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You know that in a race all the runners run,
but only one runner gets the prize.

So run like that. Run to win!
1 Corinthians 9:24
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Abstract

In a globalized economy, enterprises have to face different challenges related to the complex-
ity of logistics and distribution strategies. Favored by the development of Information and
Communication Technologies (ICT), customers and competitors are located everywhere.
Customer demands related to shorter response times, higher quality, lower costs and excel-
lent customer service are opposing challenges. Thus, firms need to be more competitive,
which implies economic efficiency combined with different sustainability aspects. As a
consequence, companies are forced to consider new managerial strategies to optimize their
associated processes. One strategy that companies can follow to become more competitive
is to cooperate with other firms (Horizontal Cooperation), allowing the use of economies of
scale, increased resource utilization levels, and reduced costs. Unfortunately, it is not easy
to quantitatively estimate these benefits, which constitutes a serious obstacle for the imple-
mentation of HC. Many Logistics & Transportation (L&T) challenges and HC strategies
can be tackled by considering different variants of the well-known Vehicle Routing Problem
(VRP). Although the VRP has been widely studied during the last 50 years, most published
works consider oversimplified versions of real-life situations in which most parameters and
constraints are assumed to be known in advance. To fill the existing gap among the academic
literature and real-life applications, the concept of Rich VRPs (RVRPs) has emerged in the
past few years in order to provide a closer representation of real-life situations. Accordingly,
new solving approaches are required to efficiently solve new RVRPs and quantify the bene-
fits generated through the use of HC strategies in real applications. Thus, they can be used
to support decision-making processes regarding different implementation degrees of HC.

Particularly, this thesis deals with cooperative strategies in urban distribution under un-
certainty, which is represented by the VRP with Multiple Depots and Stochastic Demands.
In addition, cooperative initiatives are extended through integrated decisions in facility lo-
cation and route planning, which is supported by the Capacitated Location Routing Prob-
lem (CLRP). Furthermore, city logistics are studied in the context of waste collection and
goods distribution inmountainous regions, providingmore realistic representations. To cope
with this variety of RVRPs, several metaheuristic methods based on biased randomization
techniques are proposed. Additionally, these methods are hybridized with simulation (i.e.
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simheuristics) to tackle the presence of uncertainty for some of the aforementioned problems,
allowing the development of risk/reliability analysis of obtained solutions. The proposed ap-
proaches are tested using a large set of theoretical and real-life benchmarks. Several new best
known solutions are obtained in relatively short computational times. Noticeable savings of
around 55% in economic costs and 52% in 𝐶𝑂2 emissions are generated by the implemen-
tation of fully cooperative strategies.

Keywords: Rich Vehicle Routing Problem, Simheuristics, Horizontal Cooperation, Lo-
cation Routing Problem, Multi-Depot Vehicle Routing Problem, Waste Collection Problem,
Reliability Analysis.



Resumen

En una economía globalizada, las compañías se enfrentan a numerosos retos asociados a las
complejas tareas de logística y distribución. Gracias al desarrollo de las tecnologías de la
información y la comunicación, los clientes pero también los competidores se encuentran en
cualquier lugar del mundo. Tiempos de respuesta más cortos, mayor calidad, menores costos
y excelente servicio al cliente son retos a los que se enfrentan las organizaciones y que gen-
eralmente se oponen entre sí. Por lo tanto, las compañías necesitan ser más competitivas, lo
que implica eficiencia económica y sostenibilidad. Como consecuencia, las organizaciones
se han visto obligadas a considerar nuevas estrategias gerenciales para optimizar sus pro-
cesos asociados. Una estrategia que las firmas pueden seguir para ser más competitivas es
la cooperación horizontal, generando así economías de escala, incremento en la utilización
de recursos y, reducción de costos. Lamentablemente, la estimación cuantitativa de tales
beneficios no es una tarea fácil, lo que constituye un serio obstáculo para la implementación
de la cooperación horizontal.

Muchos de estos retos en logística y transporte, así como algunas estrategias de coop-
eración horizontal pueden ser abordadas mediante diferentes variantes del conocido prob-
lema de enrutamiento de vehículos (VRP). Pese a que el VRP ha sido ampliamente estudiado
en los últimos 50 años, lamayoría de los trabajos publicados corresponde a versiones demasi-
ado simplificadas de la realidad, en las cuales la mayoría de los parámetros y restricciones
se asumen conocidos. Para llenar este vacío entre la teoría y aplicaciones de la vida real,
el concepto de problemas “enriquecidos” de enrutamiento de vehículos (RVRPs) ha surgido
recientemente, con el objeto de representar situaciones cada vez más realistas. Por lo tanto,
se necesitan nuevos métodos de solución para resolver de manera eficiente nuevos RVRPs,
así como para cuantificar los beneficios generados mediante la implementación de estrate-
gias de cooperación horizontal en aplicaciones reales, de tal modo que puedan ser usados
como apoyo a la toma de decisiones.

Particularmente, esta tesis analiza estrategias de cooperación en distribución urbana en
condiciones de incertidumbre, la cual es representada mediante el problema de enrutamiento
de vehículos con múltiples depósitos y demanda estocástica. Además, las estrategias de co-
operación se extienden hacia decisiones integradas de localización de instalaciones y planeación
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de rutas. Para ello, utilizamos el problema de localización y enrutamiento con restricciones
de capacidad. Adicionalmente, otros aspectos más realistas de la logística urbana se estudian
mediante el problema de recolección de basuras y la distribución de productos en regiones
montañosas. Para abordar tal variedad de problemas, se proponen diferentes metaheurísti-
cas basadas en aleatorización sesgada. Estos métodos son combinados con simulación (lo
que se conoce como simheurísticas) para resolver situaciones en las cuales la incertidumbre
aparece en algunos de los problemas anteriormente mencionados, permitiendo además la re-
alización de análisis de confiabilidad/riesgo de las soluciones obtenidas. Los métodos prop-
uestos han sido evaluados utilizando instancias de prueba tanto teóricas como de la vida real,
mejorando, en algunos casos, los mejores resultados conocidos en tiempos computacionales
relativamente cortos. Los notables beneficios obtenidos, gracias a la implementación de la
cooperación horizontal, alcanzan valores promedios de hasta 55% y 52% en costes económi-
cos y ambientales, respectivamente.

Palabras Clave: Problemas Enriquecidos de Enrutamiento de Vehículos, Simheurísti-
cas, Problema de Localización-Enrutamiento, Cooperación Horizontal, Problema de En-
rutamiento de Vehículos con Múltiples Depósitos, Problema de Recolección de Basuras,
Análisis de Confiabilidad.



Resum

En una economia globalitzada, les companyies s’ enfronten a nombrosos reptes associats
a les complexes tasques de logística i distribució. Gràcies al desenvolupament de les tec-
nologies de la informació i la comunicació, els clients es troben a qualsevol part del mon,
però també els competidors. Temps de resposta més curts, millor qualitat, costos menors i
excel·lent servei als clients son reptes als quals s’enfronten les organitzacions i generalment
son oposats entre ells. Per tant, les companyies necessiten ser més competitives, el que im-
plica eficiència econòmica i sostenibilitat. Com a conseqüencia, les organitzacions s’han
vist obligades a considerar noves estratègies gerencials per optimitzar els seus processos as-
sociats. Una Estratègia que les firmes poden seguir per ser més competitives es la cooperació
horitzontal, generant així economies d’escala, increment en l’ utilització de recursos i, re-
ducció de costos. Malauradament, la estimació quantitiva de tals beneficis no es una tasca
fàcil, el que constitueix un seri obstacle per la implementació de la cooperació horitzontal.

Molts d’aquests reptes en logística i transport, així com algunes estratègies de coop-
eració horitzontal poden ser abordades mitjançant diferents variants del conegut problema
d’enrutament de vehicles (VRP). Malgrat que el VRP ha estat àmpliament estudiat en els
últims 50 anys, la majoria dels treballs publicats corresponen a versions massa simplificades
de la realitat, en les quals la majoria dels paràmetres i restriccions s’assumeixen coneguts.
Per omplir aquest buit entre la teoria i aplicacions de la vida real, el concepte de problemes
“enriquits” d’enrutament de vehicles (RVRPs) ha sorgit recentment, amb l’objectiu de repre-
sentar situacions cada vegada més realistes. Per tant, es necessiten nous mètodes de solució
per a resoldre de manera eficient nous RVRPs, així com per quantificar els beneficis gener-
ats per la implementació d’estratègies de cooperació horitzontal en aplicacions reals, de tal
manera que puguin ser utilitzats com a suport per a la presa de decisions.

Particularment, aquesta tesi analitza estratègies de cooperació en distribució urbana en
condicions d’incertesa, la qual és representada mitjançant el problema d’enrutament de ve-
hicles amb múltiples dipòsits i demanda estocàstica. A més, les estratègies de cooperació
s’estenen cap a decisions integrades de localització d’instal·lacions i planificació de rutes.
Per això, utilitzem el problema de localització i enrutament amb restriccions de capac-
itat. Addicionalment, altres aspectes més realistes de la logística urbana s’estudien mit-
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jançant el problema de recol·lecció d’escombraries i la distribució de productes en regions
muntanyoses. Per abordar tal varietat de problemes, es proposen diferents metaheurístiques
basades en aleatorització sesgada. Aquests mètodes són combinats amb simulació (el que
es coneix com simheurístiques) per resoldre situacions en les quals la incertesa apareix en
alguns dels problemes anteriorment esmentats, permetent a més la realització d’anàlisis de
fiabilitat/risc de les solucions obtingudes. Els mètodes proposats han estat avaluats utilitzant
instàncies de prova tant teòriques com de la vida real, millorant, en alguns casos, els mil-
lors resultats coneguts en temps computacionals relativament curts. Els notables beneficis
obtinguts, gràcies a la implementació de la cooperació horitzontal, aconsegueixen valors
mitjans de fins al 55% i 52% en costos econòmics i ambientals, respectivament.

Paraules Claus: Problemes enriquits de encaminament de vehicles, simheurístiques,
problema de localització-encaminament, cooperació horitzontal, problema de encamina-
ment de vehicles amb múltiples dipòsits, problema de recollida d’escombraries, anàlisis de
fiabilitat.
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Chapter 1

Introduction

1.1 General Overview
Due to globalization and fierce market competition, companies are forced to become more
efficient in the planning and execution of their distribution tasks. Favored by the develop-
ment of Information and Communication Technologies (ICT), customers and competitors
are located everywhere. Therefore, challenges related to shorter lead times, quality, costs,
after sales services, etc., are nowadays more difficult to deal with, forcing companies to
consider new managerial strategies to optimize their processes. On the one hand, most of
these challenges which are directly related to Logistics and Transportation (L&T) activities,
can be tackled by considering different variants of the well-known Vehicle Routing Prob-
lem (VRP). Although the VRP has been widely studied in literature, most published works
consider oversimplified versions of real-life situations in which most parameters and con-
straints are assumed to be known in advance. To fulfill the existing gap among the academic
literature and real-life applications, the concept of Rich VRPs (RVRPs) has appeared in the
past few years. As the definition of RVRPs is still evolving, this thesis deals with two dif-
ferent ways to obtain richer versions of the VRP: (i) by adding different decision layers (i.e.,
Strategic and Tactical decisions) to the classical VRP; and (ii) by including different types
of constraints and uncertain data. It is to note that the aim of considering both ways is to
provide closer representations of real-life situations. On the other hand, one strategy that
companies –especially small and medium-sized ones– can follow to become more competi-
tive is to cooperate with other companies, allowing the use of economies of scale, increased
resource utilization levels, and costs reductions.

Cooperation in L&T among companies can occur in many ways and is usually classified
according to its structure: vertical, horizontal and lateral (Cruijssen et al., 2007c). Verti-
cal cooperation is well-known in supply chain management and has a long history reaching
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back to the early nineties with strong influences in strategic firmmanagement (Lambert et al.,
1999). Horizontal Cooperation (HC) has been defined by the European Commission (2001)
as “concerted practices among companies operating at the same level(s) in the market” and
by Bahinipati et al. (2009) as “a business agreement between two or more companies at the
same level in the supply chain or network in order to allow ease of work and co-operation
towards achieving a common objective”. It involves load consolidation centers, conjoint
route planning, and purchasing groups, with the purpose of reducing activity costs. Lat-
eral cooperation aims at gaining more flexibility by combining and sharing capabilities in
vertical and horizontal channels (Simatupang and Sridharan, 2002). The purpose of lateral
cooperation is synchronizing shippers and logistic service providers of multiple companies
in an effective logistics network. Due to the fact that the different enterprises in a horizontal
cooperation agreement are competitors, one of the key aspect when promoting HC practices
among companies is the estimation of the cost reductions associated with such cooperative
efforts. Unfortunately, it is not easy to quantitatively estimate these benefits, which consti-
tutes a serious obstacle for the implementation of HC.

Accordingly, new solving methods are needed to efficiently solve new RVRPs and quan-
tify the benefits generated through the use of HC strategies in real applications. Thus, they
can be used to support decision-making processes regarding different implementation de-
grees of HC. In particular, the proposed methods combine the main trends in metaheuristics
design. The first one is the use of simple and powerful methodologies (see e.g., Mladen-
ović et al. (2016)), to facilitate their replicability in real-settings. In second place, the use of
hybrid methods to benefit from the advantage of the underlying techniques (metaheuristics,
computer simulation, parallel computing, etc.). In that sense, this thesis is related to the de-
velopment of simple and efficient simheuristics (algorithms combining metaheuristics with
simulation), as an original way to deal with some of the most difficult problems that arise
when implementing HC, especially when dealing with real-life uncertainty and complexity,
e.g., random demands, stochastic traveling/processing times, etc. Thus, the main contribu-
tions of this thesis are: (i) from a theoretical point of view, the development of horizontal
cooperation concepts in different L&T activities such as urban distribution and integrated
facility location and routing; (ii) from a practical perspective, the development and imple-
mentation as software of different solving approaches to tackle new RVRPs, especially in
the context of urban distribution and city logistics. Some of these approaches belong to the
so-called simheuristic framework and have been used to deal with more realistic settings,
including uncertainty. The performance of these algorithms is tested using both theoretical
and real-life benchmark instances generating, in some cases, new best known solutions.
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Figure 1.1 Graphical summary of the problems considered in this thesis

Figure 1.1 shows how the aforementioned “ways to richness” are used to generate the
RVRPs studied in this thesis, which are represented by colored symbols. In the horizontal
axis, different decision levels are added to the pure operational CVRP (Upper left) in order
to obtain more complex and, at the same time, richer versions such as the Vehicle Routing
Problem with Multiple Depots (MDVRP) and the Capacitated Location Routing Problem
(CLRP). In the upper right corner, the CLRP appears as a richer version of the well-studied
MDVRP, by including facility location decisions. It is to note that the MDVRP is already
a RVRP. In addition, all problems at the top level (i.e. CVRP, MDVRP and CLRP) are
used to support horizontal cooperation concepts. The vertical axis represents how different
characteristics (constraints) are added to the aforementioned problems to generate newRVRP
variants. Moving from up to down illustrates how, depending on the presence of uncertain
parameters, the recommended solution approach goes from metaheuristics to simheuristics.

From a deterministic perspective, the Site-Dependent Asymmetric VRP with Heteroge-
neous Fleet (HSDAVRP) appears as a richer version of the CVRP by including asymmetric
distances and heterogeneous vehicle fleet to serve customer demands. Moreover, some cus-
tomers can not be served by all vehicle types (site-dependency). Regarding stochasticity,
the Waste Collection Problem with Stochastic Demands (WCPSD), see bottom-left corner
of Fig. 1.1, extends the CVRP by including: (i) landfills (intermediate facilities) to unload
the vehicle when its capacity is exhausted and before returning to the depot, (ii) time frames
to serve customer demands (time windows), (iii) lunch breaks for the vehicle drivers, and (iv)
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stochastic waste levels (demands) for each container. Next, the classical MDVRP is enriched
by considering stochastic demands in three different scenarios: (i) mono-objective with de-
terministic demands; (ii) mono-objective with stochastic demands; and (iii) multi-objective
with asymmetric distances and stochastic demands. Finally, the CLRP is extended to its
stochastic counterpart by taking into account stochastic demands (see bottom right corner).

1.2 Thesis Framework
This thesis has been developed in the context of the following research projects:

• ComputerCOOP: Computer-based decision support for Horizontal Cooperation
in Transportation and Logistics. Spanish Ministry of Economy and Competitive-
ness. TRA2013-48180-C3-3-P.

• Red de Excelencia en Transporte, Logística, y Producción Inteligente. Spanish
Ministry of Economy and Competitiveness. TRA2015-71883-REDT.

1.3 Objectives
The main goal of this thesis is the development of new hybrid algorithms combining simu-
lation with optimization techniques for solving rich vehicle routing problems under uncer-
tainty. These algorithms can be used to support newmanagerial strategies such as horizontal
cooperation in order to increase economic and environmental benefits while satisfying cus-
tomer demands. In order to attain this goal, we have proposed the following objectives:

1. To design new and computationally efficient hybrid algorithms by combining meta-
heuristics with simulation (simheuristics) to solve rich vehicle routing problems, with
and without uncertainty.

2. To implement the aforementioned algorithms as software and test them using bench-
marks (either from the literature or from real-life data).

3. To determine, how these algorithms can be used to support decision-making processes
related to the implementation of horizontal cooperation strategies.

4. To disseminate the outcomes of this thesis in several international indexed journals as
well as in international conferences.
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Figure 1.2 General structure of this thesis

1.4 Structure of this Thesis
The general structure of this thesis is depicted in Figure 1.2. The first part (chapter 2),
presents (i) a theoretical background concerning RVRPs, (ii) the different solving method-
ologies that have been considered and, (iii) horizontal cooperation concepts in logistics
and transportation. The second part of the thesis (chapters 3–5) analyzes different RVRPs,
whereas each chapter is self-contained in terms of notation, methodology, and results. Among
them, chapters 3 and 4 are devoted to RVRPs that can be used to support HC agreements
between companies. More specifically, chapter 3 deals with horizontal cooperation in urban
distribution under uncertainty. A cooperative scenario is represented by the Multi-Depot
VRP with stochastic demands considering both short and mid-term planning horizons. In
addition, a multi-objective approach is used to determine the vehicle fleet configuration us-
ing electric vehicles. Chapter 4, analyses the Capacitated Location Routing Problem in its
deterministic and stochastic versions. Competitive metaheuristics are proposed to cope with
the deterministic CLRP. In addition, the solving methods are combined with Monte Carlo
simulation (MCS) in order to address the stochastic version. This approach allows the com-
pletion of risk and reliability analysis on the found solutions. Moreover, this work is ex-
tended towards cooperative scenarios in integrated facility location and routing decisions,
assessing its benefits in terms of economic and environmental costs. In the following, chap-
ter 5 deals with two RVRPs in city logistics for which HC is not considered: route planning
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for waste collection and goods distribution in mountainous regions. A mathematical model
is proposed for the deterministic version of the WCP. It is also implemented in GAMS®.
This model is able to solve instances with up to 24 nodes in reasonable computing time.
Next, a simheuristic procedure based on Variable Neighborhood Search (VNS) is proposed
to tackle the stochastic version. The results of this approach, when tested in the deterministic
version, outperform previously reported ones. Since waste collection is a public service, hor-
izontal cooperation initiatives are referred as inter-municipal cooperation (Bel et al., 2014),
belonging to the public administration research field. Thus, HC is not considered for this
problem. In addition, the Heterogeneous Fleet with Site-Dependency and Asymmetric Dis-
tances Vehicle Routing Problem (HSDAVRP) is solved through a multi-round process and
tested using adapted benchmarks. Finally, chapter 6 outlines general conclusions and future
research lines. A summary of the outcomes of this thesis is also included in this final chapter.



Chapter 2

Theoretical Framework

2.1 Rich Vehicle Routing Problems
The Vehicle Routing Problem (VRP) is one of the most studied problems in the Opera-
tions Research (OR) literature. The classical version of the VRP is to determine a set of
routes to serve customer demands while respecting problem-specific constraints, at minimal
cost. These constraints are related to the number of visits to customers, vehicle capacity,
demand satisfaction, etc. Even in its simplest version, the VRP is known to be NP-Hard
(Non-Deterministic Polinomyal-time Hard) (Lenstra and Rinnooy Kan, 1981), which means
that there are not exact methods providing optimal solutions in a polynomial time for any
size of the problem. There are different variants of the VRP, depending on the considered
parameters and constrains, among the most populars we can find:

• Asymmetric VRP (AVRP): the cost of going from node 𝑖 to node 𝑗 may be different
from the cost of going from node 𝑗 to 𝑖.

• VRP with Heterogeneous Fleet (HVRP): the fleet is composed of vehicles with differ-
ent capacities. Therefore, the total demand of the customers served by a given vehicle
must respect the capacity of the corresponding vehicle.

• VRP with Multiple Depots (MDVRP): different depots are available to serve customer
demands.  In this version, customers need to be assigned to a depot from which they
are served. 

• VRPwith PickUp andDelivery (VRPPD): customers can demand (from the depot) and
return goods (to the depot). The capacity of the vehicle must be respected at any point
of the route. Within this variant, there are different possibilities like simultaneous
pick-up and delivery, transferable demands, etc.
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• VRPwith TimeWindows (VRPTW): each customer has a time interval in which it can
be served. Early arrivals generate waiting time while tardy arrivals are not allowed
(hard time windows) or penalized (soft time windows).

• VRP with Split Deliveries (VRPSD): customers can be served by different vehicles, if
this reduces overall costs.

• VRP with Backhauls (VRPB): customers can request for or return goods. All linehaul
customers have to be visited before the backhaul customers in a route.

More recently, thanks to the development of new optimization algorithms and also to
the growth in computational power, the interest of the scientific community has turned to-
wards more realistic VRP variants, which are known as Rich VRPs (RVRPs). However, the
definition of RVRPs is still in construction, as can be seen in the following. According to
Caceres-Cruz et al. (2014), a RVRP “deals with realistic (and sometimesmulti-objective) op-
timization functions, uncertainty (i.e., stochastic or fuzzy behaviors), and dynamism, along
with a wide variety of real-life constraints related to time and distance factors, use of het-
erogeneous fleets, linkage with inventory and scheduling problems, integration with ICT,
environmental and energy issues, and more”. Pellegrini et al. (2007) proposed that “the
problems grouped under this denomination have in common the characteristics of includ-
ing additional constraints, aiming at a closer representation of real cases”. More recently,
Lahyani et al. (2015) proposed a taxonomy for RVRPs based on the strategic, tactical and
operational characteristics involved in the VRP variants analyzed by them. This taxonomy
can be appreciated in Table 2.1. Furthermore, Lahyani et al. (2015) propose the follow-
ing definition: “ When a VRP is mainly defined through strategic and tactical aspects, at
least five of them are present in a RVRP. When a VRP is mainly defined through physical
characteristics, at least nine of them are present in a RVRP”.

In the following subsections, we introduce the RVRPs addressed in this thesis.

2.1.1 The Vehicle Routing Problem with Multiple Depots (MDVRP)
One of the more realistic variants of the VRP is the MDVRP in which the final delivery of
products (services) is done from several depots to a set of customers. The MDVRP consists
in finding a set of routes that minimize total distribution costs in such a way that: (i) each
vehicle starts and finishes its route at the same depot, (ii) each customer is served once
and, (iii) the total demand served by a vehicle must respect its capacity. The MDVRP is
more challenging than the VRP since it involves customer allocation decisions, in addition
to routing. Probably, the first authors to address the MDVRP were Carpaneto et al. (1989);
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1.Strategic & Tactical Characteristics 2. Operational Characteristics
1.1 Input Data 2.1 Vehicles
1.1.1 Static 2.1.1 Type
1.1.2 Dynamic 2.1.1.1 Homogeneous
1.1.3 Deterministic 2.1.1.2 Heterogeneous
1.1.4 Stochastic 2.1.2 Number
1.2 Decision Management Components 2.1.2.1 Fixed
1.2.1 Routing 2.1.2.2 Unlimited
1.2.2 Inventory and Routing 2.1.3 Structure
1.2.3 Location and Routing 2. 1.3.1 Compartmentalized
1.2.4 Routing and Driver Scheduling 2.1.3.2 Not Compartmentalized
1.2.5 Production and Distribution Planning 2.1.4 Capacity Constraints
1.3 Number of Depots 2.1.5 Loading Policy
1.3.1 Single 2.1.5.1 Chronological Order
1.3.2 Multiple 2.1.5.2 No Policy
1.4 Operation Type 2.1.6 Drivers Regulations
1.4.1 Pickup or Delivery 2.2 Time Constraints
1.4.2 Pickup and Delivery 2.2.1 Restriction on customer
1.4.3 Backhauls 2.2.2 Restriction on Road Access
1.4.4 Dial-a-ride 2.2.3 Restriction on Depot
1.5 Load Splitting Constraints 2.2.4 Service Time
1.5.1 Splitting Allowed 2.2.5 Waiting Time
1.5.2 Splitting not Allowed 2.3 Time Window Structure
1.6 Planning Period 2.3.1 Single Time Window
1.6.1 Single Period 2.3.2 Multiple Time Windows
1.6.2 Multiple Period 2.4 Incompatibility Constraints
1.7 Multiple Use of Vehicles 2.5 Specific Constraints
1.7.1 Single Trip 2.6 Objective Function
1.7.2 Multi-Trip 2.6.1 Single Objective

2.6.1 Multiple Objectives
Table 2.1 Taxonomy of RVRPs proposed by Lahyani et al. (2015)
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Kulkarni and Bhave (1985); Laporte et al. (1988); Tillman (1969). The work of Tillman
(1969) introduced an extended version of the Clarke & Wright Heuristic (CWS), while the
works of Carpaneto et al. (1989); Kulkarni and Bhave (1985); Laporte et al. (1988) were
the pioneers on exact methods to address the MDVRP. Regarding heuristic methods, the
work of Salhi and Sari (1997) proposed a multi-level heuristic which solves in a first stage
a VRP and then modifies the solution to make it feasible for the MDVRP. Lim and Wang
(2005) proposed two solving methodologies to tackle the MDVRP. A two-stage heuristic
which solves the customer allocation and the routing independently. The other heuristic
deals with both sub-problems in an integrated way. This second method outperformed the
first one. Some of the most efficient solving approaches for the multi-depot VRP are based
on metaheuristic algorithms, as the ones proposed by Pisinger and Ropke (2007), Vidal et al.
(2012), De Oliveira et al. (2016), Mancini (2016), Karakatič and Podgorelec (2015) and Li
et al. (2015). In the work of Juan et al. (2015b), customers are first allocated to one of the
available depots before each customers-depot assignment is solved as a VRP, this multi-start
process is then improved through an ILS algorithm. An updated review on the multi-depot
VRP can be found in Montoya-Torres et al. (2015).

The most common appearance of uncertainty in routing problems is that found in the
traveling times or in the customers’ demands. This thesis focuses on the second one, although
our approach could be easily extended so that it also considers stochastic traveling times.
Due to its relevance in practical applications, the VRP with stochastic demands has been
studied by several authors Balaprakash et al. (2015); Bertsimas (1992); Juan et al. (2011a);
Ritzinger et al. (2016), while the multi-depot version of the VRP with stochastic demands
(MDVRPSD) is much less studied in the literature Calvet et al. (2016); Zuhori et al. (2012).

2.1.2 The Location Routing Problem (LRP)
The LRP comprises all decision levels in Supply Chain Management, i.e. strategic, tactical,
and operational levels. Strategic decisions are related to the number and size of facilities to
be open, while tactical and operational ones are associated to customer allocation to opened
facilities and the corresponding routes to serve customer demands, respectively. In terms of
classical optimization problems, the LRP is the combination of both the Facility Location
Problem (FLP) with the Vehicle Routing Problem (VRP), which are known to be NP-hard
(Nagy and Salhi, 2007). Due to computational constraints, the first works addressing the
LRP attempted to solve it by firstly solve a FLP and then use the solution found to solve the
associated VRPs. However, thanks to the increasing computational power, recent published
works solve the LRP in a more integrated way. The LRP has a wide range of applications
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including, among others, food and drink distribution, waste collection, or disaster logistics
(Nagy and Salhi, 2007).

The benefits derived from taking into account routing decisions while locating facilities
were quantified for the first time by Salhi and Rand (1989). The authors showed that solving
a location problem and a routing problem separately does not necessarily lead to optimal
solutions. Despite the importance of the LRP in supply chain management, the number
of published works available in the literature is scarce compared to other logistic problems
(e.g. vehicle routing problem and its variants). However, in recent years the number of
publications related to the topic has increased considerably.

Since the LRP combines two NP-hard problems, exact methods have been scarcely used.
Thus, for instance, Belenguer et al. (2011) or Akca et al. (2009) solved instances with up
to 50 customers and 5-10 depots, while Baldacci et al. (2011) or Contardo et al. (2014a)
solved instances with up to 200 customers and 10-14 depots. Constructive clustering-based
heuristics have been proposed by Barreto et al. (2007); Boudahri et al. (2013), and Lopes
et al. (2008) to solve the LRP. Concerning metaheuristic approaches, the less used are pop-
ulation based algorithms Prins et al. (2006a); Ting and Chen (2013) while most employed
are neighborhood-based approaches Duhamel et al. (2010); Prins et al. (2006b); Quintero-
Araujo et al. (2016). Some matheuristics methods have been considered by Contardo et al.
(2014a); Escobar et al. (2014); Prins et al. (2007).

Some applications of the LRP have been studied in Mousavi and Tavakkoli-Moghaddam
(2013) where the authors studied a real-life LRP found in cross-docking operation. In ad-
dition, Muñoz Villamizar et al. (2013) studied the problem of locating capacitated urban
distribution centers and its integration with the routing problem with capacitated vehicles.

Regarding stochasticity, different uncertain parameters have been considered in liter-
ature, e.g. travel times, customers service request, customer demands, etc. A LRP with
stochastic customer request is presented in Albareda-Sambola et al. (2007) who considered
uncapacitated vehicles to perform routing tasks. Customers request for service is not known
in advance and is modeled by means of Bernoulli distribution. Probabilistic travel times are
included in Ghaffari-Nasab et al. (2012). The authors solved a bi-objective LRP in which the
analyzed objectives are the total costs and the maximum delivery time to the customers. In
case of stochastic demands, they have been modeled by means of fuzzy numbers (Mehrjerdi
and Nadizadeh, 2013; Zarandi et al., 2013) and random variables (Marinakis, 2015; Mari-
nakis et al., 2016).
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2.1.3 Other RVRPs in City Logistics
2.1.3.1 The Waste Collection Problem with Stochastic Demands (WCPSD)

Probably the first work to deal with municipal solid waste collection was introduced by Bel-
trami and Bodin (1974). Since then, various solution techniques for different variants of the
Waste Collection Problem (WCP) and its extensions have been proposed. While some works
formulating the WCP as an Arc Routing Problem (ARP) can be found (Bautista et al., 2008;
Ghiani et al., 2005), the following discussion focuses on recent publications using VRP for-
mulations. ARP formulations fit better for the collection of household refuse in small bins
from private homes while VRP models are more suitable for the collection of waste from
larger containers, which are often located close to retailers, construction sites, or waste col-
lection points of building blocks in metropolitan areas. More extensive literature reviews
are provided by Beliën et al. (2014); Ghiani et al. (2014); Golden et al. (2001) and, Han and
Ponce-Cueto (2015).

Most works on the deterministicWCP are case studies with some problem extension, e.g.:
combined routing and vehicle scheduling. For example, Baptista et al. (2002) elaborated an
extension of the Christofides and Beasley heuristic for the multi-period WCP (Christofides
and Beasley, 1984), modeled as a periodic VRP (PVRP) to combine vehicle scheduling
over multiple time periods with route planning to improve municipal waste collection in a
Portuguese city. Also addressing a multi-period WCP, Teixeira et al. (2004) developed a
cluster-first route-second heuristic to schedule and plan waste collection routes for different
waste types in a case study in Portugal with over 1600 collection sites. Nuortio et al. (2006)
presented a guided variable thresholding metaheuristic to solve a multi-period WCP with
several thousand collection points in Eastern Finland. Hemmelmayr et al. (2013) addressed
the PVRP with different waste types and up to 288 containers, which they solved with a
Variable Neighborhood Search (VNS) metaheuristic. They also discussed the single period
WCP with multiple depots, in which the landfills serve as vehicle depots and disposal sites
at the same time. Later, Hemmelmayr et al. (2014) discussed the integrated vehicle routing-
and container allocation problem using the same real-life problem set, which they solved
with a combination of a VNS metaheuristic for the routing part and a mixed integer lin-
ear programming-based exact method for the allocation. Ramos et al. (2014) extended the
typical objective of minimizing routing costs in order to include environmental concerns,
considering multiple waste types and numerous vehicle depots in a case study in Portugal.

Regarding route planning for waste collection, Kim et al. (2006) developed an extension
of Solomon’s insertion algorithm (Solomon, 1987) to optimize routes of a North American
waste management service provider, considering a capacitated vehicle fleet, time windows,
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and driver lunch breaks. Furthermore, they provided a benchmark set of 10 realistic instances
based on the original case study ranging from 102-2100 nodes. This benchmark set has
been used by several authors to test their solving approaches (Benjamin and Beasley, 2010;
Buhrkal et al., 2012; Ombuki-Berman et al., 2007). Recently, Markov et al. (2016) presented
a multiple neighborhood search heuristic for a real-word application of the waste collection
VRP with intermediate facilities. The authors considered a heterogeneous vehicle fleet and
flexible depot destinations in their approach.

2.1.3.2 The SiteDependentAsymmetricVehicleRouting ProblemwithHeterogeneous
Fleet (HSDAVRP)

The Site Dependent Vehicle Routing Problem (SDVRP) extends the classical VRP by incor-
porating compatibility dependencies among customers and vehicle types. The fleet consists
of several vehicle types, each of them with limited number of available vehicles. Not every
customer can be visited by every vehicle type, e.g. customers located in high congestion ar-
eas can not be visited by large vehicles. The objective is to find a set of routes that minimize
the total traveled distance. It can be characterized as a multilevel routing problem (Chao
et al., 1999). Since it is an extension of the VRP, the SDVRP is NP-Hard (Lenstra and Rin-
nooy Kan, 1981). The SDVRP was first introduced by Nag et al. (1988) who presented four
heuristics to solve it. Chao et al. (1999) presented a heuristic procedure consisting of (i) bal-
ancing the workload among the different vehicle types and solving it with the savings heuris-
tic, and (ii) improvement of solutions by means of uphill and downhill movements of one
customer at a time. They also proposed 12 new benchmark instances. Cordeau and Laporte
(2001) presented the SDVRP as a special case of the Periodic VRP (PVRP) and solved it by
adapting a Tabu Search algorithm conceived for the PVRP. Chao and Liou (2005) developed
a method that combines Tabu Search with deterministic annealing in which deviation values
are used to carry out intensification and diversification during the search. More recently,
modeled site dependency by means of time windows constraints. The authors proposed two
metaheuristics (Ant Colony Optimization-ACO and Tabu Search-TS). Both methods were
quite similar in terms of quality of the solutions, but ACO was slightly better.

In real-life settings, distances will depend upon the specific location of the nodes and also
on the structure of the road network. Regarding oriented networks, real distances might not
have to be symmetric (Rodríguez and Ruiz, 2012). However, the literature related to asym-
metric distance (costs) matrix is more scarce than its symmetric counterpart. The Asymmet-
ric VRP (AVRP) has been studied by Laporte et al. (1986) who proposed a branch and bound
algorithm capable of solving instances with up to 260 nodes. Fischetti et al. (1994) proposed
two bound procedures based on the so-called additive approach for the AVRP and a branch
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and bound algorithm tested with both real-life and random test problems. Vigo (1996) ex-
tended two classical heuristics -the Clarke & Wright Savings (CWS) (Clarke and Wright,
1964) and Fischer-Jaikumar (Fisher and Jaikumar, 1981)- to tackle the asymmetric version
of the CVRP. In addition, a new heuristic procedure is proposed to solve instances up to 300
nodes. This heuristic uses the additive approach of Fischetti et al. (1994) to generate initial
infeasible solutions which are then improved by insertion procedures combined with intra
and inter-route arc exchanges. The algorithms proposed by Nagata (2007) and Pisinger and
Ropke (2007) are recognized by their performance in both versions symmetric and asym-
metric. More recently, Herrero et al. (2014) proposed a multi-start algorithm based on a
randomized version of the CWS heuristic. In this work, a weighted savings list and specific
local searches for the asymmetric case are proposed obtaining competitive gaps when com-
pared to state-of-the-art methods. Leggieri and Haouari (2016) developed a matheuristic
with three sequential stages to deal with the AVRP. In a first phase, they reduce the prob-
lem by discarding non-promising arcs, then a feasible solution is obtained and, finally, it is
improved by solving a sequence of two or three Asymmetric Capacitated VRP (ACVRP)
reduced instances.

This thesis deals with different variants of the aforementioned RVRP. The main char-
acteristics of each of them are compared, in table 2.2, against the taxonomy proposed by
Lahyani et al. (2015). Although some of then do not fit in the definition proposed by this au-
thor, and considering that the definition of RVRPs is still in construction, they are considered
as RVRPs in this thesis.

2.2 Solving Methodologies
Operations Research aims to determine the best possible (optimal) solution for a complex
problem subject to a set of constraints, which are usually associated to scarce resources. De-
pending on the function to be optimized, the optimal solution will correspond to a maximum
or a minimum. Optimization problems might be solved by exact or approximate methods.
The choice of a given type of method relies on the complexity of the problem to be solved.

It is well-known that most of the problems in logistics and transportation are combinato-
rial optimization problems (COP). In COP, the feasible region is composed by combinations
of the problem data which implies that the number of feasible solutions grows exponentially
when the size of the problem increases. For this reason, these problems are known in the
literature as NP-Hard. NP-hardness means that there are not exact methods providing an
optimal solution in a polynomial time for any size of a given problem. Thus, exact methods
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Table 2.2 Characteristics of the RVRPs addressed in this thesis according to the taxonomy
proposed by Lahyani et al. (2015)

MDVRPSD AMDVRPSD MOAMDVRPSD CLRP CLRPSD HSDAVRP WCPSD

Strategic & Tactical Characteristics

1.1
1.1.1
1.1.2
1.1.3 X X
1.1.4 X X X X X
1.2
1.2.1 X X X X X
1.2.2
1.2.3 X X
1.2.4
1.2.5
1.3
1.3.1 X X
1.3.2 X X X X X
1.4
1.4.1 X X X X X X
1.4.2 X
1.4.3
1.4.4
1.5
1.5.1
1.5.2 X X X X X X X
1.6
1.6.1 X X X X X X
1.6.2 X
1.7
1.7.1 X X X X X X X
1.7.2

Opeartional Characteristics

2.1
2.1.1
2.1.1.1 X X X X X X
2.1.1.2 X
2.1.2
2.1.2.1 X X X X X
2.1.2.2 X X
2.1.3
2.1.3.1
2.1.3.2 X X X X X X X
2.1.4 X X X X X X X
2.1.5
2.1.5.1
2.1.5.2 X X X X X X X
2.1.6 X
2.2
2.2.1 X
2.2.2
2.2.3 X
2.2.4 X
2.2.5 X
2.3
2.3.1 X
2.3.2
2.4 X
2.5 X X X X X X X
2.6
2.6.1 X X X X X X
2.6.2 X
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can be used only for small instances as well as for too relaxed instances far away from real-
life situations, leading to the increasing interest in the development of approximate solution
methods.

2.2.1 Exact Methods
According to Talbi (2009), exact methods obtain optimal solutions guaranteeing their op-
timality. However, as previously said, they can be applied only to small-sized instances
of complex problems. Among the classical exact methods we can find Branch and Bound,
Branch and Cut, Branch and Price (commonly known as Branch and X family), Dynamic
Programming (DP), Constraint Programming (CP), etc. Regarding the Branch and X family,
the search for a solution is carried out over the whole search space by building a tree whose
root node is the problem and the corresponding search space. Leaf nodes are potential so-
lutions while internal ones are subproblems of the search space. Dynamic programming is
based on the recursive division of a problem into simpler subproblems. Constraint Program-
ming is used to model a problem in terms of variables, its domains, and constraints relating
them. CP generates short and simple programs easily adaptable to changing requirements in
which constraints are used to restrict and guide the search.

2.2.2 Approximate Algorithms
2.2.2.1 Heuristics

A heuristic is a procedure aiming to obtain an initial solution or an improved one for an opti-
mization problem. These procedures are based on common sense and try to provide solutions
of reasonable quality in very short computational times. However, they can not guarantee
the optimality of the obtained solution. Zanakis and Evans (1981) state that heuristics are
“simple procedures, often guided by common sense, that are meant to provide good but not
necessarily optimal solutions to difficult problems, easily and quickly”. They also recom-
mend to use heuristics when:

• An exact method is available, but it is computationally unattractive.

• There is no need of optimal solution.

• There is inexact or limited data.

• There are resource limitations like time or budget constraints.

• They are intermediary steps for other procedures.
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Heuristic methods can be classified in two main groups: constructive heuristics and im-
provement heuristics. The aim of constructive heuristics is to create a first feasible solu-
tion. The most famous routing heuristics belonging to this group are Nearest Neighborhood
Heuristic, Cheapest Insertion Heuristic and the Clarke & Wrigth Savings (CWS) algorithm.
Local Search (LS) is one of the most recognized heuristic of the second group. Given a
current solution s from the feasible region S, LS consists of finding, if possible, in the neigh-
borhood of s (N(s)) a new solution s’ with a lower cost than s, otherwise s is called a local
optima. K-Optimal neighborhoods (see Fig. 2.1) are one of the most used local search
strategies. They consist of withdrawing k arcs from the solution and replace them by k new
arcs. This strategy was proposed by Lin and Kernighan (1973) and its complexity is O(n𝑘),
therefore k is usually 2 or 3.

Figure 2.1 An example of 2-Opt exchange

2.2.2.2 Biased Randomization of Heuristics

As heuristics are mainly deterministic in nature, same problem inputs will lead to the same
results on each execution of the procedure. To overcome such inconvenient, randomization,
i.e. include some random steps (choices) within the algorithm, appears as an alternative
to generate different outcomes at each execution of the heuristic (Motwani and Raghavan,
1996). However, randomization in its purest form could destroy the logic behind the heuris-
tic procedure and bad quality solutions could appear during the construction/improvement
process. Therefore, in order to keep the original logic of good heuristics, some guidance
(bias) needs to be added within the randomized steps.

In the construction process of a feasible solution, Biased Randomization (BR) (Juan
et al., 2013a) guides random choices towards the most promising movements by means of
skewed probability distributions (e.g. geometric, triangular descendent, etc.). BR is similar
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to the greedy randomized adaptive search procedure (GRASP) elaborated by Feo and Re-
sende (1995). In contrast to GRASP however, which is based on a restricted candidate list
from which solution elements are chosen according to a uniform selection probability dis-
tribution, BR allows all eligible elements to be selected at every solution construction step.
At each iteration, higher probabilities are assigned to elements with the highest expected
objective function improvements.

2.2.2.3 Metaheuristics

Metaheuristics are algorithms conceived to escape from local optima. They are a sort of
“templates” with some components that must be tuned up for each problem in order to ob-
tain good solutions. Metaheuristics must incorporate intensification and diversification pro-
cedures. In intensification, promising regions are explored more thoroughly in the hope of
finding better solutions. In diversification, unexplored regions must be visited to be sure that
all regions of the search space are evenly explored and that the search is not confined to only
a reduced number of regions (Talbi, 2009). Figure 2.2 shows an example of the evolution of
costs when applying metaheuristics. Once a local optima is achieved, the metaheuristic tries
to escape from it, by accepting non-improving solutions, with the hope of finding the global
optima in another region of the search space.

Figure 2.2 Cost reduction by using metaheuristics

Metaheuristics can be classified according to the number of current solutions at each
iteration. Therefore, there are single-solution and population-based metaheuristics (Vidal
et al., 2013). In the first group, search algorithms operate on a single solution at each it-
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eration and try to improve the quality of the solution by exploring its neighborhoods itera-
tively. Tabu Search (Glover, 1986), Simulated Annealing (Kirkpatrick et al., 1983), Iterated
Local Search (Lourenço et al., 2010) and GRASP (Resende and Ribeiro, 2003) are exam-
ples of single solution metaheuristics. Tabu Search (TS) behaves like a LS algorithm but it
accepts non-improving solutions to escape from local optima when all neighbors are non-
improving solutions. When a local optima is reached, the best solution in the neighborhood
(non-improving) is selected. In order to avoid cycles, TS memorizes the recent search trajec-
tory and prohibites it during a given number of iterations. This memory is called the tabu list
which is a short-term memory that must be updated at each single iteration. Indeed, we have
to check at each iteration if a generated solution does not belong to this list. TS also consider
aspiration criteria, i.e. the possibility of allow the use of tabu movements (those movements
stored in the tabu list) if they provide a good solution. Simulated Annealing (SA), as indi-
cated by his name, simulates the annealing process which requires heating and then slowly
cooling of a substance (e.g. a metal) to obtain a strong crystalline structure. If the initial
temperature and the cooling rate are not well chosen, imperfections are obtained. In an opti-
mization problem, the objective function is analogous to the energy state of the system while
the global optimum corresponds to the ground state of the system. SA is a stochastic and
memoryless algorithm in the sense that it does not use any information gathered during the
search. At each iteration a random neighbor is generated. If it improves the cost function it
is always accepted, otherwise is accepted with a given probability depending on the current
temperature and the degradation of the objective function. Iterated Local Search (ILS) ap-
plies a local search operator to an initial solution which is then improved through successive
cycles of perturbation and local search steps. New solutions are accepted as the new current
solution under some conditions. This iterative steps are executed until a give stopping cri-
terion is reached. GRASP is an iterative greedy heuristic. At each iteration, two steps are
executed: the construction of a feasible solution by using a randomized greedy algorithm
and a local search applied to the constructed solution. The iterations are completely inde-
pendent, and so there is no search memory. Variable Neighborhood Search (VNS) is based
on the construction of different solution neighborhoods and the following descent phase to
define a local minimum in the corresponding neighborhood structure. Neighborhood struc-
tures are changed by applying shaking operators to the current solution, next local search
schemes are applied to find the corresponding local optimum. It is based on the following
principles: (i) a local minimum with respect to one neighborhood structure is not neces-
sary so with another, (ii) a global minimum is a local minimum with respect to all possible
neighborhood structures and, (iii) local minima with respect to one or several structures are
usually similar to each other in some aspects.
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Population-based methods usually start with a set of solution as an initial population, and
then try to obtain good solutions by iteratively selecting existing solutions from a population
according to their fitness and then combining them in order to get solutions with higher qual-
ity. Ant Colony Optimization (ACO) (Colorni et al., 1991) and Genetic Algorithms (GA)
(Holland, 1975) belong to this class. ACO imitates the cooperative behavior of real ants to
solve optimization problems. The main interest of real ant’s behavior is the use of collective
behavior to perform complex task such as finding the shortest path between two points. Ge-
netic Algorithms are based on the principles of the evolution and natural selection theories
in order to find from a given population (alternative solutions) the individuals that are well
adapted (best performing solutions) to the environment conditions (problem constraints). To
do that, an initial population is obtained (randomly) and at each generation (iteration) some
genetic operators (crossover, mutation, replacement) are applied in order to find the best
individual or population.

2.2.3 Simheuristics
Solving large-scale and NP-hard COPs is already a difficult task. If uncertainty is also con-
sidered in the form of stochastic components, then the solving process becomes even more
challenging. In our view, simheuristic algorithms are one of the most efficient solving ap-
proaches to deal with stochastic COPs. These approaches integrate simulation methods in-
side a metaheuristic framework in order to deal with the stochastic components of the COP
(Juan et al., 2015a). In Figure 2.3 we can appreciate the general schema of a simheuris-
tic. It operates as follows: given a stochastic problem setting, the random variables are
transformed into deterministic values by considering expected values; then, the resulting
deterministic problem can be solved using an efficient metaheuristic; next, the promising
solutions provided by the metaheuristic for the deterministic problem is evaluated under a
stochastic scenario by running a short simulation process in order to have estimates about the
quality of the solution in the stochastic world. Then, solutions are ranked according to their
stochastic costs. This process is executed until a given stopping criterion (usually time) is
reached. Next, an intensive simulation process (with high number of iterations) is executed
on the elite stochastic solutions in order to refine the estimates. Once again the solutions
are ranked by stochastic costs. To finish, risk/reliability analysis is performed and the best
stochastic solution is reported. It is to note that, in each of the simulation runs, the stochastic
variables are depicted from the best-fit probability distribution.

Different simheuristic algorithms have been presented in the literature and applied to
routing problems. Stochastic demands in VRPs are, for example, addressed in Juan et al.
(2011a, 2013b). Similarly, the arc routing problem with stochastic demands is discussed in
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Figure 2.3 General scheme of simheuristics. Adapted from Juan et al. (2015a)
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Gonzalez-Martin et al. (2016). Furthermore, simheuristics have been applied to tackle the
inventory routing problem with stochastic demands (Juan et al., 2014d), in which integrated
decisions about inventory management and routing activities are made. Other applications
of simheuristics can be found in the field of flow-shop problems (Juan et al., 2014a) or in
dynamic home-service routing with synchronized ride-sharing (Fikar et al., 2016).

2.3 Horizontal Cooperation
Current business environments are shaped by globalized markets, real-time communication,
and rapidly changing customer demands. Accordingly, companies are forced to efficiently
reorganize their logistic processes to stay competitive by quickly reacting to market changes.
In that sense, alliances or partnerships among companies are essential to reduce transporta-
tion and logistics (T&L) costs while increasing customer service levels. Some authors es-
tablish differences between horizontal cooperation and horizontal collaboration. According
to Spekman et al. (1998), cooperation is the threshold level of interaction, while collabora-
tion requires high levels of trust, commitment and information sharing among supply chain
partners. Nadarajah (2008) state that “collaboration indicates a stronger relationship, be-
tween firms or supply chains, than cooperation”. However, most of the available literature
refers to both terms as synonyms. Even though this thesis deals with some collaboration con-
cepts, from this point forward, this thesis will use the term Horizontal Cooperation (HC). In
the context of land-side T&L, mainly vertical cooperation between companies on different
supply chain layers –through concepts such as vendor managed inventories (VMI), efficient
customer response (ECR), etc.– has been widely discussed, while the literature on HC in
T&L is still an emerging topic (Leitner et al., 2011; Pomponi et al., 2015). The European
Union defines HC as “concerted practices among companies operating at the same level(s) in
the market (European Commission, 2001)”. This definition is extended by Bahinipati et al.
(2009), who state that HC is “a business agreement between two or more companies at the
same level in the supply chain or network in order to allow ease of work and co-operation
towards achieving a common objective”. Cost savings generated by the implementation of
HC strategies include the potential reduction of negative environmental impacts associated
with transportation activities (Lera-López et al., 2012; Ubeda et al., 2011). The importance
of sustainable L&T is underlined by the fact that road transportation is estimated to account
for around 18% of total greenhouse gas emissions in the European Union (Hill et al., 2011).
Even higher percentages have been reported for other parts of the world, such as the Asia
and Pacific region (United Nations, 2011) or the United States (United States Environmental
Protection Agency, 2014).
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Figure 2.4 shows a graphical example of different strategies to follow when executing
transportation tasks. On the one hand (left), a non-cooperative strategy is considered when
each company plans on its own its operation. Trucks of a given company are loaded at
the company’s central depot and serve its customers who are located in a scattered area.
As a consequence, route length is optimized from a single company perspective. On the
other hand (right), a cooperative scenario is considered when some assets (depot capacity,
vehicle capacity and customer information) are shared among the different companies and,
as a result, transportation is jointly planned. As can be seen, benefits like shorter, more
balanced and (usually) less pollutant routes are obtained.

Figure 2.4 Graphical comparison of non-cooperative(left) and cooperative (right) strategies
in transportation

2.3.1 Horizontal Cooperation in Logistics and Transportation
One of the first works on the topic was presented by Caputo and Mininno (1996), who dis-
cussed different policies including the standardization of electronic documents, pallets, and
cartons as well as multi-supplier warehouses, coordinated route planning, and load consol-
idation to support HC in the Italian grocery industry. Another early work on HC was elab-
orated by (Erdmann, 1999), who proposed a simulation model to quantify the potentials of
different levels of HC among freight carriers. The main strategies to facilitate the quantita-
tive analysis of potential benefits of HC are: (i) the implementation of information sharing,
(ii) load consolidation centers, (iii) conjoint route planning and, (iv) shared distribution re-
sources.
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Cruijssen and Salomon (2004) studied how orders sharing between freight carriers can
lead to savings between 5%-15% due to improved transport planning. Joint route planning
under varying market conditions was analyzed by Cruijssen et al. (2007a). Özener et al.
(2011) discussed how customer exchanges among freight carriers with different levels of
information sharing can lead to cost savings for the involved companies. Nadarajah (2008)
showed potential route savings and increased vehicle utilization through collaborative vehi-
cle routing and a strategic location of consolidation points for less-than-truckload (LTL) car-
riers. HC in the context of conjoint transportation planning of LTL shipments was also stud-
ied byWang and Kopfer (2014), who introduced exchange mechanisms for customer request
re-allocations and compare this scenario to isolated planning. Furthermore, HC has been in-
vestigated in the context of backhauling, with the aim of combining delivery and pickup
operations to increase vehicle utilization levels (Belloso et al., 2017a). An optimization
approach addressing backhauling routes as possibility to implement HC strategies among
companies was presented by Adenso-Díaz et al. (2014), who developed a GRASP algorithm
to solve the problem of conjoint delivery routes. A similar problem was addressed by Bailey
et al. (2011), who estimated that the percentage of cost savings for empty backhaul routes can
reach up to 27% through consolidated shipments. The potential costs and emission savings
through backhauling in a case study of a Spanish food distributor was discussed by Ubeda
et al. (2011). Juan et al. (2014c) and Belloso et al. (2017b) analyzed the VRP with clustered
backhauls as a particular case of HC. Wang et al. (2014) mixed subcontracting with HC to
increase operational efficiency. The resulting problem included heterogeneous fleet (own
fleet plus subcontracted vehicles). More recently, Pérez-Bernabeu et al. (2015) presented a
work on the quantification of potential savings in road transportation through HC. The au-
thors analyzed cooperation between carriers and shippers controlled by the same companies
in a semi-cooperative scenario (equivalent to a MDVRP) and two non-cooperative scenarios
(multiple VRPs with clustered and scattered customer distributions). The reported results
suggest that cooperative supply chain planning typically outperforms its non-cooperative
counterpart in terms of both distances and 𝐶𝑂2 emissions, with distance based savings of
up to 15% and even higher reductions of the environmental routing impact. Real-life appli-
cations of HC in urban distribution can be found in the work of Montoya-Torres et al. (2016).
The authors compared non-collaborative transportation with a collaborative scenario related
to tactical and operational decision-making using real-data from three retail companies lo-
cated in the city of Bogotá, Colombia. In this case, stochastic demands are assumed to be
known before route planning. Possible benefits through HC were quantified in terms of total
distance, 𝐶𝑂2 emissions, number of routes, and vehicle utilization levels. Results showed
benefits ranging from a reduction of 9% in the number of routes, with distance savings up to
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25%while 𝐶𝑂2 emissions decreased. Caballini et al. (2016) proposed a mathematical model
for cooperative planning of different truck carriers serving a seaport in order to reduce unpro-
ductive trips. They tested two cooperation strategies using real data from the port of Genoa,
Italy. Both strategies lead to higher profits when compared to the initial non-cooperative
scenario.

Very few works have been presented showing the advantages of cooperation along the
integrated routing and location decision process. Groothedde et al. (2005) introduced a de-
sign methodology for collaborative hub networks (CHN) in the context of fast moving con-
sumer goods in the Netherlands. An average logistics cost reduction of 14% was achieved
for origin-destination relations that used the CHN strategy.

Even though HC is receiving increased attention, different impediments still prevent a
widespread application of conjoint activities among companies. On the one hand, HC re-
quires a high level of trust between participating companies, since many of them are usually
competitors and reluctant to share valuable information (Özener and Ergun, 2008). On the
other hand, supply chains are specifically designed for different industries or retailers, mak-
ing an active cooperation among supply chain members more difficult. Another key issue
for HC practices is the fact that benefits associated with cooperative strategies cannot be
easily quantified for a single company, but are rather visible on an aggregated supply chain
level (Cruijssen et al., 2007b). One interesting approach to fulfill this gap is Game Theory,
as proposed by Lozano et al. (2013). In addition, fair cost and benefit allocation among HC
participants has been addressed by Audy et al. (2012), Dai and Chen (2012), and Krajewska
et al. (2008). Generally, the success of any partnership is highly dependent on commitment,
trust, and information sharing between the participating organizations (Singh and Power,
2009). For an extensive literature review on HC in T&L, the reader is referred to Cruijssen
et al. (2007c).

2.3.2 Different Stages of HC Agreements
Lambert et al. (1999) were the first to propose a HC taxonomy depending on the time horizon
of the cooperation agreement. They identified three types of HC: type I is related to short-
term cooperation, which is mainly operations oriented; type II involves business planning
integration among partners; type III refers to strategic alliances among companies on the
same supply chain level. A similar classification of cooperation agreements was suggested
by Verstrepen et al. (2009). The authors highlighted differences in the scope and intensity
of HC initiatives along operational, tactical, and strategic planning levels. While they sug-
gested that operational cooperation is mainly focused on joint execution and the sharing of
information, whereas HC on a tactical planning level involves more intensive planning and
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shared investments. Finally, strategic cooperation is aimed at joint long-term partnerships
according to their framework. Furthermore, the paper described the typical life cycle of such
partnerships and suggested a conceptual framework for managing HC in logistics.

Leitner et al. (2011) defined reduced costs, increased responsiveness, and improved ser-
vice levels as the relevant benefits of HC. The authors also developed a two-dimensional
taxonomy to characterize different levels of HC, based on the level of cooperation and the
product flow consolidation potential. Recently, Pomponi et al. (2015) elaborated a theory-
based framework for HC in logistics, developing coherent pairs of aims and shared assets
for different cooperation stages, including operational, tactical, and strategic levels. While
these authors characterized operational HC as related to shared information with the aim of
cost reductions, cooperation on a tactical level involves shared logistics facilities and enables
concepts such as multi-modal deliveries. In their view, the most advanced HC agreement is
based on strategic cooperation, which includes joint investments and a high degree of com-
mitment between the participating organizations. Generally, all discussed works stressed the
importance of mutual trust among companies to enable a successful partnership, whereby
higher trust is necessary as cooperation agreements are enhanced. Moreover, most authors
mentioned that the development of different HC stages is a continuous process. Thus, a
successful supply chain cooperation typically starts with combined activities that involve a
low involvement of the participating actors, before more advanced cooperation projects are
started.

2.4 Chapter Conclusions
In this chapter we have reviewed the existing literature related to the topic of this thesis.
First of all, we have presented the VRP and some of its well-known variants. In addition, we
have included some of the definitions of RVRP proposed in some recently published articles.
Next, a literature review on the RVRP analyzed in this thesis has been presented. Moreover,
some of the solving approaches have been considered, including exact, approximate methods
and simheuristics. Finally, we have introduced the concept of horizontal, more specifically
in logistics and transportation. We have identified two issues to be addressed in this thesis
through the development of different solving approaches, including simheuristics: (i) the
need for more realistic scenarios (RVRP) to support decision-making processes in city lo-
gistics; and (ii) the clear necessity of quantifying the benefits of incorporating HC strategies
in different degrees (stages) of implementation.



Chapter 3

Horizontal Cooperation in Urban
Distribution

The contents of this chapter are based on the following works:

• Quintero-Araujo C.L., Gruler A., Juan A.A. (2016). “Quantifying Potential Benefits of Horizontal Cooperation in Urban Trans-
portation Under Uncertainty: A Simheuristic Approach”. In: Luaces O. et al. (eds) Advances in Artificial Intelligence. CAEPIA
2016. Lecture Notes in Computer Science, vol 9868, 280-289. Springer, Cham. ISSN: 1611-3349. (Scopus)

• Quintero-Araujo, C.L; Gruler, A.; Juan, A.; De Armas, J.; Ramalhinho, H. (2017). “Using Simheuristics to Promote Horizontal
Collaboration in Stochastic City Logistics”. Progress in Artificial Intelligence. ISSN: 2192-6352. DOI: 10.1007/s13748-017-
0122-8 Accepted for Publication.

• Muñoz-Villamizar, A.F.; Quintero-Araujo, C.L.; Montoya-Torres, J.R.; Faulin, J. (Under Review). “Short- and Mid-term Evalu-
ation of the Use of Electric Vehicles in Urban Freight Transport Cooperation Networks: A Case Study”. Transportation Research
Part D: Transport and Environment. ISSN: 1361-9209. (JCR)

• Quintero-Araujo, C.L.; Juan, A.; Montoya-Torres, J.R.; Muñoz-Villamizar, A.F. (2016). “A Simheuristic Algorithm for Hor-
izontal Cooperation in Urban Distribution”. Proceedings of the 2016 Winter Simulation Conference, 2193-2204. Washington
D.C., USA. December 11-14. ISBN: 978-1-5090-4485-6. (ISI Proceedings, Scopus)

Goods distribution in urban and metropolitan areas concerns both pick-up and delivery in
retail, parcel and courier services, waste transport, transport of equipment for the construc-
tion industry, and a broad range of other types of transport (Russo and Comi, 2010). One
approach to perform urban distribution of goods consists of: (i) storage of goods inside a
logistics facility (warehouse, depot, etc.) and (ii) the corresponding route planning to de-
liver such goods to retail points (convenience stores). Traditionally, each company serves
its own customers from its central depot using its own (or subcontracted) fleet of vehicles.
However, Horizontal cooperation (HC) arises as a new strategy that can be implemented
between companies in order to reduce operational costs, among other benefits. Under some
general circumstances, HC in urban freight delivery can be modeled as a multiple depot
vehicle routing problem (MDVRP).
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The MDVRP consists on finding a set of routes whose total distance is minimal, in such
a way that: (i) each route starts and ends at the same depot, (ii) each customer is visited
exactly once, and (iii) the total demand of each route satisfies vehicle capacity (Montoya-
Torres et al., 2015). This is a challenging problem because it integrates the allocation of
delivery points to depots and its routing process Juan et al. (2015b). The MDVRP hence
belongs to the class of NP-hard problems. Therefore, the design of approximate algorithms
to efficiently solve this problem is required. In this chapter we analyze the case of coop-
erative goods distribution in both scenarios: mono-objective with stochastic demands and
multi-objective with different planning horizons. In the first case, demand values are known
once the vehicle arrives to the customer. Thus, this thesis proposes an approach combining
optimization with MCS, which is more appropriate to tackle this problem setting. In par-
ticular, the approach used belongs to the so-called simheuristics framework. In the second
case, a multi-objective function is proposed to explore the relationships between the delivery
cost and the environmental impact while considering different vehicle types (fuel-engined
vs electrical). Experiments with different costs and demands forecast are performed as well
to analyze short- and medium-term impacts related to the use of electric vehicles in the con-
figuration of the cooperative transport network.

3.1 Cooperative Distribution under Uncertainty
Two different scenarios related to urban freight distribution with stochastic demands are
compared: (i) a non-cooperative case, which is equivalent to solving one capacitated VRP
for each company (assuming each company is represented by a single depot); and (ii) a
cooperation case, which can be modeled as a multi-depot VRP since customer information
and company resources are shared among the different organizations.

3.1.1 Non-Cooperative Scenario
Decision making is completely decentralized in the non-cooperative scenario. No customer
information and/or resources are shared between companies on the same supply chain level.
It is assumed that each company serves its own set of customers, 𝐼 = {1, 2, ..., 𝑛}. The
random demands 𝐷𝑖 > 0 at each client 𝑖 are fulfilled by a homogeneous fleet of capacitated
vehicles stationed at a central depot, 0. Travel costs 𝐶𝑖𝑗 (e.g. distance, time, emissions, etc.)
between any two nodes are known. Under these circumstances, company-specific delivery
routes can be established by solving the capacitated VRP. With the objective of minimizing
total costs, problem constraints include that every customer is only served by one vehicle,
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that all routes start and end at the central depot, and that no vehicle can stop twice at the same
customer. While we consider a VRP to model the deterministic case, a VRP with stochastic
demands is considered for the case under uncertainty.

3.1.2 Cooperative Scenario
In contrast to the previous case, customer orders are exchanged between cooperating compa-
nies in the cooperative scenario. This leads to aggregated decisions in which vehicle capac-
ities, customer information, and storage space within logistic facilities are shared among the
companies participating in the cooperation agreement. From an optimization point of view,
this scenario corresponds to aMDVRP. In contrast to the single-depot VRP described above,
this problem setting includes a customer-depot assignment phase, during which clients are
assigned to different vehicle depots according to their geographic proximity. Especially in
scattered environments such as urban areas, this allows for the establishment of efficient
customer-depot allocation maps, from which the delivery routes are then created. As done
for the non-cooperative scenario, a multi-depot VRP in its deterministic and stochastic de-
mands versions is considered.

3.1.2.1 The Vehicle Routing Problem with Multiple Depots

According to Renaud et al. (1996), the MDVRP can be formalized as follows. Let 𝐺 =
(𝑉 , 𝐸) where 𝑉 is a set of nodes and 𝐸 is a set of arcs connecting each pair of nodes. 𝑉 is
composed by the subsets of 𝑁 customers and the subset of 𝑀 depots, 𝑉𝑐 and 𝑉𝑑 , respectively.
Each customer 𝑣𝑖 has a nonnegative demand 𝑑𝑖. Each arc has an associated cost, 𝐶𝑖𝑗 . The
fleet is composed by 𝐾 vehicles, each one with capacity 𝑃𝑘. In addition, each tour might
have a length limit 𝑇𝑘. Let consider a binary decision variable 𝑋𝑖𝑗𝑘 equal to 1 if the arc (𝑖, 𝑗)
is visited by the vehicle 𝑘, and 0 otherwise. Auxiliary variables 𝑦𝑖 are introduced to help
sub-tour elimination constraints. The following mathematical model for the MDRVRP was
proposed by Kulkarni and Bhave (1985).

Min
𝑁+𝑀

∑
𝑖=1

𝑁+𝑀

∑
𝑗=1

𝐾

∑
𝑘=1

𝐶𝑖𝑗𝑋𝑖𝑗𝑘 (3.1)
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Subject to:

𝑁+𝑀

∑
𝑖=1

𝐾

∑
𝑘=1

𝑋𝑖𝑗𝑘 = 1 ∀𝑗 ∈ 𝑉𝑐 (3.2)

𝑁+𝑀
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𝐾

∑
𝑘=1

𝑋𝑖𝑗𝑘 = 1 ∀𝑖 ∈ 𝑉𝑐 (3.3)
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𝐶𝑖𝑗𝑋𝑖𝑗𝑘 ≤ 𝑇𝑘 ∀𝑘 ∈ 𝐾 (3.6)
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𝑋𝑖𝑗𝑘 ≤ 1 ∀𝑘 ∈ 𝐾 (3.7)

𝑁+𝑀

∑
𝑗=𝑁+1

𝑁+𝑀

∑
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𝑋𝑖𝑗𝑘 ≤ 1 ∀𝑘 ∈ 𝐾 (3.8)

𝑌𝑖 − 𝑌𝑗 + (𝑀 + 𝑁)𝑋𝑖𝑗𝑘 ≤ 𝑁 + 𝑀 − 1 ∀𝑖 ≠ 𝑗 ∈ 𝑉𝑐 , ∀𝑘 ∈ 𝐾 (3.9)
𝑥𝑖𝑗𝑘 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝑉 , ∀𝑘 ∈ 𝐾 (3.10)

Equation (3.1) describes the objective function which consists in the minimization of
the costs of arcs used in the routes.  Constraints (3.2) and (3.3) ensure that each customer
is visited by one and only one vehicle.  Constraints (3.4) guarantee the continuity of each
route. Vehicle capacity constraints are represented by expressions (3.5).  Constraints (3.6)
ensure the cost constraint of each route.  Constraints (3.7) and (3.8) are to guarantee vehicle
availability.  Inequalities (3.9) are sub-tour elimination constraints.  Finally, (3.10) define the
decision variables.

3.1.2.2 MDVRP with Stochastic Demands

In this chapter, we assume that customers demands are not known in advance, i.e. they
are revealed when the vehicle arrives to the customer’s site. However, routes need to be
planned in advance, based on the expected value of the demand (usually this value is based
on the customer’s history). The uncertainty of customers demands could cause an expected
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feasible solution to become infeasible when the total demand of a given route is higher than
the capacity of the vehicle serving that route. This situation is known as a route failure.
Whenever a route failure occurs, a corrective action consisting on: (i) going to the depot, (ii)
reload the vehicle, (iii) go back to the last visited customer to serve it and, (iv) resume the
planned (original) route. As a consequence, the total costs of the planned routes is increased
by incorporating the costs of such corrective action. No further assumptions are made on
the demands other than that they follow a well-known theoretical or empirical distribution
– either discrete or continuous – with existing mean denoted by 𝐸[𝐷𝑖]. In this context, the
goal is to find a feasible solution (set of routes) minimizing the expected delivery costs while
satisfying all customer demands and vehicle capacity constraints.

3.1.3 Solving Approach
Our solution approach to the MDVRPSD consists of two main phases. First, we create
different customer-depot allocation maps which we evaluate using the randomized version
of the CWS to solve the deterministic counterpart of the stochastic problem. This process is
integrated into an ILS framework to create numerous allocation maps. Then, we apply MCS
to evaluate the behavior of the most promising allocation maps in a stochastic environment.

To create different customer-depot allocationmaps we use a biased round-robin criterion.
That is, a distance based priority list of potential customers for depot 𝑘 is created based on the
marginal savings 𝜇𝑘

𝑖 of serving a customer 𝑖 from each depot 𝑘 ∈ 𝑉𝑑 , compared to serving it
from the best alternative depot 𝑘∗ (such that 𝜇𝑘

𝑖 = 𝑐𝑘∗
𝑖 − 𝑐𝑘

𝑖 ). Next, the nodes are randomly
assigned. Each depot iteratively ‘chooses’ an unassigned customer to serve from its priority
list. At each step, the probability of adding the customer with the highest potential savings to
the map is defined by parameter 𝛼(0 ≤ 𝛼 ≤ 1). This parameter defines the specific geometric
distribution used to assign the diminishing probability distributions for each edge, whereby
all edges are potentially eligible.

Once all customers have been assigned, the created map is evaluated using the extended
version of the CWS based on biased randomization as described by Juan et al. (2011b). In or-
der to test different customer-depot allocation maps, we implement the described procedure
into an ILS framework. Hereby, we consider the deterministic counterpart of the stochas-
tic problem by using expected demands at each customer. After finding an initial solution
(which is set as 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒𝑠𝑡) and the corresponding allocation map, the map is perturbed by
applying a destroy-and-repair strategy, in which 𝑝% of customers are exchanged among the
depots. The resulting allocation map is evaluated again using the biased-ranzomized CWS
algorithm. Accordingly, the current best solution is updated when necessary. Furthermore,
we include an acceptance criterion which allows a solution worsening of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒𝑠𝑡 in
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Algorithm 1: Establishment of Promising Solutions
Inputs: 𝑉𝑑 ; 𝐼 ; 𝛼; 𝑝
//Depots, customers, distribution parameter, customers to be exchanged
M ← ∅
//Set of Promising Solutions
Priority List ← establish customer priorities ∀𝑑 ∈ 𝑉
establish customer-depot allocation map(𝛼)
𝑖𝑛𝑖𝑡𝑆𝑜𝑙 ← solve map using randomized CWS
𝑖𝑛𝑖𝑡𝑆𝑜𝑙 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒𝑠𝑡
while pertubtime not reached do

pertubate current map(𝑝)
𝑛𝑒𝑤𝑆𝑜𝑙 ← solve map using randomized CWS
if 𝑛𝑒𝑤𝑆𝑜𝑙 < 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒𝑠𝑡 || acceptance criterion is met then

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒𝑠𝑡 = 𝑛𝑒𝑤𝑆𝑜𝑙
end

end
return Set 𝑀 of promising deterministic solutions

some cases. More specifically, we accept the current best solution to worsen to a certain
extend when the last iteration from 𝑥 to 𝑥∗ was an improvement (𝑓(𝑥) > 𝑓(𝑥∗)), and the
difference between the current best solution and the new solution 𝑥∗∗ is not bigger than the
last improvement step (|𝑓 (𝑥) − 𝑓(𝑥∗)| < 𝑓(𝑥∗∗) − 𝑓(𝑥∗)). This increases the solution search
space and avoids the algorithm running into local minima. The described ILS procedure is
run for 𝑝𝑒𝑟𝑡𝑢𝑏𝑇 𝑖𝑚𝑒 seconds, during which the 𝑚 most promising (deterministic) solutions
are defined. See Algorithm 1 for an overview over the applied approach.

This solution set is then evaluated in a stochastic scenario. Hereby, we assume a positive
correlation between high-quality deterministic solutions and their stochastic counterpart with
relatively low-variances. By simulating only the most promising deterministic customer-
depot allocation maps we keep the computational effort manageable. To test the behavior of
each solution considering stochastic demands, we repeatedly sample random demands using
MCS (Raychaudhuri, 2008). That is, during each of a total of 𝑛𝐼𝑡𝑒𝑟 simulation runs, the
expected demand 𝐷𝑖 of each customer 𝑖 is sampled from a probability function using the
expected demands as mean and considering a demand variance 𝑉 𝑎𝑟[𝐷𝑖]. In our case we use
a log-normal distribution, but any other theoretical (e.g. Weibull) or empirical probability
distribution providing positive values could have also been used.

Through the repeated simulation of customer demands, the stochastic costs can be esti-
mated. As vehicle capacities are limited, route failures can occur as previously explained.
Accordingly, we penalize a route failure by adding additional costs for a round trip from
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the current customer to the depot and back. The overall stochastic solutions are estimated
by summing the costs of all round trip failures during each simulation run 𝑛 and dividing it
by the total number of simulation runs, see Equation (3.11). Route failures also affect the
reliability of the solution. For each route, we estimate its reliability as in Equation (3.12).
Therefore, the reliability of the solution is obtained by multiplying the reliabilities of the
corresponding routes.

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑆𝑡𝑜𝑐ℎ𝐶𝑜𝑠𝑡𝑠 =
∑𝑛𝐼𝑡𝑒𝑟

𝑛=1 𝑅𝑜𝑢𝑡𝑒𝐹 𝑎𝑖𝑙𝐶𝑜𝑠𝑡𝑛
𝑛𝐼𝑡𝑒𝑟 (3.11)

𝑅𝑜𝑢𝑡𝑒𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = (1 −

𝑛𝐼𝑡𝑒𝑟
∑
𝑛=1

𝑅𝑜𝑢𝑡𝑒𝐹 𝑎𝑖𝑙𝑢𝑟𝑒𝑠𝐶𝑜𝑢𝑛𝑡𝑛

𝑛𝐼𝑡𝑒𝑟𝑠 ) × 100% (3.12)

The simulation allows for a reliable estimate of the expected total costs of each suggested
MDVRP solution by summing the deterministic costs and 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑆𝑡𝑜𝑐ℎ𝐶𝑜𝑠𝑡𝑠. At this
stage we suggest the use of short and long simulation runs. By applying a short simulation
with 𝑛𝐼𝑡𝑒𝑟𝑆ℎ𝑜𝑟𝑡 iterations to each promising solution a first estimate of the overall stochastic
solution can be obtained. After this first simulation, the promising solutions are re-ranked
to define 𝑒 elite solutions through a more reliable simulation by using more simulation runs
𝑛𝐼𝑡𝑒𝑟𝐿𝑜𝑛𝑔. Finally our approach returns a list of MDVRPSD solutions. See Algorithm 2
for a description of the simulation procedure.

In addition, we have included the concept of safety stocks as a buffer capacity to face
demand uncertainty (Juan et al., 2011a). The idea of using such buffer is to reduce the
probability of suffering a route failure. Routes are constructed (planned) using a reduced
capacity of the vehicle (𝑉 𝐶′) which is computed as 𝑉 𝐶′ = (1 − %𝑆𝑆) × 𝑉 𝐶 , where 𝑉 𝐶
is the original vehicle capacity and %𝑆𝑆 is the established safety stock value. During the
aforementioned simulation process, the original capacity 𝑉 𝐶 is used.

3.1.4 Experiments & Results
The aforementioned algorithm was implemented as a Java application and tested on a Mac-
Book Pro Core i5 @2GHz processor with 8GB RAM. In order to allow the assessment of
the two considered scenarios, we have carried out experiments with different benchmark
instances from both theoretical and real-life settings.
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Algorithm 2: Simulation of Stochastic Demands
Input: 𝑀 ; 𝑛𝐼𝑡𝑒𝑟; 𝑉 𝑎𝑟[𝑑𝑖]
//Set of promising deterministic Solutions, number of Simulation runs (short and
long), demand variance level

E ← ∅
//Set of Elite Solutions
for each solution ∈ M do

run short simulation (𝑛𝐼𝑡𝑒𝑟𝑆ℎ𝑜𝑟𝑡)
estimate 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑆𝑡𝑜𝑐ℎ𝐶𝑜𝑠𝑡𝑠
if solution among best e stochastic solutions then

include solution in 𝐸
end

end
for each solution ∈ E do

run long simulation (𝑛𝐼𝑡𝑒𝑟𝐿𝑜𝑛𝑔)
end
return Set reliable stochastic MDVRPSD solutions

Table 3.1 Tested instances and their features

Instance name Depots Customers Vehicles x depot Vehicle capacity BKS
P01 4 50 4 80 576.87
P02 4 50 2 160 473.53
P03 5 75 3 140 641.19
P05 2 100 5 200 750.03
P09 3 249 12 500 3858.66
P10 4 249 8 500 3631.11
P18 6 240 5 60 3702.85
P19 6 240 5 60 3827.06
P20 6 240 5 60 4058.07
P22 9 360 5 60 5702.16

3.1.4.1 Theoretical Benchmarks

In order to allow the assessment of the aforementioned scenarios, we have carried out pre-
liminary tests using ten benchmark instances with different from different sizes proposed by
Cordeau et al. (1997) for the MDVRP. Their features are shown in Table 3.1.

Each instance was transformed to fit the non-cooperative scenario by using a greedy
distance-based heuristic (round robin tournament) which iteratively assigns each customer to
its closest facility. Both scenarios were tested using biased randomization-based algorithms
already available in the literature. The non-cooperative scenario was solved by using the
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SR-GCWS-CS proposed in Juan et al. (2011b), whereas the cooperative case was solved by
means of the BR-ILS algorithm explained in Section 3.1.3.

After some preliminary tests, the following values were established for the different pa-
rameters during the execution of tests:

• 𝑛𝐼𝑡𝑒𝑟𝑆ℎ𝑜𝑟𝑡 (short simulation runs): 30

• 𝑛𝐼𝑡𝑒𝑟𝐿𝑜𝑛𝑔 (long simulation runs): 5000

• 𝛼 (geometric distribution parameter for customer allocation) : 0.05-0.8

• 𝑝 (percentage of customers allocated to new depots): 10% - 50%

• 𝑚 (number of promising solutions): 10

• 𝑒 (number of elite solutions): 5

Table 3.2 presents the comparative results among non-cooperative (NC) and cooperative
(HC) scenarios in a deterministic environment (𝑉 𝑎𝑟[𝐷𝑖] = 0%𝑑𝑖). Next to the instance
specifications, this table reports the deterministic costs of scenario as well as the benefits
generated by implementing HC. On average, HC leads to route savings of 3.74% with values
rising up to 5.91%. Regarding 𝐶𝑂2 emissions, savings account for 2.90% on average.

Table 3.2 Results for the deterministic version

Non-cooperative Cooperative Gap
Instance Cost(1) CO2(2) Cost(3) CO2(4) (1) - (3) (2) - (4) (3) w.r.t. BKS
P01 612.69 528.64 582.34 504.62 -4.95% -4.54% 0.94%
P02 507.27 427.82 485.32 414.33 -4.32% -3.15% 2.48%
P03 677.35 572.83 649.99 563.09 -4.04% -1.70% 1.37%
P05 788.66 676.49 776.57 673.44 -1.53% -0.45% 3.54%
P09 4039.43 3538.21 3946.26 3450.76 -2.31% -2.47% 2.27%
P10 3895.55 3380.75 3748.01 3287.66 -3.79% -2.75% 3.22%
P18 4097.04 3471.12 3854.67 3297.92 -5.91% -4.99% 4.10%
P19 4097.04 3471.12 3891.99 3329.42 -5.00% -4.08% 1.69%
P20 4097.04 3471.12 4063.64 3443.35 -0.82% -0.80% 0.13%
P22 6145.56 5206.68 5852.68 4994.22 -4.77% -4.08% 2.64%

Average -3.74% -2.90% 2.23%

It is important to notice that, although HC practices contribute to reduce global costs, the
distribution of savings might vary from one company (depot) to another. This can be clearly
seen in Table 3.3, where costs have been detached by depot in both the non-cooperative (NC)
and the cooperative (HC) scenarios. As expected, when using HC some depots decrease their
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1001.81

631.65
676.69

690.55
588.38

D
epot5

NC
122.11

682.84
682.84

682.84
682.84

HC
122.11

624.01
585.34

664.00
670.47

D
epot6

NC.
682.84

682.84
682.84

682.84
HC

538.19
612.88

690.55
623.27

D
epot7

NC
682.84

HC
651.16

D
epot8

NC
682.84

HC
646.86

D
epot9

NC
682.84

HC
689.84

Total
NC

612.69
507.27

677.35
788.66

4039.43
3895.55

4097.04
4097.04

4092.41
6145.56

HC
582.33

485.32
649.99

776.57
3946.26

3748.01
3854.67

3891.99
4063.64

5852.68
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costs, while others increase them. Therefore, additional agreements among companies have
to be taken into account regarding a fair distributions of the global savings provided by HC
practices.

After analyzing the effects of HC in a deterministic environment, we now extend this
analysis to the stochastic environment, i.e., one in which uncertainty is present and, there-
fore, a simulation-optimization approach –as the one introduced in the previous section– is
required.

Table 3.4 shows the results for a low-variance demand (𝑉 𝑎𝑟[𝐷𝑖] = 5% 𝐸[𝐷𝑖]). For
each scenario, we include the expected total costs and the expected reliability of the best-
found solution. The last two columns depicts the improvements achieved by the cooperative
scenario in terms of expected total cost and reliability. It can be seen that the cooperative
scenario outperforms –in terms of total expected costs– the non-cooperative case in all con-
sidered instances. Additionally, the reliability of the solutions increases in the cooperative
scenario, i.e., route failures occur less frequently. Similar results are shown in Table 3.5 and
Table 3.6 for medium-variance demand (𝑉 𝑎𝑟[𝐷𝑖] = 10% 𝐸[𝐷𝑖]), and high-variance demand
(𝑉 𝑎𝑟[𝐷𝑖] = 15% 𝐸[𝐷𝑖]).

Table 3.4 Results with 𝑉 𝑎𝑟[𝐷𝑖] = 5% 𝐸[𝐷𝑖]

Non-cooperative Cooperative Gap
Instance Expected

Total Costs
Expected
Reliability

Expected
Total Costs

Expected
Reliability

Expected
Total Costs

Expected
Reliability

P01 638.06 96.31% 591.35 100.00% -7.32% 3.83%
P02 511.64 97.72% 491.83 100.00% -3.87% 2.33%
P03 682.25 98.84% 671.41 100.00% -1.59% 1.17%
P05 790.29 99.57% 773.09 100.00% -2.18% 0.43%
P09 4113.53 97.93% 4047.19 98.56% -1.61% 0.64%
P10 3914.09 99.30% 3902.52 98.51% -0.30% -0.80%
P18 4228.57 91.25% 3855.56 100.00% -8.82% 9.59%
P19 4227.91 91.37% 3923.45 100.00% -7.20% 9.45%
P20 4227.57 91.39% 4080.35 100.00% -3.48% 9.42%
P22 6341.26 91.38% 5899.48 100.00% -6.97% 9.43%

Average -4.33% 4.55%

3.1.4.2 Real Case Settings

In order to study the performance of the proposed procedure in a more realistic environ-
ment, simulation experiments were undertaken on using real data employed in the works of
Muñoz Villamizar et al. (2015) and Montoya-Torres et al. (2016). This dataset contains the
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Table 3.5 Results with 𝑉 𝑎𝑟[𝐷𝑖] = 10% 𝐸[𝐷𝑖]

Non-cooperative Cooperative Gap
Instance Expected

Total Costs
Expected
Reliability

Expected
Total Costs

Expected
Reliability

Expected
Total Costs

Expected
Reliability

P01 644.34 95.30% 591.35 100.00% -8.22% 4.93%
P02 514.17 97.03% 491.83 100.00% -4.34% 3.06%
P03 686.92 97.85% 671.41 100.00% -2.26% 2.20%
P05 802.23 97.84% 773.09 100.00% -3.63% 2.21%
P09 4178.24 96.08% 4083.71 99.97% -2.26% 4.05%
P10 3949.39 98.47% 3921.84 98.87% -0.70% 0.41%
P18 4294.17 88.68% 3855.62 99.99% -10.21% 12.75%
P19 4291.28 88.65% 3923.51 99.99% -8.57% 12.79%
P20 4292.20 88.67% 4080.35 100.00% -4.94% 12.78%
P22 6439.76 88.64% 5899.56 99.99% -8.39% 12.80%

Average -5.35% 6.80%

Table 3.6 Results with 𝑉 𝑎𝑟[𝐷𝑖] = 15% 𝐸[𝐷𝑖]

Non-cooperative Cooperative Gap
Instance Expected

Total Costs
Expected
Reliability

Expected
Total Costs

Expected
Reliability

Expected
Total Costs

Expected
Reliability

P01 650.40 94.42% 591.35 100.00% -9.08% 5.91%
P02 512.92 98.63% 491.83 100.00% -4.11% 1.39%
P03 690.49 97.04% 671.41 100.00% -2.76% 3.05%
P05 796.21 98.18% 773.09 100.00% -2.90% 1.85%
P09 4205.89 95.37% 4111.02 95.20% -2.26% -0.18%
P10 3983.54 97.89% 3936.38 97.94% -1.18% 0.05%
P18 4336.48 87.32% 3855.88 99.94% -11.08% 14.45%
P19 4332.61 87.40% 3923.74 99.94% -9.44% 14.35%
P20 4337.97 87.11% 4080.45 99.97% -5.94% 14.76%
P22 6502.50 87.32% 5899.89 99.94% -9.27% 14.45%

Average -5.80% 7.01%

location of the three major convenience stores (proximity shops) operating in Bogotá, D.C.
(Colombia). Bogotá is the capital of and the largest city in Colombia. It is the fifth largest
city in Latin America and twenty-fifth in the world (Citi Mayors, 2011). The selection of
Bogotá as the city under study is at least twofold. Size and dynamics of Bogotá allow having
a complex and complete example of the behavior of cities in emerging economies. Modern
convenience stores offer not only food, snacks, and drinks, but also daily services, includ-
ing payment of bills (e.g., utilities), purchase of tickets (e.g., trains/buses, concerts, or sport
events) and many others. Current locations of proximity shops of selected companies are ob-
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tained using a geographical information system (GIS). Company E has a total of 16 stores,
Company O has a total of 35 stores, and Company M has 10 stores. The selected vehicle for
urban freight transport was the Renault Kangoo Van, with 800 kg of payload and 119 g/km
𝐶𝑂2 emissions (Renault, 2015). Finally, ten different sets of demands (instances) for all the
61 delivery points were generated. The algorithm was modified to include asymmetric dis-
tances by using a weighted savings list associated to the arc connecting nodes 𝑖 and 𝑗 which
is computed as defined in Herrero et al. (2014):

̂𝑆𝑖𝑗 = 𝛽 × 𝑚𝑎𝑥 (𝑆𝑖𝑗 , 𝑆𝑗𝑖) + (1 − 𝛽) × 𝑚𝑖𝑛 (𝑆𝑖𝑗 , 𝑆𝑗𝑖), 𝛽 ∈ [0.5, 1] (3.13)

In equation (3.13), 𝑆𝑖𝑗 is the saving associated to the arc (𝑖, 𝑗) and 𝑆𝑗𝑖 is the saving
associated to the arc (𝑗, 𝑖).

We have compared the proposed approach to the work of Muñoz Villamizar et al. (2015),
in which a hierarchical approach using mathematical programming was proposed to solve
the same problem. Tables 3.7 and 3.8 present a comparison of results for the route length
(travel distance) and load, respectively, for each of the ten tested instances. Table 3.7 reports
the values, in kilometers, of the total length of the delivery routes for each company under
study, as well as the total distance of the three companies together. The last column reports
the percentage deviation (gap) between these two approaches. The last row of the table
presents the average values of length routes. Table 3.8 presents results obtained for the
values of the total load transported by vehicles in terms of the units of product demand.
Note that our simulation-based approach was able to improve the solutions for route length,
provided by the hierarchical approach of Muñoz Villamizar et al. (2015), in every instance.
Route length improvements have an average of around 7%. On the other hand, our approach
re-distributes load of company O to company M by an average of 3.1%, while company E
continues transporting, on average, the same load. This implies that our approach not only
improves routing solution, but also improves the customer allocation to depots.

In order to better assess the behavior of the proposed procedure, an extended simulation
experiment was carried out. To this end, we compared the performance of the proposed pro-
cedure in terms of the total distribution cost under a stochastic demand behavior. High and
mid values of the variance of demand were considered, respectively 50% and 20%, for each
of the ten instances previously tested. In addition, a safety stock is allowed with values of
1% and 5% of the vehicle capacity. Table 3.9 presents the average values of key performance
metrics allowing the comparison of results for these scenarios. The total stochastic cost cor-
responds to the total distribution cost under stochastic behavior (i.e. distance cost plus failure
costs). The distance cost is the deterministic cost (distance) of planned routes. The failure
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Table 3.7 Route length comparison (km) between our approach and a former one.

Results from Muñoz Villamizar et al. (2015) Our Best Results
Scenario Dist. E Dist. O Dist. M Total Dist. Dist. E Dist. O Dist. M Total Dist. Gap %

1 72.6 47.74 94.79 215.13 74.6 52.49 82.92 210.01 -2.38
2 72.1 50.99 104.42 227.51 49.12 49.84 112.87 211.83 -6.89
3 68 61.34 100.47 229.81 47.5 47.54 114.94 209.98 -8.63
4 64.5 59.39 104.12 228.01 63.85 46.44 96.77 207.06 -9.19
5 69.8 45.89 99.32 215.01 74.85 53.59 83.57 212.01 -1.40
6 104 57.64 96.79 258.43 64.6 34.64 110.07 209.31 -19.01
7 67.3 54.24 95.02 216.56 62.3 53.84 93.72 209.86 -3.09
8 71.3 50.59 102.04 223.93 48.1 49.84 111.47 209.41 -6.48
9 74.3 50.09 95.69 220.08 49 49.84 110.32 209.16 -4.96
10 57.05 67.24 98.47 222.76 49.12 49.84 112.37 211.33 -5.13

Average 72.1 54.52 99.11 225.72 58.3 48.79 102.9 210 -6.97

Table 3.8 Total load comparison between our approach and a former one.

Results from Muñoz Villamizar et al. (2015) Our Best Results
Scenario Load E Load O Load M Total Load Load E Load O Load M Total Load

1 720 728 1118 2566 795 797 974 2566
2 734 724 1320 2778 736 679 1363 2778
3 721 723 1144 2588 605 526 1457 2588
4 742 728 1105 2575 795 673 1107 2575
5 723 773 1131 2627 772 737 1118 2627
6 733 722 1252 2707 791 445 1471 2707
7 720 727 1262 2709 769 795 1145 2709
8 721 771 1366 2858 648 655 1555 2858
9 749 738 1356 2843 672 655 1516 2843
10 726 746 1289 2761 706 589 1466 2761

Average 728.9 738 1234.3 2701.2 728.9 655.1 1317.2 2701.2

cost is related to the corrective action executed in order to satisfy the total demand of clients
(round trip customer-depot).

Box-and-whisker plots are presented in Figures 3.1 and 3.2 comparing the total stochastic
cost and the reliability values by the different values of variance and safety stock. After
these figures, we conclude that there is a clear difference in the quality of solutions with low
variance and low safety stock level versus high variance and high level of safety stock. It
might not be surprising that total costs are higher for the highest variance of demand (i.e.,
1.89% higher on average). Nevertheless, a higher reliability is achieved for the highest safety
stock level (i.e., 3.97% higher on average). Therefore, it can be concluded that safety stock
avoids failures in delivery in a greater proportion than the generated over cost. Another
interesting feature is the small variance in the reliability for just 5% of safety stock.
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Figure 3.1 Comparison between scenarios for stochastic costs.

Figure 3.2 Comparison between scenarios for reliabilities.
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3.2 Multi-Objective Cooperative Urban Freight Distribu-
tion with Electric Vehicles

As pointed out before, the VRP is a central problem in transportation (Bektaş et al., 2016).
The standard objective function for traditional VRP is to minimize the total traveling dis-
tance, while many of the works on the Green VRP (GVRP) consider the reduction of pol-
lutants, such as nitrogen oxides (𝑁2𝑂), particulate matter, and greenhouse gases (GHG).
Some works directly add those items into the objective function, while many more consider
fuel consumption related terms (Demir et al., 2014b), since fuel consumption can sometimes
be used as a surrogate measure for the emissions of air pollutants. The simultaneous con-
sideration of economic and environmental objectives leads to a more complex optimization
problem. Furthermore, an important characteristic of real-life logistics problems found in
enterprises is that decision-makers, very often, have to simultaneously deal with multiple
objectives. These objectives are sometimes contradictory (e.g., minimizing number of ve-
hicles and maximizing service level). As pointed out by Pérez-Bernabeu et al. (2015), very
few papers have discussed horizontal cooperation through multi-objective / multi-criteria
decision-making models. There are very few papers in the literature on the MDVRP that
consider multiple objectives (Montoya-Torres et al., 2015). In the context of GVRP, using
electric vehicles represents a promising opportunity for reducing costs and pollution caused
by transport and mobility operations. Despite the fact that some limitations, such as high ini-
tial investments, have hampered their diffusion, there is continuous technological progress to
improve them (Felipe et al., 2014; Feng and Figliozzi, 2013). As pointed out by Arslan et al.
(2015), the use of electric vehicles in the logistic operations led to several new problems
flourishing in the literature such as pollution-routing problem (Bektaş and Laporte, 2011;
Demir et al., 2014a; Franceschetti et al., 2013; Çağrı Koç et al., 2016), green-vehicle rout-
ing problem (Erdoğan and Miller-Hooks, 2012; Felipe et al., 2014; Jabir et al., 2015; Ćirović
et al., 2014), location optimization of alternative fuel stations (Yıldız et al., 2016), andmixed-
fleet routing problems (Goeke and Schneider, 2015; Schneider et al., 2014). These studies
establish the environmental and operational impacts of electric vehicles from the logistic
perspective. As stated by Lin et al. (2014), GVRP have just arisen in the literature in recent
years and there is a continuing need to enrich the related studies either through theoretical
contributions or by real applications.
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3.2.1 Methodology
Our methodology, based on the one of Montoya-Torres et al. (2016); Muñoz Villamizar et al.
(2013), is composed of three main phases. Phase 1 defines the characteristics of the urban
freight transport network. Phase 2 solves customer allocation and routing sub-problems;
and, finally, phase 3 allocates the type of vehicles and creates an efficient relative frontier.
Details of each phase are described next.

3.2.1.1 Characterization of Urban Transport Network

In this phase, we identify elements of the case under study. Key elements are: location
of depots and delivery points (e.g., stores), demand of each delivery point, distances/cost
between nodes (i.e. travel distances between depots and delivery points and between delivery
points themselves). In addition, we consider the different characteristics of the available
vehicle types (e.g. power source, autonomy, 𝐶𝑂2 emissions, capacities, etc.)

As this approach seeks to assess the environmental impact, emission factors for each
vehicle type must be calculated in order to compute total 𝐶𝑂2 emissions. These emission
factors are computed considering (i) the emissions generated by the production of the energy
and, (ii) the emissions due to the transportation operation itself. As energy can be generated
using different sources (e.g., oil, natural gas, nuclear, hydroelectric or solar), production
of energy has different costs and emissions depending on both the local diversity of power
plants and distribution network efficiency. Therefore, 𝐶𝑂2 emissions will be different for
each country where this approach is applied. In addition, energy consumption depends on
both the given use and the efficiency of the vehicles, i.e., costs and emissions generated in
the delivery process directly depend on the activity and usage of fleet vehicles. Estimations
of these factors will be shown further in the experiments section.

3.2.1.2 Costumers’ Allocation and Routing

In this phase, we use the Algorithm 1 described in subsection 3.1.3.

3.2.1.3 Allocation of Vehicle Types and Efficient Relative Frontier

After routes are defined minimizing the distance, a multi-objective evaluation is performed
to evaluate the impact of the use of electric vehicles compared to gasoline vehicles, using
a relativized efficient frontier. It is important to recall that very few papers have discussed
horizontal cooperation or MDVRP through multi-objective / multi-criteria decision-making
models. This relativized efficient frontier is proposed by Muñoz Villamizar et al. (2017).
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The efficient frontier is the set of non-dominated solutions for the combination of differ-
ent objectives. Depending on the decision maker preferences, a different solution could be
chosen from the efficient frontier. In our approach, two impacts are taken into account in
this evaluation: economic and environmental costs (𝐶𝑂2 emissions). However, other objec-
tive functions, as social impact, could be simultaneously evaluated using this relativization
methodology. This is, as each impact has different units (i.e. US$ for the costs and 𝐶𝑂2
emissions for the environmental impact), it is convenient to perform the relativization of
each of them. Thereby, every impact can be evaluated in the same objective function as
a weighted-sum of factors. The proposed procedure is different from other known multi-
objective approaches and determines the type of required vehicles for each route defined in
the previous phase. It is important to clarify that this sequential approach implies that re-
sults of the previous phase are inputs for this one. The relativized efficient frontier is created
using three different objective functions (i.e., 𝑓1, 𝑓2 and 𝑓3), presented next. Note that our
approach uses one objective function for each evaluated impact (i.e., 𝑓1 for economic cost
and 𝑓2 for environmental impact) and an additional function that aggregates the two previous
ones (i.e. 𝑓3). First objective function, 𝑓1, computes the economic cost of using a specific
combination of gasoline and electric vehicles in the routes (e.g., route 1 uses an electric car,
route 2 a gasoline car, etc.). In our approach, economic cost is calculated using the purchase
price of each vehicle, its maintenance cost and the cost of used energy (i.e., gasoline or elec-
tricity) in transport operation. Objective function 𝑓2 computes the environmental impact.
Environmental impact is estimated using the 𝐶𝑂2 emissions created by the production of
the energy and the emissions created by the consumption of the energy itself. According
to this, our approach evaluates every possible combination of allocation of vehicle types to
each route, by computing 𝑓1 and 𝑓2 separately. Best solutions obtained so far, for each ob-
jective function, are kept as the basis solution 𝑓 ∗

1 and 𝑓 ∗
2 . Then, objective function 𝑓3 is

computed (see Equation 3.14) with every possible combination of allocation of vehicle used
in previous step. It is important to emphasize that functions 𝑓1 and 𝑓2, along with 𝑓 ∗

1 and
𝑓 ∗

2 , must be evaluated previously and are inputs of 𝑓3.

𝑓3 = 𝛼 × 𝑓1
𝑓 ∗

1
+ (1 − 𝛼) × 𝑓2

𝑓 ∗
2

(3.14)

Note that the objective function 𝑓3 is used to calculate a relativized solution. This rel-
ativization occurs giving different weights to each impact (i.e. 𝛼 weight for economic cost
and 1–𝛼 weight for 𝐶𝑂2 emissions). According to the preferences of the decision maker,
different weights for each impact can be evaluated. It should be noted that the minimum
value for this third function is 1, as a result of the relativization. Then, for each selected
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weight of each impact (i.e. 𝛼 and 1–𝛼), the best solution of 𝑓3 obtained so far, is kept as the
basis solution. Finally, the efficient frontier is created using the best results in third function,
𝑓3, for all combinations of selected weights.

3.2.2 Experiments & Results
For the short-term evaluation (i.e. 1 year), weekly demands for all the 61 delivery points
was randomly generated from a uniform distribution between the 1% and the 10% of the
maximum vehicle load capacity. For the mid-term evaluation (i.e. 5 years), annual increases
of 5% and 25% are added to this random generation. In order to replicate the experiments,
full origin-destination matrices and stochastic demand sets are available upon request. It is
also assumed that availability of the necessary vehicles achieves a 100% of service level.

Selected vehicles for urban freight transport were Renault Kangoo Van (gasoline vehi-
cle) and Renault Kangoo Z.E. (electric vehicle). Characteristics of these used vehicles are
resumed in Table 3.10. Note that both models have the same payload and are from similar
category, thus they can be comparable one each other. As mentioned before, the economic
cost components that we consider in this study are the cost of used energy (i.e., electricity
or gasoline), the price of each vehicles and the yearly maintenance cost (Table 3.11).

Table 3.10 Characteristics of each vehicle type (Renault Colombia, 2016)

Kangoo Van (Gasoline Car) Kangoo Z.E. (Green Car)
Price US$ 15,423.73 US$ 28,813.56

Payload 650Kg 650Kg
Energy Consumption 4.3 litres/100km 16.2 kWh/100Km*

𝐶𝑂2 emissions 112 g/Km 0 g/Km

Table 3.11 Approximate yearly maintenance cost (US$) per vehicle type (Audatex, 2016).

Kangoo Van (Gasoline Car) Kangoo Z.E. (Green Car)
Year 1 US$ 324 US$ 138
Year 2 US$ 430 US$ 457
Year 3 US$ 351 US$ 269
Year 4 US$ 733 US$ 524
Year 5 US$ 667 US$ 138

Alternatively, environmental components of the distribution process are: the 𝐶𝑂2 emis-
sions by the production of the energy (i.e. electricity or gasoline) and the emissions by the
consumption of the energy itself. It is to note that each country has a mix of power plants that
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use different energy sources; so, the economic cost and the 𝐶𝑂2 emissions will be different
for obtaining electricity or gasoline in each country. According to the ColombianMinistry of
Mines and Energy, 64% of electricity in the country is produced by water resources, 31% by
thermal resources, and other sectors such as wind energy is now being explored (Comisión de
Regulacion de Energia y Gas, 2015). The price of electricity in Bogotá is $0.18/𝑘𝑊 ℎ (CO-
DENSA, 2016) and the price of gasoline is $0.67 per liter (GlobalPetrolPrices.com, 2016).
Colombia has a rate of 0.199 kg of 𝐶𝑂2 emissions per kWh of electric energy produced and
2.33 kg of 𝐶𝑂2 emissions per litre of gasoline produced (Unidad de Planeación Minero En-
ergética , 2016). These factors are used to calculate the quantity of emissions created by the
use of each energy source. Finally, with this data, costs and 𝐶𝑂2 emissions per kilometer
were calculated for both type of vehicles and are presented in Table 3.12. Note that 𝐶𝑂2
emissions per kilometer are computed as the sum of the emissions generated by the usage of
the vehicle and the ones generated by producing its respective energy source (i.e. gasoline
or electricity).

Table 3.12 Variable costs and emissions per vehicle type

Kangoo Van (Gasoline Car) Kangoo Z.E. (Green Car)
Cost / km 0.029 US$ /km 0.023 US$/ km

𝐶𝑂2 emissions / km 0.212 kg/km 0.032 kg/km

As an initial comparison, results for routing of Muñoz Villamizar et al. (2017) and our
results are presented in Figure 3.3. Notice that our approach was able to improve the rout-
ing solutions provided by the heuristic method of Muñoz Villamizar et al. (2017), in an
average of 10.3%. This value is equivalent to an average reduction of 23 km in routing dis-
tances per instance. Nevertheless, given the cost of traveling one kilometer (less than 0,029
US$/kilometer), money savings are not as significant as the distance reduction.

Figure 3.3 Distances comparison of our results vs Muñoz Villamizar et al. (2017)
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Finally, complete results of Muñoz Villamizar et al. (2017) with updated data and our
approach are presented in Tables 3.13 and 3.14, respectively; while efficiency frontier for
both approaches are shown in Figure 3.4. Different values of 𝛼 (i.e. 𝛼=weight for cost and
1–𝛼=weight for 𝐶𝑂2 emissions) were proposed to show the behavior of the efficiency fron-
tier. Improved results in cost (𝑓1) and emissions (𝑓2) functions, and hence in the efficiency
frontier, are due to the improvement of the solution method. This is, the proposed approach
makes a better customer allocation and an improved vehicle routing. Small improvements in
cost functions are due to the low costs of traveling compared to the purchasing cost of each
vehicle. Therefore, we can state a preliminary good performance of the proposed method.

Table 3.13 Results from Muñoz Villamizar et al. (2017)

𝛼 Cost function 𝑓1 Environmental function 𝑓2 Relative function 𝑓3 % of electric vehicles
1.00 61,702 49.2 1.00 0%
0.98 63,041 47.6 1.56 3%
0.78 71,074 40.1 1.66 18%
0.58 83,125 30.0 1.70 40%
0.33 96,514 19.5 1.71 65%
0.13 105,887 12.8 1.72 83%
0.03 112,582 8.7 1.69 95%
0.00 115,260 7.4 1.00 100%

Table 3.14 Summary of results

𝛼 Cost function 𝑓1 Environmental function 𝑓2 Relative function 𝑓3 % of electric vehicles
1.00 61,701 44.2 1.0 0%
0.89 63,040 43.0 1.6 3%
0.88 73,751 34.2 1.7 23%
0.87 84,463 26.2 1.7 43%
0.86 97,853 17.0 1.7 68%
0.85 108,564 10.3 1.7 88%
0.82 113,920 7.3 1.7 98%
0.00 115,259 6.7 1.0 100%

3.2.2.1 Short Term Evaluation

Weekly demands for all the 61 delivery points were randomly generated from a uniform dis-
tribution in order to analyze short impacts in the use of electric vehicles in the configuration
of the transport network. Therefore, 52 different instances were evaluated with the proposed
approach to simulate the complete transport operation for a full year. This experiment al-
lows a better comparison between the costs of acquiring the vehicles and the costs of the
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Figure 3.4 Comparison of our results vs Muñoz Villamizar et al. (2017)

transportation activities. Results for this scenario are presented in Table 3.15 and Figure
3.5. As mentioned before, different values of 𝛼 were proposed to fully show the behavior of
the efficiency frontier. For this one-year evaluation, the cheapest option is to keep the entire
gasoline fleet. However, after considering a 0.04 value in the weight for 𝐶𝑂2 emissions (i.e.,
1-𝛼) the optimal solution is made by a complete electric fleet. This is, the improvement in
the environmental impact is, relatively, much greater than the cost overruns of having all
electric fleet of vehicles. In this case, having the entire electric fleet of vehicles generates
an economic overrun of 22%, but a reduction of almost 88% in the environmental impact;
compared to having the entire fleet of gasoline vehicles.

Table 3.15 Results for one-year operation

𝛼 Cost function 𝑓1 Environmental function 𝑓2 Relative function 𝑓3 % of electric vehicles
1.00 129,579 190,927 1.0 0%
0.98 135,407 140,895 1.2 25%
0.97 142,005 97,362 1.2 50%
0.96 149,000 57,168 1.2 75%
0.00 156,727 23,149 1.0 100%

3.2.2.2 Mid Term Evaluation

Finally, for a better understanding of the transportation operation, a period of five years is
evaluated. Two additional key aspects have been taken into account in this mid-term evalu-
ation of the use of electrical vehicles. Firstly, the yearly maintenance cost (see Table 3.11)
and, secondly, the variations in customer demands are considered over time. For this second
aspect, two different yearly increases of 5% and 25% are separately evaluated. This is 260
instances were generated for each annual increase, for a total of 520 weekly demands for all
the 61 delivery points.
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Figure 3.5 Efficient frontier for one-year operation

Annual increase in demand by 5%

Results of applying the proposed approach for a time horizon of 5 years with demand
increases of 5% per year are presented in Table 3.16 and Figure 3.6. An unexpected result
with two extremes is obtained. For this scenario, the cheapest option is to keep just one
gasoline vehicle. Once again, after a 0.04 value in the weight for 𝐶𝑂2 emissions (i.e., 1-𝛼)
the optimal solution is to have the entire electric fleet. The main reason for this result is that
maintenance costs of gasoline vehicles are, in med-term, higher than maintenance costs of
electric vehicles. In this scenario. having the entire electric fleet of vehicles generates an
economic overrun of only 2%, but a reduction of almost 29% in the environmental impact,
compared to having a 20% of gasoline vehicles (i.e., 1 gasoline vehicle in the fleet).

Table 3.16 Results for five-year operation with yearly increments of 5% in demand

𝛼 Cost function 𝑓1 Environmental function 𝑓2 Relative function 𝑓3 % of electric vehicles
1.00 294,577 167,011 1.00 80%
0.96 294,577 167,011 1.02 80%
0.00 300,388 118,872 1.00 100%

Figure 3.6 Efficient frontier for five-year operation with annual increments of 5% in demand
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On the other hand, and for a better understanding of last results, Figure 3.7 shows the
number of vehicles required per year when 𝛼 = 1. In this case, the one and only gasoline
vehicle is purchased in the third year. This behavior asserts that electric vehicles are more
profitable in mid-term, while gasoline vehicles are in the short-term because of the purchas-
ing price of this type of vehicle. It is important to emphasize that demand increase is very
low, thus, it is only necessary to purchase an additional vehicle to completely meet the de-
mand during the last 3 years of operation. Since this last vehicle will be used only for 3
years, it is more profitable to buy a gasoline vehicle than an electric one.

Figure 3.7 Yearly demand and used vehicles with 𝛼=1 and demand growth = 5%

Annual increase in demand by 25%

Last scenario evaluates a 25% annual increase in demand for 5 years. Results of applying
the proposed approach are presented in Table 3.17 and Figure 3.8. In this scenario. the
cheapest option is to keep one half of gasoline fleet and the other half electric; while only
after a 0.56 value in the weight for 𝐶𝑂2 emissions (i.e., 1-𝛼) the optimal solution is to have
the entire electric fleet. In this scenario. having the entire electric fleet of vehicles generates
an economic overrun of only 8%. but a reduction of almost 56% in the environmental impact;
over having a 50% of gasoline vehicles (i.e., 5 gasoline vehicle in the fleet).

Table 3.17 Results for Five-Year Operation with Yearly Increments of 25% in Demand

𝛼 Cost function 𝑍1 Environmental function 𝑍2 Relative function 𝑍3 % of electric vehicles
1.00 454,564 318,045 1.00 50%
0.97 456,721 239,100 1.03 60%
0.92 462,131 187,585 1.04 70%
0.86 470,512 160,416 1.05 80%
0.44 480,026 143,020 1.04 90%
0.00 492,327 140,295 1.00 100%
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This solution initially seems different from the obtained in the previous scenarios. How-
ever, the results have the same explanation. Figure 3.9 shows the number of vehicles required
per year as demand grows. When only the economic impact is taken into account (i.e. 𝛼=1).
In this case, a fixed number of electric vehicles is purchased from the very first year (i.e.,
4 vehicles) and as demand increases only in the second year a new electric vehicle is pur-
chased. Then, only gasoline vehicles are purchased to meet customer requirements. Once
again is confirmed that electric vehicles are more profitable in a 4-5 years evaluation. while
gasoline vehicles are more profitable in a 1-3 years time-horizon.

Figure 3.8 Efficient frontier for five-year operation with annual increments of 25% in demand

Figure 3.9 Yearly demand and used vehicles with 𝛼=1 and demand growth = 25%

Another remarkable aspect of this scenario is that a considerable amount of electric ve-
hicles (EVs) is profitable for any value of 𝛼 or 1-𝛼 (i.e., weight for economic cost and weight
for environmental impact, respectively). As it can be seen in Figure 3.10 at least 50% of the
fleet of vehicles must be electric for any combination of the multi-objective function. This
confirms once again that electric vehicles are economically and environmentally profitable
for mid-term evaluation.
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Figure 3.10 Number of used electric vehicles per year according to 𝛼 values

3.3 Chapter Conclusions
This chapter analyzes how horizontal cooperation strategies can contribute to reduce distri-
bution costs in urban freight transportation under uncertainty. The non-cooperative scenario
is modeled as a series of isolated vehicle routing problems with stochastic demands, while
the cooperative scenario is modeled as a multi-depot vehicle routing problem with stochastic
demands.

In order to solve both scenarios, a simheuristic approach is proposed. Our algorithm
combines a biased randomization based iterated local search metaheuristic withMonte Carlo
simulation. A set of classical benchmark instances has been adapted and extended in order
to perform some computational experiments. According to the results obtained, the coopera-
tive strategy can generate noticeable reductions in total costs for all the considered instances.
The reliability of the provided solutions is also reported by the simheuristic algorithm. In ad-
dition, our approach has been compared to already published works using a realistic dataset,
outperforming their results. Extended simulation experiments were executed to evaluate the
impact of the variance of demand (stochastic behavior) in the distribution costs. Results
showed that safety stock policy and the variance of demand influence total distribution costs
and process reliability. Furthermore, we have evaluated the use of electric vehicles in ur-
ban freight transport cooperative networks. Several aspects were taken into account to fully
evaluate the transport operation in short- and mid-term scenarios, from both economic and
environmental perspectives. Purchasing and maintenance vehicles costs and the cost of used
energy (i.e., electricity or gasoline). were considered as economic costs. On the other hand,
𝐶𝑂2 emissions by the production of the energy (i.e. electricity or gasoline) and the emissions
by the consumption of the energy itself were selected as environmental components. Then,
experiments for 1 and 5 years were performed to find an efficient frontier solution regarding
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the use of electric vehicles for short- and mid-term, respectively. Our findings suggest that
purchase of new vehicles (electrics or gasoline) depends on the time horizon left for the oper-
ation. This is, electric vehicles are more profitable, both economically and environmentally,
for periods of more than 3 years; while gasoline vehicles are better for short-time operation
because of their lower purchasing cost.



Chapter 4

The Capacitated Location Routing
Problem

The contents of this chapter is based on the following publications:

• Quintero-Araujo, C.L.; Caballero-Villalobos, J.P.; Juan, A.; Montoya-Torres, J.R. (2017) “A Biased-Randomized Metaheuristic
for the Capacitated Location Routing Problem”. International Transactions in Operational Research, 24: 1079–1098. ISSN:
0969-6016. doi:10.1111/itor.12322 (JCR)
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• Quintero-Araujo, C.L.; Juan, A. (2015): “Solving the Integrated Location Routing Problem considering Uncertainty and Risk
Factors”. Proceedings of the ICRA6/Risk 2015 Int. Conference, 655-662. ISBN: 978-84-9844-496-4. Barcelona, Spain

In logistics management, facility location and route planning are linked decisions. How-
ever, in most real-life situations, these decisions are taken in an independent way. On the
one hand, the size and location of logistics facilities is decided without considering its ef-
fects on routing plans. On the other hand, customers are served from facilities to which they
were previously allocated, usually. To overcome this situation, the scientific community has
recently started to study the location routing problem (LRP). The aim of the LRP is to deter-
mine (i) the number, size and location of facilities to be opened, (ii) the customer allocation
to open facilities and (iii) the corresponding routes to serve customer demands that minimize
total costs (opening + routing + vehicles). In practical terms, the LRP combines the facility
location problem (FLP) with the VRP, which are known to be NP-Hard (Nagy and Salhi,
2007). Thus, the LRP is also NP-hard. The location routing problem (LRP) is one of the
most complete problems in logistics and transportation because it involves all decision levels
in supply chain design and management, that is, the strategic, tactical, and operational lev-
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els. A graphical description of this problem is presented in figure 4.1. In fact, the classical
approaches used to tackle the LRP are based on solving an FLP as a first step and then solv-
ing the associated VRPs. Nowadays, due to the development of computers and optimization
techniques, there is an increasing interest in solving the LRP in a more integrated way. The
LRP has a wide range of applications including, among others, food and drink distribution,
waste collection, or bill deliveries (Nagy and Salhi, 2007).

Figure 4.1 An illustrative description of the LRP

The idea of combining depot location with vehicle routing was proposed about 50 years
ago. Maranzana (1964) was probably the first publication on the LRP, which stated that “the
location of factories, warehouses and supply points in general . . . is often influenced by
transport costs” (p. 261). The benefits obtained by considering vehicle routing decisions
while locating depots were quantified for the first time by Salhi and Rand (1989). These
authors showed that solving a location problem and routing problem separately does not
necessarily lead to optimal solutions. There are several variants for the LRP depending on
the characteristics of the depots (capacitated or not), vehicles (capacitated or not, homo-
geneous or heterogeneous fleet), costs (symmetric or asymmetric), or the consideration of
uncertain (stochastic) parameters.Taking this into account, this chapter addresses the Capac-
itated Location Routing Problem (CLRP) in both versions: with deterministic and stochastic
demands.
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4.1 Deterministic Version

4.1.1 Problem Statement
The CLRP can be described on a graph 𝐺 = (𝑉 , 𝐴, 𝐶), where the set of nodes 𝑉 = 𝐼 ∪ 𝐽
includes: (i) a set of 𝑛 customers, 𝐼 = {𝑐1, 𝑐2, … , 𝑐𝑛}; (ii) a set of 𝑚 potential depot locations,
𝐽 = {𝑑1, 𝑑2, … , 𝑚}. 𝐴 is the set of arcs connecting each par of nodes, while 𝐶 is the cost
matrix of traversing arcs. A set 𝐾 of unlimited homogeneous vehicles with capacity 𝑄
is available. It is also assumed that each arc 𝑎 ∈ 𝐴 satisfies the triangle inequality. Let
𝑆 be a subset of nodes, 𝛿+(𝑆) (𝛿−(𝑆)) be the set of arcs leaving (entering) 𝑆, and 𝐿(𝑆)
the set of arcs with both ends in 𝑆. Customer demands are deterministic and known in
advance. The capacity of each depot and its opening costs are known. Depots might have
equal or different capacities between them. Each customer must be served by a single vehicle
departing from the depot to which the customer has been allocated. A solution for the CLRP
consists in determiningwhich depotsmust be opened, the customer allocation to open depots,
and design of vehicle routes for serving customers from their corresponding depot. The
following constraints must be satisfied: (i) the total demand of customers assigned to one
depot must not exceed its capacity, (ii) each route begins and ends at the same depot, (iii)
each vehicle performs at most one trip, (iv) each customer is served by one single vehicle
(split deliveries are not allowed), and (v) the total demand of customers visited by one vehicle
fits its capacity.

According to Prins et al. (2006b), the CLRP can be formulated as a mixed integer linear
programming (MILP) model using the following parameters and variables:

• 𝑂𝑗 : opening cost of depot 𝑗

• 𝐷𝑒𝑝𝐶𝑎𝑝𝑗 : capacity of depot 𝑗

• 𝑑𝑖: demand of customer 𝑖

• 𝑄: capacity of each vehicle

• 𝑉 𝐹 : fixed cost for using a vehicle

• 𝐶𝑎: cost of traversing the arc 𝑎

• 𝑌𝑗 : binary variable to represent if the depot location 𝑗 is opened or not

• 𝑋𝑖𝑗 : binary variable to represent if customer 𝑖 is assigned to the facility 𝑗 or not
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• 𝑓𝑎𝑘: binary variable to indicate if arc 𝑎 is used in the route performed by vehicle 𝑘 or
not

Min Z= ∑
𝑗∈𝐽

𝑂𝑗𝑌𝑗 + ∑
𝑎∈𝐴

∑
𝑘∈𝐾

𝐶𝑎𝑓𝑎𝑘 + ∑
𝑘∈𝐾

∑
𝑎∈𝛿+(𝐽 )

𝑉 𝐹 𝑓𝑎𝑘 (4.1)

Subject to:

∑
𝑘∈𝐾

∑
𝑎∈𝛿−(𝑖)

𝑓𝑎𝑘 = 1 ∀𝑖 ∈ 𝐼 (4.2)

∑
𝑖∈𝐼

∑
𝑎∈𝛿−(𝑗)

𝑑𝑖𝑓𝑎𝑘 ≤ 𝑄 ∀𝑘 ∈ 𝐾 (4.3)

∑
𝑎∈𝛿+(𝑗)

𝑓𝑎𝑘 − ∑
𝑎∈𝛿−(𝑗)

𝑓𝑎𝑘 = 0 ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝑉 (4.4)

∑
𝑎∈𝛿+(𝑖)

𝑓𝑎𝑘 ≤ 1 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼 (4.5)

∑
𝑎∈𝐿(𝑆)

𝑓𝑎𝑘 ≤ |𝑆| − 1 ∀𝑆 ⊆ 𝐼, ∀𝑘 ∈ 𝐾 (4.6)

∑
𝑎∈𝛿+(𝑗)∩𝛿−(𝐼)

𝑓𝑎𝑘 + ∑
𝑎∈𝛿−(𝑖)

𝑓𝑎𝑘 ≤ 1 − 𝑋𝑖𝑗 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽 , ∀𝑘 ∈ 𝐾 (4.7)

∑
𝑖∈𝐼

𝑑𝑖𝑋𝑖𝑗 ≤ 𝐷𝑒𝑝𝐶𝑎𝑝𝑗𝑌𝑗 ∀𝑗 ∈ 𝐽 (4.8)

𝑓𝑎, 𝑋𝑖𝑗 , 𝑌𝑖 ∈ {0, 1} ∀𝑎 ∈ 𝐴, ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽 (4.9)

The objective function, presented in equation 4.1, is the minimization of total costs –
which include opening costs, distance-based costs, and usage of vehicles costs. Constraints
4.2 are to guarantee that each customer is served once. Expressions 4.3 are vehicle capacity
constraints. Inequalities 4.4 and 4.5 guarantee the continuity of each route and return of a
route to the depot from which it has started. Constraints 4.6 are to eliminate sub-tours. Con-
straints 4.7 guarantee that a customer is only assigned to a depot if there are routes serving
that depot. Constraints 4.8 specify that depot capacity cannot be violated. Constraints 4.9
define the decision variables.

4.1.2 A Biased-Randomized Iterated Local Search for the Determinis-
tic LRP

Two main ideas are the basis of our solving approach. The first one is the use of very simple
(with few parameters to avoid long fine tuning processes) and, at the same time, fast heuris-
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tics to solve complex problems. The second one is to involve all decisions at each phase
of the algorithm, i.e. using an integrated approach. Another key point of our approach is
the use of biased randomization techniques to obtain new solutions. Biased randomization
techniques (Juan et al., 2013a) are applied at different stages of the algorithm. During the
iterative construction of a feasible solution, solution elements are hereby randomly chosen
according to a skewed probability function, biased towards the most promising elements.
While our algorithm is flexible enough to apply any non-uniform distribution, we use the
single-parameter geometric distribution. More specifically, biased randomization is used
during (i) the generation of customer-depot allocations, and (ii) the subsequent planning of
delivery routes.

Our solving approach consists of two phases: (i) generation of feasible solutions and
selection of the most promising ones; and (ii) improvement or refinement of the selected
solutions. To generate feasible solutions we decompose the original problem into a set of
successive and less complex problems by using simple and fast procedures. In this case, the
CLRP can be easily transformed into the MDVRP once we have decided the open depots.
Once the customers are allocated to the depots, theMDVRP becomes am-CVRP (m defining
the number of open depots). Each CVRP can be solved by a fast and high quality heuristic,
e.g. the Clarke & Wright Savings Heuristic (Clarke and Wright, 1964). The second phase
is the improvement of customer allocation and routing for each of the top solutions found in
the first phase.

4.1.2.1 Selection of Promising Solutions

In order to obtain feasible solutions, the first step is to estimate the number of facilities re-
quired to serve all customers’ demands. We start by computing a lower bound (𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑)
on the number of facilities to be opened by dividing the expected total demand by the highest
capacity of the set of depots. Then, 30 feasible combinations of open depots are generated
for each value of 𝑙, (𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 ≤ 𝑙 ≤ 𝑚). For each of these sets of combinations, the asso-
ciated CLRP is solved by means of a fast allocation and routing heuristic. Then, the average
cost is computed for each 𝑙. We keep the 𝑙 value with the lowest average cost as a promising
number of open depots. The value of 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 is then updated as the maximum between
its original value and 𝑙 − 1. Also, the value of 𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑 is set to 𝑙 + 1.

Next, we randomly determine sets of 𝑙∗ ‘candidate’ facilities (with 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 ≤ 𝑙∗ ≤
𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑), during at most 𝑛𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐼𝑡𝑒𝑟𝑠. Then, customers are allocated to different de-
pots according to the savings 𝑠𝑖𝑑 of serving any customer 𝑖 from any depot 𝑑. The value
of 𝑠𝑖𝑑 is defined as the cost difference of serving customer 𝑖 from depot 𝑑 instead of the
closest alternative depot 𝑑∗, such that 𝑠𝑖𝑑 = 𝑐𝑖𝑑 − 𝑐𝑖𝑑∗ . Once each depot specific savings
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list has been created, the customer-depot allocations are defined in an iterative round-robin
tournament. In turn, each depot chooses a customer to serve according to the geometric dis-
tribution parameter 𝛽, which defines the probability of the most promising customer being
assigned to the current depot (Juan et al., 2015b). Next, delivery routes are constructed using
a biased randomized version of the Clarke-and-Wright savings heuristic (CWS) (Clarke and
Wright, 1964). This procedure is based on the calculation of savings values for all edges in
the problem. According to the defined savings, a feasible routing solution is constructed. In
the biased randomized CWS, the node connections are ranked according to their expected
savings at each edge selection step. The probabilities for each edge are calculated according
to the geometric distribution parameter 𝛼, which defines the probability of the edge with the
highest savings value to be chosen (Juan et al., 2011b).

4.1.2.2 Improvement Phase

In this step, the aim is to determine new customer-depot allocations and the corresponding
new routes in order to improve the 𝑏𝑎𝑠𝑒𝑆𝑜𝑙𝑠 already obtained. It is to note that the set of open
depots of each solution does not change. This improvement is done by an ILS algorithm.

As a first step, we extract the allocation map for each 𝑏𝑎𝑠𝑒𝑆𝑜𝑙 from the 𝑛𝑏𝑎𝑠𝑒𝑆𝑜𝑙𝑠 and
apply a perturbation procedure on it for a total of 𝑚𝑎𝑥𝑃 𝑒𝑟𝑡𝑢𝑟𝑏𝐼𝑡𝑒𝑟 times. The perturbation
procedure is used to obtain new customer-depot allocations. For each open depot we ran-
domly select a node from its allocation map and try (due to capacity constraints) to assign
it together with its nearest nodes to another open depot. Then, in order to complete a new
CLRP solution (𝑛𝑒𝑤𝑆𝑜𝑙), we apply the biased-randomized version of the CWS heuristics
(SR-GCWS-CS algorithm) proposed by Juan et al. (2011b). This routing heuristic is exe-
cuted a total of 𝑚𝑎𝑥𝑅𝑜𝑢𝑡𝑖𝑛𝑔𝐼𝑡𝑒𝑟 times on each new customer-depot allocation. After that, a
local search procedure is applied on the 𝑛𝑒𝑤𝑆𝑜𝑙 to obtain 𝑛𝑒𝑤𝑆𝑜𝑙∗, if necessary, we update
both the best solution found so far –𝑏𝑒𝑠𝑡𝑆𝑜𝑙– and 𝑏𝑎𝑠𝑒𝑆𝑜𝑙. If the 𝑛𝑒𝑤𝑆𝑜𝑙 is worse than
𝑏𝑒𝑠𝑡𝑆𝑜𝑙 we apply an acceptance criterion to update our 𝑏𝑎𝑠𝑒𝑆𝑜𝑙 and, therefore, to escape
from local optima. We accept a non-improving 𝑛𝑒𝑤𝑆𝑜𝑙 when the difference between the cost
of 𝑛𝑒𝑤𝑆𝑜𝑙 and the cost of 𝑏𝑒𝑠𝑡𝑆𝑜𝑙 is lower than 1.5 times the last improvement achieved.

At the end of the 𝑚𝑎𝑥𝑃 𝑒𝑟𝑡𝑢𝑟𝑏𝐼𝑡𝑒𝑟 we report the solution with the lowest total costs –
Sum of opening costs, vehicles usage cost and distance cost– (𝑏𝑒𝑠𝑡𝑆𝑜𝑙) obtained from all
𝑏𝑎𝑠𝑒𝑆𝑜𝑙𝑠. The pseudo-code corresponding to this phase is presented in Algorithm 3.
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Algorithm 3: BR-Iterated Local Search
Input: inputs, parameters

1 initialize(variables)
2 baseSols ← createInitialSolutions(inputs, parameters)
3 costs(bestSol) ← BigM
4 foreach baseSol ∈ baseSols do
5 while stopping criteria not reached do
6 newSol ← perturbate(baseSol)
7 improving ← true
8 while improving do
9 newSol∗ ← localSearch(newSol)
10 if costs(newSol∗) < costs(newSol) then
11 newSol ← newSol∗

end
12 else
13 improving ← false

end
end

14 delta ← costs(newSol∗) - costs(baseSol)
15 if delta < 0 then
16 baseSol ← newSol∗
17 credit ← 1.5 × delta

end
18 else
19 if delta < credit then
20 baseSol ← newSol∗
21 credit ← 0

end
end

end
22 if costs(baseSol) < costs(bestSol) then
23 bestSol ← baseSol

end
end

24 return bestSol

4.1.3 Results & Analysis
To cope with the deterministic version we have implemented, as Java application, the ILS
algorithm presented in 4.1.2. Java allows a rapid, platform independent development of
algorithms that can be used to test the potential of the method.



62 The Capacitated Location Routing Problem

Some tests were carried out using three well-known benchmark sets available in the lit-
erature for the CLRP. All three benchmark sets consider capacity constraints in both depots
and vehicles. The first set is known as Prodhon’s set which was introduced by Belenguer
et al. (2011) and contains 30 instances. These instances consider 5 and 10 potential facilities
as well as 20, 50, 100 and 200 customers. The values for the vehicle capacity are 70 and
140. Each instance name has the form 𝑐𝑜𝑜𝑟𝑑𝑛𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 − 𝑛𝐹 𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠 − 𝑋 − 𝑌 where
𝑋 = {1, 2, 3} and 𝑌 = {70, 140} represent the number of clusters of customers and the
capacity of the vehicles. The second set is known as Barreto’s set and was introduced by
Barreto (2004). This set involves 17 instances with the number of customers varying from
12 to 150 and the number of depots ranging from 2 to 15. The third set is known as Akca’s
set and was introduced in Akca et al. (2009). This set is composed by 12 instances with 30
and 40 customers and 5 depots. The number of clusters of customers vary from 1 to 3.

For each instance, twenty random seeds were used to carry out the test of the proposed
algorithm. After several executions, the following parameters provided the best results in
terms of solution quality and time consumed by our algorithm:

• Iterations for map perturbations (𝑚𝑎𝑥𝑃 𝑒𝑟𝑡𝑢𝑟𝑏𝐼𝑡𝑒𝑟) =350,

• Iterations for randomized Clarke and Wright routing (𝑚𝑎𝑥𝑅𝑜𝑢𝑡𝑖𝑛𝑔𝐼𝑡𝑒𝑟)=150,

• Iterations for splitting (𝑚𝑎𝑥𝑆𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔𝐼𝑡𝑒𝑟)=150,

• Geometric distribution parameter for biased allocation maps (𝑃𝑚)= 0.05 ≤ 𝑃𝑚 ≤ 0.8,

• Geometric distribution parameter for randomized CWS (𝑃𝑟)= 0.07 ≤ 𝑃𝑟 ≤ 0.23,

• Percentage of nodes to re-allocate (𝑟) = 0.1 ≤ 𝑟 ≤ 0.5.

Our results have been compared with to top-5 performers algorithms in terms of per-
centual gap with respect to the best-known solutions (BKS) for each of the aforementioned
sets of benchmark instances.

Table 4.1 shows the results of our algorithm for Prodhon’s instances, compared to the
following works: GRASP+ILP (Contardo et al., 2014b), GVNTS (Escobar et al., 2014),
MACO (Ting and Chen, 2013), ALNS (Hemmelmayr et al., 2012) and SALRP (Yu et al.,
2010). It includes the comparison in terms of percentage gaps and also shows the computa-
tional time consumed to obtain the best solution reported as well as the number of parameters
used by each algorithm. At the bottom of the table we present the CPU index given by the
Passmark performance test (PassMark, 2015). Higher values of the CPU index correspond
to faster CPUs. As can be seen in Table 4.1, our algorithm has been capable to match 10
of the 30 BKSs while its average gap is 0.35%. Moreover, the average computational time
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is 346.82 seconds which is about 30% of the average time consumed by the top performing
algorithm available up to date in the literature for this set.

Table 4.2, summarizes the results obtained for Barreto’s set. It must be noted that only
our algorithm and the GRASP+ILP algorithm from Contardo et al. (2014b) have been tested
over the whole set of instances. It can bee seen that our algorithm has achieved 11 out of 17
BKSs with an average gap of 0.20% with respect to the BKS. Regarding this benchmark set,
our algorithm is quite competitive to other state-of-the-art algorithms except to the SALRP
algorithm (Yu et al., 2010).

Similarly, Table 4.3 presents the summary of results for Akca’s set. To the best of our
knowledge, the most competitive results previously reported for this set are due to Contardo
et al. (2011, 2013). Our algorithm has matched 12 of 12 BKSs. There are four instances for
which our results seem to be slightly better than the current BKSs that have been proven to be
optimal. In fact, the differences are due to different decimal precision. Moreover, we have
noticed that in the aforementioned works, the results are presented with different decimal
precision and in some cases these differ between the different tables. In our case, we did
not apply rounding procedures to the variable values and, therefore, we consider that our
results are the correct values for the BKSs. This balance between the quality of the solutions
provided and computational time consumed by our algorithm combined with its easiness to
be implemented in real scenarios, makes the proposed approach an interesting tool to support
the design of supply chains.

First of all, it must be noted that despite its relative simplicity, our biased-randomized
approach to solve theCLRP is quite competitive in terms of percentage gap with respect to
the BKS—average gaps of 0.35%, 0.20%, and 0.00% for Prodhon’s, Barreto’s, and Akca’s
benchmark sets, respectively. We tried to analyze the results of the different algorithms
using a one-way ANOVA test but the hypothesis of normality of the residuals could not be
validated. Therefore, we used a Kruskal– Wallis nonparametric test (Corder and Foreman,
2009) to assess the quality of the results in terms of percentage Gap with respect to the BKSs.
According to the p-values obtained (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.25), there is no statistically significant
difference in terms of gap.

4.2 CLRP with Stochastic Demands

4.2.1 Characteristics
In this section, we deal with a CLRP variant with stochastic demands (CLRPSD), meaning
that customers’ demands are not known in advance. Thus, demand uncertainty might cause
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route failures (i.e., the initial vehicle load is lower than the real demand in the route). As a
consequence, corrective actions might be needed in order to satisfy all customers’ demands.
A corrective action implies returning to the depot to reload the vehicle, go back to the cus-
tomer, serve it, and resume the original planned route. Therefore, the expected stochastic
cost due to route failures has to be included in the objective function. Demands can be mod-
eled by any probability distribution providing non-negative numbers. In our case, we use
the log-normal distribution due to its great flexibility for modeling positive random vari-
ables. This assumption allows us to use the demand value of the deterministic benchmarks
for the CLRP as the mean parameter of the distribution and test our algorithm using different
variability levels.

4.2.2 A simILS for the CLRP with Stochastic Demands (CLRPSD)
The simheuristic approach proposed to deal with the CLRP with stochastic demands is de-
picted in Figure 4.2. It can be seen that three different simulation processes are executed
during the solving procedure. The first one is to determine the capacity buffer (safety stock)
percentage to be used during the route planning process. The second one is a short simu-
lation process used to approximate stochastic costs and reliabilities of promising solutions.
The third one is a long simulation process executed on the elite solutions to refine the esti-
mates of the stochastic costs and reliabilities. Taking into account that simulation is a time
consuming process, long simulations are carried out on a selected group (𝑒𝑙𝑖𝑡𝑒) of solutions.
The process used to establish the safety stock percentage is explained in the following.

As presented by Juan et al. (2011a), safety stocks can be used as a strategy to face uncer-
tainty in route planning. However, for some instances the original available capacity could be
enough to face demand uncertainty, even for higher variability levels, and safety stocks could
not be necessary. Therefore, one of the contributions of this work is the use of MCS to esti-
mate the recommended value of the safety stock percentage (%SS). The process to estimate
it consists of the following steps: (i) we solve again the routing phase using different values
for%SS; (ii) the new solutions go through a fast simulation process (𝑖𝑛𝑖𝑡𝑆𝑖𝑚𝐼𝑡𝑒𝑟𝑠 = 500) in
order to test their quality in a stochastic environment; and (iii) we keep the safety stock level
that provides the higher number of best stochastic solutions, among the 𝑖𝑛𝑖𝑡𝑆𝑖𝑚𝐼𝑡𝑒𝑟𝑠, to be
used during the rest of the solving procedure.

During the improvement phase of the algorithms we need to apply the following changes
to the deterministic solving procedures: (i) the real vehicle capacity (𝑉 𝐶′) is computed
as 𝑉 𝐶′ = (1 − %𝑆𝑆) × 𝑉 𝐶 , where 𝑉 𝐶 is the original vehicle capacity and %𝑆𝑆 is the
value obtained during the initial fast simulation process, and (ii) all promising solutions are
stored in a set of 𝑝𝑟𝑜𝑚𝑖𝑠𝑖𝑛𝑔𝑆𝑜𝑙𝑠. In a further stage, each solution considered to be promis-
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Figure 4.2 Flowchart of our simheuristic approach
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ing is tested in a stochastic scenario by means of MCS. We use a second short simulation
process (𝑠ℎ𝑜𝑟𝑡𝑆𝑖𝑚𝐼𝑡𝑒𝑟𝑠 = 500) in order to update our list of 𝑛𝑃 𝑟𝑜𝑚𝑖𝑠𝑖𝑛𝑔 𝑒𝑙𝑖𝑡𝑒𝑆𝑜𝑙𝑠. Then
each of the 𝑒𝑙𝑖𝑡𝑒𝑆𝑜𝑙𝑠 goes through a long simulation process (𝑙𝑜𝑛𝑔𝑆𝑖𝑚𝐼𝑡𝑒𝑟𝑠 = 5000) to
obtain a better estimation of expected stochastic costs and expected reliability (percentage
of successfully completed routes). Within the simulation process, our algorithm compares
the cost of preventive and reactive re-loading trips, and applies the most convenient one.
Once we have visited customer 𝑖 and the expected value of the demand for the next cus-
tomer 𝑗 to be visited leads to a route failure, the stochastic cost 𝑠𝑡𝑜𝑐ℎ𝐶𝑜𝑠𝑡 is computed as:
𝑠𝑡𝑜𝑐ℎ𝐶𝑜𝑠𝑡 = 𝑀𝑖𝑛{𝑝𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒𝐶𝑜𝑠𝑡, 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑜𝑠𝑡}, where 𝑝𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒𝐶𝑜𝑠𝑡 = 𝐶𝑖0+𝐶0𝑗−𝐶𝑖𝑗
and 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑜𝑠𝑡 = 𝐶𝑗0 + 𝐶0𝑗 . Finally, the solution with the lowest expected total cost is
reported.

4.2.2.1 Modifications on the ILS Structure

Some changes have been added to the improvement phase of the algorithm presented in
section 4.1.2 to solve the stochastic version of the LRP. They can be summarized as follows:

• The perturbation operator consists in randomly exchanging the depot allocation of 𝑝%
of all potential clients. In more detail, the percentage values applied at this point are
taken from the range 𝑝 = [0.05, 0.1, ..., 0.95]. Note that this latter version is similar to
a variable neighborhood search structure (Hansen et al., 2010), i.e.: we start with the
lowest value of 𝑝 and we keep it while the solution is improved. If it is not possible to
improve the solution, we move to the next value of 𝑝. For each of the successive values
of 𝑝, whenever an improvement is found, 𝑝 is restarted to its initial value. Otherwise,
we move towards the next value until all values are considered.

• A simulated annealing-like acceptance criterion for non-improving solutions based
on an initial temperature 𝑇0 and a cooling constant 𝑐𝑜𝑜𝑙𝑖𝑛𝑔𝐹 𝑎𝑐𝑡𝑜𝑟, as described by
Henderson et al. (2003).

• Three new local search operators are added to the existing one. At each iteration,
the specific local search operator to be applied is randomly selected. All local search
operators are outlined in Table 4.4.

Therefore, four different versions of the solving algorithm are provided to deal with the
CLRPSD, which are presented, in the following, as: 𝑟𝑎𝑛𝑑 + 𝐷𝐸𝑀𝑂𝑁 , 𝑟𝑎𝑛𝑑 + 𝑆𝐴, 𝑝% +
𝐷𝐸𝑀𝑂𝑁 , and 𝑝% + 𝑆𝐴.



70 The Capacitated Location Routing Problem

Table 4.4 Local search operators

Operator (k) Description
Customer Swap Inter-Route Swaps customers randomly chosen between different routes of the same depot.
Inter-Depot Node Exchange Exchanges two nodes randomly selected from different depots.
2-Opt Inter-Route Interchanges two chains of randomly selected customers between different depots.
Cross-Exchange Interchanges positions of 3 random, non-consecutive customers from different depots.

4.2.3 Results & Analysis
Since there are no benchmarks for the CLRPSD, we have adapted the instances of the three
aforementioned benchmark sets for the CLRP to fit the stochastic case. Our main assumption
is that customer demands follow a particular probability distribution, in our case we have
decided to use the lognormal distribution with expected value of the customer demands equal
to the deterministic value of the demand provided in the CLRP instances and considering
three different variability levels (considering demand variance 𝑉 𝑎𝑟[𝐷𝑖] =5%𝐷𝑖, 10%𝐷𝑖 and
20%𝐷𝑖). Such choice relies on the fact that demands can not have negative values.

For all tested instances and considering a low-variance scenario (𝑉 𝑎𝑟[𝐷𝑖] = 5%𝐷𝑖), Ta-
ble 4.5 presents the results obtained by each of the 4 versions of the algorithm. For each
instance, it shows the best stochastic solution reported, its expected reliability, and the aver-
age cost of the obtained solutions. Table 4.6 provides a comparison among the 4 versions for
a low variance scenario. It compares the results provided by each method against our best
stochastic solution for each benchmark set (Table 4.5 - Column 13). It can be seen that all
methods provide solutions of similar quality, both in terms of expected stochastic costs and
expected reliabilities. The 𝑟𝑎𝑛𝑑 + 𝑆𝐴 method is the one that provides the higher number of
best solutions (30 over the 59 instances), while 𝑟𝑎𝑛𝑑 + 𝐷𝐸𝑀𝑂𝑁 is the version providing
the lowest average gaps for all sets. On the other hand, the 𝑝%+𝑆𝐴 version seems to have the
poorest performance in terms of both average gaps and numbers of best solutions obtained.
It must be noted that our strategy of using simulation to determine the “ideal” value of the
safety stock percentage seems to work well, since expected total costs are not too different
from those of the deterministic solutions. Also, we observe that reliabilities for Akca’s and
Barreto’s instances are over 95% and 92%, respectively. However, in the case of Prodhon’s
instances is below 80%. This latter result can be explained by the fact that our optimization
criterion is not the maximization of reliability but the minimization of total expected costs.
To illustrate the trade-off between total expected costs and reliability, we have solved a par-
ticular instance (with reliability ≤ 50%) using different safety stock policies. The behavior
of stochastic costs and reliabilities is shown in Figure 4.3. It can be seen that the best solu-
tion in terms of stochastic costs is the one with 0% safety stock, but its reliability is below
50%. When the safety stock percentage is increased by 1%, reliability goes up to 86% but
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Table 4.6 Results with low variance level
GAP

rand + DEMON rand + SA p% + DEMON p% + SA
(1) - (13) (4) - (13) (7) - (13) (10) - (13)

INSTANCE NAME PRODHON’S SET
coord100-10-1.dat 0.00% 0.28% 0.21% 0.17%
coord100-10-2b.dat 0.01% 0.01% 0.00% 0.16%
coord100-10-3.dat 0.07% 0.00% 0.50% 0.16%
coord100-10-3b.dat 0.18% 0.00% 0.35% 0.38%
coord100-5-1.dat 0.13% 0.06% 0.15% 0.00%
coord100-5-2.dat 0.09% 0.00% 0.12% 0.03%
coord100-5-2b.dat 0.15% 0.15% 0.00% 0.01%
coord100-5-3.dat 0.00% 0.00% 0.22% 0.22%
coord100-5-3b.dat 0.00% 0.03% 0.02% 0.02%
coord200-10-1.dat 0.15% 0.00% 0.18% 0.27%
coord200-10-1b.dat 0.10% 0.06% 0.00% 0.01%
coord200-10-2.dat 0.04% 0.04% 0.06% 0.00%
coord200-10-2b.dat 0.03% 0.08% 0.00% 0.06%
coord200-10-3.dat 0.08% 0.00% 0.19% 0.07%
coord200-10-3b.dat 0.20% 0.10% 0.05% 0.00%
coord20-5-1.dat 0.00% 0.00% 0.13% 0.11%
coord20-5-1b.dat 0.00% 0.00% 0.00% 0.00%
coord20-5-2.dat 0.00% 0.00% 0.00% 0.00%
coord50-5-1.dat 0.03% 0.02% 0.00% 0.00%
coord50-5-1b.dat 0.07% 0.07% 0.00% 0.00%
coord50-5-2.dat 0.00% 0.00% 0.80% 1.12%
coord50-5-2b.dat 0.00% 0.01% 0.04% 0.15%

coord50-5-2bBIS.dat 0.01% 0.00% 0.01% 0.32%
coord50-5-2BIS.dat 0.16% 0.15% 0.00% 0.40%
coord50-5-3.dat 0.60% 0.63% 0.23% 0.00%
coord50-5-3b.dat 0.13% 0.43% 0.00% 0.12%

AVERAGE 0.08% 0.09% 0.13% 0.16%
NUMBER OF BS 10 13 6 6

AKCA’S SET
cr30x5a-1.dat 0.00% 2.14% 2.25% 2.50%
cr30x5a-2.dat 0.00% 0.00% 0.00% 0.00%
cr30x5a-3.dat 0.04% 0.00% 0.03% 0.03%
cr30x5b-1.dat 0.00% 0.01% 0.01% 0.25%
cr30x5b-2.dat 0.00% 0.00% 0.00% 0.00%
cr30x5b-3.dat 0.01% 0.00% 0.00% 0.01%
cr40x5a-1.dat 0.34% 0.56% 0.00% 0.11%
cr40x5a-2.dat 0.00% 0.00% 0.26% 0.26%
cr40x5a-3.dat 0.00% 0.00% 0.14% 0.13%
cr40x5b-1.dat 0.00% 0.18% 0.18% 0.00%
cr40x5b-2.dat 0.00% 0.00% 0.01% 0.01%
cr40x5b-3.dat 0.61% 2.12% 0.00% 0.68%
AVERAGE 0.08% 0.42% 0.24% 0.33%

NUMBER OF BS 6 6 5 3
BARRETO’S SET

Christ-100x10.dat 0.40% 0.00% 0.43% 0.47%
Christ-50x5.dat 0.03% 0.68% 0.00% 1.36%

Christ-50x5_B.dat 0.00% 0.69% 1.04% 2.19%
Christ-75x10.dat 0.00% 0.72% 0.35% 0.35%

Daskin95-150x10.dat 0.57% 0.46% 0.80% 0.00%
Daskin95-88x8.dat 0.00% 0.00% 0.00% 0.01%
Gaskell-21x5.dat 0.04% 0.00% 0.05% 0.05%
Gaskell-22x5.dat 0.00% 0.00% 0.00% 0.00%
Gaskell-29x5.dat 0.00% 0.00% 0.00% 0.00%
Gaskell-32x5.dat 0.00% 0.00% 0.00% 0.00%
Gaskell-32x5-2.dat 0.00% 0.00% 0.00% 0.00%
Gaskell-36x5.dat 0.00% 0.00% 0.00% 0.00%
Min-27x5.dat 0.00% 0.00% 0.00% 0.00%

Min92-134x8.dat 0.06% 0.00% 0.06% 0.05%
Perl83-12x2.dat 0.00% 0.00% 0.00% 0.00%
Perl83-55x15.dat 0.00% 0.06% 0.19% 0.46%

AVERAGE 0.07% 0.16% 0.18% 0.31%
NUMBER OF BS 11 11 9 8

AVERAGE 0.08% 0.18% 0.17% 0.24%
TOTAL BS 27 30 20 17
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total costs are also increased. An additional increase of 1% (i.e., 2%) in safety stock level
leads to a small increase in costs but a huge one in reliability. On the other hand, after a 4%
safety stock level, costs are highly increased but reliability improvements are not important
or null.

Figure 4.3 Behavior of costs and reliability with different safety stock policies

In addition, figure 4.4 shows the variability of solutions obtained with different safety
stock policies. As can be seen, the solution for a safety stock policy of 0% is better, in terms
of costs, than the solution obtained with 8%, but the latter has less variability –i.e., it is
a low-risk policy. Thus, a risk-averse decision maker could prefer the last policy, while a
risk-oriented one could select the first one.

In a similar way, Tables 4.7 and 4.8 summarize the results for mid- and high-variance
levels, respectively. It is important tomention that reliabilities show similar behavior to those
of the low-variance level, i.e.: higher values for Akca’s and Barreto’s sets and lower values
for Prodhon’s set. As expected, when variability levels increase reliabilities tend to decrease.
Again, this behavior is generated by the fact that our objective function is the minimization
of total expected costs, not the maximization of reliability.

4.3 Extension to Horizontal Cooperation
This section reviews the monetary and environmental impact of different HC strategies based
on the integration of routing and facility location decisions on a supply chain level. Differ-
ent cooperation scenarios are discussed as outlined in Table 4.9. On the one hand, delivery
routes and facility locations are individually defined by each company in non-cooperative
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Solution
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BestSolution

(10)
Reliability

BS
(11)

Average
Solution

(12)
(13)

PRO
DH

O
N’S

SET
coord100-10-1.dat

297607.12
43.00%

300111.624
297607.12

43.00%
300055.066

298141.85
37.00%

299977.853
298141.85

37.00%
299968.327

297607.12
coord100-10-1b.dat

237622.33
70.00%

238961.019
237622.33

70.00%
238841.5815

237714.13
75.00%

239407.0365
237714.13

75.00%
239698.3695

237622.33
coord100-10-2.dat

247609.78
37.00%

248699.1585
247557.24

38.00%
248617.63

247883.28
18.00%

248682.977
247896.21

26.00%
248718.881

247557.24
coord100-10-2b.dat

205346.71
85.00%

206269.8765
205619.01

77.00%
205976.0955

205361.65
77.00%

206206.364
205501.12

80.00%
206247.0025

205346.71
coord100-10-3.dat

256665.15
39.00%

260389.9585
256562.35

39.00%
260269.318

257661.43
61.00%

259981.44
257661.35

85.00%
260012.5855

256562.35
coord100-10-3b.dat

205140.82
95.00%

208745.186
205233.16

97.00%
208099.836

206425.31
97.00%

209353.663
205818.88

87.00%
209321.6185

205140.82
coord100-5-1.dat

283876.99
43.00%

285400.931
284210.03

35.00%
285347.527

283749.9
41.00%

285472.388
283793.69

41.00%
285534.452

283749.90
coord100-5-1b.dat

215697.97
67.00%

216994.7925
215860.43

66.00%
216989.1965

216549.08
95.00%

217489.537
216802.59

82.00%
217476.447

215697.97
coord100-5-2.dat

198697.21
12.00%

199278.2535
198599.72

15.00%
199260.431

198764.7
13.00%

199575.676
198763.74

13.00%
199559.1935

198599.72
coord100-5-2b.dat

158078.07
71.00%

158933.9905
158067.67

75.00%
159016.9955

158068.22
92.00%

158411.3115
157849.7

66.00%
158477.92

157849.70
coord100-5-3.dat

204990.1
23.00%

207681.487
205337.04

28.00%
207622.186

206226.55
52.00%

207773.31
206226.55

52.00%
207814.412

204990.10
coord100-5-3b.dat

153584.42
60.00%

154535.0115
153547.46

60.00%
154556.905

153591.67
58.00%

154415.8695
153572.36

59.00%
154483.6855

153547.46
coord200-10-1.dat

487594.78
56.00%

488391.729
487321.98

47.00%
488132.77

486959.87
14.00%

488707.214
486969.09

29.00%
488675.3055

486959.87
coord200-10-1b.dat

379549.65
54.00%

380460.9555
379674.61

85.00%
380360.884

379774.31
68.00%

380225.8865
379565.38

77.00%
380183.9455

379549.65
coord200-10-2.dat

454651.03
25.00%

455298.20
454426.38

28.00%
455168.16

454456.07
28.00%

455024.9445
454460.45

8.00%
454997.34

454426.38
coord200-10-2b.dat

375796.23
60.00%

376365.30
375533.23

62.00%
376386.68

375421.53
64.00%

376205.833
375555.99

56.00%
376223.22

375421.53
coord200-10-3.dat

480695.38
17.00%

482874.87
480682.29

17.00%
482811.79

480892.99
21.00%

482749.5385
480892.99

21.00%
482760.44

480682.29
coord200-10-3b.dat

369208.51
78.00%

373134.91
370655.65

75.00%
373423.89

369523.13
85.00%

371841.032
369965.65

74.00%
372194.33

369208.51
coord20-5-1.dat

55516.43
77.00%

55595.82
55516.43

77.00%
55591.96

55526.32
77.00%

55626.7925
55522.84

77.00%
55651.22

55516.43
coord20-5-1b.dat

39104.00
100.00%

39835.55
39104.00

100.00%
39770.60

39104
100.00%

39698.2455
39104.00

100.00%
39698.16

39104.00
coord20-5-2.dat

48960.53
97.00%

48969.73
48960.53

97.00%
48969.57

48960.65
97.00%

48967.3105
48957.36

97.00%
48968.33

48957.36
coord20-5-2b.dat

37548.14
100.00%

37555.38
37551.09

100.00%
37556.59

37547.58
100.00%

37555.1055
37548.14

100.00%
37555.78

37547.58
coord50-5-1.dat

90786.23
81.00%

91315.65
90781.90

83.00%
91184.01

90961.65
77.00%

91397.932
90902.24

77.00%
91291.05

90781.90
coord50-5-1b.dat

63714.52
79.00%

64023.49
63714.52

79.00%
63896.41

63685.5
79.00%

64026.08
63696.19

79.00%
64111.26

63685.50
coord50-5-2.dat

90211.48
67.00%

90614.58
90503.10

73.00%
90868.93

90462.21
73.00%

90664.9105
90499.96

73.00%
91150.97

90211.48
coord50-5-2b.dat

68670.53
88.00%

68970.01
68670.91

99.00%
68840.28

68632.11
76.00%

68944.3655
68697.38

78.00%
69080.53

68632.11
coord50-5-2bBIS.dat

52103.43
99.00%

52440.83
52085.86

95.00%
52450.36

52102.48
100.00%

52320.0635
52103.95

99.00%
52402.91

52085.86
coord50-5-2BIS.dat

85990.77
80.00%

87159.95
86128.82

79.00%
86967.80

87470.21
62.00%

88413.526
86563.30

56.00%
88059.14

85990.77
coord50-5-3.dat

87216.45
92.00%

88456.08
87235.69

91.00%
88546.02

87227.83
91.00%

88570.736
87089.14

67.00%
88532.98

87089.14
coord50-5-3b.dat

61944.83
94.00%

62769.82
62391.60

100.00%
62696.86

61925.4
100.00%

62581.9945
61920.53

100.00%
62539.99

61920.53
AVERAGE

66.30%
67.67%

67.60%
65.70%

AKCA’S
SET

cr30x5a-1.dat
825.92

84.00%
829.66

826.04
84.00%

829.39
826.72

84.00%
830.34

826.79
84.00%

829.95
825.92

cr30x5a-2.dat
821.74

100.00%
841.47

821.97
99.00%

837.26
821.78

100.00%
839.89

821.73
100.00%

837.93
821.73

cr30x5a-3.dat
709.96

75.00%
724.02

709.73
76.00%

720.83
714.95

100.00%
725.27

709.82
76.00%

720.47
709.73

cr30x5b-1.dat
885.98

95.00%
889.57

885.70
95.00%

891.85
885.58

95.00%
891.05

888.21
89.00%

896.79
885.58

cr30x5b-2.dat
825.32

100.00%
825.32

825.32
100.00%

825.47
825.32

100.00%
825.32

825.32
100.00%

825.32
825.32

cr30x5b-3.dat
891.07

86.00%
898.74

893.98
87.00%

899.19
894.52

86.00%
899.12

894.51
86.00%

899.18
891.07

cr40x5a-1.dat
932.54

98.00%
934.77

932.67
97.00%

936.39
932.60

97.00%
935.52

932.64
97.00%

936.32
932.54

cr40x5a-2.dat
888.82

100.00%
895.87

888.83
100.00%

895.60
888.86

100.00%
895.63

888.84
100.00%

895.66
888.82

cr40x5a-3.dat
957.16

93.00%
960.36

957.36
92.00%

961.54
957.14

93.00%
961.22

957.34
93.00%

961.48
957.14

cr40x5b-1.dat
1064.1

98.00%
1071.02

1064.41
97.00%

1066.94
1064.50

97.00%
1071.82

1064.30
98.00%

1068.16
1064.10

cr40x5b-2.dat
992.39

98.00%
1000.08

992.63
98.00%

1000.45
983.60

98.00%
999.30

983.77
98.00%

999.61
983.60

cr40x5b-3.dat
974.94

82.00%
982.13

975.05
82.00%

986.78
975.12

82.00%
988.39

975.52
80.00%

994.85
974.94

AVERAGE
92.42%

92.25%
94.33%

91.75%
BARRETO

’S
SET

Christ-100x10.dat
853.76

88.00%
860.67

854.86
83.00%

860.36
850.60

92.00%
859.471

850.60
92.00%

859.90
850.60

Christ-50x5.dat
571.16

92.00%
575.86

573.25
86.00%

582.28
569.57

82.00%
577.835

572.28
88.00%

582.60
569.57

Christ-50x5_B.dat
571.01

98.00%
585.43

573.64
97.00%

588.21
581.49

90.00%
586.8215

581.93
90.00%

589.28
571.01

Christ-75x10.dat
815.04

95.00%
824.82

818.38
97.00%

830.21
818.20

95.00%
828.5875

818.20
95.00%

828.59
815.04

Daskin95-150x10.dat
44444.82

100.00%
44652.44

44359.72
100.00%

44613.27
44161.74

100.00%
44690.3125

44270.07
100.00%

44754.91
44161.74

Daskin95-88x8.dat
358.46

100.00%
360.20

358.46
100.00%

361.39
358.46

100.00%
361.287

358.54
100.00%

361.94
358.46

Gaskell-21x5.dat
429.46

77.00%
432.31

429.31
78.00%

432.18
429.42

78.00%
432.264

429.42
78.00%

432.20
429.31

Gaskell-22x5.dat
585.11

100.00%
585.11

585.11
100.00%

585.11
585.11

100.00%
585.11

585.11
100.00%

585.11
585.11

Gaskell-29x5.dat
512.10

100.00%
512.10

512.10
100.00%

512.10
512.10

100.00%
512.1

512.10
100.00%

512.10
512.10

Gaskell-32x5.dat
562.28

100.00%
562.28

562.28
100.00%

562.28
562.28

100.00%
562.28

562.28
100.00%

562.28
562.28

Gaskell-32x5-2.dat
504.33

100.00%
505.06

504.33
100.00%

505.06
504.33

100.00%
504.418

504.33
100.00%

504.42
504.33

Gaskell-36x5.dat
460.37

100.00%
469.30

460.37
100.00%

469.30
460.37

100.00%
466.7

460.37
100.00%

466.70
460.37

M
in-27x5.dat

3062.02
100.00%

3063.41
3062.02

100.00%
3062.34

3062.02
100.00%

3062.334
3062.02

100.00%
3062.50

3062.02
M

in92-134x8.dat
5782.33

93.00%
5846.54

5792.52
68.00%

5845.57
5783.14

93.00%
5884.0895

5781.37
94.00%

5892.06
5781.37

Perl83-12x2.dat
206.07

83.00%
206.35

206.07
83.00%

206.35
206.07

83.00%
206.288

206.07
83.00%

206.29
206.07

Perl83-55x15.dat
1141.07

25.00%
1153.98

1141.82
19.00%

1153.96
1148.11

15.00%
1153.2125

1148.68
25.00%

1155.69
1141.07

AVERAGE
90.69%

88.19%
89.25%

90.31%
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Figure 4.4 Comparison of best stochastic solutions for different safety stock levels

supply chain networks. On the other hand, semi-cooperative (operational) HC in road trans-
portation involves customer service exchanges between different companies by sharing client
information and vehicle capacities. This allows for an aggregated routing solution in which
customers are assigned to different supply depots according to their geographic proximity.
Moreover, a fully-cooperative supply chain approach concerning integrated routing and facil-
ity location decisions is discussed. This represents the most advanced form of HC, in which
strategic decisions are jointly taken by participating organizations, including the possibility
of opening shared logistics facilities (i.e., vehicle depots) (Pomponi et al., 2015; Rezapour
et al., 2014). In order to compare the considered scenarios in terms of both monetary and en-
vironmental costs, a general solving approach combining biased randomization (Juan et al.,
2011b) with variable neighborhood search (Mladenović and Hansen, 1997) is used. This
algorithm is able —with minor adjustments— to solve each problem setting associated with
different cooperation extensions. Its performance is tested on a range of theoretical and real-
life benchmark instances, outperforming previously published results.

4.3.1 Problem Description
As the level of integrated supply chain decision making differs among the discussed sce-
narios, each considered case of HC corresponds to a different combinatorial optimization
problem (COP) (Juan et al., 2014c; Pérez-Bernabeu et al., 2015). Whereas non-cooperative
T&L planning involves solving a VRP for each participating company, centralized routing
decisions in the semi-cooperative case result in a MDVRP. The case of fully integrated rout-
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Table 4.9 Overview of considered HC scenarios

Scenario Non-cooperative Semi-cooperative Fully-cooperative

Joint
decisions None Route planning,

customer allocation
Route planning,

customer allocation,
facility location investment

Shared
resources None

Customer information,
vehicle capacities,
logistics facilities

Customer information,
vehicle capacities,
logistics facilities

Related
optimization
problem

Company specific
VRPs MDVRP LRP

ing and facility location planning is represented by the CLRP, in which route planning and
facility location decisions are combined.

All scenarios of cooperative delivery route and facility location planning are outlined in
Figure 4.5, where the three diamond-shaped nodes represent depots of different companies
and each of the other nodes are customers (notice that customers with the same shape belong
to the same company). Thus, the initial location of different depots and their associated
customers can be seen in Fig. 4.5(a). In non-cooperative supply chains, both routing and
facility location decisions are decentralized. Therefore, every company establishes its own
routing plans starting and ending at their central depot. From an optimization perspective,
this leads to the solution of the NP-hard VRP (Toth and Vigo, 2014) for each company, as
it tries to establish efficient delivery tours. An illustrative solution can be observed in Fig.
4.5(b).

In cooperative route planning, the degree of joint supply chain decisions increases. By
sharing customer information, storage facilities, and vehicle capacities, route planning can be
optimized through a more efficient customer-depot allocation. This situation corresponds to
the MDVRP (Montoya-Torres et al., 2015; Pérez-Bernabeu et al., 2015), in which customer
allocation and routing decisions are combined. The impact of this operational form of HC in
road transportation is visualized in Fig. 4.5(c). As can be intuitively observed, the routing
distances are reduced in comparison to the non-cooperative case.

Finally, Fig. 4.5(d) shows the resulting routing map of fully integrated routing and fa-
cility location supply chain decisions. Apart from joint delivery route planning, this level
of HC includes the shared determination of the most efficient number and location of lo-
gistics facilities. This situation is represented by the LRP, which summarizes: (i) facility
location decisions; (ii) customer assignment; and (iii) delivery route planning (Prodhon and
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Prins, 2014). This simple example illustrates how an integrated routing and location decision
might vary the number of depots employed to serve all customers.

Figure 4.5 Graphical representation of different scenarios

4.3.2 Generic Solving Approach
In order to quantify each scenario, we use the BR-VNS procedure presented in Algorithm
4. This generic procedure is able to solve all problem settings related to integrated routing
and facility decisions for different cooperation degrees in road transportation planning: the
VRP, the MDVRP, and the LRP.

As the level of aggregated decision-making differs among the different scenarios, small
variations must be adopted within the solving framework in order to efficiently solve the
related problems for non- and semi-cooperative supply chain planning. Necessary changes
are the following:

• In the non- and semi-cooperative cases, the number of depots to be open is no longer
a decision variable but rather an algorithm input. Thus, 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 and 𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑
are equal to the total number of depots considered in the problem instance.
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Algorithm 4: BR-Variable Neighborhood Search
Input: inputs, parameters

1 initialize(variables)
2 baseSols ← createInitialSolutions(inputs, parameters)
3 costs(bestSol) ← BigM
4 foreach baseSol ∈ initSols do
5 𝑇 = 𝑇0
6 while stopping criteria not reached do
7 k ← 1
8 while k < k𝑚𝑎𝑥 do
9 newSol ← shake(baseSol, k)
10 improving ← true
11 while improving do
12 newSol∗ ← localSearch(newSol)
13 if costs(newSol∗) < costs(newSol) then
14 newSol ← newSol∗

end
15 else
16 improving ← false

end
end

17 delta ← costs(newSol∗) - costs(baseSol)
18 if delta < 0 or (random < (exp-(-delta/T))) then
19 baseSol ← newSol∗
20 k ← 1

end
21 else
22 k ← k+ 1

end
23 T ← T×coolingFactor

end
end

24 if costs(baseSol) < costs(bestSol) then
25 bestSol ← baseSol

end
end

26 return bestSol

• In the non-cooperative scenario, customer allocation is not a decision variable but an
instance input. In this case, the biased randomized allocation procedure is turned off
and the number of promising solutions 𝑛𝑏𝑎𝑠𝑒𝑆𝑜𝑙𝑠 is set to 1.
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Table 4.10 Estimation of emission factors. Adapted from Ubeda et al. (2011)

Vehicle
Load

Load
Percentage

Consumption
(l/100km)

Conversion factor
(kg 𝐶𝑂2/l)

Emission factor
(kg 𝐶𝑂2/km)

Empty [0-25%) 29.6

x 2.61

0.773
Low [25-50%) 32 0.831
Half [50-75%) 34.4 0.900
High [75-100%) 36.7 0.958
Full 100% 39 1.018

• As the shaking operators aim to modify customer/depot allocation maps and taking
into account that this is not allowed in the non-cooperative scenario, the shaking pro-
cedure is not considered in this scenario. In effect, 𝑝% = 0 and 𝑘𝑚𝑎𝑥 = 2 in this
case.

4.3.3 Experiment Description
We have adapted the three aforementioned CLRP benchmark sets from the literature to fit
each considered scenario, in order to compare the cooperation degrees on integrated routing
and location decisions. Each instance consists of a set of possible (capacitated) facility loca-
tions and numerous customers to be served by a homogeneous and capacitated vehicle fleet.
In order to represent the non- and semi cooperative scenarios, it is assumed that all possible
facility locations have to be opened. Customers are randomly assigned to the open depots to
represent the non-cooperative case. In the semi-cooperative case, the customer/depot allo-
cations are optimized as described in the applied metaheuristic for the MDVRP (Juan et al.,
2015b). An estimation of the environmental impact of different cooperation scenarios is
provided according to the load- and distance based 𝐶𝑂2 emission calculations elaborated by
Ubeda et al. (2011). 𝐶𝑂2 emissions are hereby calculated according to travel distances and
vehicle loads as outlined in Table 4.10. This load dependency leads to asymmetric emis-
sion estimations for each established route, depending on the direction the delivery route is
completed. Since customers have different demands, the load of the vehicle in a given edge
will be different depending on the direction of the route. As a consequence, the 𝐶𝑂2 emis-
sions of that vehicle while traversing each edge will also differ depending on the selected
direction. Therefore, 𝐶𝑂2 emissions for each route are calculated in both directions. The
reported 𝐶𝑂2 emissions represent the lowest value obtained for both tours.

Additionally, the potential of our approach is demonstrated using the real-life instances
proposed byMuñozVillamizar et al. (2015). These authors discuss the impact of cooperative
strategies in the context of city logistics by showing the benefits of operational cooperation,



4.3 Extension to Horizontal Cooperation 81

suggesting significant monetary and environmental cost savings through HC strategies. A
total of 10 instances are considered. These instances represent different customer demand
sets, with 3 depots supplying up to 61 clients scattered around the Colombian capital Bogotá.
The authors compare two scenarios, the non-cooperative and cooperative one. While the
non-cooperative scenario is similar to the one described in this chapter, their cooperative
scenario is equivalent to the semi-cooperative case discussed in this work.

The proposed solving framework was implemented as a Java application and tested on
a personal computer with a core i5 processor and 8GB RAM. Each instance was solved
using ten different random seeds, whereby the reported results correspond to the best found
solution. The following parameters settings are applied for the BR-VNS algorithm to solve
the LRP:

• 𝑛𝐼𝑡𝑒𝑟𝑆𝑜𝑙𝑠 = 300

• 𝑛𝐼𝑛𝑖𝑡𝑆𝑜𝑙𝑠 = 2 + ⌊𝑛𝑜𝑑𝑒𝑠/100⌋

• 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 = 350

• 𝑟𝑜𝑢𝑡𝑖𝑛𝑔𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑅𝑎𝑛𝑑𝑜𝑚𝐶𝑊 𝑆 = 150

• 0.07 ≤ 𝛼 ≤ 0.23

• 0.05 ≤ 𝛽 ≤ 0.8

• 𝑇0 = 50

• 𝑐𝑜𝑜𝑙𝑖𝑛𝑔𝐹 𝑎𝑐𝑡𝑜𝑟 = 0.984

4.3.4 Analysis of Results
4.3.4.1 Results on Theoretical Benchmarks

The results concerning opening-, vehicle-, routing-, and total costs as well as associated 𝐶𝑂2
emissions of all scenarios for each benchmark set are listed in Tables 4.11-4.13. In the case
of Prodhon’s instances, a fixed vehicle cost of 1000 for each used delivery truck is applied,
and the reported distances are multiplied by 100 and rounded up to the nearest integer, in
order to calculate routing costs. For both the cases of HC during the integrated routing
and location planning process, significant cost savings can be expected. While the semi-
cooperative case leads to total cost reductions of 24.19% on average, this value increases to
58.6% in strategic level of cooperation. Similarly, the overall environmental impact can be
reduced through cooperative strategies. While the reported results for operative cooperation
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Figure 4.6 Summary average results of Prodhon instances.

suggest 𝐶𝑂2 reductions of up to 61.88%, a fully-cooperative scenario can lead to emission
savings of 56.87%.

The benchmark sets of Barreto (2004) and Akca et al. (2009) do not provide any vehicle
usage cost approximations. For this reason, no vehicle usage costs are reported for these
problem settings. In addition, these sets consider that routing costs are equal to the associated
distances. The benchmark set of Barreto (2004) suggests total cost savings of 42.37% and
61.64% for semi- and fully cooperative HC strategies in comparison to decentralized (non-
integrated) routing and location decisions. 𝐶𝑂2 emissions can be expected to decrease by
55.78% when applying a fully- instead of a non-cooperative strategy, with emission values
decreasing even further in for in semi-cooperative scenario. The problem settings provided
by Akca et al. (2009) suggest possible cost savings of 42.07% and 55.37% for the semi- and
cooperative scenarios, respectively. Concerning 𝐶𝑂2 emissions, differences of 55.77% and
52.74% are reported. All discussed results are summarized in Figures 4.6-4.8.

4.3.4.2 Results on a Real-life Case

Concerning the non-cooperative scenario, our approach to solve the related VRPs outper-
forms the results of Muñoz Villamizar et al. (2015) by 4.93% over the 10 real-life instances
described in the benchmark paper, as seen in Table 4.14 which reports the sum of routing
distances for each company. Similarly, the MDVRP is solved for the cooperative (semi-
cooperative) case. As depicted in Table 4.15, our algorithm is on average 4.81% better than
previously reported results. The potential distance-based benefits of a fully-cooperative sce-
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Table4.12
Quantified

scenario
com

parison
Barreto’sinstances

Non-cooperativescenario(NC)
Sem

i-cooperativescenario(SC)
Fully-cooperativescenario(FC)

NC
vsSC

NC
vsFC

Instance
opening
costs

routing
costs

total
costs

CO
2

em
issions

opening
costs

routing
costs

total
costs

CO
2

em
issions

opening
costs

routing
costs

total
costs

CO
2

em
issions

total
costs

CO
2

em
issions

total
costs

CO
2

em
issions

B1
200.0

149.6
349.6

128.9
200.0

95.8
295.8

83.0
100.0

104.0
204.0

89.7
-15.40

-35.63
-41.66

-30.47
B2

250.0
786.4

1036.4
655.5

250.0
322.8

572.8
270.1

100.0
324.9

424.9
282.8

-44.73
-58.8

-59.00
-56.86

B3
250.0

1357.1
1607.1

1075.6
250.0

554.0
804.0

452.6
50.0

535.1
585.1

451.9
-49.97

-57.93
-63.59

-57.99
B4

1360.0
6978.4

8338.4
5765.1

1360.0
2666.2

4026.2
2248.5

544.0
2518.0

3062.0
2108.4

-51.72
-63.28

-63.28
-63.43

B5
250.0

1236.2
1486.2

1014.4
250.0

408.8
658.8

337.0
100.0

412.1
512.1

351.7
-55.67

-65.54
-65.54

-65.33
B6

250.0
1089.9

1339.9
901.2

250.0
484.0

734.0
406.1

50.0
512.2

562.2
441.9

-45.22
-54.93

-58.04
-50.96

B7
250.0

1039.6
1289.6

841.4
250.0

456.5
706.5

383.3
50.0

454.3
504.3

383.1
-45.21

-54.46
-60.89

-54.46
B8

250.0
837.8

1087.8
695.7

250.0
374.0

624.0
325.3

50.0
426.0

476.0
369.8

-42.64
-53.25

-56.24
-46.85

B9
200.0

984.4
1184.4

838.4
200.0

461.1
661.1

396.9
80.0

485.6
565.6

421.3
-44.18

-52.66
-52.24

-49.76
B10

200.0
976.8

1176.8
836.4

200.0
444.7

644.7
387.5

80.0
485.6

565.6
425.8

-45.22
-53.67

-51.94
-49.09

B11
3600.0

1273.3
4873.3

1035.3
3600.0

340.3
3940.3

286.9
720.0

392.4
1112.4

342.0
-19.15

-72.29
-77.17

-66.97
B12

400.0
1879.8

2279.8
1599.7

400.0
648.6

1048.6
565.9

120.0
730.1

850.1
638.7

-54.01
-64.62

-62.71
-60.07

B13
2604.0

748.9
3352.9

647.4
2604.0

498.5
3102.5

426.4
1116.0

509.1
1625.1

440.6
-7.47

-34.13
-51.53

-31.95
B14

914.0
892.8

1806.8
699.4

914.0
229.4

1143.4
185.9

83.6
272.7

356.3
237.0

-36.72
-73.42

-80.28
-66.11

B15
400.0

2043.1
2443.1

1714.1
400.0

722.7
1122.7

614.0
80.0

760.5
840.5

658.1
-54.05

-64.18
-65.60

-61.61
B16

2144.0
17230.9

19374.9
14845.2

2144.0
4948.8

7092.8
4199.3

804.0
4993.5

5797.5
4351.7

-63.39
-71.71

-70.08
-70.69

B17
50000.0

88210.5
138210.5

72837.5
50000.0

25311.9
75311.9

21127.9
15000.0

29190.6
44190.6

24967.1
-45.51

-70.99
-68.03

-65.72
Average

-42.37
-58.85

-61.64
-55.78
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Figure 4.7 Summary average results of Barreto instances.

Figure 4.8 Summary average results of Akca instances.
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Table 4.14 Result comparison VRP

Muñoz Villamizar et al. (2015) Our approach %-Gap
kmInstance km Depots km Depots

I1 289.05 3 279.79 3 -3.20
I2 310.02 3 282.94 3 -8.73
I3 283.8 3 279.81 3 -1.41
I4 295.51 3 282.94 3 -4.25
I5 323 3 277.61 3 -14.05
I6 307.22 3 287.34 3 -6.47
I7 284.17 3 279.21 3 -1.75
I8 297.32 3 316.35 3 6.40
I9 332.42 3 288.14 3 -13.32
I10 290.37 3 282.94 3 -2.56

Average -4.93

Table 4.15 Result comparison MDVRP

Muñoz Villamizar et al. (2015) Our approach %-Gap
kmInstance km Depots km Depots

I1 215.13 3 210.91 3 -1.96
I2 227.51 3 215.83 3 -5.13
I3 229.81 3 214.76 3 -6.55
I4 228.01 3 212.04 3 -7.00
I5 215.01 3 210.04 3 -2.31
I6 258.43 3 215.21 3 -16.72
I7 216.56 3 211.78 3 -2.21
I8 223.93 3 215.53 3 -3.75
I9 220.08 3 217.58 3 -1.14
I10 222.76 3 219.86 3 -1.30

Average -4.81

nario can be seen in Table 4.16. Significant distance savings in comparison to the non-
cooperative case can be expected. While the route savings are not as large in comparison to
the semi-cooperative scenario, high investment savings through a lower number of necessary
logistics facilities can be observed.

4.3.4.3 Managerial Insights

In general terms, our results suggest that significant cost savings on a supply chain level
can be achieved through HC strategies in routing and facility location decisions. A visual
overview of the solution for each considered scenario of the P1 instance –consisting of 5 pos-
sible depot locations to serve a total of 20 customers– of Prodhon’s set is drawn in Figure 4.9.
Notice that the scattered nature of the customer/depot assignments in the non-cooperative
case (b) lead to higher routing distances compared to the semi-cooperative scenario (c).
Moreover, only three depots are necessary to serve all customers in the fully-cooperative
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Table 4.16 Results comparison LRP
Our approach
non-cooperative

(1)

Our approach
semi-cooperative

(2)

Our approach
fully-cooperative

(3)
Distance
%-Gap
(1)-(3)

Distance
%-Gap
(2)-(3)Instance Distance Depots Distance Depots Distance Depots (2)-(1) (3)-(2)

I1 279.79 3 210.91 3 210.91 2 -24.62 0.00
I2 282.94 3 215.83 3 215.83 3 -23.72 0.00
I3 279.81 3 214.76 3 210.04 2 -24.93 -2.20
I4 282.94 3 212.04 3 211.89 2 -25.11 -0.07
I5 277.61 3 210.04 3 210.04 2 -24.34 0.00
I6 287.34 3 215.21 3 215.21 3 -25.10 0.00
I7 279.21 3 211.78 3 209.09 2 -25.11 -1.27
I8 316.35 3 215.53 3 215.53 2 -31.87 0.00
I9 288.14 3 217.58 3 215.58 2 -25.18 -0.92
I10 282.94 3 219.86 3 211.58 2 -25.22 -3.77

Average -25.52 -0.82

scenario (d). However, minimizing total cost in the fully-cooperative scenario do not neces-
sarily lead to a reduction in 𝐶𝑂2 emissions, since a reduction in facility costs might imply
longer routes. In other words, since the goal is to minimize total distribution cost, the fully-
cooperative scenario allows us to take into account the trade-off between the cost of using
more facilities and the distance-based cost.

All tested instances are influenced by the topology of the problem setting. Customers
can be geographically dispersed (scattered) or grouped (clustered). Typically, markets in
which companies and their customers are in relative proximity favor non-cooperative supply
chain planning. The problem instances described by Belenguer et al. (2011) and Akca et al.
(2009) differ in their number of clusters. A closer analysis of the the results, as performed in
Figures 4.10 and 4.11, shows that HC strategies reach their highest potential benefits (both
in monetary and environmental terms) in more scattered customer/depot maps. This is often
the case in the context of city logistics (Savelsbergh and Woensel, 2016).

4.4 Chapter Conclusions
This chapter has presented efficient and relatively simple approaches for solving the CLRP.
The proposed methods combine BR techniques with perturbations of the allocation maps to
generate good solutions for the CLRP. As the numerical experiments showed, our approaches
are able to provide competitive results when compared to other state-of-the-art methods, both
in terms of solution quality and computational times. One of the main advantages of our
approaches is their relative simplicity: the methods are relatively easy to implement (only
two phases) and understand. Moreover, they need little fine-tuning. In contrast, most state-
of-the-art approaches introduce a high number of parameters that have to be adjusted, often
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Figure 4.9 Routing map comparison of different scenarios for P1 instance (Prodhon’s set).
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Figure 4.10 Clustered instances comparison of non- and fully cooperative scenarios.

Figure 4.11 Clustered instances comparison of non- and semi cooperative scenarios.
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requiring complex and time-consuming fine-tuning processes, as well as a high number of
operators to be used.

This chapter also analyzed the CLRP with stochastic demands. This richer version has
been solved by a simheuristic procedure in which three different simulation processes are
combined with the two proposed metaheuristic approaches. Simulation is used not only to
assess the quality of stochastic solutions but also to determine the safety stock strategy used
to face demand uncertainty. Benchmarks from literature were adapted to the stochastic case
with three different variability levels.

Furthermore, this chapter discusses different HC scenarios in integrated routing and lo-
cation decisions. Three cases are considered: (i) the non-cooperative scenario, in which all
decisions are taken decentralized by each company; (ii) the semi-cooperative scenario, based
on operational cooperation in route planning through customer order exchanges as well as
shared vehicle and depot capacities; and (iii) the fully-cooperative case, in which routing and
facility location decisions are taken on an aggregated supply chain level. Each scenario is
assessed concerning monetary and environmental costs by considering the associated opti-
mization problem that can be deduced from each planing situation: the VRP, the MDVRP,
and the LRP, respectively. All scenarios are compared through extensive experiments based
on real-life and theoretical benchmark sets. Reported results suggest that significant overall
costs savings (considering depot opening-, routing-, and vehicle usage costs) can be achieved
when applying strategic HC in the integrated routing and location decision making process.
This is specially the case in less-clustered problem settings. In some instances, the semi-
cooperative (operative) supply chain planning approach yields the most promising results
regarding 𝐶𝑂2 emissions due to lower routing distances when no facility location decisions
(and associated costs) are considered. Moreover, the effects of clustered topologies are also
analyzed in cooperative scenarios.





Chapter 5

Other RVRPs in City Logistics

The content of this chapter is based on the following publication:

• Gruler, A.; Quintero-Araujo, C.L.; Calvet, L.; Juan, A. (2017). “Waste Collection Under Uncertainty: A Simheuristic Based on
Vairable Neighborhood Search”. European Journal of Industrial Engineering, Vol. 11, No. 2, pp.228–255. ISSN: 1751-5254.
(JCR)

• Quintero-Araujo, C.L.; Pages-Bernaus, A.; Juan, A.; Travesset, O.; Jozefowiez, N. (2016). “Planning Freight Delivery Routes in
Mountainous Regions”. Springer Lecture Notes in Business Information Processing, (254), 123-132. ISSN: 1865-1348. (Scopus)

In this chapter, two different problem settings in the context of city logistics are analyzed.
On the one hand, theWaste Collection Problem (WCP) is becoming increasingly popular due
to the growth of urban areas and smart cities around the world. Efficient waste management
has relevant benefits for society, such as the reduction of environment pollution, hygiene
problems, traffic jams, and direct costs (up to two thirds of operational waste management
costs according to Malakahmad et al. (2014); Son (2014); Tavares et al. (2009)). Formulated
as an optimization problem, the WCP can be seen as an extension of the Capacitated Vehi-
cle Routing Problem. Special problem characteristics include the pick-up activities of waste
and the inclusion of additional landfill trips. Despite the amount of works in the literature
devoted to this problem, most works assume that waste levels are known when designing
vehicle routes, which is not the case in real-life applications. On the other hand, the plan-
ning of routes for the delivery of goods in mountainous regions is addressed. Mountainous
regions may have special characteristics related to the topography. Some of the customers
may be accessible only by regional roads, or after crossing mountain passes which in winter
times may require that vehicles are equipped adequately. City centers, which usually have
particular characteristics such as narrow streets and limited parking areas, may have even
harder driving conditions (such as streets with slopes). All these characteristics limit the
type of vehicles that can access certain areas. In particular, large trucks may be unable to
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access downtown areas or may experience difficulties in driving up and down the mountains.
In such situation smaller vehicles seem more appropriate to be used to serve the customers.

5.1 TheWasteCollection Problemwith StochasticDemands

5.1.1 Problem Description
Extending the classical VRP formulation, theWCP consists of a set of waste containers (cus-
tomers) with associated waste levels (demands) and a central depot in which a capacitated
vehicle fleet is located. Furthermore, there is a set of landfills or disposal sites where ve-
hicles are unloaded. The arcs (edges) connecting any two nodes are characterized by travel
costs, e.g.: distance, time, or 𝐶𝑂2 emissions. Figure 5.1 illustrates an example of a WCP
solution with two routes (blue and red, respectively). Vehicles start at the departure depot to
visit a set of waste containers. A WCP specific problem constraint is that vehicles start and
end their routes empty. For this reason, at least one additional landfill trip is included on
every route before the collection vehicle goes to the arrival depot (in many cases, departure
and arrival depots are the same). As can be seen in the blue route, multiple landfill visits
during the same trip are allowed. Thus, a vehicle might visit a disposal site once its capacity
is reached and then continue the same trip as long as no further route constraints (e.g., time
windows, maximum number of stops, etc.) are violated. Additional constraints such as the
inclusion of lunch breaks during the execution of the route can be considered.

Figure 5.1 Representation of the WCP

In many real-world applications of routing problems, uncertainty is one of the major
factors to be considered during operational planning because relevant information and input
data is not perfectly available. A typical application area experiencing high levels of uncer-
tainty is urban waste collection (Beliën et al., 2014). As waste generation and travel times
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of vehicles cannot be predicted with full certainty, there is a need for fast and risk-aware
solutions of high quality which are able to take stochastic input variables into account.

5.1.1.1 Basic Version of the WCP

The WCP can be described on a graph 𝐺 = (𝑉 , 𝐴), where the set of nodes 𝑉 = 𝑉 𝑑 ∪
𝑉 𝑓 ∪ 𝑉 𝑐 ∪ 𝑉 𝑏 includes: (i) a set of starting and ending depots 𝑉 𝑑 = {0, 0′} (in practice
both depots could be the same), with the starting depot being the initial location of a fleet of
homogeneous vehicles 𝐾 = {1, 2, … , 𝑘}, each of them having a capacity 𝐶; (ii) a set 𝑉 𝑓 =
{1, 2, … , 𝑚} describing 𝑚 landfills at which collected waste must be disposed at least once
before visiting the ending depot (see Figure 5.1); (iii) a set of waste containers (customers)
𝑉 𝑐 = {𝑚 + 1, … , 𝑚 + 𝑛} with associated waste levels 𝑞𝑖 > 0 (∀𝑖 ∈ 𝑉 𝑐); and (iv) a set
𝑉 𝑏 = {0∗} representing a virtual lunch-break node that has to be included in each route. Each
node 𝑖 ∈ 𝑉 ⧵ 𝑉 𝑑 has an associated time window represented by [𝑎𝑖, 𝑏𝑖] (with 0 ≤ 𝑎𝑖 < 𝑏𝑖).
Necessary service times for emptying any container and the duration of the lunch break are
formulated as 𝑟𝑖 > 0 (∀𝑖 ∈ 𝑉 𝑐 ∪ 𝑉 𝑏). Likewise, the set 𝐴 = {(𝑖, 𝑗)/𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗} describes
the arcs connecting any pair of different nodes. Each pair is characterized by its respective
travel costs, 𝑐𝑖𝑗 = 𝑐𝑗𝑖 ≥ 0, and travel times, 𝑡𝑖𝑗 = 𝑡𝑗𝑖 ≥ 0. The travel time associated with
going from any node 𝑖 ∈ 𝑉 ∪ 𝑉 𝑏 to the virtual lunch-break node (and vice versa) is equal to
zero, i.e.: 𝑡𝑖0∗ = 𝑡0∗𝑖 = 0. Notice, however, that the travel cost associated with ‘crossing’ the
lunch-break virtual node is given by the travel cost of the origin and destination nodes, i.e.:
𝑐𝑖0∗ + 𝑐0∗𝑗 = 𝑐𝑖𝑗 . The decision variables 𝑥𝑖𝑗𝑙 (∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑙 ∈ 𝐾) equal 1 if arc (𝑖, 𝑗) is
employed by vehicle 𝑙 and 0 otherwise. Ourmathematical model is presented next. It extends
the one proposed in Buhrkal et al. (2012) (e.g. by including the lunch break constraints)
and the one proposed in Sahoo et al. (2005) (which only considers traveling times). In our
model, 𝑑𝑖𝑙 represents the accumulated load of vehicle 𝑙 before serving node 𝑖, ℎ𝑖𝑙 represents
the service starting time of vehicle 𝑙 at node 𝑖, and 𝑀1 is a large-enough constant that can be
defined as 𝑀1 = max{𝑏𝑖}(∀𝑖 ∈ 𝑉 ⧵ 𝑉 𝑑) + max{𝑠𝑖}(∀𝑖 ∈ 𝑉 ⧵ 𝑉 𝑑) + max{𝑡𝑖𝑗} (∀(𝑖, 𝑗) ∈ 𝐴).

Min ∑
(𝑖,𝑗)∈𝐴

𝑐𝑖𝑗 ∑
𝑙∈𝐾

𝑥𝑖𝑗𝑙 (5.1)
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Subject to:

∑
𝑗∈𝑉 ⧵𝑉 𝑑

𝑥0𝑗𝑙 = 1 ∀𝑙 ∈ 𝐾 (5.2)

∑
𝑖∈𝑉 𝑓

𝑥𝑖0′𝑙 = 1 ∀𝑙 ∈ 𝐾 (5.3)

∑
𝑖∈𝑉

∑
𝑙∈𝐾

𝑥𝑖𝑗𝑙 = 1 ∀𝑗 ∈ 𝑉 𝑐 (5.4)

∑
𝑖∈𝑉
𝑖≠𝑗

𝑥𝑖𝑗𝑙 = ∑
𝑖∈𝑉
𝑖≠𝑗

𝑥𝑗𝑖𝑙 ∀𝑗 ∈ 𝑉 ⧵ 𝑉 𝑑 , ∀𝑙 ∈ 𝐾 (5.5)

𝑎𝑖 ≤ ℎ𝑖𝑙 ≤ 𝑏𝑖 ∀𝑖 ∈ 𝑉 ⧵ 𝑉 𝑑 , ∀𝑙 ∈ 𝐾 (5.6)
ℎ𝑖𝑙 + 𝑟𝑖 + 𝑡𝑖𝑗 ≤ ℎ𝑗𝑙 + (1 − 𝑥𝑖𝑗𝑙)𝑀1 ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑙 ∈ 𝐾 (5.7)
𝑑𝑖𝑙 = 0 ∀𝑖 ∈ 𝑉 𝑑 , ∀𝑙 ∈ 𝐾 (5.8)

𝑑𝑗𝑙 + 𝐶(1 − 𝑥𝑖𝑗𝑙)
𝑑𝑗𝑙 − 𝐶(1 − 𝑥𝑖𝑗𝑙) ≤ 𝑑𝑖𝑙 + 𝑞𝑖 ≤

∀𝑖 ∈ 𝑉 𝑐 ∪ 𝑉 𝑏 ∪ {0}, ∀𝑗 ∈ 𝑉 ⧵ 𝑉 𝑑 , ∀𝑙 ∈ 𝐾 (5.9)

𝑑𝑗𝑙 ≤ 𝐶(1 − 𝑥𝑖𝑗𝑙) ∀𝑖 ∈ 𝑉 𝑓 , ∀𝑗 ∈ 𝑉 𝑐 ∪ 𝑉 𝑏, ∀𝑙 ∈ 𝐾 (5.10)

∑
𝑖∈𝑉

𝑥𝑖0∗𝑙 = 1 ∀𝑙 ∈ 𝐾 (5.11)

∑
𝑗∈𝑉

𝑥0∗𝑗𝑙 = 1 ∀𝑙 ∈ 𝐾 (5.12)

ℎ𝑗𝑙 + (2 − 𝑥𝑖0∗𝑙 − 𝑥0∗𝑗𝑙)(𝑀1 + 𝑟0∗)
ℎ𝑖𝑙 + 𝑟𝑖 + 𝑟0∗ + 𝑡𝑖𝑗 ≤

∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑙 ∈ 𝐾 (5.13)

𝑑𝑖𝑙 ≤ 𝐶 ∀𝑖 ∈ 𝑉 𝑓 , ∀𝑙 ∈ 𝐾 (5.14)
𝑐𝑖0∗ + 𝑐0∗𝑗 ≥ 𝑐𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴 (5.15)
𝑑𝑖𝑙 ≥ 0 ∀𝑖 ∈ 𝑉 , ∀𝑙 ∈ 𝐾 (5.16)
𝑥𝑖𝑗𝑙 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑙 ∈ 𝐾 (5.17)

The objective function of minimizing total cost is formulated in Equation (5.1), which
represents the costs of the traveled edges. Constraints (5.2) imply that each vehicle leaves
exactly once the starting depot, while constraints (5.3) impose that each vehicle must visit a
landfill right before reaching the ending depot. Constraints (5.4) ensure that each container
is visited exactly once. Constraints (5.5) guarantee that we arrive to and leave from each non-
depot node. Constraints (5.6) force to the compliance of time windows. Constraints (5.7)
define the earliest possible starting time for the next customer taking into account service and
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travel times. Constraints (5.8) reset the vehicle load to zero when leaving from or arriving at
a depot. Constraints (5.9) accumulate load levels after visiting each container. Constraints
(5.10) are to empty vehicles after visiting a landfill. Constraints (5.11) and (5.12) introduce a
lunch break during each route. Constraints (5.13) impose that travel times between the stops
before and after the lunch break are taken into account to fix the earliest possible starting time
of the next container. Constraints (5.14) limit the maximum waste a vehicle may carry at
any time. Constraints (5.15) define the costs of crossing a virtual lunch-break node. Notice
that these costs are calculated as the travel cost between the origin- and destination node,
i.e.: 𝑐𝑖0∗ + 𝑐0∗𝑗 = 𝑐𝑖𝑗 . Thus, 𝑐𝑖0∗ and 𝑐0∗𝑗 are not inputs but decision variables satisfying the
aforementioned constraint. Finally, constraints (5.16) and (5.17) define variable domains.

5.1.1.2 A Richer and More Realistic Version of the WCP

The following restrictions, which significantly increase the difficulty of the problem, are
added to the basic version described before: (i) the number of vehicles used is not prede-
termined, only the maximum number of available vehicles is given; (ii) the lunch break is
automatically included in a route whenever a certain time window is reached; (iii) there is
a maximum number of stops at containers and landfills per route; (iv) there is a maximum
amount of waste that can be collected on a single vehicle route; and (v) the depot also has a
time window.

5.1.2 Solving Approaches for the Deterministic WCP
5.1.2.1 Exact Methods

The previous model was implemented in the GAMS®language (Version 23.5.2). Then, the
CPLEX®solver (Version 12.2.0.0) was used to try solving the smallest instance provided by
Kim et al. (2006), which has 1 depot, 99 containers, and 2 landfills. However, the solver
ran out of memory after 54 minutes of computation. Therefore, we generated three smaller
instances with 20, 24, and 44 containers, respectively. The number of landfills used was 2, as
in the original instances. The CPLEX®solver was allowed to run for a maximum time of 48
hours or until a gap lower than 1% was reached. Then, we also employed our VNS algorithm
–described in subsection 5.1.2.2– to solve the same instances. Table 5.1 shows the compar-
ison of results between CPLEX®and our VNS algorithm for the aforementioned instance.
For each solving method, we include the best solution found (Z), the time consumed to find
that solution (TC Z) and the maximum computing time allowed (TC). Notice that both meth-
ods provide optimal solutions for the first two instances, but the VNS clearly outperforms
the exact method in computing times (less than 1 second compared to 126 and 854 seconds
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required by CPLEX®, respectively). Regarding the third instance, CPLEX®ran out of mem-
ory after 5864 seconds. The best solution found by the exact method –after 2306 seconds–
has an objective value of 70.85 (relative gap of 65% with respect to the lower bound), while
our VNS algorithm provides an objective value of 63.09 in 1.5 seconds. These results reveal
how difficult it becomes for the CPLEX®solver to find optimal/near-optimal solutions in
low computing times, even for small instances of the basic WCP version. For that reason,
in the following we will focus on developing heuristic-based approaches, which allow us to
deal with richer and more realistic versions of the problem.

Table 5.1 Comparison of results among CPLEX®and our VNS

CPLEX® VNS Gap
Instances Z(1) TC Z (sec.) TC (sec.) Z(2) TC Z (sec.) TC(sec.) Z(2) - Z(1)

Kim102(20) 38.19 126.31 8916 38.19 <1 300 0.00%
Kim102(24) 24.88 854.05 3641.51 24.88 <1 300 0.00%
Kim102(44) 70.85 2306.55 5864.28* 63.09 1.5 300 -10.95%

Average -3.65%

5.1.2.2 AVariable Neighborhood Search (VNS)Algorithm for theDeterministicWCP

In order to solve the deterministic WCP a VNS metaheuristic is proposed. VNS is based
on the construction of different solution neighborhoods and the following descent phase to
define a local minimum in the corresponding neighborhood structure (Hansen et al., 2010).
An initial solution is obtained by applying the well-known savings routing heuristic (Clarke
and Wright, 1964) and its biased-randomized extension as described in Faulin et al. (2008)
and in Juan et al. (2013a). This procedure is adapted to the special case of waste collection by
changing the calculation of savings values used for merging two customers 𝑖 and 𝑗, originally
calculated as 𝑠𝑖𝑗 = 𝑐𝑖0+𝑠0𝑗 −𝑐𝑖𝑗 (Figure 5.2 - left). In theWCP, the costs of traveling between
a customer and the depot are asymmetric due to the additional landfill visit. To address this
new situation, we employ a simple transformation based on the average savings associated
to each arc (Figure 5.2 - right).

Based on the initial solution 𝑏𝑎𝑠𝑒𝑆𝑜𝑙, different neighborhood structures𝑁𝑘(𝑘 = 1, ..., 𝑘𝑚𝑎𝑥)
are created. The shaking procedures applied to create new solution structures are outlined
in Table 5.2. Within each neighborhood 𝑁𝑘(𝑏𝑎𝑠𝑒𝑆𝑜𝑙), different local descent heuristics de-
scribed in Table 5.3 are randomly applied to find the local minimum of 𝑁𝑘(𝑏𝑎𝑠𝑒𝑆𝑜𝑙). To
conclude the local search phase, a quick solution improvement procedure based on a cache
memory technique (Juan et al., 2013a) is implemented: the best-known order of traveling
between a set of nodes establishing a sub-route –i.e., starting at the depot or a landfill and
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Figure 5.2 Savings of the original CWS heuristic (left) and expected savings proposed for
the WCP (right)

ending at a disposal site– is stored in a hash-table data structure, thus allowing new solutions
to benefit from previously constructed ones. Whenever the local search phase leads to a more
competitive objective function value than that of 𝑏𝑎𝑠𝑒𝑆𝑜𝑙, 𝑏𝑎𝑠𝑒𝑆𝑜𝑙 is updated and 𝑘 is re-
turned to its initial value of 1. If 𝑏𝑎𝑠𝑒𝑆𝑜𝑙 cannot be improved through the local minimum
of 𝑁𝑘, 𝑘 is incremented by 1 and the next shaking operator is applied. Once each neigh-
borhood has been constructed (𝑘 = 𝑘𝑚𝑎𝑥), the process is repeated until a certain predefined
stopping criterion (e.g.: time, iterations, etc.) has been reached. Note that we shuffle the list
of neighborhood operators every time 𝑘 > 𝑘𝑚𝑎𝑥. A description of the VNS procedure for
the deterministic WCP can be seen in Algorithm 5.

Table 5.2 Shaking operators

Operator (k) Description
Customer Swap Inter-Route Swaps two randomly selected customers between different routes.
2-Opt Inter-Route Interchanges two chains of randomly selected customers among different routes.
Reinsertion Inter-Route Inserts a randomly selected customer in a different route.
Cross-Exchange Interchanges positions of 2-4 random, non-consecutive customers from

different routes.

Table 5.3 Local search operators

Operator (LS-Scheme) Description
Best Position Insertion Reinserts the container with the highest objective function increase into the best

available position of any route.
Re-allocate all Iteratively calculates the objective function increase of each container and

reinserts it at the best possible position.
Random Swaps Randomly selects and interchanges two nodes (from the same or different routes)

if the objective function improves.



100 Other RVRPs in City Logistics

Algorithm 5: VNS for the WCP
1 baseSol ← solve biased randomized CWS for the WCP // Juan et al. (2013a)
2 while stopping criteria not reached do
3 shuffle(ListOfShakingOperators)
4 k ← 1
5 repeat
6 newSol ← shake(baseSol, k) // see Table 5.2
7 improving ← true // Start Local Search
8 while improving do
9 newSol* ← localDescent(newSol, randomLSoperator) // see Table

5.3
10 if costs(newSol*) ≤ costs(newSol) then
11 newSol ← newSol*

end
12 else

improving ← false
end

end
13 cacheSubRoutes(newSol) // End Local Search
14 if costs(newSol) < costs(baseSol) then
15 baseSol ← newSol
16 k ← 1

end
17 else

k ← k+1
end

until k > k𝑚𝑎𝑥
end

18 bestSol ← baseSol
19 return bestSol

To test the competitiveness of our algorithm we use the benchmark instances provided
by Kim et al. (2006). This benchmark set includes 10 realistic instances, ranging from 102-
2100 nodes with time windows, multiple landfills, a single depot, a driver lunch break during
each route, and a homogeneous vehicle fleet. Furthermore, we compare our approach to the
clustered instances presented by Buhrkal et al. (2012). A clustering procedure is applied
to nodes with the same location and time windows to change the total number of nodes.
The algorithm was implemented as Java application and run on a personal computer with an
Intel®Xeon™CPUE5-2630 v2@2.60GHz processor. The initial solutions constructedwith
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the biased randomized version of the savings heuristic are based on a distribution parameter
randomly chosen within the range (0.4, 0.5) at each solution construction step.

Our results are summarized in Table 5.4. Column (1) reports the best known solution
(BKS) for each instance (listed as Kim_numberOfNodes) as reported in the works of Ben-
jamin and Beasley (2010); Kim et al. (2006) and Buhrkal et al. (2012). The computational
times (CT) in seconds, to reach each solution can be seen in column (2), while column (3)
lists the average results with 10 different random number seeds as presented in the benchmark
papers. Notice that the benchmark papers use different computers, computational times, and
programming languages to implement and execute their described algorithms, making a fair
comparison difficult. For this reason, we have tested our VNS metaheuristic with two differ-
ent stopping criteria. On the one hand, our best solution (achieved with 10 different random
number seeds) when applying the CTs listed in column (2) is reported in column (4). Fur-
thermore, we report our average solution with 10 different random number seeds (5) and our
best solution (6) with a stopping criterion of 300 seconds per instance as suggested by Ben-
jamin and Beasley (2010). It can be seen that our algorithm outperforms current BKS’s by
an average of -0.85% and -2.65%. Moreover, our algorithm reaches 9 new BKS’s (11 with
the extended algorithm running time). As can be observed, the percentage gap compared
to the BKS extends to more than 10% in some cases. These differences are supported by
results described in a technical report by Markov et al. (2015), in which the authors use the
five smallest (non-clustered) instances of the applied benchmark set to test a heuristic for the
WCP.

Some final remarks concerning the algorithm can be made. The initial solution for all
instances is constructed in under 3 seconds (only a few milliseconds for the smaller problem
cases). In comparison to the previous BKS’s, the average gap of the initial solutions is 8.92%.
A similar comparison to our best solution is done with the different local search operators.
When only running the algorithmwith the “best position insertion”, the “re-allocate all”, and
the “random-swaps” local search, the average percentage gaps are -0.38%, 1.28%, and 2.34%
respectively. While performance differences between the operators can be observed, these
results suggest that the combination of various local search techniques is highly convenient
in the solution of the WCP.

5.1.3 Solving the Stochastic Waste Collection Problem
5.1.3.1 A Simheuristic Approach Based on VNS

In realistic scenarios, waste levels cannot be predicted with certainty. The fact that real
waste levels in containers are only known when reaching designated pick-up points can lead
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Table 5.4 Computational results for the deterministic case and comparison with BKSs

Instance (1)
BKS

(2)
CT BKS

(s)

(3)
BKS

average

(4)
Our

best sol1

(5)
Our sol
average2

(6)
Our

best sol2

(7)
CT Our

best sol (s)
%-Gap
(1)-(4)

%-Gap
(1)-(6)

Kim102 174.5 3 176.03 158.61 158.64 154.62 5 -9.11 -11.39
Kim277 447.6 8 455.7 472.73 457.14 450.6 299 5.61 0.67
Kim335 182.1 10 196.49 189.79 187.36 184.22 298 4.22 1.16
Kim444 78.3 18 78.99 80.22 80.09 79.49 292 2.45 1.52
Kim804 604.1 72 650.65 603.17 601.14 593.2 300 -0.15 -1.80
Kim1051 2250.6 194 2387.7 2128.37 2119.50 2077.37 294 -5.43 -7.70
Kim1351 871.9 105 891.17 929.5 929.40 910.6 238 6.61 4.44
Kim1599 1337.5 252 1385.3 1184.67 1208.54 1182.58 292 -11.43 -11.58
Kim1932 1162.5 285 1192.2 1149.45 1169.95 1136.34 273 -1.12 -2.25
Kim2100 1749 356 1916.8 1595.48 1622.29 1603.93 293 -8.78 -8.29

Clustered Instances
Kim86 174.5 3 176.6 155.68 158.35 155.68 10 -10.79 -10.79
Kim267 450.7 8 456.4 460.4 455.96 449.41 294 2.15 -0.29
Kim322 182.4 10 190.7 189.78 185.93 184.26 298 4.05 1.02
Kim444 78.6 18 79.2 80.22 80.09 79.49 292 2.06 1.13
Kim602 586.2 72 647.8 610.52 593.25 586.11 297 4.15 -0.02
Kim1011 2295.2 116 2370.5 2151.51 2131.00 2102.23 299 -6.26 -8.41
Kim536 850 105 850.9 885.83 877.69 850.46 292 4.22 0.05
Kim870 1170.2 252 1230.6 1156.15 1180.07 1145.83 286 -1.20 -2.08
Kim1860 1128.7 285 1180.9 1129.89 1154.48 1138.6 295 0.11 0.88
Kim1877 1594.2 266 1650.8 1620.89 1642.20 1604.33 186 1.67 0.64
Average 868.44 122 908.27 846.64 849.65 833.47 257 -0.85 -2.65

1computational times per instance equal to column (2)
2computational times per instance equal to column (7)
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to route failures whenever collected garbage exceeds the planned collection amount. In these
cases, the collection vehicle needs to add an additional and, usually, expensive landfill visit
to its route. The proposed simheuristic methodology outlined in Algorithm 6 allows an
estimation of the solution quality of previously created outputs using the VNS metaheuristic
proposed in subsection 5.1.2.2 by integrating MCS into the solution procedure. Note that
the simheuristic structure for theWCP can theoretically be combined with any metaheuristic
approach addressing the problem setting. However, the quality of the stochastic solution is
directly related to the results obtained in the deterministic metaheuristic process (Juan et al.,
2015a). For this reason, the use of an efficient deterministic solution process such as the one
outlined in subsection 5.1.2.2 is a clearly a real necessity.

Before simulating waste levels, our methodology starts by transforming the stochastic
input variables into their deterministic counterpart, which is used to establish initial WCP
solutions. Even though waste levels (especially in urban settings) face different levels of
stochasticity, their behavior can typically be modeled according to some kind of theoret-
ical or empirical distribution (e.g., based on historical data). This allows the (stochastic)
waste levels 𝑤𝑖 at each container 𝑖 to be replaced with expected values 𝐸[𝑤𝑖]. Using these
deterministic values, an initial solution 𝑏𝑎𝑠𝑒𝑆𝑜𝑙 is constructed. In the following, the solu-
tion quality in a stochastic environment is tested by randomly simulating the waste levels of
each container 𝑖 for a certain number of iterations (or simulation runs) using the predefined
probability distribution. During each run the occurring route failure costs are estimated by
penalizing situations in which vehicle capacities are reached before a scheduled landfill trip.
More specifically, route failure costs are calculated as corrective actions to the predefined
routes –i.e., the necessary additional landfill trip starting and ending at the container at which
the vehicle capacities are reached. Finally, the sum of all route failure costs of all simulation
runs are divided by the number of simulation runs. Thus, the expected total costs of 𝑏𝑎𝑠𝑒𝑆𝑜𝑙
now consist not only of the deterministic routing costs, but rather in the addition of the de-
terministic routing costs with the expected route failure costs. At this stage we propose the
application of a small number of iterations 𝑠ℎ𝑜𝑟𝑡𝑆𝑖𝑚𝐼𝑡𝑒𝑟. On the one hand, a larger number
of simulation runs lead to more reliable estimates of the stochastic route costs. On the other
hand, at this stage a shorter simulation procedure can be used to keep the computational
effort through the simulation reasonable.

Once 𝑑𝑒𝑡𝐶𝑜𝑠𝑡𝑠(𝑏𝑎𝑠𝑒𝑆𝑜𝑙), 𝑠𝑡𝑜𝑐ℎ𝐶𝑜𝑠𝑡𝑠(𝑏𝑎𝑠𝑒𝑆𝑜𝑙), and 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑠(𝑏𝑎𝑠𝑒𝑆𝑜𝑙) have been
defined, new deterministic solution neighborhoods are constructed and locally improved
as described previously. A newly constructed solution 𝑛𝑒𝑤𝑆𝑜𝑙 is considered as promis-
ing whenever it yields lower deterministic costs than the current base solution. The behav-
ior of each promising solution under waste level uncertainty is then evaluated by applying
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Algorithm 6: Simheuristic for the WCP
1 replace stochastic waste levels by expected values // Creation of det. inputs
2 baseSol ← solve biased randomized CWS for the WCP
3 shortSimulation(baseSol) // MCS
4 while stopping criteria not reached do
5 k ← 1
6 repeat
7 newSol ← shake(baseSol, k) // see Algorithm 5
8 localSearch(newSol) // see Algorithm 5
9 if detCosts(newSol) < detCosts(baseSol) // Solution is promising

then
10 shortSimulation(newSol) // MCS
11 if totalCosts(newSol) < totalCosts(baseSol) then
12 update(eliteSols)
13 baseSol ← newSol
14 k ← 1

end
15 else

k ← k+1
end

end
until k > k𝑚𝑎𝑥

end
16 foreach eliteSol do
17 longSimulation(eliteSol)
18 estimateReliability(eliteSol)

end
19 return Pareto non-dominated eliteSols

a short simulation run, leading to a first estimation of the total solution costs. Whenever
𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑠(𝑛𝑒𝑤𝑆𝑜𝑙) < 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑠(𝑏𝑎𝑠𝑒𝑆𝑜𝑙), the current base solution is updated and 𝑘 is
returned to its initial value. Furthermore, the solution is stored as elite stochastic solution.
With each elite solution, a more extensive simulation run is started for 𝑙𝑜𝑛𝑔𝑆𝑖𝑚𝐼𝑡𝑒𝑟 itera-
tions once the metaheuristic stopping criteria has been reached. As discussed in Juan et al.
(2015a), it is recommendable to use a restricted number of solutions for the more extensive
simulation run at this stage. For this reason, we limit the number of stored 𝑒𝑙𝑖𝑡𝑒𝑆𝑜𝑙𝑠 to a
maximum of 10. While some changes in the stochastic objective function of single solutions
can be observed through the more detailed simulation, an augmented elite solution list does
not yield to significant changes in the final ranking of the best stochastic solutions.
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In addition to calculating the stochastic objective function value of promising determin-
istic solutions, our methodology allows the estimation of a solution reliability by considering
the proportion of runs where the solution plan can be implemented without any route failure
(a route failure occurs whenever the actual demand at any container exceeds the vehicle ca-
pacity, which forces the vehicle to visit a disposal site before resuming the original route).
Thus, the reliability 𝑟𝑒𝑙𝑖𝑎𝑏𝑟 of each route 𝑟 of any solution 𝑆 is computed as the quotient of
the number of runs in which a route failure occurs divided by the total number of simulation
runs, i.e. 𝑟𝑒𝑙𝑖𝑎𝑏𝑟 = 𝑠𝑖𝑚𝑅𝑢𝑛𝑠𝑊 𝑖𝑡ℎ𝑅𝑜𝑢𝑡𝑒𝐹 𝑎𝑖𝑙𝑢𝑟𝑒/𝑠𝑖𝑚𝑅𝑢𝑛𝑠. Notice that each route in a solu-
tion can be seen as an independent component of a series system (i.e., the proposed solution
will fail if, and only if, a failure occurs in any of its routes). Therefore, the overall reliability

of a solution with 𝑅 routes can be computed as
𝑅
∏
𝑟=1

𝑟𝑒𝑙𝑖𝑎𝑏𝑟. This leads to another valuable

decision variable for waste collection route planners, especially due to the fact that more than
one solution is evaluated in the same manner when applying the described reliability calcu-
lation to each elite solution. Furthermore, it allows for a closer risk and sensitivity analysis
of the considered solutions, as explained in the following subsection.

5.1.3.2 Computational Experiments for the Stochastic Waste Collection Problem

Similar to the deterministic case, a set of computational experiments have been performed
for the WCP under uncertainty, which are described in this subsection. Furthermore, the
obtained results are discussed and analyzed.

As there are not benchmarks for the stochastic case, we use the non-clustered instances
of Kim et al. (2006) as reference. The deterministic instances are transformed into stochastic
ones by using random waste levels following a log-normal distribution with expected val-
ues equal to the original deterministic value. This probability distribution has been chosen
because it is quite flexible and among the most popular ones when modeling non-negative
random variables. Other probability distributions, like the normal one, are rarely employed
to model non-negative random variables. Nevertheless, our approach could be used with any
other probability distribution (e.g., Weibull, gamma, etc.). Note that any probability distri-
bution will allow the easy construction of the deterministic case by putting the variance level
𝑉 𝑎𝑟[𝑤𝑖] of any container equal to 0, considering that the deterministic values provided by
the instances are used as the distribution mean.

We test our approach using low (𝑉 𝑎𝑟[𝑤𝑖] = 0.05𝑤𝑖), medium (𝑉 𝑎𝑟[𝑤𝑖] = 0.15𝑤𝑖),
and high variance levels (𝑉 𝑎𝑟[𝑤𝑖] = 0.25𝑤𝑖) concerning the waste level distribution at
any container. The number of short simulation runs is set to 500, while a more extensive
simulation with 5000 runs is applied only to the elite solutions. Moreover, we propose the



106 Other RVRPs in City Logistics

inclusion of vehicle safety stocks 𝑘 to better deal with unexpected demands, as discussed
in more detail by Juan et al. (2011a). Instead of considering the complete available vehicle
capacity 𝐶 in the construction of the deterministic solution, a decreased capacity 𝐶∗ =
𝐶 ∗ (1 − 𝑘) is applied. On the one hand, high levels of 𝑘 will, on average, lead to higher
deterministic costs (and increased solution reliabilites), as the considered vehicle capacity
during the route construction is reduced. On the other hand, it can be expected that the
stochastic route failure costs will decrease. For the following analysis and discussion of
results, 6 different safety stock levels 𝑘: 0, 0.02, 0.04, 0.06, 0.08, and 0.1 are considered.
Combined with the three variance levels, this leads to a total of 18 different scenarios for
each instance. Tables 5.5-5.7 show the deterministic costs (1), the total costs including the
expected route failure penalties (2), and the related reliability calculated as described in the
previous Section (3) of each tested scenario, where listed results refer to the best obtained
solution according to the overall costs. The average calculation time (to complete the VNS
procedure and the subsequent extensive simulation for the elite solutions) of all scenarios
was 351.92 seconds.

5.1.3.3 Discussion and Analysis of Results

Figure 5.3 shows the expected total costs and reliabilities for the average of all tested in-
stances for each variance level/safety capacity factor combination. As can be observed, the
highest total costs for each waste variance level is obtained when no safety capacity factor is
considered as a result of high expected route failure costs. Furthermore, it can be seen that
the lowest total costs over all instances for a low variance level are obtained with a safety
capacity factor of 2%. For medium and high waste variance, a safety capacity factor of 4%
seems to yield the most promising results concerning total costs. As expected however, the
reliability levels (also calculated as an average of all instances) increase for all variance lev-
els as the vehicle safety capacity is increased. It can also be concluded that the inclusion of
only a small safety capacity already significantly increases reliability levels (up to around
60% in the most extreme case). In contrast to the stochastic case, safety capacity levels
negatively impact the deterministic results as vehicle capacity levels are reduced. This can
be clearly seen in Figure 5.4, showing the average deterministic costs of all instances and
variance levels with different safety stock levels.

A more detailed risk analysis is done in Figure 5.5, which shows a boxplot of the long
simulation outputs for the three most competitive elite solutions of the Kim277 instance. In
this specific case the first solution seems to be the most promising one, as it has the lowest
mean and the lowest quartiles. However, this is not necessarily always the case.
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(a)

(b)

Figure 5.3 Expected total costs (a) and reliabilities (b) over all instances
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Figure 5.4 Deterministic costs over all instances and variance levels

Figure 5.5 Boxplot of the total costs of each long simulation run of the Kim277 instance
for the best three solutions considering a high waste variance level and a 2% safety capacity
level

In Table 5.8, the mean and standard deviation of the results from the long simulation
concerning total costs of the three best solutions of each instance (obtained with a single
random-number seed) are listed. From the aforementioned table, it can be concluded that
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the solution with the lowest mean does not always has the lowest standard deviation (see
for example Kim444). Thus, this information can be used by decision-makers to select the
solution that he/she prefers according to his/her risk preference. In a similar manner, our
solution approach allows the consideration of different risk-aversion levels of decision mak-
ers by comparing solutions with different safety capacity levels. A more risk-averse route
planner will choose to construct routes with higher safety capacity levels, which typically
lead to higher routing costs while experiencing lower route failure, and vice versa.

Table 5.8 Comparison of different elite solutions in terms of the mean and standard deviation
of total costs

Elite
Solutions Best 1 Best 2 Best 3

Instance
Name Mean St. Dev. Mean St. Dev. Mean St. Dev.

Kim102 157.05 3.54 157.14 3.38 157.22 3.65
Kim277 498.66 4.53 499.07 4.45 499.12 4.59
Kim335 187.84 1.81 187.96 1.84 188.25 1.85
Kim444 87.79 0.84 87.80 0.79 91.35 0.82
Kim804 633.97 5.93 634.34 5.74 635.00 5.90
Kim1051 2342.85 16.67 2343.58 15.48 2345.62 16.29
Kim1351 1009.88 26.48 1012.78 26.57 1025.50 26.54
Kim1599 1290.02 24.34 1291.67 23.40 1292.07 23.83
Kim1932 1199.85 29.77 1202.21 30.50 1245.03 30.14
Kim2100 1742.47 13.97 1742.81 14.62 1748.34 13.83

5.2 The Site-Dependent Asymmetric VRP with Heteroge-
neous Fleet

5.2.1 Problem Description
The HSDAVRP is a natural extension of the classical capacitated VRP. Formally, the HS-
DAVRP is defined over a complete graph 𝐺 = (𝑁, 𝐴) where 𝑁 = 0, 1, …, 𝑛 is the set of
nodes where node 0 is assumed to be the depot and the rest represent the customers that need
to be visited. Each customer has a (deterministic) demand 𝑑𝑖. The set 𝐴 = {(𝑖, 𝑗) ∶ 𝑖, 𝑗 ∈
(𝑁), 𝑖 ≠ 𝑗} contains the arcs that represent the road network. The set A considers that any
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pair of nodes is connected, and if this differs from the reality a large cost will be associated to
it. The cost of traveling on the arc (𝑖, 𝑗) is represented by 𝑐𝑖𝑗 . In the heterogeneous version,
the cost of going from 𝑖 to 𝑗 is different from the cost of going from 𝑗 to 𝑖. This cost can
be related to distance, traveling time, fuel costs or any other measure depending on the case
under study. Customer demands are carried by one of the vehicles available in the fleet. The
set 𝐹 includes all available vehicles. Each vehicle 𝑘 will have particular characteristics. It is
to note that the total cost of traveling from 𝑖 to 𝑗 will not only depend on the cost associated
to the arc but also depends on the type of vehicle used. The cost of the arc is multiplied
by a factor that depends on the vehicle type, 𝑣𝑘, (larger vehicles have higher variable cost
than smaller ones), being the total cost of the arc a three-index parameter, 𝑐𝑘

𝑖𝑗 = 𝑣𝑘 × 𝑐𝑖𝑗 .
Moreover, each route includes a fixed cost for using a vehicle, 𝑓𝑘. Therefore, the cost of a
route corresponds to the sum of the fixed and variable costs of the arcs belonging to the route.
Parameter 𝑄𝑘 denotes the maximum load that vehicle k can carry. Vehicles can serve only
compatible customers, 𝐶𝑘, where 𝐶𝑘 ⊂ (𝑁 ⧵{0}) is the set of nodes that vehicle k can reach.
The aim of the HSDAVRP is to find the routes, covered by a heterogeneous fleet of vehicles,
to serve all customers demands while minimizing total traveling costs. This problem rep-
resents the main characteristics of route planning for freight transportation in mountainous
regions: some type of vehicles might not be able to serve a subset of particular clients (thus
requiring a fleet with multiple types of vehicles) and traveling costs depend on the direction
of the route and type of vehicle. For a complete mathematical formulation of this problem,
the reader should refer to Juan et al. (2014b).

5.2.2 Solving Approach
The proposed solving approach is based on the Successive Approximation Method (SAM)
presented in Juan et al. (2014b). The SAM algorithm is a multi-round process in which the
number of rounds is limited by the number of vehicle types. At each round a vehicle type
is selected among the non-used ones. Then, a new VRP is solved for the non-served nodes
by assuming unlimited vehicles of the selected type. When the number of resulting routes
is higher than the number of available vehicles of the corresponding vehicle type, a subset
of routes is randomly discarded in order to ensure that no more vehicles than the available
ones are used. The feasible routes are saved as a partial solution, while the nodes belonging
to the discarded routes are added to the subset of non-served nodes. Next, a new round of
the process is executed. The process stops when all nodes are visited or when all vehicle
types are considered. Site conditions (such as banning vehicles from visiting incompatible
customers or the vehicle capacity) are ensured within the SAM algorithm.
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Figure 5.6 shows the logic used to solve the HSDAVRP. It starts by defining the set of
nodes that needs to be routed. The saving cost for each link in the network is calculated. At
this initial stage, the network is reduced to a non-oriented symmetric network. A weighted
saving associated to the link that connects node i and j is computed as defined in Herrero
et al. (2014) to deal with asymmetric costs:

̂𝑆𝑖𝑗 = 𝛽 × 𝑚𝑎𝑥 (𝑆𝑖𝑗 , 𝑆𝑗𝑖) + (1 − 𝛽) × 𝑚𝑖𝑛 (𝑆𝑖𝑗 , 𝑆𝑗𝑖), 𝛽 ∈ [0.5, 1] (5.18)

In equation (5.18), 𝑆𝑖𝑗 is the saving associated to the arc (𝑖, 𝑗) and 𝑆𝑗𝑖 is the saving
associated to the arc (𝑗, 𝑖). Then, an available vehicle type is chosen and the set of nodes to be
routed is modified by excluding those nodes which are incompatible with the current vehicle
type. At each round, routes are created using the biased randomized version of the Clarke
and Wright savings (CWS) heuristic proposed by Juan et al. (2010). In this version, edges
from the saving list are randomly selected following a biased probability distribution such in
a way that the edges with higher savings are more likely to be selected at each construction
step. In this case, we use the single-parameter geometric distribution. Then, several runs
of the same procedure come up with different proposals. The best solution is chosen as a
partial solution. In this partial solution, it is likely that the number of vehicles used is higher
than the available ones. In this case, leftover routes are randomly selected and removed
from the partial solution. In the next round, those nodes that remain unrouted plus any other
nodes left out because of vehicle incompatibility compound the subset of nodes to be routed.
When all nodes have been assigned to a proper vehicle, a local search procedure is applied to
improve the visiting order within each route. At this point asymmetric costs are employed.
A first approach is to check a given route in both directions and take that with lowest value.
More advanced techniques can be used such as those presented in Herrero et al. (2014). The
scheme presented so far constitutes a basic local search heuristic that determines a set of
routes ensuring that vehicles capacity is satisfied (CWS take care of the capacity constraint),
customers are served with adequate vehicles (incompatible nodes are removed from the set
of unrouted nodes) and routes are measured with asymmetric costs (using a specific local
search). To generate new solutions, a base solution is partially destroyed (by removing a
random number of routes) and the procedure is repeated.

5.2.3 Numerical Experiments
The aforementioned procedure was coded as a Java application. In order to test the poten-
tial of our method we carried out three different experiments: (i) homogeneous VRP with
asymmetric instances, (ii) heterogeneous VRP with asymmetric distances and, (iii) hetero-
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Figure 5.6 Flowchart of the solving method

geneous VRP with asymmetric distances and site-dependency (i.e. some customers can not
be served by the vehicles with the largest capacity). Each experiment was carried over all
selected instances using 5 different random seeds and was executed using a 2.4 GHz core i5
personal computer with 8Gb RAM. The execution time was established in 120 seconds per
run.

5.2.3.1 Test Instances

In order to perform the tests described above, we have randomly selected 4 instances with
Euclidean distances from classical Homogeneous VRP instances (NEO, 2013). These in-
stances have been modified using the following procedure:

• For each pair of nodes (𝑎, 𝑏), if the y-coordinate of b is greater than y-coordinate of a
we multiply the distance of the arc by 1.1, otherwise the distance remains unmodified.
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This allows us to generate asymmetric instances that can be easily replicated in further
research projects.

• Next we generate two new vehicle capacities corresponding to the 75% and 50% of
the original (T1) vehicle capacity. The number of available vehicles of the original
capacity is chosen to be lower than the number of vehicles needed in the best known
solution (BKS) for the homogeneous case with asymmetric distances.

• In order to have site-dependency, for each instance we randomly select a sub-region of
the whole x-y space and we restrict the nodes belonging to that area of being visited
by T1-capacity vehicles.

• The number of available vehicles for each of the new capacities is established to ensure
the demand satisfaction constraints, considering a reduced fleet of T1-capacity trucks
and the demand of the restricted nodes

5.2.3.2 Results and Analysis

Table 5.9 summarizes, for each instance, the results obtained during the experiments. For
each instance we report the best solution obtained in terms of total costs (vehicle fixed cost
+ vehicle variable cost) and its corresponding distance-based cost. Note that our objective
function is the minimization of the total costs, but we used the distance-based cost only for
comparison purposes with respect to the best known solutions for the symmetric case. The
left side of the table allows the comparison of the asymmetric and symmetric versions of the
homogeneous VRP. In this case, since we have only one type of vehicles, the optimization
of the total costs has the same solution than the optimization of routing distances. Our mean
gap in terms of distance cost is 0.20% which shows the competitiveness of our approach.
The right side of the table shows the results obtained for the heterogeneous VRP without
and with site-dependency, which corresponds to experiments (ii) and (iii) respectively. In
the case of non-site dependency, we can see that, in average, the heterogeneous version
outperforms the homogeneous version in terms of total costs (average gap of -1.47%) while
the distance cost is 8.89% higher, in average. Since there are less available vehicles with
larger capacities, solutions are forced to use smaller vehicles (with lower fixed and variable
costs) and to perform more trips. In the case of site-dependency, which restricts even more
the usage of larger trucks, the total costs increases (average gap of 6.64%) with respect to
the homogeneous case, while the distance costs increase, on average 19.71%.
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5.3 Chapter Conclusions
We have proposed a competitive Variable Neighborhood Search metaheuristic for the de-
terministic WCP. Moreover, this chapter presented an efficient approach to solve the WCP
under uncertainty by modeling waste levels as random variables following an empirical or
theoretical probability distribution. The algorithm was tested using a large-scaled bench-
mark set for the WCP with several realistic constraints. The proposed methodology for the
WCPwith stochastic waste levels is based on a simheuristic algorithm in which a VNSmeta-
heuristic is combined with simulation techniques. Initially, a stochastic problem instance is
transformed into a deterministic one by replacing random variables with their means. In the
following the metaheuristic explores the search space to find a set of promising solutions,
which are then assessed in a stochastic environment by using Monte Carlo simulation. Apart
from finding different solutions in only a few minutes (even for stochastic WCP cases with
over 2000 nodes solutions are found in under 400 seconds), the results allow a risk analy-
sis considering waste level variances and vehicle safety capacities. A further advantage of
our approach is its easiness to be understood and implemented. In addition, no strong as-
sumptions are made related to the probability distribution of the random variables. As the
results of our computational experiment show, our algorithm yields competitive solutions in
a relatively small amount of time.

A number of possible future research lines stem from this work. The most natural ex-
tension would be the inclusion of stochastic travel and/or service times. Especially in urban
settings, these variables may experience high uncertainty levels due to the unpredictability of
traffic jams, road works, adverse weather, etc. A second research line extends the stochastic
problem by considering on-line optimization techniques. In the development of smart cities
for example, total waste collection costs could be reduced by using real-time waste level
information obtained through volumetric sensors in containers. Another interesting topic
would be the introduction of routing externalities (pollution, benefits for society, etc.) in the
objective function. Finally, a multi-stage version of our problem (e.g., daily waste collection
over a weekly or monthly planning horizon) could be addressed.

We have introduced an efficient, fast and easy to implement multi-round algorithm for
planning goods delivery in mountainous regions with heterogeneous fleet. This situation was
represented by the so-called Heterogeneous Site-Dependent with Asymmetric Costs Vehicle
Routing Problem (HSDAVRP). The proposed algorithm is based on a randomized version of
the CWS heuristic which assigns a higher probability of being chosen to the most promising
movements. Preliminary tests carried out show that our approach seems promising in order
to solve this new RVRP. Further research efforts could be oriented to include real-life data
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or conditions (i.e. customer locations, real distance-based costs, other vehicle types and
associated costs, uncertain demand, uncertain travel times, etc.)





Chapter 6

Conclusions and Future Research Lines

This thesis integrates three important topics related to the optimization of transportation and
logistics activities: (i) the consideration of new RVRP in order to study more realistic cases;
(ii) the implementation of horizontal cooperation strategies to generate higher benefits to
firms and; (iii) the development of efficient solving approaches to deal with such complex
problems and support related decision-making processes. Thus, it includes both method-
ological and practical contributions to the research community in T&L.

First of all, in chapter 2, we have reviewed the main theoretical concepts and develop-
ments regarding the RVRP studied in this thesis, the different solving methodologies and
HC. As the analyzed problems are known to be richer versions of well-known NP-Hard
problems, approximated algorithms seem to be more suitable to tackle them. Taking into
consideration the main trends in the design of approximated algorithms, we have decided to
develop easy to implement and, at the same time, efficient metaheuristics based on biased
randomization techniques to deal with the deterministic RVRP proposed in this thesis. Fur-
thermore, we have combined them with Monte Carlo simulation to efficiently solve more
realistic problem settings in which uncertainty is involved.

Next, in chapter 3, horizontal cooperation has been analyzed in the context of urban dis-
tribution of goods under uncertainty. This situation has been represented by theMDVRPSD,
which has been solved bymeans of a simheuristic algorithm combining Iterated Local Search
with MCS. We have compared the cooperative scenario against a non-cooperative one using
both theoretical and real-life instances available in literature. The benefits of implementing
HC have been quantified in terms of distance costs (for each individual company as well as
at an aggregated level) and reliability of the solutions. Then, we have moved towards a mid-
term planning horizon in which we have considered a multi-objective approach considering
both distance and 𝐶𝑂2 emissions optimization by including electrical vehicles.
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Then, the Capacitated Location Routing Problem has been studied in both deterministic
and stochastic settings. The deterministic version has been solved by means of a two-stage
biased randomized ILS algorithm whose competitiveness has been tested using three sets
of benchmarks. Furthermore, it has been enhanced through the incorporation of: (i) three
different local search operators; (ii) the usage of two different acceptance criteria for non-
improving solutions and; (iii) the hybridization with MCS to determine the right safety stock
policy to face demand uncertainty and to estimate both solution quality and reliability. In
addition, the flexibility of the proposed algorithm has allowed us to compare three coopera-
tive scenarios for integrated routing and facility location decisions in terms of economic and
environmental costs. The important effects of implementing fully cooperative strategies are
validated by average savings of, at least, 55% and 52%, respectively.

Finally, two RVRP concerning city logistics have been addressed. The waste collection
problem with stochastic demands has been solved by means of a simheuristic based on a
VNS algorithm. The efficiency of the proposed VNS has been compared to both exact and
approximated approaches, providing in several cases new BKS for the deterministic WCP.
In addition, it has been shown how the proposed simheuristic can be used to suit different
decision-maker profiles by providing alternative solutions. On the other hand, the distribu-
tion of goods in mountainous regions has been represented by the HSDAVRP. This problem
has been solved by means of a biased randomized multi-round process in which, at each
round, we consider a different vehicle type to create a partial solution. Then, partial solu-
tions are merged to obtain a feasible solution for the problem. As there are no benchmark
instances for this problem, existing VRP instances have been adapted. The variations in costs
when adding the different constraints of this problem have been compared to the classical
VRP.

6.1 Future Research Work
A broad set of research lines stem from this thesis. Some of them are summarized in the
following:

• From a theoretical perspective, the consideration of other key concepts of HC, such
as social concerns and equity in terms of workload. Moreover, the integration with
other logistic activities such as inventory management, procurement, forecasting, etc.,
could be of interest.

• From a methodological point of view, the development of different metaheuristics,
such as GRASP, TS or SA, as underlying optimization methods to enhance the body
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of knowledge on simheuristics. In addition, a modified version of simheuristics in
which the approach could be simulation-driven instead of optimization-driven.

• The hybridization of simheuristics with other analytical tools, e.g. machine learning
to deal with dynamic inputs or real-time optimization problems to tackle more realistic
versions than the ones proposed in this thesis.

• Regarding RVRP literature, the incorporation of multi-objective approaches to con-
sider sustainability in its broad sense (economic, environmental and social).

6.2 Outcomes Derived from this Thesis
One of the objectives of this thesis is related to the dissemination of the outcomes in several
international indexed journals as well as in international conferences. In the following, we
include the list of publications, conference papers and talks generated during the develop-
ment of this project.

6.2.1 JCR Indexed Papers
• Quintero-Araujo, C.L.; Caballero-Villalobos, J.P.; Juan, A.; Montoya-Torres, J.R.

(2017) “A Biased-Randomized Metaheuristic for the Capacitated Location Routing
Problem”. International Transactions in Operational Research, 24: 1079–1098. ISSN:
0969-6016. doi:10.1111/itor.12322

• Gruler, A.; Quintero-Araujo, C.L.; Calvet, L.; Juan, A. (2017). “Waste Collection Un-
der Uncertainty: A Simheuristic Based on Vairable Neighborhood Search”. European
Journal of Industrial Engineering, Vol. 11, No. 2, pp.228–255. ISSN: 1751-5254.
(indexed in ISI SCI, 2014 IF = 0.736, Q3; 2014 SJR = 0.898, Q1).

• Quintero-Araujo, C.L.; Gruler, A.; Juan, A.; Faulin, J. (Under Review) “Using Hori-
zontal Cooperation Concepts in Integrated Routing and Facility Location Decisions”.
Int. Transactions in Operational Research. ISSN: 0969-6016. (indexed in ISI SCI,
2015 IF = 1.255, Q2; 2015 SJR = 1.179, Q1).

• Muñoz-Villamizar, A.F.; Quintero-Araujo, C.L.; Montoya-Torres, J.R.; Faulin, J. (Un-
der Review): “Short- andMid-termEvaluation of theUse of Electric Vehicles inUrban
Freight Transport Collaborative Networks: A Case Study”. Transportation Research
Part D: Transport and Environment. ISSN: 1361-9209. (indexed in ISI Web of Sci-
ence and Scopus, 2015 JCR = 1.864, Q2, 2015 SJR = 1.144, Q1).
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• Quintero-Araujo, C.L.; Guimarans, D.; Juan, A. (Under Review): “A SimILS algo-
rithm for the Capacitated Location Routing Problem with Stochastic Demands”. Jour-
nal of the Operational Research Society (indexed in ISI SCI, 2015 IF = 1.225, Q2;
2015 SJR = 1.026, Q1). ISSN: 0160-5682. .

6.2.2 Scopus Indexed Papers
• Quintero-Araujo C.L., Gruler A., JuanA.A. (2016). “Quantifying Potential Benefits of

Horizontal Cooperation in Urban Transportation Under Uncertainty: A Simheuristic
Approach”. In: Luaces O. et al. (eds) Advances in Artificial Intelligence. CAEPIA
2016. Lecture Notes in Computer Science, vol 9868, 280-289. Springer, Cham. ISSN:
1611-3349. (indexed in Scopus, 2014 SJR = 0.339, Q2).

• Quintero-Araujo, C.L.; Pages-Bernaus, A.; Juan, A.; Travesset, O.; Jozefowiez, N.
(2016). “Planning freight delivery routes in mountainous regions”. Springer Lecture
Notes in Business Information Processing, (254), 123-132. ISSN: 1865-1348. (in-
dexed in Scopus, 2014 SJR = 0.244, Q3).

• Quintero-Araujo, C.L; Gruler, A.; Juan, A.; De Armas, J.; Ramalhinho, H. (2017)
“Using Simheuristics to promote Horizontal Collaboration in Stochastic City Logis-
tics”. Progress in Artificial Intelligence. ISSN: 2192-6352. DOI: 10.1007/s13748-
017-0122-8 Accepted for Publication.

6.2.3 Conference Papers Indexed in ISI-WOS or Scopus
• Quintero-Araujo, C.L.; Juan, A.; Montoya-Torres, J.R.; Muñoz-Villamizar, A.F. (2016):

“A simheuristic algorithm for horizontal cooperation in urban distribution”. Proceed-
ings of the 2016 Winter Simulation Conference, 2193-2204. Washington D.C., USA.
December 11-14. ISBN: 978-1-5090-4485-6. (indexed in ISI Proceedings and Sco-
pus, 2014 SJR = 0.131).

6.2.4 Conference Papers/Abstracts with Peer-reviewing Process
• Quintero, C.; Juan, A. (2016): “EnhancingMetaheuristics through Simulation to solve

real-life problems under uncertainty. An application to the Single Depot Location
Routing Problem with Stochastic Demands”. Escuela Latinoamericana de Verano de
Investigación de Operaciones, ELAVIO 2016. May 9-13. Cali, Colombia.
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• Quintero, C.; Juan, A.; Caballero, J.; Montoya, J. (2015):“A New Randomized Proce-
dure To Solve The Location-Routing Problem”. Proceedings of the 2015 Int. Conf. of
the Forum for InterdisciplinaryMathematics (FIM2015). November 18-20. Barcelona,
Spain.

• Quintero, C.; Juan, A. (2015): “Solving the Integrated Location Routing Problem
considering Uncertainty and Risk factors”. Proceedings of the ICRA6/Risk 2015 Int.
Conference, 655-662. ISBN: 978-84-9844-496-4. May 26-29. Barcelona, Spain.

• Quintero, C.; Juan, A.; Montoya, J.; Faulin, J. (2015): “Simheurísticas: una her-
ramienta para resolver problemas de optimización combinatoria”. ASOCIO 2015.
July 15-16. Chia, Colombia.

• Juan, A.; Faulin, J.; Calvet, L.; Pages, A.; Quintero, C. (2015): “Applications of
Simheuristics in Transportation and Logistics”. EURO 2015. July 12-15. Glasgow,
UK.

• Quintero, C.; Torres, A.; Alfonso, E.; Reyes, L.; Juan, A. (2015): “Uso combinado
de métodos exactos con heurística aleatorizada para el HHRCSP”. In: Proceedings of
the X Congreso Español de Metaheurísticas, Algoritmos Evolutivos y Bioinspirados,
441-446. ISBN: 978-84-697-2150-6. Feb 4-6. Mérida, Spain.
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Appendix A

GAMS®Model for the Waste Collection
Problem

*Model WCP
sets
nodes /i0*i102, j0/
i(nodes) set of container nodes /i3*i101/
d(nodes) set of depot nodes /i0, j0/
l(nodes) set of landfill nodes /i1*i2/
n(nodes) lunch break node /i102/
k set of vehicles /v1*v2/
allnodes(nodes)
cont_depot(nodes)
depot_landfills(nodes)
cont_landfills(nodes)
cont_lb(nodes)
cont_depot_lb(nodes)
landfills_lb(nodes)
cont_depot_landfills(nodes)
cont_landfills_lb(nodes);
allnodes(nodes) = i(nodes)+d(nodes)+l(nodes)+n(nodes);
cont_depot(nodes) = i(nodes)+d(nodes);
depot_landfills(nodes) = d(nodes)+l(nodes);
cont_depot_landfills(nodes) = i(nodes)+d(nodes)+l(nodes);
cont_landfills(nodes) = i(nodes)+l(nodes);
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cont_lb (nodes) = i(nodes)+n(nodes);
cont_depot_lb(nodes) = i(nodes)+d(nodes)+n(nodes);
landfills_lb(nodes) = l(nodes)+n(nodes);
cont_landfills_lb(nodes) = i(nodes)+l(nodes)+n(nodes);
alias (i,j)
alias (allnodes, allnodes2)
alias (nodes, nodes2)
alias (cont_landfills_lb, cont_landfills_lb2)

parameters
vcap capacity of each vehicle /280/
yardage max amount of waste that a vehicle can collect /400/
speed vehicle speed in mph /40/
secondsinhour /3600/
convfactor /5280/
maxstops /500/
bigM /1400000/
lunch_break duration in seconds /3600/
demand(nodes) demand of each node /Load demands of each node/
stime(nodes) service time at node i seconds /Load service time at each node/
ew(nodes) early time window for node i HHMM /Load early time windows for each
node/
lw(nodes) late time window for node i HHMM /Load late time windows for each
node/
coordx(nodes) x-coordinate of each node /Load x-Coord/
coordy(nodes) y-coordinate of each node /Load y-Coord/;

parameter
mat_dist(nodes,nodes2) distance matrix between nodes
travel_times(nodes,nodes2) travel times between nodes
maximal;
mat_dist(nodes,nodes2)= (abs(coordx(nodes)-coordx(nodes2))+abs(coordy
(nodes) -coordy(nodes2)))/convfactor;
mat_dist('i102',nodes2)= 0;
mat_dist(nodes, 'i102') = 0;
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travel_times(nodes,nodes2) =(mat_dist(nodes,nodes2))*(secondsinhour/
speed);
maximal = (smax(nodes,stime(nodes))+(smax(nodes,lw(nodes))/100*
secondsinhour) +smax((nodes,nodes2),travel_times(nodes,nodes2)));

variables
x(nodes,nodes2,k) 1 if vehicle k goes from node i to j - 0 otherwise
w(nodes,k) cumulative waste loaded in vehicle k before serving node i
r(nodes,k) starting time at node i for vehicle k
g(nodes,k) waiting time at node
y(nodes, nodes2, k) 1 if vehicle k goes from nodes to lunch break and then
to nodes2 - 0 otherwise
max_time
NT(k) number of landfill trips in route k
free variable z variable for the objective function
binary variable x,y;
integer variable NT;
positive variables g,w,r;

equations
fobj objective function
eq2(k) one single depart from depot
eq3(k) all vehicles must arrive to depot coming from one landfill.
eq4(j) arriving once at each container node
eq5(nodes,k) inflow and outflow equal for all nodes except for the depot
eq6(nodes,k) early time windows for each container
eq7(nodes, nodes2, k) starting time at each node
eq7b(nodes, nodes2, k) starting time after visiting lunch break
eq8(nodes,k) vehicles must be empty at the start of the routes
eq8b(nodes, nodes2,k) vehicles must be empty after visiting a landfill
eq9(nodes, nodes2, k) cumulative demand for each container
eq9b(nodes,nodes2,k)
eq11(k) lunch break- each route arrives once at lunch break node
eq12(k) lunch break- each route departs once from lunch break node
eq13(k) initialize starting time at depot
eq1d(k) no trips leaving from finishing depot



144 GAMS®Model for the Waste Collection Problem

eq6b(nodes,k) late time windows for each container
eq3c(k,nodes,nodes2) no trips allowed between one node and itself
eq3f(nodes,nodes,k) no subtours are allowed
eq3g(nodes,k) no subtours are allowed
eq3h(nodes,k) no subtours are allowed
eq14(nodes, nodes2, k) relationship among x and y
eq14b(nodes, nodes2, k) relationship among x and y
eq14c(nodes, nodes2, k) value of y
;

fobj.. z=e= sum((nodes,nodes2,k)$(ord(nodes) ne ord(nodes2)),
mat_dist(nodes,nodes2)*x(nodes,nodes2,k))+sum((nodes, nodes2,k)$(ord
(nodes) ne ord(nodes2)),mat_dist(nodes,nodes2)*y(nodes,nodes2,k));
eq2(k).. sum(cont_landfills_lb,x('i0',cont_landfills_lb,k))=e= 1;
eq3(k)..sum(l, x(l,'j0',k))=e=1;
eq4(i).. sum((allnodes,k),x(allnodes,i,k)) =e= 1;
eq5(cont_landfills_lb,k).. sum(allnodes,x(allnodes,cont_landfills_lb,
k)) =e= sum(allnodes,x(cont_landfills_lb,allnodes,k));
eq6(cont_landfills_lb,k).. ((ew(cont_landfills_lb)/100))*secondsinhour
=l= r(cont_landfills_lb,k);
eq7(nodes,nodes2,k)$(ord(nodes) ne ord(nodes2)).. r(nodes,k)+stime(nodes)
+travel_times(nodes,nodes2) =l= r(nodes2,k)+(1-x(nodes,nodes2,k))*maximal;
eq7b(nodes,nodes2,k)$(ord(nodes) ne ord(nodes2)).. r(nodes,k)+stime(nodes)
+stime('i102')+travel_times(nodes,nodes2) =l= r(nodes2,k)+(2-x(nodes,'i102',
k) -x('i102',nodes2,k))*(maximal+stime('i102'));
eq8(d,k).. w(d,k) =e= 0;
eq8b(l, cont_lb,k).. w(cont_lb,k) =l= (1-x(l,cont_lb,k))*vcap;
eq9(cont_lb,cont_landfills_lb,k)$((coordx(cont_landfills_lb) ne coordx(cont_
lb)) and (coordy(cont_landfills_lb) ne coordy(cont_lb))).. w(cont_lb,
k) + demand(cont_lb) =l= w(cont_landfills_lb,k)+(1-x(cont_lb,cont_landfills_
lb,k)) *vcap;
eq9b(cont_lb,cont_landfills_lb,k)$((coordx(cont_landfills_lb) ne coordx(cont_
lb)) and (coordy(cont_landfills_lb) ne coordy(cont_lb))).. w(cont_lb,k)
+demand(cont_lb) =g= w(cont_landfills_lb,k)+(1-x(cont_lb,cont_landfills_lb,
k))* ((-1)*vcap);
eq11(k).. sum(cont_depot_landfills,x(cont_depot_landfills,'i102',k)) =e= 1;
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eq12(k).. sum(cont_depot_landfills,x('i102',cont_depot_landfills,k)) =e=
1;
eq13(k)..r('i0',k) =e= ew('i0')*(secondsinhour/100);
eq1d(k).. sum(cont_landfills_lb,x('j0',cont_landfills_lb,k))=e= 0;
eq6b(cont_landfills_lb,k).. r(cont_landfills_lb,k)=l= lw(cont_landfills_
lb)*(secondsinhour/100);
eq3c(k,nodes,nodes2)$(ord(nodes) eq ord(nodes2)).. x(nodes,nodes2,k) =e=
0;
eq3f(cont_landfills_lb,cont_landfills_lb2,k).. w(cont_landfills_lb,k)
+demand(cont_landfills_lb) - (w(cont_landfills_lb2,k)+demand(cont_
landfills_lb2)) + vcap*X(cont_landfills_lb,cont_landfills_lb2,k) =l=
vcap - demand(cont_landfills_lb2);
eq3g(cont_landfills_lb,k).. demand(cont_landfills_lb) =l= w(cont_
landfills_lb,k)+demand(cont_landfills_lb);
eq3h(cont_landfills_lb,k).. w(cont_landfills_lb,k)+demand(cont_
landfills_lb) =l= vcap;
eq14(nodes,nodes2,k).. y(nodes,nodes2,k) =l= x(nodes,'i102',k);
eq14b(nodes, nodes2,k).. y(nodes,nodes2,k) =l= x('i102',nodes2,k);
eq14c(nodes, nodes2, k).. y(nodes,nodes2,k)+1 =g= x(nodes,'i102',k)
+x('i102',nodes2,k);

model wcp /all/;
wcp.reslim=172800;
solve wcp using mip minimizing z;
display x.l, x.m, w.l, travel_times, mat_dist, r.l;
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