
√

1− T1
√
1− P + αine

iΦ
√
T1
√
1− P + αvace

iΦ
√
P (3.30)

Taylor expanding on both sides and keeping only the leading terms we obtain

α(t) + τ α̇(t) = α(t)

(
1 + iΦ− T1

2
− P

2

)
+ αin

√
T1 + αvac

√
P (3.31)

Finally we can rewrite this last expression and the boundary conditions (Eqs.3.28, 3.29) in
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the so-called input-output form27:

τ α̇ = α(iδΦ− γo) + αin
√
T1 + αvac

√
P (3.32)

αref =
√
T1α− αin (3.33)

αtr =
√
Pα− αvac (3.34)

To solve the cavity equations ofmotion, we linearise them and take a semiclassical picture,
where the field and its phase shift are described by a constant steady state value ᾱ and Φ̄ plus
a time fluctuating term δα and δΦ = 2kδx:

α(t) = ᾱ+ δα(t) (3.35)

Φ = Φ̄ + 2kδx(t) (3.36)

To find the steady stateswe set α̇ = 0 and then substitute the expression for ᾱ in Eqs.(3.33,
3.34):

ᾱ =

√
T1

γo − iΦ̄
ᾱin (3.37)

ᾱref =
T1/2− P/2 + iΦ̄

γo − iΦ̄
ᾱin (3.38)

ᾱtr =

√
TP

γo − iΦ̄
ᾱin (3.39)

Note thatwehave considered themeanvacuumfield entering theunused cavitymirror ⟨αvac⟩ =
0 as it only introduces fluctuations.

Figure (3.3) shows the Lorentzian power and phase response of the different cavity fields
as a function of the cavity detuning ∆ = δΦ/τ for a realistic cavity. We see that due to the
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Figure 3.3: Power (solid line) and phase (red dashed line) cavity response for the intracavity α,
reflected αre and the transmitted αtr fields. Fields are calculated for a realistic for a confocal cavity
of length L = 2.5cm , assuming perfect mode matching, coupling mirror transmission T1 = 0.4ppm
and additional losses ofP = 1ppm.

additional losses, the normalised reflected and transmited powers do not reach 0 and 1 respec-
tively in resonance. This photon losses result in a loss of the information that can be retrieved
from the system.

Regarding the phase response we see that the reflected light shows a very sharp phase re-
sponse (sharper than the linewidth), which will be useful for the cavity locking techniques,
wheareas the intracavity and transmitted fields show a smoother frequency response. Addi-
tionally, all fields are in phase at resonance:

ᾱ =

√
T1
γo

ᾱin, ᾱref =
T1 − P

γo
, ᾱtr =

√
T1P

γo
αin (3.40)

Propagation of fluctuations through the cavity

We proceed in our description of the cavity by treating the propagation of fluctuations. This
will allow us to describe the cavity when used as a measurement device for the particle posi-
tion fluctuations.
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We start by considering resonant cavity and rewrite the equations of motion ( Eqs. 3.32,
3.33 and 3.34) for the field fluctuations (Eqs. 3.35 and 3.36) and Fourier transform them to
obtain the equations of motion in the frequency space :

(γo − iτΩ)δα[Ω] =
√
T1δαin[Ω] +

√
Pδαvac[Ω] + iᾱδΦ[Ω] (3.41)

δαref [Ω] =
√
T1δα[Ω]− δαin[Ω] (3.42)

δαtr[Ω] =
√
Pδα[Ω]− δαvac[Ω] (3.43)

Due to the aforementioned inconvinience to write a phase operator, we rewrite these equa-
tions to the quadratures (Eq. 3.15):

δα[Ω] =
δp[Ω] + iδq[Ω]

2
, δα∗[Ω] =

δp[Ω]− iδq[Ω]

2
(3.44)

Combining Eqs. (3.43,3.44) we rewrite the intracavity, reflected and transmitted fluctuations
as a function of the incident field and cavity phase fluctuations δpin, δqin, δΦ:

δp[Ω] =

√
T1δpin[Ω] +

√
Pδpvac[Ω]

γo − iτΩ
(3.45)

δq[Ω] =

√
T1δqin +

√
Pδqvac[Ω] + 2ᾱδΦ[Ω]

γo − iτΩ
(3.46)

δpref [Ω] =
(γo − P + iτΩ)δpin[Ω] +

√
T1Pδpvac[Ω]

γo − iτΩ
(3.47)

δqref [Ω] =
(γo − P + iτΩ)δqin[Ω] +

√
T1Pδqvac[Ω] + 2

√
T1ᾱδΦ[Ω]

γo − iτΩ
(3.48)

δptr[Ω] =
(γo − T1 + iτΩ)δpvac[Ω] +

√
T1Pδpin[Ω]

γo − iτΩ
(3.49)

δqtr[Ω] =
(γo − T1 + iτΩ)δqvac[Ω] +

√
T1Pδqin[Ω] + 2

√
PᾱδΦ[Ω]

γo − iτΩ
(3.50)

These set of equations shows two interesting features for a resonant cavity. First we see
that at resonance the intensity fluctuations δp are decoupled from the phase fluctuations of
the excitation fieldδq and cavity δΦ. Thus to extract information about δq and δΦ it is nec-
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essary to set an interferometric readout. This is can be understood by noting that we work
in the maximum of the cavity amplitude response (see Fig.3.3) where the derivative of the in-
tensity with the detuning is 0 and the derivative in the phase response is maximal. If we work
with a non-zero detuning steady state (τΩ ̸= 0), noise fluctuations in a single quadrature of
the excitation field will be projected into both quadratures of of the transmitted field. Hence
one can project intracavity phase fluctuations into transmitted intensity fluctuations bymea-
suring with a detuned cavity.
Furthermore, we note that high frequency components in the fluctuations δqin and δpin im-
pinging the coupling mirrors are reflected by the cavity and low-pass filtered to δptr via a
transfer function:

⟨δptr[Ω]2⟩ ∝
⟨δpin[Ω]2⟩

(γo)2 + (τΩ)2
(3.51)

The same happens for the intracavity phase fluctuations caused by δΦ[Ω], where the cav-
ity acts as an integrator that averages the phase fluctuations during the photon storage time.
These features allow for example the use of narrow linewidth optical cavities as passive noise
filters for laser systems that are not quantum noise limited. Similarly it also becomes a limita-
tion to access modulations of the intracavity field at frequencies larger than the cavity band-
widthΩc = γo/τ , limiting our sensitivity for intracavity measurements.

Limits in interferometric measurements

With the equations describing the cavity field and a BFP interferometry measurement (see.
Chapter 1) we can compare theoretically the sensitivity of the two different readout tech-
niques and elucidate which is more suitable to resolve the zero-point-fluctuations xzpf of an
optically levitated nanoparticle. In this section we will derive the sensitivity limit of each ap-
proach taking into account the SQL, and discuss the advantages of each different approaches.
We will start by considering the BFP case and then the case of a particle coupled to a cavity.
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Back-Focal-Plane Interferometric detection

We first consider sensitivity limit imposed by the photon shot noise statistics also known as
imprecision noise. Taking the linearised intensity response of the BFP signal from Eq. (1.57)
in units of photon raten (i.e. the power imbalance between the two halves in the BFP caused
by a particle displacement δx in an optical trap formed by a stream of n photons/s) yields:

δn =M
16√
π

kα

4πϵow3
o

nδx (3.52)

Where the factorM = 0.675 adjusts the slope of the analytic paraxial approximation to
the high NA numerical calculation (see Fig.1.6).
Comparing δn to the reference field intensity fluctuations (δnshot =

√
n), we find that the

shot-noise limit of the BFP corresponds to a fluctuating spectra

Sshxx =
1

nM2

(
4π3/2ϵow

3
o

16kα

)2

≈ 3.82 · 10−6

n
m2Hz−1 (3.53)

where numerical results correspond to our trap geometric parameters NA= 0.8, λ = 1550

nm andwo = λ/(2NA).

Next, using Eqs.( 1.22, 1.38 and 3.10) wewant to rewrite themechanical frequencyΩm and
the corresponding xzpf as a function of n:

Ωm =

√
4αℏωn
πϵocw4

om
, x2zpf =

1

4

√
πϵocw4

oℏ
nαωm

(3.54)

Finally, we consider the backaction noise. Namely the random driving force acting on
our particle due to the randomly arriving photons and their scattering. The force acting on
a particle along an axis i is Fi = P i

scatt/c. For a shot noise limited optical trap the power
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spectral density of the scattered power is 54:

SPPi
(Ω) =

∫ ∞

−∞
⟨Pscatt(Ω)P ∗

scatt(Ω
′)⟩idΩ′ =

ℏωl
2π

Pscatt(Ω)i (3.55)

For a beam polarized along the x axis our particle becomes an x oriented dipole that scatters
in a radiation pattern f(θ, ϕ) = (3/8π) sin2 θ . As a result the scattered power is split in
3 components, corresponding to P x

scatt = (2/5)Pscatt, P y
scatt = (2/5)Pscatt and P z

scatt =

(1/5)Pscatt and finally

SxFF [Ω] =
2(ℏωl)2

5πc2
σ
n

πw2
o

(3.56)

where σ is the scattering cross-section:

σ =
α2k4

ε2o6π
(3.57)

Multiplying the random force by the amplitude response (Eq. 1.46) of the mechanical
oscillator and integrating over the frequency space we obtain the mean square displacement
of the position fluctuations introduced by backaction:

Sbxx =
2(ℏω)2

5πc2
σ
n

πw2
o

π

Γ(mΩm)2
=

αk4w2
oℏω

60πcΓmϵo
(3.58)

This result shows some very unique features. First, backaction for levitated nanoparticles
is strongly dependent on the wavelength but not on the particle size, since its volume con-
tained in both m and α. This results from the fact that the depth of our optical potential
depends on the particle volume as well as the kinetic energy of the harmonic oscillator.
This equation also shows that backaction can be lowered by increasing the mechanical dissi-
pation on the levitated nanoparticle Γ, thus achieving larger values of Γ will make resolving
xpf easier. Conversely in the absence of dissipation the particle fluctuations diverge, leading
to the particle escaping the potential.

Interestingly, we also observe that the backaction dependence on n differs from to most
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of other optomechanical systems where backaction fluctuations tipically scale with n 8. In
our systemSbxx is independent of the laser power. This counterintuitive response arises from
the fact that trapping (scattering of photons) also performs a position measurement of the
levitated nanoparticle. Thus, although increasing the laser power n leads to a linear increase
of backaction it also increases optical confinement maintaining Sbxx fixed (see also Fig.3.4).

This last point can also be derived considering the mean-square displacement of an op-
tically trapped particle whose thermal bath fluctuations scale with n, as well as its stiffness
κ:

SSQLxx =≈ 2(ℏω)2

5πc2
1

πw2
o2kbΓ

n

κx
(3.59)

Finally, adding the measurement uncertainties and the backaction we find the minimum
fluctuations resolvable by the SQL

⟨δx2SQL⟩ = ⟨δx2sh⟩+ ⟨δx2b⟩ =
1

nM2

(
π3/2ϵow

3
o

4kα

)2

+
αk4w2

oℏω
60πcΓmϵo

(3.60)

Figure (3.4) shows the different contributions to position uncertainties as a function of
n for a 1550 nm diffraction limited optical trap with 0.8NA.We see that a shot noise limited
free space detection can resolve a quantum ground state in the trap with n ∼ 1014 − 1018,
corresponding to 0.1µW-100mW.

Considering our optical traps use about 100mWof power, measuringxzpf seemswithin
reach. Still, this requires to achieve high enough values for Γ ∼ 103, avoid optical losses and
have detectors that can handle such high optical powers while staying shot noise limited.

Cavity Readout

We now turn our attention to the use of the optical cavity as readout mechanism. If we in-
toduce a dielectric nanoparticle in the cavity mode, it increases the overall optical path seen
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Figure 3.4: Interferometric detection limits using backfocal plane interferometry for a diffraction
limit optical trap with NA=0.8, λ = 1550nm and a spherical particle of 73nm radius. The blue
dashed line shows the impression limit from shot noise whereas the purple curve represents the
measurement backaction in the system considering a dissipation Γ = 1000. The sum of the two
contributions is shown in red as the SQL. The black curve represents the zero point fluctuations
x2
zpf . The red shaded area between the black and red curve shows the region in which a thermal

occupation below 1 phonon can be resolved using a BFP interferometric approach.

by the cavity field resulting in a shift of the cavity resonance frequency, which is known as
dispersive coupling. For a dielectric particle in the dipole regime, this frequency shift is given
by 25,101:

δωc(x) = ωc
αp

2Vmϵo
f(x) (3.61)

whereVm = πL(wo/2)
2 is the cavitymode volume,αp theparticle polarizability andf(x) =

sin2(kx) is the intensity profile normalised to 1. Expanding δωc around kx = π/4we obtain
a linear response:

δΦ

τ
= δωc(x) ≈

∂ωc
∂x

δx ≈ ωc
αp

2Vmϵo
2kδx = Gδx (3.62)
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whereG is the so-called optomechanical coupling strength and corresponds to the linear term
of the frequency shift expansion. We use this expression to find how the particle phase fluc-
tuations are imprinted in the transmitted cavity field (Eq.3.46):

⟨Sqqtr⟩ =
(γo − T1)

2 + τ 2Ω2

γ2o + τ 2Ω2
+

T1P

γ2o + τ 2Ω2
+

4P ⟨ᾱ2⟩
γ2o + τ 2Ω2

(Gτ)2⟨δx2⟩

= 1 +
TP

(T + P )2
nin(16F )

2

1 + (Ω/Ωc)2
G2⟨δx2⟩
∆ω2

FSR

(3.63)

wherewe have considered both cavity input ports to be quantum limited (δqin = δqvac = 1).

Our sensitivity limit is reached when the particle induced phase fluctuations are equal to
the quantum field fluctuation term (first term on the r.h.s of Eq. 3.63). Hence the smallest
particle position fluctuations we can resolve are:

⟨δx2⟩sh =
(T + P )2

TP

1 + (Ω/Ωc)
2

nin(16F )2G2
∆ω2

FSR (3.64)

This equation shows that the sensitivity is reduced for high frequency fluctuations above
Ωc, similarly to what we saw for δp. The sensitivity also improves with the finesse F , the
power driving the cavity nin and the optomechanical coupling strengthG; in other words all
parameters increasing the light matter interaction. The terms T and P indicate how losses
also reduce our sensitivity and how in the case of symmetric cavity phase fluctuations can be
extracted through both cavitymirrors. Note that these phase fluctuations can only be read by
beating the transmitted beam with a reference laser, therefore we will need to mix this signal
with a properly mode matched reference beam.

Next we use Eq. (1.65) to rewrite the mechanical frequencyΩm as a function of the num-
ber of photons n circulating in the cavity standing wave of the TEM00 mode:

Ωm =

√
3k2ninℏωF 2T1

ρcπ3w2
o

ϵ− 1

ϵ+ 2
(3.65)

And we estimate the backaction introduced by the trapping field as in the BFP case but
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assuming thatmost of the photons are scattered along the cavity axis due to the higher density
of states:

Sbxx =
nin

Γ(mΩm)2
σ
(ℏωcF )2T1
π(cπwo)2

=
ℏωck2α
6πϵocΓm

(3.66)

Which also shows that backaction neither deppends on the particle size nor trapping power
as in the BFP case. This is not surprising as we are still considering the scattering in an optical
trap with minor geometrical differences.

Note however, that for this readout to work the particle needs to sit in the linear slope
of the standing wave and not in the local maxima. As a result the particle wil not oscillate ac-
cording to the potential used in Eq. (3.65) andwewill need to provide an additional potential
created by second cavity mode or an optical tweezer. For an additional cavity mode this anal-
ysis remains valid andwe just need to add a factorC ≈ 3 in the backaction to account for the
extra power in the trapping beam; the case of an optical tweezer will be analysed afterwards.

Taking this into account and adding the shot noise contribution we find the SQL for an
optical cavity trapping and detection scheme:

SSQLxx =
(T + P )2

TP

1 + (Ω/Ωc)
2

nin(16F )2G2
∆ω2

FSR + S
ℏωck2α
6πϵocΓm

(3.67)

Figure (3.5) shows the SQL limit for a particle trapped at the centre of a 2.5cm high fi-
nesse confocal optical cavity for λ = 1064 nm as a function of the photons impinging the
cavity input mirror and assuming the same Γ as in the BFP and a shot noise limited reference
beam. We see that we are able to detect fluctuations smaller than δxzpf while using lower
optical powers, meaning that our sensitivity increases due to the light-matter interaction en-
hancement provided by the cavity. We observe also larger zero-point fluctuations δx2zpf , due
also to the smaller intensity in the trap focus.
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Figure 3.5: Interferometric detection limits using a lossless confocal optical cavity of 2.5 cm length
and F = 700.000 for λ = 1064nm . The cavity has waist wo is 65µm and a silica nanoparticle of
75nm radius is placed at the centre. The blue dashed curve represents the measurement imprecision
caused by shot noise whereas the purple line shows the measurement backaction in the system for a
value of Γ = 1000. The red curve shows their addition as the SQL. In black we show the zero-point
fluctuations x2

zpf . The red shaded area between the black and red curve shows the region in which
a thermal occupation below 1 phonon can be resolved using a cavity readout approach.
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Discussion

In this section we have presented a model for two different interferometric detection tech-
niques. A priori both can resolve the zero point fluctuations of a trapped particle GS. How-
ever, from the practical point of view some of the requirements can hardly be satisfied. For
example, the cavity detection approach neglects the presence of additional intracavity fluc-
tuations such as thermal noise in the mirrors. These are totally non-negligible as the mirror
optomechanical coupling strength (Gm = ωcav/L ≈ 1017) is 10 orders of magnitude larger
than the one of the particle. Therefore we can foresee that thermal noise in the mirrors may
dominate the spectra of transmitted fluctuations specially at frequencies < 1 MHz. This
problem is non-existent for the BFP detection, where the beam carrying the signal only inter-
acts with the particle and the reference beam. This statement is supported by the literature
where experiments in references 37,62 implement optical-cavity readouts and show significantly
worse SNR than experiments in references 54,67,45 where BFP detection is implemented.

Alternatively we can also improve our sensitivity by boosting the optomechanical cou-
pling strength G either by miniaturising the optical cavity or using larger particles as Sbxx
does not depend on the particle size. On the one hand larger particles result into smaller xzpf
and more interactions with the residual air molecules making it harder to reach GS. Cavity
miniaturization on the other hand is a good approach but leads to larger optical linewidths
and would limit the cooling rate Γ.
Finally, both detection techniques have to deal with the presence of classical noise in a strong
reference beam of the interferometer, which can beminimised using a noise eater and balanc-
ing well the detectors.

Another experimental constraint is the fact that current optical levitation setups require
to break vacuum and load a particle at ambient pressure. This means that optical potential
(Uopt ∝ Ω2

m) needs to be deep enough to confine the particle against thermal fluctuations at
atmospheric pressure. This can be a strong inconvenience when using a cavity since confine-
ment transverse to the optical axis is weaker.

83



1 0 2

1 0 3

1 0 4

1 0 5

1 0 1 4 1 0 1 6 1 0 1 8
1 0 - 1

1 0 0

1 0 1

1 0 - 3

1 0 - 1

1 0 1

1 0 3

1 0 5

1 0 1 1 0 5 1 0 9 1 0 1 3
1 0 - 3

1 0 - 1

1 0 1
<d

x2 >/
x2 zpf

6 3 k H z

n  P h o t o n s

W m[H
z]

b
1 4  k H z

a

Figure 3.6: Ratio between standard quantum limit and ground state fluctuations vs. the photons
in the optical trap (a) and photons impinging the cavity (b). The dashed line corresponds to a
SNR=1. The dot line is a guide to the eye showing which is the maximum frequency we of our
mechanical oscillator at the point where backaction overcomes xzpf . Again we have assumed an
external dissipation Γ = 1000.

Figure (3.6) shows the mechanical frequency and the ratio of the SQL and xzpf as a func-
tion n in the optical tweezer and nin for the cavity for the optical powers considered. We
see that despite the cavity achieves a higher sensitivity than the BFP interferometry, a single
beam optical trap achieves higher mechanical frequencies (i.e. deeper optical potential in the
ground state detectability range) thus better confinement along all 3 axis.

Considering all these points, the best option to measure the ground state of a mechani-
cal oscillator seems to be the use of a BFP detection scheme. Also since we will work in the
backaction dominated regime we will try to use larger wavelengths (i.e. λ = 1550 nm) to
minimise Sxxb while still working with detectors (InGaAs) offering high quantum efficien-
cies (≈ 0.8).

Optical Damping

In our calculations we have assumed the existence of a mechanical dissipation channel with
Γ = 1 kHz but we have not discussed its origin or how to achieve it. We will now discuss
about two possible optical techniques to provide this mechanical dissipation to our mechan-
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ical oscillator. The first scheme consists on a direct modulation of the optical potential based
on the measured position of the levitated nanoparticle, the second relies on the passive cav-
ity delayed response when the mechanical frequency of the oscillator is lower than the cavity
bandwidth.

Active Feedback Cooling

The simplest approach consists on implementing an active feedback based on the particle’s
position that modulates the optical potential in order to extract energy from its centre of
mass.
In the second chapter isothermal expansions/compressions of the optical potential have been
used to extract/increase the energy from the centre of mass degree of freedom. For a periodic
motion the feedback needs to run cyclically andwe need to time correctly the trap expansions
and compressions with the oscillatory motion to maximise the dissipation Γ, thus building a
thermodynamic cycle†. Due to the unprecedented thermal isolation of the particle from the
environment fast thermalization is strongly suppressed and we achieve a steady state where
TCM ≪ Tbath.

The design of a simple dissipative cycle shown in Fig.(3.7). It consists on four instanta-
neous trap modulations during an oscillation period. The trap power is lowered at the ex-
tremes of the motion and increased back when the particle is at the trap center. The work on
the system performed in this instantaneous processes is:

δW =
∂U

∂κx
δκx = x2δκ (3.68)

This equation shows that when compressions are performed at x = 0 the work put on the
system is minimized (δW = 0), whereas performing the expansions at the maximum value
of x2 maximizes the extracted work.

To estimate the optical cooling rate Γopt we consider that the energy of the particle at
† A macroscopic analog of this process would be the compressor in a fridge that compresses and expands a

gas that extracts heat from the food compartment
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Figure 3.7: (a)Scheme of a thermodynamic cycle to cool the centre of mass motion by doing
instantaneous isothermal expansions and compressions. The red square signal shows the stiffness
modulation during one period of the particle motion (solid black line). The illustrarions show the
qualitative change of the potential according to the particle position. We also show an harmonic
approximation to the square signal (green dashed line). (b) Shows how the cooling affects the particle
motion in the quadrature representation.

time t = π/(2Ωm) is at equilibrium with the thermal bathE = κx2max = 2kbT . Then the
energy dissipated in a single expansion becomes:

dE

dt
≈ δW

δt
= x2maxδκx2Ωm (3.69)

For a small enough modulation δκx ≪ κx the period of the oscillations will remains
unchanged. Averaging the energydissipated inhalf periodwe find the total energydissipation
rate Γopt provided by the feedback:

Γopt = 4Ωm
δκx
κx

(3.70)

To find the centre ofmass temperature of the steady state we need to account for the heat
exchanged with the bath. For an underdamped harmonic oscillator this leads to 112:
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δQ = κxδx+
p

m
δp+

1

2m
δp2 (3.71)

where
dx =

p

m
dt, dp = (−κx− Γm)dt+

√
2mΓmkbTdW (t) (3.72)

andW (t) is a Wiener process (⟨dW (t)⟩ = 0 and ⟨dW (t)2⟩ = dt).

Substituting δq and δp in Eq.(3.71) we find the expression for the heat differential:

dQ = Γ(kbT − p2

m
)dt+

p

m

√
2mΓmkbTdW (t) (3.73)

maintaining the assumption that the energy change over one cycle is small and averaging dQ
over a period yields:

⟨p2/m⟩ = E (3.74)

dW (t) = 0 (3.75)

⟨dQ⟩ = Γm(kbT − E)dt (3.76)

Finally adding the contribution from work (Eq. 3.70) and using the 2nd law of thermo-
dynamics leads to the average energy change in the system :

⟨dE⟩ =
(
ΓmkbT − ⟨E⟩Γm − 4

δκx
κx

)

)
dt (3.77)

which results in a steady state energy for the center of mass

ECM =
kbTΓm

Γm + Γopt
(3.78)

This defines a new dissipation Γ = Γm + Γopt and a centre of mass temperature TCM :
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TCM = T
Γm

Γm + Γopt
(3.79)

For a the mechanical frequency Ωm = 63kHz for which ground state can be resolved
(Fig.3.6) and a trap modulation of 0.5% we obtain Γ ≈ 1250 at 10−8 mbar, which is larger
than the value considered in the ground state calculations. Experimentally though, this feed-
back scheme has never been implemented in a single beam optical trapping experiment. In-
stead, the single beam optical trap cooling schemes use a sinusoidal modulation correspond-
ing to the the first term of the Fourier expansion of the square signal (Fig. (3.7) 54,44. The
reason is that it is more accessible to work with pure harmonic components, although the
continuous trap modulation introduces unwanted reheating during the cycle.

So far we have considered a single axis, but in an actual experiment cooling is perform
along x, y, and z axis, requiring 3 modulation cycles. Since the motion along the different
axis is decoupled, modulation to cool a given axis will be out of phase respect to the remain-
ing ones. This results into additional work put into the system which reduces the cooling
efficiency when compared to the single axis calculations.

Cavity cooling

The second approach to dissipate mechanical energy using optical fields consists on using an
cavity whose linewidth is smaller than the mechanical frequency. Contrary to the feedback
case, this approach does not need prior knowledge of the particle position.
Here we will present a semiclassical derivation of the system’s equations of motion based on
refference8. For an extensive derivation in the quantum picture see the same reference 8.

We start by considering the configuration of an optically trapped nanoparticle at the lin-
ear slope of a cavity standing wave (Kx = π/4) with power P. The additional gradient force
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along x introduced by the of the cavity writes:

Fx =
1

4
Re[α]∇E2

o =
α4P

2cϵow2
oπ

∇ sin2(kx) ≈ ℏGncav (3.80)

where the force term is linearised assuming that the particle fluctuates in the Lamb-Dicke
regime (k

√
⟨x2⟩ ≪ 1). This leads a to an extra force term ℏGncav entering the particle

equation of motion. Adding the cavity equation of motion (Eq. 3.32) the trap-cavity system
is described by the coupled equations:

mẍ = −mΓmẋ−mΩ2
mx+ ℏGncav (3.81)

α̇ = −κ
2
α + i(∆ +Gx)α +

√
κ1αin (3.82)

Note that we have rewritten Eq.3.32 with the following substitutions αc =
√
τα as the am-

plitude of the cavity standing mode,∆ = Φ/τ as cavity detuning and κ1 = T1/(2τ) as the
coupling rate of the input mirror.

As a first step to solve the coupled equationofmotionwe linearise themaround the steady
state of the cavity field:

mẍ = −mΩ2
mx−mΓmẋ+ ℏG(ᾱ∗

cδαc + ᾱcδα
∗
c) (3.83)

δȧ = (i∆− κ

2
)δαc + iGxᾱc (3.84)

and then we Fourier transform them, to obtain the following equations in the frequency
space writes as:

−mΩ2x[Ω] = −mΩ2
mx[Ω] + imΓmΩx[Ω] + hG(ᾱ∗

cδαc[Ω] + ᾱcδα
∗
c [Ω]) (3.85)

−iΩδαc[Ω] = (i∆− κ

2
)δαc[Ω] + iGᾱcx[Ω] (3.86)

Substituting the second expression into the first gives susceptibility of the mechanical
oscillator:
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χ[Ω] =

(
−mΩ2 +mΩ2

m − iΩΓm + ℏG2|ᾱc|2
(

1

(∆ + Ω) + iκ/2
− 1

(∆− Ω)− iκ/2

))−1

(3.87)

Finally rearranging into real and imaginary terms and substituting ℏG2|ᾱ|2 = 2mΩmg
2

yields

χ−1 = m
(
Ω2
m + 2ωδΩm(Ω)− Ω2 − iω[Γm + Γopt(Ω)]

)
(3.88)

where
δΩm[Ω] = g2

Ωm

ω

(
∆+Ω

(∆ + Ω)2 + κ2/4
+

(∆− ω)2

(∆− Ω)2 + κ2/4

)
(3.89)

is an optomechanically induced mechanical frequency shift and

Γopt = g2
Ωm

ω

(
κ

(∆ + ω)2 + κ2/4
− κ

(∆− ω)2 + κ2/4

)
(3.90)

is the additional mechanical dissipation introduced by the cavity.

Equation (3.89) tells us that for a red-shift detuning (ωl < ωc) the mechanical frequency
decreases while the opposite occurs in the blue detuned regime (ωl > ωc). Similarly Eq.(3.90)
shows that the dissipation on the mechanical oscillator increases when working in the red-
detuned regime while fluctuations are amplified in the blue detuned regime. Furthermore,
Γ is maximised by reducing the cavity losses κ. This sets two different cooling regimes: the
resolved-sideband regime whenΩm > κ and the Doppler regime when κ > Ωm.

In the resolved sideband-regime, the lowest temperature is achieved for a detuning equal
to the mechanical frequency (∆ = −Ωm) yielding:

Γopt ≈ 4
g2

κ
(3.91)

Similarly in the Doppler regime the lowest temperature is achieved for a detuning equal to
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the cavity linewidth∆ = κ/2which yields :

Γopt ≈ 8
(g
κ

)2
Ωm (3.92)

Thus to achieve higher dissipations (lower temperatures) we need a cavity in the resolved
sideband regime where Γ increases with κ−1, instead of κ−2 as is the Doppler regime case.

Discussion

We have presented two different cooling schemes: an active feedback where the trap power is
actively modulated to cool down the motion along three axes and a passive feedback where
a detuned optical cavity cools down particle motion one axis. Current state of the art exper-
iments have achieved cooling rates Γopt = 2π · 270Hz for 100 nm particles using active
feedback 54 and Γopt = 2π · 49 kHz for 240 nm particle (that would be around 2π · 720Hz
for 100 nm particles) using cavity cooling62. These have allowed to cool the centre of mass
down to TCM ≈ 450µK in an optical tweezer 54 and TCM ≈ 64K in a high Finesse cavity62.
The reason of this large difference inTCM is that cavity experiments could only be performed
at pressures up to few mbar where thermalization due to air molecules was still high. This
limitation was caused by the particle loss due to the lack of cooling along the other axis. Con-
versely, active feedback experiments could reach 2 ·10−8mbar where interactions with gas are
negligible andmost reheating comes frombackaction and feedback itself due to uncertainties
in the measurement. This means that if particles can be brought to the same vacuum condi-
tions while using a cavity, they could be cooled to the ground state.
Therefore, our approach will be to combine the best of the two approaches: the sensitive
detection and 3 axis cooling of an optical tweezer and the high cooling rate of a cavity in the
resolved sideband regime. Thiswill allowus to actively cool the centre ofmass in all directions
and then use the passive cavity cooling to beat the limitations of the active feedback along a
single axis. Note that the use of a tweezer also provides a mean to confine the optically levi-
tated nanoparticle in the linear slope of the cavity standing wave.

With this scheme the particle particle will interact with two optical fields so the backac-
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Figure 3.8: Average phonon occupation number for a 73 nm radius nanoparticle levitated in an
optical tweezer using λtw = 1550nm and cooled by a 1064 nm cavity with F = 700.000 and
L = 2.5cm. The mechanical frequency is assumed to be Ωx = 2π · 100 kHz

tion introduced by each of them needs to be accounted in the calculations, as well as the fact
that Γopt now depends on the optical cavity field. Different wavelengths will also be used
for each field to avoid artefacts in the interferometric measurements. On the one hand, the
optical tweezer will be the main contribution to backaction (∝ λ−4) so a longer wavelength
λtw = 1550nmwill be used tominimise it. On the other hand the cavity field will be weaker,
thus a shorter wavelength λcav ≈ 1064 nm will be chosen to increase the optomechanical
interaction while still being a minor contributor to backaction.

Todetermine the intensity needed in each fieldwe start by fixing an optical tweezer power
P≈ 175mWthat resolvesxzpf well above the shot noise limit (Fig.3.4) and gives amechanical
frequencyΩm ≈ 100kHzalong is transverse axis. Thenwe find the intracavitypowerneeded
forΓopt to cool system to ground state against the optical tweezer and cavity fields backaction
Sb1550xx + Sb1064xx ⟩ below x2zpf .

Figure (3.8) shows (Sb1550xx +Sb1064xx )/x2zpf as a function the intracavity photon numbern
in a F ≈ 700.000 and 2.5cm long cavity. For n > 4 · 1010 we are able to reach a mechanical
occupation number below 1, which corresponds to the ground state. Then estimating how
much detuned power we need at the coupling mirror we find:
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P ≈ nℏωc(Ω2
m + (κ/2)2)

κ
≈ 48mW (3.93)

In conclusion from the theoretical point of view it is feasible to couple an optical tweezer
to an optical cavity and harness the advantages of both configurations: the high stability and
sensitivity from the tweezer and the high optical cooling rates of a cavity. This should allow
to reach and resolve the quantum ground-state of an optically levitated nanoparticle at room
temperature.

Experimental Results

In this section we present the details of the experimental setup that built to levitate, measure
and cool a nanoparticle to its motional ground state. Thenwewill benchmark its capabilities
and show the first experiments demonstrating cavity cooling of a levitated nanoparticle in an
external optical tweezer.

Setup Overview

Our theoretical calculations have established the following experimental requirements in or-
der to achieve ground state cooling of a levitated nanoparticle at room temperature:

• We need to be able to bring a levitated nanoparticle to pressures around 10−8 mbar to
avoid unwanted interactions with the environment.

• We need a high finesse cavity in the resolved sideband and the ability to couple it to an
optically trapped particle in order perform resolved sideband cooling.

• The optical trap needs also to be able to resolve the zero point fluctuations of the
ground state.
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• We need to correct for all imperfections that take place in a real experiment and have
not been taken into account in our calculations (laser noise above shot noise, electric
noise, optical losses...).

Taking these into account we have built the high vacuum setup depicted in Fig.3.9

Figure 3.9: Main elements of the vacuum setup. The loading chamber and the cavity chamber are
separated by an all metal vacuum valve.The loading chamber contains a translation stage (a) that
translates the mobile optical trap to the cavity chamber. In the cavity chamber we have a 3D piezo
stage with a second mobile optical trap that can position optically trapped particles in the cavity field.
The forward scattered light is collected with a high NA lens (d) and send to the position detection
system.

The setup is built around the idea of protecting the cavity mirrors from dirt every time
particles are loaded to the optical trap. It consists of two separate vacuum chambers in a load-
lock configuration. The first vacuum chamber (Fig.3.9 Loading Chamber) is used to load
a particle in a mobile optical trap (MobOT) (Fig.3.9a) at ambient pressure using a nebuliser
with a suspension of silica particles and ethanol. Then, we decrease the loading chamber pres-
sure to 1 mbar and bring the particle to the second vacuum chamber (Fig.3.9 Cavity Cham-
ber) where it is transferred to a second optical trap mounted on a 3D piezo stage inside the
optical cavity holder (Fig.3.9b). This second trap is aligned with a highly sensitive BFP detec-
tion system (Fig.3.9d) with the goal to resolve the quantum ground state. Once the particle
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Figure 3.10: Main elements inside the MobOT. The fibre is sent to vacuum through a fibre
feedthrough, followed by a collimator, a lens holder and the high NA lens.

transferred, the loading trap is retracted and we close the valve separating the two vacuum
chambers. Then we couple the Cavity MobOT to the High Finesse Cavity standing wave
(Fig.3.9c), and we start to evacuate the second vacuum chamber while the particle is feedback
stabilized in the optical tweezer. In case the cavity unlocks, there is no risk of loosing the
particle and it can be locked on and off with different fields when needed for a given optome-
chanical experiment. The load-lock scheme also makes it easier to reach UHV pressures in
the cavity chamber.

In the following subsectionswe give an accurate description andperformance benchmark
of the different elements in our setup.

Mobile Optical Trap

To be able tomanipulate levitated particles in vacuum over arbitrarily long distances we have
designed a new kind of optical trap calledmobile optical trap (MobOT). The trap consists of
a singlemode optical fiber and a collimator followed by a highNA aspheric lens. Figure (3.10)
shows an unassembled MobOT system, which weight less than 100g, making it compatible
nano-positioning systems such as stick-slip piezos.

Although we have designed the MobOT to displace the optical trap it can also be fixed.
Compared to the conventional approach that uses a collimated beam and an objective, our ap-
proach allows to fully fiberize the trapping beam simplifying the alignment, reducing point-
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ing noise, absorption and reflections of the objective focusing optics and the overall cost of
the experiment. The smaller size of the MobOT elements also results in lower outgassing
rates, making them compatible with HV experiments.

In our experiment we have implemented two different Mobots. In the current configu-
ration, the first Mobot (loading) is mounted on a large cylindrical rod in the loading cham-
ber. To bring the light into a fibre in the vacuum chamber we use a KF-16 single mode fibre
feedthrough from Schäfter Kirchhoff. After the fibre we use a collimator that gives a 4.8mm
beam diameter output followed by a 5.3 mm diameter NA lens (0.77NA) that focuses the
beam to a diffraction limited spot. This trap has beenusedwithwavelengths of 980nm, 1064
nm and 1550 nm. The particle signal is monitored in backreflection using a photodiode (Fig.
3.11a).

The secondMobOTrests in the cavity chamber. It uses the sameoptical fiber feedthrough
and a collimation lens that gives a 2mmdiameter output beam, which is then focused with a
1.28mm diameter 0.8NA lens. The intensity at the trap focus is modulated with an AOM.
This trap is mounted on a 3D stick-slip piezo positioning system‡ next to the high finesse
optical cavity. Figure (3.11) shows a scheme of the different elements of the cavity MobOT.
In front of the trap we set a BFP detection system with a 0.77NA collection lens that sends
the forward scattered light to three balanced detectors §. We use a D-shape mirror to choose
the axis projected in theX and Y photodetectors and the full beam forZ , which is balanced
using the same laser picked prior to fibre feedthrough coupling. Finally a λ/4 and λ/2wave-
plates are used to align the trap polarization orthogonal to the cavity axis.

The laser source for the cavity trap is a low noise narrow linewidth 2W fiber laser with
λ = 1550 nm ¶, allowing us to create an optical trap in the frequency ranges of Ωz ∈
[10kHz, 50kHz], Ωx,Ωy ∈ [30kHz, 180kHz], which covers the mechanical frequencies

‡SMARACT
§New Focus 2117
¶CF-Kilo, Keopsys
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Figure 3.11: Detailed scheme of the MobOT. (a) The long range MobOT is mounted in an infinite
screw to perform a load-lock transfer between the two vacuum chambers . Using a PBS the back-
reflected signal is sent to a photodiode. (b) The cavity MobOT rests on a 3D positioning piezo-stage.
The trap intensity is modulated using an AOM and its polarization is aligned to the cavity axis using
a λ/4 and λ/2 wavepletes. A high NA lens collects the forward scattered field that is slitted into
three balanced detectors measuring the particle displacement along each axis.
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Figure 3.12: 3D displacements of a levitated nanoparticle through a high finesse optical cavity.The
white dashed line shows the cavity axis and the solid white line follows the trajectory of the particle.
The time at which each picture is taken is shown on the top left corner. The yellow scale bar
corresponds to a length of 5 mm.

estimated in our calculations for ground-state.

Two important features of ourMobOTare the high degree of control in the position and
depth of the trap. These allow to stablymanipulate particles over arbitrarily long distances at
speeds above 1cm/s as shown in Fig.(3.12), where a particle is manipulated across our optical
cavity using the loading MobOT. As already mentioned, mobile traps also permit to opti-
cally transfer levitated particles between different optical potentials in vacuum as shown in
Fig.(3.13a). In this configuration we can transfer a nanoparticle from the loading MobOT to
the standing wave of our resonant cavity (Fig.3.13b) or to the cavity MobOT. Note that this
requires matching the focus position of the two traps with an accuracy of λ.

Optical Detection

Even for arbitrarily long displacements, theMobOT generates a signal of the relative particle
position along the optical axis. This signal is generated from the backscattered field (Ep) col-
lected with the same aspheric lens used for focusing. The signal is sent to a photodiode where
it interferes with the field reflected at the end facet of the fiberEr that acts as a reference arm
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Figure 3.13: Optical transfer of a levitated nanoparticle between different optical fields. (a) Top
view of the loading and cavity MobOTs inside the cavity holder. (b)Step by step optical transfer
from the cavity MobOT to the standing wave of the cavity field: first the optically trapped particle is
brought at the location of the standing wave (top), then the intracavity power is increased while the
MobOT power is lowered until the particle jumps to the cavity standing wave (centre) and finally the
MobOT is retracted (bottom). (c) Step by step optical transfer between to MobOTs: The particle
is brought with the loading MobOT to the Focus of the Cavity MobOT, then power of the loading
MobOT is decreased while the power on the Cavity MobOT increases until the particle is trapped in
the later and finally the loading trap is retracted. We have used 1064 nm wavelength for the Loading
MobOT and the cavity and 980 nm for the cavity MobOT.
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in a homodyne detection scheme. The resulting intensity at the PD is given by 81:

E2
PD = E2

r + E2
p + 2EpEr cos(ϕr + ϕp(z)), (3.94)

where ϕp and ϕr are the relative phases of the backscattered light from the particle and refer-
ence respectively.

The dipole radiation pattern of the particle imprints the position of the particle along
the optical axis onto the phase of the backscattered light ϕp(z) ≈ ϕ0 + ϕz . Here, ϕ0 =

ϕr(0)−ϕp is an arbitrary relative phase between the backscattered light from the particle and
the reference beam and ϕz = 2k0z is the phase change due to motion along the optical axis,
where k0 = 2π/λ is the wavevector. Note that a small displacement of z(t) along the optical
axis leads to an optical path difference between the backscattered light and the reference 2z(t).
For a periodic motion z(t) = qz cos(Ωzt) the last term of Eq. (3.94) reads

2EpEr

(
J0(2koqz) + Re

{
2

∞∑
n=1

eiϕ0inJn(2k0qz) cos(nΩzt)

})
, (3.95)

where we used the Jacobi-Anger expansion 1.

The right term of Eq. (3.95) is a sum of harmonics of the oscillation frequency of the par-
ticle where the relative strength of each harmonic is given by a Bessel function Jn(2k0qz).

Figure (3.14) shows a characteristic time trace and FFT of the detector signal measured
with a 73 nm radius nanoparticle trapped at 5mBar with a 0.8NA diffraction limited optical
trap with λ = 1064 nm. The large SNR of the MobOT signal (≈ 60 dBm) allows us to
resolve the oscillatory underdamped motion of the particle and up to five harmonics of the
oscillations along the optical axisΩz = 56kHz. From the ratio of the 1st and 3rd harmonics
J1(2k0qz)

2/J3(2k0qz)
2 we retrieve qz ≈ 183nm in excellent agreement with the 191 nm

expected from the equipartition theorem 2T0kB = mΩ2
zq

2
z , where T0 = 300K and kB is

Boltzmann’s constant,m = 3.6 · 10−18. Finally the FFT also features with a low SNR the
second harmonic of the transverse axis oscillations 2Ωx and 2Ωy, the later of which overlaps
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Figure 3.14: Trapping of a single 73nm radius silica nanoparticle in a mobile optical trap. (a)
Time-trace of the backscattered intensity reaching the photodiode and (b) its average FFT using 64
windows of 0.1s at 4MHz acquisition frequency.

with the 5th harmonic ofΩz .

Conversely, for the cavityMobile optical trap we use the BFP interferometry scheme that
provides very high sensitivity along all axis. Figure (3.15) shows the PSD of each balanced
photodiode for the same nanoparticle trapped in the cavity trap with more than 55dB SNR.
Still, we see that the PSD corresponding to a ground state sits 16dB’s below the background
level which currently makes direct ground state measurement impossible. To overcome this
limitation we have came up with two strategies. First maximising the BFP signal with high
power balanced detectors that can handle up to 100mW on each diode. Furthermore a laser
intensity noise eater can lower background noise by approximately 30 dBm. Both allows for
a gain in resolution of> 16 dBm and will soon be implemented in the setup. Alternatively,
we could also implement a ring-upmeasurement protocol similar to reference 54 in which the
cavity cooling is switched off and from the reheating time trace we infer the initial phonon
occupation number.
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Figure 3.15: Power spectral densitiy of the particle motion in the mobile MobOT siting on the 3D
piezo stage along the z axis (red solid line), x axis (cyan solid line) and y axis (yellow solid line).
The black dashed line corresponds to lorentzian fits and the red dashed line to an Lorentzian signal
that would correspond to the ground state along the x axis. The black solid line corresponds to the
detector signal for the x axis for a trap without particle.

Noise Eater

Even low noise high power lasers feature intensity noise well above shot noise for frequencies
<1MHz. This reduces our sensitivity and also causes reheating of our particle centre of mass.
To lower the classical noise in laser systems one can follow several methods such as using a
large filtering cavity with narrow linewidth or a noise eater. The requirement of hundreds of
mW for our optical traps makes the lock and stability of a filtering cavity challenging, thus
we use as noise eater. A noise eater works by sending part of the laser power output to a
photodiode. The photodiode fluctuations around the mean value are then fed as an error
signal into a PID servo whose output is lowpass filtered and sent to an AOMmodulating the
laser power (see inset in Fig. 3.16). This noise eater reduces the impact of laser intensity noise
by more than 30dB in the frequency range of interest as shown in Fig.(3.16).
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Figure 3.16: Noise eater performance. (a) FFT of the laser intensity fluctuations at the transmission
photodiode without noise eater (blue) and with noise eater (red). The dashed lines mark the range
of accessible mechanical frequencies Ωx for our levitated nanoparticle. (b) shows the elements used
to implement the noise eater in our setup.

Feedback Stabilization

Using the MobOT backscattered signal (Fig.3.14) it is also possible to generate a feedback
signal to reduce the particle centre of mass motion. However, since oscillations along the
transverse axis are poorly resolved by using a single mode optical fibre, these feedback mostly
dissipates energy along the optical axis. Yet it improves the trap stability allowing to work for
few hours at pressures below 0.01mbar
The feedback scheme is implemented in a FPGA card that modulates the trap intensity of
our loading MobOT. The feedback samples the particle position at 520 kHz (limited by the
FPGA acquisition frequency). For each sample Vi wemeasure its deviation from the current

mean ⟨Vz⟩ =M−1
∑i−1

i−M Vi and compare it to the standarddeviationσV =
√
M−1

∑i−1
i−M(⟨Vz⟩ − Vi)2

over the lastM = 13 samples corresponding to an oscillation period. To cool the particle,
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Figure 3.17: Effect of the feedback for the MobOT backscattered signal on the particle motion at
P=2 · 10−5 mBar : (a) The particle motion amplitude is damped by the feedback. (b) It increases
when the feedback is deactivated and (c) returns to a low amplitude oscillation when the feedback is
switched on again. Closeup of the PSD in the region of the first harmonic at 40kHz of a particle at
2×10−5 mBar without ( red squares) and with feedback (blue triangles). Darker lines are Lorentzian
fits.

we modulate the laser intensity an AOM according to

PLaser = P0 ×

(1 + ϵ) if |⟨Vz⟩ − Vz| > σV

1 if |⟨Vz⟩ − Vz| ≤ σV
, (3.96)

whereP0 is the laser intensity without feedback and ϵ = 7.5% is the laser modulation depth.
Since the trap stiffness ktrap ∝ PLaser, this scheme increase the stiffness whenever the ampli-
tude changes too quick (similarly as the feedback shown in Fig. 3.7).

Figure 3.17 shows the effect of the feedback on the particlemotion at 2·10−5 mbar. When
the feedback is switched off, the oscillations increase rapidly and decrease againwhen the feed-
back is switched back on. Computing and fitting the FFT we exctract the linewidth increase
δΓopt, which gives usTCM = 30Kalong the optical axis. Although this temperature ismuch
higher than those shown in previous 3D cooling schemes 54,44, it demonstrates the capability
to perform center of mass cooling of a levitated particle.

Conversely in the cavity MobOT we use each axis BFP signal to generate a combination
of an analog and a digital feedback schemes. For the z axis we use the analog scheme designed
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Figure 3.18: (a)Flow diagram to generate the feedback signal using an analog and a digital scheme.
The z signal is multiplied itself, phase shifted and band passed. Similarly, the x and y signals
are frequency locked to a digital oscillator by means of a phase lock loop (PLL). Then the digital
oscillator is phase shifted and frequency doubled. Finally, all axes signals are added and sent to an
AOM modulating the power in the optical trap. (b) PSD along the x axis for a particle cooled with
the combined feedback at 5 · 10−6 mbar. The callibration PSD at 6 mbar is shown for comparison.

by Gieseler et al.44. For the x and y axis we use a digital scheme designed by Jain et al. 54. We
add the two feedback signals using a signal splitter from ‖ and send the resulting signal to an
AOM that modulates the trap depth. Figure(3.18a) shows the flow diagram of the combined
feedback scheme.

From our experience, the digital feedback is more convenient than the analog due to the
possibility to fine tune the frequencies to be doubled in each experiment (the analog one con-
sists of a physical circuit that cannot be tuned). Also, it provides better phase control of the
feedback along the trap frequency fluctuations. However, the digital feedback implementa-
tion requires FPGA Hardware and software **, which make it expensive and limits us to 2

channels/device.

Figure (3.18b) shows the PSD of the particle oscillations under feedback along the y axis
‖minicircuits model ZFRSC-42+

**HF2LI Zurich Instruments
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at 5 · 10−6 mbar. Using a Lorentzian fit and comparing it with the thermal fluctuations at 6
mbar we infer TCM ≈ 8mk.

This demonstrates both our capability to cool the three degrees of freedom as well as to
keep particles trapped at low pressures which is the second fundamental requirement.

High Finesse Cavity

Our optical cavity is a confocal symmetric Fabry-Perot resonator formed by 25mm radius of
curvaturemirrors. In order to stay in the resolved sideband regimeweworkwithmirrorswith
F ∼ 700.000. This parameters give a ∼ 25 kHz cavity linewidth (four times smaller than
ourmechanical frequency) and aFSRof6GHz. Themirrors are fabricatedby advanced thin
films (ATFilms) using a superpolished fused silica substrate coated with a distributed Bragg
grating that alternates Ta2O andSiO2 layers as high and low indexmaterials. The coating is
deposited by Ion Beam Sputtering, which achieves a surface roughness below 0.1 nm RMS
and absorption below 1ppm at 1064nm61. The mirror’s size is around 7.75mm diameter and
4mm thick. They aremounted in a tungsten cylindermechanically clamped to amain holder.
The main holder is shown in Fig.(3.19) and has been designed with large apertures (3cm) to
allow optical and mechanical access of the mobile optical traps. To isolate it from vibrations
the cavity is mounted on a stack of tungsten spacers separated by 5mm thick viton rubber
rods.

Cavity Locking

Todrive the cavitymodewewant a laserwhose linewidth is narrower thanour cavity linewidth
(25 kHz). We use a Mephisto laser (Coherent) which provide a 1kHz linewidth with some
interesting wavelength tuning capabilities††. Additionally,we need to maintain a fixed fre-
quency difference between the cavity resonance and the cooling laser beam. In other words,

††±30GHz with 1Hz bandwidth by tuning the temperature of the laser crystal and ±65 MHz with up to
100 kHz bandwidth by using a piezo that compresses the laser crystal
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Figure 3.19: Optical Cavity and optics of for the locking scheme. The grouped elements correspond
to the optical cavity holder with mirrors mounted (a), cooling beam optics (b), locking beam optics
to generate the PDH error signal (c), servos to convert the error signal into a feedback signal to
correct the laser frequency (d) and retroreflector (e).

to lock the laser frequency to compensate the cavity and laser drifts. In our experiment we
use rather large cavity mirrors, so our cavity length tuning bandwidth using piezoelectric ce-
ramics is limited thus we choose to tune the laser frequency.

To lock the laser to the cavity resonance we use the Pound-Drever-Hall (PDH) locking
technique 33. The PDH lock was devised in the early 1980’s based on Pound’s work in mi-
crowave systems in the 1940’s. This technique uses a phase EOM to modulate the laser field
at a frequency much higher than the cavity linewidth (2.5MHz= ΩPM > κcav). Thus the
field impinging the cavity mirrorEin becomes a phase modulated fieldEin

PM :

Ein = Aeiωlt −→ Ein
PMA = Aeiωlt+iβ sinΩPM t (3.97)

≈ A
(
Jo(β)e

iωt + J1(β)e
i(ω+ΩPM ) − J1(β)e

i(ω−ΩPM )
)

(3.98)

where we have kept only the leading terms (first order sidebands) in the Jacobi-Anger expres-
sion.
We see that the beam impinging onto the input cavity mirror consists of a carrier frequency
with power Pc = |A2Jo(β)

2|/(ϵc) and two sidebands each at ±ΩPM with power P± =
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J2
1 (β)A

2/ϵoc.
As a result, the field reflected by the cavity becomes:

Eref ≈ Aeiωt[R(ω)Jo(β)+R(ω+Ω)J1(β)eiΩPM −R(ω−Ω)J1(β)e−iΩPM ] (3.99)

Using a photodiode to readout the reflected signal we measure the reflected power:

Pdet = |E2
ref | ≈ Pc|R(ωl)|2 + P±[R(ωl + Ω)2 +R(ωl − Ω)2] +

+
√
PcP±[R(ωl)R

∗(ωl + Ω)e−iΩt −R(ωl)R
∗(ωl − Ω)eiΩt) +

+ R∗(ωl)R(ωl + Ω)eiΩt −R∗(ωl)R(ωl − Ω)e−iΩt +O(2Ω)]

Since the sidebands are created far from resonance, they are reflected (R(ωl ±Ω)=1) and the
signal becomes:

Pdet ≈ Pc|R(ωl)|2 + P±[R(ωl + Ω)2 +R(ωl − Ω)2] +

+
√
PcP±[(R(ωl)

∗ −R(ωl))(e
iΩt − e−iΩt)]

The first three terms give a DC term, whereas the last one oscillates at ΩPM with an am-
plitude proportional to de the imaginary part of the cavity response function (see Fig. 3.3).
To gain access to this imaginary part we just mix the signal term with the same oscillator that
drives the phase modulation (accordingly phase shifted) and then lowpass the mixed signal.
This leads to an error signal whose magnitude is proportional to the frequency detuning
between the laser carrier frequency and the cavity resonance as long as they are detuned by
∆ ≤ κ.

Figure (3.20) shows the characteristic profile of a PDH error signal for a laser frequency
swept across the cavity resonance .

The PDH error signal is fed to two different PI servos. In the first PI the signal is high-
passed to correct the laserwavelengthwith a bandwidth from 5kHz to 200kHzusing anAOD
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Figure 3.20: Characterization of the optical cavity. (a) Transmited intensity and (b) reflected
intensity time trace for our cavity resonance swept at 20Hz. Our mode matching efficiency is around
99% (a) and shows a good impedance matching (b). (c)Cavity transmission of the PDH phase
modulated beam featuring the two sidebands at ±2.5 MHz. (d) PDH error signal. (e) Ringdown
measurement of the High Finesse Cavity (blue solid line) and fit (red solid line) used to obtain the
cavity photon lifetime κ−1 = 20µs.
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in a retro-reflector configuration (Fig.3.19e). The other PI servo output signal is amplified
and low-pass filtered to drive the laser built-in piezos (Fig. 3.19d). The gain parameters of
each servo are manually tuned to obtain the best lock-stability.

Cavity Performance

The cavity lock performance is directly related to the quality of the PDH error signal. In
order to have a high SNR error signal for a stable lock we must ensure that the field at the
input mirror is properly mode matched with the TEM00 cavity mode. To understand the
effects mode matching imperfections we can write the incident field εin(r, t) as a sum of the
TEM00 mode (nuo) and the transverse ones (ε′in(t)(r, t)):

ε(r, t) = αoνo(r, t)e
−iwot + ε′in(r, t) (3.100)

which allows us to define a mode matching efficiency ηcav as the ratio between the intensity
coupled into the cavity and the total intensity Iin 121:

ηcav =
|α|2

α2
in

(3.101)

Figure 3.20 shows the transmittedpower fromsweeping the cavity resonance frequency across
the TEM00 mode and the 2nd brightest mode (TEM01). From there we estimate a mode
matching efficiency η ≈ 99%.
Therefore when the cavity is at resonance an imperfect mode matching (ηcav < 1) results
into direct reflection of the the higher order modes onto the PDH photodiode and only a
power ηcavIin couples to the cavity. The reflected intensity becomes:

Iout =

(
T − P

T + P

)2

|αo|2 + ε′in (3.102)
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Thus we can rewrite a corrected reflection coefficient as:

Ro = ηcav

((
T − P

T + P

)2

− 1

)
+ 1 (3.103)

Figure (3.20) shows the reflected power from a cavity swept across the main resonance.
We extract a reflectivity of Ro ≈ 96%. Note that in a PDH locking scheme the reflection
from high order modes will also interfere with the phase modulation sidebands and add a
DC term in the photodetector degrading the error signal. Figure (3.20 c,d) shows the trans-
mited intensity of the phase modulated lock beam when swept across the cavity resonance
and the corresponding PDH error error signal used to lock the cavity. The high quality of
the error signal allows high stable cavity lock that can last for days.

To experimentally determine the cavity finesse we need the photon lifetime (1/κ) and
∆ωFSR (Eq.3.23). The lifetime is obtained from a ringdown measurement. Namely we lock
the laser frequency to the cavity resonance and then switch it off very while measuring the
transmitted intensity. Fitting the exponential decay of the transmitted cavity field (Fig.3.20)
gives a direct measurement of the intracavity photon lifetime κ−1 = 20µs which corre-
sponds to a FWHM κ = 2γo = 50kHz. To measure ∆ωFSR we amplitude modulate
with an EOM the lock laser while sweeping its frequency across the cavity resonance. When
the frequency of the amplitude modulation matches∆ωFSR the amplitude modulation side-
bands at ±1∆ωFSR overlap together with the carrier in the transmission signal. This gives
∆ωFSR ≈ 2π · 6.16GHz from where we extract a finesse F = ∆ωFSR/κ = 775.000. Also
from γo ≈ 25 kHz see that we meet the resolved-sideband condition (κ≪ Ωm).

Cooling beam

The cooling beam in the experiment needs to be detuned from the cavity resonance by sev-
eral linewidths, therefore we cannot use the same beam to lock and cool the particle. For
cooling we use a second beamwith the right detuning and orthogonally polarised to the lock
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beam as in reference62 to avoid beating between the two cavity fields. Although the fields are
orthogonally polarized the cavity birefringence fluctuations (from pressure changes, thermal
fluctuations from intracavity power) still induce amix in the polarization and causes them to
beat. In order to avoid these beats at∆ ∼ Ωm, we shift the second beamby an additional free
spectral range so thebeating occurs at≈ 6GHzand is neither seenbyour detectors or particle.

To maintain a fixed frequency between the beams we split the lock laser before phase
modulation (Fig.3.21 a) and frequency shift specifically each beam. One beam (cooling) is
frequency shifted by 70MHz using an AOD (Fig.3.21 b). The other beam (locking) is phase
modulated in a free space EOM and then sent to a fibered amplitude EOM (Fig.3.21 b). The
fiber EOM is driven at∆ωFSR+70MHz+Ωx at half-wave voltage to deplete the carrier into
two strong sidebands. Since the locking beam consists of a carrier and two phase modulated
sidebands, each of them creates two sidebands and gets depleted (Fig.3.21 c). Finally we use
the upper amplitude modulation sidebands for a PDH lock, obtaining a locking beam and
a cooling beam shifted by a FSR+Ωx. Regarding the lower sidebands, they are detuned by
140 MHz +2Ωm from the closest resonance, resulting into a small DC contribution in the
PDH photodiode (Fig.3.21 c). With this simple method we can bypass the need of a filtering
cavity used in other approaches62, avoiding extra locking steps and reducing the amount of
optical elements in required in the setup.

Cavity Optomechanics with a levitated nanoparticle

Now that we have set our high Finesse cavity and mobile optical we aim to demonstrate op-
tomechanical coupling between our trapped particle and cavity. We start by measuring the
effect of the cavity optical forces onto our trapped particle.

Optomechanical Interaction

Using the cavity MobOT, we bring an optically levitated nanoparticle into the TEM00 cav-
ity mode and we record the FFT of its motion along the cavity axis at Ωx ≈ 190 kHz (Fig.
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Figure 3.21: Representation of the cooling and locking beam components in the frequency domain
centred at the laser frequency. The cooling beam (blue solid line) and the lock beam (black solid
line) are split from the same laser beam (a). Then the lock beam is phase modulated to create the
characteristic PDH sidebands and the cooling beam is frequency shifted by 70 MHz (b). Finally, the
locking beam is amplitude modulated into two new sets of sidebands, totally depleting the carrier
frequency (c). The laser is locked at the upper set of sidebands.

3.22)Then, we switch on the lock beam to drive the cavity standing wave and we study the
trapped particle dynamics at three different positions. First we place it in the linear slope of
the standing wave. At this point the optical force is constant, thus the FFT of the particle sig-
nal shows de same resonance frequency as without cavity field (Fig.3.22a). Secondly wemove
our particle to the node of the standing wave where it does not scatter photons and the gra-
dient force of the cavity is at its minimum. At this point the cavity gradient force results into
an inverted harmonic potential that expels the particle and decreases its resonance frequency
down to 175 kHz (Fig.3.22a). Finally we do the opposite and bring the particle towards the
standing wave antinode. At this point the harmonic potential of the tweezer and the cavity
add up and increase the particle resonance frequency up to 205 kHz. The Mechanical fre-
quencies along the other axis remain unaffected as long we set the rightMobOTpolarization.
Note that this frequency shiftmeasurement can also be used to estimate the intracavity power
by means of Eq.(1.65), which gives≈ 0.7W.

With this configuration is useful to set an heterodyne detection with the signal leaking
out of the cavity and see whether we can reach the theoretically predicted sensitivity. Such a
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Figure 3.22: Changes in the particle resonance frequency along the x axis (Ωx) at different points
of the cavity standing wave. (a) FFT for particle motion at each position of the standing wave
shown by the same coloured dot in the inset. (i.e. Red dots curve corresponds to FFT at the red
dot position in the inset, etc.). (b) Scheme of the different optical fields in the experiment and BFP
balanced detecion. For this experiment we used a 980 nm tweezer laser and a 0.15 NA collection
optics.

measurement would also give access to the other motional quadratures and be an additional
tool to infer TCM using sideband thermometry 104.

Figure (3.23) shows a scheme of our heterodyne measurement implementation. Briefly,
we pick the locking beam before phase modulation and frequency shift it by 70MHz. This
beam is then overlaped in a PBS with the transmited cavity lock beam and interfered and bal-
anced using a half waveplate and a PBS. Figure 3.23 compares the FFT of the stokes sideband
in the heterodyne measurement with our BFP detection. We clearly see that the SNR of the
heterodyne measurement is lower than our BFP even with an unoptimized detection config-
uration that achieved 30 dBm less sensitivity than our current scheme.
The reason behind this low SNR is that, as we expected, the cavity lock beam carries a lot of
noise from additional cavity length fluctuation sources, which ends up covering the particle
signal. Moreover, the particle resonance frequency is larger than the cavity bandwidth so the
it further lowpasses it. This observation agreeswell with previous heterodyne and homodyne
measurements of levitated nanoparticles inside optical cavities62? . For this reason we decide
to optimize and upgrade the BFP detection scheme instead of trying to improve our cavity
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Figure 3.23: Comparison of Heterodyne and BFP detection schemes. The Heterodyne detection
splits the lock beam and frequency shifts it by 70 MHz to act as reference beam. The reference beam
is then overleaped with the cavity transmitted in a PBS and interfered by means of a λ2 waveplate
and a second PBS. The signal of each port is sent to a different photodiode in a balanced scheme.
Top right corner shows the FFT of each measurement scheme centred at Ωx and the background
noise level scaled for SNR comparison.
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readout.

Cavity Cooling of an Optically trapped nanoparticle

The next step of our experiment is to harness the optomechanical interaction of our system
to perform resolved-sideband cooling of an optically levitated nanoparticle.

Using aweak beam the cavity is locked and the particle its positioned in the linear slope of
the cooling beam and its motion recorded at 4 different powers of the cooling beam: 25, 50,
100, and 200mW. The measurements are repeated each at lower pressures until the particle
signal vanishes in the noise floor and during the experiment, the feedback is enabled for the
remaining axis (y and z) for pressures below 0.1mbar.

Figure 3.24: Resolved sideband cooling of the particle oscillations at Ωx along the cavity axis. (a)
shows the PSD of the photodiode signal for the particle motion along the cavity axis at different
pressures with a 100 mW cooling beam with a detuning ∆ = Ωx. (b) Shows the TCM achieved vs.
the system pressure for different powers of the cooling beam: 25 mW (blue squares), 50mW (green
triangles), 100 mW (black circles) and 200 mW (red inverted triangles). The dashed lines of the
same color follow the predicted value of TCM from Eqs.(1.40,3.79) using the measured linewidth .

Figure 3.24 shows the particle PSD along at three different pressures for a 100mW cool-
ing beam. First thing we notice is that the area of the curve decreases as we lower the pressure
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in agreement with Eq.(3.78), demonstrating cavity cooling. The linewidth of the mechanical
oscillations decreases very little despite lowering the pressure by more than 2 orders of mag-
nitude, which is clear sign of a strong optomechanical dissipation. Fitting the linewidth and
subtracting the viscous contribution from the residual molecules we obtain an average cool-
ing rate Γopt ≈ 2π · 2600Hz which achieves TCM = 0.5 K at 0.02 mbar. Lower pressures
were not recorded as SNR was too low.

The cooling beam also induces a red-shift of the mechanical frequency at 1.4 mbar (red
curve Fig. 3.24a). This agrees with the optomechanically induced frequency shift predicted
by Eq.(3.89). However, as pressure drops and the cooling reduces the particle amplitude of
motion, the frequency blue shifts. This phenomena is intrinsic of optical tweezers and ap-
pears in every cooling scheme (e.g. Fig. 3.18). It is caused by the negative sign in the duffing
term of the optical force which decreases the stiffness as we get away from the trap center (Fig
1.6). The blue shift increases as pressure lowers andΩx ends up blue shifted .

In figure (3.24) we plot the measured TCM vs. the system pressure for different powers
of the cooling beam. At higher powers the system reaches lower temperatures as expected
until we reach about 1 K where our signal banishes in the noise floor. From the average op-
tical dissipation of each measurement we also show the theoretical prediction for the TCM
vs. pressure which agrees well with the measured temperatures. This means that the Γopt is
constant at a given optical power and remains unaffected by pressure changes as expected.

To understand the influence of experimental imperfections in the cooling performance
we investigate the effect of misplacing the trap center in the cavity profile. We bring our sys-
tem to 4 mbar and set thr cooling beam to 100 mW of power. Then the particle is placed
at 13 equally spaced positions between a node and the closest antinode of the cooling beam
standing wave (Fig. 3.25a top) and the FFT of its oscillations is recorded (Fig. 3.25b). Figure
( 3.25a bottom) shows the estimated TCM at each particle position. As expected, the lowest
temperatures are achieved at the linear slope of the standing wave (≈ 133 nm from the antin-
ode). However, significant cooling is still achieved even if the particle deviates±50 nm from
this ideal spot.
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Figure 3.25: Cooling performance as a function of the optical trap misplacement in the cavity
standing wave. (a) FFT for different trap positions in the standing wave of the cooling beam. (b)
Position of the trap centre in the standing wave intensity profile versus the distance from the cavity
node (top) and TCM estimated for each position (bottom). The FFT color match the particle
position colours.

Additionally, TCM shows an assymetry for deviations towards and against the antinode.
The reason is that despite both displacements result equally unfavourable for cooling, the
particle interacts with more photons as it approaches the antinode and with less when it ap-
proaches the node. Thereby cooling gets worse for the later.

Figures (3.22 and 3.25a) also show that Ωx shifts when misplaced in the cooling beam
standing wave. Since the detuning on the cooling beam is fixed and is not corrected during
the experiment, a mechanical frequency change also degrades the cooling performance.

To investigate this effectweplotTCM versus the frequencymismatchbetween the cooling
beamdetuning (∆) and themechanical frequency (Ωx) of ourprevious experiment (Fig3.25a,b).
Then, we repeat our temperature measurements fixing the trap at the linear slope and only
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Figure 3.26: Center of mass temperature (TCM ) as a function of the frequency mismatch between
the cavity detuning and the particle frequency (∆−Ωx). Black squares correspond to measurements
for a particle siting in the linear slope of the cavity standing wave while manipulating the cavity
detuning ∆ and red circles correspond to a cavity with a fixed detuning and an optical trap placed
at different position of the cooling beam standing wave.

changing the detuning of our cooling beam (∆) to achieve the same mismatch (∆ − Ωx).
The results are compared in Fig. (3.26) and we find that, although frequency mismatching
decreases the overall cooling performance, the effects of misplacing the trap are more signifi-
cant, and thus critical for the performance of the experiment.

Conclusions and Outlook

In this section we have presented our efforts to develop an optical trap that couples to a high
Finesse cavity. We aim to bring together the benefits of the two techniques: on the one hand
the capability of optical tweezers to maintain optically trapped particles in high vacuum and
on the other hand the high cooling rates provided by the optical cavity. Our experiments
in the early development stage of the setup have already shown both confinement in high
vacuum (5 · 10−6 mbar) and coupling to a cavity that provides high enough cooling rates to
reach ground state according to our calculations.
These experiments also helped us to find the detection scheme that could reach higher sensi-
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tivity in our setup which, in agreement with what has been reported so far in the literature of
levitated nanoparticles, is the Backfocal Plane interferometry. With this knowledge we have
upgraded the the trap in the setup to bring the system sensitivity closer to resolving ground
state.

We also shown that decoupling the trapping and cooling mechanisms allows us to test
the influence of experimental imperfections (misplacement of the optical trap in the cooling
beam andmismatch between∆ andΩx) in the cooling performance, resulting in positioning
as the most critical parameter.

Besides all the effort put into building a setup to bring a levitated nanoparticle to its mo-
tional ground state at room temperature, our experimental configuration also allows to im-
plement further experiments, in particular in the field of thermodynamics. It would be in-
teresting to reproduce the thermodynamic cycles and protocols described in Chapter 2 in the
underdamped regime, as the MobOT allows fast and precise modulation of the optical po-
tential. This would not be possible in a setup whose only optical field comes from the cavity,
since the bandwidth at which the potential can be modulated is limited by γo ≈ 25kHz.

Regarding our Mobile optical trap system, we believe it can be further implemented in
levitating nanopartcile systems due to its simplicity, robustness and affordability. Finally,
MobOTsalsowill enable experimental configurationswhere a levitatednanoparticle is brought
close to other objects such as membranes, ions, etc.
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If you cannot do great things, do small things in a great
way.

Napoleon Hill

4
Optomechanics with plasmonic

nanocavities

Miniaturizationof theoptical cavity canovercometheweakoptomechan-
ical coupling strength G of optically trapped systems for cavity optome-
chanics. In this chapter we will plasmonic nano-cavities to increase G by
severalordersofmagnitude. Sincethecouplingstrengthis independentof
the mechanical dissipation Γ, our experiments will be performed in liquid
allowing the nanoparticles to reach the cavity by diffusion. In this over-
damped regime will also use a binning calibration process to resolve the
passive modulation of the optical potential caused by the particle fluctu-
ations (SIBA) and study the optimal detuning regime to boost optical trap-
ping performance.
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Introduction

First experiments onplasmonic trappingwere done in 2006byVolpe et al. whoused localised
surface plasmons in gold pads to trapmicron-sized dielectric nanoparticles 124. Although first
experimental implementations of plasmon-assisted trapping showed great potential97,48,98,
they remained limited, because of photothermal effects, to object sizes greater than 100 nm.
To further improve the trapping efficiency, an alternative strategy inspired in Babinet’s prin-
ciple 18 can be adopted. This consists on replacing the plasmonic structure by its negative
milled on a flat metalic surface. For example a gold pad is substituted by a hole in a gold
film that acts as cavity and improves as well the heat dissipation through the film. In this
strategy the trapped specimen also achieves a large overlap with the cavity field and play an
active role in the trapping mechanism, the so called self-induced back-action (SIBA) effect 58.
In this regime the cavity resonance shifts adiabatically with the changes in the particle posi-
tion, resulting in dynamic optical trapwhose long-term stability requiresmuch lower average
intensities as compared to a static potential 58. Following this approach, dielectric objects of
tenths of nm size and individual biomolecules have been trapped with less than 10 mW of
optical power 58,13,91. The SIBA hypothesys has been indirectly validated by the enhanced trap-
ping performance observed in the experiments, nevertheless direct observation of the optical
potential modulation has never been observed.

Our aim in this chapter is to describe a nanoplasmonic trap from the cavity optomechan-
ics perspective and show how this can be used to boost the nanocavity-nanoparticle inter-
action by trapping gold nanoparticles (GNP) as a large polarizability object. We will start
by describing and simulating the optical response of GNP and nanocavities to estimate the
optomechanical coupling strength of these systems. Then we will present the optical trap-
ping experiments featuring the largest single photon optomechanical coupling for an opti-
cally trapped particle, which will allow us to directly resolve the dynamic modulation of the
optical potential. Finally we will discuss which detuning regimes are most efficient for trap-
ping and the interest of further developing nano-optical cavities for cavity optomechanics
with optical traps.
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Optical properties of gold

The interaction of metals with optical fields is remarkably different from dielectric particles.
This is caused by the presence of free electrons in the conduction band, whose optical re-
sponse is notwell described by theLorentzmodel (Eq. 1.2). To account for their contribution
to the polarizability we describe them using the Drude-Sommerfeld model4:

me
∂2r

∂t2
+meΓe

∂r

∂t
= eEoe

−iωt (4.1)

where the damping term Γe is equal to the fermi velocity νf divided by electron mean free
path l (Γe = νf/l ). Since electrons in the conduction band are unbound, this model con-
siders that the only two forces experienced by the electrons are the driving electric field and a
damping term.

Solving this equation, gives the dielectric function ε(ω)of an electron gas:

εDrude(ω) = 1−
ω2
p

ω2 + iΓω
(4.2)

where ωp =
√
nee2/(meεo) is the volume plasma frequency and ne the density of free elec-

trons.

Adding the contribution of the free electron gas and the bound electrons (see Lorentz
Model in chapter 1) finally gives the dielectric function for gold:

εgold = 1−
ω2
p

ω2 + iΓeω
+

ω̃p
2

(ω2
o − ω2)− iγeω

(4.3)

wherem is the effective mass, γe the damping rate (mostly radiative) and ω̃p2 is the plasma
frequency for bound electrons. Thereby, the dielectric function of gold is just the sum over
the bound and unbound electron densities properly weighted 17.

Figure 4.1 shows the real and imaginary part of the electric permitivity of gold measured
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Figure 4.1: Dielectric function of gold: Experimental values (red solid line) extracted from refer-
ence56 and Drude-Sommerfeld plus Lorentz model (black solid line). Figure adapted from90.

experimentally in reference 56 and the model prediction (Eq.4.3). They show very good agree-
ment down to wavelengths of 500nm, where the effects of more than 1 resonance frequency
ωo needs to be taken into account. Contrary to dielectrics, gold possesses a negative permi-
tivity that leads to a high reflectivity accompanied by a strong absorption inside the metal.
Although this limits the maximum optical power that can be used for trapping, it is partially
compensated by the higher polarizabilities resulting from the large real and imaginary values
of the permittivity. As a result the light-matter interaction in experiments using low power
is stronger can be enhanced using metals.
Figure 4.2 compares the value of the normalized polarizability (ε−εm)/(ε+2εm) for a gold
and a silica nanoparticles and we see that the former is about 4 times larger (1 vs. 0.26) for
NIR wavelengths. The gold nanoparticle also features a plasmon resonance around 532 nm
that increases its polarizability by an order of magnitude at expenses of larger absorption.

Plasmonic traps

When driven by an optical field the collective oscillations of the free electron cloud create
charge density oscillations with distinct resonance frequencies (see Fig4.2), the so-called plas-
mons90. The negative oscillations respect to the positive lattice lead to a large enhancement
of the near field at the interface of the metal and a dielectric90. This near field enhancement
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Figure 4.2: Normalized polarizability for silica (blue) and gold (red) in the visible and NIR regime.
Gold nanoparticles feature 4 times larger polarizability than silica in the NIR regime. Additionally,
the gold nanoparticle sustains a plasmon resonances at ≈ 532nm, which further increases tenfold its
polarizability. The calculations have been made using the experimental values from56 for gold and71

for silica.

on top of the field exponential decay leads to strong gradient optical forces, which can be
used to trap high refractive index nanoparticles. These can be further enhanced by using the
right geometry (pointy), that results in larger charge accumulations in smaller volumes. Con-
sequently, a suitable geometry for our plasmonic cavity will feature a gap with pointy edges,
such is the case of a bowtie nano-aperture (BNA).

Bowtie Nano Apertures

We use BNApreviously designed by our group 13. These cavities are fabricated by focused ion
beam milling (FIB) in a 100 nm thick Au film evaporated on a coverslip (see Fig. 4.3a). The
cavity parameters such as mode volume (Vm) and optical losses (γo) are given in principle by
the material design. However, the end result varies depending on the fabrication parameters
such as gold lattice quality and final shape of the structure. Figure (4.3b) shows the simulated
transmittance spectra for a BNA of 85 nm gap and 180 nm length immersed in water for the
visible-NIR range. Depending on the polarization of the excitation beam, the cavity features
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two distinct resonances.
The stronger resonance is for the polarization along the small gap (transverse) which happens
around≈ 1000 nmwhile a weaker resonance appears around 700 nm for polarization along
the large gap (longitudinal). Note also that around 600nm, which is the bound electrons
resonance frequency, the absorption increases and the transmission drops to 0.
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Figure 4.3: Bowtie Nanoaperture (BNA) in 100nm gold film. (a) Image taken with electron
microscope showing a BNA in the center (85 nm gap) and a gold nanoparticle in the bottom left
corner (60 nm diameter). (b) shows the simulated transmittance for the same BNA for longitudinal
and transverse polarizations defined in (a). The dashed line corresponds to the laser wavelength of
1064 nm used in our experiments.

To deliver gold nanoparticles to the BNA the structure is sealed in a liquid chamber con-
taining a dilute suspension of gold nanoparticles*. The liquid chamber consists of two thin
coverslips separated by a thin layer of vacuum grease † at their edges. To screen from un-
wanted Van derWaals interactions between the gold nanoparticles and the gold substrate we
use trimethylammoniunbromide (MTAB) at10mM.Theoptomechanical coupling strength
is maximized by allocating particles that maximise the polarizability to optical mode volume
ratio. Specifically we chose 60 nm diameter nanoparticles for our 85 nm BNA with reso-
nance close to 1064 nm. Using gold instead of dielectric nanoparticles not only increases by

*BBI Solutions
†SG10 Corning
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four times the cavity frequency shift, but they can also sustain their own plasmon oscillations
further enhancing the cavity field.

We characterize the spectral response of the systemperforming finite element simulations
with the RF module of the commercial Software COMSOL Multiphysics. The simulated
geometry consists of semi-infinite glass and water media interfaced with a 100 nm thick gold
film patterned with a BNA. Inside the cavity we implemented a spherical particle (radius
30nm), whose refractive index is changed from water (nw = 1.33) for no particle in the
cavity, to polystyrene (np = 1.57) and gold ( based on Johnson and Christy’ data 56). The
illumination is provided by a monochromatic plane-wave propagating along the z-direction
(perpendicular to the interface) and polarized along the 85 nm gap.

Figure 4.4: Simulated transmission spectra for a Bowtie nanoaperture milled in a 100nm gold film
with an optically trapped gold particle (yellow solid line), dielectric particle (purple solid line) and
without particle (grey solid line). The dashed line at 1064 nm shows the wavelength used to excite
the structure in our experiments. The inset shows the simulated geometry.

Figure 4.4 shows the evolution of the calculated transmittance spectra of the BNA with-
out any trapped object, with a polystyrene bead and aGNP.The red dashed-line corresponds
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to the incident laser line at 1064nm. Calculations show a resonance shift of 100nm or δωc ≈
2π · 12 THz induced by the presence of the gold nanosphere. This is a exceedingly large
frequency shift when compared with the case of a dielectric sphere or other optomechanical
systems8.
The fact that no other peaks appear in the spectra confirms that the introduction of the
nanoparticle does not excite new modes in the visible-NIR spectra. The resonance in pres-
ence of the particle also features a narrower linewidth ( 113 nm for the empty BNA vs. 85
nm for the BNA in presence of a gold nanoparticle) due to the narrower gap between metal
surfaces. This a linewidth results in an optical quality factorQ ≈ 10 which agrees with the
reported values for gold nanostructures69,20 and sets the system into the bad cavity regime
where its resonance shifts adiabatically with the particle motion.

E
/E

E
/E

E
/E

E
/E

Figure 4.5: Calculated maps of the electric near field enhancement for an empty BNA (a), and a
BNA hosting a dielectric (b) and a gold nanosphere (c,d) in its centre. (a-c) use the same scale for
comparison of the mode profile.

Figure (4.5) shows the electric near field intensity enhancement at 1064 nm for an empty
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BNA, a BNAwith dielectric nanosphere and a BNAwith a gold nanosphere. Since no other
modes are excited the mode volume does not increase significantly between the three cases
as expected. However, the presence of a higher polarizeable object increases significantly the
intensity in the central gap region between the BNA walls and the particle. The near field
enhancement plots also show that the field penetrates inside the particle for the dielectric
case but not in the case of a metallic particle which explains the larger frequency shift. Finally
the simulation also shows that the presence of a metalic nanoparticle increases the near field
up to 4 times compared to the case of a dielectric of the same size (i.e. from a factor 10 to a
factor 40 enhancement). This further increase optical trapping potential.

Self-Induced Backaction

The simulated spectra shows that trapping a GNP induces a shift δωc ≈ 2π · 12THz com-
parable to the cavity linewidth Γ = 2π · 10THz. In these conditions the modulation of
the optical potential due to SIBA should be observable 89. Despite the large value of δωc is
it is still much smaller than ωc so we can still describe the particle-cavity interaction using a
perturbative approach 89:

δωc(r) = ωc
α

2Vm
f(rp) (4.4)

Therefore for an incident laser at frequency ω, a cavity with a Lorentzian resonance pro-
file and an adiabatic response we can Taylor expand the intracavity intensity for the laser de-
tuning∆ as:

I(ωc) = Io
(Γ/2)2

(∆− δωc)2 + (Γ/2)2
≈ Iopt −

2δωc(r)∆

∆2 + (Γ/2)2
Iopt + ... (4.5)

where Iopt = Io(Γ/2)
2/(∆2+(Γ/2)2) is the empty cavity profile. This expression shows

that in the lowest order approximation the system has two main contributions to the intra-
cavity intensity. The first comes from the empty cavity Iopt resonance profile and the second
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from the dispersive frequency shift δωc(r) that appears in presence of a particle. The later
is related to the SIBA effect and determines how changes in the particle position modify the
optical potential. Consequently the stiffness of the plasmonic trap κtot can be decomposed
as the sum of two contributions:

κtot = κopt + κSIBA (4.6)

with κopt depending on the cavityresonance profile and κSIBA originating from changes in
the particle position that affect the intra-cavity field (second term in Eq.4.5).

Defining a SIBA parameter as in reference 89:

νback =
δωc(r)

Γ
(4.7)

The contributionκSIBA has an overall impact in the stiffness of the systemwhen the value of
νback values close to or larger than 1 89, meaning that the cavity resonance shift is large enough
to produce a significant change in the amount of coupled photons. This is the case shown in
our simulations where νback = 1.17. Note that maximising νback for a fixed cavity linewidth
is equivalent to maximise the optomechanical coupling strengthG = ∂ωc/∂x.

The optomechanical couplingG for this systemcanbe estimated from the simulated spec-
tra shown in Fig.(4.4) as δωc(r)/δx = 2π · 150GHz/nm, where δx = 80 nm is the distance
that the particle needs to cover from the centre of the cavity to the outside. This value com-
pares well with the one reported in a previous plasmonic optomechanical systems of similar
dimensions 116 and ismuch greater than the typical values attainedwith other optomechanical
systems8,64.

Experimental Setup

The experimental setup consists on a upside-down home-made invertedmicroscopewith the
sample mounted on a nanopositioning stage. A continuous-wave 1064 nm Nd-YAG laser
beam is focused onto the sample with a 40x microscope objective (0.65NA). The power of
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Figure 4.6: Schematic view of the experimental setup. A 1064 nm linearly polarized laser is focused
onto the sample at the BNA position with a 0.65 NA objective. The beam intensity is controlled
with λ/4 and a λ/2 waveplates and a PBS. The transmitted light is collected with a 0.4NA objective
and sent to an APD. The signal is monitored in real time at 1 kHz using an FPGA DAQ card and
the data is collected using a 1 MHz digital oscilloscope.

the excitation beam is controlled with a λ/4 and a λ/2wavelplates before a PBS and it is lim-
ited to amaximum of 10mWat the sample plane. The beam polarization is controlled using
an additional λ/2 after the PBS. Finally the transmission of the trapping laser through the
nanocavity is collected with a 20x NIR objective (0.40 NA) and sent to an avalanche photo-
diode (APD) (Fig. 4.7). The APD signal is recorded at 1MHz with a high resolution digital
oscilloscope ‡. Trapping events are simultaneously monitored by splitting the APD signal to
a 1 kHz sampling rate FPGA data acquisition card.

We align the polarization of the laser beam to the BNA aperture by maximising its trans-
mission. Figure (4.7a) shows the transmissivity of the BNA as a function of the incoming
beam polarization which is maximum when aligned along the 85 nm aperture. To fine tune
theworking point of the resonance spectra we build an array of 85 nm gap BNAwith increas-
ing length size. As the length of the BNA increases its resonance frequency slowly red-shifts.
Figure (4.7b) shows the transmission for the different BNA of our array. The transmission
increases with the length size of the BNA until optimum resonance is reached (BNA 11 in
Fig.4.7), and then it decreases.

‡Keysight S-Series 12 bit
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a b

Figure 4.7: BNA transmission profiles. (a) Shows the normalized transmittance of a BNA for
different incoming polarizations. (b)Experimental transmission map for different BNA with increasing
size. The gap along the x axis is fixed at 85 nm while the dimension of the BAN increases along the
array. The polarization of the laser is aligned along the x axis. The top profile shows the transmitted
intensity as we sweep through the centre of the nano-array. The bottom plot shows a 2D colourmap
of the BNA array transmission.

Experimental Results

When aGNP gets trapped in the nano-cavity a red-shift δωc ∼ Γ leads to one of the three dif-
ferent situations depicted in Fig. (4.8a,b). We refer to these different regimes as: blue-shifted,
resonant and red-shifted (Fig. 4.8a (i), (ii) and (iii)) respectively.
In the blue-shifted regime, the cavitymode is set blue-detuned by∆ ∼ Γ from the excitation
wavelength. As soon as an object is trapped, the resonance red-shifts towards the laser line in-
creasing the local field and transmitted light (Fig. 4.8a (i)). This case is the onemost reported
in the literature 58,13? ,91,59.
Conversely in the red-shifted regime, the presence of the particle leads to a strong decrease
in the coupled optical power (Fig.4.8a). In these conditions, trapping becomes highly inef-
ficient due to the shallower optical potential that requires a higher trap power to keep the
nanoparticle.
Finally in the resonant regime the cavitymode is set to be slightly blue-shifted∆ ∼ δωc(r)/2

from the excitation laser. When trapping occurs, the system symmetrically red-shifts through
the resonance resulting in the transmissions of empty and trapping states to be comparable
(Fig. 4.8a(ii) and 4.4). This configuration is foreseen to be the most favourable for SIBA
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trapping because, as the particle leaves the optical potential, the system crosses the resonance
leading to an increase of photons coupled to the nano-cavity. Remarkably this regime has
not been studied in previous plasmon trapping experiments 58,13? ,91,59 due to the low values of
νback reached in experiments with dielectric particles.
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Figure 4.8: Experimental cavity resonance frequency shifts. (a) Shows the Cavity resonance shift
for 3 possible detuning regimes: (i) blue-shifted, (ii) resonant and (iii) red-shifted. The black trace
corresponds to an empty trap and the orange one to a trapped gold nanoparticle. The dashed line
represents the excitation laser at 1064 nm. (b) Experimental transmission time traces for the three
detuning regimes. Transmission intensity has been normalised to 1 for the transmission of the empty
structure. We used the BNA labelled 8, 10 and 12 in Fig.(4.7) for the regimes i, ii and iii, respectively.

To experimentally reproduce these regimes we used the confocal scans presented in Fig.
(4.7b) and selected BNA 8, 10 and 12 corresponding to the blue-shifted, resonant and red-
shifted regimes, respectively. Figure (4.8b) shows an experimental time trace with a trapping
event for each of these BNA. The black trace corresponds to the transmitted signal for an
empty trap and in orange when a single GNP is trapped. As expected from the earlier classifi-
cation the number of transmitted photons increases and decreases when the object is trapped
under blue-shifted and red-shifted regimes, respectively. Similarly, the transmission oscillates
around the empty trap value for the resonant regime. These results are in good agreement
with the simulated frequency shifts shown in Fig.(4.4). In the following experiments we fo-
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cus our attentionon theblue-shifted and resonant regimes, i.e. (i) and (ii), to determinewhich
is better suited for trapping at low powers.

Calibration of the optical potential

To characterize the optical potential we calibrated the stiffness of the system κtot following
the power spectral method (see chapter 1). Figure(4.9) compares the PSD of a trapped parti-
cle (blue) with one of an empty trap (grey) for a 10s signal at 1.9mW excitation laser power.
From the fit of the PSD to a Lorentzian curve, we obtain κtot = 4.51fN/nm, which corre-
sponds to a normalized value of 2.4 fN/nm for an optical intensity of 1 mW/µm2. Due to
the large polarizability of the GNP this normalized stiffness is the largest experimental value
reported for plasmon trapping systems65. Although this approach provides a stiffness value
for the trap it averages out any dynamic SIBA contribution due to the large acquisition time
∼s compared to the trap relaxation time τ = 1/fc. Therefore we need another calibration
method if we want to deconvolve complex time dynamics of the trap.

To observe the modulation of the optical potential we apply the following binning pro-
cedure to the data. A bin time above the trap relaxation time of 80ms is chosen, resolving
fluctuations in the trap stiffness while still providing a reliable trap calibration. The autocor-
relation function for each bin is computed and then the trap relaxation time as described in
Eq.(1.63) is obtained with a linear fit.

Figure (4.9) shows a sample of processed data for a∼ 3s time-trace. Two different groups
of autocorrelation curves can be distinguished: those corresponding to an empty trap (grey)
and those with a single trapped GNP (blue). The linear fits are plotted in orange.

Post-selecting only trapping events, we use the values of τ to obtain the κtot for each bin
and build a stiffness probability density function ρ(κtot) that contains the information about
the modulation of the optical potential in the presence of the trapped particle.
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Figure 4.9: Calibration of a plasmonic cavity trap in the blue-shifted regime. (a) Power spectral
density for an empty trap (grey), and a single GNP trapped (blue). The Lorentzian fit (orange)
gives a trap stiffness of κtot = 4.51 fN/nm.The fits and the PSD have been computed using the
tweezercalib2.1 software package118(b) Normalizsed autocorrelation functions for a 3s time trace of
a trapped particle jumping in and out of a trap at 0.26 mW/µm2 for trapping (blue) and empty trap
(grey) events. The linear fits (orange) are used to extract the relaxation time of the trap.

Figure (4.10) shows ρ(κtot) at three different optical intensities for the blue-shifted and reso-
nant regimes. The experimental distributions in both regimes (orange points) are perfectly
fit by a normalized sum (black line) of two lognormal distributions (blue and red), revealing
two different distributions of κtot.

A radically different behaviour is observed between these two regimes. In the blue-shifted
regime, ρ(κtot) is dominated by the red peak at high intensities (>0.6 mW/µm2). In this sit-
uation the particle is highly confined, thus no significant modulation occurs and κtot ≈ κopt.
When the incident intensity decreases to ≈ 0.48mW/µm2, κopt becomes weaker allowing
the particle to explore a wider region of the potential away from the equilibrium position.
As a result the overlap of the particle and the cavity mode decreases, blue-shifting the system
resonance away from the excitation laser. This further decreases the stiffness of the optical
potential and a new peak (blue), corresponding to the modulated potential, appears at lower
κtot values (Fig. 4.10a). Note that in this caseκSIBA is negative (κtot = κopt+κSIBA < κopt)

135



Figure 4.10: Probability distribution of the total stiffness κtot at different powers. (a) Blue-shifted
regime and (b) resonant regime. The experimental distributions (orange dots) are fitted as the sum
of two lognormal contributions (black line) at different optical intensities. The red peak represents
the stiffness κopt and the blue peak κopt+κSIBA. Each distribution is obtained using between 5000
(higher intensities) and 2000 (lowest intensities) fitted values of τ . Insets show an impression of the
GNP behaviour in the modulated potential, where the blue (red) well correspond to the blue (red)
peak contributions ofκtot.

since the amount of photons in the cavity decreases when the particle leaves its centre (c.f. Fig.
4.8a(i)). Finally at low powers the GNP spends most of the time away from the trap equilib-
rium position as shown by the dominance of the blue peak which suggests that the particle
is nearly free diffusing and only weakly trapped. This agrees with the fact that the trapping
events last very short times, typically <1s, as seen in Fig. (4.9b). Figure (4.10a) insets illustrate
the potential seen by the GNP in the blue-shifted regime. For small displacements from the
trap centre (red area) the GNP experiences the restoring constant κtot ≈ κopt. As it moves
further away, the lower restoring constant κtot = κopt+κSIBA reduces the local slope of the
potential (blue area).

In the resonant regime, the red peak also dominates at high intensities, where barely no
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modulationoccurs (κtot ≈ κopt). However, in this regime,when the laser intensity is lowered
and the particle explores a larger region of the nanocavity, the system’s resonance blue-shifts
towards the laser line. Consequently, more photons couple into the nanocavity, modulating
the potential (κtot = κopt + κSIBA) and increasing the optical forces that pull back the par-
ticle to the centre of the trap. This is demonstrated by the fact that in Fig. (4.10b) the new
peak appears at higherκtot values (κtot = κopt + κSIBA > κtot) than the previous peak in
Fi.(4.10a). Finally, at very low powers (≈ 0.26mW/m2), the blue peak dominates and broad-
ens to higher κtot values due to the larger modulation of the potential. This corresponds to
a significant increase in the optical restoring forces, resulting in a more stable trap than in
the blue-shifted regime under the same intensities. Figure (4.10b) insets illustrate the poten-
tial seen by the GNP in the resonant regime. For small displacements from the trap centre
(red area) it experiences the restoring constant κtot = κoptt . As it moves further away, the
restoring constant κtot = κopt + κSIBA increases the slope of the potential (blue area).

Figure 4.11: Stiffness as a function of the incident optical intensity. (a) For the blue-shifted
regime and (b) for the resonant regime. Error bars are computed from the standard deviation in the
Lognormal distributions.

To further understand the dependence of the SIBA effect with the optical power, we plot
κtot as a function of the optical intensity for both detuning regimes (Fig. 4.11). In the blue-
shifted regime (Fig.4.11a), we see that both κopt and κopt + κSIBA increase linearly with the

137



optical excitation power, in agreement with previous observations in this regime65.
In the resonant regime (Fig. 4.11) κopt still grows linearly with the intensity, but the κopt +
κSIBA contribution becomes inversely proportional to the intensity. This demonstrates that
as power is lowered the SIBA effect becomes stronger until it becomes the main trapping
mechanism, in agreement with the dominance of the blue peak at low powers in Fig. (4.10).
In other words, the relative trapping efficiency of each detuning regime is highly dependent
of the optical intensity conditions: at high optical intensities the blue-shifted regime gives
a stiffer trap, conversely the resonant regime becomes the most efficient as power decreases
reaching a stiffness up to 4 times higher compared to the blue-shifted.

Single photon optomechanical coupling

The single photon optomechanical coupling of the system can be estimated from the exper-
imentally calibrated stiffness and simulated optomechanical coupling strength. For κtot =
4.51fN/nm we obtain a mechanical resonance frequency of Ωm = 1.43 MHz which is an
order of magnitude larger than those obtained in the diffraction limited optical traps with
dielectric objects presented in chapter 3. This huge increase is both caused by the larger po-
larizability of gold and the strong gradient of the evanescent field. Combining the resulting
xzpf ≈ 3.9pmwithG ≈ 2π ·150GHz/nm gives a single photon optomechanical coupling:

go ≈ 2π · 580MHz (4.8)

This value is ∼ 108 times larger than the go ≈ 0.5 found for our optically levitated
particles in a macroscopic Fabry-Perot resonator and it is the largest value of go reported in
an experiment exceeding by one order of magnitude the strongest coupling rates reported in
the literature 116 and by 2 orders of magnitude the rates in photonic crystals96. Unfortunately,
such large coupling rate is achieved in presence of even higher optical losses from the metal
(go/κ≪ 1), which in the endmake the systemunsuitable for the study of quantumoptome-
chanical effects even if brought to vacuum.
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Conclusions and outlook

We have presented an optomechanics approach to optical trapping experiments using plas-
monic nano-cavities. This has allowed us to identify the parameters that determine both
the optomechanical interaction and trapping performance, which have been optimized by
using gold nanoparticles with a high V/Vmod ratio. Since the fundamental optomechanical
coupling strengthG parameter is independent of the system’s mechanical dissipation exper-
iments have been performed in a liquid environment to simplify the particle delivery to the
nanostructure. Reaching a coupling strength comparable to the optical linewidthG ∼ Γ has
allowed to observe the reconfigurable nature of the optical potential and demonstrate the op-
tomechanical origin of SIBA. We have also assessed the detuning regime that maximizes the
trapping efficiency for plasmonic cavities. These results are crucial for trapping and manipu-
lation of objects that are extremely sensitive to photo-damage such as biological samples and
fluorescent single emitters.

From the G value and the calibrated optical potential we have obtained unprecedented
high values for the single photonoptomechanical couplinggo 8. Unfortunately theuse of plas-
monic cavities has also led to a dramatic increase of the optical losses making them unsuitable
for the single photon optomechanics regime. Alternatively one could consider engineering
nano-cavities with higher opticalQ factors using photonic crystals ormetals with lower losses
such as silver. An improvement by 3 orders ofmagnitude whilemaintaining similar coupling
rates bring optically trapped particles suitable systems into the single photon optomechanics
regime.
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Live can only be understood backwards; but it must be
lived forwards.

Soren Kierkegaard

5
Conclusions and Outlook

Since Arthur’s Ashkin first optical manipulation experiments, optical trapping techniques
have allowed to study microscopic systems by probing and exerting forces on them. Along
this thesis we have developed and validated new techniques to extend the capabilities of opti-
cal trapping experiments to diverse fields, namely non-equilibrium stochastic thermodynam-
ics and cavity optomechanics. In this section we summarise the our conclusions and outlook
for the work presented in each chapter:

stochastic thermodynamics

In our stochastic thermodynamics experiments we have demonstrated the possibility to use
random forces with aGaussianwhite noise spectra in order implement an additional thermal
bath whose temperature can be tuned up to several thousands of K. By means of different
experiments, we have demonstrated that such a thermal bath provides a consistent temper-
ature for both equilibrium and non-equilibrium processes. In one of these experiments we
also found the work distribution for isothermal compressions/expansions, which is a rele-
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vant thermodynamic process involved in heat engine cycles. Using our approach it is possi-
ble to implement arbitrary stiffness vs. temperature (pressure vs. temperature) curves using
an optical trap as an analogy of a piston with a single gas molecule, thus allowing to study
the efficiency of heat engines in the microscale. Using this same thermal bath approach two
experimental heat engines have been recently implemented: a Carnot cycle with a colloidal
particle76 and anOtto cycle with an single ion in a Paul trap 103 both showing unique features
not comparable with their macroscopic counterparts. Some recent proposals also suggested
to extend the study of thermodynamics with optical traps to the underdamped regime by
following a cavity optomechanics approach 32.

We expect that, using the techniques presented in this chapter, it will be possible to im-
plement and test some open questions such as optimal protocols in both overdamped and
underdamped regime and in the long term optimize the efficiency of microscopic heat en-
gines in order to bring them from toy models to actual functional devices.

Cavity Optomechanics with levitated nanoparticles

We have presented our efforts in the field of levitated cavity optomechanics to develop an op-
tical trap that couples to a high Finesse cavity to pursue the ground state cooling of a levitated
nanoparticle. With this approachwe aim to bring together the benefits of two techniques: on
the one hand the capability of optical tweezers tomaintain optically trapped particles in high
vacuum and on the other hand the high cooling rates provided by the optical cavity. Our ex-
periments in the early development stage of the setup have already shown both confinement
in high vacuum (5 · 10−6 mbar) and coupling to a cavity that provides high enough cooling
rates to reach ground state according to our calculations.
These experiments also helped us to find the detection scheme that could reach higher sensi-
tivity in our setup which, in agreement with what has been reported so far in the literature of
levitated nanoparticles, is the Backfocal Plane interferometry. With this knowledge we have
upgraded the the trap in the setup to bring the system sensitivity closer to resolving ground
state.
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Wealso shown that decoupling the trapping and coolingmechanisms allows us to test the
influence of experimental imperfections in the cooling performance, resulting in positioning
as the most critical parameter.

Besides all the effort put into building a setup to bring a levitated nanoparticle to its mo-
tional ground state at room temperature, our experimental configuration also allows to im-
plement further experiments, in particular in the field of thermodynamics. It would be in-
teresting to reproduce the thermodynamic cycles and protocols described in Chapter 2 in the
underdamped regime, as the MobOT allows fast and precise modulation of the optical po-
tential. This would not be possible in a setup whose only optical field comes from the cavity,
since the bandwidth at which the potential can be modulated is limited by γo ≈ 25kHz.

Regarding our Mobile optical trap system, we believe it can be further implemented in
levitating nanopartcile systems due to its simplicity, robustness and affordability. Finally,
MobOTsalsowill enable experimental configurationswhere a levitatednanoparticle is brought
close to other objects such as membranes, ions, etc.

Cavity optomechanics with plasmonic nanocavities

We have presented an optomechanics approach to optical trapping experiments using plas-
monic nano-cavities. This has allowed us to identify the parameters that determine both
the optomechanical interaction and trapping performance, which have been optimized by
using gold nanoparticles with a high V/Vmod ratio. Since the fundamental optomechanical
coupling strengthG parameter is independent of the system’s mechanical dissipation exper-
iments have been performed in a liquid environment to simplify the particle delivery to the
nanostructure.

Reaching a coupling strength comparable to the optical linewidthG ∼ Γ has allowed to
observe the reconfigurable nature of the optical potential and demonstrate the optomechan-
ical origin of SIBA. We have also assessed the detuning regime that maximizes the trapping
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efficiency for plasmonic cavities. These results are crucial for trapping and manipulation of
objects that are extremely sensitive to photo-damage such as biological samples and fluores-
cent single emitters.

From the G value and the calibrated optical potential we have obtained unprecedented
high values for the single photonoptomechanical couplinggo 8. Unfortunately theuse of plas-
monic cavities has also led to a dramatic increase of the optical losses making them unsuitable
for the single photon optomechanics regime. Alternatively one could consider engineering
nano-cavities with higher opticalQ factors using photonic crystals ormetals with lower losses
such as silver. An improvement by 3 orders ofmagnitude whilemaintaining similar coupling
rates bring optically trapped particles suitable systems into the single photon optomechanics
regime.
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