

Contribution to the architecture and implementation of Bi-NoC routers for multi-synchronous GALS systems

Rajeev Kamal

ADVERTIMENT La consulta d'aquesta tesi queda condicionada a l'acceptació de les següents condicions d'ús: La difusió d'aquesta tesi per mitjà del repositori institucional UPCommons (http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX (http://www.tdx.cat/) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d'investigació i docència. No s'autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d'un lloc aliè al servei UPCommons o TDX. No s'autoritza la presentació del seu contingut en una finestra o marc aliè a UPCommons (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons (<u>http://upcommons.upc.edu/tesis</u>) y el repositorio cooperativo TDR (<u>http://www.tdx.cat/?locale-attribute=es</u>) ha sido autorizada por los titulares de los derechos de propiedad intelectual **únicamente para usos privados enmarcados** en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una ventana o marco ajeno a UPCommons (*framing*). Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you're accepting the following use conditions: Spreading this thesis by the institutional repository UPCommons (http://upcommons.upc.edu/tesis) and the cooperative repository TDX (http://www.tdx.cat/?localeattribute=en) has been authorized by the titular of the intellectual property rights only for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not authorized neither its spreading nor availability from a site foreign to the UPCommons service. Introducing its content in a window or frame foreign to the UPCommons service is not authorized (framing). These rights affect to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of the thesis it's obliged to indicate the name of the author.

Errata for PhD Thesis- Rajeev Kamal

Contribution To The Architecture And Implementation Of Bi-NOC Routers For Multi-Synchronous GALS Systems

Location	Original Text	Correction
Page xiii	Contents xv	Contents xiii
	List of Figures xviii	List of Figures xvii
Page 3, Lines 7-8	Several regular patterns for	Several regular patterns for
	NoC architectures have been	NoC architectures have been
	proposed and implemented in	proposed and implemented in
Page 9, 2nd paragraph in	A better approach to design a	A better approach to design a
Section 1.3 Objective	bidirectional NoC for the	bidirectional NoC for the
	multi-synchronous GALS	multi-synchronous GALS
	system is shown in figure 1.3.	system is shown in figure 1.4.
Page 10, Figure 1.4.	Top/Block level diagram of	Modified Block diagram of
	proposed multi-synchronous	Fig. 2 of [14] with multi-
	bidirectional NoC	synchronous at the Interface of
		router.
Page 115, in Bibliography	[2] W. J. Dally and B. Towels,	[2] W. J. Dally and B. Towles,
Page 17, Figure 2.3.	Figure 2.3: Bi-directional	Figure 2.3: Bi-directional
	ports implementation	ports implementation and tri-
		states are only for the sake of
		simplification purposes
Page 17, Section 2.3.2, 2^{nd}	ip_req_syncL	ip_req_syncT
paragraph, Lines 3		
Page 20, Section 2.4.2 lines 5	state machine as shown in	state machine as shown in
	figure 2.9.	figures 2.9 and 2.10.
Page 20, Section 2.4.2 lines 7	As shown in figure 2.9	As shown in figures 2.9 and
		2.10
Page 21, Line 2-3	shown in figure 2.9.	shown in figure 2.8.
Page 21, Section 2.4.2.1	in_req_sync	ip_req_sync
Priority Mode ASM, line 2		
Page 21, Section 2.4.2.1	op_reg	op_req
Priority Mode ASM, line 8		
Page 22, Section 2.4.2.2	For eight clock cycles	For four clock cycles
Normal mode ASM, Line 4-5		
Page 22, Section 2.4.2.2	in_req_sync	ip_req_sync
Normal mode ASM, Line 8		
Page 22, Section 2.4.2.2	in_req_sync	ip_req_sync
Normal mode ASM, Line 10		
Page 22, Section 2.4.2.2	Counter = 0, <i>in_req_sync</i>	Counter++, <i>ip_req_sync</i>
Normal mode ASM, Figure		

2.10, in <i>delay state</i>		
Page 22, Section 2.4.2.2	in_req_sync	ip_req_sync
Normal mode ASM, Figure		
2.10, in <i>free state</i>		
Page 36, Line 7	Therefor we change the gray-	Therefore we change the gray-
	to-binary counter sequences	to-binary counter sequences
	for comparison of their values.	for comparison of their values.
Page 46, Section 4.4 Fixed Priority Arbiters	Fixed Priority Arbiters	Fixed Priority Arbiters (FPA)
Page 49, Section 4.5 Round Robin Arbiter	Round Robin Arbiter	Round Robin Arbiter (RRA)
Page 58, Section 5.2.1 Routing Algorithms Classification, 2 nd paragraph, line 4	source and destination routing	source and distributed routing
Page 69, Lines 8-9	$ \begin{array}{l} X_{diff} := X_d - X_c \\ Y_{diff} := Y_d - Y_c \end{array} $	These lines not required .
Page 83, Section 6.5 Results and Conclusion, line 2	Verlog	Verilog
Page 40, Figure 3.15	Power analysis report of Multi-Synchronous FIFO (depth 64)	Power analysis report of whole chip with Multi- Synchronous FIFO (depth 64)
Page 40, Figure 3.16	Power analysis report of Multi-Synchronous FIFO (depth 128)	Power analysis report of whole chip with Multi- Synchronous FIFO (depth 128)
Page 41, Figure 3.17	Power analysis report of Multi-Synchronous FIFO (depth 256)	Power analysis report of whole chip with Multi- Synchronous FIFO (depth 256)
Page 41, Figure 3.18	Power analysis report of Multi-Synchronous FIFO (depth 512)	Power analysis report of whole chip with Multi- Synchronous FIFO (depth 512)
Page 51, Figure 4.10	Power analysis of Fixed Priority Arbiter for n requester	Power analysis of whole chip with Fixed Priority Arbiter for n requester
Page 52, Figure 4.11	Power analysis of Round Robin Arbiter for n requester	Power analysis of whole chip with Round Robin Arbiter for n requester
Page 54, Figure 4.12	Power analysis of Matrix Arbiter for n requester	Power analysis of whole chip with Matrix Arbiter for n requester
Page 66, Figure 5.5	Power analysis of XY using XPower Analyzer	Power analysis of whole chip with XY algorithm module using XPower Analyzer

Page 68, Figure 5.6	Power analysis of Adaptive XY using XPower Analyzer	Power analysis of whole chip with Adaptive XY algorithm module using XPower Analyzer
Page 70, Figure 5.7	Power analysis of Balanced dimension-order using XPower Analyzer	Power analysis of whole chip with Balanced dimension- order algorithm module using XPower Analyzer
Page 85, Figure 6.13	Power analysis report of NI module	Power analysis of whole chip with NI module
Page 96, Figure 7.9	Power report of virtual channel allocator using separable input-first allocation	Power analysis of whole chip with virtual channel allocator using separable input-first allocation
Page 96, Figure 7.10	Power report of virtual channel allocator using separable output-first allocation	Power analysis of whole chip with virtual channel allocator using separable output-first allocation
Page 98, Figure 7.12	Power report of virtual channel allocator using wavefront allocation	Power analysis of whole chip with virtual channel allocator using wavefront allocation
Page 101, Figure 7.15	Power report of switch allocator using separable input-first allocation.	Power analysis of whole chip with switch allocator using separable input-first allocation
Page 102, Figure 7.16	Power report of switch allocator using separable output-first allocation.	Power analysis of whole chip with switch allocator using separable output-first allocation
Page 104, Figure 7.18	Power report of Switch allocator using wavefront allocation	Power analysis of whole chip with Switch allocator using wavefront allocation