
Query Expansion by Relying
on the Structure of
Knowledge Bases

Joan Guisado-Gámez

PhD Thesis in Computer Architecture
by the Universitat Politècnica de Catalunya

Advisor: Josep Llúıs Larriba-Pey

Barcelona, Catalonia 2017

Acknowledgements

Writing this thesis has been one of the most motivating, obsessing, satisfactory
and difficult challenges that I have had to face in my life. I have spent many
hours of my life thinking on the very same problem and looking at it from
many different points of view, insomuch that I have wondered many times
if what I was doing had any sense at all. The fact that I had to abandon
a previous thesis that I started because my, at that time, director, left the
academia introduced many doubts in my career as researcher. Nonetheless,
now I can say that I am satisfied and proud of my work.

However, achieving this personal and professional goal would have not been
possible without the support of many people. First, my parents Isabel and Ariel,
for the love, the education, the support and guidance they have unconditionally
given me since the very same day I was born, if not before. For being there
when I need them, no matter what. Because I know they are proud of me, I
want them to know that I am also proud of them and thankful for the sacrifices
they have done for my siblings and me, for us to have all the opportunities
that they did not have. Also, to them, my brother Kike and my sister Maria
because, although I am the big brother, I have learned many things with them.
I have learned that sharing is caring, and I have become a better person trying
to be a role model for them. I want also to thank my grandmother, Lola,
who is a role model for me, for her strength, vitality and supporting me in
every way she can think of. Also, the rest of my grandparents, Josep, Eliseo
and Irene because I know they would have been happy and proud of me, and
because they always loved me. Also, I want to thank each every one of my
friends, who have brought fun and happiness to my life and who never have
reproached me for having few time to spend with them.

iv

I am specially thankful to the big family of Escoltes Catalans, the association
to which I belong since I was 12 and that now I have the honor of presiding.
Scouting is the largest youth movement, with more than 50 million members
worldwide, it aims to contribute in the education of young people. Every
minute from the uncountable hours that I have spent on the association has
been rewarding both at personal and professional level. I have learned to
cooperate with others, to argue and respect others points of view, to lead and
to be leaded. It has made me a better person in ways that I am not even
conscious. I could not mention everyone that I have met during this last 20
years but I would like to thank Elisa, Sònia, Marina, Laia, Elena, Aina, Lara,
Lucas, Victor, Gerard, Anna S., Cristina, Oriol and Anna A. because they
have suffered and keep suffering my stubbornness. Because with all of them I
have learned to smile and whistle in the face of adversity.

I would like also to thank all the present and prior members of DAMA-
UPC. Specially, I want to thank Victor, with whom I did my first steps as a
researchers and who has been a role model in many aspects of my life. To
David, who directed this thesis until he, also, left the academia. He was a
crucial person for the development of this work at its beginnings and for that
I am thankful to him. Also, to Arnau a colleague and a real friend. Since we
were 17 and we did the high-school research project together, we have kept
fruitfully collaborating and working together. I must say that he has also
played an important role in the thesis development, always willing to discuss
and contrast my ideas.

Last, but not least, I want to thank my advisor, Larri, for his invaluable
guidance during all the thesis, his confidence in me and my work. Thanks for
seeing further and for contributing with his experience. Because after so many
years working together, he keeps surprising me. Without him, none of this
would have been possible.

Finally, I would also thank Generalitat de Catalunya for their SGR-890 grant
as well as the Ministerio de Ciencia y Tecnologia for the various grants given
to DAMA-UPC during my thesis, which were key for its development. Also to
the European Comission for their funds to the Tetracom project.

Agräıments

Escriure aquesta tesi ha estat un dels reptes més motivadors, obsessiu, satis-
factoris i dif́ıcils als que he hagut de fer front en la meva vida. M’he passat
moltes hores de la meva vida pensant en el mateix problema i mira-me’l des
de diferents punt de vista, fins al punt que m’he preguntat moltes vegades el
sentit de tot plegat. El fet que hagués d’abandonar una primera tesi que vaig
començar perquè el meu, aleshores, director va deixar la Universitat em va fer
tenir molt dubtes sobre la meva carrera com a investigador. Tot i això, ara
puc dir que estic satisfet i orgullós del meu treball.

Tanmateix, aconseguir aquest reptes personal i professional no hagués estat
possible sense el suport de moltes persones. En primer lloc, els meus pares, la
Isabel i l’Ariel, per l’amor, la educació i el suport que m’han donat de manera
incondicional des del mateix dia que vaig néixer, si no abans. Per ser-hi quan
els he necessitat, sense importar el què. Perquè sé que estan orgullosos de mi,
i vull que sàpiguen que jo ho estic d’ells i agräıt pels sacrificis que han fet pels
meus germans i per mi, perquè nosaltres tinguéssim totes les oportunitats que
ells no van tenir. També a ells, el meu germà Kike i la meva germana Maria
perquè, malgrat ser jo el germà gran, he après moltes coses amb ells. He après
que compartir és estimar, i he esdevingut una millor persona mirant de ser
un model per ells. També vull agrair a la meva àvia, la Lola, ella śı que és
un model per mi, per la seva força, la seva vitalitat i per recolzar-me de totes
les maneres possibles. També al meus altres avis, el Josep, l’Eliseo i la Irene
perquè sé que haguessin estat feliços i orgullosos de mi, i perquè sempre em
van estimar. També vull agrair a tots i cadascun dels meus amics, han dut
diversió i felicitat a la meva vida i que mai m’han retret res per tenir tan poc
temps per passar amb ells.

vi

Estic especialment agräıt a la gran famı́lia d’Escoltes Catalans, l’associació
a la que pertanyo des de que tenia 12 anys i que ara tinc l’honor de presidir.
L’escoltisme és el moviment de joves més gran que, amb més de 50 milions
de membres arreu del món, contribueix en la educació d’infants i joves. Cada
minut de les incomptables hores que he dedicat a l’associació ha estat profitosa
a nivell personal i professional. He après a cooperar amb altres, a discutir i
respectar el punts de vista dels demés, a liderar i ser liderat. M’ha fet millor
persona en aspectes que no en sóc ni conscient. No podria mencionar tothom
qui he conegut durant aquests últims 20 anys però m’agradaria agrair a l’Elisa,
la Sònia, la Marina, la Laia, l’Elena, l’Aina, la Lara, el Lucas, el Victor, el
Gerard, l’Anna S, la Cristina, l’Oriol i a l’Anna A. perquè ells han sofert, i
continuen patint al meva tossuderia. Perquè amb tots ells he après a riure i
xiular davant l’adversitat.

M’agradaria també donar les gràcies a tots els membres de DAMA-UPC,
actuals i passats. Especialment, vull donar les gràcies al Victor, amb qui vaig
donar les meves primeres passes com a investigador i ha estat un model en
molts aspectes de la meva vida. Al David, qui va dirigir aquesta tesis fins que,
també, va deixar la Universitat. Ell va jugar un paper crucial en els inicis
d’aquesta tesi i per això li estic agräıt. També, a l’Arnau, un col·lega i un amic
de debò. Des de que teńıem 17 anys i a l’Institut vam fer el treball de recerca
conjuntament, hem continuat col·laborant i treballant conjuntament. He de
dir que ell també ha jugar un rol important en el desenvolupament d’aquesta
tesi, sempre disposat a discutir i contrastar les meves idees.

Per últim, però no per això menys important, vull agrair-li al meu tutor, el
Larri, per la seva inavaluable direcció durant tota la tesi, per la seva confiança
en mi i en el meu treball. Gràcies per veure-hi més lluny i per contribuir amb
la seva experiència. Perquè després de tants anys treballant junts, em continua
sorprenent. Sense ell, res de tot això hagués estat possible.

Finalment, m’agradaria agrair la Generalitat de Catalunya per la subvenció
SGR-890 i també al ministeri de Ciència i Tecnologia per les diverses subven-
cions concedides a DAMA-UPC durant el peŕıode de la tesi i que han estat
claus pel seu desenvolupament. També agrair a la Comissió Europea pels fons
destinats en el projecte Tetracom.

Contents

1 Introduction 1

1.1 Knowledge Bases . 5

1.2 Contributions . 8

2 Related Work 11

2.1 Classical Query Expansion Techniques 12

2.2 Knowledge Base techniques . 17

3 Community Query Expansion: Proof of Concept 21

3.1 Community Query Expansion 23

3.2 Community Query Expansion with Wikipedia 29

3.3 Open challenges . 40

4 Understanding Knowledge Bases Graph Structure 43

4.1 Building the expansion query graphs ground truth 44

5 Structural Query Expansion with Wikipedia 49

5.1 Wikipedia’s Graph Structure Analysis 51

1

2

5.2 Expansion Query Graph builder 62

5.3 Query Builder . 68

6 Experiments 71

6.1 Experimental Setup . 72

6.2 Results . 73

7 Qeast: A Query Rewriting Service powered by Wikipedia
Graph Structure 85

7.1 Qeast Overview . 86

7.2 Qeast Architecture . 89

8 Conclusions and Future Work 93

8.1 Future Work . 96

List of Figures

1.1 Wikipedia Diagram. 6

2.1 Correlations among query terms and document terms via query
sessions. 17

3.1 Community Query Expansion pipeline. 23

3.2 Shortest Path Analysis. 25

3.3 Practical results. 36

4.1 Image CLEF XML file. 46

5.1 Structural query expansion pipeline. 50

5.2 Query graph example. 55

5.3 Example of cycles. 58

5.4 Average per cycle size. 59

5.5 Characteristics of cycles of length 2, 3, 4 and 5. 60

5.6 Category free cycle. 61

5.7 Average contribution per density of extra edges. 62

5.8 Expansion motifs. 63

3

4

5.9 Expansion motifs in action for Image CLEF. 65

5.10 SQEC pipeline . 67

6.1 Percentage improvement I. 75

6.2 SQEC configuration . 77

6.3 Percentage improvement II. 79

6.4 SQE execution time . 84

7.1 Qeast in http://iamafoodblog.com. 87

7.2 Qeast architecture. 89

7.3 Expansion motifs. 90

7.4 Qeast expansion index. 91

List of Tables

3.1 CQE precision. 34

3.2 Lexical expansion features. 37

3.3 Expansion features via community detection. 39

3.4 CQE precision in the lack of context scenario. 41

5.1 1-term redirects for Volkswagen and Beetel. 53

5.2 Statistics of precision of ground truth. 54

5.3 Statistics of the largest connected component of the expansion
query graphs. 56

5.4 Precision analysis. 59

6.1 SQE precision for Image CLEF. 74

6.2 SQEC precision for Image CLEF, CHiC 2012 and CHiC 2013. . 80

6.3 PRF precision. 82

5

List of Symbols

Symbol Description

Common symbols

θ =< k, c,D > θ is a query.

θ.k The query’s keywords.

θ.c The query’s context -if there is any-.

θ.D = d1, · · · , dN The query’s valid set of documents.

EQG(θ) Expansion query graph of θ.

Q A query written in a particular query language for
a particular search engine.

QLQ

Query likelihood model, i.e. a language model used
in information retrieval. A language model is
constructed for each document in the collection.
It is then possible to rank each document by the
probability of specific documents given a query.

PRFQ

Pseudo-relevance feedback, i.e. an expansion method
which consist in using an original query Q and
assuming the top-r results to be correct and, thus,
a valid source of expansion features.

e A KB’s entry.

eN The entry’s name, which is a string.

Chapter 3

Rθ.k Set of relevant KB’s entries for the query keywords.

Rθ.c Set of relevant KB’s entries for the query context.

7

8

Symbol Description

P = es � · · · � et A path in the KB graph between the entries es and et.

τ(P, θ) The score of P with respect to q.

K = ex, ey, · · · Community of entries.

WCC(K) Weighted community cluster value for K.

τ(K, θ) The score of K with respect to q.

h Hierarchy h.

CQE Community query expansion.

CQESY N Synonymic query expansion.

CQEX
Community query expansion made of the expansion
features only.

Chapter 4 and 5

P(Q, r, θ) Top-r precision achieved by Q for θ.

O(Q, R, θ) O(Q, θ) =
∑

r∈R P(Q, r, θ)/|R|

C = ex � · · · � ex Cycle of entries in the KB graph.

A(C) Number of Wikipedia articles in C.

C(C) Number of Wikipedia categories in C.

L(C) Number of edges between the entries in C.

E(text) = {concepts} Entities of text, i.e. concepts that match with a KB’s
entry. i.e. ∀concept ∈ E(text) : ∃eN = concept

Chapter 6

SQE Structural query expansion.

SQET Structural query expansion using the triangular motif.

SQES Structural query expansion using the square motif.

SQEC SQE combining expansion query graphs.

Chapter 1
Introduction

Retrieving relevant information that satisfies users expectations is still a
challenging problem [9,14,18]. Usually, users express their needs with a query,
which commonly consists of a set of keywords. Then, a typical search engine,
which has an indexed collection of documents, processes the query and returns
to the users those documents that match with any of their query’s keywords.
However, the search for relevant documents can be very frustrating for users
who, unintentionally, use too general or inappropriate keywords to express their
requests. Vocabulary mismatch [41] is a phenomenon that occurs when the
user’s vocabulary differs from the used in the documents. For example, imagine
the query “automobile” and imagine also that none of the documents in the
collection contains this keyword but many of them contain the keyword “car”.
We would consent that most probably those documents should be retrieved
since car and automobile are synonyms. However, due to the vocabulary
mismatch none of them would be retrieved and relevant information for the
query would be missed. Poor results also arise from the topic inexperience [60]
of the users because they are not often familiar with the vocabulary and use
too general keywords. Following the previous example, although the user
would use the keyword “car”, instead of the unfruitful “automobile”, the
search engine would not match the query with many useful documents that do
not contain the term, but specific car models names such as “bugatti veyron”
or “tesla model s”.

Query expansion techniques aim at improving the results achieved by a user’s
by means of introducing new expansion terms, called expansion features.
Expansion features introduce new concepts that are semantically related

1

2

with the concepts in the user’s query and that allow overcoming part of the
aforementioned problems. Thus, the challenge is to select those expansion
features that are capable of improving the results the most. A bad choice
of expansion features may be counterproductive. We distinguish four main
families of expansion techniques [11], which differ in the way they acquire
the expansion features: linguistic analysis, relevance feedback, search logs
exploitation and knowledge bases utilization.

Linguistic analysis techniques aim at exploiting the linguistic characteristics
of the different keywords that appear in the queries. These techniques usually
exploit dictionaries and thesauri to derive inflections or different grammar
forms for a given word/keywords. Stemming approaches are widely used in
this family of expansion techniques. In linguistic morphology, stemming is
the process for reducing inflected or derived words to their stem, which does
not need to be identical to the etymological root of the word. For example,
the Lancaster stammer [7] would stem the words “ride”, “ridden”, “rider” and
“rideable” as “rid”, “rid”, “rid”, “rid” respectively. One of the main drawbacks
of the expansion techniques framed in this family is that, since they act at
the keyword level, they obviate the full sense of the query, and thus are more
sensitive to word sense ambiguity [11].

Relevance feedback constitutes another expansion family in which the initial
query is used to retrieve a first set of results. Then, the documents in this
results set are used as source of expansion features. Depending on the method
used to process the first set of results, relevance feedback techniques are
classified as explicit feedback [27], implicit feedback [30] or pseudo-relevance
feedback [10]. Explicit feedback requires that users indicate explicitly the
correct documents within the results set. In implicit feedback techniques,
the correctness of the results is inferred from users’ behavior, thus, unlike in
explicit feedback, users are not conscious of the information they are providing.
Both explicit and implicit feedback require users that can distinguish good
from bad results, which is not an easy task at first glance. On the other hand,
pseudo-relevance feedback techniques assume that the top-k results from the
results set are correct and use them as source of information to rewrite the
query. Thus, those techniques are only effective if the top-k results from the
set are correct.

3

Another popular family of techniques is based on exploiting the search logs
of a system to refine the queries [11]. Those techniques use the behavior
of the users as source of information. For example, a typical approach for
these techniques would be to exploit the manual reformulations of a particular
query and the time spent reviewing the results to establish patterns between
the query reformulations. Although these techniques have proven to be very
effective in terms of improving the user’s query, they result unachievable in a
lack of search logs scenario.

To overcome the limitations of the reviewed families, there is another family of
techniques that use external knowledge bases (KB) as source of information
for the query expansion process [2, 3,5, 15,23,24,42,49,51,58]. A knowledge
base consist of a set of entries, each of which represents a concept and has, at
least, a name, which can be used as expansion feature. The entries within a
knowledge base can be connected to each other by means of references, links,
etc. The techniques framed in this family have become more popular due to
the increase of available data, see, for example, Wikipedia [28], DBPedia [35],
Yago [53], etc.

Although in the next chapter we review in more detail the different expansion
techniques, is in the last of the families in which we focus the efforts of this
thesis. Particularly, we focus on exploiting those KB whose entries are linked to
each other, conforming a graph of entries. To the best of our knowledge, most
of those techniques rely on some kind of text analysis, such as explicit semantic
analysis [2], or are based on other existing query expansion techniques such as
pseudo-relevance feedback [3]. However, the underlying network structure of
KBs has been barely exploited.

Although we have classified the techniques into four independent families, real
search engines that apply query expansion usually combine different techniques.
Hence, in this thesis we do not pretend to compete with current techniques.
We show that there is a whole aspect of KBs that, so far, is being ignored, or
poorly studied, and that can be used to extract reliable expansion features. In
more detail, we show that, in contrast with the techniques in the literature,
the structure of KBs can be used to select expansion feature for the query
expansion process.

First, we show that, effectively, the structure of KB can be exploited to iden-
tify reliable expansion features with a proof of concept. For the purpose, we

4

borrow a metric used for community detection in social networks to detect
“communities” of expansion features that relate to the original user’s query. Al-
though we are borrowing a metric which is specifically designed for community
detection in social networks, the achieved results represent 27% improvement
over the results achieved by the used baselines. However, in order to make this
technique work, it is required to postprocess the “community” of expansion
features, which results in a process that would be unfeasible for a realistic
query expansion process both in terms of time and complexity.

The proof of concept shows the capabilities of exploiting the structural proper-
ties of KB for the query expansion, which, along with its weak points, motivates
the rest of this thesis. In other words, the proof of concepts leads us to design a
specific technique to exploit KBs’ structure. However, there are many different
KBs, each with a different topology and, thus, different structural properties.
As a consequence of this, thinking on a universal metric (independent of the
KB) that captures the level of fitness between an expansion feature and given
query makes no sense. Thus, we need an expansion technique that adapts to
the characteristics of the used KB.

We present the Structural Query Expansion (SQE) as a query expansion
technique that relies exclusively on the structure of a KB to find the expansions
features. SQE consist of two main steps which involve i) studying the structural
characteristics of the used KB and ii) materializing those characteristics into a
set of patterns, or motifs, that capture them and allow detecting the expansion
features.

For the first step, studying and understanding the specific topology of a KB,
we present a novel methodology that uses a typical information retrieval task
to build a ground truth, which relates users’ queries with the set of entries of
the KB that are good to extract expansion features. Notice that the entries of
the KB, which are linked to each other, constitute a graph of entries. Then,
by using graph analysis techniques, the structural characteristics that appear
in those graphs are revealed.

In the particular case of this work, we have used Wikipedia as our KB.
Wikipedia is probably the largest up-to-date source of information and its size
is actually one of its strengths compared to other KBs. However, such size
represents, on the other hand a challenge: the search space in the Wikipedia
graph is very large in terms of depth, branching factor and multiple inheritance

5

relations, which creates problems related to finding, efficiently, meaningful
relationships for the expansion process. Thus, applying SQE using Wikipedia
as KB, requires first understanding its structural characteristics. Following the
described methodology, the analysis reveals that, within the maze of relations
among articles and categories, cycle-based structures contribute to find articles
whose titles are good candidates to be used as expansion features. Then we
need to capture those characteristics into a set of motifs. In order to avoid
any kind of error that an automatic process could introduce, we handcraft
them resulting in two motifs that we call triangular and square. The use of
those motifs to retrieve expansion features for a given user’s query results in
up to 150% improvement in some scenarios compared to the baseline.

1.1 Knowledge Bases

A knowledge base (KB) is a database or a repository of complex structured and
unstructured information used by knowledge-based systems. Human readable
and machine readable are the two main types of KBs. The former enable
people to access and use the knowledge. They usually store useful data for
users such as documents, manuals, troubleshooting information and frequently
answered questions. They can be interactive and lead users to solutions to
problems they have, but rely on the user providing information to guide the
process. The latter store knowledge that can be used by automatic systems to
solve complex problems which require an external source of information.

To refer to each of the pieces of information within a generic knowledge base
we talk of entries. Each of the entries of a knowledge base describe a single
concept. We are especially interested in those KBs whose entries are -somehow-
related to each other. Relations can be established via foreign keys in a KB
stored in a relational DB, edges when it is stored in a graph database, links in
an on-line KB, etc. Those KBs constitute a network of knowledge, i.e. a graph
of entries. Thus, they provide two types of information which are encoded
in, obviously, the entries, and also in the topology. According to the work
presented in this thesis the structure behind KBs encodes relevant information
that can be used to identify semantically related entries of the KB that can
be used in the query expansion process.

6

inside

1 *

redirects_to

1*

Categorybelongs

1 + -name

ARTICLE
-title

Figure 1.1: Wikipedia Diagram.

1.1.1 Wikipedia

Wikipedia is an online encyclopedia that allows and encourages users to edit
its articles, resulting in, probably, the most up-to-date source of generalist
information. To be exact, the English version of the encyclopedia has more
than 5M articles and there is almost 30M editors.

A Wikipedia article describes a single topic, and has a title that, according
to the Wikipedia edition rules 1, must be recognizable, natural, precise,
concise and consistent. Each article represents an entity – something that
exists in itself, actually or potentially, concretely or abstractly, physically or
not –. Hence, titles are useful to identify the entities that are mentioned in the
input query. Take as an example the user’s like: “Gondola in Venice”, according
to Wikipedia articles, we could identify two different entities: “Gondola” and
“Venice”.

Articles can link to other articles and must belong to, at least, one Category.
Articles can also be connected by another special kind of relation, called
redirect, when two articles refer to the same topic but have different titles.
In this case, the articles with the less used/common titles (redirect articles)
points to the article with the most common title (main article). Each category
can also be inside one or more general categories forming, according to
Wikipedia edition rules, a tree-like structure. This forms a graph with multiple

1https://en.wikipedia.org/wiki/Wikipedia:Article titles#Deciding on an article title

7

nodes, articles and categories, and relations with semantics such as equivalence,
hierarchical or associative. We model Wikipedia graph using the schema
depicted in Figure 1.1, which consists of two different types of entries: Article
and Category.

1.1.2 Other Knowledge Bases

1.1.2.1 DBPedia

DBpedia is a project aiming to extract structured content from the information
created as part of the Wikipedia project. The process consist in extracting
the text out of Wikipedia’s infoboxes, which are structured tables containing
a set of attribute–value pairs that summarizes the information about the
subject of an article, to create a consistent ontology. The DBpedia project
uses the Resource Description Framework (RDF) to represent the extracted
information and consists of 3 billion RDF triples, 580 million extracted from
the English edition of Wikipedia and 2.46 billion from other language editions.

1.1.2.2 Yago

YAGO (Yet Another Great Ontology) is another KB which main core is also
extracted automatically from Wikipedia. Aside from the information of the
online encyclopedia it contains data from WordNet,a lexical database for
the English language, and GeoNames, a geographical database available and
accessible through various web services.

1.1.2.3 ConceptNet

ConceptNet is a semantic network based on the information in the Open Mind
Common Sense (OMCS) database, an artificial intelligence MIT project to
build and utilize a large commonsense knowledge base from the contributions
of many thousands of people across the Web. It is expressed as a directed
graph whose nodes are concepts, and whose edges are assertions of common
sense about these concepts. Concepts represent sets of closely related natural
language phrases, which could be noun phrases, verb phrases, adjective phrases,
or clauses.

8

1.2 Contributions

In this section we present the main contributions of this thesis.

Notwithstanding these contributions, each chapter may have minor contribu-
tions that we do not highlight here.

• We present the state-of-the art regarding query expansion tech-
niques that rely on KBs.

• We show that the underlying structure of KB allows identifying
reliable expansion features for query expansions. Contrary to other
works, we exploit the whole KB structure. For that purpose we present
a proof-of-concept which borrows a community algorithm metric for
social networks to identify the expansion features. This first step allow
us to show that KBs can be used to extract expansion features, not by
processing and understanding its content but by using the KB structure.

• From the proof-of-concept we identify a set of challenges in order to
rely exclusively on KBs’ structure as source of expansion features.
The main challenge consists in proposing an ad-hoc methodology for
KBs structure that allows retrieving the expansion features in sub-second
times.

• We propose a methodology to create a ground truth that relates
queries from a query set with optimal expansion query graphs2. A
expansion query graph is the representation of the query in the KB
and the nodes within are used as source of expansion features. The
optimal query graph, is the query graph that contains the nodes whose
expansion features allows retrieving the best results for the query in
terms of performance.

• We present the Structural Query Expansion (SQE) a specific
methodology that allows relying exclusively from the KBs structure
based on the use of motifs to create the query graphs of a given query.

2We have made public the ground truth for Wikipedia https://github.com/DAMA-
UPC/QueryGraphs.git

9

• We design SQE as an orthogonal method to other existing meth-
ods in the literature. Thus, we are not competing with other ap-
proaches, but we are showing the current methods can benefit from the
expansion features extracted by SQE. Actually, most used searches, as
for example Google, use several expansion methodologies.

• We apply SQE using Wikipedia as the system’s KB, achiev-
ing improvements over 150% precision with respect to the used
baselines in sub-second times. Also, the combination of SQE with
Pseudo-Relevance Feedback, a state of the art expansion method, is
capable of achieving even better results.

• We have implemented a product, Qeast Search 3, commercialized
by Sparsity Technologies and supported by the EU project Tetracom
which promotes research-technology transfer. Qeast Search uses SQE as
core of a website-specific query expansion system.

1.2.1 Summary of contributions and Thesis Organization

Now we specify, for each of the aforementioned contribution, the chapter where
it is explained as well as the publication.

Contribution Chapter Publication

We present the
state-of-the art regarding
query expansion
techniques that rely on
KBs.

Chapter 2 -

We show that the
underlying structure of
KB allows identifying
reliable expansion
features.

Chapter 3

Joan Guisado-Gámez, David
Dominguez-Sal, Josep-Lluis
Larriba-Pey: Massive Query
Expansion by Exploiting Graph
Knowledge Bases for Image
Retrieval. ICMR 2014

3http://qeastsearch.com/

10

We identify a set of
challenges in order to rely
exclusively on KBs’
structure.

Chapter 3

Joan Guisado-Gámez, David
Dominguez-Sal, Josep-Lluis
Larriba-Pey: Massive Query
Expansion by Exploiting Graph
Knowledge Bases for Image
Retrieval. ICMR 2014

We propose a
methodology to create a
ground truth between
queries and expansion
query graphs.

Chapter 4

Joan Guisado-Gámez, Arnau
Prat-Prez: Understanding Graph
Structure of Wikipedia for Query
Expansion.
GRADES@SIGMOD/PODS
2015

We design SQE as an
orthogonal method to
other existing methods in
the literature

Chapter
4 and 5

Joan Guisado-Gámez, Arnau
Prat-Perez: Understanding Graph
Structure of Wikipedia for Query
Expansion.
GRADES@SIGMOD/PODS
2015
Joan Guisado-Gámez, Arnau
Prat-Perez, Josep-Lluis Larriba-Pey:
Query Expansion via structural
motifs in Wikipedia Graph.
ExploreDB@SIGMOD/PODS
2017

We apply SQE using
Wikipedia as the
system’s KB, achieving
improvements over 150%
in the precision.

Chapter 6

Joan Guisado-Gámez, Arnau
Prat-Perez, Josep-Lluis Larriba-Pey:
Query Expansion via structural
motifs in Wikipedia Graph.
ExploreDB@SIGMOD/PODS
2017

We have implemented a
product, Qeast Search.

Chapter 7

Joan Guisado-Gámez, David
Tamayo-Domènech, Jordi Urmeneta,
Josep-Lluis Larriba-Pey: ENRICH:
A Query Rewriting Service Powered
by Wikipedia Graph Structure.
Wiki@ICWSM 2016

Chapter 2
Related Work

Although the amount of available information has grown exponentially over the
last years, it does not imply that it is easier for the users to be informed. On the
contrary, in the last decades many studies describing an information overload
situation have been published [20]. Information overload is the paradoxical
situation that, although there is an abundance of information available, it is
often difficult to obtain useful, relevant information when it is needed. Thus,
improving the different aspects that may allow retrieving relevant information
for the users when needed has been a broad topic that has attracted the
interest of many researchers and developers over the last decades.

Among many other techniques that aim at helping users to identify and retrieve
relevant information, query expansion is widely used because its goal is to
fight two common problems in the search scenario: i) vocabulary mismatch
and ii) topic inexperience. Basically, query expansion strategies consist in
identifying a new set of terms, usually called expansion features, that better
describe the users’ real intentions and, thus, allow retrieving documents that
better serve the original purpose of the user’s query. We distinguish four main
families of query expansions techniques that differ from each other in the way
they acquire the expansion features, the classical techniques that consist of
linguistic analysis, relevance feedback, search logs analysis and KB exploitation
techniques.

Techniques inside the family of the linguistic analysis exploit the language
properties such as morphological, lexical, syntactic and semantic word rela-
tionships to expand the query. Relevance feedback techniques use the initial

11

12

query to retrieve an initial set of documents, and then, the information about
the relevance of these documents is used to reformulate the query. The family
of search log analysis exploits the previous experiences of the users with the
search engine in order to expand the query. Finally, knowledge base techniques
exploit the information contained in external sources of information in order
to provide the expansion features to the query.

A survey by Carpineto et al. [11] describes the most relevant proposals in
this area. In the survey, the group of knowledge base techniques is split into
two groups depending on the source of the knowledge base: from a corpus or
from Web Data. However, in the last years, the differences between the two
groups have narrowed and we prefer to consider it as single group.

In this thesis, we are focused on exploiting the structural properties of KB
to identify new expansion features to be added into the users’ queries. First,
we discuss briefly some relevant works in the classical families of expansion
methods and then we focus on the exploitation of KB as source of expansion
features.

2.1 Classical Query Expansion Techniques

We first survey some of the techniques within the classical techniques and
analyze how they can help us to improve our system.

2.1.1 Linguistic Analysis

As already introduced, techniques within this family aim at expanding the
queries exploiting the language properties of its terms. Dictionaries and
thesauri are used to derive inflections or different grammar forms for a given
word. These techniques usually act at word level, so, for each word in the
query, some candidates are generated independently of the full query and the
content of the document collection. Hence, these techniques are more sensitive
to word sense ambiguity [11].

An area within this family of techniques consists on stemming. In linguistic
morphology and information retrieval, stemming is the process for reducing
inflected or derived words to their stem. The stem does not need be identical
to the morphological root of the word. For example, depending on the stemmer

13

used, “take”, “taken” and “taking” may result in the stem “tak”, and “ride”,
“ridden” and “riding” may result in the stem “rid”. Stemming is used as a
preprocess in order to construct an index of the document collection that
only stores the stems, which then are matched with the stems of the query
term as in [26, 32]. Stemming suffers from language dependency. In other
words, there are simple heuristics for languages whose vocabulary does not
have many inflections, suffixes or composed words, but for others with many,
as for example German, may be a very difficult task.

Many proposals of stem algorithms have been done for English language.
However, the most popular are still Lovins’ [37] and Porter’s [46].

The Lovins stemmer was presented in 1968. It considers 294 endings, uses
29 conditions and applies 35 transformation rules. Each ending is associated to
one of the conditions. First, for a given word the stem is obtained by removing
the longest ending that satisfies its associated condition. Then, the stem is
transformed using the rules. This algorithm removes a maximum of one suffix
from a word, due to its nature as single pass algorithm. Due to its large rule
set, and its transformation stage, it is a time-consuming algorithm.

The Porter stemmer was presented in 1980. It is probably the most used
of all stemmers and implementations. The stemmer is based on the idea that
English suffixes are mostly made up of a combination of smaller and simpler
suffixes. The stemmer is divided into five steps: (i) remove plural forms and,
-ed and -ing terminations, (ii) if necessary convert -y to -i, (iii) remove double
suffixes, (iv) remove suffix, (v) if necessary remove -e. Porter stemmer suffers
from word ambiguity since it does not take into account the many sense of
a different word, for example, “bats” and “batting” would both be map into
“bat”. The porter stemmer was modified by Krovetz in [32], introducing a
dictionary in order to deal with word sense disambiguation. At the end of
each step, the algorithm tries to obtain the minimum representation of the
given word that exists in the dictionary.

A linguistic ontology is a formal representation of knowledge as a set of
concepts within a domain, and linguistic relations between pairs of concepts.
A thesaurus is a reference work that lists groups of semantically related words.
Both, ontologies and thesauri, are used in query expansion. Ontologies can
be domain-specific or domain-independent and both have been used in query
expansion [6] and can be used combining multiple combinations of thesauri [38].

14

In the recent years WordNet has won popularity becoming the dictionary and
thesauri de facto. It is a combination of dictionary and thesaurus in the form
of a lexical database. It groups English words into sets of synonyms called
synsets that provides short and general definitions, and records the various
semantic relations between these synonym sets. WordNet is a suited tool for
query expansion, however its usage carries some important difficulties such as
the lack of proper nouns, not exact match between queries and concepts and
one query term mapping to several noun sets due to the many sense of one
term. Hence, the usage of WordNet suffers from the ambiguity problem and it
is useful in case of handling previously disambiguated terms [59].

Voorhes [59] analyze the capabilities of using WordNet for query expansion.
In this work, each query is manually annotated with related WordNet concepts
and then the synonyms within the concept sets are added. The conclusions are
that this type of expansion provides little benefit for large detailed queries. For
less detailed queries, this kind of techniques has the potential to improve the
initial query, though this expansion is unlikely to be as effective as a detailed
and user-supplied query.

Regarding the thesis, we will explore the linguistic analysis in order to calculate
the similarity between two different documents.

Relevance feedback
The idea behind relevance feedback techniques is to use the initial query in
order to get an initial set of results. Then, the initial set of results is managed in
order to obtain the expansion features. The basic procedure behind relevance
feedback is:

1. The user issues a keyword-based query.

2. The system returns an initial set of results.

3. The results are identified as relevant or non-relevant.

4. The system uses the relevance information in order to build a query that
represents better the real intention of the user.

5. The system returns a final set of results.

15

Depending on the method used to identify the relevance of the documents
within the initial set of results, relevance techniques can be classified as explicit
feedback, implicit feedback or pseudo relevance feedback.

Explicit feedback is obtained by the users themselves indicating the relevance
of each document within the initial set of results. The relevance can be indicated
binary or graded. Binary relevance feedback indicates whether a document
is relevant or not as in [43], where it is used in order to better understand
the user intent in the retrieval of images. In the graded relevance feedback
the users indicates the relevance of a document to a given query using some
type of scale: numerical (from 0 to 5) or categorical (not relevant, somewhat
relevant, relevant, or very relevant), an example of this is SearchWiki [19] a
feature which allowed users to re-order search results.

Implicit feedback is inferred from user behavior, such as the documents he
selects, the time she spends viewing a document, the scrolling actions she
performs, etc. It differs from explicit feedback because the user is not conscious
that she is providing relevance information. In [44] the authors present a
classification of implicit techniques which was revised in [31] based on the
underlying purpose of the observed user behavior. Implicit feedback can be
done at the query level or at the user level. At the query level, the behavior
of the user is used to improve the query itself, for example in [8] eye tracking
techniques are used to analyze the attention that the user pays to a given
document or to different parts of the document. At the user level, a profile for
the user is built. For example, from previously issued queries and previously
visited web pages, or other information about the user such as documents
and emails the user has read and created. The information of the profiles is
used in order to expand the query as in [54]. An implementation of explicit
and implicit feedback techniques are compared in [61] resulting in a better
performance of the latter.

Pseudo-relevance feedback, also known as blind relevance feedback, is a
method for automatic local analysis. Techniques within this family automate
the manual part of relevance feedback without any extended interaction from
the user. These techniques retrieve an initial set of results and then assume
that the top-K ranked documents are those that the user would have selected as
relevant. In [64] the authors present a systematic exploration of the utilization
of Wikipedia in pseudo relevance feedback for query dependent expansion.

16

Once the relevant documents are selected (either using explicit, implicit or blind
feedback) the expansion features are selected. The features can be obtained by
analyzing the most relevant words of the documents, or to use more compact
and informative document representations such as passages [63] and text
summaries [33]. In [13] the authors present a method that identifies the most
associated primitive concepts and chooses the most probable interpretations
as query concepts. Guihong et al. [10] show that good expansion features
cannot be distinguished from bad ones neither on their distributions in the
feedback documents nor in the whole collection and propose to integrate a
term classification process to predict the usefulness of the expansion features.

Search Log Analysis
The idea behind the analysis of query logs is to learn from the previous
experience of the users. It requires a log that acts as a search history. Search
logs contain queries and list of urls, corresponding to the clicks on web pages.
There are two main techniques based on the analysis of search logs [11]: Query
log based and Query & Results log based.

Query Log Based aims at using the history log in order to analyze the
query reformulations that users have done manually. The idea behind these
techniques is to guess the reformulations that the user would do based on
previous users’ experiences [4, 25,29,65].

Baeza et al. [4] present a query recommendation system which uses query
logs. A query recommendation system is a system in which the user issues a
query and the system suggests related queries. For that purpose, their system
preprocesses the log in order to cluster the queries. For each of the queries,
a term-weighted vector is built. That vector is built taking into account the
frequency of the query terms and the number of clicks of the documents in
which the term appears. Then, given a query, the system finds the cluster to
which it belongs. A score for each query within the cluster that measures the
similarity with the input query is calculated. Top queries are returned to the
user as suggestions.

Query & Results Log Based consists in exploiting the information of the
retrieved documents (web pages) by previous queries. This second type is
more widely used because it is capable of providing more features. In [22] top

17

QUERY TERMS DOCUMENTS

TERMS

QUERY SESSIONS

 Queries Documents

0.31

0.67

0.58

0.22

0.74

0.13

0.81

DOCUMENTS

TERMS
QUERY TERMS

0.71

0.20

0.17

0.41

0.41

0.64

Figure 2.1: Correlations among query terms and document terms via query
sessions.

retrieved results from past queries are used. In [47] the information of the
query log is used to build a knowledge base.

Cui et al. [16] extract from the analysis of the logs probabilistic correlations
between query terms and document terms as in the leftmost side of Figure 2.1.
Their method infers the correlation between query terms and document terms
by analyzing previous user experiences. Thus, given a query, the system
analyzes the relevance of each query term in previously issued queries. Then
analyze for each previous issued query, the documents that have been selected.
Those documents are expressed as a vector of weights. Using the weight of
the query terms in previous queries, and the weights of the documents, the
method is able to infer a correlation between them. These correlations are
then used to select high-quality expansion terms for new queries.

The usage of query logs is interesting and may lead to good results. However,
the application of this family of techniques is not possible in the absence of
logs.

2.2 Knowledge Base techniques

Knowledge bases are special types of databases that are used to manage
information which is organized into entries. Knowledge bases provide a means
for information to be collected and used either by machines or humans. In
order to improve the usability, entries within the knowledge base may link
other entries.

18

Initially, at the time that query expansion was first proposed, there were no
formal knowledge bases. Thus, large sets of texts, which are called corpus,
were processed in order to derive statistical information that was used for
query expansion. A text corpus is a large set of texts. Corpora are used to
calculate statistics in order to infer the importance of words. In particular,
they are used to estimate term cooccurrence. The term cooccurrence can be
analyzed from the document perspective, at the topic level, or even at the
paragraph level.

Qiu et al. [49] use the document collection as a knowledge base itself to
construct a similarity thesaurus. A similarity thesaurus is a matrix that
consists of term-term similarities. For that purpose, each term is represented
by a vector in the document vector space. So, the position k of the vector
represents the k-th document of the collection. The value in that position
indicates the importance of the k-th document for the term, which is computed
using a classical tf-idf [50] model. In order to calculate the expansion terms
for the query expansion, they calculate the similarity between the query terms
and the terms in the collection by calculating the product of the terms vectors,
and select the most similar ones.

Another classical strategy consists in deriving cluster of terms [5, 15,51] which
consist in grouping similar terms. For example, Bast et al. [5] present a
system to suggest new terms for a given query. In other words, they propose
an auto-completion feature which obtains a set of related term clusters from
the document collection. According to the cluster that the query terms belong
to, the system suggests additional terms in order to complete the query. The
authors present two different approaches in order to build the clusters. One of
the approaches is unsupervised, and uses the Markov Clustering Algorithm [58].
The other approach is supervised and makes use of a clustering method based
on WordNet [21].

In the last years, with the appearance of large databases online, the usage of
large knowledge bases has been revalued offering a new paradigm for query
expansion techniques. There are domain-independent knowledge bases, such as
Wikipedia, and more specific knowledge bases for each domain, as for example,
PlanetMath.

Wikipedia has become an important online knowledge base, if not the most
important. Wikipedia is an encyclopedia of articles that are organized in

19

categories. Most of the works in this area focus on using the information
within the Wikipedia articles in order to extract expansion features.

For example, Hu et al. [24] propose a system that disambiguates the user’s
intent linking each query to a set of Wikipedia articles, referred as a concept
in their work. Their system includes a concept predictor, which aims at
predicting the intent of a given query. For that purpose, they need to train a
concept predictor for each of the domains that a query may belong to. First,
they select a few queries representative of the trained domain, map these
queries to matching concepts, and add sibling concepts, linked concepts and
the categories they belong to. Finally, they construct a graph with these
concepts and their neighbors. This graph is finally narrowed down using a
random walk model that select the most important concepts in the graph.
Then, for each issued query the system tries to identify the concept using the
predictor. In the case that the predictor has been not trained for the query
domain, then the query is managed by a linguistic engine. Thus, this approach
is useful for a trained domain but lacks of efficiency when it comes to new
domains. In contrast, we do not want to be domain-dependant and we want
to expand the query using the structural characteristics of a KB whatever the
domain is.

Similarly, Koru [42] is a search engine that exploits the content of Wikipedia
in order to, given a particular query, suggest related queries that may express
better the intentions of the user. In real time, Koru identifies the set of
Wikipedia articles that better matches with the query and suggests alternative
queries based on the links within those articles. Two main optimizations are
done in order to allow the system to respond in real time. First, the system
selects the most relevant Wikipedia articles for the type of documents that
Koru is indexing. So, Koru specializes itself in order to retrieve documents
from a particular document collection. Given a particular document collection,
Koru selects the relevant Wikipedia articles using the titles of the articles and
the sentences within the document collection. Each Wikipedia article is given
a relatedness measure that is calculated by an ad-hoc function. Second, since
the number of links within a Wikipedia article may be too large they need to
prune the irrelevant ones. The prune is done on a tf-idf basis, which entails a
semantic analysis.

20

Facetedpedia [36], by Chengkai Li et al, is a similar approach to generate
faceted interfaces for Wikipedia based on its structure. Notice that it is not a
query expansion techniques, but it uses the structure in a way the we believe
it is interesting to comment. Facetedpedia uses the original query to identify
the target articles, then it identifies all the articles that link to a target article
and analyzes the category hierarchy to which they belong. From this hierarchy
they define a set of motifs which represent the interface, i.e. other navigational
articles somehow related with the target articles by means of a category rooted
in a category. This approach, however, relies on explicit feedback from the user,
since she will navigate through the facets that she is interested to. Automatic
expansion techniques cannot rely on this approach since it may introduce many
terms that are too distant from the original query and, thus, counterproductive
for the expansion process.

Arguello et al. [3] propose a Wikipedia-based query expansion method for
blog recommendation. First, the method runs the user query to select a set W
of Wikipedia articles. Out from this set of articles, the system selects the K
documents that better match with the user query. Then, each anchor phrase of
the links among the articles of W and the articles of K is scored. The top-20
text anchors are chosen to be the expansion features for the query expansion.
This type of expansion results in significant improvements in terms of recall
and precision compared to feedback techniques. Such an approach could be
used in our work to rate the importance of the links.

Also, in [17], Dalton et al. contribute to the field with a relevant work
consisting in exploiting the entities as source of expansion features. In more
detail, the authors propose to pre-process the collection of documents to
annotate them with entities refering to serveral KB, in particular they use
Wikipedia and Freebase. Then, for each query they follow a similar strategy
to the pre-process of documents in order to obtain the related entities. It ends
up with a hierarchy of entities that are used to match the documents. This
approach achieves very good results in terms of precision, however, it implies
to pre-process the whole documents set, which may be unfeasible in many
cases.

Chapter 3
Community Query Expansion:

Proof of Concept

In this chapter, we present Community Query Expansion (CQE), a query
expansion technique that uses a KB as source of expansion features for the
query expansion process. CQE serves as proof of concept to show that the
structure behind KBs matters and that it can be exploited in order to identify
its strongly related entries. As opposed to the classical approach, which
consists in considering the links of each entry in the KB, we mine its global
link structure to find related terms. Particularly, CQE uses WCC [48], a
metric used for identifying communities in social networks. Although we do
not exploit the specific structural characteristics of KBs, it serves to show its
importance, as well as its potential, in the overall expansion process.

In more detail, CQE is prepared to receive a double input in the form of a
query, which is expressed as a set of keywords, and a description of this query,
which is expressed in natural language and is used as context. First, CQE
creates two sets, one for the keywords and another for the context, of relevant
entries. Then, CQE uses the KB structure to calculate the shortest paths
between the entries of the two sets. Finally, CQE builds a community of entries
around the previously calculated paths, which contains the entries out of which
the expansion features are extracted. CQE is able to identify two types of
expansion features: i) concepts that describe in detail the mentioned concepts,
and ii) a set of semantically related concepts. The first type, matching
expansion features, provides equivalent reformulations of the query which
are useful to reduce the vocabulary mismatch. For example, “gray wolf” is

21

22

an expansion feature that matches with the input “wolf”, since the former
is a particular species of the latter. On the other hand, the second type
of expansion features, which we have called semantically related expansion
features, introduces concepts that are likely to appear in a relevant document,
which helps to diminish the topic inexperience. For example, “mammal” is
an expansion feature that is semantically related to “wolf” because is a word
likely to appear in documents that talk about wolves.

To further illustrate the capabilities of CQE, let us use the specific query
“boxing match” from the experimental dataset. Unless a particular user is
familiar with the topic of the query, it would be difficult to provide additional
keywords that improve the search results. But, this information is available in
a KB. However, KBs do not offer always a direct mapping between keywords
and entries. For instance, imagine we are using the English Wikipedia as our
KB, which has more than ten entries in the disambiguation page of “Boxing”
including sports, computer science topics, holidays, locations and songs. CQE
matches the query with Wikipedia articles boxing and match as sports because
they are close structurally. Then, CQE retrieves, with the aid of communities,
semantically related concepts to the boxing topic such as “boxing punches” or
“heavyweight boxing”, or boxers such as “Edison Pantera Miranda” or “Tommy
Farr”. Note that the found concepts belong to the boxing match community,
but may not have a direct connection in the KB to the concepts “boxing” and
“match”.

Specifically, in this chapter,

1. We propose a graph mining technique that converts the input, i.e. θ.k
and θ.c to a map of paths between entries in the KB.

2. We propose a community detection algorithm that is able to extract
semantically related concepts to an input query. To our knowledge, this
is the first query expansion proposal using structural information and,
specifically, a community detection algorithm.

3. We use a flexible hybrid search input, which combines keyword search
and short natural language descriptions, to search in briefly annotated
collections.

23

Figure 3.1: CQE pipeline.

4. We show the impact of CQE, which increases the precision obtained by
pseudo-relevance feedback methods. Also, we show the robustness of our
proposal even in the lack of context scenario.

3.1 Community Query Expansion

3.1.1 System overview

We support a hybrid query input where the user provides a user’s query (θ.k),
which is a set of keywords, and complements it with a context (θ.c), which is
an extended description of the query in natural language. Our objective is to
provide an enrichment procedure that is able to take such an input and use a
KB to introduce a large set of expansion features that improve the precision
and the coverage of the system.

In Figure 3.1, we depict the query expansion architecture. Our proposal
consists in performing a structural expansion, using both θ.k and θ.c, that
finds expansion features that are likely to appear in documents relevant to
the query. First, the system calculates the entries from the KB that are
relevant both for θ.k and θ.c and create two sets with them. Then, those
entries are connected with paths using the graph structure of the KB and
the relation among them. The most relevant paths are used as seeds of a
community search algorithm resulting in as many communities as paths. From
these communities, the system builds the Expansion Query Graph (EQG)
which will allow building CQEX . Finally, the system builds the structural

24

expansion CQEX and also the synonymic expansion, CQESY N , which is based
on synonyms of the original keywords.

3.1.2 Relevant entries selection

Given θ.k and θ.c, we seek to select all the entries of the KB that match with
any mentioned concept. In other words, we are representing the input as a set
of entries of the KB, which serve as starting point for the expansion.

We build two sets of relevant entries, one for the query, Rθ.k, and another
for the context, Rθ.c. The specific method for selecting the entries for both
Rθ.k and Rθ.c is tightly linked with the KB that CQE uses and the available
information for each entry, which, at least, must have a name. In general,
we consider that an entry is relevant for θ.k or θ.c if, at least, contains one
of those terms in its name. In Section 3.2.1 we will explain in detail the
entries selection process for Wikipedia. Notice that we are not being especially
restrictive to define what a relevant article is because we expect that the next
step will discard those that have been selected mistakenly.

Figure 3.2a shows an example of the relevant entry sets. Each circle represents
an entry and the connecting arrows indicate that there is a link between them.
In general, |Rθ.k| < |Rθ.c| because θ.c is usually a larger description than θ.k.
Since θ.c and θ.k are related it is also expected that the two sets share a
significant number of nodes. In the example, nodes h and g belong to Rθ.k
and also to Rθ.c.

3.1.3 Path analysis

In this phase, CQE builds a conceptual map between the concepts in order to
exclude the unrelated ones and, hence, derive the meaning intended by the
user.

For each entry in Rθ.k, the system computes the shortest path that reaches an
entry in Rθ.c. The shortest path represents the most direct way to connect a
particular entry from Rθ.k to the entries in Rθ.c and therefore we reduce the
risk of selecting paths formed by entries that do not correspond to the real
meaning of θ.k.

25

(a)

Entry Path

a a�b

c
c�d�e

c�d�f

d
d�e

d�f

g
g�h

g�i

(b)

Figure 3.2: Shortest paths from each document in Rθ.k.

In Figure 3.2a, darker nodes represent entries that are part of, at least, one
shortest path between the two sets. In Figure 3.2b, we show all the shortest
paths between each entry of Rθ.k and Rθ.c. Note that the initial and the final
node of a path must be two different nodes, even if they are in the overlap of
the sets. Note also that, for one initial node, it may exist more than one path.
For example, there are two paths that start from g and reach nodes in Rθ.c:
one goes to h and the other goes to i.

Once all paths are computed, they are ranked in a descending order based on
the score of each path. Given a path of entries:

P = e1 � e2 � · · · � es,

its score is:

τ(P, θ) = 1/s

(
s∑
i=1

λ(eNi , θ.k) + λ(eNi , θ.c)

)
,

where λ(ρx, ρy) is a function that counts the number of common terms between
ρx and ρy, two set of keywords, and eN is the name of the entry of the KB.
We select the paths with the highest score.

26

3.1.4 Community Expansion

The goal of the community expansion is to enrich the previously calculated
paths by means of calculating their community in the KB graph. A community
in a graph is a set of closely linked nodes which are similar among them but
are different from other nodes in the rest of the graph. We use each path as the
seed of a community whose entries can be used as source of expansion features.
We calculate the communities by a process that maximizes the Weighted
Community Clustering (WCC) [48] of a set of nodes. The WCC(x,K) is a
metric that measures if a node x fits in a community K based on the number of
shared transitive relations (triangles) that x has with the community. A large
number of shared triangles indicates a strong relation between the nodes [48].
The WCC of a community K, WCC(K), is defined as the average of the WCC
of the nodes in the community, i.e. WCC(K)=1/|K|(

∑
∀x∈KWCC(x,K)).

Algorithm 1 describes our process to maximize the WCC of a community
around a path. The process has two main parts: (i) adds nodes to the
community while the sum of WCC increases; and (ii) removes nodes while
the average of WCC increases. In more detail, we start with a community
K whose nodes are the entries in one path. Then, we add the neighbors of
the nodes within the community members as candidate entries. For each
candidate entry e, we check whether it increases the total WCC of K. At
the end, we add the candidate entry ei that produces a larger increase in the
WCC. We keep adding entries in K while we are able to increase the WCC.
Finally, we remove those entries that are well below the average WCC of K,
i.e. ∀ei ∈ K if WCC(ei,K) < ζ ·WCC(K), we remove it. In our system, we
remove the elements that are below a certain threshold ζ of the average, which
we establish experimentally as ζ = 1/4 providing good enough communities.
The process is repeated until the WCC is not improved in one iteration. The
process is guaranteed to terminate because the WCC of a community is a
number between 0 and 1 and our algorithm improves the WCC of K in each
iteration.

Once the communities have been created, we rank them in a descending order
based on the score of each community, similarly to the selection of the paths.
Given K a community of entries, its score is τ(K, θ) =

∑
e∈k λ(eN , θ.k) +

λ(eN , θ.c). We select the communities with the highest score.

27

Algorithm 1: Average WCC maximization for K.

Input: Path P
Output: Community associated to a path P

1 K.add(P.getArticles()) ;
2 repeat
3 currentWCC ←WCC(K);
4 repeat
5 bestWCC ← |K| · currentWCC;
6 bestCandidate← NULL;
7 candidates← neighbors(K);
8 foreach Entry e in candidates do
9 wcc←WCC(K ∪ c);

10 if (|K|+ 1) · wcc > bestWCC then
11 bestWCC ← (|K|+ 1) · wcc;
12 bestCandidate← e;

13 end

14 end
15 if bestCandidate 6= NULL then
16 K ← K ∪ bestCandidate;
17 end

18 until bestCandidate = NULL;
19 repeat
20 modified← false;
21 foreach Entry e in K do
22 if WCC(e, K) < ζ ·WCC(K) then
23 K ← K \ e;
24 modified← true;

25 end

26 end

27 until modified=false;

28 until currentWCC = WCC(K);

3.1.5 Expansion Query Graph & Structural Expansion

We introduce now the expansion query graph (EQG), which we define as the
graph of entries that describe the original query. Thus, it contains those entries

28

that represent the concepts within the original query, as well as, other entries
which are useful to extract good expansion features. Notice that the expansion
query graph is a subgraph of the KB. In this section, use the previously
calculated communities to build the expansion query graph.

For each community K found in the previous step, we build a hierarchy h,
which is rooted on the terms given by the user. The entries are scored according
to the height in the hierarchy. The first level of h is formed by θ.k. The second
level of the hierarchy is formed by the entries that directly represent a concept
of θ.k. Those concepts that are represented directly by an entry of the KB
are called entities, and we call the entries that represent the concepts of the
query, query nodes. Let L(θ.k) be the function that returns the query nodes
of θ.k. Thus, the second level contains the entries in L(θ.k). The i-th level of
a hierarchy of L levels (for 2 < i ≤ L) is formed by the entries that have a
link from an entry in the (i− 1)-th level. The weight of the entry e that is in
level i of h, w(e, h), is computed as w(e, h) = L− i/L− 1. Entries that do not
fit the previous conditions are removed from the hierarchy. Entries placed at
the top level of the hierarchy have a weight equal to 1 and entries at the last
level of the hierarchy have a weight equal to 0.

The expansion query graphs, EQG is represented in CQE as the set of the
previously calculated hierarchies. From the expansion query graph, we derive
the structural expansion, CQEX as:

CQEX =

{
< eN , weN >: weN =

1

|EQG|
∑

h∈EQG
w(e, h)

}
.

3.1.6 Exploiting Synonymia

We found that another set of expansion features can be obtained by trans-
forming θ.k. We treat each keyword in θ.k as an individual term and exploit
the structure of the KB to obtain its synonyms. Let s(t1) = t11, t12, · · · , t1n
the function that return the synonyms of the term t1, then the transformation
of θ.k = t1 t2 · · · tm consists in:

∀i∀j∀k s(t1)i s(t2)j · · · s(tm)k : 0 ≤ i < |s(t1)|, 0 ≤ j < |s(t2)|, 0 ≤ k < |s(tm)|

Notice that we obtain all term-to-term synonyms and that we combine them
maintaining the order in which they appear in θ.k. We call the set of expansion

29

features that we obtain through this process synonymic expansion, CQESY N .
We considered that the whole set of achieved expansion features are equally
important in CQESY N .

3.1.7 Query Building

In this step, we build the expanded query, CQE, as a weighted combination of
QLθ.k, which uses the original query issued by the user, CQESY N and CQEX
using the factors α, β and γ as their weights respectively, similarly to [40]:

Q = %(W,CQE) : W = 〈α, β, γ〉, CQE = 〈QLθ.k, CQESY N , CQEX〉 (3.1)

3.2 Community Query Expansion with Wikipedia

Although, any KB that is described as a graph of concepts with relations,
such as Yago [53] or DBPedia, could be used for this purpose, in this section,
we explain how CQE uses Wikipedia as the KB and, therefore, as source of
expansion features. Actually, in the experimental section of this chapter, we
see that we have, in fact, used two different KBs: English Wikipedia and
Simple Wikipedia. Although both KBs belong to Wikimedia foundation, and
follow the same model as the one depicted in Figure 1.1, from the structural
point of view they can be seen as two different KBs due to their differences in
the number of nodes and edges, i.e. articles and links among them.

In order to illustrate the enrichment process, we will use the following example
from the experimental section:

θ.k=colored Volkswagen beetles

θ.c=Volkswagen beetles in any color

++for example, red, blue, green or yellow.

3.2.1 Relevant article selection

In the particular case of using Wikipedia as the KB, CQE selects the relevant
articles of the encyclopedia for the input, i.e. θ.k and θ.c . In order to build

30

these sets, we consider both θ.k and θ.c as a list of words, or terms. We define
that the relevant articles for a given list of terms are those that contain, at
least, one of those terms in their title or, at least, a bigram of two consecutive
terms, in their body text. Notice that using Wikipedia as the KB allow us to
look also in the article body text.

3.2.2 Path analysis

The usage of the English Wikipedia as the KB entails that CQE finds 182
shortest paths, which according to the procedure described previously, are
sorted in a descent order and the top of path is selected. In this case, among
the 182 paths, nine score 3⁄2 which is the top score:

volkswagen→volkswagen beetle
volkswagen fox→volkswagen beetle
volkswagen passat→volkswagen beetle
volkswagen type 2→volkswagen beetle
volkswagen golf→volkswagen beetle
volkswagen jetta →volkswagen beetle
volkswagen touareg→volkswagen beetle
volkswagen golf mk4 →volkswagen beetle
volkswagen beetle→volkswagen transporter

The first path in the list is especially relevant because it connects the generic
concept Volkswagen to the most specific context Volkswagen Beetle and
both are related to θ.k. The rest of the paths are also good because they refer
to the real intent of the user and discard any path that contains articles about
other interpretations of the term beetle.

3.2.3 Community Search

The community search for Wikipedia strictly follows Algorithm 1 with no
special variation or consideration. Although in Wikipedia we could benefit
from the fact that there are several types of links among its articles, we have
decided to consider them equally.

3.2.4 Structural Expansion

The process is carried on as previously described. The only particularity that we
found is the fact that Wikipedia provides redirects. Once the communities have

31

been created we include directly its redirect articles, because they represent
the same concepts, even if they do not form any triangle.

Following the example, the usage of the English Wikipedia entails that after the
communities have been ranked and merged into the expansion query graph, the
articles selected for the query sorted by weight are: Volkswagen, Volkswagen
Beetle, German cars, Volkswagen group, etc. Due to the expansion, we
found up to 1,125 unique articles, whose titles, each of which serves as an
expansion features, consist of 2.40 terms on average. Due to the lack of
space, we do not show the expansion features that come from the titles
of redirects. For example, the article Volkswagen Beetle has 39 redirects
including plurals, abbreviations (vw bug), other phrases that refer to the same
concept (VW Type 1) or even frequent misspellings (Volkswagon Beatle). The
aforementioned terms allow us to observe that the topic Volkswagen Beetle

has been disambiguated and that, due to structural properties, expansion
features such as German cars or Volkswagen Group are added. With smaller
weights than for previous articles, we also obtain expansion features such
as Volkswagen New Beetle, which is a newer version of Volkswagen Beetle,
Wolfsburg, which is the city where the beetle cars were manufactured, Baja
bugs, which refers to an original Volkswagen Beetle modified to operate off-
road (open desert, sand dunes and beaches) or Cal Look, name used to refer
to customized version of Volkswagen Beetle cars that follow a style coined
in California in 1969. Many of the terms selected correspond to terms that
are not likely introduced by the user, because although they may appear in
relevant documents, they are not known by the user or require a research effort
to the user.

3.2.5 Exploiting Synonymia

In the particular case of Wikipedia, we also use the redirection relation as
source of synonyms. For that purpose, for each term, we identify its matching
article, i.e. an article whose title is exactly the same term, and we use its
redirects as synonyms. We also keep those synonyms whose title is also a
single term.

The synonymic expansion for our example is:

CQESY N = {< volkswagen beetle >,< vw beetle >}

32

which is the result of replacing the term Volkswagen by its acronym vw and
the term beetles is replaced by its singular form beetle.

3.2.6 First Results

We test CQE using the resources provided in the Image CLEF 2011 Wikipedia
CLEF track. The track has a documents collection which consist of 237,434
images, each of which has short descriptions as metadata. Notice that since
we are not using any kind of image processor we use the metadata as the
only available information. Approximately, 60% of these descriptions contain
texts in English. The test collection also provides fifty queries. Each query
consists of a set of keywords, a brief description in natural language, and a set
of relevant images in the test collection.

We test our query expansion engine with two KBs. The first one is the Simple
Wikipedia, built from the dump on April 8th, 2012. It contains 112,525 articles,
of which 31,564 are redirects, and 1,213,460 links among articles. The second
one is extracted from the English Wikipedia, built from the dump on July
2nd, 2012. It contains 4,133,000 articles, of which 3,3343,856 are redirects,
and 99,675,360 links among articles. Both Wikipedia graphs are loaded and
processed using the Sparksee graph database [39].

In our experiments, we used Indri [57] as the search engine that processes the
query and retrieves the documents from the collection of documents. Indri is a
state of the art open-source search engine that provides phrase matching, term
proximity, explicit term/phrase weighting and the usage of pseudo-relevance
techniques.

In the Equation 3.1, we set the factors α, β and γ to 0.08, 0.05, 0.87,
respectively, based on our own experience configuring the system, W =
〈0.08, 0.05, 0.87〉. Note that the value given to the phrases obtained through
the structural expansion is one order of magnitude more important than the
rest of factors.

3.2.7 Retrieval precision

In these experiments, we measure the precision improvement achieved by the
expanded query with respect to several baselines. Precision is the fraction of

33

retrieved documents that are relevant to the query. We compute the precision
for the top-1 (P@1), top-10 (P@10) and top-20 (P@20) results. The results of
the experiments are in Table 3.1.

We use the query likelihood (QL) model [40] as state-of-the-art retrieval
baseline. We compare CQESY N , CQEX and CQE with:

• QLθ.k: as in a traditional search engine that relies on the small set of
keywords introduced by the user.

• QLθ.k&θ.c: this combine into a single query the keywords and the de-
scription introduced by the user.

Also, as a more complex baseline, we compare CQE with pseudo-relevance
feedback (PRF), a state-of-the-art expansion model which extracts the ex-
pansion features from the top documents retrieved by the query. The used
pseudo-relevance feedback technique is an adaptation of Lavrenko’s relevance
model [34]. In this model, the original query keywords θ.k is used to retrieve
a ranked list of documents D ordered by P (θ.k|D) and sort their concepts by
P (w|θ.k) to keep top n concepts, which are the expansion features. Then it
combines the original query with the expansion features. The relevance model,

P (w|θ.k), is computed as: P (w|θ.k) =
∑

D(P (w|D)P (θ.k|D)P (D)
P (θ.k) . We use θ.k as

the first query and then we use PRF to obtain the final set of results. This
configuration appears as PRFθ.k.

Table 3.1 shows the results for our baselines (Baseline), and the results of
expanding the user’s query by using the Simple Wikipedia (Simple) and the
English Wikipedia (English) as our KB. For each Wikipedia, we show the
results of:

• CQESY N : exclusively using the expansion features from the synonymic
expansion.

• CQEX : exclusively using the expansion features from the structural
expansion.

• 〈QLθ.k, CQESY N 〉: combining the keywords and the expansion features
from the synonymic expansion.

34

Configuration P@1 P@10 P@20
B

as
el

in
e QLθ.k 0.460 0.338 0.238

QLθ.k&θ.c 0.320 0.260 0.198
PRFθ.k 0.000 0.000 0.001

S
im

p
le

CQESY N 0.140 0.076 0.055

CQEX 0.500 ? 0.362 ?? 0.278 † ??

〈QLθ.k, CQESY N 〉 0.480 ? 0.358 ?? 0.255
?

〈QLθ.k, CQEX〉 0.540 ?? 0.352 ?? 0.276 † ??

CQE 0.540 ?? 0.360 ?? 0.281
††??

E
n

gl
is

h

CQESY N 0.160 0.104 0.074
CQEX 0.500 ?? 0.400 † ?? 0.296 ††??

〈QLθ.k, CQESY N 〉 0.460 ? 0.368 † ?? 0.259
?

〈QLθ.k, CQEX〉 0.560 † ?? 0.394 † ?? 0.285 † ??

CQE 0.560 ?? 0.416 ††?? 0.303
††??

Table 3.1: P@1, P@10 and P@20. †/†† and ?/?? indicate statistically significant
improvements over the QLθ.k and QLθ.k&θ.c configurations at the significance
levels 0.05/0.01 respectively, using a paired t-test.

• 〈QLθ.k, CQEX〉: combining the keywords and the expansion features
from the structural expansion.

• CQE: combining the keywords, the expansion features from the syn-
onymic expansion and the structural expansion as in Equation 3.1.

For each KB, the best result is in bold.

Our results show that the direct usage of the context reduces the precision
of the system. The reason is that the context is a short natural language
description of the search, which is intended to be read by humans. In such
descriptions, not all terms have equal relevance. For example, proper nouns
are often more important than adverbs, and also some words, such as thing
or object, are used as wild cards that are not likely to appear in relevant
documents.

35

In our setup, pseudo-relevance feedback, PRFθ.k, does not contribute to
improve the precision with respect to QLθ.k. PRF consists in assuming that
the top results, obtained by running the original query, are correct. Then,
those results are used to extract the expansion terms and to reformulate
the original query. In the test setup, the images in the document collection
often have very short descriptions, and thus the number of co-ocurrent terms
retrieved by PRF techniques is sparse and, in general, not effective. This
experience justifies the need for more complex query expansion techniques that
are not based on word co-ocurrence, in contrast to pseudo-relevance feedback.

The results show that the use of either Simple or English Wikipedia for query
expansion turns into an improvement in the precision. However, there are
differences between the usage of either. Better results are achieved for the
English Wikipedia, which is larger and contains more entries and links among
them. That shows that our system is not only able to deal with large amounts
of information but to benefit from them. Let us, from now on, focus on the
use of the English Wikipedia.

CQE, which is formed as a combination of 〈QLθ.k, CQESY N , CQEX〉, achieves
the best precision at all the levels measured. In Table 3.1, we show that this
configuration obtains statistically significant improvements for all the precision
levels with a standard confidence level of 0.05. For the case of confidence level
0.01, we have similar results for P@10 and P@20.

According to the results, both CQESY N and CQEX , combined with QLθ.k,
contribute to improve the quality of the results for all the levels of precision.
It is especially remarkable the contribution of CQEX . The stronger boost of
CQEX over CQESY N is explained for two reasons: (i) in our experimental
environment, we measured that the system found a CQESY N expansion for
32% of the run queries. The rest of the runs were done with CQESY N = ∅; and,
(ii) CQEX introduces many semantically related terms and is not restricted
by synonyms calculated as in CQESY N . Therefore, the number of terms
introduced is larger. The P@10 and P@20 scenarios benefit more from this
larger structural expansion because they include more variants of the keywords,
which improves the recall of the system.

In Figure 3.3, we compare the images retrieved for the baseline QLθ.k (in
the top rows of the figure) and the images retrieved in case of running CQE
(in the bottom rows of the figure) for the Volkswagen Beetle example. On

36

F
igu

re
3
.3:

Q
u

ery
#

7
1

resu
lts.

T
op

row
s:

Im
a
ges

retrieved
u
sin

g
Q
L
θ
.k .

B
o
tto

m
:

Im
ages

retrieved
w

ith
C
Q
E

.
R

esu
lts

a
re

ran
ked

fro
m

left
to

rig
h
t,

an
d

from
u
p

to
d
ow

n
.

37

ID Query phrase: θ.k Phrases in CQESY N

72 skeleton of dinosaur “skeleton of dinosaur”

108 carnival in Rio
“karneval Rio”,
“carnival Rio”

118 flag of UK
“flags of uk”
“flag of uk”

Table 3.2: Sample phrases of CQESY N from Image CLEF.

the one hand, the baseline is not able to disambiguate the term beetles

retrieving results mostly related to bugs due to the ambiguity of the term. On
the other hand, after the query expansion process, the word has been clearly
disambiguated. The disambiguation has been possible due to the identification
of the concept Volkswagen Beetle and the addition of related terms that
refer to variants of the model (e.g. 2nd image corresponds to a Volkswagen
New Beetle) or customized versions (e.g. 8th image corresponds to a Cal Look
Volkswagen). Among the pictures retrieved by our proposal, the 7th picture of
our system is considered incorrect, although it is clearly a car of the desired
model. The reason is that the query (θ.k) explicitly indicates that the car
must be colored, and the car of the picture is white. The current version of
our system does not include an image processing module, and thus we cannot
avoid this type of error unless the image is annotated with such information.

CQE is orthogonal to linguistic techniques, such as stemming, that may be
applied once the query has been generated. For example, according to our
experiments applying stemming techniques boosts the performance up to 10
percentile points.

3.2.8 Analysis of the expanded queries

CQE relies on three blocks being the keywords and two sets of expansion
features from the synonymic and the structural expansion: QLθ.k, CQESY N
and CQEX . Since QLθ.k is obtained directly from the keywords θ.k, it needs
no further analysis.

As already explained, CQESY N is created from the synonyms of θ.k that
exist in the document collection. Using this method, the system is able to

38

obtain synonyms for 32% of queries. We observed that this process is very
reliable because among all the computed CQESY N , 100% of them were correct
redefinitions of the query intentions. Note that the building process can
extract phrases that are not titles or redirects in Wikipedia, as described in
Section 3.1.6. We found that 70% of the synonymic expansions contain at
least one phrase which is not an article in the English Wikipedia.

In Table 3.2, we show some examples of synonymic expansions that do not
match with an article of Wikipedia. Results show that the synonymic expansion
is useful in order to identify an entity within θ.k, as for example “skeleton
of dinosaur”. Other kinds of phrases that are contained in the synonymic
expansion are those that come from applying linguistic inflections to a given
term (e.g. the term flag has become flags), introducing misspellings to the
given terms, using translations to other languages for a given term (e.g. the
terms carnival has been translated into German as karneval), or replacing
a term with its acronym (as seen in Section 3.1.6, the term Volkswagen has
become vw). This expansion is relevant for our expansion method because it
introduces complex phrases which do not always correspond to the title of the
articles in Wikipedia, and hence, would not be included through the structural
expansion.

The structural expansion, CQEX , is built from the titles of the articles within
expansion query graph. In Table 3.3, we show some phrases of the structural
expansions that improve the original user’s request. We underline the phrases
that are main articles in the English Wikipedia, and the rest are redirects
to these articles. In order to facilitate the reading, we classify the structural
expansions in two columns: matching concepts, those concepts that matches
with the query intentions, e.g. in query #80 gray wolf is an instance of the
term wolf; and phrases that are likely to appear in the same result document
because of semantic relation, e.g. in query #110 William Shew is a famous
portrait artist.

Table 3.3 shows also the precision for these queries with and without expansion.
We observed that the expansions provided relevant results to queries that
initially had no relevant result, going from 0.0 to 0.9 in some cases. We also
see that our query expansion method is also effective for queries which have
better results than the average, e.g. query #100.

39

ID
O

ri
gi

n
al

Q
u
er

y
P

h
ra

se
P

@
10

T
op

ol
og

ic
al

ex
p

a
n
si

on
s

P
@

10
M

a
tc

h
in

g
co

n
ce

p
ts

S
em

an
ti

ca
ll
y

re
la

te
d

#
P

h
ra

se
s

80
θ

=
w

ol
f

cl
os

e
u

p
0.

0

g
r
a
y
w
o
l
f
,
w
o
l
f
,
w
o
l
v
e
,
w
u
f
f
,
c
a
n
i
s

w
o
l
f
e
v
o
l
u
t
i
o
n
,
c
a
n
i
d
a
e
,

29
9

0.
9

l
u
p
u
s
,
t
u
n
d
r
a
w
o
l
f
,
e
z
o
w
o
l
f
,
c
a
n
i
s

m
a
m
m
a
l
,
m
a
m
a
l
i
a
n
,
c
o
y
o
t
e
,

w
o
l
f
,
c
a
n
i
s
d
i
r
u
s
,
e
t
h
i
o
p
i
a
n
w
o
l
f
,

c
a
r
n
i
v
o
r
a
,
a
n
i
m
a
l

r
e
d
w
o
l
f
,
h
u
d
s
o
n
b
a
y
w
o
l
f

10
1

0.
0

f
o
u
n
t
a
i
n
,
f
o
u
n
t
a
i
n
s
,
w
a
t
e
r

w
a
t
e
r
,
a
d
a
m
s
a
l
e
,

6
7

0.
6

θ
=

fo
u

n
ta

in
w

it
h

je
t

f
o
u
n
t
a
i
n
s
,
w
a
l
l
f
o
u
n
t
a
i
n
,
w
a
t
e
r

d
r
i
n
k
i
n
g
f
o
u
n
t
a
i
n
s
,

of
w

at
er

in
d
ay

li
gh

t
f
o
u
n
t
a
i
n
,
s
p
r
a
y
f
o
u
n
t
a
i
n
s

l
i
q
u
i
d
w
a
t
e
r
,

f
o
u
n
t
a
i
n
p
u
m
p
,
w
a
t
e
r
f
o
u
n
t
a
i
n

w
a
t
e
r
p
r
o
j
e
c
t
s

11
0

θ
=

m
al

e
co

lo
r

p
o
rt

ra
it

0.
0

p
o
r
t
r
a
i
t
,
p
o
r
t
r
a
i
t
i
s
t
,
p
o
r
t
a
i
t
u
r
e
,

w
i
l
l
i
a
m
s
h
e
w
,
y
e
v
g
e
n
i
y

5
2

0.
5

r
i
t
r
a
t
t
o
,
c
e
l
e
b
r
i
t
y
p
o
r
t
r
a
i
t
,

f
i
k
s

p
o
r
t
r
a
i
t
p
a
i
n
t
i
n
g
,
p
o
r
t
r
a
i
t
p
a
i
n
t
e
r
,

s
e
l
f
-
p
o
r
t
r
a
i
t
,
p
o
r
t
r
a
i
t
p
h
o
t
o
g
r
a
p
h
y

10
0

θ
=

b
ro

w
n

b
ea

r
0.

6

b
e
a
r
,
u
r
s
i
n
e
,
a
r
c
t
o
s
,
u
r
s
i
d
a
e
,

a
s
i
a
n
b
l
a
c
k
b
e
a
r
,

32
7

0.
9

b
r
o
w
n
b
e
a
r
,
b
r
o
a
n
b
e
a
r
,
a
m
e
r
i
c
a
n
,

t
i
b
e
t
a
n
b
l
u
e
b
e
a
r
,

b
r
o
w
n
b
e
a
r
s
,
e
u
r
a
s
i
a
n
b
r
o
w
n
b
e
a
r

b
l
a
c
k
b
e
a
r
,
u
r
s
u
s

s
y
r
i
a
n
h
i
m
a
l
a
y
a
n
b
r
o
w
n
b
e
a
r

m
i
n
i
m
u
s
,
c
a
n
i
f
o
r
m
i
a
,

T
a
b

le
3
.3

:
S
o
m

e
o
f

th
e

m
o
st

re
le

va
n
t

p
h
ra

se
s

o
f

th
e

st
ru

ct
u

ra
l

ex
p
a
n

si
o
n

fo
r

q
u
er

ie
s

8
0
,

1
0
1
,

1
1
0
,

1
0
0
.

U
n
d

er
li
n
ed

p
h
ra

se
s

co
m

e
fr

om
ar

ti
cl

es
in

W
ik

ip
ed

ia
,

th
e

re
st

ar
e

re
d

ir
ec

ts
.

40

For our test sets, the system found at least one community for 80% of the
queries. Out of those communities, 85% were communities semantically related
with the intent of the user and 15% were wrong. Note that in this query
set of Image CLEF, most of the queries contain at least an ambiguous word.
Regarding the 15% of queries which have non-semantically related communities,
the query expansion only reduces the quality for one of them. The reason is
that these queries were difficult in their original formulation, and were below
the average precision and originally returned few relevant results. For example,
query #79: heart shaped is especially difficult because it describes an image
abstraction with text, therefore, it has a visual component that our system
is not able to deal with. The structural expansion of this query, roots in the
anatomical concept of heart and, consequently, it contains related phrases
such as such as human heart, cardiac or circulatory system.

3.2.9 Contextless query expansion

Although our system is able to use the short natural language descriptions,
most search engines lack a context field. We set all the contexts of the query
set as the original query: θ.c = θ.k. Thus, the paths described in Section 3.1
are obtained from a single set.

Table 3.4 shows the precision of our method after the modifications. In this
scenario, we observe that our method is still able to achieve an improvement
of 17% in the best situation. Comparing Table 3.1 and Table 3.4, we observe
that the context is especially useful in case of using the English Wikipedia,
which is larger than the Simple Wikipedia. This implies that the usage of a
query description is especially relevant in case of using large KBs, where input
keywords can be matched to more articles.

CQE still works in the absence of a natural language context provided by the
user. However, using a short description in natural language for the query
allows the system to achieve better precision.

3.3 Open challenges

In this first chapter we have presented CQE as a proof of concept that shows
that the KBs’ structure can be exploited to extract expansion features for the
query expansion process. CQE uses the KB structure to identify semantically

41

Configuration P@1 P@10 P@20

Baseline QLθ.k 0.460 0.338 0.238

Simple CQE 0.540 0.360 0.271
†

English CQE 0.500 0.374 † 0.280
†

Table 3.4: P@1, P@10 and P@20. † indicates statistically significant improve-
ments over the QLθ.k configuration at the significance levels of 0.05 using a
paired t-test.

related concepts that can be used as expansion features, with no need of
semantic analysis. Particularly, in this proof of concept we have used two
different KB’s, the English Wikipedia, and the Simple English Wikipedia. Our
experiments show a correlation between the precision and the KB coverage,
which suggests that the advances in creating more complete KBs will provide
better engines.

The results shown in this chapter are encouraging because we have achieved
significant improvement over the baselines. However, we believe that this
results can be improved by using a specific methodology for KBs instead of
exploiting a metric which is though for community detection in social networks.
In the rest of this thesis, we will present the specific methodology to identify
semantically related entries within a KB exploiting exclusively its structure
that improves the results achieved by this proof of concept. The principal
improvements that we want to achieve by designing a specific methodology
for KB are summarize as:

• Achieve better results in terms of precision.

• Avoid having to build a hierarchy out of the articles selected as the result
of the structural expansion.

• Avoid using empirical values α, β, γ to build the query to be executed
by the search engine.

42

• Improve the current execution times of the method, that although not
shown in the experiments, run in several minutes, which is unfeasible for
real query expansion processes.

Chapter 4
Understanding Knowledge Bases

Graph Structure

In the previous chapter, we have seen that KBs graphs structure encodes
relevant information to identify semantically related entries and, thus, valuable
expansion features. However, we have borrowed a metric designed for commu-
nity detection in social networks, instead of using a specialized query expansion
strategy designed for KBs. As a consequence, calculating the expansion query
graph entails a set of post-processes which includes building a set of hierarchies
with the communities to obtain the expansion query graph (EQG). This not
only seems unnatural, but it also makes the technique unfeasible for real-
scenario search engines, due to the complex calculus that it requires. Moreover,
we believe that a better understanding of KBs and a specific technique can
lead to better results.

In this chapter, we propose a methodology to better understand the specific
characteristic of KBs’ graph structure that allow identifying semantically
related entries, with no need of semantic analysis. To the best of our knowledge,
this is a novel methodology that allows revealing the structural characteristics
that appear in KBs and that are useful for query expansion processes. These
characteristics will allow us to relate the original query concepts with a set of
semantically entries of the KB, and, thus, can be used to extract the expansion
features.

For the purpose, we need to rely on a ground truth that relates queries with
correct documents. In other words, a ground truth that, for each query of

43

44

its query set, provides a set of documents that are considered correct for
that particular query. We use this ground truth to build our own ground
truth, which relates each query of the query set with its optimal expansion
query graph. We define the optimal expansion query graph as the expansion
query graph that, when the expansion features are extracted, allows retrieving
the maximum number of correct documents and, thus, achieves the highest
performance in terms of precision. At the end, we have one optimal expansion
query graph per query in the query set. We analyze their structure in order
to find common characteristics, which are the structural characteristics that
allow relating semantically connected entries in a KB.

4.1 Building the expansion query graphs ground
truth

The calculus of the optimal expansion query graphs ground truth consists in
several steps depicted in Algorithm 2. First, ∀θ ∈ QS we analyze its correct
documents, θ.D and find all its entities, which are those concepts that match
with an entry of the KB, in line 4. We store these entities in the candidates
set. Notice, that documents may be in a specific format or codification which
requires a pre-process. For example, the documents in Image CLEF, which we
have used in the previous chapter, are XML formatted, as the one depicted in
Figure 4.1. To avoid possible noise, we pre-process each document to extract
1 the name of the file without the file extension, 2 the information in the

English section (there are also sections in German and French) and 3 the
description from the general comment field. These three items are combined
in a plain text, which makes it easier to identify its entities. Notice that
candidates ends up containing all the entities that would allow retrieving the
documents in θ.D and, thus, they are candidates to be part of the optimal
EQG. However, using them all to build EQG(θ) and use their names as
expansion features results in bad performance because it retrieves also many
documents that do not belong to θ.D also known as false positives. Hence,
the goal now is to select among the entries in candidates those that allow
achieving the best results in terms of performance, from line 9 to 24. In other
words, we want to calculate EQG(θ) as a subset of candidates that, along
with the entities in the original query (E(θ.k)), maximizes the precision.

45

Algorithm 2: Building the expansion query graphs ground truth.

Input: Query set QS and a Knowledge Base KB
Output: GT = {EGQ(θi) ∀ θi in QS}

1 foreach θ in QS do
2 candidates← {};
3 foreach d in θ.D do
4 candidates.add(E(preprocess(d)));
5 end
6 EQG(θ)← E(θ.k);
7 Q ← buildQuery(E(θ.k), EQG(θ));
8 max← evaluate(Q, θ.D);
9 error = 0;

10 repeat
11 EQG(θ)← transform(EQG(θ), candidates);
12 Q ← buildQuery(E(θ.k), EQG(θ));
13 tempmax ← evaluate(Q, θ.D);
14 if tempmax < max then
15 error + +;
16 if error > THRESHOLD then
17 error = 0;
18 rollback;

19 end

20 else
21 max = tempmax;
22 error = 0;

23 end

24 until converges;
25 GT.add(assembly(EQG(θ)));

26 end

In order to build the optimal EQG(θ) we need a mechanism to evaluate how
good are the expansion features extracted from its entries. Notice that, at
least, each entry has a name which can be used as expansion feature. So, to
evaluate how the expansion features contribute to improve the original query
results, in line 8 and 13, we combine them with the entities in E(θ.k) into

46

<?xml version="1.0" encoding="UTF-8" ?>
<image id="82531" file="images/9/82531.jpg">
 <name>Field Hamois Belgium Luc Viatour.jpg</name>
 <text xml:lang="en">
 <description>Summer field in Belgium (Hamois). The blue
 flower is Centaurea cyanus and the red one a Papaver rhoeas.
 </description>
 <comment />
 <caption article="text/en/1/302887">Summer field in Belgium (Hamois).
 The blue flower is Centaurea cyanus and the red one a Papaver
 rhoeas.
 </caption>
 <caption article="text/en/1/303807">A field in summer.</caption>
 <caption article="text/en/1/305566">Summer field in Belgium (Hamois).</caption>
 <caption article="text/en/4/338230">A summer field.</caption>
 </text>
 <text xml:lang="de">
 <description>Ein blühendes Feld in Belgien . Die blauen Blumen sind
 Centaurea cyanus, die roten Blumen sind Papaver rhoeas .
 </description>
 <comment />
 <caption article="text/de/1/404730">Ein Feld im Sommer</caption>
 </text>
 <text xml:lang="fr">
 <description>Un champ en été en Belgique (Hamois). La fleur bleue
 est un bleuet des champs et la rouge un coquelicot .
 </description>
 <comment />
 <caption article="text/fr/4/535372">un champ en été </caption>
 </text>
 <comment>({{Information |Description= Flowers in Belgium |Source= Flickr |
 Date= 1/1/85 |Author= JA |Permission= GFDL |other_versions= }})
 </comment>
 <license>GFDL</license>
</image>

1

3

2

Figure 4.1: Image CLEF XML file.

a new query that we use to retrieve a set of documents. These documents
are compared with θ.D. In more detail, the returned documents are used to
calculate the top-r precision of the query. So, if T (Q, r) is the top-r results
achieved by using Q, the precision of Q over a set of expected results, θ.D, is
computed as:

P(Q, r, θ) =
|T (Q, r) ∩ θ.D|

r
,

then, the average of the top-1, top-5, top-10 and top-15 precision is computed
as:

O(Q, R, θ) =

∑
r∈R P(Q, r, θ)
|R|

, (4.1)

47

where R = {1, 5, 10, 15}. Note that E(θ.k) and candidates are the sets of
entries that are mentioned in the query keywords (θ.k) and in the documents
of the query result set (θ.D) respectively. Since we want to analyze how the
entries in candidates contribute to improve the results obtained by E(θ.k), we
build a query with both E(θ.k) and the names of the entities in EQG(θ), i.e.
Q = buildQuery(E(θ.k), EQG(θ)), and define the optimal EQG(θ) as:

EGQ(θ) = arg max
EQG(θ)⊂candidates

O(buildQuery(E(θ.k), EQG(θ)), R, θ)

The naive way to compute the optimal EQG(θ) is to compute the quality for
all possible combinations of EQG(θ) from entries in candidates. However, the
number of possible combinations is

|candidates|∑
i=1

(
|candidates|

i

)
,

which makes unfeasible to find the best solution using a brute force approach.
Therefore, we propose the following procedure to find the best combination.

The procedure starts with EQG(θ) containing E(θ.k), as in line 6. From
this moment on, it starts an iterative process that incrementally applies a
single operation out of the following possible: ADD a new entry to EQG(θ)
from candidates, REMOVE an entry from EQG(θ), SWAP an entry of EQG(θ)
by one of candidates, summarized as transform in line 11. We guarantee
that EQG(θ) always contains, at least, the entries within E(θ.k), since they
represent the concepts in θ.k and ease the process of calculating the optimal
EQG(θ). Transformations are applied as long as they improve Equation 4.1,
repeating the process until no further improvements can be found, which is
the converge condition in Algorithm 2. However, notice that to avoid local
optimums we allow temporary to work with solutions that diminishes the
results. If after THRESHOLD iterations the solution remains incapable of
improving the results, then we rollback to the best-known solution.

According to our experiments, shown in the next chapter, this method to
calculate the entries of the optimal EQG(θ) is capable of achieving good
results in terms of precision for the different top-r.

48

The last step consists in assembly the query graph, in line 25. Notice that
the process that we have followed have consisted in identifying which entries
must belong to the optimal expansion query graph. However, what we really
want is to analyze the structures among the different optimal query graph
to identify common characteristics among them that would allow us to find
good expansion features. For that purpose, we have to connect the entries
of EQG(θ) as they are connected in the original KB. The specific way of
assembling the EQG(θ) depends on the specific KB that is being used, since
different KB may contain different types of edges and nodes that we may want
to infer into EQG(θ).

In the next chapter, we give details on how to apply the presented methodology
using Wikipedia as the KB.

Chapter 5
Structural Query Expansion with

Wikipedia

In this chapter, we propose an expansion technique that we have called
Structural Query Expansion (SQE). SQE in contrast with CQE, exploits the
particular structure of KBs. SQE consists in materializing the structural
characteristics that connect semantically related KB’s entries into a set of
motifs which are used to calculate the expansion query graphs. Thus, SQE
applies the methodology proposed in Chapter 4 to identify the structural
characteristics and, then, to materialize them into structural motifs. Although
SQE could be applied for any KB, we have decided to use Wikipedia because
it is probably the largest free source of up-to-date knowledge among KBs.
Preliminary results in Chapter 3 showed that the larger the coverage of the
KB, the better the expansion features that we can find. Although it would
probably make sense to use specialized KB for specialized domains, such a
legal KB for the search engine in a law firm website, we focus on generalist
search engines. Also, in Chapter 7, we will see a practical use and approach of
SQE for specific websites.

As depicted in Figure 5.1, SQE receives the query nodes, which are the nodes
of the KB that represent the entities mentioned in the query. Notice that this
differs from the strategy that we used in CQE, in which we built Rθ.k. This
change of strategy is motivated by the observation from the previous chapter
that the expansion query graphs that contained the query nodes led more
easily to the optimal. For the purpose, we require an Entity Linker module
that is capable of translating θ.k into the set of query nodes.

49

50

Figure 5.1: Structural query expansion pipeline.

SQE consists of three main steps: i) the structural analysis of the KB graph
(for which we use the methodology described in Chapter 4), ii) the building of
the expansion query graph and iii) the building of the query.

The goal of the structural analysis is to reveal the structural characteristics
that given a query, allow identifying tightly linked entries in the KB. For
that purpose, we create a ground truth using the methodology proposed in
Chapter 4 and we analyze the resulting ground truth expansion query graphs to
reveal structural characteristics that connect the user’s query with semantically
related articles of Wikipedia. Notice that this is an offline process that needs
to be done once for each KB.

The second step consists in materializing the revealed structural properties
into a set of structural motifs in a way that, given the query nodes, we can
infer their expansion query graph. The goal is to have expansion query graphs
which have the same observed characteristics as those in the ground truth
expansion query graphs have. To validate our hypothesis, we have crafted
the structural motifs empirically, to avoid introducing potential errors derived
from an automatic algorithm.

The third step consists in using the Query Builder to extract the expansion
features from the expansion query graph and use them, along with the user’s
query and its entities, to build the expanded query.

Then, the expanded query is issued to the Search Engine that uses it to
retrieve the results.

51

According to the conducted experiments, SQE is able to obtain statistically
significant improvements of more than 150% over the non-expanded queries.
Moreover, SQE does not incur in a relevant overhead, by running in the order
of a few tenths of a second at most 1.

SQE is orthogonal to many other existing techniques. For example, in Sec-
tion 6.2 we show that combining SQE with pseudo-relevance feedback achieves
13.68% improvement in the quality of the results.

The contributions of this chapter are summarized as follows:

• We propose SQE, a novel query expansion strategy that relies on ex-
ploiting the structure of KBs.

• We analyze the structural characteristics of Wikipedia that allow re-
lating semantically related entries using the methodology described in
Chapter 4.

• We implement SQE using Wikipedia as our KB, which leads us to identify
structural motifs in Wikipedia that connect tightly related entities.

5.1 Wikipedia’s Graph Structure Analysis

In this section, first, we apply the methodology proposed in Chapter 4 when
Wikipedia is used as the KB. We use the queries in the Image CLEF2 query
set to build their ground truth expansion query graphs and, then, we analyze
them to find the structural characteristics that the optimal EQGs share.

Although using a particular information retrieval benchmark, and, thus, a
particular query set could induce the ground truth to be overfitted for its
query set, in Section 6 we will see that the results are consistent with two
other query set that have never been used before.

1Executions are done in an Intel Xeon CPU E5-2609 with 128GB of RAM.
2This is the information retrieval benchmark used in Chapter 3.

52

5.1.1 Building the Expansion Query Graphs Ground Truth
for Wikipedia

In order to build the ground truth, we follow the steps described in Algorithm 2,
which we summarize as follows:

1. For each query in the query set, we retrieve its correct documents. We
find its entities and we use their corresponding entries in the KB as the
candidates to be part of the ground truth expansion query graph.

2. For each query, we initialize its ground truth expansion query graph
with the query nodes that correspond to the entries of the entities within
the query (i.e. E(θ.k)). We guarantee that those nodes are always part
of the ground truth expansion query graph.

3. We transform the ground truth expansion query graph by removing one
of its nodes, adding one of the nodes from the candidates set or swapping
one of its nodes for one from the candidates set, until no improvement is
found.

4. Evaluate the new ground truth expansion query graph.

5. Repeat step 3 and 4 until no further improvement is found.

The first challenge for building the ground truth expansion query graph is to
identify the entities of a given scope. Notice that, as depicted in Figure 1.1,
Wikipedia has two types of entries: Article and Category. Although we
could use them both to find entities as those concepts that would match with
an article title or a category name, we have decided to use exclusively the
Article type of entry. Since articles refer to a specific scope3, while categories
are intended to group together pages on similar subjects and, thus, are less
specific4, the former type of entry is a better choice.

The process of identifying the entities within a given scope is called entity
linking process and consists in identifying the concepts within a scope and
matching them with a KB entry, in that case with the title of a Wikipedia’s

3https://en.wikipedia.org/wiki/Wikipedia:What is an article%3F#Article scope
4https://en.wikipedia.org/wiki/Help:Category

53

VW

Volkswagen

Volkswagon

Volkswagens

V-Dub

V.W.

Folksvagon

Folkswagon

Lamando

(a) Volkswagen

Coleoptera

Coleopterists

Coleopterist

Beetles

Coleopteran

Chafer

Black-Beetle

Beetel

Beetle

Choleoptera

Coleopterans

(b) Beetel

Table 5.1: 1-term redirects for Volkswagen and Beetel.

article. In order to improve the accuracy of our entity linkage, we do not
only search entities in the input text, but also in synonym phrases. We
derive a synonym phrase by replacing at least one term of the input text by a
synonymous term. Synonymous terms are calculated using 1-term redirections
of Wikipedia, which are redirect articles whose title has a single term. With
more detail, given a term t, we retrieve (if it exists) the article a from Wikipedia
whose title is equal to t. Then, the synonyms of t are the titles of the 1-term
redirects of a. Imagine the phrase Volkswagen Beetel which does not match
with any article in Wikipedia and that consist of two terms: Volkswagen and
Beetel. In Table 5.1, we show their 1-term redirects. The combination of the
9 terms in Table 5.1a with the 11 terms in Table 5.1b results in 99 synonym
phrases for Volkswagen Beetel, out of which we can find Volkswagen Beetle

which matches with a Wikipedia’s article. This simple strategy proved effective
for our purposes.

To calculate the optimal EQG(θ) for each query, θ, in the query set, we follow
the same strategy as in Algorithm 2. First, we initialize EQG(θ) with the
query nodes. This set is transformed by adding an article from the candidate
set, removing an article, or swapping an article currently in EQG(θ) with one
from the candidates set until no further improvement is found. Then, we build
a query with θ.k, E(θ.k) and the titles of the articles in EQG(θ) that we use

54

min
Quartiles

max
25% 50% 75%

top-1 0 1 1 1 1
top-5 0 1 1 1 1
top-10 0.2 0.6 0.9 1 1
top-15 0.2 0.65 0.8 0.85 1

Table 5.2: Statistics of precision of ground truth.

to evaluate its quality. In Table 5.2 we summarize these results. The results
show the precision achieved in the top-1, top-5, top-10 and top-results. These
results show that the calculated EQG(θ) are close to optimal (precision equal
to 1) and can be used as ground truth. Recall that the ground truth expansion
query graphs is created by means of the Image CLEF benchmark. In this
benchmark, people decide which documents are correct for each query without
taking into account its metadata. So, even if the documents are properly
selected, it might happen that, from the metadata point of view, they are not,
for example if a document has no metadata5. Thus, those documents that
lack of metadata (or the metadata is not a good description of the document)
will never be retrieved by a search engine. That explains why the precision is
not always equal to 1 in Table 5.2. Moreover, there are 12 queries, out of 50,
with less than 15 correct results.

Finally, to assemble the expansion query graphs, each EQG(θ) is built by
inducing the subgraph with the nodes already in EQG(θ), the main articles of
these articles, in case of being a redirect (see Figure 1.1), and their categories.
Also, we add the edges that connect these nodes in the Wikipedia graph. This
allows us to build EQG(θ) as a representation of the entities in the query, the
expansion features that contribute the most in terms of precision, and also
the semantics provided by the categories and the edges, making EQG(θ) a
good representation of the query domain. In Figure 5.2 we show the expansion
query graph of the query #90 “gondola in venice” from the Image CLEF query
set. Articles that are query nodes are depicted with a triangular box, articles
that have appeared due to the expansion of the query graph (expansion nodes)
are circle boxes, squared boxes are used for categories, and finally, the nodes

5In the Image CLEF benchmark only 60% of the documents have English metadata while
the rest do not have any or it is in German or French.

55

v
is

it
o

r
at

tr
ac

ti
o

n
s

in
 v

en
ic

e

v
en

ic
e

ca
r-

fr
ee

 a
re

as

co
v

er
ed

 b
ri

d
g

es
 i

n
 i

ta
ly

1
8

th
-c

en
tu

ry
 i

ta
li

an
 p

eo
p

le

g
eo

g
ra

p
h

y
 o

f
v

en
ic

e

st
ru

ct
u

ra
l

sy
st

em

tr
an

sp
o

rt
 i

n
 v

en
ic

e

p
h

o
to

g
ra

p
h

ic
 t

ec
h

n
iq

u
es

v
en

et
ia

n
 p

ai
n

te
rs

it
al

ia
n

 p
ai

n
te

rs

p
eo

p
le

 f
ro

m
 v

en
ic

e
(c

it
y

)

th
e

ca
n

al

sp
o

rt
s

v
en

u
es

 i
n

 f
ra

n
ce

w
in

d
su

rf
in

g

b
o

u
ch

es
-d

u
-r

h
ô

n
e

y
ac

h
ti

n
g

 r
ac

es

m
ec

h
it

ar
is

ts

ro
m

an
 c

at
h

o
li

c
o

rg
an

iz
at

io
n

s
es

ta
b

li
sh

ed
 i

n
 t

h
e

1
8

th
 c

en
tu

ry

re
li

g
io

u
s

o
rg

an
iz

at
io

n
s

es
ta

b
li

sh
ed

 i
n

 t
h

e
1

7
1

0
s

o
rd

er
s

fo
ll

o
w

in
g

 t
h

e
b

en
ed

ic
ti

n
e

ru
le

ea
st

er
n

 c
at

h
o

li
ci

sm

1
7

1
2

 e
st

ab
li

sh
m

en
ts

v
en

ic
e

h
is

to
ry

 o
f

ca
th

o
li

c
re

li
g

io
u

s
o

rd
er

s

ch
ri

st
ia

n
 r

el
ig

io
u

s
o

rd
er

s
es

ta
b

li
sh

ed
 i

n
 t

h
e

1
8

th
 c

en
tu

ry

m
ek

h
it

ar
is

t
o

rd
er

g
ra

n
d

 c
an

al
 (

v
en

ic
e)

ca
n

al
s

in
 i

ta
ly

g
o

n
d

o
la

p
al

az
zo

 b
em

b
o

w
at

er
w

ay
s

o
f

it
al

y

m
ed

it
er

ra
n

ea
n

 p
o

rt
 c

it
ie

s
an

d
 t

o
w

n
s

in
 i

ta
ly

h
an

d
-c

o
lo

u
ri

n
g

 o
f

p
h

o
to

g
ra

p
h

s

,c
o

lo
r

st
o

n
e

b
ri

d
g

es

2
0

0
5

 n
o

v
el

s

se
st

ie
ri

 o
f

v
en

ic
e

p
ed

es
tr

ia
n

 b
ri

d
g

es
 i

n
 i

ta
ly

w
o

rl
d

 h
er

it
ag

e
si

te
s

in
 i

ta
ly

h
o

u
se

s

co
p

y
ri

g
h

t
la

w

ci
ty

 n
ic

k
n

am
es

d
ig

it
al

 r
ig

h
ts

 m
an

ag
em

en
t

ca
n

n
ar

eg
io

v
en

et
ia

n
 g

o
th

ic
 b

u
il

d
in

g
s

g
o

th
ic

 a
rc

h
it

ec
tu

re
 i

n
 v

en
et

o

g
o

n
d

o
li

er
e

re
g

at
ta

s

c
o

p
y

in
g

w
ri

ti
n

g
tr

an
sc

ri
p

ti
o

n

ci
ti

es
 a

n
d

 t
o

w
n

s
in

 v
en

et
o

co
as

ta
l

ci
ti

es
 a

n
d

 t
o

w
n

s
in

 i
ta

ly

b
ri

d
g

e
o

f
si

g
h

s

b
ri

d
g

es
 i

n
 v

en
ic

e

b
ri

d
g

es
 c

o
m

p
le

te
d

 i
n

 t
h

e
1

6
0

0
s

is
la

n
d

s
o

f
th

e
v

en
et

ia
n

 l
ag

o
o

n

w
at

er
 t

ra
n

sp
o

rt
 i

n
 i

ta
ly

h
is

to
ri

c
je

w
is

h
 c

o
m

m
u

n
it

ie
s

p
o

n
te

 d
ei

 s
o

sp
ir

i

h
o

u
se

s

h
o

u
se

re
g

a
tt

a

sa
il

in
g

 r
eg

at
ta

s

ro
w

in
g

 r
eg

at
ta

s

b
o

at
 t

y
p

es

th
e

w
o

rl
d

 b
ef

o
re

w
es

s’
h
ar

 s
er

ie
s

m
ar

it
im

e
re

p
u

b
li

cs

it
al

ia
n

 e
tc

h
er

s

1
6

9
7

 b
ir

th
s

h
u

m
an

-p
o

w
er

ed
 v

eh
ic

le
s

1
5

th
-c

en
tu

ry
 a

rc
h

it
ec

tu
re

g
o

th
ic

 r
ev

iv
al

 a
rc

h
it

ec
tu

re
 i

n
 i

ta
ly

v
en

et
ia

n

la
n

d
sc

ap
e

ar
ti

st
s

ca
n

al
et

to

p
o

rt
 c

it
ie

s
an

d
 t

o
w

n
s

o
f

th
e

ad
ri

at
ic

 s
ea

co
p

ie
d

h
an

d
 t

in
te

d
 p

h
o

to
g

ra
p

h

p
al

ac
es

 i
n

 v
en

ic
e

1
7

6
8

 d
ea

th
s

ca
n

n
ar

eg
io

 c
an

al

re
g

a
ta

F
ig

u
re

5.
2:

O
ve

rv
ie

w
of

th
e

gr
ap

h
q
u
er

y
of

q
u
er

y
#

90
“g

on
d

ol
a

in
ve

n
ic

e”
.

56

min
Quartiles

max
25% 50% 75%

%size 0.164 0.477 0.587 0.688 1
%query nodes 0 1 1 1 1
%articles 0.025 0.148 0.217 0.269 0.5
%categories 0.5 0.731 0.783 0.852 0.975
expansion ratio 0 2.125 4.5 23.750 176

Table 5.3: Statistics of the largest connected component of the expansion
query graphs.

that do not have a box are the main articles that have been obtained through
an article in EQG(θ).

5.1.2 Wikipedia’s Ground Truth Analysis

A first superficial analysis of the ground truth expansion query graphs reveals
that they are, in general, disconnected graphs composed by a moderately large
connected component. This is observed in Table 5.3, where we show for the
largest connected component the minimum, the maximum and the first, the
second and the third quartiles of:

• its relative size with respect to EQG(θ).

• the relative amount of query nodes with respect to the rest of EQG(θ).

• the relative amount of articles with respect to the rest of EQG(θ).

• the relative amount of categories with respect to the rest of EQG(θ).

• the expansion ratio of the connected component, which is the ratio
between the number of articles in the component and the number of
query nodes in the component.

From an analytical point of view, we see in Table 5.3, that large connected
components contain, in general, all the query nodes. This is an interesting
observation as it means that, in general, the terms users introduce in a search
engine are semantically related either directly or by means of extra articles or

57

categories. Also, the fact that, in general, the query nodes are in the largest
connected component suggests that most of the expansion nodes are somehow
connected with the query nodes. Also, we observe that the largest connected
component is clearly dominated by categories. It makes sense because each
article belongs, at least, to one category. According to the results in Table 5.3
the number of expansion nodes introduced per query nodes goes from 0 (which
we use to denote that no query nodes was in this connected component), to 176.
This last result suggests that the variety of queries of the benchmark is large,
ranging from queries whose graphs touch a very local region of Wikipedia, to
others where very distant terms are connected. Also, this result means that
we cannot establish a unique or approximated number of expansion nodes that
results in good expansion query graphs, as it depends on the particular nature
of each query.

We also detected that, compared to the other connected components, which
consist of a single article and its categories and thus, its structure is not worth
to be analyzed in detail, the largest connected component is significantly
structured. The average triangle participation ratio (TPR) of the largest
connected components is around 0.3. TPR counts the ratio of nodes that
belong to, at least, one triangle. This value is particularly large if we consider
that the category (as dominant type of node) graph in Wikipedia is a tree-like
structure6 and therefore triangles are not present. Furthermore, besides the
triangles, we also observe a significant presence of cycles of lengths two, four
and five.

The significant amount of cycles suggests that they play an important role
in maintaining the semantic relatedness among the nodes in the expansion
query graphs. Thus, we want to analyze them in detail to identify the way
their characteristics correlate with the quality of the expansion nodes they
consist of. We define a cycle C as a sequence of |C| nodes (either articles
or categories) starting and ending at the same node, with at least one edge
among each pair of consecutive nodes. |C| denotes the length of the cycle.
Note that this description allows a cycle C to contain a subcycle C ′ ⊂ C
(cycle within a cycle) of length |C ′| < |C|, as we do not enforce the cycles to
be cordless. In our definition, we do not consider the direction of the edges,
and we limit the length of the cycles to 5 as the cost of finding the cycles

6https://en.wikipedia.org/wiki/Help:Category

58

venice

cannaregio

(a)

venice

grand canal

palazzo bembo

(b)

venice

visitor attractions
 in venice

venice

bridge of
 sighs

(c)

Figure 5.3: Cycles of length 2 (a), 3 (b) and 4(c).

grows exponentially with the length of the cycle. Finally, we are interested in
those cycles containing at least one query node as we want to know how other
articles and categories relate to the original entities of the query.

Following the example of query #90 “gondola in venice”, in Figure 5.3 we show
an example of cycles of lengths 2, 3 and 4, that, due to the relations established
between their articles and categories, are capable of linking semantically related
concepts. In Figure 5.3a thanks to a cycle of length 2, the expansion node
"cannaregio" (i.e. the northernmost of the six historic districts of Venice,
whose main artery is the Cannaregio Canal, a gondola navigable canal) is
introduced to the expansion query graph. In Figure 5.3b, due to a cycle
of length 3, the expansion nodes "grand canal" and "palazzo bembo" are
introduced, and "bridge of sighs" is an expansion node introduced by
a cycle of length 4, as shown in Figure 5.3c. All these expansion nodes
are describing popular attractions in Venice and likely to be surrounded by
gondolas7. These observations regarding the properties of cycles are worthy of
further analysis.

We build a query using the titles of the articles in the cycles as expansion
features and use it to evaluate the quality of the expansion nodes. In Table 5.4
we summarize the results. Broadly speaking, the precision achieved by the
different configurations are comparable to the best results obtained in the Image
CLEF 2011 conference [55]. However, the current results of the conference
were achieved by using a visual and textual hybrid search engine and also using

7A quick search of these expansion features in Google Images confirms this statement.

59

Cycle Size Top 1 Top 5 Top 10 Top 15

2 0.826 0.539 0.539 0.552
3 0.833 0.578 0.519 0.513
4 0.703 0.589 0.541 0.494
5 0.788 0.624 0.588 0.547
2 & 3 0.944 0.656 0.583 0.621
2 & 3 & 4 0.944 0.667 0.594 0.629
2 & 3 & 4 & 5 0.944 0.667 0.622 0.658

Table 5.4: Average precision of using expansion features of different configura-
tions of cycle lengths.

2 3 4 5
Cycle Length

0

10

20

30

40

50

60

5
0
.5
3
%

2
4
.3
8
%

3
2
.7
4
%

3
2
.3
1
%

(a) Contribution.

2 3 4 5
Cycle Length

0

20

40

60

80

100

120

140

160

(b) Number of cycles.

Figure 5.4: Average per cycle size.

relevance feedback techniques. This supports the idea that Wikipedia encodes
relevant information in its structure that can be used as source of expansion
features to expand satisfactorily queries from many different domains.

To better understand the contribution of cycles to the expansion query graph,
we use the definition in Equation 4.1 to define the contribution of a cycle C
for a query θ as the percentual difference between O(buildQuery(E(θ.k)), θ.D)
and O(buildQuery(E(θ.k), C), θ.D)8. In Figure 5.4a, we show the average

8When we use the cycle to build a query, we only use the title of its articles and we ignore
the categories because, as previously discussed, categories are useful to enrich the expansion
query graphs structure but articles describe precisely specific and unique concepts.

60

3 4 5
Cycle Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.366 0.375 0.382

(a) Average category ratio.

3 4 5
Cycle Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.289

0.36
0.333

(b) Average density of extra edges.

Figure 5.5: Characteristics of cycles of length 2, 3, 4 and 5.

contribution of cycles of different lengths. We observe that cycles of length 2
are able to achieve an average contribution of up to 50%, while those of in
larger cycles contribute 32.74% at most. This suggests that cycles of length 2
are capable of introducing to the expansion query graph significantly better
expansion nodes than the rest of the cycles. Therefore, we could be tempted
to deliberately add this type of cycle to expansion query graphs. However, to
better understand these results, we also count the average number of cycles
of each length, which are shown in Figure 5.4b. We observe that the amount
of cycles of length 2 is significantly smaller than larger cycles. This could be
caused either because a) Wikipedia graph does not contain a large amount
of such cycles or b) because the cycles of length 2 are not always reliable, as
otherwise they would appear more frequently in the expansion query graphs.
However, we counted that among the articles in Wikipedia, there are 11.47%
of them that are part of a cycle of length 2. Thus, this structure is not
so infrequent. Then, since the average amount of cycles of length 2 in the
expansion query graphs is less than 2, we must assume the hypothesis that
the cycles of length 2 that contribute significantly to the quality of the results
are scarce.

We calculate the ratio of categories with respect to the total number of nodes
in the cycles to understand the importance of this type of nodes. Note that,
due the schema depicted in Figure 1.1, only cycles whose length is equal or
larger to 3 can contain categories because a category can never link back to an

61

article. In Figure 5.5a, we see that among all analyzed cycles, the average ratio
of categories grows very slowly– the slope of the trend line is almost 0 – when
the length grows. Nonetheless, we observe that about a third of the nodes in
the cycles are categories. In more detail, the number of categories in cycles of
length 3 is in general 1 (3 · 0.366 ≈ 1), while the number of categories in cycles
of length 5 is, in general, 2 (5 · 0.382 ≈ 2). This suggests that categories play a
significant role in connecting semantically related articles. Actually, even short
cycles of length 3 that do not contain any category, as the one depicted in
Figure 5.6, may introduce semantically-distant terms as can be “sheep” from
“anthrax” that are likely to diminish the retrieval performance of a query.

sheep

quarantine

anthrax

Figure 5.6: Category-free cycle of length 3 connecting sheep and anthrax in
the Wikipedia graph.

Another relevant characteristic is the characterization of cycles based on the
density of extra edges (those extra edges beside those strictly necessary to
form a cycle). The minimum amount of edges of a cycle of length |C| is |C|,
thus we define the density of extra edges as the ratio between the extra edges
and the maximum amount of extra edges a cycle can have. Given the following
functions:

• A(C): returns the number of articles in the cycle,

• C(C): returns the number of categories in the cycle and

• L(C): returns the number of edges (links) in the cycle

we calculate the maximum amount of edges cycles of length larger than 3 as
follows:

62

0.2890.2890.289 0.380.380.38 0.2890.2890.289 0.380.380.380.3330.3330.3330.380.380.380.3330.3330.333 0.380.380.380.2890.2890.2890.380.380.380.3330.3330.333 0.2890.2890.2890.380.380.380.3330.3330.3330.2890.2890.289 0.380.380.380.3330.3330.333 0.2890.2890.2890.380.380.380.3330.3330.3330.2890.2890.289 0.380.380.380.3330.3330.3330.2890.2890.289 0.380.380.38 0.3330.3330.3330.2890.2890.289 0.380.380.380.3330.3330.3330.2890.2890.2890.2890.2890.289 0.380.380.380.2890.2890.2890.2890.2890.289 0.380.380.380.3330.3330.3330.380.380.380.3330.3330.3330.2890.2890.289 0.380.380.380.3330.3330.3330.380.380.38 0.3330.3330.333 0.2890.2890.2890.380.380.380.3330.3330.333 0.2890.2890.2890.380.380.380.3330.3330.333 0.2890.2890.2890.380.380.380.3330.3330.3330.2890.2890.2890.380.380.380.3330.3330.3330.2890.2890.2890.380.380.38 0.3330.3330.3330.2890.2890.289 0.380.380.380.3330.3330.333 0.2890.2890.2890.380.380.380.3330.3330.333 0.2890.2890.2890.380.380.380.3330.3330.333 0.2890.2890.289 0.380.380.380.3330.3330.3330.2890.2890.289 0.380.380.380.3330.3330.3330.2890.2890.2890.380.380.380.3330.3330.333 0.2890.2890.2890.380.380.380.3330.3330.3330.2890.2890.289 0.380.380.380.2890.2890.289 0.380.380.380.3330.3330.3330.2890.2890.289 0.2890.2890.2890.380.380.380.3330.3330.3330.2890.2890.289 0.380.380.380.3330.3330.3330.2890.2890.289 0.380.380.380.3330.3330.3330.2890.2890.289 0.2890.2890.289 0.380.380.380.3330.3330.3330.2890.2890.289 0.380.380.380.3330.3330.333 0.2890.2890.2890.380.380.380.3330.3330.3330.2890.2890.289 0.2890.2890.289 0.380.380.380.3330.3330.333 0.2890.2890.2890.380.380.380.3330.3330.3330.2890.2890.289 0.380.380.380.3330.3330.333 0.2890.2890.2890.380.380.380.3330.3330.3330

20

40

0.00 0.25 0.50 0.75 1.00

Density of Extra Edges

A
ve

ra
g

e
 %

 C
o

n
tr

ib
u

ti
o

n

Figure 5.7: Average contribution per density of extra edges.

M(C) = A(C) · (A(C)− 1) +A(C) · C(C) · C(C) · (C(C)− 1)

2

and the density of extra edges is calculated as:

L(C)− |C|
M(C)− |C|

In Figure 5.7 we show the trend line of the density of extra edges compared to
the contribution of the cycle. We see that, the denser the cycle, the better
its contribution. This assertion is also supported by the information depicted
in Figure 5.4a and in Figure 5.5b. In particular, we observe that there is a
correlation between the cycles that are denser in Figure 5.5b and the cycles
that contribute more, depicted in Figure 5.4a. Thus, cycles of length 4 are the
densest and the ones that achieve the largest average contribution, and cycles
of length 3 are the least dense and also the ones that achieve the smallest
contribution.

5.2 Expansion Query Graph builder

The goal of this section is to identify a set of structural motifs that capture
the characteristics previously revealed. We want to use those structural motifs
to, given a set of query nodes calculate its expansion query graph in a way
that it has similar characteristics to those observed in the ground truth.

63

(a) Triangular motif. (b) Square motif.

Figure 5.8: Expansion motifs.

Summarizing the characteristics that let us differentiate good from bad cycles,
we consent that:

• Cycles of length 2 are not reliable.

• Cycles of length 3, 4 and 5 are to be trusted to reach articles that are
strongly related with the query nodes.

• Around a third of the nodes of cycles have to be categories. This ratio
is expected to increase beyond the cycles of length 5.

• The expansion features obtained through the articles of dense cycles are
capable of leading to better expansion nodes.

From these characteristics, we have hand-crafted the motifs depicted in Fig-
ure 5.8, which are based on cycles of length 3 and 4. Notice that we have
omitted cycles of length 5 for performance reasons. According to our tests,
calculating all the cycles of length 5 that a certain query node belongs to
expands too much the search space in Wikipedia. Thus, it makes it difficult
to calculate them in a reasonable time for the expansion processes. We have
hand-crafted the motifs to avoid any kind of interference that an automatic
process could potentially introduce. Nonetheless, it is part of the future work
of this thesis to address this problem and to study automatic processes that,

64

given a ground truth, proposes the structural motifs. The motif depicted
in Figure 5.8a is called, from now on, triangular motif, whereas the one
depicted in Figure 5.8b is called square motif. In the figures, square nodes
are categories, and round nodes are articles. Black round nodes are query
nodes, while white ones are expansion nodes, which have been selected because
they form a motif with the query nodes, and therefore, a node of the resulting
expansion query graph.

In the triangular motif, we force the query node to be doubly linked with the
expansion node. That means that the query node actually links, in Wikipedia,
to the article (i.e. the expansion node), and the article links, reciprocally, to
the query node. Moreover, the article must belong to, at least, the same exact
categories as the query node. In the square motif of Figure 5.8b, the query
node and the new article must be also doubly linked. However, compared to
the triangular motif, it is just required that at least one of the categories of
the query node is inside one of the categories of the expansion node, or vice
versa. Both patterns are chosen because these cycles fulfill the edge density
and ratio of categories. Notice that we maintain the characteristics regarding
the ratio categories by forcing, in the triangular motifs, that the expansion
node belongs, at least, to the same categories that the query node. In the
square node, we are more permissive and we force the category of the query
and the expansion node to be related. The edge density is also maintained
by the edges with the categories, but also, in both motifs we force the query
node and the expansion node to be doubly linked.

The simplicity yet efficiency of SQE consists in, given the query nodes as a
starting point, identify all the nodes of Wikipedia graph that are part of a
motif and add them to the expansion query graph as expansion nodes. In
Algorithm 3 we show this process. First, we obtain for each query node of
a particular query θ all the candidates to be part of a triangular or square
motif. These are those articles that are doubly linked with the query node, as
depicted in Algorithm 4, where by means of the operation neighbors traversing
the edge links (see Figure 1.1) we obtain all its connected articles. Then,
with the list of candidates, we check whether they satisfy the conditions to be
part of one (or both) of the motifs. For that, we need to obtain the categories
of an article, which is done by obtaining the neighbors using the belongs edge,
and the connected categories of a category using the inside edge. Notice that
the operation Neighbors can get the neighbors of a single node as in line 8 or

65

(a) Triangular motif on query #93. (b) Square motif on query #73.

Figure 5.9: Expansion motifs in action for Image CLEF.

of a set of nodes as in line 22. At the same time, while the motifs are being
traversed, we build a set of pairs P = < a, |ma| >i (lines 13 and 28), where a
is an article that has appeared among the expansion nodes, and |ma| is the
number of motifs in which it has appeared. Notice that the set is maintained
by P.add(), which adds an article a to the set and update its counter. Note
that the expansion query graphs can be calculated combining the triangular
and the square motifs.

In Figure 5.9a we show an example of a triangular motif that adds an article
to the expansion query graph of the Image CLEF query #93, whose query
is “cable cars”. Thanks to the motif, the article funicular, that is a similar
transport system, becomes a part of the expansion query graph. Similarly, in
Figure 5.9b, for query #73, whose query is “graffiti street art on walls”, the
square motif introduces in its expansion query graph the article Banksy, who
is a famous graffiti artist.

5.2.1 Combining Query Graphs

In Figure 5.10 we show a variation of the SQE pipeline consisting in combining
the set of results instead of combining the set of motifs. With this approach,
SQE builds n different expansion query graphs, and, thus, n expanded queries,
each from a different SQE configuration. Then each expanded query is used
by the search engine to retrieve the results, which are finally combined into a

66

Algorithm 3: Finding triangular and square motifs

Input: Query θ
Output: < PT ,PS >

1 < queryNode, candidates >← FindCandidates(θ);
2 PT ← TriangularMotif(< queryNode, candidates >);
3 PS ← SquareMotif({< queryNode, candidates >});
4 return < PT ,PS >
5 Function TriangularMotifs({< queryNode, candidates >})
6 PT ← {};
7 foreach < queryNode, candidates > in {< queryNode, candidates >}

do
8 queryNode categories← Neighbors(queryNode, belongs);
9 foreach a in candidates do

10 a categories← Neigbors(a, belongs);
11 if queryNode categories.IsSubsetOf(a categories) then
12 // a belong to, at least, the same categories as queryNode.

13 PT .Add(a);

14 end

15 end

16 end
17 return PT
18 Function SquareMotifs({< queryNode, candidates >})
19 PS ← {};
20 foreach < queryNode, candidates > in {< queryNode, candidates >}

do
21 queryNode categories← Neighbors(queryNode, belongs);
22 queryNode conCategories←

Neighbors(queryNode categories, inside);
23 foreach a in candidates do
24 a categories← Neighbors(a, belongs);
25 a conCategories← Neighbors(a categories, inside);
26 if queryNode conCategories.Intersection(a conCategories)

then
27 // the categories of queryNodes and a are connected somehow.

28 PS .Add(a);

29 end

30 end

31 end
32 return PS

67

Algorithm 4: Finding candidates

1 Function FindCandidates(θ)
2 resultSet← {};
3 foreach queryNode in L(θ.k) do
4 queryNode neighbors← neighbors(queryNode, links);
5 candidates← {};
6 foreach a in queryNode neighbors do
7 if neighbors(a, links).contains(queryNode) then
8 // queryNode and a are doubly linked.

9 candidates.add(a);

10 resultSet.Add(< queryNode, candidates >);

11 return resultSet

Figure 5.10: SQEC : Combining SQE results.

68

single set of results. In the case of Wikipedia, where we have identified two
motifs, we can use the triangular motif to build a query graph, and obtain a
first set of results, the square motif to build another query graph and obtain
second set of results and, finally, we can use both, triangular and square motifs,
to build a third query graph and obtain a third set of results, which would be
combined into a single one. Although in Chapter 6 we show in detail the proper
way of combining the results to maximize the performance overall analyzed
tops, we anticipate some results: the triangular motif allows achieving better
precision in small tops of results, up to five; while, the square motif allows
achieving precision in large tops of results.

5.3 Query Builder

We first introduce the retrieval model that our techniques follows, which is
based on a combination of the language modeling [45] and inference network [56].
The query likelihood model that we adopt is a factor between a multi-word
query θ.k, and a document d represented as a bag of words as P (θ.k|d) =∏
ti∈θ.k P (ti|d). The feature function used to match words (document features),

t to a document d is a Dirichlet smoothed probability: P (t|d) =
tft,d+µP (t|C)
|d|+µ ,

which generalizes to n-grams and unordered term proximity.

As shown in Query 5.1, we build the expanded query as a three-part combina-
tion: i) the user’s query (line 3), ii) the entities (line 5), and iii) among the
expansion nodes that are articles, their titles, which are the expansion features
(lines 8 & 11) of the expanded query. Titles of articles are taken as a n-gram
of consecutive terms for phrase matching (we use #1 to indicate so). In the
expanded query, the expansion features are weighted proportionally to the
number of motifs in which they have appeared. In other words, the expansion
feature coming from the title of the article a is weighted proportionally to |ma|.
Notice that this means that we are also exploiting the structural properties to
build the query.

We generalize the query model as:

69

01:#ca#combine(
02:#ca#combine(%user query
03:#ca#combine(#combine(graffiti street art on walls)
04:#ca#combine(%query nodes titles
05:#ca#combine(#combine(#1(graffiti) #1(street art))
06:#ca#combine(%expansion features
07:#ca#combine(#weight(
08:#ca#combine(#weight(5.0#1(stencil)aai5.0#1(yarn bombing)
09:#ca#combine(#weight(4.0#1(above (artist)) 3.0#1(banksy)
10:#ca#combine(#weight(3.0#1(john fekner)a3.0#1(urban art)
11:#ca#combine(#weight(3.0#1(public art) . . .
12:#ca#combine(#weight)
13:#ca#combine)

Query 5.1: Example of expanded query for ”graffiti street art on walls”. Weights
appear as scalar and are not normalized for convenience.

Q = combine(

θ.k

combine(∀entity ∈ E(θ.k) #1(entity))

weight(∀<a,|ma|> ∈ P Normalize(|ma|)#1(aT))

),

where aT , is the title of the article that has appeared as a node of the expansion
query graph of θ.

Chapter 6
Experiments

In this chapter, we show the results that we achieve by using SQE as expansion
strategy.

First, we explain the experimental set up that has to allow the experiments in
the coming section be reproducible. We have details on the search engine that
we use to conduct the experiments, the datasets that we use, the KB that we
exploit as source of expansion features and the evaluation of our system.

Summarizing the results, we show the results achieved by SQE are consistent
for three different datasets. SQE is capable of achieving more than 150%
improvement over non-expanded queries, also we validate the results with
statistical significance analysis.

Moreover, we show that SQE is orthogonal to existing expansion methods,
and we combine it with pseudo-relevance feedback (PRF). We see that using
PRF not only does not improve the precision but it diminishes it, however,
if we combine it with SQE, we achieve 13% improvement over non-expanded
queries.

Finally, we test the performance of our technique, which shows us that the
expansion via the motifs is able to identify the expansion features in less than
0.2 seconds in the worst-case scenario, which are not a burden for the search
process.

71

72

6.1 Experimental Setup

In this section, we provide the details to reproduce the experiments regarding
the results and configuration of the system, as well as, the tools that we have
used. Experiments described in this thesis are implemented using Indri [52],
an open source search engine. The structured query language supports exact
matching, phrases, and proximity matches needed for our retrieval models.

6.1.1 Entity Linker

The tools that we use to identify the concepts mentioned in a query and to
link them with a Wikipedia articles, i.e. to find the entities in the query,
are both Dexter [12] and Alchemy [1]. Dexter is an open source project that
actually recognizes entities in a given text and links them with Wikipedia
articles. Only if Dexter is not able to find any matching entry, we preprocess
the text using Alchemy [62], which identifies concepts but does not link them
with Wikipedia.

According to our experiments, the combination of both Dexter and Alchemy
achieves more than 80% precision in identifying and disambiguating the queries
entities. Notice that, in case of not returning entities, whose entities are used
as the query nodes in the overall expansion process, the system cannot build
the expansion query graph. In this situation, as described in Section 5.3, the
expanded query would be built using only the keywords from the original user
query, θ.k.

6.1.2 Datasets

The dataset that we have used to design SQE is Image CLEF, which we have
used and described in Section 3.2.6.

The datasets that we have used to evaluate SQE and to guarantee that is not
overfitted for Image CLEF are CHiC 2012 & CHiC 2013. These datasets
are based on cultural heritage retrieval. Both datasets shared the collection of
results, which contains 1,107,176 short documents.

73

Each of the three datasets provides a set of fifty requests (total 150) and their
corresponding valid results. Results are shown for the three datasets to avoid
overfitting mistrusts regarding the training set.

6.1.3 Wikipedia Dump & Graph Database

We use the English Wikipedia dump of July 2nd, 2012 as our KB. It has
4,133,000 articles and 99,675,360 links among articles, 1,320,671 categories,
3,795,869 links among categories and 41,490,074 links among articles and
categories.

To load and traverse the Wikipedia graph, we use Sparksee [39], a graph
database manager system.

6.1.4 Evaluation

To evaluate the results, we use TrecEval, which is an official tool to evaluate
TREC results using the standard NIST evaluation procedure. This is possible
because CLEF datasets are TREC compatible. We focus on the analysis of
the system’s precision for the default tops in TrecEval. We use the precision
as our default metric since we are simulating a classical search engine. Users
usually prioritize precision over recall.

To show the statistical significance with p<0,05, we have done the paired
t-test, which is used to compare two population means, usually in ’before-after’
studies. For the tests, we have used as the ’before’ the best results achieved
by either the user’s query, the query entities, or the combination of both the
query and its entities.

6.2 Results

We use the query likelihood (QL) model as state-of-the-art retrieval baseline
and compare our technique (SQE) with the user’s query keywords (QLθ.k), the
query entities (QLE(θ.k)) and the expansion features (QLX). In subsection 6.2.1
we use our training set, Image CLEF, to configure SQE. In subsection 6.2.2 we
evaluate it with the two extra datasets and we ascertain that the improvements
are consistent. In subsection 6.2.3 we compare SQE with a state-of-the-

74

P@5 P@10 P @15 P@20 P@30 P@100 P@200 P@500 P@1000

QLθ.k 0.136 0.130 0.121 0.112 0.089 0.035 0.018 0.007 0.003

QLE(θ.k) 0.248 0.226 0.220 0.213 0.197 0.125 0.077 0.038 0.020

QLθ.k&E(θ.k) 0.244 0.220 0.213 0.210 0.195 0.127 0.081 0.040 0.021

CQE 0.433 0.416 0.332 0.303 0.251 0.131 0.101 0.020 0.007

SQET 0.456† 0.402† 0.384† 0.349† 0.282† 0.147† 0.086† 0.040† 0.020†
SQET&S 0.448† 0.414† 0.400† 0.379† 0.315† 0.171† 0.102† 0.048† 0.025†
SQES 0.444† 0.402† 0.387† 0.362† 0.301† 0.164† 0.104† 0.051† 0.027†
SQEUB 0.578 0.519 0.494 0.485 0.382 0.188 0.117 0.054 0.028

Table 6.1: Precision obtained by different configurations at different levels
of precision. † indicates statistically significant improvement for the Image
CLEF dataset.

art expansion technique. In subsection 6.2.4 we give details about SQE’s
performance in terms of computing time.

6.2.1 SQE Configuration

We use SQE to expand the queries from the Image CLEF query set and we
use them to retrieve the documents. We calculate, using these documents, the
precision achieved by the system. We compare it with the precision achieved
by different configurations of the system. In more detail, we compare it with
QLθ.k, QLE(θ.k) and QLθ.k&E(θ.k) (which combines the user’s query and the
query entities) with SQE when only the triangular motif is used, SQET , when
only the square motif is used, SQES and when the combination of both motifs
is used to create query graphs, SQET&S . The expanded queries resulting of
SQET , SQES and SQET&S differentiate from each other on the expansion
query graphs that they build (see Figure 5.1). Also, we show the results
achieved when the ground truth is used as upper bound, SQEUB. Notice
that we have used Image CLEF because we have its ground truth. For these
experiments, we select manually the query entities to avoid any interference
that could be introduced due to the errors of the entity linker.

In Table 6.1, we see that the SQET , SQET&S and SQES improve, with
statistical significance, the precision achieved by any of the baselines (QLθ.k,
QLE(q.‖)(q.k) and QLθ.k&E(θ.k)) for all tested levels of precision. This means
that the achieved improvement is due to the introduction of the expansion
features, and not only due to the query entities. Also, SQE is capable of

75

P@
5

P@
10

P@
15

P@
20

P@
30

P@
10
0

P@
20
0

P@
50
0

P@
10
00

0

20

40

60

80
SQET
SQET&S
SQES

Figure 6.1: Percentage improvement over the maximum of QLθ.k, QLE(θ.k)

and QLθ.k&E(θ.k).

outperforming for all the tested tops but one (P@10) the results achieved
by CQE. This shows that SQE, which is specially designed for KB, and
particularly in this case of Wikipedia, benefits more than CQE from the KB
structure. We also see that the results achieved by SQE represent, in the
worst-case scenario (SQES , P@20 - 0.362), the 71.41% of the upper bound
results (SQEUB, P@20 - 0.485). In average, this percentage is 85.86%, which
means that the proposed query expansion strategy is close to the results
achieved by the upper bound. Notice that the results achieved by SQEUB

are obtained thanks to the use of ground truth query graphs which contain
the expansion nodes that allow achieving the highest precision. On the other
hand, the results achieved by SQET , SQET&S and SQES traverse blindly
the whole Wikipedia graph using the described motifs to create the query
graphs. For example, all those articles that appeared in the ground truth
expansion query graphs that did not belong to the same connected component
as the query nodes will not appear in the calculated query graphs, since the
structural motifs select articles linked with the query nodes. Thus, it is to be
expected that the created query graphs and the ground truth query graphs
are not equal and, hence, the difference among the achieved precision.

76

In Figure 6.1 we show the percentage improvement of the previously studied
configurations of SQE with respect to the best result achieved by either QLθ.k,
QLE(θ.k) and QLθ.k&E(θ.k). We observe that the improvement diminishes as
the size of the top increases. To understand this behavior, we need to look at
the average number of correct documents per query, which is 68.8. Hence, it is
difficult to improve the precision when the amount of retrieved documents is
much larger than the amount of actually valid documents. A deeper analysis
of these configurations reveals three different ranges, depending on the query
expansion configuration that achieves the best results. The first range which
includes the first five results, up to P@5, the second range that goes from P@5
to P@100 and the third range from P@100 to P@1000.

Range P@1-P@5: SQET , SQET&S and SQES achieve an improvement
around the 80%. However, the one that achieves the best results is SQET ,
whose query graph is created only by means of triangular motifs. According
to our results, this configuration introduces 0,76 articles in the query graph
per user query. This means that this type of motif is very restrictive – given a
query node it is difficult to find other articles that are related to it through this
type motif –, but very trustful. The introduction of the expansion features via
the triangular motifs allows the system to achieve an improvement of 83.87%.
However, since there are just a few expansion features, the expanded query
is not very different from the user’s query, and the improvement decreases
quickly as we look at larger tops.

Range P@5-P@100: The best results are achieved by the SQET&S The
improvement goes from 83.85% to 34.22%. The combination of both triangular
and square motifs introduces in average 20.96 expansion features per query.
The introduction of the expansion features that are obtained through the
square motif, allow the system to introduce expansion features that are not
as close to the original query but still tightly related and useful for larger
tops. However, the fact that these expansion features are combined with those
introduced by the triangular motifs makes this configuration the best for this
range in the middle between very small tops (P@5) and larger ones (from
P@100 to P@1000).

Range P@100-P@1000: We see that the configuration that allows achieving
the best results for this range is SQES which allows an improvement from

77

Figure 6.2: Combined structural query expansion configuration.

27.99% to 33.30%. This configuration introduces, in average, 20.48 expansion
features per query. The fact that these expansion features are not so tied to
the original query issued by the user enables to retrieve documents that were
not selected by the other configurations.

From the observed ranges, we can now configure SQE as in using the variation
depicted in Figure 5.10. We build SQEC combining the results achieved by the
executions of SQET , SQET&S and SQES in a way that the first five results
come from SQET , the next 95 results come from SQET&S and the rest of the
results, up to 1000, come from SQES , as depicted in Figure 6.2.

6.2.2 SQE Evaluation

Now we evaluate SQEC with the aforementioned configuration. We use three
datasets, the one used as training set, Image CLEF, and the two evalua-
tion datasets, CHiC 2012 and 2013 to test whether the results are consistent
among the three of them. Particularly, in Figure 6.3 we show the percentage
improvement achieved by SQE over the best execution for each top using
QLθ.k, QLE(θ.k) and QLθ.k&E(θ.k) configurations. Also, we show the percent-
age improvement of using only the expansion features (QLX). Notice that
SQEC (M) selects manually the query entities, whereas in SQEC (A) they
are selected automatically by the entity linker described in subsection 6.1.1. In
Figure 6.3, we see that for the three datasets using exclusively the expansion
features is not useful to improve the precision of the system, but it dimin-

78

ishes the quality of the results. That supports the idea of assembling the
expanded query as described in subsection 5.3, which consists in using i) the
original query issued by the users, ii) the query entities and iii) the expansion
features. Expansion processes, also SQE, have many critical points in which
errors can be introduced. Take, for example, the first step of the process in
which the user’s query is “translated” into a set of query nodes. If this step
introduces an error, as minimal it is, it will propagate through the pipeline
and is to be expected that the overall expansion process will end up adding
wrong expansion features. Using the original query to build the expanded
query helps diminishing the effect that undesirable errors could introduce and
also reinforces the expansion features, if no error has taken place. This is a
common strategy that many expansion techniques have used before [17,40].
Similarly, using the titles of the query nodes articles, the entities, reinforces
the user’s query removing all signs of ambiguity from the user’s intent, whereas
the expansion features introduce concepts that are helpful to overcome the
classical problems of information retrieval.

Regarding the improvement achieved by SQE, which is depicted as SQEC (M)
and SQEC (A), we observe that it improves the results significantly for all
datasets. We also observe that there are differences between selecting the
entities manually or automatically. The manual entity selection is almost an
upper bound of SQE because it isolates the creation of the query graphs from
errors that could be introduced due to the entity linking module. Nonethe-
less, we observe that in the worst-case scenario (Image CLEF, P@5), the
improvement achieved by SQEC (A) represents 81.89% of the result achieved
by SQEC (M)1. As shown in Figure 6.3c, there is also a difference between
the results achieved by SQEC (M) and SQEC (A) for the larger tops, while
in small tops is imperceptible. It is difficult to explain why in Image CLEF
and CHiC 2012 the difference is noticeable in small tops, while in CHiC 2013
it is noticeable in larger tops. The simplest explanation is that since the query
sets are different, it is difficult to expect the same behavior. Another reason
may be that, although similar efforts have been made to select manually the
entities, those of the CHiC 2013 dataset could not be as precise as the ones in
Image CLEF and CHiC 2012. Entity linking is not the focus of this thesis,
however, improving the current entity linking techniques used in our system

1This percentage can be calculated using the results shown in Table 6.2a:
(0.380/0.248)/(0.464/0.248).

79

P@
5

P@
10

P@
15

P@
20

P@
30

P@
10

0

P@
20

0

P@
50

0

P@
10

00
−100

−50

0

50

100

150

200
SQEC (M)

SQEC (A)

expansion features

(a) Image CLEF

P@
5

P@
10

P@
15

P@
20

P@
30

P@
10

0

P@
20

0

P@
50

0

P@
10

00
−100

−50

0

50

100

150

200
SQEC (M)

SQEC (A)

expansion features

(b) CHiC 2012

P@
5

P@
10

P@
15

P@
20

P@
30

P@
10

0

P@
20

0

P@
50

0

P@
10

00
−100

−50

0

50

100

150

200
SQEC (M)

SQEC (A)

expansion features

(c) CHiC 2013

Figure 6.3: Percentage improvement of the query expansions selecting the
entities manually SQEC (M) and automatically SQEC (A) and also of the
expansion features isolatedly.

would improve the results, making it possible to achieve the results of selecting
manually the entities and the query nodes.

In Tables 6.2a, 6.2b and 6.2c, we show the precision achieved for the three
datasets. In particular, we show the results achieved by our baselines, the
expansion features and SQE (selecting the query entities manually (M) and
automatically (A)). The results show that both SQEC (M) and SQEC (A)
present statistically significant improvements with respect to the baselines for
the three datasets (p < 0.05).

Now, in order to better understand SQEC we compare it with SQET , SQET&S

and SQES . For the purpose, we look at the results achieved for the Image

80

P@5 P@10 P @15 P@20 P @30 P@100 P@200 P@500 P@1000

QLθ.k 0.136 0.130 0.121 0.112 0.089 0.035 0.018 0.007 0.003

QLE(θ.k) (M) 0.248 0.226 0.220 0.213 0.197 0.125 0.077 0.038 0.020

QLE(θ.k) (A) 0.156 0.134 0.145 0.147 0.137 0.107 0.069 0.035 0.022

QLθ.k&E(θ.k) (M) 0.244 0.220 0.213 0.210 0.195 0.127 0.081 0.040 0.021

QLθ.k&E(θ.k) (A) 0.148 0.124 0.133 0.138 0.133 0.107 0.069 0.035 0.022

QLX 0.216 0.172 0.147 0.137 0.129 0.069 0.045 0.023 0.013

SQEC (M) 0.464† 0.432† 0.393† 0.371† 0.313† 0.165† 0.102† 0.050† 0.027†
SQEC (A) 0.380† 0.378† 0.347† 0.321† 0.286† 0.155† 0.100† 0.052† 0.029†

(a) Image CLEF results.

P@5 P@10 P @15 P@20 P @30 P@100 P@200 P@500 P@1000

QLθ.k 0.148 0.100 0.084 0.077 0.074 0.034 0.018 0.007 0.004

QLE(θ.k) (M) 0.156 0.118 0.108 0.101 0.093 0.042 0.023 0.010 0.005

QLE(θ.k) (A) 0.100 0.072 0.067 0.061 0.053 0.021 0.011 0.007 0.004

QLθ.k&E(θ.k) (M) 0.168 0.124 0.113 0.106 0.097 0.044 0.023 0.010 0.005

QLθ.k&E(θ.k) (A) 0.116 0.086 0.076 0.068 0.057 0.022 0.012 0.007 0.004

QLX 0.000 0.000 0.000 0.000 0.007 0.011 0.010 0.006 0.005

SQEC (M) 0.280† 0.230† 0.196† 0.169† 0.141† 0.067† 0.038† 0.020† 0.013†
SQEC (A) 0.232† 0.206† 0.181† 0.168† 0.139† 0.061† 0.035† 0.019† 0.013†

(b) CHiC 2012 results.

P@5 P@10 P @15 P@20 P @30 P@100 P@200 P@500 P@1000

QLθ.k 0.160 0.110 0.101 0.092 0.084 0.045 0.028 0.011 0.006

QLE(θ.k) (M) 0.132 0.110 0.119 0.115 0.104 0.054 0.035 0.016 0.009

QLE(θ.k) (A) 0.104 0.078 0.076 0.065 0.058 0.034 0.026 0.015 0.008

QLθ.k&E(θ.k) (M) 0.132 0.110 0.119 0.119 0.110 0.056 0.036 0.017 0.009

QLθ.k&E(θ.k) (A) 0.104 0.082 0.080 0.071 0.062 0.035 0.026 0.015 0.008

QLX 0.052 0.036 0.035 0.032 0.028 0.015 0.011 0.006 0.004

SQEC (M) 0.308† 0.250† 0.224† 0.203† 0.176† 0.103† 0.062† 0.030 0.020†
SQEC (A) 0.304† 0.250† 0.219† 0.202† 0.172† 0.090† 0.053† 0.026† 0.017†

(c) CHiC 2013 results.

Table 6.2: Comparison of the precision achieved in the datasets. † indicates
statistically significant improvement.

CLEF dataset in Table 6.2a and Table 6.1. We see that the precision achieved
by SQEC not only overcomes the baselines, but it also improves the results
achieved by SQET , SQET&S and SQES in their best range. Since the list of
results contains no duplicates, if a result has previously appeared we do not
add it again. This transformation of the results achieved by each configuration

81

used SQEC favors the precision achieving even better results that using them
isolatedly.

Now, looking at SQEC (A) we also observe differences among the results for
the three datasets. A superficial analysis could induce us to think that it
performs better for the Image CLEF collection because the precision achieved
with this dataset goes from 0.380 (P@5) to 0.029 (P@1000), while for CHiC
2012 and 2013 it goes from 0.232 to 0.013 and from 0.304 to 0.017 respectively.
It could also induce us to think this could be due to an overfitting of SQE for
Image CLEF, since it is the training dataset. However, there are objective
facts that explain this behavior. First, the document collection of Image CLEF
consists of 237,434 documents, while the document collection of the CHiC
datasets has 1,107,176. This makes Image CLEF an easier dataset. Moreover,
Image CLEF has an average of 68.8 correct results per query, while CHiC
2012 and CHiC 2013 have 31.32 and 50.6 respectively. In addition, all the
queries in Image CLEF have at least 1 correct result, while in CHiC 2012
there are 14 queries (out of 50) that do not have any correct results and in
CHiC 2013 there is 1 query without any correct result. From an absolute
value perspective, it is easier for the system to achieve good results in terms
of precision, when most of the queries have valid results, and even easier if
there is a large number of results. Hence, the highest precision is achieved for
the Image CLEF collection, then comes CHiC 2013 and finally, CHiC 2012.
Moreover, although from an absolute value point of view (see Table 6.2) it may
appear that our system works better for Image CLEF, from a relative value
point of view (see Figure 6.3) we observe that the percentage improvement for
the three datasets is equivalent, and even better for the CHiC 2013 dataset.
This shows the consistency of our approach despite of the use of Image CLEF
as training set as it improves also the results for the datasets that have never
been used in the design of the ground truth its later analysis nor the proposal
of the structural motifs.

6.2.3 Pseudo-Relevance Feedback comparison

Now we compare SQE with pseudo-relevance feedback (PRF), a state-of-the-art
expansion model which extract the expansion features from the top documents
retrieved by the query. The used pseudo-relevance feedback technique is an
adaptation of Lavrenko’s relevance model [34]. In this model, the original

82

P@5 %G P@10 %G P@15 %G P@20 %G P@30 %G

PRFθ.k 0.000 -100 0.000 -100 0.000 -100 0.001 -99.11 0.000 -99.22

PRFE(θ.k) 0.004 -97.44 0.004 -91.01 0.004 -97.25 0.003 -97.96 0.002 -98.54

PRFθ.k&E(θ.k) 0.004 -97.30 0.002 -98.39 0.003 -97.98 0.003 -97.83 0.003 -97.96

SQEC/
PRF

0.432 +13.68 0.370 -2.12 0.348 +0.39 0.323 +0.62 0.289 +1.15

(a) Image CLEF results.

P@5 %G P@10 %G P@15 %G P@20 %G P@30 %G

PRFθ.k 0.000 -100 0.002 -98.00 0.001 -98.45 0.001 -98.70 0.000 -99.22

PRFE(θ.k) 0.000 -100 0.008 -88.89 0.004 -92.05 0.005 -91.80 0.005 -98.54

PRFθ.k&E(θ.k) 0.000 -100 0.004 -95.35 0.003 -96.45 0.002 -97.06 0.001 -97.96

SQEC/
PRF

0.244 +5.17 0.218 +5.83 0.193 +6.60 0.173 +2.98 0.145 +3.85

(b) CHiC 2012 results.

P@5 %G P@10 %G P@15 %G P@20 %G P@30 %G

PRFθ.k 0.000 -100 0.004 -96.36 0.004 -96.05 0.003 -96.74 0.003 -96.07

PRFE(θ.k) 0.000 -100 0.008 -89.74 0.007 -91.18 0.008 -87.69 0.007 -88.45

PRFθ.k&E(θ.k) 0.004 -96.15 0.006 -92.68 0.005 -93.38 0.006 -91.55 0.005 -91.45

SQEC/
PRF

0.288 -5.26 0.264 +5.60 0.237 +8.52 0.220 +8.91 0.193 +12.39

(c) CHiC 2013 results.

Table 6.3: Precision achieved using PRF. “%G” stands for percentage gain
with respect to precision in Table 6.2

query keywords θ.k is used to retrieve a ranked list of documents d ordered by
P (θ.k|d) and sort their concepts by P (w|θ.k) to keep top n concepts, which
are the expansion features. Then, it combines the original query with the
expansion features. The relevance model, P (w|θ.k), is computed as:

P (w|θ.k) =

∑
d P (w|d)P (θ.k|d)P (d)

P (θ.k)

For the three datasets, in Table 6.3 we show the results achieved using PRF
with the user’s query (PRFθ.k), with the query entities (PRFE(θ.k)) and both
(PRFθ.k&E(θ.k)). We also show the percentage gain with respect to the QLθ.k,
QLE(θ.k) and QLθ.k&E(θ.k) runs in Table 6.2. The achieved results show that
this expansion technique is not particularly useful to improve the precision in
any of the analyzed tops for the tested collections. On the contrary, PRF seems
to worsen the results. Although PRF has proven to be a useful expansion
model allowing to achieve relevant improvements for many queries, it does not

83

allow identifying good expansion features for the tested datasets. Also, we
show, for the three datasets, the results achieved by combining SQE with PRF.
In this case, SQE is used to generate a query, then this query is used by PRF
as previously described to reformulate the query and retrieve the documents.
We observe that in most of the analyzed tops the combination of PRF with
SQE allows improving the results shown previously in Table 6.2. Although
we show the percentage gain of using SQEC in combination of PRF with
respect to SQEC which is up to 13.68% (Image CLEF P@5), the improvement
over the best result of the baseline in Table 6.2 by choosing automatically the
entities is up to 221% (CHiC 2013 P@10 –0.264– with respect to Table 6.2
QLθ.k&E(θ.k) –0.082–).

Notice that although PRF techniques are not capable of improving the re-
sults of non-expanded queries of our datasets, it uses and benefits from the
SQE expansion. Actually, SQE is designed to be orthogonal to many other
techniques some of them reviewed in Chapter 2.

6.2.4 SQE Performance

Even though it is not the main concern of this thesis to address possible
bottlenecks that might prevent SQE to be applied in a practical context, we
show that it incurs in a negligible overhead. For these experiments, we have
used an Intel Xeon CPU E5-2609 with 128GB of RAM. Note that we have
not used any technique, such as indexing or exploiting parallelism, to speed
up the process. In Figure 6.4 we show the time spent generating the query
graphs by means of using the described motifs: the triangular, the square and
the combination of both. Also, to provide some sense of reference, we show
the average linking time, which is the time to identify the entities within the
user’s query and link them with nodes of the Wikipedia graph, and the average
running time, which is the time to retrieve the documents using the expanded
query. Notice that the total query expansion time is negligible compared
with the whole process. In the worst-case scenario, which is the Image CLEF
dataset, the time spent building the three query graphs represents 14% of the
total, while in the two other datasets this only represents 4%. Also, from the
absolute point of view, the maximum amount of time spent building the query
graphs, 358.23 ms. (74.09 + 178.20 + 105.94) for the CHiC 2012 collection, is
not burden for a real-time system, which would require to improve the entity

84

Image Clef CHiC 2012 CHiC 2013
Running Query 974.74 8321.62 4917.32
Query Graph SQE S. 52.42 105.94 69.18
Query Graph SQE T. & S. 94.12 178.20 119.84
Query Graph SQE T. 47.06 74.02 51.80
Entity Linking 205.04 227.98 203.20

Total Time 1373.38 8907.76 5361.34

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

m
ill

is
e

co
n

d
s

Figure 6.4: Execution time in milliseconds.

linking and query execution times. Moreover, this time would probably be
easily reduced by parallelizing the expansion process, which would reduce
the expansion process time to the maximum of the expansions times, instead
of the aggregation. Although we do not want to analyze the running time,
because it is carried out by an external library, we observe that it is correlated
with the complexity of the query. According to our results the average number
of expansion features for the queries of Image CLEF, CHiC 2012 and CHiC
2013 are 26.7, 46.06 and 33.52 respectively, which is correlated with the time
spent running the query.

Chapter 7
Qeast:

A Query Rewriting Service powered
by Wikipedia Graph Structure

In this chapter, we present a real use-case that we have developed as a result
of this thesis research. Qeast is a project that has been granted by the
EU commission and Tetracom initiative, which aim at boosting European
academia-to-industry transfer in all domains of computing science.

Nowadays, all the institutions, most of large and small business and many
people have their own websites, as it has become one of the most common
ways to disseminate information. However, due to the classical problems of
information retrieval, the process of searching for information in each of those
sites can be a tedious task for users who often obtain a “No results found”
message.

Qeast is a query rewriting service that specializes its expansions for each
particular website. It uses Wikipedia as a generic knowledge base (KB) out of
which it derives a website-specific knowledge base (WS-KB), the structure of
which is exploited to identify strongly related concepts that are good candidates
to be used as expansion features.

85

86

7.1 Qeast Overview

The main goal of Qeast is to improve the search experience of users, offering
a query rewriting service in the cloud that is based on Wikipedia and really
easy for webmasters to integrate it in their sites.

Qeast specializes its expansions for each site as opposed to general query
rewriting techniques, which offer generic solutions independently of the website
topic and vocabulary. For that purpose, Qeast analyzes each website and uses
Wikipedia to identify its entities. It also identifies the way they are referred in
the website. Notice that the same entity can have several names, for example,
car, auto, automobile are alternative names for the same entity. We call the
entries that represent those entities that appear in website, website nodes
(in analogy with the query nodes), and their names (those that are used in
the website), appearing names.

Notice that search engines will only retrieve documents if the user’s query
matches any of the appearing names. To increase the hit rate of the search
engine, Qeast automatically builds a website-customized rewriting file that
allows translating the user queries into a set of appearing names. In order to
do that, Qeast follows two strategies: First, for each website entity, it finds
the rest of its names besides its appearing names. Second, for each website
node it finds a set of strongly related entries, so that, their names can be
translated into the appearing names of the website entity. To illustrate this
second strategy, imagine the scenario in which car is an appearing name, but
vehicle is not (i.e. there is no website page in which it appears). Since car
and vehicle are two strongly related entries, Qeast would translate the latter’s
name into the former’s in a way that the search engine could retrieve car-about
pages. In order to follow this strategy, Qeast uses Wikipedia to build, for
each website, a specific knowledge base (WS-KB). Then, the structure of the
WS-KB is analyzed to identify strongly related entities.

87

(a) User query: rooster.

(b) Qeast query: chicken.

Figure 7.1: Qeast in http://iamafoodblog.com.

As an example of Qeast capabilities, we have applied it to http://iamafoodblog.com.
We show two examples of Qeast rewriting a query for this site:

• Query 1 (Q1): Rooster
Qeast query: Chicken

• Query 2 (Q2):Sausage
Qeast query: Sausage, hot dog, chorizo, chinese sausage, sausage
roll, merguez,. . .

In Q1 the user is looking for posts that talk about roosters. However, the
website does not contain any post that uses that particular term, therefore, the
search engine returns a “No results found” message as depicted in Figure 7.1a.
Thanks to Qeast, the query is rewritten as chicken, which allows the search
engine to return 130 posts as shown in Figure 7.1b. This example shows
that Qeast is capable of overcoming the vocabulary mismatch problem. In
Q2, the user is looking for posts talking about sausages. Although there are
up to 31 posts that talk about sausages, the results can be improved if they
are combined with those obtained by more specific queries, such as hot dog,
chorizo, which is a Spanish sausage, and merguez, which is a typical sausage
from Maghreb, etc. This situation shows a scenario of topic inexperience that

88

Qeast is capable of overcoming by adding strongly related website appearing
names.

Notice that the use of Qeast is completely transparent for website users, who
are not conscious, in any case, of the system working for the particular website
they are querying. A user would simply introduce the query in a typical
search box, as the ones depicted in Figure 7.1, and the website would return
the results. Nonetheless, to make Qeast work properly, the webmaster has
to modify the website code of its site to integrate it. The modifications are
minor and consist in capturing the user’s query and sending it to Qeast via a
REST API. Once Qeast receives a query, it identifies its entities, accesses the
web-customized rewriting file, and returns the corresponding appearing names.
The result is in the form of a JSON text that contains 2 fields, the appearing
names that are explicitly in the user’s query, and the set of appearing names
that are introduced due to the analysis of its WS-KB. It is the responsibility
of the webmaster to use the names in the returned JSON to send the rewritten
query to the search engine.

In Snippet 7.1 we show a piece of the code that webmasters could use to capture
the user’s query and to send it to Qeast. The user’s query is the input of the
function. In line 3, Qeast is called by specifying its URL (enrichserver), the
website id (11346) and its password (pwd). Once the function returns the rewrit-
ten query, line 7, the expansion features (finalQuery.expansionFeatures)
are sent to the search engine, in line 7.

1 $scope.queryExpansion = function(input){
2 $http({ method:’GET’,
3 url: ’https://enrichserver/queryExpansion/11346/pwd’,
4 params: {query:input}}).then(
5 function successCallback(response){
6 $scope.finalQuery = response;
7 $scope.search($scope.finalQuery.expansionFeatures); });
8 }

Snippet 7.1: JavaScript function that calls Qeast.

89

Figure 7.2: Qeast architecture.

7.2 Qeast Architecture

In Figure 7.2 we schematically show the architecture behind Qeast. We
distinguish three main blocks, which consist in i) loading the Wikipedia graph,
ii) building the WS-KB and iii) analyzing it. In the rest of this section we
explain in detail each of these blocks.

7.2.1 Wikipedia Graph Load

The goal of this block is to load Wikipedia into a Graph Database Management
System (GDBMS) to easily exploit its structural properties. For that purpose,
we need to parse the Wikipedia dump to obtain i) article ids and titles, ii)
category ids and names, iii) article redirections, iv) links among articles, v)
links among categories and vi) links among articles and categories. For that
purpose, we have developed WikiParser 1, which is a tool that parses the
English Wikipedia to CSV. It requires i) pages-articles.xml, ii) page.sql and
iii) categorylinks.sql Wikipedia’s dump files to create 6 CSV files, each of
which contains the information previously described. Notice that since Qeast

1https://github.com/DAMA-UPC/WikiParser

90

(a) Triangular motif. (b) Square motif.

Figure 7.3: Expansion motifs.

is based on Wikipedia’s structural properties, the body of the articles is not
required.

Then, we use the files to load Wikipedia into Sparksee [39], which is a GDBMS
that allows performing complex operations efficiently. To load the data, we
discard all the relations with the hidden categories, which are a special kind of
categories that are concerned with the maintenance of Wikipedia, rather than
being part of the content of the encyclopedia. In our experience, the English
Wikipedia, without the body of the articles, loaded in Sparksee requires 11Gb
of disk.

This process is carried on whenever it is needed it, depending on the updates
of Wikipedia that affect its overall structure.

7.2.2 WS-KB Creation

This block consists in building the specific knowledge base for each site and
identifying its strongly related articles. Our current proposal consists in
building the WS-KB with the website nodes, their redirects 2, their linked
articles, their categories and the articles that belong to those categories. Note

2If the website node is a main article, we add all the redirects of this article, if it is a
redirect articles, we add the corresponding main article, and also all its redirects.

91

Figure 7.4: Qeast expansion index.

that we use the Wikipedia graph to identify the edges among the nodes and
add them into the WS-KB.

The process of building the WS-KB is done the first time a webmaster installs
Qeast and each time that he/she considers that it is required to modify the
web-customized rewriting file.

7.2.3 WS-KB Analysis

To identify the tightly linked articles in Wikipedia, we base our proposal on
the results described in Chapter 5. However, since we use the WS-KB instead
of the whole Wikipedia graph, we have empirically modified the motifs, which
we show in Figure 7.3. Specifically, we have modified the triangular motifs in
a way that, now, we do not require the expansion node to belong, at least, to
the same Categories that que website nodes.

Given a website node, Qeast identifies all its strongly related nodes as those
other articles that share, at least, one motif. This allows relating its appearing
names (which we annotated at the beginning of the process) represented by a
website node, with a set of articles, each of which have a title, and that may
have several redirect articles. The article and redirects titles are used as the
set of names recognized by Qeast and that are translated into the appearing
names. This constitutes the web-customized rewriting file.

Notice that in order to fulfill the performance requirements of a system like
Qeast, the access to the rewriting file must be done as fast as possible. In

92

Figure 7.4 we show the way that Qeast indexes the expansion features. On
the leftmost side of the figure, we see the WS-KB of a particular website.
Blue nodes represent website nodes, i.e. entries of the WS-KB that represent
concepts that appear in the website, which are e1, e2, e3, e4 and e5. Red
nodes and stripped-red nodes are expansion nodes that have been selected
because they are part of one of the motifs, i.e. e1, e2, e5, e40, e42. White
nodes are nodes of the WS-KB that are not website nor expansion nodes.
Finally, square nodes are categories. In order to index the information to be
accessible in real time, we create a structure that stores the titles from all the
recognized entries, i.e. website and expansion nodes and relate them with the
corresponding website nodes. For example, if Qeast gets a query containing
the entity corresponding to the entry e40, it will translate it to the entities
represented by e4. Notice that the structure required only to represent the
entities of the previous example, Q1 and Q2 would consist of 10 entities, 138
recognized names (all the names of these entities) and 7 appearing names.

The process of analyzing the WS-KB is done always after the WS-KB is
created, under webmaster’s demand.

Chapter 8
Conclusions and Future Work

In this thesis, we have reviewed the classical techniques for query expansion
that rely on KB’s structure to identify reliable expansion features. To the best
of our knowledge these techniques require to do some kind of pre-process, such
as using PRF, deriving a simulated query-log, etc.

As a proof of concept, we have borrowed WCC [48], a metric for community
detection in social networks, in order to build “communities” of expansion
nodes, out of which we extract the expansion features. Although this method
has proved useful to detect the correct expansion nodes, in order to build
an effective expansion query we have had to rely on linguistic techniques.
In more details, we had to derive a hierarchy from the communities rooted
on the entries that were linguistically more similar to the original keywords
(θ.k). Moreover, from a time-performance point of view, the proposal was
impracticable for real expansion feature that require real time answers.

In order to exploit the specific structural characteristics we have designed the
structural query expansion (SQE). SQE is a KB-adaptive expansion technique,
which consist of three main steps. First, it requires understanding the specific
KB that it uses as source of expansion features. For that purpose, we have
designed a methodology to reveal the specific structural characteristics of
the KB, which consist of creating a ground truth of expansion query graphs.
Second, it materializes these characteristics into a set of structural motifs,
which are used to relate the user’s queries with a set of semantically connected
entries from the KB with no need of semantic analysis. Third, it builds the

93

94

expanded query with the original query and the expansion features extracted
from the relevant entries.

In this thesis we have used Wikipedia as our KB because we believe that it
is the most relevant source of information due to the amount of up-to-date
content it has. From the analysis of the obtained ground truth, we have
observed that cycles play an important role. Actually, we have noticed that
cycles allow relating the query nodes with reliable expansion nodes. We have
isolated the cycles by its length in order understand the characteristics that
makes them reliable. From this analysis, we consent that the characteristics
that let us differentiate good from bad cycles are:

• Cycles of length 2 are not reliable.

• Cycles of length 3, 4 and 5 are to be trusted to reach articles that are
strongly related with the input nodes.

• Around a third of the nodes of cycles have to be categories. This ratio
is expected to increase beyond the cycles of length 5.

• The expansion features obtained through the articles of dense cycles are
capable of leading to better expansion nodes.

Then we have defined 2 different types of motifs: the triangular motif and the
square motif. In order to fulfill the previously characteristic regarding to the
length, these motifs are based on cycles of length 3 and 4. For performance
reasons, we have omitted cycles of length 5. We satisfy, the condition regarding
the categories by forcing in the triangular motifs that the expansion node
belongs, at least, to the same categories that the query node. In the square
node, we are more permissive and we force the category of the query and the
expansion node to be related. The edge density is also maintained by the
edges with the categories, but also, in both motifs we force the query node
and the expansion node to be doubly linked.

To evaluate SQE we have used three different datasets, Image CLEF, CHiC
2012 and CHiC 2013. The results achieved by SQE are consistent for the
three datasets ensuring that SQE is not overfitted for a particular one. From
the results, we see that the triangular motif is useful to improve the results

95

of small tops up to 83.87%, a combination of the triangular and the square
motifs improve the result in between small and large tops up to 33.30%, while
using the square motif exclusively improves the results of large tops up to
83.85%. Also, we have presented a way of combining several query graphs to
improve the most independently of the size of the top to be optimized.

SQE has been designed to show the potential of KBs’s structure to identify
reliable relevant expansion features. However, many search engines combine
several expansion techniques depending on the resources they handle. We have
designed it to be orthogonal with other expansion techniques with those that
also use KBs as source of expansion features but also other techniques that
fall into a different expansion family. This is true, not only by combining the
expansion features obtained by other techniques into a single query but also
integrating them in the process. For example, approaches as in [3] could be
integrated into SQE by weighting the edges in the motifs. However, the lack
of open source projects to compare us or to integrate with SQE has prevented
us from further testing.

Even though it is not the main concern of this thesis to address possible
bottlenecks that might prevent SQE to be applied in a practical context, we
showed that it incurs in a negligible overhead running in sub-second times.
We showed that the time spent generating the query graphs by means of using
the described motifs is negligible compared with the whole process, which
includes identifying the entities and retrieving the documents. In the worst-
case scenario, which is the Image CLEF dataset, the time spent building the
three query graphs represents 14% of the total, while in the two other datasets
this only represents 4%. Also, from the absolute point of view, the maximum
amount of time spent building the query graphs, 358.23 ms. for the CHiC
2012 collection, is not burden for a real-time system, which would require to
improve the entity linking and query execution times. This is specially relevant
because, to the best of our knowledge, current works found in the literature of
query expansion completely omit any kind of analysis performance, thus, it is
specially difficult to evaluate the capabilities of using them in real systems.

The quality of our results and the possibility of applying this research in a
real development environment has taken us to propose a Tetracom project
which have been granted by the EU to boost European academia-to-industry

96

transfer. As result of this, along with Sparsity Technologies 1 we have created
a commercial product and has allowed them to start a new commercial line.

8.1 Future Work

In this thesis, we have succeeded in identifying the proper motifs for Wikipedia,
however there are many KBs and probably each has its own relevant structures.
We need to expand our understanding of KBs, and study what other motifs
may be relevant for other KBs besides Wikipedia. For that purpose, we believe
that learning techniques would allow identifying such motifs automatically.
Also, we believe that learning algorithms will allow the system to decide which
structural motifs to apply depending on the nature and characteristics of the
user’s query, which is something that we have not studied. We believe that
using a classification similar to that proposed in [17] could lead SQE to achieve
better results.

Also, in order to expand the set of reachable expansion features, we want to
follow two different strategies. The first one requires using linguistic techniques
in order to, not only use the name of the entries as expansion features, but
also, if the entry has other kind of information, for example the body of the
articles in Wikipedia, select those terms that are more relevant for the query.
The second strategy is linking several KBs to increase the coverage. However,
searching and looking for relevant documents within multiple KBs in order
to improve the quality of the user query can be both rewarding and complex.
Rewarding in the sense that using multiple KBs can lead us to find the most
suited expansion features. And complex, because finding the most relevant
documents grows with the amount of data. This may arise into a situation
where many irrelevant documents are retrieved, while many relevant ones are
missed. Therefore, it is an upcoming challenge to develop a query expansion
system that uses multiple KB. This area of research is susceptible to take
advantage of Linked Data. Linked Data [23] is a set of new initiatives from the
European Union founded projects that aims at connecting multiple sources of
information.

Moreover, although SQE runs in sub-second times, using performance tech-
niques such as indexing the motifs, or using parallel techniques would speed up

1http://www.sparsity-technologies.com/

97

the process. Performance is something that we want to look at in our future
research, especially if we move towards linking multiple KBs.

Bibliography

[1] AlchemyAPITM . http://www.alchemyapi.com/. 72

[2] N. Aggarwal and P. Buitelaar. Query expansion using wikipedia and
dbpedia. In CLEF, 2012. 3

[3] J. Arguello, J. Elsas, J. Callan, and J. Carbonell. Document representation
and query expansion models for blog recommendation. In ICWSM, 2008.
3, 20, 95

[4] R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query recommendation
using query logs in search engines. In EDBT, pages 588–596, 2004. 16

[5] H. Bast, D. Majumdar, and I. Weber. Efficient interactive query expansion
with complete search. In CIKM, pages 857–860, 2007. 3, 18

[6] J. Bhogal, Andy MacFarlane, and P. Smith. A review of ontology based
query expansion. IPM, 43(4):866–886, 2007. 13

[7] S. Bird. NLTK: the natural language toolkit. In ACL, 2006. 2

[8] G. Buscher, A. Dengel, and L. Elst. Query expansion using gaze-based
feedback on the subdocument level. In SIGIR, pages 387–394, 2008. 15

[9] S. Büttcher, C. Clarke, and G. Cormack. Information retrieval: Imple-
menting and evaluating search engines. Mit Press, 2016. 1

[10] G. Cao, J. Nie, J. Gao, and S. Robertson. Selecting good expansion terms
for pseudo-relevance feedback. In SIGIR, pages 243–250, 2008. 2, 16

[11] C. Carpineto and G. Romano. A survey of automatic query expansion in
information retrieval. CSUR, 44(1):1, 2012. 2, 3, 12, 16

99

http://www.alchemyapi.com/

100

[12] D. Ceccarelli, C. Lucchese, S. Orlando, R. Perego, and S. Trani. Dexter:
an open source framework for entity linking. In ESAIR, pages 17–20,
2013. 72

[13] Y. Chang, I. Ounis, and M. Kim. Query reformulation using automatically
generated query concepts from a document space. IPM, 42(2):453–468,
2006. 16

[14] B. Croft and J. Lafferty. Language modeling for information retrieval,
volume 13. Springer Science & Business Media, 2013. 1

[15] C. Crouch and B. Yang. Experiments in automatic statistical thesaurus
construction. In SIGIR, pages 77–88, 1992. 3, 18

[16] H. Cui, J. Wen, J. Nie, and W. Ma. Query expansion by mining user logs.
TKDE, 15(4):829–839, 2003. 17

[17] J. Dalton, L. Dietz, and J. Allan. Entity query feature expansion using
knowledge base links. In SIGIR, pages 365–374, 2014. 20, 78, 96

[18] S. Dumais, E. Cutrell, J. Cadiz, G. Jancke, R. Sarin, and D. Robbins.
Stuff i’ve seen: A system for personal information retrieval and re-use.
SIGIR, 49(2):28–35, 2015. 1

[19] C. Dupont and C. Anderson. SearchWiki: make your own search, 2008.
15

[20] A. Edmunds and A. Morris. The problem of information overload in
business organisations: a review of the literature. IJM, 20(1):17–28, 2000.
11

[21] C. Fellbaum. A semantic network of english: The mother of all wordnets.
Computers and the Humanities, 32(2-3):209–220, 1998. 18

[22] L. Fitzpatrick and M. Dent. Automatic feedback using past queries:
Social searching? In SIGIR, pages 306–313, 1997. 16

[23] T. Heath and C. Bizer. Linked Data: Evolving the Web into a Global
Data Space. Synthesis Lectures on the Semantic Web. MCP, 2011. 3, 96

[24] J. Hu, G. Wang, F. Lochovsky, J. Sun, and Z. Chen. Understanding
user’s query intent with wikipedia. In WWW, pages 471–480, 2009. 3, 19

101

[25] C. Huang, L. Chien, and Y. Oyang. Relevant term suggestion in interactive
web search based on contextual information in query session logs. JASIST,
54(7):638–649, 2003. 16

[26] D. Hull. Stemming algorithms: a case study for detailed evaluation.
JASIS, 47(1):70–84, 1996. 13

[27] G. Jawaheer, M. Szomszor, and P. Kostkova. Characterisation of explicit
feedback in an online music recommendation service. In RecSys, pages
317–320, 2010. 2

[28] D. Jemielniak. Common knowledge?: An ethnography of Wikipedia. Stan-
ford University Press, 2014. 3

[29] R. Jones, B. Rey, O. Madani, and W. Greiner. Generating query substi-
tutions. In WWW, pages 387–396, 2006. 16

[30] D. Kelly and J. Teevan. Implicit feedback for inferring user preference: a
bibliography. SIGIR, 37(2):18–28, 2003. 2

[31] D. Kelly and J. Teevan. Implicit feedback for inferring user preference: a
bibliography. SIGIR Forum, 37(2):18–28, 2003. 15

[32] R. Krovetz. Viewing morphology as an inference process. AI, 118(1-
2):277–294, 2000. 13

[33] A. Lam and G. Jones. Applying summarization techniques for term
selection in relevance feedback. In SIGIR, pages 1–9, 2001. 16

[34] V. Lavrenko and W. Croft. Relevance-based language models. In SIGIR,
pages 120–127, 2001. 33, 81

[35] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. Mendes,
S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer. Dbpedia
- A large-scale, multilingual knowledge base extracted from wikipedia.
Semantic Web, 6(2):167–195, 2015. 3

[36] C. Li, N. Yan, S. Roy, L. Lisham, and G. Das. Facetedpedia: dynamic
generation of query-dependent faceted interfaces for wikipedia. In WWW,
pages 651–660, 2010. 20

102

[37] J. Lovins. Development of a stemming algorithm. MIT Information
Processing Group, Electronic Systems Laboratory, 1968. 13

[38] R. Mandala, T. Tokunaga, and H. Tanaka. Combining general hand-made
and automatically constructed thesauri for query expansion in information
retrieval. In IJCAI, pages 920–925, 1999. 13

[39] N. Mart́ınez-Bazan, M. Aguila-Lorente, V. Muntés-Mulero, D. Dominguez-
Sal, S. Gómez-Villamor, and J. Larriba-Pey. Efficient graph management
based on bitmap indices. In IDEAS, pages 110–119, 2012. 32, 73, 90

[40] D. Metzler and W. Croft. Combining the language model and inference
network approaches to retrieval. IPM, 40(5):735–750, 2004. 29, 33, 78

[41] D. Metzler, S. Dumais, and C. Meek. Similarity measures for short
segments of text. In AIR, pages 16–27. Springer, 2007. 1

[42] D. Milne, I. Witten, and D. Nichols. A knowledge-based search engine
powered by wikipedia. In CIKM, pages 445–454, 2007. 3, 19

[43] S. Newsam, B. Sumengen, and B. Manjunath. Category-based image
retrieval. In IP, volume 3, pages 596–599. IEEE, 2001. 15

[44] D. Oard and J. Kim. Modeling information content using observable
behavior. In ASIS, 2001. 15

[45] J. Ponte and W. Croft. A language modeling approach to information
retrieval. In SIGIR, pages 275–281, 1998. 68

[46] M. Porter. An algorithm for suffix stripping. Program, 14(3):130–137,
1980. 13

[47] J. Pound, A. Hudek, I. Ilyas, and G. Weddell. Interpreting keyword
queries over web knowledge bases. In CIKM, pages 305–314, 2012. 17

[48] A. Prat-Pérez, D. Dominguez, J. Brunat, and J. Larriba-Pey. Shaping
communities out of triangles. In CIKM, pages 1677–1681, 2012. 21, 26,
93

[49] Y. Qiu and H. Frei. Concept based query expansion. In SIGIR, pages
160–169, 1993. 3, 18

103

[50] G. Salton and M. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill Book Company, 1984. 18

[51] H. Schütze and J. Pedersen. A cooccurrence-based thesaurus and two
applications to information retrieval. IPM, 33(3):307–318, 1997. 3, 18

[52] T. Strohman, D. Metzler, H. Turtle, and W. Croft. Indri: A language
model-based search engine for complex queries. In ICOIA, volume 2,
pages 2–6, 2005. 72

[53] F. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic
knowledge. In WWW, pages 697–706, 2007. 3, 29

[54] J. Teevan, S. Dumais, and E. Horvitz. Personalizing search via automated
analysis of interests and activities. In SIGIR, pages 449–456, 2005. 15

[55] T. Tsikrika, A. Popescu, and J. Kludas. Overview of the wikipedia image
retrieval task at ImageClef. In CLEF, 2011. 58

[56] H. Turtle and W. Croft. Evaluation of an inference network-based retrieval
model. TIS, 9(3):187–222, 1991. 68

[57] H. Turtle, Y. Hegde, and S. Rowe. Yet another comparison of lucene and
indri performance. In SIGIR 2012 Workshop on Open Source Information
Retrieval, pages 64–67, 2012. 32

[58] S. van Dongen. Graph Clustering by Flow Simulation. PhD thesis,
University of Utrecht, The Netherlands, 2000. 3, 18

[59] E. Voorhees. Query expansion using lexical-semantic relations. In SIGIR,
1994. 14

[60] X. Wang, A. McCallum, and X. Wei. Topical n-grams: Phrase and topic
discovery, with an application to information retrieval. In ICDM, pages
697–702, 2007. 1

[61] R. White, I. Ruthven, and J. Jose. The use of implicit evidence for
relevance feedback in web retrieval. In ECIR, pages 93–109, 2002. 15

[62] D. Wolfram, A. Spink, B. Jansen, and T. Saracevic. Vox populi: The
public searching of the web. JASIST, pages 1073–1074, 2001. 72

104

[63] J. Xu and B. Croft. Query expansion using local and global document
analysis. In SIGIR, pages 4–11, 1996. 16

[64] Y. Xu, G. Jones, and B. Wang. Query dependent pseudo-relevance
feedback based on wikipedia. In SIGIR, pages 59–66, 2009. 15

[65] Z. Yin, M. Shokouhi, and N. Craswell. Query expansion using external
evidence. In ECIR, pages 362–374, 2009. 16

	Introduction
	Knowledge Bases
	Contributions

	Related Work
	Classical Query Expansion Techniques
	Knowledge Base techniques

	Community Query Expansion: Proof of Concept
	Community Query Expansion
	Community Query Expansion with Wikipedia
	Open challenges

	Understanding Knowledge Bases Graph Structure
	Building the expansion query graphs ground truth

	Structural Query Expansion with Wikipedia
	Wikipedia's Graph Structure Analysis
	Expansion Query Graph builder
	Query Builder

	Experiments
	Experimental Setup
	Results

	Qeast: A Query Rewriting Service powered by Wikipedia Graph Structure
	Qeast Overview
	Qeast Architecture

	Conclusions and Future Work
	Future Work

