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Abstract

The application of spectroscopic techniques is crucial for art historians and conservat-

ors who require knowledge of materials used in works of art (pigments, dyes, binders,

additives, ...) in particular instances. In this sense, the knowledge of pigments which

were in use on the ancient artists’ palettes is fundamental to preserve the art works.

In addition, this knowledge is important to determine correct conservation approaches,

to study degradation processes or authenticity-related issues. For instance, the proper

interpretation of molecular signatures from a vibrational spectroscopy gives valuable

information about the materials used by the artists. In this regard, the spectral iden-

tification is one of the essential interpretations to be performed, which is generally

carried out by visual comparison between the unknown spectra with an appropriate

database of reference spectra. This identification approach while being simple and

intuitive may turn out a complex task which usually requires an experienced analyst

and inevitably introduces an element of subjectivity linked to the intervention of the

investigator. Besides, these analyses can be limited due to interferences from other phe-

nomena like noises or admixtures. This task is further complicated when the spectra

are to be interpreted by a software system. Hence, the noise impact must be reduced to

have an effective identification and a robust strategy for processing multi-component

spectra needs to be implemented. Clearly, a fully-automated data processing system

for a reliable spectral interpretation is of practical interest.

Several automated methodologies were designed, developed and analysed in this

Ph.D. Thesis for the purposes of art works analysis through Raman spectroscopy.

In this sense, the usage of mathematical morphology together with p-spline fitting

demonstrated to be a consistent combination in the application of data enhancement

Raman spectra from artistic pigments. Besides, a generalised identification methodo-

logy to identify single- and multi- component spectra was developed. This identific-

ation method relies on automated spectral matching based on Principal Component

Analysis (PCA) and Independent Components Analysis (ICA), being computationally

efficient and conceptually simple. Moreover, a supervised classification methodology

to automatically distinguish between Raman spectra showing small differences was de-

veloped. According to predefined reference training sets, the classification method is
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able to classify unknown Raman spectra relying on PCA and Multiple Discriminant

Analysis (MDA). Both the identification and classification methodologies successfully

work using a single spectral observation for the unknown Raman spectra, with no user

intervention or previous knowledge of the analysed sample.

The designed, developed and analysed automated methodologies for noise filtering

and identification and classification of artistic pigments are integrated in a global sys-

tem for the automated data interpretation of spectra from art works analysis implemen-

ted in this Ph.D. Thesis, namely PigmentsLab. This software platform together with

the integrated methodologies can play a good auxiliary role in the analysts’ endpoint

interpretation, providing insight from the raw spectral measurements into pigments.

The system implementation provides an easy-to-use software platform and straightfor-

ward to update when new spectral data become available. The robust, reliable and

consistent results obtained on Raman spectra demonstrated the competitiveness of the

implemented data processing solutions. The system has great potential as an accurate

and practical method for the automated interpretation of Raman spectra for not only

pigment analysis, but essentially for any material group.
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Resum

L’aplicació de tècniques espectroscòpiques és crucial per als historiadors i conservadors

d’art que requereixen el coneixement dels materials utilitzats en obres d’art (pigments,

colorants, aglutinants, additius, ...) en casos particulars. En aquest sentit, el conei-

xement de l’ús dels diferents pigments en les paletes dels artistes és fonamental per

preservar les obres d’art. A més, aquest coneixement és important per determinar les

estratègies de conservació correctes, per estudiar els processos de degradació o pro-

blemes relacionats amb l’autenticitat de les obres d’art. Per exemple, la interpretació

adequada de les signatures moleculars d’una espectroscòpia vibracional proporciona

informació valuosa sobre els materials utilitzats pels artistes. En aquest sentit, la iden-

tificació espectral és una de les interpretacions essencials a realitzar, que generalment

es porta a terme mitjançant la comparació visual entre els espectres desconeguts amb

una base de dades adequada dels espectres de referència. Aquesta estratègia d’iden-

tificació, tot i ser senzilla i intüıtiva, pot resultar una tasca complexa que requereix

generalment d’un analista experimentat i inevitablement introdueix un element de sub-

jectivitat vinculat a la intervenció de l’investigador. A més, aquestes anàlisis poden

veure’s limitades a causa d’interferències d’altres fenòmens com ara soroll o barreges

de pigments. Aquesta tasca es complica encara més quan els espectres han de ser

interpretats per una computadora. Per tant, l’impacte del soroll ha de ser redüıt per

tenir una identificació eficaç, i una estratègia robusta per al processament d’espectres

de components múltiples ha de ser implementada. El desenvolupament d’un sistema de

processament de dades totalment automatitzat per a una interpretació espectral fiable

és d’evident interès pràctic.

Diverses metodologies automatitzades han estat dissenyades, desenvolupades i ana-

litzades en aquesta tesi doctoral, focalitzades en l’anàlisi d’art mitjançant l’espec-

troscòpia Raman. En aquest sentit, l’ús de morfologia matemàtica juntament amb

l’ajustament basat en p-splines va demostrar ser una combinació consistent en l’a-

plicació de millora de la qualitat d’espectres Raman de pigments art́ıstics. A més,

s’ha desenvolupat una metodologia d’identificació generalitzada per identificar els es-

pectres Raman composats tant d’un sol pigment com de múltiples pigments. Aquest

mètode d’identificació es basa en la cerca de coincidència espectral automatitzada basa-
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da en l’anàlisi per components principals (PCA) i l’anàlisi per components independents

(ICA), sent un mètode computacionalment eficient i conceptualment simple. D’altra

banda, s’ha desenvolupat una metodologia de classificació supervisada per distingir

automàticament entre espectres Raman que mostren petites diferències entre ells. A

partir dels conjunts de referència predefinits de dades d’entrenament, el mètode de

classificació és capaç de classificar els espectres Raman desconeguts mitjançant PCA

i l’anàlisi discriminant múltiple (MDA). Tant la metodologia d’identificació com la de

classificació funcionen correctament utilitzant només una sola observació espectral per

als espectres Raman desconeguts, sense intervenció de l’usuari ni el coneixement previ

de la mostra analitzada.

Les metodologies automatitzades dissenyades, desenvolupades i analitzades per al

filtrat de soroll i la identificació i la classificació de pigments art́ıstics estan integrades

en un sistema global per a la interpretació automatitzada de dades a partir d’espectres

mesurats en obres d’art què ha estat implementat en aquesta tesi doctoral, anomenat

PigmentsLab. Aquesta plataforma software juntament amb les metodologies inte-

grades pot tenir un bon paper auxiliar en la interpretació de punt final dels analistes,

proporcionant coneixement i valor a partir de les mesures espectrals en brut de pigments

art́ıstics. La implementació del sistema proporciona una plataforma fàcil d’utilitzar i

també d’actualitzar quan es disposa de noves dades espectrals. Els resultats obtin-

guts en els espectres Raman analitzats, sent robustos, fiables i coherents, demostren

la competitivitat de les solucions de tractament i processat de dades implementades.

El sistema té un gran potencial com a mètode prećıs i pràctic per a la interpretació

automàtica dels espectres Raman no només per a l’anàlisi de pigments art́ıstics, sinó

essencialment per a qualsevol grup de materials.

vi



Acknowledgements

Quiero dar las gracias en primer lugar a mis directoras de tesis, Rosanna y Maŕıa
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Vull dedicar un gràcies molt especial a les malaltes, Elena i Lourdes. És un autèntic
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temps en comú ens porti a bon port. O millor dit, al Pirineu, on s’està tan a gust...
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Chapter 1

Introduction

1.1 Thesis motivation

This Ph.D. Thesis belongs to the research developed by the Optical Communications

Group -Grup de Comunicacions Òptiques (GCO)- of the Signal Theory and Commu-

nications departament -Teoria del Senyal i Comunicacions (TSC)- of the Technical

University of Catalonia -Universitat Politècnica de Catalunya (UPC)- on the applic-

ation of Raman spectroscopy in art analysis. Raman spectroscopy is an analytical

technique, which provides qualitative and quantitative information regarding the mo-

lecular composition of an analysed material. The representation of the signature of

a material obtained by Raman spectroscopy is called Raman spectrum. The Raman

spectrum is composed of bands, whose positions are unique for each material and allow

its identification. The main features of this technique are the following: the sample

under test does not require any special preparation, allowing its analysis in-situ; it al-

lows to obtain objective results in real time; it is a non-destructive technique; it allows

a point to point analysis, that is, a sample mapping may be performed which allows

to delimit accurately the analysed areas. Consequently, Raman spectroscopy provides

a huge flexibility and versatility, and it is perfectly adapted to the demands of the

analysis of the pigmentation of art works.

In this regard, the identification of a pigment from its Raman spectrum is generally

carried out by comparison between an unknown Raman spectrum with an appropriate

set of well-known Raman spectra of reference pigments, looking for which spectrum of

the reference spectral library is the most similar to the unknown spectrum. Therefore,

the developing of a rigorous and documented database of spectra from pigments ac-

quired through any spectroscopic technique may be a top priority as it is a key element

of the art materials identification.

On the other hand, a Raman spectrum can be divided into two parts: useful signal

and noise. The useful signal is the part of the Raman spectrum that contains the
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desired information (Raman bands) which allows the identification of the analysed

material, while the noise is the part that does not correspond to Raman scattering,

that is, the part that does not depend on the molecular structure of the material, such

as random fluctuations of intensity for instance, which represents the largest source of

uncertainty in the analysis of Raman signal. Thus, it is required to enhance the Raman

information by filtering the noises out in order to avoid their effects on the spectral

comparison and, therefore, on the identification. Furthermore, the comparison between

spectra can be affected by the measurement conditions. Thus, a homogenization of the

spectra by means of a spectral normalization is required, and some techniques, metrics

and mathematical operators must be chosen to quantify the similarity between Raman

spectra.

Frequently, the comparison between the unknown spectrum and the reference spec-

tra is carried out by visual inspection by the analyst. This is an intuitive and simple

method, but it is also slow and may be imprecise, especially in instances which spectra

show a lot of bands and close together or if the analysed samples come from pigment

mixtures, which usually are not in the reference spectral libraries. In addition, this

way of working may introduce a component of subjectivity depending on the analyst’s

experience. This is why automating the identification process has become a hot topic of

research nowadays. On another matter, artists often use combinations of pigments and

mixtures in order to get different hues when making their art works. These combin-

ations can mask the spectroscopic fingerprint of the analysed pigments and therefore

mislead the processes used for the analysis and characterization of the palette used in

a work of art. Thus, a particular analytical problem can be arisen when identifying

unknown spectra that come from mixtures of pigments.

In conclusion, the general aim of this Ph.D. Thesis is to fully automate the data

interpretation process devoted to the analysis of artistic pigments through Raman spec-

troscopy. The data interpretation process can be generally seen as a five-step process:

acquisition, preparation, analysis, reporting and acting. Hence, the main objective

of this Ph.D. Thesis is the automation of the data interpretation process applied to

pigments analysis from the raw Raman spectra to the decision-making process in a sys-

tematic and objective way. This implies the development of several algorithms (noise

filtering, matching-based identification, spectral classification, etc). For that purpose,

the pigments interpretation process requires the design, development, implementation

and analysis of a useful and supporting tool in order to retrieve a quick and automatic

identification of the pigments used in works of art as part of their objective analysis.

In addition, although the work developed in this Ph.D. Thesis is focused on the iden-

tification of pigments, the designed methodology is intended to be transparent to the

spectroscopy and application, i.e. allowing the recognition and identification of any

material group from its spectrum.
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1.2 Thesis objectives

When analysing art materials through Raman spectroscopy, the measurement may

be affected by several practical problems: shot noise, fluorescence’s baseline, Raman

bands distortion and shifting, ... These problems may hinder the comparison, whether

automated or no, between the analysed sample spectrum and the database of reference

Raman spectra, which eventually may make the identification impossible. In addition,

a new problem can arise when analysing samples which were created with the mixture

of several pigments. In this context, a spectroscopist may not achieve the identification

of the unknown mixture due to the complexity of its spectral expression.

All these issues are way more complicated when working with spectral identifica-

tion algorithms. For instance, a level of shot noise which is not significant when the

recognition is visually carried out by an analyst may be critical for an automatic re-

cognizer. In the same way, dealing with mixtures an identification system may become

lost providing no match, and therefore no identification.

As a result, this Ph.D. is aimed to provide a useful tool in the identification of

Raman spectra to analysts of art works independently of their experience. The main

objectives to be achieved in this research project can be listed as follows:

A. The design, development and implementation of an automatic noise filtering

methodology for enhancing Raman spectra from pigments, intended to obtain

an improved Signal-to-Noise Ratio (SNR), making the Raman spectra easier to

interpret

B. The design, development and implementation of an automatic identification meth-

odology of Raman spectra from pigments, whether mixtures or not. That is,

without prior knowledge of the composition of the analysed sample, analysing

its performance in practical instances affected by differences between relative in-

tensities, binding its impact and extending this analysis for the case of pigment

mixtures, proposing a robust identification method. This implies the analysis of

methods based on multivariate analysis allowing to extract the required informa-

tion in order to achieve a proper pigments identification by means of their Raman

spectrum

C. The design, development and implementation of an automatic classification meth-

odology of Raman spectra from pigments, in order to perform a discrimination

between the pigments found in natural and synthetic forms or in different crys-

talline structures, allowing the differentiation of several features (such as stability

and hue) and also being used as chronological markers

3
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D. The development of an extended, documented, detailed and robust database

of Raman spectra of reference pigments. This implies the development of a

visualisation system that will provide tools for exploring the spectral database

allowing to handle spectra, as well as to show the pigments information and their

spectroscopic details

E. The research study, design, development, implementation and analysis of a global

automatic identification system of Raman spectra of pigments, stating its proper

operation both in theoretical and experimental cases. This system may allow

the pigments identification without prior knowledge of the composition of the

analysed sample

F. The identification tool, although focused on the application to the analysis of art

works, is aimed to be transparent to the spectroscopy and application, allowing

the identification of any material based on its spectrum

1.3 Thesis outline

The main contents of this Ph.D. Thesis are structured in seven chapters, which develop

the main objectives described in the previous section.

• Chapter 1: Introduction. In the current chapter, the justification, the object-

ives and the contents of this Ph.D. Thesis are introduced

• Chapter 2: Literature review. This chapter presents a review of different

analytical techniques aimed at performing art analysis, and focusing on Raman

spectroscopy, reviewing state-of-the-art data processing techniques in Raman

spectroscopy applied to pigments analysis

• Chapter 3: Acquisition and enhancement of Raman spectra from pig-

ments. This chapter describes the setup of the experimental measurement sys-

tem and introduces the main noise sources present in Raman spectroscopy are

introduced. Additionally, a novel automated noise filtering methodology aimed

at helping in the interpretation of the Raman spectra from pigments is presented

in this chapter in order to enhance the Raman information

• Chapter 4: Automated analysis of Raman spectra from pigments. This

chapter describes the methodologies developed for the automated interpretation

of Raman spectra from pigments. The developed methodologies were used to

identify and classify Raman spectra from pigments which are commonly present

in artist’s paints in experimental environments, providing reliable and consistent

results
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• Chapter 5: Global system of automated interpretation of spectra in

art analysis. This chapter describes the global software platform developed

for the automated interpretation of spectra from pigments, which integrates the

automated methodologies described in Chapter 3 and Chapter 4

• Chapter 6: Raman characterisation of polymorphic forms of copper

phthalocyanine blue under solvents and cleaning agents. This chapter

describes the Raman characterisation of different crystalline structures of one of

the most widespread artists’ blue pigment and the effect of applying solvents and

cleaning agents on paint layers based on this pigment

• Chapter 7: Conclusions and future work. The main achievements are

summarised and several promising directions for future work are exposed in this

chapter

Finally, the main contributions associated to this research are listed in a Pub-

lications chapter, and also a Bibliography chapter is included picking up all the

consulted sources, and several annexes as well containing additional information such

as experimental results.
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Chapter 2

Literature review

2.1 Chapter overview

This chapter introduces the importance of performing art analysis as well as presenting

a review of different analytical techniques aimed at performing this kind of analysis.

Among these techniques Raman spectroscopy stands out as an ideal technique suitable

for the analysis of artistic pigments. Finally, a review of data processing in Raman

spectroscopy applied to pigments analysis is presented.

2.2 Art analysis

Cultural heritage allows us to better understand previous generations and the history

of where we come from. It is widely accepted that cultural heritage should be preserved

to ensure long-term access and availability for future generations1–3. In this regard,

essential information for tasks such as cataloguing and restoration may be obtained

through the pigment analysis of an art work.

From prehistoric times humans have left their mark on their environment in the

form of painted images, whether in the form of simple hand-prints, works of fine art or

spray-can graffiti4. It seems that people have an underlying conscious or subconscious

urge to mark their passing. It may be that primitive man made marks by scratching

trees or rocks with stones as a way of marking a track, indicating a source of food

or water or even marking territory. At some stage, however, it was discovered that

some materials (called pigments) could be used to colour a surface, and the practice of

painting was born and persists to this day.

In general, the art of painting was developed by different channels depending on the

culture and the kind of civilization, and controlled by the availability of raw materials5.

In fact, the selection of raw materials is directly influenced by climatic conditions, which

involves geographical and chronological dependency, as part of the development of new
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materials, keys to the evolution of artistic movements. Hence, a thorough knowledge

of the pigments present in an art work is absolutely essential to gain insight into

the materials composition and deterioration mechanisms in order to apply optimum

restoration and conservation methodologies6–9.

As might be expected, prehistoric painters used the pigments available in the vicin-

ity of their homes. These were the so-called earth pigments, soot from burning animal

fat and charcoal from the fire. The colours were yellow ochre, red ochre, and black.

Water was the binding agent and enabled the pigment to be sprayed from the mouth

or painted onto the surface using the fingers as brushes. Fig. 2.1 shows bison painted

on a cave wall in Altamira, Spain. This painting is more than 30.000 years old.

Figure 2.1: Paintings of a bison in a cave wall in Altamira, Spain

The palette of these early people was limited to those materials readily to hand

and requiring only the most basic technology for their preparation. Large parts of the

spectrum of colours, notably blues and greens, were not available to them, yet they

produced strikingly vivid images through skilful use of what they had.

The Egyptians began serious colour manufacture from about 4.000 BC. They intro-

duced washing of pigments to increase their strength and purity. They also introduced

new materials, the most famous of which was Egyptian blue - first produced around

3.000 BC. This is a very stable pigment and still appears as if fresh on wall paintings

produced at that time.

Meanwhile, the Greeks’ contribution to painting was the manufacture of white lead

pigment which is still regarded as the whitest of the white pigments. It was the only

white used in European easel paintings until the 19th century when its poisonous lead
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content restricted its manufacture and sale as an artist’s pigment.

The Romans made use of the pigments developed by the Egyptians and Greeks.

One of the most important colours introduced by the Romans was Tyrian purple. It

is mentioned in texts from 1.600 BC and was obtained from the hypobranchial gland

of the molluscs murex trunculus and purpura haemastoma which were found in the

Mediterranean Sea near Tyre.

Furthermore, the mediaeval palette and paintings were characterized by the use of

clear, well-defined, bright colours. In addition to azurite, which had been used as a blue

since the time of the ancient Egyptians, by far the most important blue in the middle

ages was ultramarine. It was made by grinding the semi-precious mineral lapis lazuli, a

rock containing the mineral lazurite, and was used in Afghanistan in the sixth century

AC. During the renaissance, the colour blue was associated with purity and ultramarine

was used to striking effect in paintings of the Virgin Mary. The combination of the

price of the semi-precious stones and the cost of the process meant that ultramarine

was more expensive than gold.

Alternatively, the development of the science of chemistry during the Industrial

Revolution was partly driven by the textile dyeing industry, and led to the develop-

ment of many new pigments. The first chemically synthesized pigment was made in

Germany in 1704 by Diesbach. When using a batch contaminated with animal oil, he

accidentally made a purple and then a blue pigment instead of the red he was trying

to make. The blue became known as Prussian blue. However, ultramarine remained

the most important blue pigment. Its cost was so high that in 1828 Jean-Baptiste

Guimet manufactured a synthetic pigment, the so-called French ultramarine, chemic-

ally identical to Lapis Lazuli but with a cost of about a tenth of the current price for

the cheapest Lapis10. In the early 19th century, many blue pigments (as the different

forms of cobalt blue) were added to the existing varieties of blue11 (see Fig. 2.2).

Figure 2.2: Usage timeline of main historical blue pigments
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An art work containing the light sensitive pigment indigo would require strict con-

ditions of exhibition, as faint light levels and controlled exposure times. Consequently,

an objective and detailed study of the pigmentation of an art work is important to re-

veal information relating to the cataloguing, restoration and conservation of the work

of art12.

2.2.1 Analytical techniques

Since the first reported analytical studies and technical examinations of art and archae-

ological objects conducted in the late 18th century, analytical techniques and meth-

ods applied to the study of art works have exponentially increased13. An analytical

approach to art and archaeological objects commenced around 1780 as a result of the

progressive practical application of the ideas of art historians like Johann Wincklemann

(1717-1768) on art and technical history14. According to these historians, knowledge of

art objects should be based on the examination of the art work itself. From this time,

analytical techniques and methods applied to the study of art works have constantly

grown, particularly in the mid-late 20th century and, thus, nowadays there is a wide

variety of scientific methodologies in the service of art and heritage conservation.

Traditionally, a number of naturally occurring substances have been used in art

works given their ability. In addition to these natural products, synthetic substances

were introduced into art a few years after the invention of the first synthetic polymer,

cellulose nitrate, in 1846 by Schoenbein15. In the 20th century, the use of synthetic

polymers has become widespread, and nowadays they are found not only as materials

forming the art object but also as adhesives, varnishes or fillers of missing parts used in

restoration works. Hence, the identification of the materials composing an art work is

the most basic conservation science task16. Typically, this task is accomplished through

non-destructive analytical techniques or, if needed, destructive techniques based on

small samples analysis. The information yielded about the art work’s material com-

position provides crucial information in the development of preventive conservation

measures -such as lighting and humidity controls- and the selection of appropriate res-

toration treatments. Besides, it can also lead to discoveries about the art works’ origin.

Hence, analytical methods can provide insight into the time period of an art object,

its authenticity, the authorship, and previous restoration treatments. In addition to

leading to new interpretations, this information impacts the selection of treatments by

conservators and conservation scientists.

The application of analytical techniques for the task of art materials analysis has

been extensively improved in an attempt to enhance the sensitivity, repeatability and

accuracy of the analytical results. Spectroscopic techniques, such as UltraViolet Vis-

ible Spectroscopy (UV-vis)17, Fourier Transform InfraRed Spectroscopy (FTIR)18 and
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Raman spectroscopy19, have been coupled with light microscopes for these purposes20.

Synchrotron radiation FTIR microspectroscopy has been successfully applied to the

analysis of art works21. Mass spectrometry has also been increasingly used as a de-

tector system coupled with a chromatographic device22. Chromatographic methods

have also improved in recent years23–25: Paper and thin layer chromatographic tech-

niques have been progressively replaced with Gas Chromatography (GC), pyrolysis-GC,

and high performance liquid chromatography. Although scarcely used owing to the lim-

ited availability of instrumentation, microbeam analytical techniques have also been

incorporated into the list of instrumental techniques for art conservation purposes26.

Nonetheless, it is important to note that the application of analytical techniques is

usually difficult given the restrictions imposed on the number and size of the samples

because of the unique and inimitable character of an art work. Non-invasive and non-

destructive techniques are clearly favourable as they do not require the removal of art

work samples. In this sense, Raman spectroscopy is now arguably the first-pass tech-

nique of choice for conservators and art historians who require knowledge of materials

used in works of art (pigments, dyes, binders, additives, ...) in particular instances,

due, among others, to its properties of non-destructivity, specificity and capability for

in situ examination of art works27,28. Molecular signatures from Raman spectroscopy

give much and valuable information about the materials used by the artists when mak-

ing their art works29,30. In this sense, Raman spectroscopy is extended in analytical

laboratories that work on art works because of their versatility for obtaining analyt-

ical information from both inorganic and organic materials. In addition to that, this

techniques require a minimum preparation of sample enabling a high specificity as the

bands in the Raman spectrum provide specific molecular fingerprintings. Additionally,

an effective spatial resolution at the micron level is achieved, there is lower interference

from inorganic substrates, and sample smoothness and transparency are not critical.

2.2.2 Raman spectroscopy

Raman Spectroscopy is a photonic technique that provides a signal scattered by a

material under analysis when a beam of monochromatic light makes contact to it. The

frequency of almost all the scattered energy matches the incident radiation -elastic

scattering known as Rayleigh scattering- which, although intense, does not provide

information on the composition of the analysed sample. However, there is a small part

of the scattered light that is characteristic of the analysed material itself, resulting in a

non-elastic scattering since there is an exchange of energy between the photon and the

molecule during the collision. This scattering -known as Raman scattering- presents

certain discrete frequencies located above and below the incident frequency, vi ± vr,

where these frequencies ±vr are specific for each material, as are linked to its molecular
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structure and its chemical bonds31.

For this type of inelastic scattering two cases exist. If the radiation is scattered at

a frequency lower than that of the incident light is known as Raman Stokes radiation.

If, however, the radiation is scattered at a higher frequency than the incident one is

called Raman Anti-Stokes. The signal scattered by the analysed material is graphic-

ally represented as a plot -the so-called Raman spectrum- of the light scattering (or

intensity, in arbitrary units [a.u.]) versus Raman shift (in [cm−1]) with respect to the

frequency of the incident light (see Fig. 2.3). According to the Maxwell-Boltzmann

energy distribution law, since most molecules are in the lowest energy state, it is much

more likely the Stokes scattering to occur. Therefore, the Stokes scattered intensity

is always higher than that of the Anti-Stokes scattering. Because of this difference,

usually only the Stokes effect is measured, placing it in the positive x-axis.

Figure 2.3: Light dispersion scheme when a monochromatic light makes contact to
a material under analysis

A Raman spectrum is like a “fingerprint” of the analysed molecule: two Raman

spectra coincident in number and position of their bands do not exist for two different

molecules. Indeed, molecules composed of the same elements but in different pro-

portions have different Raman spectra. Furthermore, molecules with exact chemical

composition but different crystalline phase have different spectra. Therefore, the Ra-

man spectrum is unique for each material. Moreover, it can be obtained from almost

any chemical compound. This representation allows to view spectral bands (called

Raman bands) centred at the Raman frequencies characteristic of each material (see

Fig. 2.4). In a Raman spectrum the information is mainly on the position of each of

the bands that identify unequivocally the material under analysis.

The identification of the analysed material through Raman spectroscopy is gen-

erally carried out by comparison between an unknown Raman spectrum with an ap-

propriate set of reference Raman spectra. Once a Raman spectrum is measured, the

main task of an analyst is to find out the material which matches the unknown one.

Traditionally, this identification is based on visual comparison: when the spectrum of

the analysed sample is obtained, it is compared with those well-known spectra, -called

reference Raman spectra or simply patterns- looking for which Raman spectrum from

those of the reference spectral library is the most similar to the unknown Raman spec-

trum (see 2.5). One limitation of the objective analysis of art works is the availability
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Figure 2.4: Raman spectrum of an ultramarine blue pigment showing Raman bands
corresponding to the Raman Anti-Stokes (blue), Rayleigh (red) and Raman Stokes
(yellow) dispersions

of high-quality reference spectra with useful historical, artistic and scientific informa-

tion. The developing of a rigorous and documented database of pigments may be a top

priority as it is a key element of the art materials identification32.

The use of Raman spectroscopy as a technique of analysis in real-world applica-

tions is now a well documented reality both in fundamental theoretical aspects and

in instrumentation and applications33–35. In particular, Raman spectroscopy has the

invaluable ability to investigate precious art objects in a completely non-contact and

non-destructive way. The identification of art materials is important in the research of

art works and has been the subject of many research articles and monographic stud-

ies36,37. As a result, Raman spectroscopy is one of the techniques that best fits the

analysis of art materials and pigmentation, being a natural application of this tech-

nique in this topic because of its non-destructive molecular examination allows the

art materials identification. Thus, this way of working provides useful and objective

information for the cataloguing, restoration, conservation of art works, helping in the

preservation of the cultural heritage.

2.3 Data processing in Raman spectroscopy applied

to art analysis

The knowledge of pigments which were in use on the palettes of the ancient artists

is fundamental to preserve the works of art. The signature of a pigment obtained
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Figure 2.5: Identification of an experimental Raman spectrum (blue) through
comparison with the reference Raman spectrum of a copper phthalocyanine blue
pigment (red). Dashed lines highlight the main coincident Raman bands between
these two Raman spectra

by Raman spectroscopy (see Fig. 2.6) is unique and allows the identification of the

pigment through its molecular spectrum. Hence, Raman spectroscopy offers many

advantages, providing qualitative and quantitative information regarding the molecular

composition of the pigmentation of an art work without producing any damage to the

analysed object.

As in many other fields of the knowledge, most of the recent developments of the

Raman analysis are related to the use of the increasing power of the computers in the

interpretation of the data. The development of new methods and data treatment of the

spectral information is a field of continuous research in the field of cultural heritage.

The study of modern pigments is often complex due to the presence of a large number

of Raman bands, typical of the used organic molecules.

The identification of modern organic pigments by Raman spectroscopy is hampered

by the large amount of different synthetic materials that exist. Therefore, an extended

database of reference spectra is needed. Besides this spectral library, there is need for

an accurate and fast-searching algorithm for selecting the reference spectrum that best

corresponds with the unknown spectrum. Different algorithms have been developed

based on different multivariate analysis approaches38–42: chemometrics, pattern recog-

nition, supervised and unsupervised machine learning, automated detection, among

many others.
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Figure 2.6: Measurement of a Raman spectrum from a work of art

2.3.1 Data enhancement

Pollutants and other environmental factors as well as interferences from the binding

media and to ageing may have a direct impact on the quality of the Raman signal43–46,

which contributes to the difficulties in identifying pigments by Raman spectroscopy

in the form of noise. An appropriate signal treatment expands the capabilities of the

technique to non-invasively identify and quantify the chemical composition of paint

layers in art works.

Generally, experimental Raman spectra are noisy, which complicates the analysis

making it difficult for the analyst to locate spectral features of interest. Additionally,

if the spectrum is to be interpreted by a computer, for example to search for the spec-

trum in a reference library, noise in the experimental spectrum may often lead to poor

search results. Clearly, reducing the noise from a spectrum is of considerably practical

interest. There are different noise reduction approaches47–49: by smoothing, based on

fuzzy logic, or by merging continuous wavelet transform. In addition, the assignment

of the vibrational modes is often compromised by the presence in the spectrum of an

intense fluorescence background that covers the measured spectra. Several techniques

have been employed to minimize the presence of this fluorescence in order to resolve and
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analyse Raman spectra50–52: wavelength shifting, time gating, frequency-domain filter-

ing, first- and second-order derivatives, simple curve fitting of the broadband variation

with a high-order polynomial, and mathematical morphology.

2.3.2 Feature extraction

Numerous studies have been devoted to the topic of feature extraction. It is well-

known that an appropriate chemometric preprocessing of Raman datasets is of great

importance for further identification or classification procedures53–56 and has to be

considered carefully to accomplish good results. In this sense, dimensionality reduction

techniques are usually applied as feature extraction in Raman spectroscopy with the

aim of extracting spectral characteristics or markers of special interest for a proper data

interpretation, therefore making dimensionality reduction to become an essential step.

Hence, there is a need to reduce the dimension of the dataset without losing essential

information as the computation time decreases in subsequent data processing steps

(classification training, spectral library searching, ...). As reported in57, a strategic

approach based on dimensionality reduction may improve exponentially the accuracy

of an automated identification or classification methodology - identification rates may

be improved up to a 15%. Consequently, the extraction of spectral markers of interest

through data reduction tools should be considered in every chemometric analysis in

order to optimise the outcome of an identification or classification methodologies.

2.3.3 Automated analysis

The identification of paint materials by visually interpreting spectra can be a com-

plex and time-consuming task, and may introduce subjectivity linked to the analyst’s

experience. This is why there is a strong move underway in the discipline towards

computer-assisted analysis of art works. In this sense, different algorithms have been

employed to aid in the recognition of spectra in an automatic and an objective way.

These algorithms are based on multivariate analysis, using techniques such as principal

components analysis, artificial neural network, linear discriminant analysis, support

vector machine, case-based reasoning or fuzzy logic58–62. The goal of these algorithms

is to find the reference spectrum of the database that matches the unknown spectrum.

The main benefit of an automatic identification system base on a recognition algorithm

lies in offering a useful supporting tool to the analyst in the decision-making process.

For spectral identification purposes, the process of comparison may be carried out

in two different ways: comparing the bands or the spectrum as a whole. On one

hand, if the first strategy is selected, it is needed to automatically localize the bands

of the unknown spectrum61,63. Nevertheless, this localization may turn out to be a

complex task, and once the bands are localized it is needed to identify which pigment
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they correspond to. On the other hand, if the second strategy is selected, the band’s

localization is not needed since the comparison is developed by comparing point by

point of the unknown spectrum and the patterns. In this case, the reference spectral

library is composed by the whole spectral expression of the pattern pigments.

Nevertheless, real samples are always complex mixtures of original and degrada-

tions compounds that require new approaches to be implemented in the daily practice

of Raman spectroscopy. In these complex environments, the ability to identify the

constituent pigments within a mixture is extremely important. Raman spectroscopy is

often used for this, and has been shown to be a rapid, non-contact detection method,

which offers the ability for a single detector to identify a variety of substances.

Different automated techniques have been reported, mainly based on multivariate

analysis, which has developed into a highly valuable instrument for the analysis of

Raman spectra58,64–66. Some techniques require a set of several spectra measured from

the same spot in order to be able to identify mixed pigments and demonstrated to be

very effective when the number of mixed components is initially known67. Another

methods are based on a Pearson correlation application to compare sets of multi-

wavelength resonance-Raman or by using a chemometric technique such as Independent

Components Analysis (ICA)68–73 which recovers a set of independent signals from a set

of measured signals. Furthermore, some commercial software packages74,75 attend to

address the automated identification of single- and multi-component spectra but they

require user input at some stage of the identification process. Usually, these methods

try to provide a list of single candidates and the user then needs to choose how many or

which of those candidates are present in the mixture. Consequently, these techniques

remain dependent on the user’s experience.

Clearly, automated analysis based on the entire spectral range for multivariate ana-

lyses improve the pigments identification through Raman spectroscopy. In particular,

recent studies76–79 conclude that a full-spectrum matching algorithms exhibit excellent

performance in identification and classification tasks. This class of algorithms supports

both vector and trajectory input formats, exploiting all available spectral information.

By combining these insights, optimal spectrum matching performance can be achieved

using careful preprocessing i.e. data enhancement, and a vector similarity metric for

the automated identification and classification of Raman spectra from pigments.

2.4 Chapter summary

In this chapter, the need of performing analysis of art works in order to preserve the

cultural heritage was discussed, and, in particular, several analytical techniques aimed

at performing this kind of analysis were reviewed. From these techniques, Raman

spectroscopy stands out as it allows the unequivocal identification of the analysed
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material in a non-destructive fashion requiring no sample preparation, ideal for the

analysis of artistic pigments. Finally, the state of the art of data processing techniques

in Raman spectroscopy applied to pigments analysis was reviewed, focusing on data

enhancement methodologies, feature extraction techniques and automated analysis of

Raman spectra from art works.
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Chapter 3

Acquisition and enhancement of

Raman spectra from pigments

3.1 Chapter overview

This chapter describes how the main experimental Raman spectra from pigments used

in this research were acquired. Specifically, Sect. 3.2 provide details regarding the setup

of the experimental measurement system. Additionally, the main noise sources present

in Raman spectroscopy are introduced. In order to enhance the Raman information

Sect. 3.3 presents a novel automated noise filtering methodology aimed at helping in

the interpretation of the Raman spectra from pigments.

3.2 Data acquisition

Raman spectroscopy provides a huge flexibility and versatility, and it is perfectly ad-

apted to the demands of the analysis of the pigmentation of art works. Nowadays, the

latest advances in technology have enabled the development of equipments devoted to

Raman spectroscopy to the point of allowing the portability of the instrumentation. A

portable state-of-the-art Raman spectroscopy system is described below, which consti-

tutes primarily the laboratory of the Raman spectroscopy research group of the UPC.

3.2.1 Measurement system: Experimental set-up

The experimental Raman spectra acquired for the purposes of this research were re-

corded using the portable Raman equipment iHR320 (HORIBA Jobin-Yvon) with a

lens of 4.5x focus. The optical source employed for spectral acquisition was a He-Ne

laser (632.8 nm) which provided approximately 17 mW. The light from the laser was

guided by an optical fiber to the optical head and directed to the sample. The scattered

light was collected and filtered by the corresponding edge filter built into the optical
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head. It was then guided by the optical fiber to the monochromator and detected

by a thermoelectrically cooled charge-coupled device (CCD). A schematic diagram of

the measurement system is represented in Fig. 3.1. Acquisition times were around 30

seconds with 5 accumulations (150 seconds) on inorganic pigments and 300 seconds

with 5 accumulations (1500 seconds) for the organic pigments in order to achieve the

best trade-off between signal to noise ratio in the spectra from the sample and meas-

urement time.

Figure 3.1: Schematic diagram of the measurement system based on the portable
Raman equipment iHR320

3.2.2 Noise sources in Raman spectroscopy

A Raman spectrum may provide valuable information about the analysed sample but

the quality of this information may be compromised due to the presence of interfering

or unwanted signals. Broadly speaking a Raman spectrum can be divided into two

parts: the useful signal and the noise31. In our case, the useful signal is the Raman

information, which can be seen as a fingerprint signal in the form of a specific combina-

tion of peaks -the Raman bands- by which the analysed material can be unequivocally

identified. In contrast, the noise is the part of the Raman spectrum that comes from

undesired sources, which thus can adversely affect the interpretation of the analysed

sample.

The most commonly found sources of noise in Raman spectroscopy are shot noise

and fluorescence’s baseline (see Fig. 3.2): the shot noise is an unavoidable noise source

caused by the statistical nature of light, which may compromise the analysis of a
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Raman spectrum; the fluorescence’s baseline is sample-inherent usually of higher amp-

litude than the Raman information that can thus mask the Raman bands. Therefore,

the noise impact should be reduced -i.e. filtered- before performing further analyses

(whether through visual inspection or automated methodologies) in order to accomplish

a proper interpretation of a Raman spectrum.

Figure 3.2: Noise sources most commonly found in Raman spectroscopy

3.3 Data enhancement: Automated noise filtering

methodology

There is no single strategy for noise filtering in Raman spectroscopy. Several meth-

ods have been proposed to enhance the Raman information80–96. The most frequently

used methods are software procedures, which do not require to upgrade the existing

instrumentation. Such procedures are generally dedicated to filter one kind of noises

separately, i.e. or shot noise or fluorescence’s baseline. For instance, to reduce the

shot noise the simplest procedure is the median filter, whilst to remove the fluores-

cence’s baseline the simplest and widest used method is the polynomial fitting. The

basic version of such methods involves user intervention in order to select appropri-

ate key parameters, and this selection process is usually time consuming. For instance,

choosing which Raman shifts belong to noise sources in non-Raman characteristic band

regions or which ones belong to Raman characteristic band regions is a critical point,

which may introduce subjectivity depending on the analysts’ experience. Thus, several
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methods have been developed in the last decade in order to avoid any user interven-

tion. Generally, such methods are based on iterative solutions. Though these methods

may provide successful results, they treat one kind of noise at a time and due to the

high nonlinearity and complexity of a Raman spectrum they may not well smooth it

or reject its fluorescence’s baseline. As an alternative, a fully-automated noise filtering

approach was developed in this research which pursues a twofold objective: the shot

noise reduction and the fluorescence’s baseline removal.

In this respect, a new and simple procedure was designed and implemented to

reduce the shot noise and to remove the fluorescence’s baseline simultaneously with a

single strategy, which is independent of the Raman spectrum to be filtered. The under-

lying principle of this novel approach is based on the different “shapes” shown by the

shot noise and the fluorescence’s baseline in a Raman spectrum: the shot noise may be

seen as an intensity fluctuation (rapid variation), whilst the shape of the fluorescence

background is shown as a soft drifting baseline (slow variation). In this regard, the

method uses mathematical morphology operations, which simplify and preserve the

main features of the shapes, jointly with cubic penalized spline fitting for smoothing

and baseline-removal of Raman spectra in a unified way. No parameter tweaking is

needed and therefore no user intervention is required. The method was developed as

an application-specific algorithm which improves the signal-to-noise ratio tackling at

the same time both shot noise reduction and baseline rejection, preserving the shapes,

positions and intensity ratios of the Raman bands.

The methodology presented here describes the core principles of the proposed ap-

proach for noise filtering. Finally, the results are discussed and evaluated for real-case

examples.

3.3.1 Noise filtering methodology

A noise filter methodology is proposed which broadly speaking is based on a curve

fitting technique intended to obtain an improved SNR, making the Raman spectra

easier to interpret.

The use of piecewise polynomials to model regression functions and perform curve

fitting has a long history97–103. In smoothing, the location of the points, or knots, in

which the polynomial pieces are joined are arbitrary, which permits a very large class

of possible fits. A widely used fit is based on splines104–107, which are piecewise-defined

by polynomial functions. Penalized splines (or p-splines)108 are a very popular spline

fitting approach, which has the following properties: efficient computation, flexibil-

ity, and ease of setup109. P-splines are regression splines fit by least-squares with a
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roughness penalty which avoids overfitting105. According to110, the optimal degree of

this piecewise polynomial regression is 3, which generates the so-called cubic p-splines.

The smoothness of the estimate varies as a function of the smoothing parameter, λ:

the larger the smoothing parameter, the more the fit minimizes towards a polynomial

fit, which in turn allows the estimate to deal with data gaps108. In our research, the

λ-parameter was selected to be small enough so as to keep the estimates smooth and

its value was fixed to 0.7. This constant value provides a good compromise between

smoothness and polynomial fit regardless of the input spectra, whether simulated or

experimental.

The choice of knots has been a subject of much research111,112. Equidistant knots

can be used, but this allows only limited control over the fit. Instead, a smart knots

selection is preferred so in the case noise filtering of Raman spectra the presence of

noise is optimally reduced whilst the shape and positions of the Raman bands remain

unaltered. This may be achieved through a strategic selection of knots according to the

shape of the input data. To do so, the usage of mathematical morphology operations

is proposed.

Mathematical morphology is a nonlinear technique based on classical set the-

ory113,114. It finds application in many different research fields as it only involves

the definition of sets of data taking advantage of the properties of those sets115,116. In

particular, it is predominantly useful in fields in which the shape is the most important

feature. Morphological operations transform the original function into another func-

tion looking for geometric structures (i.e. shapes) using the structuring element whose

shape is chosen according to the morphology of the function and the special structures

to be extracted. Choosing a suitable structuring element, we can use the information

extracted from morphological operations to generate the knots sequences to be used in

the cubic p-splines fitting to denoise a Raman spectrum. There are two basics oper-

ations in mathematical morphology, called erosion and dilation and the combination

of such operations provides two more operators, namely closing and opening. The

morphological closing of a function f by a structuring element Y, φY (f), is described

mathematically as

φY (f) = εY [δY (f)] (3.1)

being εY (f)(x) = min
s∈Y

f(x+ s) the erosion and δY (f)(x) = max
s∈Y

f(x+ s) the dilation

of the function. The closing smooths the function nonlinearly, removing holes and

connecting nearby items thus taking always values that are higher or equal than those

of the input function. Hence, the closing by a short structuring element may provide

a rough estimation the shape of the Raman bands. In this case, this short structuring

element, Ym, is defined so that the closing can take into account any Raman band, and

therefore fixed to three data points. The resulting closing is modified to further reduce
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the shot noise influence as φ′Ym
(f) = φY (f) /∈ εY (f).

On the other hand, the morphological opening of a function f by a structuring

element Y,

γY (f) = δY [εY (f)] (3.2)

smooths the input function too but differently since it removes the positive peaks,

taking always values that are lower or equal than those of the input function.

Hence, the opening by the optimal structuring element, Yopt, may provide a rough

estimation of the fluorescence’s baseline. The main morphological operations are graph-

ically represented in Fig. 3.3.

Figure 3.3: Representation of the main mathematical morphology operations (blue)
on an input sequence (red) with a structuring element of 3 data points: erosion (top
left), dilation (top right), closing (bottom left) and opening (bottom right)

The optimal structuring element is selected following a lookup procedure51:

• As starting point, the opening of the input spectra by the minimum structuring

element is computed

• Iteratively, the opening by an incremented length of the structuring element is

computed for each iteration

• The Root Mean Squared Error (RMSE) between the resulting opening and the

opening of the previous iteration is computed

• The optimal structuring element is obtained when the RMSE gets stabilized, i.e.

the same opening is obtained in 3 consecutive iterations
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• The resulting opening is further modified in order to reduce any flaw in the peak

regions as

γ′Yopt
(f) = min(γYopt(f),

εYopt(f) + δYopt(f)

2
) (3.3)

The methodological scheme of the noise filtering follows the flowchart shown in

Fig. 3.4. Being f a noisy Raman spectrum, a knots sequence, K1, is obtained from

the intersection of f with the modified closing by the minimum structuring element,

φ′Ymin
(f). A cubic p-spline fit of f through K1 is performed which provides an interme-

diate function, g. Then, the optimal structuring element that follows the morphology

of the baseline in g is achieved. Next, a new knots sequence, K2, is obtained from

the intersection of g with the modified opening by the optimal structuring element,

γ′Yopt
(g). A cubic p-spline fit of g through K2 provides an estimation of the fluores-

cence’s baseline, h. Finally, the denoised spectrum, d, is obtained by subtracting the

fluorescence’s baseline estimation from the intermediate function. The morphology-

based cubic p-spline fitting methodology for enhancing Raman spectra is graphically

represented in Fig. 3.5, where it was applied to an experimental Raman spectrum from

a sample of a PY1 pigment powder.

Figure 3.4: Noise filtering scheme, aimed to reduce the shot noise and to remove
the fluorescence’s baseline
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Chapter 3. Acquisition and enhancement of Raman spectra from pigments

Figure 3.5: a) Graphical example of the developed noise filtering method applied
to a measured Raman spectrum of sample of a PY1 pigment powder, b) zoom for
Raman shifts from 740cm−1 to 860cm−1: 1) shot noise reduction by fitting a cubic
penalized spline through the modified closing by the minimum structuring element,
2) baseline removal by fitting a cubic penalized spline through the modified opening
by the optimal structuring element. The knot sequences are represented as black
diamonds for both cases
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3.4. Chapter summary

Appendix A provides a performance analysis of the developed data enhancement

methodology. Specifically, a benchmark study using simulated Raman spectra was

presented providing a performance evaluation and comparison of the noise filtering

algorithm developed in this research and conventional denoising algorithms in common

use. The results show that the presented denoising approach outperformed all other

algorithms that were tested in both shot noise and baseline tests. Additionally, several

tests were performed using experimental Raman spectra providing reliable and suitable

results as well.

3.4 Chapter summary

In this chapter, an overview of the data acquisition through Raman spectroscopy was

presented, focusing on the experimental measurement system of the UPC laboratory

and its main application: the analysis of artistic pigments. In this kind of analysis,

external agents such as pollutants or binding media among others may increase the

noise impact, thus degrading the quality of the Raman measurements. Consequently,

a fully-automated denoising methodology was developed, which enhances the Raman

information helping in the interpretation of Raman spectra.

The developed noise filtering approach uses the same novel and simple scheme

for both shot noise reduction and fluorescence’s baseline rejection. Specifically, the

approach is based on p-spline fitting, a piecewise polynomial curve fitting technique

generally used for data smoothing. A key point of the developed denoising method-

ology is how to obtain the location of the points (the so-called knots) in which the

polynomial pieces are joined. A strategic selection of knots according to the shape

of the input Raman spectra was discussed. Concretely, the usage of mathematical

morphology operations for knots selection was presented. Hence, mathematical mor-

phology operations are able to retrieve the morphology of the Raman information,

which preserves the shapes, positions and intensity ratios of the Raman bands.

The usage of mathematical morphology together with p-spline fitting demonstrated

to be a consistent combination in the application of data enhancement in Raman

spectroscopy applied to pigments analysis. Several tests were performed providing

successful results despite of requiring no user intervention: The method reduces the

interferences coming from noise sources whilst enhancing the Raman information in an

automatic fashion. Consequently, the developed noise filtering methodology has great

potential as an accurate fully-automated practical method to help in the interpretation

of Raman spectra, not only for artistic pigment analysis, but essentially for any material

group as well.
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Chapter 4

Automated analysis of Raman

spectra from pigments

4.1 Chapter overview

This chapter describes the methodologies developed for the automated interpretation

of Raman spectra from pigments. This answers the increasing motivation to automate

the processes involved in the identification and classification of Raman spectra in paint

instances against the manual analysis of Raman spectra which can be a subjective and

time-consuming task. The developed methodologies presented in 4.3 and 4.4 were used

to identify and classify Raman spectra from pigments which are commonly present in

artist’s paints in experimental environments, providing reliable and consistent results.

Therefore, they can play a good auxiliary role in the analysts’ endpoint identification

and classification automated systems.

4.2 Spectral pre-processing and comparison

As explained in Sect. 2.2.2, the signature of a pigment obtained by Raman spectro-

scopy is unique and allows the identification and classification of the analysed pigment

through its molecular spectrum. The identification and classification processes are

generally carried out by spectral comparison between an unknown Raman spectrum

with an appropriate set of reference Raman spectra previously stored in a reference

database117–121. When applying an automated comparison-based methodology for re-

cognising or classifying Raman spectra from pigments, it is necessary to rely on math-

ematical tools such as distance metrics, which allow the spectral comparison in an

automated fashion. In this respect, it is crucial to make some spectral pre-treatment

to properly address this comparison.
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Chapter 4. Automated analysis of Raman spectra from pigments

Spectral pre-processing

A uniform data format smooths the progress of comparisons between unknowns and

patterns. Furthermore, as noise is inherent to the acquisition of a Raman spectrum,

a denoising should be performed to enhance the Raman information as much as pos-

sible even assuming that it was collected under optimal conditions. Consequently, a

three-step pre-processing sequence must be followed in order to ensure the success of

the automated processes of identification and classification. Shot noise reduction and

baseline correction is the first pre-processing step. In this regard, the methodology

for shot noise reduction and baseline rejection described in 3.3 was used. The second

pre-processing step is interpolation, so that all spectra are stored in a compatible way.

The interpolation ensures that all spectra have a common set of Raman shifts, which

is crucial when spectra collected with different measurement systems are used. Finally,

the last pre-processing step is intensities normalization, which reduces the impact of

measurement conditions so that the outcome of the data processing is independent of

the acquisition instrument.

The intensities normalization used in this research was the min-max normalization,

where the minimum intensity is scaled to 0 and the maximum to 1, meaning that a

normalized spectrum x′ maintains the relative ratio between its Raman bands from the

input spectrum x by applying the following equation:

x′[i] =
x[i]−min(x)

max(x)−min(x)
∀i (4.1)

where x[i] is the Raman intensity at the Raman shift i.

These pre-processing steps ensure that all the spectra are baseline-corrected and

fulfil a set of homogeneity conditions with respect to data format. That is, all spec-

tra cover the same spectral range, are baseline subtracted, and their intensities are

normalized. As a result, the spectral comparisons involved in the identification and

classification of unknown Raman spectra may be properly carried out.

Spectral comparison

In order to perform the spectral comparison between an unknown Raman spectrum

and the reference Raman spectra several distance metrics were used. An overview of

these metrics is detailed hereafter.
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4.3. Automated pigment recognition through Raman spectroscopy

Euclidean distance The Euclidean Distance (ED) quantifies the degree of similarity

between spectra and is defined as:

ED(u, v) =

√√√√ K∑
i=1

(u(i)− v(i))2 (4.2)

being the Euclidean distance between two vectors u and v. The lower the distance, the

more similar the spectra.

Mahalanobis distance The Mahalanobis Distance (MD) provides a measure of sim-

ilarity between a vector (v) and a given distribution (Di):

MD(v,Di) =
√

(v − µi)′Σ
−1
i (v − µi) (4.3)

where µi is the arithmetic center (i.e. the centroid) of the i-th distribution.

Bhattarcharyya distance The Bhattarcharyya Distance (BD) measures how sim-

ilar two distributions are and is defined as:

BD(i, j) =
(µi − µj)Σ(µi − µj)

′

8
+

ln|Σ|
2
√
|Σi||Σj|

(4.4)

where µk and Σk are, respectively, the centroid and the dispersion matrix (the auto-

covariance matrix) of a k-th distribution and Σ =
Σi+Σj

2
.

Jeffries-Matusita distance The Jeffries-Matusita Distance (JMD)122,123 indicates

how separated two distributions are and is defined as:

JMD(i, j) = 2(1− eBD(i,j)) (4.5)

Specifically, JMD ranges from 0 to 2.

4.3 Automated pigment recognition through Ra-

man spectroscopy

Traditionally, the recognition of pigments through Raman spectroscopy has been car-

ried out through visual comparison between the Raman spectra measured on art works

with an appropriate set of reference Raman spectra (also known as patterns). Never-

theless, this simple identification approach may turn out to be a difficult and a tedious

task in instances showing a large number of Raman bands located close together as
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Chapter 4. Automated analysis of Raman spectra from pigments

in some kinds of organic pigments, and therefore it relies heavily on the experience

of the analyst. The pigment identification may be further complicated when dealing

with spectra from pigment mixtures, attending to the fact that usually the spectrum

of an unknown mixture is not available in a library of the reference spectra. Giving

this issues, a robust automatic identification strategy is clearly of practical interest for

determining the pigments used in paint from a spectrum that shows their spectroscopic

fingerprint.

4.3.1 Reference database compilation

The reference spectral library plays a key role in the automated identification process

up to the point that an unknown spectrum cannot be identified if the corresponding

reference spectrum is not in the library. To optimize this situation, it is recommended

that the set of reference spectra -also called patterns- should be suitable regarding

the particular application and the specific analysis to be performed by the user. In

fact, different strategies may be considered to compile a library when analysing the

pigmentation of a work of art. For instance, if the art work is suspected to be created

by certain artist the library may include pigments used by that artist, or if the art work

is supposed to fit in a given artistic movement it may include pigments used in that

period (see Fig. 4.1, which includes the usage periods of the main historical pigments

used in this research).

These strategies may be carried out under artistic and historical documentation,

main reason for the developing of a high-quality documented database of spectra from

art materials.

In this research, the reference spectral library was composed by a total of 288 Ra-

man spectra. In particular, fifty-one spectra were measured from inorganic pigments

that have been used in paints for centuries. These spectra were obtained by measur-

ing directly pure pigments, one high-quality spectrum (in terms of Raman effect vs.

fluorescence and signal to noise ratio) for each pigment. The pigment powders were

supplied by different manufacturers (Sennelier, Kremer and Mongay). The rest were

taken from the database of synthetic organic pigments used in modern and contempor-

ary paintings published in124. Inorganic pigments are here designed by their historic

name and organic pigments following the Colour Index reference databasea. Further

details on the reference database contents are described in Appendix B.

aThe Colour Index name is established and published by the American Association of Textile
Chemists and Colorists and The Society of Dyers and Colourists. The colour index name is a generic
category and does not refer to a specific pigment. While it enables the artist to form a general idea
of opacity, transparency and lightfastness, for a pigment in a certain colour space, it does not provide
definitive information. Many grades of pigment are available from a number of manufactures with a
very wide range of physical attributes
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4.3. Automated pigment recognition through Raman spectroscopy

Figure 4.1: Usage periods of the main inorganic pigments used in this research.
Solid lines: periods exactly known; discontinuous lines: periods of appearance and
disappearance 33



Chapter 4. Automated analysis of Raman spectra from pigments

4.3.2 Single-component identification

From a mathematical point of view, a given spectrum can be seen as vector of between

1000 and 2000 components typically. As a result, programmatically, the identification

may become a time-consuming process. Hence, with the aim of speeding up the pro-

cessing time and saving computing resources the usage of a data reduction tool was

proposed as reported in 2.3.2. For the purpose of reducing the dimensionality of Raman

datasets most often four standard techniques are used125, namely Principal Component

Analysis (PCA)126, ICA69, Linear Discriminant Analysis (LDA)127 and Partial Least

Squares (PLS)128. The performance of these techniques were tested on simulated data-

sets. The results of this comparative analysis are outlined in Sect. B.1 of Appendix B.

Specifically, the best performing dimensionality reduction with no data loss providing

the lowest processing time was obtain when applying PCA.

PCA is a multivariate method of the chemometric family, which is a chemical dis-

cipline that is based on mathematical and statistical methods to design and to select

measure procedures and optimal experiments as well as to obtain the maximum inform-

ation of the analysis129,130. It is extended as a data reduction tool mainly. Given a set

of data, this technique provides a new space, known as the PC space, of same dimen-

sion as the original space, but its dimension can be reduced once some dimensionality

reduction criterion is applied. In this reduced space, the original data are represented

in such a way that the information is highlighted39,40. The main motivation to apply

a dimensional reduction tool is to obtain a given set of data defined by N variables as

a set of lower dimension, K, with K << N , but with equivalent information content.

In the case of Raman spectra of artistic pigments processing, the initial considered set

consists on P Raman spectra of the reference pigments (with P << N).

For this research, the dimensionality reduction criterion of considering 100% of

variance of the P reference spectra in the original space was used, which provides a

reduced space of K = P −1 dimensions. In this way, a new space is generated through

the PCA where spectra can be seen as points, and the measured unknown spectra can

be compared and identified after projecting them onto this PCs space. Fig. 4.2 shows

a two-dimension projection of the PCA transformation applied to the reference Raman

spectra together with the corresponding biplot, which -in the case of Raman spectra- is

an exploratory graph on both wavelength and scores of the PCA transformation matrix

are displayed as a two-variable scatterplot. Fig. 4.3 shows the reference Raman spectra

projected onto the PCs space (the so-called scores) as a function of PC together with

the cumulative variance of the PCA projection also as a function of PC.
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4.3. Automated pigment recognition through Raman spectroscopy

Figure 4.2: PC1-PC2 projection (top) and biplot (bottom) of the reference Raman
spectra - item styles stand for chemical classes (see Sect. B.2 of Appendix B), item
colour by Colour Index
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Figure 4.3: Scores of the reference Raman spectra and cumulative variance of PCA projection as a function of PC. Each colour represents
a different reference Raman spectrum
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4.3. Automated pigment recognition through Raman spectroscopy

Let x′unk be an unknown spectrum after being preprocessed. The proposed identi-

fication methodology works by projecting its standard expression onto the PCs space,

that is:

sunk =
x′unk −mlib

σlib
C (4.6)

where C is the transformation matrix obtained when applying the PCA to the reference

spectra, and mlib and σlib are the mean and the standard deviation values of each

wavelength of the reference spectral library, respectively. The proposed identification

methodology is developed based on the PCs space, and the Identification Block (IB)

shown in Fig. 4.4 is based on mathematical operators and some identification criteria.

The definition of the IB is described hereafter.

Figure 4.4: Spectra preprocessing and data reduction process: The expression of
all spectra in a homogeneous and reduced format facilitates the comparison between
the reference spectra and an unknown spectrum

Identification Block definition

The first stage of the identification methodology developed in this research is the Iden-

tification Block (IB). In order to extract candidate spectra (from the reference spectral

library) to identify an unknown spectrum, the ED between the unknown spectrum

and the patterns were computed. Besides, an additional metric was used, the so-called

Squared Cosine (SC), which quantifies the quality of the representation of a spectrum

projected onto the PCs space generated by the reference spectral library. It is defined

as ratio of the norm of its expression in the PCs space, sunk, to the norm of the standard
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Chapter 4. Automated analysis of Raman spectra from pigments

expression of the spectrum, x′unk, that is,

SC(unk) =
‖sunk‖2

‖x
′
unk −mlib

σlib
‖2

(4.7)

As a cosine, it fulfils that 0 ≤ SC(unk) ≤ 1, and SC(unk) = 0 shows a low quality of

the spectral representation in the PCs space, while SC(unk) = 1 indicates an optimal

representation.

Two parameters regarding to the reference spectral library were defined:

• min lib: The minimum distance of the reference spectral library

• mink: The minimum distance between the k-th pattern and the rest spectra of

the reference spectral library

These parameters are used to define the identification criteria. Specifically, the criteria

to determine the candidate spectra that may identify the unknown spectrum are the

following:

1. If the distance between the unknown spectrum and the k-th pattern is lower than

the minimum distance of the reference spectral library, then the k-th pattern is

candidate to be the pigment corresponding to the analysed sample:

If ED(unk, k − thpattern) < min lib then the k-th pattern is candidate

The underlying idea is that two spectra are different if the distance between them

is higher than min lib. Therefore, this first criterion provides the candidate spec-

tra whose distance to the unknown spectrum is lower than min lib. Nevertheless,

this criterion may turn out to be restrictive (for instance, when some spectra of

the reference spectral library are very similar, which may imply a low min lib),

and whether it is not accomplished a new criterion is defined:

2. If the squared cosine of the unknown spectrum is higher than the ratio given

by the minimum distance of the library and the minimum distance between the

k-th pattern and the rest of the library, and if the distance between the unknown

spectrum and the k-th pattern is lower than the minimum distance between the

k-th pattern and the rest of the library, the k-th pattern is candidate:

If SC(unk) >
min lib

mink

and if ED(unk, k − thpattern) < mink then the k-th

pattern is candidate

Bearing in mind the underlying idea, the squared cosine is checked in order to

guarantee a minimum quality of PC representation of the unknown spectrum. As
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4.3. Automated pigment recognition through Raman spectroscopy

mink is always higher or equal to min lib this second criterion is less restrictive than

the previous one. If the unknown spectrum is well represented this new criterion may

provide more candidates to identify it. A graphical interpretation of these criteria is

represented in Fig. 4.5.

Figure 4.5: Graphical interpretation of the identification criteria in a two-
dimensional space. min lib stands for the minimum distance between the spectra of
the database, and min3 stands for the minimum distance between the 3-rd pattern
and the rest of the patterns. In the presented example, if the unknown spectrum is
well-represented, it may be identified as the 3-rd pattern, since the distance between
the unknown spectrum and the 3-rd pattern is lower than min3.

The identification criteria may be fulfilled by different patterns, so a parameter

was defined to interpret the result of the identification, te so-called Matching Factor

(MF):

MFk = 1− ED(unk, k − thpattern)

max{mincands}
(4.8)

which is computed for each candidate k, and where max{mincands} is the maximum

ED of the minimum ED between the candidates and the rest of the reference spectral

library. This factor provides information regarding to the similarity between the un-

known spectrum and the candidates: the more similar the unknown and the candidate,

the higher the Matching Factor, and the other way around, the less similar, the lower

the Matching Factor (as for instance in cases where other components like binding

agents are present which may mask some of the pigments’ bands). In this sense, the
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Chapter 4. Automated analysis of Raman spectra from pigments

quality of the measured spectra (in terms of signal to noise ratio) is a key factor in

the identification process: the higher quality the unknown spectra have, the more sim-

ilar the unknown spectrum with respect to the corresponding reference may be. The

diagram shown in Fig. 4.6 summarizes the scheme of the identification methodology.

Figure 4.6: Overview of the identification scheme

4.3.3 Multi-component identification

A particular analytical problem can arise from the comparison between an unknown

spectrum that comes from a mixture of pigments and the reference spectra of individual

pigments since it is difficult to obtain the appropriate reference spectrum corresponding

to the unknown mixture131. Additionally, in a practical situation it is not known

initially whether the analysed spectrum originates from a single pigment or a mixture

of several compounds. E.g. a green appearance may be achieved with either green

pigments or a mixture of blue and yellow particles. Given these uncertainties that

are particularly relevant to mobile systems with low spatial resolution or mixtures

of synthetic organic pigments and dyes, the development of a mixtures identification

strategy is interesting for identifying the components in Raman spectra from pigment

mixtures.

In this sense, a preliminary analysis was proposed using a mathematical spec-

trum which represents a hypothetical mixture considering that a Raman spectrum of a

pigment mixture contains separately the spectroscopic signature of each pigment. How-

ever, this preliminary proposal is only valid for the more commonly found mixtures,

i.e. the binary mixtures. When applied to admixtures of more than 2 components the

usage of mathematical spectra may fail so another approach was developed. The final

multi-component identification methodology is a blind method. Specifically, it identi-

fies single and multi-component spectra without user input or judgement using a single

spectral observation, i.e. the unknown spectrum. There are thus no parameters to be
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4.3. Automated pigment recognition through Raman spectroscopy

tweaked. Furthermore, it provides a Matching Factor on the resulting identification,

aimed at becoming a useful support tool for the analyst in the decision-making process.

Binary mixtures identification

In practice, the pigments may have been used in mixtures (or in admixtures) with other

pigments to produce special effects or tonal qualities. Binary mixtures are the more

frequently mixtures used in paintings; for instance, it is usual the mixture of a yellow

pigment with a blue pigment to produce green colours. In this situation, the pigment

identification is actually done on Raman spectra of pigment mixtures. To decrease

complexity whilst also speeding up the identification process, a system to automatic-

ally identify Raman spectra of binary mixtures of pigments was developed. The system

is able to identify the two different pigments in the mixture from spectroscopic signa-

ture obtained by Raman spectroscopy. The technique has been proved with mixtures

showing its robustness against some of the critical factors that could affect the applic-

ation of Raman spectroscopy for pigment identification as distortion and wavenumber

shifts in key Raman bands due to different measurement environmental conditions.

Let x′i and x′j be the i-th and j-th patterns which are candidates and xm the

original expression of their mixture, xm = x′i + x′j. The PC-expression of the mixture’s

spectrum after some mathematics is

smixture = k · si + k · sj + (2k − 1)
mlib

σlib
C (4.9)

being si and sj the PC-expression of the corresponding candidates and k the constant
1

max(xm)
. The “spectrum” of a mixture built in this way (adding normalized spectra

directly one by one), assumes that all bands from the individual pigments are present

maintaining their relative intensities. In a practical situation this is rarely the case and

may become a weakness of the proposed methodology. However, this strategy solves

the incorporation to the reference spectral library of all possible mixtures. Dealing with

binary mixtures in a reference spectral library of m spectra the binomial coefficient of

m and 2 may be built. For instance, taking m = 20, 190 mixtures may be obtained.

Moreover, taking into account all the possible configurations of a mixture in terms

of proportions of the corresponding individual pigments, a large number of mixtures

may be built. Thus, the possibility of building all the binary mixtures for a given

reference spectral library has been completely ruled out. In addition, programmatically,

this tactic would lead to a computing resources consuming code. A new strategy is

developed instead, which avoids the manufacturing of all these mixtures and their

subsequent measurement. The mixtures are only created when one of the following

criteria is fulfilled:

1. If there are candidates with non-negligible Matching Factors of similar order, that
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is, higher than 10% and with a difference lower than 30%, then these candidates

may compound the mixture, i.e. if MFi,MFj > 10% and |MFi −MFj| < 30%

then the mixture is created with the candidates i and j.

2. If there are not candidates or all candidates have a Matching Factor lower than

60%, the system automatically sorts the distances between the unknown spectrum

and the rest of the library and get the two patterns that have the lowest distances.

Then these two patterns may create the mixture.

It should be noted that the values taken in the mixture-building criteria can be modified

to make the identification process more or less relaxed depending on the user require-

ments. The values proposed in this research were established after the analysis of the

algorithm performance in a simulation stage, which best suited for proper operation.

Once a mixture is built, if appropriate, it is seen as a new pattern. Then, the identifica-

tion criteria are applied with the unknown spectrum and the created mixture, allowing

the identification of spectra of binary mixtures. That is, the proposed algorithm con-

firms, scientifically, the presence of various pigments in an analysed sample through

mathematical mixtures. The diagram shown in Fig. 4.8 summarizes the implemented

identification methodology with binary mixtures handling. To show the performance

of the implemented algorithm, the developed methodology was applied to Raman spec-

tra from different handmade samples (see Fig. 4.7). These handmade samples were

constructed by mixing artistic pigments up two by two with random proportions and

were enhanced according to the methodology described in Sect. 3.3.

Figure 4.7: Measurement of experimental Raman spectra from handmade samples
used for assessing the performance of the implemented identification methodology
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Figure 4.8: Overview of the identification scheme with binary mixtures handling
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Sect. C.1.1 of Appendix C compiles the experimental results of applying the im-

plemented identification methodology to the Raman spectra from handmade samples,

which provided successful results for binary mixtures. The developed mixtures iden-

tification methodology was focused on binary mixtures since this kind of mixtures

appears with relative frequency in art. However, in some cases mixtures of more than

two components may appear as well. In the case of ternary mixtures for instance,

the methodology does not identify the three components of the mixture since it is a

construction limitation of the mixtures treatment algorithm.

In this sense, it was proposed to extend this algorithm to identify not only binary

mixtures but ternary mixtures as well and then extrapolate it to identify mixtures

of any number of components. Nevertheless, after testing in several cases this extra-

polation, the mixture-building criteria failed to identify Raman spectra of mixtures of

more than two components. To overcome this issue a new strategy was developed. This

strategy is based on another chemometric technique, the so-called independent com-

ponent analysis (ICA)69, without changing the identification criteria but the mixture

criteria, developing a more accurate methodology in terms of identification of mixtures,

being a blind solution capable of identifying mixtures of more than two components.

The generalisation of the identification methodology for single- and multi-component

Raman spectra is described hereafter.

Generalised identification methodology for single- and multi- component

Raman spectra: Mixtures Separation Block definition

The methodological scheme of the developed blind approach for identifying single-

and multi- component Raman spectra is presented in Fig. 4.9. It follows a flow-

chart allowing iterative data processing and is built on a sequential two-step selection

process with the initial Identification Block (IB) as described in Sect. 4.3.2 and later

- applicable to multi-component spectra - the Mixtures Separation Block (MSB).

ICA is the core of the methodology block developed for mixtures handling, called

the Mixtures Separation Block (MSB). Generally speaking, ICA is a technique that

recovers a set of independent signals from a set of measured signals70. It is assumed

that each measured signal is a linear combination of each of the independent signals,

and that there are an equal number of measured signals and independent signals.

Using vector-matrix notation, the ICA model is written as x = As, where x is the

vector whose elements are the measured signals, s is the vector whose elements are the

independent signals and A is the connecting matrix. All we observe is the vector x,

and we must estimate both A and s using it. Then, after estimating the matrix A,

we can compute its inverse, say W , and obtain the independent component simply by

s = Wx.
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Figure 4.9: Overview of the implemented methodology based on independent component analysis for the automatic identification of
single- and multi-component Raman spectra applied to pigments analysis
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In general, in ICA-based applications at least n measured signals are needed to

work with mixtures of n components. In the context of pigment identification in art

works through Raman spectroscopy, this would imply to measure more than one Ra-

man spectrum on the same spot of a work of art: two Raman spectra to identify binary

mixtures, three Raman spectra to identify ternary mixtures, and so on. However, in a

practical situation we do not know beforehand if the analysed spot is a mixture of pig-

ments or not, and, in case it is a mixture, how many pigments were used. For instance,

a spot corresponding to an orange hue on the art work may have been painted with

an orange pigment or, a mixture of yellow, red and potentially white pigments. This

would imply a drawback when working with ica, since the main idea of the identifica-

tion methodology is that it must work with just one measured spectrum and without

prior knowledge about the analysed sample.

Bearing in mind the above mentioned observation, the current research introduces

an iterative solution based on the assumption that the spectral signature of the refer-

ence spectrum with the lowest ED is present in the unknown spectrum, and therefore

they can be separated through ICA. Thus, the steps in the proposed solution are as

follows:

1. The reference spectrum which has the lowest ED is selected

2. ICA is applied to this selected reference spectrum and the unknown spectrum.

From this analysis two separated spectra are obtained

3. These two spectra are treated as two new unknown spectra and are delivered

to the IB. If the two spectra are identified by the IB then the original unknown

spectrum may come from a mixture of the reference spectra identified

These 3 steps can be applied iteratively, which eventually allows to identify the

total number of reference spectra present in the unknown spectrum.

The presented MSB should be triggered only in case of dealing with spectra coming

from mixtures. To do so, a “mixture criterion” was defined, which is applied to the

outcome of the first stage of the proposed chained methodology, i.e. the IB. In this

sense, and attending to the fact that the automated identification analysis done by the

IB may be hindered and even avoided due to the presence of the spectroscopic signature

of two or more components in the unknown spectrum, the “mixture criterion” was

defined as follows:

If there are no candidates or all candidates have a MF lower than a certain value of

MF (MFth), then the unknown spectrum may come from a mixture.

46



4.3. Automated pigment recognition through Raman spectroscopy

An exhaustive study was conducted in order to determine the appropriate MFth

to trigger the MSB. This study was performed using simulated Raman spectra, and

specifically fluorescence-free simulated spectra. The study was done by the following

experiment:

1. A reference spectral library was simulated composed of one hundred different

simulated spectra

2. One thousand unknown spectra were generated. Each of them was created by a

linear addition of one, two or three reference spectra randomly picked up from

the spectral library

3. For each of these unknown spectra the identification methodology was applied

for several values of MFth ranging from 0% to 100% in steps of 5%, which means

that it was applied twenty-one times for each of the unknown spectra

4. As a quantitative measure of the quality of the “mixture criterion” the specificity

and the sensitivity parameters were calculated for each MFth. The specificity

is defined as the percentage of unknown spectra recognized as mixture among

the “true” mixed spectra. Similarly, the sensitivity is the percentage of unknown

spectra recognized as single spectrum (i.e. not recognized as mixture) among

the pure reference spectra. Furthermore, the success rate (defined as percentage

of unknown spectra properly identified), was calculated for each MFth from the

identification results

The above four steps were repeated one hundred times, each time using a different

simulated library and therefore different unknown spectra. Then, a statistical analysis

was performed. The mean success rate as a function of MFth is represented in Fig.

4.10. The figure reveals that the values of the MFth ranging from 90% to 100% provide

the highest mean success rate. The minimum MFth providing the highest sensitivity

and specificity was 90%.

From this study, we concluded that the appropriate MFth is 90%. This value en-

sures that all the simulated mixture spectra triggered the MSB and also optimizes the

processing time. Consequently, the MFth of the “mixture criterion” in the presented

identification methodology is henceforward fixed to 90%.

On the other hand, the system stops iterating when the “mixture criterion” is not

fulfilled or when no new mixed components are identified. In addition, the EDs between

the ICA outputs and their corresponding inputs are compared with the ED between

the ICA inputs. This is done in order to filter out instances where the reference spec-

trum with the lowest ED is not present in the unknown mixture (as may be the case
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Figure 4.10: Mean success rate (and corresponding standard deviation as vertical
bars) as a function of MFth. For each MFth (from 0% to 100% in steps of 5%), the
mean success rate was computed from the percentage of unknown spectra successfully
identified when applying the proposed method 100 times, each time identifying 1000
different unknown spectra. Inset figure shows a zoom for MFth from 75% to 100%

when analysing an unknown spectrum whose corresponding reference spectrum is not

available in the reference spectral library).

Finally, it must be pointed out that this strategy allows the identification of com-

ponents used in a mixture with just one measured spectrum, as long as their respective

spectroscopic signatures are in the unknown spectrum.

Results and discussion

In order to get a good overview of identification system response, two different scen-

arios were analysed. These two scenarios were based on simulated spectra and on

experimental spectra. Sect. C.1.2 of Appendix C summarises the outcome of applying

the generalised identification methodology in simulated environments, which provided

successful identification results. The analysis on experimental environments are re-

ported hereafter. In particular, the developed method was applied to experimental

Raman spectra from handmade mixtures and from paintings. Specifically, the hand-

made samples were manufactured by mixing artist’s pigments in random proportions.

Three real-case examples are presented and discussed hereafter.
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In a first example, the analysed spectrum was measured on a handmade mixture

of the pigments PY1 and PG7, manufactured by Sennelier (see top of Fig. 4.11a).

When the IB was applied to the spectrum one single candidate was found: the PY1

pigment with MF(PY1) = 45.7%. Since this MF is lower than the one established for

the mixture criterion (90%), the MSB was triggered, and then the whole identification

system provided two candidates: the PY1 with MF(PY1) = 77.8% and the PG7 with

MF(PG7) = 71.1%. This result, which suggested that the unknown spectrum may cor-

respond to a mixture of the PY1 and PG7 pigments, was consistent with the analysed

mixture. In top of Fig. 4.11b the spectra can be examined.

The spectrum analysed in a second example was measured on a handmade sample

made by mixing the pigments PY1, PR4 and PB15, manufactured by Sennelier (middle

of Fig. 4.11a). The IB provided one candidate: the PY1 pigment with MF(PY1) =

20.9%. Thus, the MSB was triggered and three candidates were found: the PY1 pig-

ment with MF(PY1) = 84.4%, the PB15 pigment with MF(PB15) = 85.4% and the

PR4 pigment with MF(PR4) = 43.5%. This result suggested that the unknown spec-

trum may correspond to a mixture of the PY1, PB15 and PR4 pigments. Hence, the

methodology was able to identify successfully the three pigments used in the handmade

mixture, although it assigned different MFs to each candidate. Concretely, the PR4

pigment got a relatively low MF due to the fact that it has bands in common with the

other candidates as can be seen in middle of Fig. 4.11b.

In a last example, the analysed spectrum (bottom of Fig. 4.11b) was measured

directly on a spot with a pinkish hue of a painting representing an image of a Saint

Engratia (bottom of Fig. 4.11a), linked to the Aragonese School (17th century). When

the IB was applied to the spectrum two candidates were found, the vermilion pigment

with MF(vermilion) = 30.9% and the white lead pigment with MF(white lead) = 18.4%.

Thus, the MSB was triggered and three candidates were found: the white lead pigment

with MF(white lead) = 84.8%, the vermilion pigment with MF(vermilion) = 82.7% and

the barite pigment with MF(barite) = 74.6%. Consequently, the result suggested that

the analysed sample may correspond to a mixture of the white lead, the vermilion and

the barite pigments. Note that the fundamental band of the pigment identified with

the highest MF is not the fundamental band in the mixed spectrum, which may show

that the system has no difficulties in dealing with mixed spectra of different intensities.

Furthermore, although some secondary peaks of the three pigments were lost due to

noise, the MFs of the identification were relatively high (see bottom of Fig. 4.11c).
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Figure 4.11: Top: a) Unknown Raman spectrum, b) Pre-processed unknown spectrum (1) together with the reference spectra of the
pigments identified PY1 (2) and PG7 (3). Middle: a) Unknown Raman spectrum, b) Pre-processed unknown spectrum (1) together with the
reference spectra of the pigments identified PY1 (2), PB15 (3) and PR4 (4). Bottom: a) Partial image of the analysed painting representing
a Saint Engratia (17th century) -analysed spot marked with a red box-, b) Unknown Raman spectrum, c) Pre-processed unknown spectrum
(1) together with the reference spectra of the pigments identified white lead (2), vermilion (3) and barite (4)
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4.4 Automated pigment classification through Ra-

man spectroscopy

As commented previously, it is well known that Raman spectroscopy is able to distin-

guish different molecular species based on the acquired Raman spectra. The discrimin-

ation between the pigments found in natural and synthetic forms132–134 or in different

crystalline structures135–139 is an important topic in conservation science because the

pigments may differ not only in their chemical and physical characteristics (such as

stability, solubility and hue) but also appeared at different times on the paint market

and thus they may be used as chronological markers. Certain pigments can be found in

different crystalline structures as the copper-phthalocyanine blue pigment for instance,

and the differences in their spectral data may go unnoticed. Indeed, these little dif-

ferences in the spectral data may occasionally lead to a subjective interpretation or to

the need of aggregating data from different analytical methods, making the identific-

ation a costly and time-consuming process. Automated distance-based identification

algorithms as the IB algorithm described in the previous section may not be able to

discriminate little differences as the distance metrics of the corresponding patterns may

be too low that may invalidate the identification criteria implemented therein. Thus,

the development of classification tools that can help the analyst in making decisions

has become a trending topic140–144.

Most papers that handle the classification issue are based on chemometrics where

the identification features are manually retrieved from the spectra. As a result, a certain

degree of subjectivity is still incorporated to infer the classification. Our premise, how-

ever, is that no user input should be required. This means that the process of assigning

the class an unknown spectrum belongs should be fully automated. Hence, multivari-

ate analysis techniques based on machine learning were explored in this research in

order to design an analytical method to automatically classify artistic pigments from

their Raman spectra in a transparent way regarding the classification topic: the mater-

ial’s provenance, the crystalline structure, or any other classification matter. Machine

learning brings together computer science and statistics to quickly gain insights and

make predictions from the input data. Hence, machine learning is used to find pat-

terns in data and to build models that predict future outcomes based on historical

data. Statistical classification is an example of a machine learning task, which is aimed

at identifying to which of a set of categories a new observation may belong based on

a set of reference data containing observations whose category membership is known

beforehand. Generally speaking, two sets of data are defined in the context of machine

learning: the training set and the testing set. Specifically:

- Training set : predefined set of reference data used to train the system. The
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response values of the training dataset are known, i.e. each element of the dataset

includes a label which identifies it with its own category.

- Testing set : set of unlabelled data used to validate the model.

Among the different types of machine learning algorithms, a crucial distinction is

drawn between unsupervised and supervised learning:

• Unsupervised machine learning: These kinds of algorithms draw inferences

from datasets consisting of input data without labelled responses in order to find

patterns and relationships therein

• Supervised machine learning: These kinds of algorithms are trained on the

training dataset using the corresponding labelled responses of each element in

the dataset as a prior information. From it, the supervised learning algorithm

seeks to build a model that can make predictions of the response values for a new

dataset with unknown labelled responses

The following sections discuss the usage of unsupervised and supervised machine

learning techniques for the discrimination of Raman spectra from pigments from dif-

ferent categories showing small differences among them.

4.4.1 Unsupervised classification methodology

The most common unsupervised learning method is cluster analysis, which is used for

exploratory data analysis to find grouping in data. The clusters are modelled using

a measure of similarity. In order to perform an objective discrimination of Raman

spectra from artistic pigments, the use of clustering techniques was proposed. With

this objective, different algorithms were analysed and evaluated depending on the con-

figuration parameters of each technique using simulated spectra whose category was

a priori known. In this sense, a simulated spectrum was generated by combining a

variable number of Lorentzian-profile-based bands with random locations, amplitudes

and Full Width at Half Maximum (FWHM), constrained such that it appeared qual-

itatively similar to real Raman spectra. Specifically, the Lorentzian function which

implements the Raman bands in a simulated spectra is defined as:

f(x, x0, A,B) =
A

1 + ( (x−x0)
B/2

)2
(4.10)

where x0 is the band mean, A its amplitude, and B its bandwidth when the band

amplitude has dropped by a half (FWHM). In particular, the techniques of k-means,

Expectation-Maximisation (EM), hierarchical clustering and Density-Based Spatial

Clustering of Applications with Noise (DBSCAN) were analysed.
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k-means

The basic idea of the k-means145 is to partition n observations into k clusters in which

each observation belongs to the cluster with the nearest mean. To achieve this, the

algorithm minimizes the within-cluster sum of squares (WCSS):

WCSSi =
k∑

j=1

‖xj − µi‖2 (4.11)

where µi is the arithmetic centre of the i-th cluster (i.e. the cluster centroid). The

algorithm starts by creating a set of k clusters randomly distributed. From this initial

setup the algorithm reduces the distance between the members of the cluster and its

centroid is updated at each iteration. The biggest drawback of the k-means algorithm

is that the number of clusters must be set beforehand by the user. However in our

application it is clear that this information will be known beforehand. The most

important configuration options for the k-means algorithm are the number of clusters

(namely k) and the initialisation method. In particular, the initial k centroids can be

set using some criteria instead of randomly. The final result may depend on the initial

position of the cluster centres as the solution may converge to a local optima. Therefore,

the different initialization methods will be tested to select the method which best fits

the requirements of this research. The tested initialization methods were: random (0),

k-means++ (1), canopy (2) and farthest first (3).

Expectation-Maximisation

The Expectation-Maximization (EM)146 is an optimization technique that assigns each

element to a predefined cluster according to its probability of belonging to that par-

ticular group. For this, a Gaussian distribution function is used in order to adjust its

parameters according to how the different elements are adapted to the distribution of

each group. EM is two-step iterative process:

• Expectation: the first step of the process uses the values of the parameters

whether initial or provided by the step maximization of the previous iteration

in order to estimate the belonging probabilities of the elements to each of the

models that characterize the different groups.

• Maximization: the second step of the process takes the belonging probabilities

calculated in the expectation step, re-estimates the distribution parameters that

maximize their likelihood.

The most important configuration options for the EM algorithm are the number of

clusters (k) and the number of iterations expected to achieve convergence.
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Hierarchical clustering

Hierarchical clustering147 methods try to build a hierarchy of clusters. In the case of

agglomerative algorithms, the process starts with each observation creating a cluster.

From there, pairs of clusters are merged. This process is repeated until all the obser-

vations are grouped into a single cluster unless a stop threshold is configured. In this

implementation, the stop threshold is the desired number of clusters to be produced.

Variants of this method rely on how the distance between clusters is considered, the

so called the linkage criteria. As clusters are extended objects, the distance between a

pair of them can be computed from their centroids, their farthest elements, their closest

elements, etc. The most important configuration options are the number of clusters (k)

and the linkage criteria. Regarding the linkage criteria, the following configurations

were tested: single (0), complete (1), average (2), mean (3), centroid (4), ward (5),

adjusted complete (6), neighbour joining (7).

Density-Based Spatial Clustering of Applications with Noise

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)148 is a density-

based clustering algorithm. In DBSCAN, points are classified as core points and out-

liers. A given point becomes a core point if it has more than a predefined number of

points in its surrounding area, in other words a certain number of points are found

within a defined radius. These points are called reachables. If p is a core point, it

forms a cluster with all points that are reachable from it. One of the features of this

algorithm is that if points are isolated they might be considered as noise. In our ap-

plication all points should be treated so a specific configuration will be used to avoid

this behaviour. The most relevant configuration options for DBSCAN are:

• Threshold distance, ε: The distance within, for a given point, the others are

considered reachables.

• Minimum points, N : The minimum number of points to consider within a defined

radius to start grouping points together.

Comparative analysis of clustering techniques applied to Raman spectra

The clustering algorithms were evaluated under controlled test scenarios generated

through simulations. In this way, the performance of the algorithms can be evaluated

by comparing the true information (i.e. the correct category for each simulated spectra)

provided by the simulation against the generated clustering results. It is desirable to

quantify the success rate of the clustering in a single number. This can be used, not

only to characterize the performance in a given situation, but to tune the parameters of

a clustering algorithm in order to optimize the performance. From the simulations we
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know the correct assignment of every simulated spectra to a unique category, i.e. the

true clusters. In this analysis, the success rate has been defined as the ratio between

the correct clustered spectra by the total number of spectra. In order to compute the

correctly clustered spectra, a correspondence between true clusters and the resulting

clusters from each method has to be found. This has been done by the maximum

number of coincidences criteria using the training dataset as testing set.

Prior to the application of clustering, the dimensionality reduction of PCA was

applied to the P reference spectra of the input dataset in order to reduce redundancies

and speed up the processing time. In the recognition case, the main point to bear

on mind when applying PCA is no data loss, achieved by a PCs space of P − 1 di-

mensions. In this way, an unknown Raman spectrum projected onto the PCs space

can be compared with the projected reference Raman spectra using all the available

information. In the classification case though, it is important to highlight the differ-

ences between the input categories. As PCA provides a transformed space in which

the axes are sorted according to the variability in the wavelength domain of the in-

put dataset in a descending order, the inter-category differences are highlighted in the

first PCs. In this sense, a lookup for the dimension of the PCs space providing the

maximum success rate using the training set as testing set should be performed. This

lookup is carried out through an evaluation process based on sweeping the PCs space

dimension, applying the clustering analysis and then computing the success rate for

each case. With this process, both the optimal PCs space dimension and the optimal

configuration parameters for each clustering technique can be obtained.

The workflow of the clustering algorithm evaluation process is shown in Fig. 4.12.

In particular, 100 different datasets were simulated. Each dataset contained P = 60

spectra divided in 3 different groups of 20 spectra each. For each dataset, PCA was

applied sweeping the PCs space dimension from 2 to P − 1 = 59. Then, each of the

analysed algorithms was applied and the success rate was computed for each case.

This analysis allowed to obtain the optimal configuration parameters for each of the

analysed algorithms (see Fig. 4.13). In general, the highest success rates were obtained

with the lowest dimension of the PCs space. The k-means optimal configuration was

k set to 3 (the number of true clusters) with random initialisation. For the EM case,

the optimal k was also set to 3, iterations-independent. For the hierarchical case, the

optimal configuration parameters were single linkage and k set to 3 as well. Finally,

the optimal parameters for the DBSCAN case were a distance threshold set to 5 and

minimum points set to 9. It was concluded that the algorithm that provides the best

success rate and wall-clock performance using PCA as data reduction tool is k-means

with k set to the number of clusters to be created, fixing the PCs space dimension to

the lowest number of PCs providing the maximum success rate. Additional results are

shown in Sect. C.2.1 of Appendix C.
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Figure 4.12: Schematic workflow of the clustering algorithm evaluation process
through simulated datasets consisting of P spectra aimed at obtaining the optimal
configuration parameters for each clustering technique using PCA as a data reduction
tool sweeping the PCs space dimension from 2 to P − 1

Figure 4.13: Success rate as a function of the PC space dimension using the the
optimal configuration parameters: k-means (top left) with k set to 3 (the number of
true clusters). EM (top right) with 5 iterations and k also fixed to 3. Hierarchical
clustering (bottom left) with single linkage and k fixed to 3 as well. DBSCAN
(bottom right) with a distance threshold set to 5 and minimum points fixed to 9
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The methodological scheme of the unsupervised classification system is shown in

Fig. 4.14. The classification of an unknown Raman spectrum is based on a two-step

process. First, the system is trained with P reference Raman spectra looking for the

optimal PCs space dimension, nopt, i.e. the lowest dimension of the PCs space that

provides the maximum success rate when applying k-means with random initialization

and k set to the number of cluster to be created. From this process, the optimal

PCA projection and the k-means centroids are retrieved. Finally, the unknown Raman

spectrum is projected onto the PCs space using nopt PCs and the nearest k-means

centroid is computed for cluster assignment.

Figure 4.14: Overview of the unsupervised classification methodology

Section C.2.1 of Appendix C compiles the results of applying the described unsuper-

vised classification methodology based on PCA and k-means with optimal parameters

to experimental Raman spectra. In particular, the methodology provided successful

results for Raman spectra measured with the same excitation wavelength but it could

not perform a proper clustering of Raman spectra measured using different excitation

wavelengths. This issue may represent a drawback for classifying Raman spectra meas-

ured using different instrument resolution, excitation wavelength or even laser power

of the excitation source. Bearing on mind that a classification methodology should be

a blind method, it should not depend on the measurement configuration of the input

dataset. To overcome this limitation a supervised machine learning-based classification

methodology is described in the following section.
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4.4.2 Supervised classification methodology

A supervised classification methodology was developed in order to classify unknown

Raman spectra according to predefined classes in a consistent way. To do so, it is

necessary to rely on a specific classification strategy that allow the objective comparison

between unclassified spectra and reference classes. This strategy is outlined hereafter.

The classification of artistic pigments fits the standard scheme of statistical clas-

sification149, which is a supervised learning technique in the field of machine learning

and statistics. It deals with the process of identifying to which of a set of classes an

unclassified item belongs to, based on a training dataset containing references whose

class membership is known beforehand. The standard classification scheme is built

from two different stages: data acquisition and data processing. In the case of pig-

ments analysis through Raman spectroscopy, the data acquisition stage is based on

the Raman spectrometer. On the other hand, the data processing stage is composed

of three different modules: feature extraction, classifier and decision-maker. First of

all, the feature extraction is the process of defining a set of features, which most ef-

fectively represent the important information for classification. We selected PCA for

this purpose as it is the technique that best fits the data dimensionality requirements

for this research, as described in the previous section. Then, the classifier is the mul-

tivariate technique aimed at maximizing the inter-class distances whilst minimizing the

intra-class differences from an appropriate set of class features. We selected Multiple

Discriminant Analysis (MDA) for finding a combination of features that separates the

user-defined classes, i.e. training dataset. From the set of extracted features by PCA,

MDA provides a new space, the so-called classification space. Finally, the decision-

maker is the procedure in which an unknown or unclassified element is projected onto

the classification space and is assigned to one of the classes according to some metrics

that will be discussed hereafter.

Next, we describe the characterization of the training dataset in the classification

space and the procedure of class assignment for unknown spectra.

Characterization of the classification space

In the case of pigments analysis through Raman spectroscopy, the training dataset is

composed of sets of reference Raman spectra, i.e. reference classes. These reference

classes are decided by the user according to the classification purpose. The training

dataset is represented by a matrix, S, which is divided in sub-matrices. Each sub-

matrix Si identifies a known class where each row is a spectrum of the i− th reference

class. The classification space is obtained by applying first PCA (feature extractor)

to the training dataset and later MDA (classifier) over the PCA result. In this space,

the training dataset for the i− th class is now represented by a matrix Ci where each
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row is a spectrum in the classification space. Each class is delineated by a region and

is characterized by a centroid (the arithmetic center, µi) and a dispersion matrix (the

auto-covariance matrix, Σi).

In order to perform an efficient classification, proper class separability in the classi-

fication space should be obtained. This class separability is checked by computing the

JMD between all the classes. The classes in the classification space are totally distin-

guishable when JMD is equal to 2 while lower values indicate a worse separability. We

use the class separability as a parameter to generate an adequate classification space,

selecting a proper number of features. As we said previously, the PCs scores obtained

in the feature extraction module are the distinctive features for each class. Then, we

tune the number of PCs scores, successively until there is no improvement in the class

separability. We considered a JMD value greater than 1.75 for achieving good class

separability. In this way, starting from a number of PCs scores equals to the minimum

number of spectra in Ci∀i, the JMD is calculated in the tentative classification space

obtained by performing PCA followed by MDA. The number of PCs scores used is

increased by one until the desired JMD value is achieved or until the number of PCs

scores is greater to the maximum number of spectra in Ci∀i. If the class separability

is achieved through the obtained number of PCs scores, it means that the user-defined

reference classes allow the classification of unknown spectra. Otherwise, no class separ-

ability is achieved with the defined classes and must be re-defined. The organization

chart of this procedure is outlined in Fig. 4.15.

Additionally, taking into account that outliers in a class can deform the class

characterization, a basic statistical rule for outlier rejection is applied to each reference

class in the classification space. This rule is defined as: if x > µi + 2Σi then x is

rejected (being x a spectrum of the i-th class in the classification space). When a

reference spectrum is rejected, the class parameters (centroid and dispersion matrix)

are automatically recomputed for that class.

Class assignment Once the classification space is characterized, we defined a classi-

fication rule to assign an unknown spectrum to a reference class. For this purpose, we

developed an autonomous matching technique based on distance metrics. Specifically,

the ED and the MD were used.

First, we compute the ED between an unknown spectrum in the classification space

(x) and the class centroid (µi). Second, we calculate the MD between an unknown

spectrum in the classification space (x) and the class (Ci). These metrics express

intuitive notions about the concept of distance. While the ED expresses how far apart

an unknown spectrum and the centre of a class are, the MD takes into account the

class dispersion and expresses how far apart an unknown spectrum and a class region
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Figure 4.15: Classification space generation from a training dataset

are. Bearing in mind these meanings we define a classification distance combining the

results of these two different distances, specifically:

CDi(x) = ED(x, µi)MD(x,Ci) (4.12)

In order to classify an unknown spectrum we define a toolkit based on the above

distance which allows to explore the matching of the unknown to a class. To do

so, we firstly compute the classification distance (CD) between classes, the so-called

InterClassCD, which provides a notion on how close the classes are. Note that there

are as many values of InterClassCD as defined classes and the minimum value is due

to the closest classes. Also, we calculate the so-called IntraClassCD, which provides an

idea on how close a spectrum is to its own class. The farthest spectrum from a given

class gives the maximum value of IntraClassCD for that class. Then, the classification

of an unknown spectrum is performed by exploring the classification distance between
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the unknown and each class. The assignment of the unknown spectrum to a reference

class is performed by a matching function defined as:

MFi(x) =


1 if CDi(x) ≤ maxIntraClassCDi

1− CDi(x)

minInterClassCD
if CDi(x) ≤ minInterClassCD

0 otherwise

where CDi(x) is the minimum value of CD between the unknown (x) and the

reference classes, minInterClassCD is the minimum value of InterClassCD and the

value maxIntraClassCDi the maximum value of IntraClassCD for the i−th class. The

matching function expressed in % is intended to help the analyst in the decision-making

process. The methodological scheme of the classification system is shown summarized

in Fig. 4.16. It illustrates the standard classification design together with the approach

proposed in this research.

Figure 4.16: Overview of the supervised classification scheme

Results and discussion

Sect. C.2.2 of Appendix C compiles the verification and validation activities performed

on the developed supervised classification methodology. Specifically, the performance

of the methodology was diagnosed in an under-controlled environment using simulated

data providing successful results. In order to show the performance of the implemented

methodology in experimental environments the developed classification system was

applied to unknown Raman spectra acquired from oil paintings150 and art works. The

spectra for the reference classes were acquired from reference pigment powders. The

experimental spectra used in this research that were measured by the author were

recorded using the portable Raman equipment as described in Sect. 3.2.

No assumptions regarding the input data are made by the classification system,

which processes the data blindly through the presented automatic approach in a fully
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transparent way. An experimental example is reported hereafter. In this case, we dis-

tinguish among ultramarine blue pigment in its natural form (as lapis lazuli) and in

its synthetic form. Therefore, two reference classes were built. The natural form class

was composed of six spectra acquired from Afghan, Siberian and Chilean lapis lazuli

samples. The synthetic form class was composed of six spectra as well, which were

acquired from several synthetic ultramarine blue pigment powders manufactured by

Nubiola. The Feature Extraction module provided a 6-dimensional PCs space with an

accumulative variance of 99.54% (see Fig. 4.17). The classification space is described

by a straight line with two separated regions (one for each class) with a JMD equals

to 2. The classification methodology was applied to twelve unknown spectra meas-

ured in our laboratory from different art works (see Fig. 4.18). Specifically, one of

these unknown spectra was acquired from a Chilean art figure (see Fig. 4.19) whilst

the remaining unknown spectra were measured from different oil paintings. Fig. 4.20

shows the projection of the unknown spectra onto the classification space. The classi-

fication results are reported in Table 4.1. The consistency of the results was assessed

by inspection of the measured areas using a Leica MZ-12 stereomicroscope with a

photomicrographic resolution of 600 magnifications. All the unknown spectra were

successfully classified although with different value of the matching function, ranging

from 47.32% to 100%. Specifically, the spectrum classified with the minimum matching

value (painting 7 in Fig. 4.18) was deeply affected by undesired artifacts (unknown

peaks) in the pre-processed spectrum.

Figure 4.17: Scores of the training set and accumulated variance of PCA projection
as a function of PC. The 6-dimensional PCs space accounts for an accumulative
variance of 99.54%
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4.4. Automated pigment classification through Raman spectroscopy

Figure 4.18: Experimental Raman spectra from ultramarine blue measured on
a Chilean art figure and oil paintings: acquired spectra (black) and pre-processed
spectra (gray)

Figure 4.19: Chilean art figure, expected to be manufactured from lapis lazuli
(natural form of ultramarine blue pigment)

Figure 4.20: Projection of experimental Raman spectra from ultramarine blue onto
the classification space: natural form class (blue triangles), synthetic form class (red
circles) and unknowns (black asterisks)
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Table 4.1: Classification of Raman spectra from ultramarine blue pigments

Artwork Expected Class Assigned Class MF (%)

Chilean art figure Natural Natural 96.90

Painting 1 Synthetic Synthetic 95.80

Painting 2 Synthetic Synthetic 93.44

Painting 3 Natural Natural 100.00

Painting 4 Synthetic Synthetic 93.32

Painting 5 Natural Natural 93.63

Painting 6 Synthetic Synthetic 97.76

Painting 7 Natural Natural 47.32

Painting 8 Synthetic Synthetic 82.29

Painting 9 Natural Natural 67.43

Painting 10 Natural Natural 91.08

Painting 11 Synthetic Synthetic 62.59

4.5 Chapter summary

A generalised methodology to automatically identify Raman spectra was presented.

The method is able to identify single- and multi- component spectra from a single

spectral observation, with no user input or previous knowledge of the analysed sample.

The implemented algorithm is based on the automated matching of spectra using PCA

and ICA, and it is computationally efficient and conceptually simple. However, it must

be pointed out that the spectra need to be pre-processed to enhance the Raman in-

formation for the proposed method to work successfully.

Mixtures are handled through an iterative strategy based on ICA, which allows the

components separation with high accuracy and no parameters to be configured. This

strategy demonstrated to work successfully even when dealing with mixed spectra of

different intensities. However, the separation of components with overlapping funda-

mental bands may cause some information loss significant for the identification of an

overlapped minor component.

The system delivers fully automated identification, qualifying the result with a

Matching Factor that is intended to help the judgement of the identification. Simulated

spectra were used to assess the proper performance of the identification methodology.

Moreover, several hand-made samples from mixed pigments were measured in order to
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evaluate the proposed method and it was applied to real-case spectra from paintings

as well. According to the consistency of the results, the system has great deliver an

accurate and practical method for automated identification of Raman spectra, not only

in pigment analysis, but essentially any material group.

Additionally, a methodology to automatically distinguish between Raman spectra

showing small differences was presented. According to predefined reference classes, the

method is able to classify unknown spectra from a single spectral observation, with

no user input or previous knowledge of the analysed sample. The developed model is

based on automated matching of unclassified spectra using PCA and MDA. The results

showed that the method is suitable for art works analysis as it successfully classified

the analysed Raman spectra in a consistent way. Moreover, the implemented method

is an easy-to-use system and it is straightforward to update when new spectral data

become available.

The implemented classification system has been applied to experimental Raman

spectra, and the obtained results showed that it may play a good auxiliary role in

the analysts’ endpoint classification. Therefore, the system may become a useful tool

to help in the decision-making process, in order to ease the management of pigment

classification from Raman spectra whose reference classes are very similar.

Finally, it is worth noting that the methodologies make no assumptions with respect

to the input data, applying a blind treatment of the Raman spectra and processing

them in a transparent way regardless of the identification or classification purposes.

Consequently, it is perfectly capable of dealing with spectra from different sources,

i.e. recorded with different acquisition systems and measurement conditions. This

fact may represent a significant advantage of the presented automated system in the

applications of pigment identification and classification in art analysis through Raman

spectroscopy, as it is independent of the measurement system and the configuration

used for the acquisition of Raman spectra.
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Chapter 5

Global system of automated

interpretation of spectra in art

analysis

5.1 Chapter overview

This chapter describes the global software platform developed for the automated in-

terpretation of spectra from pigments, which integrates the automated methodologies

described in Chapter 3 and Chapter 4. Specifically, Sect. 5.2 introduces the basics of

data interpretation and describes the software system developed in this research, which

is intended to provide insights from the raw spectra in order to help the spectroscopists

and art analysts in the decision-making process. Besides, it provides an overview of

the software platform development, including requirements specification, architectural

pattern, data model definitions, among other software development tools. Finally,

Sect. 5.4 shows an example of a use case devoted to the automatic interpretation of

experimental spectra from an art work analysed through Raman mapping.

5.2 PigmentsLab: from raw spectra to insight into

pigments

Data interpretation can be seen as a simple linear process, which includes five distinct

steps that depend on each other: acquire, prepare, analyse, report and act (see Fig.

5.1). Indeed, data interpretation is an iterative process and findings from one step may

require the previous step to be repeated with new information. Specifically:

• First of all, we need to obtain the source material before analysing it or acting

on it. Thus, the first step in data interpretation is data acquisition. Acquire
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includes all the processes devoted to retrieve data including finding, accessing,

measuring and recording data.

• After getting the data, the next step is explore it. Exploring data is a part of

the two-step data preparation process namely explore data and pre-process data

through understanding the nature of the data (its quality and format) and pre-

process the data, which includes cleaning or filtering data, modelling raw data

into a more defined data model, packaging it using a specific data format, and

integration of multiple data streams.

• The prepared data then may be ready for a subsequent analysis, which involves

the selection of the analytical techniques to use, building a model of the data,

and analysing the results. This step can take one or several iterations on its own

or might require to go back to steps one and two to get more data or package

data in a different way.

• The following step is reporting the insights gained from the analysis, which in-

cludes an evaluation of the analytical results presenting them in a visual way,

creating reports that include an assessment of results with respect to success

criteria, and making decisions for what actions should follow.

• The last step is acting, i.e. turning insights into action based on the purpose

initially defined for instance to answer questions or for improving business pro-

cesses.

Figure 5.1: Schematic overview of the data interpretation process, which includes
five steps: acquire, prepare, analyse, report and act
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Nowadays, the multi-disciplinary scientific community devoted to the analysis and

preservation of cultural heritage is immersed in the need of handling and interpreting

an overwhelming amount of data. Indeed, the data volumes cultural heritage experts

deal with is exponentially rising due to the emergence of the spectroscopic techniques.

A clear example of the complex data handling processes encountered by scientists in-

volved in the protection of cultural heritage roots in the multi-analytical approaches

taken to the study of the constituent pigmentation in art works. This kind of stud-

ies deal with the characterization of pigments by several spectroscopies (as introduced

in Sect. 2.2.1), mainly X-Ray Fluorescence (XRF)151, X-Ray Diffraction (XRD)152,

Laser-Induced Breakdown Spectroscopy (LIBS)153, InfraRed Spectroscopy (IR)154, Ra-

man spectroscopy and Surface-Enhanced Raman Spectroscopy (SERS)155. Thus, the

spectral measurements of a single point in the art object under analysis provide a note-

worthy volume of data that needs to be stored and properly processed and combined

in order to be appropriately interpreted (see Fig. 5.2).

Figure 5.2: Example of data retrieval through multi-spectral characterization of
the pigmentation in a given spot of an art work

As can be seen, the handling and treatment of a big volume of data is now relevant

for the scientists working in the cultural heritage field, and therefore consuming soph-

isticated data software products and services can no longer be ignored by this scientific

community. Actually, the means to extract insight from spectroscopic data are notice-

ably important as can be retrieved from the fact that the development of increasingly

sophisticated techniques in the spectral data processing has already become a hot topic

of research. In this sense, there is a wide variety of techniques that can be used to

aggregate, manipulate, analyse, and visualise this sort of datasets. As presented in

previous chapters, these techniques generally draw on disciplines such as statistics and

computer science such as machine learning, data mining, pattern classification, cluster

analysis, data fusion, signal processing, and pattern recognition among many others.

In fact, cultural heritage researchers continue to develop new methodologies and im-

69



Chapter 5. Global system of automated interpretation of spectra in art analysis

prove on existing ones, predominantly in response to the need to analyse innovative

combinations of data. Presenting the spectral information in such a way that cultural

heritage analysts can consume it effectively is a key challenge that needs to be met if

analysing spectral data is to lead to concrete actions in the field of conservation and/or

restoration of art works. For this reason, there is currently a remarkable amount of

research and innovation in the field of visualisation, i.e. techniques and technologies

used for creating images, diagrams, or animations to communicate, understand, and

improve the results from data obtained through spectral analysis (see Fig. 5.3).

Figure 5.3: Example of measurements visualisation through spectral mapping

Spectral mapping has demonstrated to be a useful tool to gain insight into the com-

position of art works’ multilayered structures by analysing tiny stratigraphic samples

removed from the objects156,157. When sampling is limited or not possible at all, spec-

tral imaging may still deliver valuable information on the composition and distribution

of the pigments present in painted surfaces. In this way, the surface of an art work

may be inspected to identify, for instance, discontinuities or alterations in the pigments

application, which may give an indication of loss or change in material or overpaint-

ings. Furthermore, restaurateurs often use different materials than the originals in

order to eventually differentiate the original material from what was restored. Ra-

man imaging or Raman mapping is a powerful technique which allows, among other

things, the molecular structure detected through Raman spectroscopy to be visualised

as false-colour images. Therefore, Raman identification mapping is a suitable method

as it is aimed to generate detailed identification images based on the Raman spectra

of the analysed sample. A complete spectrum is acquired at each and every pixel of

70



5.2. PigmentsLab: from raw spectra to insight into pigments

the image, and then interrogated to generate false-colour images based on the identi-

fication of the material composition and structure of the analysed area. Conclusively,

an exhaustive and objective knowledge about the different materials used in art works

is undoubtedly essential. Image data in the form of spectra dominate data storage

volumes in spectral imaging. While a single file containing one spectral measurement

can total a few kilobytes, a single spectral image can require thousands of megabytes

or more to store. Additionally, in a multi-technique imaging approach, a combination

of several spectral images coming from the different spectroscopies commented above

may be needed, resulting in a large data volume of tens of gigabytes.

As commented previously, the identification of pigments used in cultural herit-

age is indispensable to determine correct conservation strategies, to study degradation

processes and to answer authenticity-related questions. Once the spectroscopic meas-

urements are taken from an art work, the main task of the analysts is to extract the

information from the data sets in order to properly interpret the measurements. In this

sense, one of the most crucial interpretations to be performed from the spectral data is

based on their identification. The spectral identification is generally carried out by a

visual comparison between the unknown spectra with an appropriate database of ref-

erence spectra. Since the 20th century, the introduction of synthetic organic pigments

has enormously increased the number of available pigments. Therefore, a complete

database of reference spectra is needed in order to ensure a correct identification. Al-

though several reference spectra from pigments have been published, they are usually

devoted to certain chemical classes. As new publications become available, the hand-

ling of spectral data by the analysts and spectroscopists is becoming more complex.

Therefore, the need of a common platform holding an extensible reference database of

spectra from pigments is of practical interest. The platform proposed herein attempts

to create a reference database of the available pigments integrating at the same time

the corresponding art history information and available spectra from the spectroscopies

generally used in art works analysis.

Consequently, in this chapter we present the design, development and implement-

ation of an integrated software platform aimed to the storage, processing, analysis and

visualization of data coming from elemental and molecular spectroscopies applied to

the study of artists’ materials. The main aim of the system is to establish a refer-

ence framework of objective algorithmic solutions and high-performance visualisation

technologies to aid in the interpretation of spectra. This global system is intended to

provide insight from the raw spectral measurements to help the spectroscopists and art

analysts in the decision-making process.

The implemented software platform, the so-called PigmentsLab, is made up of
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the following modules:

• Database Explorer: an extended, detailed and robust SQL-based database

management system of reference pigments containing art historical information

and integrating different spectral data from the most commonly used spectroscop-

ies in the field of art analysis. This module provides several tools for exploring

and querying the database as well as for showing the pigments information along

with their spectral information.

• Spectral Viewer: an interactive application aimed at viewing spectroscopic

measurements from art materials, implementing also elemental data analysis such

as noise filtering or bands localisation to allow the analyst to quickly analyse the

spectra in a visual way.

• Virtual Spectroscopist: an advanced application for making breakthroughs

regarding the interpretation of spectra from art materials. The system provides

the spectral characterization with no prior knowledge of the composition of the

analysed sample.

A schematic overview of the PigmentsLab platform can be seen in Fig. 5.4.

Figure 5.4: Schematic overview of PigmentsLab: a three-module platform in-
tegrating art-historical and spectroscopic data from art materials as well as high-
performance spectral visualisation and pre-processing technologies, database hand-
ling and management tools, and automated solutions to aid in the interpretation of
spectra
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5.2.1 Software platform development

An overall software development description of PigmentsLab is summarised hereafter,

providing requirements specification, an architectural description, development tools

among other software definitions such as:

• The architecture design, using information flowing characteristics, mapping them

into the program structure

• The data design, describing structures that reside within the software, i.e. at-

tributes and relationships between data objects

• The interface and procedural design, describing internal and external program

interfaces, as well as the design of human interface.

Concretely, the development of the software platform follows the standard Waterfall

model for software development (see Fig. 5.5), which is a sequential software de-

velopment approach in which progress is seen as flowing steadily downwards (like a

cascading waterfall) through the phases of analysis, design, implementation, testing

and maintenance158.

Figure 5.5: Waterfall model schematic diagram in which progress flows from the
top to bottom

Software requirements specification A software system to be developed is de-

scribed through a software requirements specification, which is a collection of require-

ments for a particular software product that performs certain functions in a specific

environment and the criteria for determining whether those requirements are met159.

One of the main software requirements is the programming language. The selected pro-

gramming language for developing the PigmentsLab software platform is Java. Java

is a general-purpose computer programming language that is concurrent, class-based,
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object-oriented, and specifically designed to have as few implementation dependen-

cies as possible. This programming language is intended to let application developers

Write Once, Run Anywhere (WORA), meaning that compiled Java code can run on

all platforms that support Java without the need for recompilation.

According to International Standard ISO/IEC/IEEE 29148:2011 (Systems and

software engineering - Life cycle processes - Requirements engineering), the benefits

of documenting the software requirements include:

• It forces a rigorous assessment of requirements before design can begin and min-

imizes later redesign

• It provides a realistic basis for estimating product costs, risks, schedules and

enhancements

• It provides an informed basis for deploying a product to new users or new oper-

ational environments

Appendix D (Software Requirements Specification of PigmentsLab) enlists the system

requirements that are needed for the development of the software platform proposed in

this chapter for the processing of spectroscopic data applied to the analysis of artists’

materials.

Software architecture The structure of a computing system is known as software

architecture, which comprise software elements, the externally visible properties of those

elements, and the relationships among them160. Formally, the architecture is a reference

frame in which competing interests may be presented, discussing requirements with

users, and constraining the software implementation. In this sense, the architecture

dictates organizational structure for development and maintenance activities. Also, it

allows the achievement of a system’s desired quality attributes such as performance,

modifiability or usability. Consequently, the importance of the architecture for a project

development such as user interfaces roots in the fact that it is a transferable and

reusable abstraction of a computing system.

User interfaces are especially prone to change requests161. New functionalities may

be added to an application, or existing ones may need to be extended upon user re-

quests, or ported to a different platform. All these updates may imply code changes.

Consequently, support for several user interface paradigms should be incorporated from

the software design stage for developing a flexible software system. In this sense,

changes to the user interface should be easy, and even possible at run-time: supporting

different ’look and feel’ standards or porting the user interface should not affect code

in the core of the application. There exist different software architectures for the case

of interactive applications with a flexible human-computer interface. Among them the
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Model-View-Controller architectural pattern (Model-View-Controller (MVC)) stands

out162. This software architecture divides an interactive application into three com-

ponents: the model, the view and the controller, dividing the internal representations

of information from the ways that information is presented to or accepted from the

user:

• The model encapsulates core data and functional core of the application. It is

independent of specific output representations or input behaviour. It encapsulates

the appropriate data, and exports procedures that perform application-specific

processing

• The view displays information to the user. A view obtains the data from the

model. There can be multiple views of the model. Each view has an associated

controller component

• The controller handles user input. In general, it receives input usually as events

that encode mouse movement, activation of mouse buttons, or keyboard input.

Events are translated to service requests for the model or the view. The user

interacts with the system solely through controllers

Views and controllers together comprise the user interface. A change-propagation

mechanism ensures consistency between the user interface and the model, maintaining

a registry of the dependent components within the model. All views and also selected

controllers register their need to be informed about changes. Changes to the state of the

model trigger the change-propagation mechanism. The change-propagation mechanism

is the only link between the model and the views and controllers. All the Graphical

User Interfaces (GUIs) implemented as part of the PigmentsLab software platform

are MVC-based. The general Java-based MVC scheme is represented in Fig. 5.6.

Figure 5.6: Java-based schematic diagram of the Model-View-Controller architec-
tural pattern

Software development tools The platform implementation follows the standard

Continuous Integration (CI) software development workflow163. Generally speaking,

CI is a development practice that requires developers to integrate code into a shared

repository with a relatively high frequency. Each check-in is then verified by an auto-

mated build, allowing to detect problems early. Indeed, by integrating regularly, errors
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may be detected quickly, and therefore may be locate more easily. Concretely, the CI

implementation for the development of PigmentsLab is represented in Fig. 5.7.

Figure 5.7: Overview of the PigmentsLab software platform development work-
flow, based on Continuous Integration (CI). The application of several standard soft-
ware development tools is schematically shown, including mainly Apache SubVersioN
(SVN) for revision control, Apache Ant for software build, Nexus Repository OSS
for software deployments management, Apache Ivy for dependencies management,
and Jenkins as integration tool

Specifically, the following standard software development tools are used:

• Apache SubVersioN (SVN)164: is a centralized software versioning and revi-

sion control system distributed as open source under the Apache License. Soft-

ware developers use SVN to maintain current and historical versions of files such

as source code, web pages, and documentation.

• Apache Ant165: is a software tool for automating software build processes, best

suited to building Java projects.

• Sonatype Nexus Repository166: is a software deployment manager in charge

of handling a storage repository location from which software packages may be

retrieved and installed on a computer. It allows to organize, store, and distribute

software components and supports all popular component formats and is always-

on for continuous delivery and deployment.

• Apache Ivy167: is a dependency manager used primarily for Java projects. An

Ivy eXtensible Markup Language (XML) file describes the software dependencies

on other external modules and components. Then, dynamically, it downloads

the project dependencies from the software repository, and stores them in a local
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cache. This local cache of downloaded artifacts can also be updated with artifacts

created by local projects.

• Jenkins168: is an open source automation server that helps to automate the

non-human part of the whole CI development process. It is a server-based system

running in a servlet container such as Apache Tomcat, supports version control

tools such as SVN, can execute Apache Ant and allows automated repository

deployment. Builds can be automatically triggered by various means, for instance

by a commit in a version control system, ideal for CI software development.

Server specification The above explained software development tools require a

computer device in order to provide the proper functionalities for developing the Pig-

mentsLab software platform. Hence, these tools are integrated in a specific server

for software development. The server is physically located in the UPC premises with

restricted access and runs the software development tools described above. The server

specifications are:

• Operating System (OS): SMP Debian 3.16.39 x86 64 GNU/Linux

• RAM: 2GB, HDD: 25GB, Processors: 1 Intel(R) QEMU Virtual CPU version

2.3.0 2.20GHz

To fulfil the requirements of the above commented software development tools,

LAMP (Linux, Apache, Open-source relational database management system based

on SQL (MySQL), Hypertext Preprocessor (PHP)) was adopted as a development

standard in the server infrastructure. It uses Linux OS as the base layer, Apache

HTTP Server as the web daemon sitting on top the OS, MySQL database to store all

the information served by the web daemon, and PHP to drive and display the data.

Data model definition and data access layer With the aim of processing the

spectra, a proper modelling of the raw data into a more specific model was defined,

packaging the data by means of a specific data format. This abstract modelling allows

to organize elements of data and standardizes how they relate to one another, based on

the ability of a computer to fetch and store data at any place in its memory that can

be itself stored in memory and manipulated by a software system. The implementation

of a data model is generally represented by means of a Unified Modelling Language

(UML) diagram and usually requires developing a set of procedures in order to create

and manipulate instances of that model. This is generally known as data access layer.

Within the PigmentsLab framework, the data model definition and data access layer

are implemented following software development standards, providing routines for the

spectroscopic measurements to be accessed, stored and processed in order to be ap-

propriately analysed. In this sense, both the data model definition and data access

77



Chapter 5. Global system of automated interpretation of spectra in art analysis

layer are compiled in a common library used throughout the PigmentsLab platform,

namely SpectralTools. Fig. 5.8 shows a UML diagram, which provides a visualization of

the data model design for the object-oriented-based definition of spectra. In particular,

Table 5.1 shows the attributes description of the RamanSpectrum object as defined in

SpectralTools. Additionally, Fig. 5.9 presents a UML diagram which schematically de-

scribes the data access layer implementation for the RamanSpectrum object handling

implemented in SpectralTools - the rest of objects defined in the data model (Xrf-

Spectrum, XrdSpectrum, LibsSpectrum, IrSpectrum and SersSpectrum) are accessed

and handled similarly. Hence, database access is performed through Java Database

Connectivity (JDBC), a standard application programming interface for Java. All

objects defined in the data model may be stored to files in a file format specifically

developed in this research, the so-called Spectral Data Format (SDF), which corres-

ponds to the Java-objects serialisation. Standard formats used in spectroscopy such as

SPectroscopiC format (SPC) are properly handled as well by the data access layer of

SpectralTools.

Table 5.1: Attributes description of the RamanSpectrum object defined within the
PigmentsLab data model

Attribute Name Description

id Unique identifier which identifies the pigment

name The name which identifies the pigment

type The type of the pigment: Inorganic or Organic

typeCode The type code of the pigment: Inorganic types=1, organic types=2

ciGroup The Colour Index group of the pigment: PB, PBk, PBr, PG, PO, PR, PV,

PW, PY

ciNumber The Colour Index number of the pigment

ciSubNumber The Colour Index sub-number of the pigment

chemicalName The chemical name of the pigment

formulae The chemical formulae of the pigment

description The description of the pigment

artists The artists that used the pigment

usage The usage of the pigment

inUse Flag indicating whether this pigment is still in use or not

xSamples Spectral domain, Raman shifts [cm−1] in the Raman case for instance

ySamples Spectral intensities [a.u.]

bands The list of spectral bands of the spectrum

excitationSource The excitation source used for acquiring the spectrum [nm]

sourcePower The source power used for acquiring the spectrum [mW]

acquisitionTime The acquisition time used for acquiring the spectrum [s]

accumulations The number of accumulations used for acquiring the spectrum
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Figure 5.8: UML diagram depicting the main design of the data model implementation for the object-oriented-based definition of spectra
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Figure 5.9: UML diagrams outlining the data access layer for the RamanSpec-
trum object handling within the PigmentsLab framework: objects devoted to data
reading (1) and objects dedicated to data writing (2)

5.3 PigmentLabs: modules overview

This section provides an overview of the three main modules that conform the Pig-

mentsLab software platform as schematically outlined in Fig. 5.4: Database Explorer

(for reference spectral database browsing and management), Spectral Viewer (for spec-

tral visualisation and pre-processing tools) and Virtual Spectroscopist (implementing

automated methodologies to help in the spectral interpretation). In particular, a quick

description of the GUIs implementing each module is presented hereafter, focusing on

the main interactions between target users (spectroscopists or data analysts) and data

processing (data handling and automated methodologies described previously).
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5.3.1 Database handling

The PigmentsLab-module devoted to database handling is called Database Explorer.

This module implements a database management system developed to aid spectroscop-

ists and art analysts to quickly retrieve information from the reference pigments present

in the database, supporting data exploration, Structured Query Language (SQL)-based

querying and database management. The main view of Database Explorer is presented

in Fig. 5.10.

Figure 5.10: Main view of Database Explorer

In particular, it provides a List Box, which lists the reference pigments present

in the database. When a reference pigment is selected from the List Box, the system

accesses the database contents for the selected item through JDBC, maps its informa-

tion into the SpectralTools data model and displays it to the user through the several

Text Boxes implemented in the view, mainly:
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• Art historic information:

– Colour Index : group (PB, PBk, PBr, PG, PO, PR, PV, PW, PY) and index

– Type (inorganic/organic)

– Chemical class (according to description in Sect. B.2 of Appendix B)

– General description

• Spectroscopic information. A Tabbed Pane allows to select the spectroscopic

technique to be used: Raman, XRF, XRD, IR, LIBS or SERS. In the Raman

case, for instance:

– Plot of the spectrum in a 2D Canvas

– Excitation source [nm] and source power [mW]

– Acquisition time [s] and accumulations

The information corresponding to the pigment usage is graphically displayed through

a chronological panel which includes the main historical periods (see Fig. 5.11): pre-

history, antiquity, medieval age, early modern, contemporary and present day.

Figure 5.11: Chronological panel displaying the usage of malachite, one of the old-
est known green pigments that occurs in Egyptian tomb paintings and in European
paintings mainly in the 15th and 16th centuries

Finally, Database Explorer contains a menu with three options:

• Pigment: This menu allows to add, update and delete the information from a

given reference pigment. These actions are performed through specifics MVCs.

The pigment update view is shown in Fig. 5.12, showing an example of updating

the database contents of malachite

• Edit: This menu provides pre-defined queries to filter pigments shown in the

List Box by type, chemical class or Colour Index

• Database: This menu provides database management utilities such as database

contents importing or exporting, useful for system maintenance and data backup

activities
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Figure 5.12: View devoted to updating the database contents of a selected reference
pigment

5.3.2 Spectral visualisation and data enhancement tools

The PigmentsLab-module devoted to spectral visualisation and data enhancement

is called Spectral Viewer. This module provides an interactive application with the

objective of visualising spectroscopic measurements obtained from art materials. It also

provides access to different implementations of data pre-processing and enhancement

techniques, such as noise filtering methodologies. The main view of Spectral Viewer is

presented in Fig. 5.13. In particular, it provides a 2D Canvas where the spectral plot

is provided once a spectrum is loaded. Hence, the user may select different options

from the Spectral Viewer menu, which implement the main functionalities for data

visualisation and enhancement of the module:

• Zoom: This option allows to zoom in or zoom out the plot to spectral regions

of interest

• Crop: This option allows to crop the spectral range under analysis

• Pointer: This option allows to add vertical markers or pointers in a selected

point, providing information of both the spectral domain (Raman shift in the

Raman case) and intensity

• Intensities: This option allows to modify the intensity of the spectra in the plot

by a scalar, a factor or the min-max intensities normalisation (Eq. 4.1)

• Filtering: This option provides tools for performing the main data enhancement

activities, i.e. noise filtering. Specifically, different shot noise filtering techniques
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can be selected (Wiener filter169, the median filter, the wavelet filter170, the Fast

Fourier Transform (FFT) filter, and the fuzzy filter48). Besides, the fluorescence’s

baseline rejection methods of polynomial filter or morphology filter51 can be used.

Finally, the automated methodology for noise filtering developed in this research

and described in Chapter 3 can be applied as well from this menu

• Bands: This options allows to perform a bands localisation and modelling

through different mathematical profiles (Lorentzian, Gaussian and Voigt)

Figure 5.13: Main view of Spectral Viewer

5.3.3 Methodologies for automated interpretation of spectra

The PigmentsLab-module devoted to the automated interpretation of spectra is

called Virtual Spectroscopist. This module provides advanced solutions to help spectro-

scopists and art analysts on interpreting the data coming from spectroscopic techniques
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applied to the analysis of art works. The main view of Virtual Spectroscopist is presen-

ted in Fig. 5.14. In particular, it is split in two views: the references view and the

unknowns view. The former is devoted to the selection and visualisation of the refer-

ence spectral library with which the analysis will be performed. The later is focused

on the data to be interpreted.

Figure 5.14: Main view of Virtual Spectroscopist

The references view provides a List Box, which similarly to the Database Explorer

lists the reference pigments present in the database. When a reference pigment is selec-

ted from the List Box, the system accesses the database contents for the selected item

through JDBC, maps its information into the SpectralTools data model and plots the

corresponding spectrum in a 2D Canvas. A Tabbed Pane allows to select the reference

spectral library visualisation mode: spectral representation or PCA projection, which

includes 2D-PC component plots, scores and variance as a function of component and

2D biplots. This view contains a menu with the following options:
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• Zoom: To zoom in or zoom out the plot to spectral regions of interest

• Bands: To perform a bands localisation and modelling through different math-

ematical profiles (Lorentzian, Gaussian and Voigt)

• Classification: To customise the reference training sets in the database used for

classification. This action is performed through a specific MVC. The customise

classification view is shown in Fig. 5.15, showing an example of customisation of

a training set of phthalocyanine blue

Figure 5.15: View devoted to classification customisation of training sets

The unknowns view provides two 2D Canvases. The use of the first one is op-

tional, and allows the visualisation of the art work under analysis to keep track of the

spectral measurement positions on the analysed artwork’s surface. The second one is

focused on plotting the Raman spectra to be interpreted, which can be loaded through

the Spectrum button -for single selection, i.e. one spectrum at a time- or through

the Mapping button -for a set of Raman spectra from a Raman mapping analysis-.

The application also provides a chronological panel aimed at graphically displaying

information corresponding to the candidate period of creation of the art work under

analysis. When the Process button is pressed, the system triggers the data interpret-

ation process (introduced in Fig. 5.1) focused on the analysis of Raman spectra from

pigments as implemented in PigmentsLab. The data interpretation methodology is

graphically represented in Fig. 5.16. Besides, the chronological panel is dynamically

updated according to the pigments identification results. When finished, a PDF report

may be compiled with the analysis results through the Report button.

86



5.3.
P

igm
en

tL
ab

s:
m

o
d
u
les

overv
iew

Figure 5.16: Schematic overview of the data interpretation process adapted to Raman analysis in pigments research as implemented in
PigmentsLab, which includes: data acquisition (through Raman spectroscopy), preparation (pre-processing), analysis (automated data
analysis chain based on pigment recognition and classification), and results visualisation and reporting. The classification is triggered when
an unknown spectrum is recognised as a pigment with a database entry of reference training sets
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The previously described methodology implemented in PigmentsLab for the in-

terpretation of spectra from pigments by means of the noise filtering approach described

in Chapter 3 and the generalised recognition system together with the supervised clas-

sification method outlined in Chapter 4 allows to get insight into pigments in a fully-

automated fashion, helping spectroscopists and art analysts such as art conservators

in the decision-making process. Next, we provide a description of the data processing

workflow implemented in Virtual Spectroscopist for the automated identification of

Raman spectra from Raman mappings applied to art works analysis.

Raman mapping analysis Raman mapping is a powerful technique for generating

detailed chemical images based on an area’s Raman spectra. Specifically, a complete

Raman spectrum is recorded at each and every pixel of the resulting image and inter-

rogated to create false-colour images. In this sense, identifying pigments from Raman

spectra in Raman mapping analysis yields images of pigments distribution. This kind

of images is called Raman identification mapping. PigmentsLab allows the inter-

pretation of the Raman spectra from a Raman mapping analysis (see Fig. 5.17): The

acquired Raman spectra (uij with 1 ≤ i ≤ m and 1 ≤ j ≤ n) are compiled in a mat-

rix of unknown spectra, U , and analysed through the data preparation and analysis

chain based on the methodologies developed in this Ph.D. Thesis. Then, the data in-

terpretation results are visualised through a Raman identification mapping where the

colour of each pixel represents the pigment recognition and classification result for the

corresponding unknown Raman spectrum uij in U .

Figure 5.17: Schematic overview of the data interpretation process applied to
Raman mapping analysis in pigments research as implemented in PigmentsLab
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5.4 Use case: Raman mapping interpretation

The analysis of the pigments composition of a painting was requested (see Fig. 5.18).

The art work, signed by Cecilio Pla (València, Spain, 1860 - Madrid, Spain, 1934), was

initially attributed to this artist, exponent of the Valencian modernist painting. To

carry out this study a Raman mapping analysis was performed. Concretely, a specific

area of the analysed art work was selected (the upper part of a sail), and the Raman

mapping was recorded measuring Raman spectra in steps of 500µm of the selected area

(see Fig. 5.19). Acquisition times were of 120 seconds with 3 accumulations for each

Raman measurement.

Figure 5.18: Painting initially attributed to Cecilio Pla. The selected area under
analysis (corresponding to the upper part of a sail) is marked with a red box

Figure 5.19: Experimental Raman spectra acquired through Raman mapping in
the selected area under analysis of the art work - the upper part of a sail, shown in
the background
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The identification results obtained from the Raman spectra conforming the Raman

mapping by means of the automated data analysis chain depicted in Fig. 5.16 and

implemented in PigmentsLab are shown in Fig. 5.20(a) and (b). These results

spotted out the usage of rutile (introduced in the European painting in 19455), and

α-copper phthalocyanine blue (first used in paintings around 19354). These results

together with the pigments analysis performed in other art work’s surfaces were shown

to be inconsistent with the date of death of the author (1934).

Figure 5.20: Resulting Raman identification mapping representing the identified
pigments (b) and chronological information from this pigment analysis (c) provided
by PigmentsLab

5.5 Chapter summary

The design and implementation of an intuitive, reliable and user-friendly open-source

cross-platform software platform has been presented. Specifically, the system integ-

rates historical and spectroscopic data from art materials as well as advanced tools for

the visualisation and pre-processing of spectra, database handling and management

solutions, and high-performance methodologies to aid in the decision-making process

for the interpretation of spectra. The platform lies in a niche market which calls for

its development, implementation and release to the community.

The system implementation is based on a three-module scheme. Each module is

focused on one of the three main tasks an art analyst usually performs on a daily basis:

the Database Explorer, aimed at quickly retrieving information of reference materi-

als as well as to handle main database management operations; the Spectral Viewer,

provided as an interactive application to visualise spectroscopic measurements from
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art materials, implementing sophisticated data treatment solutions such as noise fil-

tering; and finally the Virtual Spectroscopist, including advanced solutions to help the

analysts and spectroscopists on interpreting spectroscopic data from art works analysis.

The design of the system is based on a specific definition of data model and access

layer, used in a common manner by the three main modules of the platform. In this

sense, the proposed data model definition is certainly a key point in the dissemination

of the platform to the scientific community in the field of cultural heritage, aimed at

standardising the data format in a common fashion.

The global system of automated interpretation of spectra in art analysis here pro-

posed will exceedingly benefit the scientific community devoted to the analysis and

preservation of the cultural heritage, helping to make breakthroughs in processing and

analysing spectroscopic data, and will be the forthcoming reference tool in the scientific

exploitation and interpretation of spectroscopic data from art materials.
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Chapter 6

Raman characterisation of

polymorphic forms of copper

phthalocyanine blue under solvents

and cleaning agents

6.1 Chapter overview

This chapter presents an analysis of polymorphic forms of copper phthalocyanine blue.

To do so, an overview of this pigment is provided in Sect. 6.2. A molecular charac-

terisation aimed at discriminating the different polymorphic forms of the pigment was

performed through Raman spectroscopy from dry pigments and under solvents and

cleaning agents. The results of the spectral classification are provided in Sect. 6.3,

which was carried out using the global system of automated interpretation of spectra

described in Chapter 5.

6.2 Copper phthalocyanine blue: a brief overview

Copper phthalocyanine blue (CuPc) is the most important synthetic organic blue pig-

ment from the 21st century artists’ art works. This pigment is identified in the Colour

Index as Pigment Blue 15 (PB15). Specifically, seven types of CuPc are included in

this category171. Concretely, PB15:0 designs the unstabilised α-modification of CuPc,

PB15:1 for the non-crystallising α-modification of CuPc, PB15:3 for the unstabilised

β-modification of CuPc, PB15:4 for the non-flocculating β-modification of CuPc and

PB15:6 for the unstabilised ε-modification of CuPc - PB15:2 (non-crystallising non-

flocculating α-modification of CuPc) is in general not use as an artistic pigment, and

PB15:5 (γ-modification of CuPc) is not produced by art manufacturers. The α-, β-,
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and ε-modifications of CuPc are used as artistic pigments and are characterised by

differences in stability, solubility and hue172. The α-modification of CuPc was intro-

duced on the European market in 1935, the β-modification of CuPc was patented in

1953 and the ε-modification of CuPc was first used before the 1970s173. Ultramarine,

Prussian blue, cobalt blue and cerulean blue remain in common use, but PB15 clearly

appears as the most widespread artists’ blue pigment. Thus, it is clear that identifying

the polymorphic form of a CuPc may provide chronological details valuable to be used

as marker to date and authenticate art works. In this sense, when a PB15 is detected

in the original paint layers of an art work, the possibility of it to be created before

1935 may be discarded. Additionally, there is a special interest in the identification of

CuPc blue pigment in the art conservation field174. Main conservation issues are related

to the sensitivity of pigments to certain solvents. Hence, CuPc is insoluble in most of

solvents but is partially soluble in aromatic solvents175. According to the literature, the

application of these solvents on a painted surface containing α-modification of CuPc

involves a risk of colour changes, resulting from crystallisation defects176 consisting on

a transformation from α-to-β-modification of CuPc.

Many studies agree that Raman spectroscopy is the most efficient technique to

identify CuPc blue pigment in paints layers143,177,178, even in case of complex mixtures

irrespective to the CuPc concentration (see Fig. 6.1). In conclusion, the raw data

acquired by means of the molecular spectroscopy of Raman spectroscopy provides in-

sight into the pigments polymorphic form through the methodologies integrating the

global system described in Chapter 5. The following section discusses the discrimin-

ation of experimental Raman spectra from CuPc using dry pigments and pigments

under solvents and cleaning agents.

Figure 6.1: Experimental Raman spectra (blue) from a mixture of ultramarine
blue and CuPc. Corresponding references are shown in red and green, respectively
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6.3 Supervised classification of Raman spectra from

copper phthalocyanine blue

The supervised classification methodology described in Sect. 4.4.2 of Chapter 4 was

used to discriminate Raman spectra from the three main crystalline structures of copper

phthalocyanine blue pigment, i.e. α-, β- and ε-modifications. Thus, three reference

classes were built. Additionally to the reference spectra recorded by the author from

pigment powders to generate the training dataset (see Fig. 6.2), a significant set of

reference spectra were supplied by three different researchers and therefore recorded

using different acquisition systems under different measurement conditions.

Figure 6.2: Pigment powders and hand-made samples from different crystalline
structures of copper phthalocyanine blue

In this sense, it is well-known that there may be differences between Raman spectra

recorded with different instruments, which may become a handicap for the purposes

of pigment classification. Indeed, instrument resolution, excitation wavelength or even

laser power of the excitation source can strongly influence the Raman bands179 (see Fig.

6.3). Nevertheless, the classification methodology presented in Chapter 4 is not affected

by these issues as illustrated by the results shown hereafter as long as the user-defined

reference classes are properly defined and represented in the classification space: the

implemented system automatically picked up the spectral markers for classification by

means of the PCs scores regardless of the heterogeneous input data and discriminated

the CuPc classes in the classification space.
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Specifically, the α-modification class of copper phthalocyanine blue consisted of 27

Raman spectra: nine Raman spectra recorded using a 532nm excitation wavelength,

ten Raman spectra recorded using a 633nm excitation wavelength, and eight Raman

spectra recorded using a 785nm excitation wavelength. The β-modification class of

copper phthalocyanine blue consisted of 38 Raman spectra: eleven Raman spectra

were recorded using a 532 nm excitation wavelength, thirteen Raman spectra were

recorded using a 633 nm excitation wavelength, and fourteen Raman spectra were

recorded using a 785nm excitation wavelength. Finally, the ε-modification class of

copper phthalocyanine blue consisted of 14 Raman spectra: ten Raman spectra were

recorded using a 532nm excitation wavelength, one Raman spectrum was recorded using

a 633nm excitation wavelength, and three Raman spectra were recorded using a 785nm

excitation wavelength. The feature extraction module provided a 23-dimensional PCs

space with an accumulative variance of 99.29% (see Fig. 6.4). The classification space

is described by three class regions (one for each reference class) with a minimum JMD

of 1.99 (see Fig. 6.5).

Figure 6.4: PCA scores of the reference training set build from Raman spectra
from α-, β- and ε-modifications of copper phthalocyanine blue, together with the
accumulated variance of PCA projection as a function of Principal Component. The
23-dimensional PCs space accounts for an accumulative variance of 99.29%
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Figure 6.5: Classification space generated from the training dataset of reference
Raman spectra from copper phthalocyanine blue pigment: α-modification class (+),
β-modification class (o), ε-modification class (x)

6.3.1 Experimental results using dry pigments

Table 6.1 presents the classification results for Raman spectra kindly supplied by Marta

Anghelone (Academy of Fine Arts Vienna) measured on hand-made samples built

from copper phthalocyanine blue using dry pigments, i.e. without solvents or cleaning

agents. These hand-made samples were prepared with PB15:1, PB15:3 and PB15:6

pigment powders manufactured by Kremer Pigments, which were mixed with several

binding agents in different proportions and subjected to a UV aging process as reported

in150. We applied the supervised classification methodology to a total of 36 Raman

spectra (see Fig. 6.6) and we obtained a success rate of 100%, showing the consistency

of the implemented supervised classification methodology presented in Chapter 4. Fig.

6.7 shows the projection of the unknown Raman spectra onto the classification space.

The Raman spectra classified with lower matching values were affected by Raman band

shifting, Raman band spreading and intensity inversions.
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Figure 6.6: Experimental Raman spectra from copper phthalocyanine blue meas-
ured on hand-made samples: acquired Raman spectra (black) and pre-processed
Raman spectra (gray)

Figure 6.7: Projection of experimental Raman spectra from copper phthalocyanine
blue onto the classification space: α-modification class (+), β-modification class (o),
ε-modification class (x) and unknowns (black asterisks)
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Table 6.1: Classification of Raman spectra from copper phthalocyanine blue pig-
ments

Sample Expected Class Assigned Class MF (%)

S1 PB15:1, 532 nm, alkyd resin, 1 α-modification α-modification 100.00

S2 PB15:1, 532 nm, alkyd resin, 2 α-modification α-modification 100.00

S3 PB15:1, 532 nm, alkyd resin, 3 α-modification α-modification 100.00

S4 PB15:1, 532 nm, linseed stand oil, 1 α-modification α-modification 89.41

S5 PB15:1, 532 nm, linseed stand oil, 2 α-modification α-modification 86.12

S6 PB15:1, 633 nm, linseed stand oil, 1 α-modification α-modification 20.35

S7 PB15:1, 633 nm, linseed stand oil, 2 α-modification α-modification 24.88

S8 PB15:1, 532 nm, acrylic binder, 1 α-modification α-modification 100.00

S9 PB15:1, 532 nm, acrylic binder, 2 α-modification α-modification 100.00

S10 PB15:1, 532 nm, acrylic binder, 3 α-modification α-modification 100.00

S11 PB15:1, 532 nm, acrylic binder, 4 α-modification α-modification 100.00

S12 PB15:1, 633 nm, acrylic binder, 1 α-modification α-modification 57.99

S13 PB15:1, 633 nm, acrylic binder, 2 α-modification α-modification 34.89

S14 PB15:1, 785 nm, acrylic binder α-modification α-modification 84.30

S15 PB15:3, 532 nm, alkyd resin, 1 β-modification β-modification 100.00

S16 PB15:3, 532 nm, alkyd resin, 2 β-modification β-modification 100.00

S17 PB15:3, 532 nm, alkyd resin, 3 β-modification β-modification 100.00

S18 PB15:3, 532 nm, alkyd resin, 4 β-modification β-modification 100.00

S19 PB15:3, 633 nm, alkyd resin, 1 β-modification β-modification 100.00

S20 PB15:3, 633 nm, alkyd resin, 2 β-modification β-modification 100.00

S21 PB15:3, 633 nm, alkyd resin, 3 β-modification β-modification 85.12

S22 PB15:3, 532 nm, acrylic binder, 1 β-modification β-modification 100.00

S23 PB15:3, 532 nm, acrylic binder, 2 β-modification β-modification 100.00

S24 PB15:3, 532 nm, acrylic binder, 3 β-modification β-modification 100.00

S25 PB15:3, 633 nm, acrylic binder β-modification β-modification 100.00

S26 PB15:3, 785 nm, acrylic binder, 1 β-modification β-modification 100.00

S27 PB15:3, 785 nm, acrylic binder, 2 β-modification β-modification 100.00

S28 PB15:3, 785 nm, acrylic binder, 3 β-modification β-modification 71.83

S29 PB15:3, 532 nm, linseed stand oil β-modification β-modification 100.00

S30 PB15:3, 633 nm, linseed stand oil β-modification β-modification 100.00

S31 PB15:6, 532 nm, alkyd resin, 1 ε-modification ε-modification 79.07

S32 PB15:6, 532 nm, alkyd resin, 2 ε-modification ε-modification 87.80

S33 PB15:6, 532 nm, alkyd resin, 3 ε-modification ε-modification 79.76

S34 PB15:6, 633 nm, alkyd resin ε-modification ε-modification 100.00

S35 PB15:6, 532 nm, acrylic binder, 1 ε-modification ε-modification 100.00

S36 PB15:6, 532 nm, acrylic binder, 2 ε-modification ε-modification 100.00
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6.3.2 Experimental results using pigments under solvents and

cleaning agents

In order to perform a Raman characterisation of polymorphic forms of the CuPc pig-

ment under solvents and cleaning agents the following products commonly used by art

conservators were selected: white spirit, dimethyl sulfoxide, formic acid, toluene and

xylene. Specifically:

A. White spirit: Solvent extracted from petroleum, colourless or slightly yellowish,

with odour of kerosene, very little soluble in water and with a boiling point

between 140◦C and 200◦C. Used to dissolve oils, waxes, paraffins and resins.

B. DiMethyl SulfOxide (DMSO): Solvent widely used in the field of restoration

because it is an optimal cleaning agent for various types of materials. It is

somewhat toxic with respect to other products with similar characteristics. It

dissolves most of the salts, many protein substances and the vegetable gums. It

is therefore a solvent that, also considering easy availability, is used in numerous

operations that are performed in the restoration, except for that in which the

solvent action is too interested in some original materials of the paintings.

C. Formic acid: Formic acid is one of the most penetrating solvents. The most

dangerous solvents for the original pictorial materials, evidently are those that

being very penetrating, also present a strong and long retention. Therefore formic

acid is in category one of the solvents which are the strippers; very penetrating

and high and long retention, but also a powerful irritant to the skin and mucous

membranes. It is effective when looking to remove layers based on proteins.

D. Toluene: It is an aromatic hydrocarbon, liquid insoluble in water with a charac-

teristic smell to the thinner of paintings. It is used as solvent for paints, coatings,

rubber, resins, thinner in nitrocellulose lacquers and in adhesives.

E. Xylene: It is a colourless liquid derived from flammable benzene and sweet

odour. It is used as solvent in paints, rubber, leather and related industries.

Xylenes are flammable, really irritant and poisonous.

Several experimental hand-made samples were prepared to analyse the effect of

the selected solvents and cleaning agents on the α-, β- and ε-modifications of copper

phthalocyanine blue. In particular, the two different α-modification of CuPc were used:

the unstabilised α-modification of CuPc (PB15:0) manufactured by M. Graham (refer-

ence code 33-141), and the non-crystallising form (PB15:1) manufactured by Kremer

Pigments (reference code 23050). In addition, the unstabilised β-modification of CuPc

(PB15:3) and the unstabilised ε-modification of CuPc (PB15:6) were also studied, both
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manufactured by Kremer Pigments as well (reference codes 23060 and 23070, respect-

ively). In the first step of the samples preparation, a paint layer was painted with

the mentioned polymorphic forms of CuPc. Then, the selected solvents and cleaning

agents were applied to generate each sample, taking great care not to contaminate the

samples, i.e. using a new and different solvent applicator for each sample and solvent

product. Finally, the samples of pigments under solvents were subjected to a hot

air-based drying process for a 15 minute period. A picture taken during the samples

preparation showing the materials used to perform the Raman characterisation of CuPc

under solvents and cleaning agents is presented in Fig. 6.8.

Figure 6.8: Experimental samples preparation using different polymorphic forms
of copper phthalocyanine blue under solvents and cleaning agents

The resulting experimental samples built from the unstabilised α-modification of

CuPc (PB15:0), the non-crystallising form (PB15:1), the unstabilised β-modification

of CuPc (PB15:3) and the unstabilised ε-modification of CuPc (PB15:6) under solvents

and cleaning agents -white spirit (A), dimethyl sulfoxide (B), formic acid (C), toluene

(D) and xylene (E)- is shown in Fig. 6.9. Qualitatively, the effect of the solvents and

cleaning agents on the samples was different: the PB15:1 and PB15:6 samples -more

stable forms of CuPc- better withstood the solvents application than the PB15:0 and

PB15:3 samples. DMSO and formic acid due to their penetration power very negatively

affected all the samples, i.e. the pigment concentrations were severely decreased after

the application of these solvents.
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Figure 6.9: Experimental samples of α- (PB15:0 and PB15:1), β- and ε-
modifications of copper phthalocyanine blue under solvents and cleaning agents:
white spirit (A), dimethyl sulfoxide (B), formic acid (C), toluene (D) and xylene (E)

Raman spectra were acquire from these samples (see Raman spectra in Fig. 6.10).

Acquisition times were of 100 seconds with 4 accumulations for each Raman meas-

urement. Fig. 6.10 shows the projection of the Raman spectra onto the classification

space. The resulting Raman identification mapping obtained through the automated

data interpretation process implemented in PigmentsLab as described in Chapter 5

is shown in Fig. 6.12.

Figure 6.10: Experimental Raman spectra from α- (PB15:0 and PB15:1), β- and
ε-modifications of copper phthalocyanine blue under solvents and cleaning agents:
white spirit (A), dimethyl sulfoxide (B), formic acid (C), toluene (D) and xylene (E).
Acquired Raman spectra (black) and pre-processed Raman spectra (gray)
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Figure 6.11: Projection onto the classification space of experimental Raman spec-
tra from CuPc under solvents and cleaning agents -white spirit (A), dimethyl sulfox-
ide (B), formic acid (C), toluene (D) and xylene (E)-: α-modification class (+),
β-modification class (o), ε-modification class (x) and unknowns (black asterisks)

Figure 6.12: Resulting Raman identification mapping representing the identified
and classified pigments obtained through PigmentsLab
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The colours of the lower rows (yellow and red) of the Raman identification mapping

indicate that no polymorphic form transformation was produced after the application

of the selected solvents and cleaning agents (white spirit (A), dimethyl sulfoxide (B),

formic acid (C), toluene (D) and xylene (E)), i.e. the non-crystallising α-modification

of CuPc (PB15:1), the unstabilised β-modification of CuPc (PB15:3) and the unstabil-

ised ε-modification of CuPc (PB15:6) correspondingly remained in their original poly-

morphic form.

However, we can see a polymorphic form transformation in the two latest columns

of the top row of the Raman identification mapping: a transformation from α- to

β-modification of CuPc occurred when the solvents toluene (D) and xylene (E) were

applied to the unstabilised α-modification of CuPc (PB15:0). Consequently, the ap-

plication of these cleaning agents caused a change in the molecular crystallization of

the PB15:0 pigment, which was detected in the raw data acquired through Raman

spectroscopy and processed, analysed and visualised through PigmentsLab.

6.4 Chapter summary

A Raman characterisation of polymorphic forms of copper phthalocyanine blue (CuPc)

from dry pigments and under solvents and cleaning agents was presented. The main

importance of performing this kind of analysis roots on the fact that the CuPc being

the most widespread artists’ blue pigment may provide chronological details valuable

to be used as marker to date and authenticate art works. Indeed, the differences in the

crystalline structures of CuPc (α-, β- and ε-modifications of CuPc) may go unnoticed,

which may occasionally lead to a subjective interpretation.

Art conservators most frequently use solvents to remove highly discoloured or dis-

figuring varnishes. In addition to being a potential health hazard to the user, solvents

can cause serious and irreversible damage to sensitive paint layers. In this sense, the

CuPc is partially soluble in aromatic solvents, which may represent an issue in the

art conservation field, since the application of these solvents on a painted surface con-

taining α-modification of CuPc may produce crystallisation defects resulting from an

α-to-β-modification of CuPc transformation.

The automated data interpretation process described in Chapter 5 was used to dis-

criminate Raman spectra from the three main crystalline structures of copper phthalo-

cyanine blue pigment, i.e. α-, β- and ε-modifications of CuPc. Thus, three reference

classes were built to create the reference training set, not only using Raman spectra
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measured by the author but also acquired in different research laboratories, specific-

ally by Nadim C. Scherrer from the Bern University of Applied Sciences and Marta

Anghelone from the Academy of Fine Arts Vienna. In this sense, the implemented

system automatically obtained the spectral markers for classification through the PCs

scores regardless of the heterogeneity of the input data used to train the system.

In particular, two cases were analysed. In the first case, the study of dry pig-

ments was analysed. In this case, several experimental Raman spectra from hand-

made samples were used where the class-membership was a priori known. The global

system of automated interpretation of spectra implemented in this Ph.D. Thesis, Pig-

mentsLab, was used to process the Raman spectra from the hand-made samples. It

successfully classified the analysed Raman spectra in an automated way, demonstrating

the consistency of the implemented methodology.

In the second case, the effect of several pre-selected solvents and cleaning agents on

the crystalline structures of CuPc was analysed. In this case, the application of Pig-

mentsLab to a set of Raman spectra from a Raman mapping analysis performed on

samples built from different polymorphic forms of copper phthalocyanine blue helped

to visualise the effect of those solvents in the molecular crystallisation of CuPc. In-

deed, a transformation from α- to β-modification of CuPc occurred when the solvents

toluene and xylene were applied to the unstabilised α-modification of CuPc. The α-

to β transformation resulted to be irreversible.

Conclusively, permanent damage can easily result from even the most cautious

attempts to clean a painting although removing varnish layers is not always advisable.

Should it become necessary to clean a painting, its pigments composition should be

identified. If a CuPc is present then the usage of aromatic solvents such as toluene and

xylene should be avoided, as retrieved from the results exposed in this chapter, where

a change in the molecular crystallization of the unstabilised α-modification of CuPc

was detected under the application of those solvents.
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Chapter 7

Conclusions and future work

7.1 Summary of conclusions

This Ph.D. Thesis belongs to the challenging research area of data interpretation,

specifically in the field of Raman spectroscopy applied to art works analysis. The

data interpretation is generally outlined in a five-step process composed by acquisi-

tion, preparation, analysis, reporting and acting. The fully automation of the data

interpretation process was developed in this Ph.D. Thesis to gain insight from raw

spectra into pigments in a systematic and objective way. In this sense, the automation

of the spectral interpretation process implied the development and analysis of several

algorithms such as noise filtering, matching-based identification and spectral classific-

ation. For that purpose, the pigments interpretation process required the design and

implementation of a useful supporting tool to retrieve an automatic identification of

Raman spectra from artistic pigments.

Data acquisition on art works through Raman spectroscopy is based on the Raman

scattering, which is produced when a monochromatic light beam makes contact to the

analysed material and provides molecular information of the material under analysis.

This non-destructive technique allows in-situ analysis obtaining objective results in

real time. Consequently, Raman spectroscopy is a suitable technique that meets the

demanding requirements of art works analysis. Pigment identification may deliver

decisive information for the study of both historic and modern paint in the fields

of art conservation and the forensic sciences: the signature of a pigment obtained

by Raman spectroscopy is unique and allows the unambiguous identification of the

analysed pigment through its molecular spectrum. After a brief description of the

Raman spectroscopy equipment available in the Universitat Politècnica de Catalunya

(UPC) laboratory and its main application -art analysis-, several issues were exposed.

In this kind of analysis, coatings, pollutants or binding media among other external

agents may degrade the quality of the Raman measurements by increasing the noise
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impact. Consequently, a fully-automated noise filtering methodology was designed,

developed, implemented and analysed, which enhances the Raman information helping

in the interpretation of Raman spectra.

The novel denoising approach that was developed uses the same scheme for both

shot noise reduction and fluorescence’s baseline removal. Concretely, the developed

noise filtering method is based on p-spline fitting, a piecewise polynomial curve fitting

technique generally used for data smoothing. One of the key points of the developed

denoising methodology is the retrieval of the location of the control points or knots in

which the polynomial pieces are joined. Hence, a strategic selection of knots according

to the shape of the input Raman spectra was developed by making use of mathematical

morphology operations for knots sequence retrieval. In this sense, mathematical mor-

phology operations retrieve the morphology, i.e. the shape, of the Raman information,

and adequately preserves positions and intensity ratios of the Raman bands.

The developed fully-automated noise filtering methodology relies on mathemat-

ical morphology together with p-spline fitting and demonstrated to be a consistent

approach for data enhancement in Raman spectroscopy applied to pigments analysis.

The consistency of the denoising method was shown through several tests on both

simulated and experimental cases which provided successful results. The method re-

duces the interferences coming from the main noise sources in Raman spectroscopy

-shot noise and fluorescence’s baseline- and enhances the Raman information in fully

automatic way, i.e. requiring no user intervention.

Thanks to the data preparation performed through the developed noise filtering

methodology, the proper data analysis stage may be carried out. To do so, a generalised

methodology to automatically identify Raman spectra was designed, developed, imple-

mented and analysed. This recognition method is able to identify single- and multi-

component spectra from a single spectral observation. This recognition is performed

with no user input or previous knowledge of the analysed sample. The implemen-

ted matching-based identification algorithm relies on Principal Component Analysis

(PCA) and Independent Components Analysis (ICA) and is computationally efficient

and conceptually simple.

The developed generalised identification methodology handles multi-component

Raman spectra by means of an iterative strategy based on ICA, which allows to deblend

the components in the mixture with high accuracy and no parameters to be configured.

This deblending strategy demonstrated to work successfully even when dealing with

mixed spectra in different concentrations, i.e. showing their spectral fingerprints with

different intensities. Besides, it avoids the manufacturing of reference mixtures from all

possible mixtures of pure pigments, with all the variability regarding to relative intens-
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ities that this could involve and allows the application of the proposed identification

criteria without adding complexity. That is, the generalised identification methodology

speeds up the identification process saving computing resources and time.

The spectral recognition system delivers fully automated identification, qualifying

the result with a Matching Factor (MF) that is intended to provide guidance in the

identification process and should be taken as a value to help the user to make a fi-

nal decision. The performance of the identification methodology was assessed through

simulated spectra and evaluated through several hand-made samples from mixed pig-

ments, and it was applied to real-case spectra from paintings providing consistent

results. Therefore, the developed identification system become a practical method

for the automated identification of Raman spectra, not only in pigment analysis, but

essentially any material group.

The identification system was extended with an automatic classification methodo-

logy in order to distinguish between Raman spectra showing small differences among

them. In a first attempt, the classification methodology relied on an unsupervised ma-

chine learning technique based on clustering analysis. Specifically, it was built from a

combination of PCA for feature selection and k-means for data clustering. Neverthe-

less, the unsupervised-based classification method was not able to perform a proper

clustering of Raman spectra measured using different excitation wavelengths. This is-

sue represents a drawback for classifying Raman spectra measured in different Raman

laboratories that most likely use different excitation sources: a classification methodo-

logy should be a blind method, it should not depend on the measurement configuration

of the input dataset. To overcome this issue a supervised machine learning-based clas-

sification methodology was developed.

According to predefined reference classes, the developed supervised classification

methodology is able to classify unknown spectra from a single spectral observation,

with no user intervention or a priori knowledge of the analysed sample. The developed

classifier relies on PCA and Multiple Discriminant Analysis (MDA) and demonstrated

to be a suitable tool for art works analysis as it successfully classified the analysed

Raman spectra in a consistent way. The implemented classification system was applied

to experimental Raman spectra from pigments, and the obtained results showed that

it may play a good auxiliary role in the analysts’ endpoint classification.

The methodologies implemented in this Ph.D. Thesis were integrated in a global

system for the automated interpretation of spectra from pigments analysis, namely

PigmentsLab. Hence, the design and implementation of an intuitive, reliable and

user-friendly open-source cross-platform software platform was developed. Specific-

ally, besides the above-commented methodologies, the system integrates historical and
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spectroscopic data from art materials as well as several tools for spectral visualisa-

tion and database management, in order to aid in the decision-making process for the

interpretation of spectra.

The system implementation is built upon a three-module scheme according to the

three main tasks spectroscopists and art analysts usually perform on a daily basis: the

Database Explorer -to retrieve information of reference materials as well as to handle

main database management operations-, the Spectral Viewer -interactive application

to visualise spectroscopic measurements from art materials-, and finally the Virtual

Spectroscopist -including the developed automated methodologies in this Ph.D. Thesis

to help on interpreting spectroscopic data from art works analysis. The developed

system relies on a specific definition of data model and data access commonly used

throughout the implemented platform, aimed at standardising the spectral data format.

The combination of the automated methodologies for recognition classification is

the basis of the main automated data interpretation process implemented in Pig-

mentsLab. It is worth noting that, together with the developed noise filtering ap-

proach, these methodologies make no assumptions with respect to the input data,

applying a blind treatment of the Raman spectra and processing them in a transparent

way regardless of the interpretation purposes. Consequently, it is perfectly capable

of dealing with spectra from different sources, i.e. recorded with different acquisition

systems and measurement conditions. This fact may represent a significant advantage

of the presented automated system in the applications of pigment identification and

classification in art analysis through Raman spectroscopy, as it is independent of the

measurement system and the configuration used for the acquisition of Raman spectra.

The global system of automated interpretation of spectra in art works analysis

integrates the developed noise filtering and identification and classification methodo-

logies. It is expected to exceedingly benefit the scientific community devoted to the

analysis and preservation of the cultural heritage, helping to make breakthroughs in

processing and analysing spectroscopic data as a reference tool in the scientific exploit-

ation and interpretation of spectroscopic data from art materials.

Finally, a Raman characterisation of the most widespread artists’ blue pigment

-copper phthalocyanine blue (CuPc)- was performed using PigmentsLab. Analysing

the crystalline structures of CuPc (α-, β- and ε-modifications of CuPc) may provide

chronological markers to date and authenticate art works, but also may provide guid-

ance to art conservators in painting cleaning through solvents application. In this sense,

the CuPc is partially soluble in aromatic solvents, and applying those solvents may

produce crystallisation defects resulting from an α-to-β-modification of CuPc trans-

formation.
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Two different cases were analysed. In the first case, the study of dry pigments

was analysed through experimental Raman spectra from hand-made samples where

the class-membership was a priori known. PigmentsLab was used to process the

Raman spectra from the hand-made samples and successfully classified them in an

automated fashion, demonstrating the consistency of the implemented methodology.

In the second case, the effect of several pre-selected solvents and cleaning agents on

the crystalline structures of CuPc was analysed through a set of Raman spectra from a

Raman mapping analysis. This analysis was performed on samples built upon different

polymorphic forms of copper phthalocyanine blue under solvents and cleaning agents.

The automated data interpretation process and visualisation routines implemented in

PigmentsLab depicted an irreversible transformation from α- to β-modification of

CuPc occurred when the solvents toluene and xylene were applied to the unstabilised

α-modification of CuPc, confirming the transformation effect reported in the literature

through Raman spectroscopy. Attending to the obtained results, the usage of aromatic

solvents such as toluene and xylene should be avoided if CuPc is present in the paint

layer.

Summarizing, the usage of the designed, developed and analysed automated meth-

odologies integrated in the implemented global system for the automated data inter-

pretation of spectra from art works analysis, PigmentsLab, can play a good auxiliary

role in the analysts’ endpoint interpretation, providing insight from the raw spec-

tral measurements into pigments. The implementation is an easy-to-use system and

straightforward to update when new spectral data become available. The system has

great potential as an accurate and practical method for the automated interpretation

of Raman spectra for not only pigment analysis, but essentially for any material group.

7.2 Future work

From the research developed in this Ph.D. Thesis several promising topics for future

work were raised. The following list compiles preliminary directions for these new

research topics.

1. Compilation of a larger high-quality reference spectral
database

The compilation of a larger high-quality reference spectral database is indispensable

to proceed in all the topics for future work. In addition to acquiring more data, the lar-

ger high-quality reference spectral database to be compiled may include high-quality

spectra coming from different spectroscopic techniques (mainly X-Ray Fluorescence

(XRF), X-Ray Diffraction (XRD), Laser-Induced Breakdown Spectroscopy (LIBS),
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InfraRed Spectroscopy (IR), Raman spectroscopy and Surface-Enhanced Raman Spec-

troscopy (SERS)).

Eventually, the database should include all the spectra from the reference pigments

used in art, including all artistic movements from prehistory to nowadays. This implies

that the database should be dynamically updated in order to include the spectra from

new materials that may be developed. Hence, the database will provide increased value

to the community devoted to the analysis of cultural heritage, gathering together all

the information (art historic and spectroscopic) from artistic materials in a common

reference framework.

As part of increasing the value provided by a larger high-quality reference spectral

database, one may complete not only the labelling of already existing spectral data

but the new spectra to be measured from reference pigments as well. In this sense,

the following research lines will benefit from a larger high-quality reference spectral

database:

- Including reference spectra from all the materials used in art works may increase

the system robustness in the recognition stage, avoiding ambiguities in a system-

atic and objective way

- Extending the reference datasets used to train the system may allow the handling

of more classification cases

An example of benefit from a larger database is based on extending the reference

spectra for classification from the power and vibrant cadmium-based pigments, which

were beloved of masters including Monet, Matisse, Cézanne and Daĺı. These pigments

face a ban recently raised in the European Union thanks to its potential toxicity. There-

fore, the identification and classification of cadmium pigments will be a top priority in

the near future. In this sense, the automated methodologies presented in this Ph.D.

Thesis may serve as a helpful tool in the analysis of cadmium pigments. Hence, pig-

ment powders of reference cadmium-based pigments were newly purchased, including

cadmium yellow and cadmium red from different manufacturers (such as Winsor and

Newton), which need to be measured and labelled.

2. Algorithmic improvements

Several improvements may be included in the automated data processing analysis

chain in order to increase the robustness of the overall automatic recognition method-

ology. Specifically, two main improvements may be developed:

• 2.1 Application of clustering analysis to the reference spectral library:

Including a pre-processing stage in the reference spectral library projection based
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on clustering analysis may be useful to better handle similar reference Raman

spectra in the PCs space from pigments from the same chemical category for

instance, easing the identification of unknown Raman spectra of such instances

• 2.2. Deblending process improvement in spectral recognition: The

ICA-based approach for spectral deblending in the generalised recognition meth-

odology of Raman spectra may be improved through band modelling through

different profiles such as Lorentzian, Gaussian or Voigt functions. This band

modelling may simplify the handling of multicomponent Raman spectra as sug-

gested by preliminary analysis performed using Lorentzian-based band modelling

where the separation of components with overlapping fundamental bands did not

generate information loss

3. Framework improvements

In general software systems, the data is usually picked and transferred to the place

where processing happens and then the data is shown to the user. Downloading data

from a given repository may consume much of an institution’s network resources and

severely impact the overall analysis time. Storing and analysing big volumes of data is

becoming a challenge not just for independent researchers but for large-scale research

centres as well. By greatly reducing both the download time and the storage size of

the data, it is demonstrated that the “big data” paradigm of moving computation to

the data can be of practical interest.

Consequently, the main platform infrastructure of the global system of automated

interpretation of spectra from artistic pigments developed in this Ph.D. Thesis plat-

form infrastructure may be updated to a remote server-based system. This way, the

data may be located in a single repository node, therefore reducing the time devoted to

data downloading and the disk usage of the analyst’ computer. Besides, the data pro-

cessing (mainly noise filtering and identification plus classification) may be performed

on demand in the server node, reducing the CPU processing load of the end-user.

This new framework implies the study of two topics. First, the different architec-

tures of data location need to be analysed in order to develop a fault tolerant system

in terms of data redundancy. Finally, job scheduling systems should be deployed in

the processing node in order to serve to the users appropriately in terms of preventing

concurrency data access issues.

4. Extend Raman characterisation of solvent-unstable pig-
ments
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Paint layers in art works may acquire a wide variety of deposits or coatings in

their lifetime, any of which might be considered to harm their aesthetic or historical

integrity therefore justifying removal. Hence, cleaning of paintings by removing varnish

layers are activities generally performed in the art conservation field. In this sense, the

prime objective of art conservators is to reveal the original paint layer, whilst reducing

the associated risks regarding the health of the art conservators. The application of

specific solvents and cleaning agents may produce risk to the integrity of the original

-even with the mildest cleaning agents there will always be some risk of damaging the

art object.

In order to prevent permanent damage resulting from cleaning activities the iden-

tification of pigments in art works should be carried out. Hence, successful painting

cleaning is based on identifying a cleaning agent which is able to remove the coating

without affecting the underlying art materials. Good practice in painting cleaning relies

on a risks evaluation and on selecting proper cleaning agents and strategies through

careful documentation. As a result of the above-described issue, two new lines of

research were raised:

1. Knowing which pigments are solvent-unstable is a first-pass analysis. Thus, re-

trieving a list of solvent-unstable pigments used in art needs to be performed.

The existing literature and materials documentation may provide support to per-

form this activity. Once this list is compiled, a Raman characterisation (like the

one described in this Ph.D. Thesis) should be performed in order to evaluate the

risks of applying cleaning agents to provide feedback to art conservators in terms

of suggestions on which solvents to apply depending on the original art materials

present in the paint layer

2. Additional Raman analysis of polymorphic forms of copper phthalocyanine blue

may be performed under further solvents and cleaning agents. In this sense, a

total of 20 new solvents and cleaning agents generally used by art conservators

were newly purchased. The effect of these solvents should be evaluated through

a Raman characterisation, taking special care of any crystalline structure trans-

formation

5. Add support to disaggregating methodologies

The target software platform may include data from different spectral sources. The

combination of such data may provide great insights into pigments. Therefore, the

global system of automated data interpretation developed in this Ph.D. Thesis may

include support to disaggregating methodologies and data fusion methods. Hence,
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increased value will be provided based on designing, developing and implementing

automated interpretation approaches based on combining spectral data coming from

different spectroscopic techniques to help the spectroscopists in the decision-making

process. In this sense, signal processing techniques should be explored to implement

data fusion and disaggregating methodologies in order to extract patterns from data

including association rule learning for discovering interesting relationships, i.e. “asso-

ciation rules”, among variables in large databases.
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Appendix A

Noise filtering methodology:

Performance analysis

A.1 Analysis on simulated Raman spectra

The proposed noise filtering methodology was tested using simulated spectra. Shot

noise was simulated from a zero-mean Gaussian distribution and variable variance.

Also, different artificial profiles were simulated to mimic the fluorescence’s baseline,

which were selected in a heuristic way but similar in appearance to that of Raman

spectra. In particular, four simulated profiles were used: polynomial, linear, sigmoidal

and sinusoidal.

Comparisons were performed with the proposed filtering approach and several tech-

niques in common use to filter the shot noise, such as the Wiener filter, the median

filter, the wavelet filter, the Fast Fourier Transform (FFT) filter, and the fuzzy filter.

For the Wiener filter the noise was estimated from the ideal spectra, and the response

function was used with no smearing. The median filter was run several times with

window sizes ranging from 3 to 11 data points and the window providing the lowest

RMSE between the denoised and the ideal spectra was selected. The wavelet filter was

performed by means of the standard wavelet soft thresholding with default parameters.

The FFT filter was run several times with rectangular filters of different sizes, selecting

the one providing the lowest RMSE.

Additionally, comparisons with respect to baseline rejection were carried out with

the here proposed filtering methodology, the morphology-based filtering approach pub-

lished in51 and the conventional polynomial approach, being the last one the most

popular method in Raman spectroscopy for subtracting the fluorescence’s baseline.

The conventional polynomial method was run several times selecting the polynomial

degree that provided the lowest RMSE.
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Unlike the proposed methodology, the general techniques in common use tested

are focused on either shot noise filtering or baseline rejection. Therefore, to perform

a proper comparison with respect to the filtering approach presented in the current

paper, the previously commented shot noise filtering techniques were combined with

the baseline filters above-mentioned. In particular, 100 noisy spectra were simulated

and the RMSE between the ideal and the filtered spectra was computed to compare

the results of the here proposed approach and each of the combinations of a shot noise

filtering technique with a baseline filter.

The results, i.e. mean RMSE and standard deviation, are shown in Table A.1 - the

best-degree polynomial filter is represented as PF and the morphology-based filter51 is

represented as MF. On average, at the noise levels tested the here presented method

outperforms the combination of the other techniques. From the results we may also

say that the proposed filter provides the least distortion of the Raman bands, which is

very useful when the spectrum must be subsequently processed in order to identify the

material or quantify its proportion in mixtures. Additional test results using simulated

spectra can be found in the Fig. A.2 and Fig. A.1.

Figure A.1: Comparison of the performance on simulated spectra of the best-
degree polynomial approach, the morphology filter, and the presented noise filtering
method
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Figure A.2: a) Comparison of the performance of several shot noise filtering tech-
niques on simulated spectra, b) shot noise filtering examples of a noisy simulated
spectrum (SNR=10dB) being filtered by Wiener, median, wavelet, FFT, fuzzy and
the proposed method
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Table A.1: RMSE between ideal and filtered spectra using the proposed approach,
and combinations of a baseline filter (conventional best-degree polynomial filter, PF ,
and morphology filter, MF ) with a shot noise filter (Wiener, median, wavelet, FFT
and fuzzy filters), using simulated spectra with different baseline profiles (linear,
polynomial, sigmoidal and sinusoidal)

Linear baseline Polynomial baseline Sigmoidal baseline Sinusoidal baseline

Proposed filter 0.0319± 0.0097 0.0408± 0.0096 0.0230± 0.0070 0.0402± 0.0102
PF+Wiener filter 0.0560 ± 0.0169 0.0577 ± 0.0176 0.0543 ± 0.0356 0.0768 ± 0.0326
PF+median filter 0.0575 ± 0.0140 0.0703 ± 0.0216 0.0640 ± 0.0235 0.0806 ± 0.0310
PF+wavelet filter 0.0503 ± 0.0087 0.0640 ± 0.0189 0.0565 ± 0.0205 0.0736 ± 0.0288
PF+FFT filter 0.0465 ± 0.0122 0.0498 ± 0.0151 0.0470 ± 0.0137 0.0522 ± 0.0178
PF+fuzzy filter 0.0528 ± 0.0136 0.0655 ± 0.0211 0.0593 ± 0.0227 0.0757 ± 0.0302
MF+Wiener filter 0.0350 ± 0.0066 0.0451 ± 0.0067 0.0361 ± 0.0065 0.0448 ± 0.0066
MF+median filter 0.0486 ± 0.0124 0.0486 ± 0.0124 0.0497 ± 0.0124 0.0482 ± 0.0124
MF+wavelet filter 0.0416 ± 0.0072 0.0423 ± 0.0073 0.0423 ± 0.0070 0.0417 ± 0.0072
MF+FFT filter 0.0447 ± 0.0129 0.0448 ± 0.0138 0.0460 ± 0.0119 0.0456 ± 0.0118
MF+fuzzy filter 0.0449 ± 0.0118 0.0450 ± 0.0119 0.0461 ± 0.0120 0.0447 ± 0.0128

A.2 Analysis on experimental Raman spectra

To show the performance of the implemented methodology in realistic environments,

we applied the developed method to Raman spectra from art works. In particular,

some of the experimental Raman spectra used in this research were kindly provided by

Nadim C. Scherrer from the Bern University of Applied Sciences. The experimental

Raman spectra measured by the author used were acquired following the procedure

described in Sect. 3.2..

Fig. A.3 presents some real-case examples of experimental Raman spectra meas-

ured from works of art, for which the proposed noise filtering technique was applied.

These Raman spectra were acquired from different art works and therefore they show

different shot noise realisations and different shapes of fluorescence’s baseline. Spe-

cifically, the Raman spectrum before (in black) and after applying the proposed noise

filtering methodology (in grey) are shown in all pictures. As it can be seen, in all the

examples the Raman band shapes and positions were unchanged, and also their in-

tensity ratios were maintained while reducing the shot noise and rejecting the baseline.

Table A.2 shows a comparative on the experimental Raman spectra presented in Fig.

A.3 carried out in the same way as for the simulated spectra. The performance of the

different methods can be seen in Fig. A.4, A.5, A.6, A.7, A.8, A.9. The here proposed

filtering approach provided the highest signal-to-noise ratio compared to the combin-

ation of conventional denoising techniques. As it can be seen, the Raman bands were

visibly enhanced in the denoised spectrum.
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Table A.2: SNRs of the denoised experimental Raman spectra using the proposed
noise filtering approach, and combinations of a baseline filter (conventional best-
degree polynomial filter, PF, and morphology filter, MF) with a shot noise filter
(Wiener, median, wavelet, FFT and fuzzy filters)

Spectrum a Spectrum b Spectrum c Spectrum d Spectrum e Spectrum f

Proposed filter 28.1873 22.4613 32.3791 21.2516 31.8763 39.4224
PF+Wiener filter 16.6748 11.8768 8.9701 17.4773 27.3828 23.1225
PF+median filter 16.6137 19.0401 9.2666 19.1921 30.6203 27.9877
PF+wavelet filter 15.6451 16.5602 9.3726 15.9537 29.8357 27.1419
PF+FFT filter 11.5824 14.5842 11.7827 14.0882 12.3609 24.8403
PF+fuzzy filter 16.7221 21.7162 18.5150 19.7585 30.8861 29.5737
MF+Wiener filter 20.0519 9.6524 23.9501 8.5052 30.5533 24.6272
MF+median filter 21.2140 13.2364 26.8809 14.6687 30.7646 28.6767
MF+wavelet filter 21.0518 12.0132 26.8187 11.6223 30.6575 27.2624
MF+FFT filter 21.1334 14.2837 23.6079 12.2891 30.7159 28.1590
MF+fuzzy filter 22.7607 15.2989 27.5784 15.3349 31.2740 29.6025

Figure A.3: Examples of experimental Raman spectra measured in art works,
prior (in black) and subsequent (in grey) to apply the proposed noise filtering
methodology: (a) copper-phthalocyanine blue, (b) mixture of calcite and a copper-
phthalocyanine blue, (c) mixture of rutile and copper-phthalocyanine green, (d)
mixture of a copper-phthalocyanine blue, carbon black and rutile, (e) mixture of a
PY1, a PR4 and a copper-phthalocyanine blue, and (f) copper-phthalocyanine blue
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Appendix A. Noise filtering methodology: Performance analysis

Figure A.4: Proposed filter versus conventional best-degree polynomial baseline
filter (PF) -top- and morphology baseline filter (MF) -bottom- plus Wiener, median,
wavelet, FFT and fuzzy filters applied to the experimental Raman spectrum (a)
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A.2. Analysis on experimental Raman spectra

Figure A.5: Proposed filter versus conventional best-degree polynomial baseline
filter (PF) -top- and morphology baseline filter (MF) -bottom- plus Wiener, median,
wavelet, FFT and fuzzy filters applied to the experimental Raman spectrum (b)
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Figure A.6: Proposed filter versus conventional best-degree polynomial baseline
filter (PF) -top- and morphology baseline filter (MF) -bottom- plus Wiener, median,
wavelet, FFT and fuzzy filters applied to the experimental Raman spectrum (c)
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A.2. Analysis on experimental Raman spectra

Figure A.7: Proposed filter versus conventional best-degree polynomial baseline
filter (PF) -top- and morphology baseline filter (MF) -bottom- plus Wiener, median,
wavelet, FFT and fuzzy filters applied to the experimental Raman spectrum (d)
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Figure A.8: Proposed filter versus conventional best-degree polynomial baseline
filter (PF) -top- and morphology baseline filter (MF) -bottom- plus Wiener, median,
wavelet, FFT and fuzzy filters applied to the experimental Raman spectrum (e)
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A.2. Analysis on experimental Raman spectra

Figure A.9: Proposed filter versus conventional best-degree polynomial baseline
filter (PF) -top- and morphology baseline filter (MF) -bottom- plus Wiener, median,
wavelet, FFT and fuzzy filters applied to the experimental Raman spectrum (f)
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These tables and figures provide a qualitative visual inspection of the performance

of the noise filtering methodology presented in the current work. The denoising method

reduced the influence of shot noise and removed the fluorescence’s baseline without

changing the shapes or positions of the Raman bands, maintaining their intensity

ratios. The results show the effectiveness of the proposed denoising methodology as a

fully-automated tool, that is, without requiring any user input, to help the analyst in

the interpretation of Raman spectra.
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Reference Spectral Library

characterisation

B.1 Feature extraction: comparative analysis

A comparative study of techniques for dimensionality reduction is presented in this

section. In particular, the most often four standard techniques were analysed: PCA,

ICA, LDA and PLS.

PCA The basic idea of PCA is to decorrelate the input dataset126. So the starting

point is the covariance matrix K defined by K = X t ·K. Because of construction cij

is equal to cji, K is diagonalizable

D = U tKU = U tX tXU = (XU)t(XU) = X ′tX ′

So, if the data X is mapped by the orthogonal matrix U , the resulting data matrix X

is decorrelated; thus, cor(~x′i,
~x′j) = 0 if i = j. However, no further information is used

and therefore the technique works without supervision.

ICA The idea of ICA is very similar to the PCA with the difference that the goal is the

achievement of ’non-gaussianity’ of the dataset69. The assumption is that noise would

result in a Gaussian behavior of the dataset. Information on the other hand shows a

non-Gaussian behavior. Several methods and variants of the ICA exist - the so-called

fastICA version is used here, where the neg-entropy estimates the ’non-gaussianity’ of

the dataset and a Newton fixed-point iteration is used. As well as PCA, ICA works

without supervision.

LDA LDA127 is generally used for classification, but it also can be used for dimension-

ality reduction. The method is supervised due to the fact that the class membership

of the classes has to be known. The scatter matrices Fi are calculated by
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Fi =
∑

~xj∈Xi
(~xj − ~µi)(~xj − ~µi)

t

where ~xj ∈ Xi are spectra from the i-th class and ~µi the mean spectrum of Xi. The

scatter matrix is computed by

FB =
∑k

i=0Ni(~µi − ~µ)(~µi − ~µ)t

where Ni is the size of the i-th class and ~µ is the mean of the whole dataset. The

inter-class variability has to be maximized over the variability of the whole dataset.

The linear transformation is obtained through

W =argmin
det(W tFBW )

det(W tFW )

PLS The basic idea of the supervised method of PLS128 dimension reduction is the

decomposition of the input matrix X and the output matrix Y

X = PU + E and Y = QV + H

where U and V are the score matrices and P and Q are the loading matrices. The

matrices E and H are the error terms. The decomposition is constructed in such a

way that the covariance of P and Q is maximized and that U and V are orthonormal

matrices. The orthonormal matrix V is used for dimension reduction.

Comparative analysis The comparative analysis was performed using simulated

spectra. Specifically, 100 datasets were simulated containing 3 different categories each

dataset and 25 spectra per category. For each dataset, the four projections were applied

(see an example in Fig. B.1). For each projection, the computation time was measured

and the category separability was computed through the JMD (see Eq. 4.5). Table

B.1 compiles the resulting time and JMD (mean and standard deviation) for each data

reduction technique. From the results obtained, we may conclude that in the case

of Raman datasets in a simulated environment the traditional linear dimensionality

reduction technique of PCA outperforms the other data reduction techniques that

were tested.

Table B.1: Mean time and JMD and standard deviation using simulated data and
the most often used techniques in Raman spectroscopy

Technique Time [ms] JMD

PCA 77.76±8.87 2.00±0.00
PLS 81.13±32.08 1.98±0.07
LDA 1802.23±324.15 1.82±0.13
ICA 5402.23±1237.41 1.79±0.41
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B.1. Feature extraction: comparative analysis

Figure B.1: 2D score space obtained through PCA (middle left), ICA (middle
right), LDA (bottom left) and PLS (bottom right) applied to an input dataset of
simulated Raman spectra of 3 categories (top)
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B.2 Database characterisation

Identification of pigments in art works is indispensable to determine correct conser-

vation treatments or to answer questions regarding authenticity issues. Since the

early 20th century, the introduction of synthetic organic pigments has exponentially

increased the number of artistic pigments. To ensure a correct identification an as

complete as possible library of reference Raman spectra is needed. A subset of the

spectral library used in this research was composed of the collection of Raman spectra

of synthetic organic pigments published in124.

Specifically, the reference spectral library is composed of over 250 synthetic organic

pigments, represented by their colour index name, were collected from research insti-

tutes, pigment manufacturers, resellers and artist’s paints makers. The exact source

of the spectra can be found on http://modern.kikirpa.be, together with the instru-

mental parameters that were used to obtain the spectrum.

An overview of the synthetic organic pigments that were studied and their chem-

ical classification according to175 is given in Table B.2, following the research results

published in124. Specifically, the Raman spectra of this collection were acquired using

a 785-nm near-infra-red excitation source. Hence, the published Raman spectra of pig-

ments allowed studying pigments with similar structure, which produce only slightly

different spectra. This is due to the fact that pigments belonging to a given chemical

class are usually characterized by some common Raman bands, a feature that may be

used to discriminate different pigment classes.

Table B.2: Overview and classification of the synthetic organic pigments used in
this research compiled from the data published in124

Pigment class Pigments (Colour Index )

Azo pigments - Disazo pigments

Diarylide yellow PO16, PY12, PY13, PY14, PY17, PY55, PY63, PY81,
PY83, PY87, PY113, PY126, PY127, PY152, PY170, PY172,
PY174, PY176, PY188

Bisacetoacetarylide PY16, PY155
Disazo pyrazolone PR38, PR41, PO13, PO34
Disazo condensa-
tion

PR144, PR166, PR214, PR220, PR221, PR242, PR262,
PY93, PY128, PBr23, PBr41, PBr42

Other PR139
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Pigment class Pigments (Colour Index )

Azo pigments - Monoazo pigments

Acetoacetic

arylide pigments

and lakes

PY1, PY1:1, PY2, PY3, PY4, PY6, PY61, PY62, PY65, PY73,

PY74, PY75, PY97, PY111, PY116, PY168, PY169

Pyrazolone pig-

ments and lakes

PY100, PY183, PY191

β-naphthol pig-

ments and lakes

PR1, PR3, PR4, PR6, PR49, PR49:1, PR49:2, PR51, PR53,

PR53:1, PO5, PO46

Naphthol AS pig-

ments and lakes

PR2, PR5, PR7, PR8, PR9, PR12, PR14, PR17, PR18, PR21,

PR22, PR23, PR31, PR32, PR112, PR146, PR147, PR150,

PR170, PR184, PR187, PR188, PR210, PR213, PR223,

PR237, PR238, PR239, PR243, PR245, PR247, PR253,

PR256, PR258, PR266, PR268, PR269, PO24, PO38, PV44

Benzimidazolone PR171, PR175, PR176, PR185, PR208, PO36, PO60, PO62,

PO72, PY120, PY151, PY154, PY156, PY175, PY180, PY181,

PY194, PY214, PV32, PBr25

BONA lakes PR48:1, PR48:2, PR48:3, PR48:4, PR52:1, PR52:2, PR57:1,

PR57:2, PR58:4, PR63:1, PR63:2

Naphthalene sulf-

onic acid lakes

PR54, PR60, PR60:1, PY104

Metal complexes PY150, PG8, PG10

Other PR211, PY213, PV51, PV52

Other azo pig-

ments

PR276, PR277, PO74, PO79, PY205, PY206, PY209, PY209:1,

PY210, PY212, PY219

Heterocyclic (azo)methine pigments

Isoindoline/ isoin-

dolinone

PR260, PO61, PO69, PO86, PY109, PY110, PY139, PY173,

PY185, PBr38

Metal complexes PR257, PR271, PO59, PO68, PY117, PY129, PY153

Polycyclic pigments

Phthalocyanine PG7, PG36, PB15, PB15:1, PB15:2, PB15:3, PB15:4, PB15:6,

PB16, PB17

Quinacridone PR122, PR202, PR206, PR207, PR209, PO47, PO48, PO49,

PV19, PV42

Perylene/ peri-

none

PR123, PR149, PR178, PR179, PR190, PR194, PR224, PO43,

PV29, PBk31
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Pigment class Pigments (Colour Index )

Thioindigo PR88, PR181, PV36

Anthraquinone

derivates

PR83, PR168, PR177, PR216, PO51, PY24, PY108, PY147,

PB52, PB60, PV5, PV5:1

Dioxazine PV23, PV37

Triarylcarbonium PR81, PR81:1, PR81:2, PR81:3, PR81:4, PR81:5, PR169, PG1,

PB1, PB14, PB62, PV1, PV2, PV2:2, PV3, PV3:1, PV27

Diketopyrrolo

pyrole

PR254, PR255, PR264, PO71, PO73

Quinophthalone PY138

Other PR204

Other classes

Aniline black PBk1

Aluminium lakes PR172, PR173, PB63

Pyrazoloquinazo-

lone

PR251, PR252, PO67

Other PO64, PR47, PR279, PR280, PR285, PV53, PBk21

Finally, in addition to the PC1-PC2 projection plot shown in Fig. 4.2 (Chapter 4),

the PC2-PC3 and PC1-PC3 projection plots of the PCA transformation applied to the

reference spectral library -including both inorganic pigments and the synthetic organic

pigments described above- used in this research are compiled hereafter, together with

the corresponding biplots. A brief explanation of the symbols (dot styles) used to

represent the different chemical classes is shown in Table B.3.

Table B.3: Correspondence between symbols (dot styles) and pigment classes used
in Fig. 4.2, B.2 and B.3, according to the classification described in Table B.2
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B.2. Database characterisation

Figure B.2: PC2-PC3 projection (top) and biplot (bottom) of the reference Raman
spectra - item styles stand for chemical classes, item colour by Colour Index
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Figure B.3: PC1-PC3 projection (top) and biplot (bottom) of the reference Raman
spectra - item styles stand for chemical classes, item colour by Colour Index
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Appendix C

Automated analysis of Raman

spectra: Performance analysis

C.1 Identification of Raman spectra from pigments

C.1.1 Binary mixtures handling-based identification algorithm

Experimental results The binary mixtures handling-based algorithm was applied

to four experimental cases. In a first example, the analysed samples was a mixture of

rutile and ultramarine blue. When the identification criteria were applied to the spec-

trum of the measured sample no separated candidates were found. Hence, the mixture-

building criteria were applied creating a fictitious mixture with the two patterns which

had the lowest ED to the studied spectrum: rutile and ultramarine blue. After ap-

plying the identification criteria the result was that the created mixture matched the

unknown spectrum from the sample with a MF of MF(Mixture of rutile and ultramar-

ine blue)=72.24%. This result led to conclude that the analysed sample corresponded

to a mixture of the pigments rutile and ultramarine blue (Fig. C.1(1)).

The sample analysed in a second example was the mixture of the pigment PY1

and the pigment PR3. When the identification criteria were applied to the spectrum

of the measured sample it was found a separated candidate, the pigment PR3 with a

MF of MF(PR3)=42.39%. As this MF was lower than the value established to build

mathematical spectra of mixtures (60%), the mixture-building criteria were applied

creating a fictitious mixture with the two patterns which had the lowest ED to the

analysed spectrum: the PY1 and the PR3 pigments. After applying the identification

criteria the created mixture spectrum matched the unknown spectrum from the sample

with a MF of MF(Mixture of PY1 and PR3)=81.69%. This result concludes that the

sample may correspond to a PY1+PR3 mixture (Fig. C.1(2)).
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In a third example, the pigment Sennelier 547 (which is not in the reference spec-

tral library) was directly measured and analysed. The label of this pigment indicates

that it is manufactured as a mixture of a PR4 pigment and a PY1 pigment. When

applying the identification methodology, two separated candidates were found: the

PR4 pigment and the PY1 pigment with a MF, respectively, of MF(PR4)=43.87% and

MF(PY1)=39.65%, which could correspond to the mixture that is indicated on the

label of the Sennelier 547 pigment. Attending to the mixture-building criteria, the

system created the mixture from the reference spectra belonging to the PR4 pigment

and the PY1 pigment. Then the identification criteria were applied over this fictitious

mixture obtaining a MF of MF(Mixture of PR4 and PY1)=60.52%. This result led to

conclude that the analysed sample corresponded to a mixture of PR4 and PY1, being

a consistent result with the pigment label (Fig. C.1(3)).

In a last example, the analysed analysed was a mixture of PY1 and PB60. When the

identification criteria were applied to the acquired Raman spectrum from the sample,

two separated candidates were found: the PB60 pigment with a MF of MF(PB60)=19.78%

and the PY1 pigment with a MF of MF(PY1)=12.88%. As the two candidates had

non-negligible MFs of a same order the system created a mixture of the reference spec-

tra corresponding to the pigment PY1 and the pigment PB60. After applying the

identification criteria the spectrum of the created mixture matched the unknown spec-

trum from the sample with a MF of MF(Mixture of PB60 and PY1)=75.13%. This

result led to conclude that the studied sample corresponded to a mixture of PY1 and

PB60 (Fig. C.1(4)).

Figure C.1: Unknown (1.a) and reference spectra of rutile (1.b) and ultramarine
blue (1.c). Unknown spectrum (2.a) and reference spectra of PY1 (2.b) and PR3
(2.c). Unknown spectrum (3.a) and reference spectra of PY1 (3.b) and PR4 (3.c).
Unknown spectrum (4.a) and reference spectra of PY1 (4.b) and PB60 (4.c)
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Theoretical analysis of a multicomponent case

The theoretical performance of the binary mixtures handling-based identification

methodology when processing an unknown multicomponent spectrum is presented here-

after. Hence, a reference spectral library was simulated through 10 reference spectra

(P = 10 ), Lorentzian-profile-based, in the range of [200, ..., 1800]cm−1, which implies

a dimension of 1600 variables (N = 1600 ) and therefore a K dimension PCs space of

K = P − 1 = 10− 1 = 9 << N = 1600.

Figure C.2: Simulated reference spectral library

An unknown spectrum was generated by mixing the 2nd, 5th and 7th simulated

spectra (see Fig. C.3).

Figure C.3: Unknown spectrum simulating a ternary mixture generated by mixing
the 2nd, 5th and 7th simulated spectra
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When applying the binary mixtures handling-based identification methodology, two

separated candidates were found: 5th and 7th reference spectra with a MF, respectively,

of MF(5th pattern)=26.06% and MF(7th pattern)=8.49%. Attending to the mixture-

building criteria, the system created the mixture from the reference spectra belonging

to the 5th and 7th simulated patterns. Then, the identification criteria were applied

over this fictitious mixture obtaining a MF of MF(Mixture of 5th and 7th)=83.12%.

Hence, the methodology suggests that the unknown spectrum may correspond to the

mixture of patterns 5 and 7. Attending to Fig. C.3 pattern 2’s bands can be seen

However, this pattern could not be recognised by the binary mixtures handling-based

identification algorithm.

Additionally, the following list shows the reference spectra sorted in descending

order according to the EDs to the unknown spectrum:

5th, 7th, 6th, 1st, 10th, 9th, 4t,h 2nd, 8th, 3rd

As shown, the first two patterns (5th and 7th patterns) correspond to two of the

three components of the unknown spectrum, which were successfully recognised by

the binary mixtures handling-based identification methodology. Nonetheless, the third

component (2nd pattern) appears in the 8th position in the list demonstrating that the

mixture-building criteria cannot be extrapolated to allow the identification of mixtures

of more than two components. Conclusively, the developed binary mixtures handling-

based identification methodology successfully identifies single-component spectra and

also binary mixtures, focusing on this kind of mixtures as they may appear with relative

frequency in art. However, in some cases, multicomponent spectra of more than two

components may appear as well. In these multicomponent cases, the presented meth-

odology may not be able to identify all the components in the mixture, since it is a

construction limitation of the binary mixtures handling-based identification algorithm.

Therefore, the generalised identification methodology for single- and multicomponent

spectra from pigments was developed.

C.1.2 Analysis of generalised identification methodology in

simulated environments

With the aim of showing the correct performance of the generalised identification meth-

odology, it was tested in a simulation stage. Thereby, 100 different simulated reference

spectral libraries were used. For each of these libraries 1000 unknown spectra were

simulated and analysed by applying the presented methodology. On average, the iden-

tification of the unknown spectra was successful for 99.63% (with a standard deviation

of 0.68%). Fig. C.4 (left) shows the histogram of MFs of the identification results

(mostly ranging from 95% to 100%).
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Figure C.4: Left: Histogram of Matching Factors (MFs) of the identification results
using simulated Raman spectra. Right: Example of spectral identification from
a simulated three-component mixture whose components have overlapping bands:
(1) Unknown mixture, (2) and (3) components identified and (4) component not
identified

In the remaining cases (0.37%) not all the individual components of the mixtures

were identified, even though all components identified were correct. It was checked

whether the fundamental band of these unidentified components overlapped with the

fundamental band of an identified component. In these cases, the system interprets

these overlapping bands as part of one of the individual components only (the most

similar one to the unknown spectrum as seen by the IB) so that the others may miss

some valuable Raman information when the MSB is applied and therefore may be

identified with a lower MF or even may be left unidentified. An example of this issue

is presented in Fig. C.4 (right). The system analysed the spectrum of mixture (1) of

three components (2, 3 and 4) and identified the components (2) with a MF of 98.7%

and (3) with a MF of 84.3%. Component (4) was not identified since its fundamental

band overlaps the fundamental band of component (3) and therefore it was missed in

the unknown spectrum identifying component (3). This issue may be a drawback of the

proposed method, but the study of these instances by traditional methods is equally

complex. Still, the casuistry of this situation tends to be relatively low, and yet, the

system is able to identify the main components present in the mixture.

On the other hand, an additional validation of the identification system was carried

out in order to study the MSB independently of the IB. To do so, every time the MSB

was triggered in the above described simulation the residual between the pattern with

the lowest ED and the corresponding component provided by the MSB was evaluated

in terms of goodness-of-fit by means of several statistics: the R-square and the RMSE.

In this sense, a good fit would have a RMSE closer to 0 and an R-square closer to 1.

The following goodness-of-fit statistics (mean and standard deviations) were obtained:

R-square = 0.9959 ± 0.0119, and RMSE = 0.0040 ± 0.0045. Taking the mean R-square

for instance (99.59%), it indicates a good fit of the components separated by the MSB,

quite close to the ideal case.
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C.2 Classification of Raman spectra from pigments

C.2.1 Unsupervised classification of Raman spectra

Performance evaluation results using simulated datasets

Complementary results to those presented in Fig. 4.13 regarding the performance

evaluation process using the selected clustering algorithms through simulated Raman

spectra are shown in Fig. C.5. These figures allowed to determine the best-performing

configuration parameters for each clustering technique.
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Figure C.5: Success rate as a function of the PCs space dimension of the analysed
clustering algorithms

Unsupervised classification: Experimental cases

The unsupervised classification methodology based on PCA and k-means was applied to

experimental Raman spectra. Specifically, we distinguish between three different crys-

talline structures of copper-phthalocyanine blue pigment: α-, β- and ε-modifications.

In a first case, the Raman spectra were recorded using a single excitation wavelength of

785 nm. In a second case, the Raman spectra were recorded using multiple excitation

wavelengths (532nm, 633nm and 785nm).

Single excitation wavelength case The input Raman spectra used as training

dataset consisted on 12 Raman spectra (see Fig. C.6). In particular, the α-modification

class consisted of 5 spectra, the β-modification class consisted also of 5 spectra, and

the ε-modification class consisted of 2 spectra. All the spectra were recorded using a

785nm excitation wavelength. The PCA projection is represented in bottom of Fig.

C.6 together with the k-means centroids. The methodology was validated through a

cross-validation based on using all the spectra in the training set as a test set. This

cross-validation provided a 100% of success rate. Additionally, an unknown Raman

spectrum expected to be from an α-CuPc pigment was used a test instance and the

methodology provided a successful result, i.e. the unknown Raman spectrum was

clustered as a Raman spectrum from an α-CuPc pigment (see Fig. C.7).
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Figure C.6: Input Raman spectra used as training dataset consisting on 12
Raman spectra (a) 5 spectra from the α-modification, b) 5 spectra from the β-
modification and c) 2 spectra from the ε-modification) measured with a 785nm ex-
citation wavelength (top) together with the corresponding PCA projection (bottom)
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Figure C.7: Unknown Raman spectrum expected to be a Raman spectrum from a
α-modification CuPc pigment (top) together with the corresponding PCA projection
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Multiple excitation wavelength case In this case, the input Raman spectra used

as training dataset consisted on 79 Raman spectra (see top of Fig. C.8). In par-

ticular, the α-modification class consisted of 27 spectra: nine spectra recorded us-

ing a 532nm excitation wavelength, ten spectra recorded using a 633nm excitation

wavelength, and eight spectra recorded using a 785nm excitation wavelength. The β-

modification class consisted of 38 spectra: eleven spectra were recorded using a 532 nm

excitation wavelength, thirteen spectra recorded using a 633 nm excitation wavelength,

and fourteen spectra recorded using a 785nm excitation wavelength. Finally, the ε-

modification class consisted of 14 spectra: ten spectra were recorded using a 532nm

excitation wavelength, one spectrum recorded using a 633nm excitation wavelength,

and three spectra recorded using a 785nm excitation wavelength.

Figure C.8: Input Raman spectra used as training dataset consisting on 79 Ra-
man spectra (a) 27 spectra from the α-modification, b) 38 spectra from the β-
modification and c) 14 spectra from the ε-modification) measured with multiple
excitation wavelengths

The maximum success rate (56.96%) was obtained with a 33 dimension PCs space

when applying the cross-validation using all the training set as test set (see Fig. C.9).

As seen in Fig. C.10, it is difficult to group the projected Raman spectra into separated

clusters for the α-, β- and ε-modifications of the CuPc pigment. This non-separated

distribution translated into a relatively low success rate. On the other hand, the

unknown Raman spectra used as test instance as in the previous case was clustered

using the 33 dimension PCs space as a Raman spectrum from a ε-CuPc pigment in

this case (see Fig. C.10), whilst being expected to be from an α-CuPc pigment.
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Figure C.9: Success rate as a function of PC dimension. Maximum success rate
obtained with a PCA projection of 33 PCs

Figure C.10: PCA projection of input reference Raman spectra and projected
unknown Raman spectrum together with the k-means centroids
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C.2.2 Supervised classification of Raman spectra: Verification

and validation

In order to diagnose the performance of the proposed classification methodology, it was

analysed in a simulation stage. In particular, three different classes were created. To

do so, three different spectra were generated, which simulated spectra measured from

three different pigments. The only difference between these spectra was the amplitude

of two selected bands between 650cm−1 and 800cm−1, as can be seen in Fig. C.11.

Then, ten different simulated spectra were generated for each class, simulating different

realizations for each of the three pigments. These different realizations were generated

through random variations in band locations, amplitudes and bandwidths. Specifically,

normal distribution functions were used giving random variations of ±5cm−1 in band

locations, ±0.05a.u. in normalized intensities, and ±2cm−1 in bandwidths (see inset

figure in Fig. C.11).

Figure C.11: Example of simulated spectra used for cross-validating the imple-
mented classification methodology
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With the simulated classes, we applied the Lachenbruch procedure (also called

leave-one-out cross-validation)180, which is a standard model validation technique for

assessing the predictive performance of a methodology. It involves using one spectrum

as the test set (for which we certainly know the corresponding class) and the remaining

spectra as the training dataset. Specifically, based on this cross-validation procedure,

we applied the following five-step sequence:

• Let the i-th spectrum form the test set (test spectrum)

• Get the classification space using the remaining spectra (29 spectra)

• Apply the classification criterion for class assignment on the test spectrum

• Check the classification outcome with respect to the expected class

• Repeat step 1 for i=1,...,n with n being the total number of spectra (n = 30)

We obtained a success rate of 100%, which shows a good predictive performance of the

presented classification methodology in an under-controlled environment using simu-

lated data.
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Appendix D

Software Requirements

Specification of PigmentsLab

The requirements listed in this appendix are applicable to the implementation, test

and operation of PigmentsLab, software platform designed and developed in this

research. This appendix not only lists the several requirements (both scientific and

technical) -in agreement to181-, but it also includes some system descriptions.

D.0.1 Definitions

The requirements set out in this appendix conform the following labelling scheme:

LABEL-X -SCOPE -xxx

where: LABEL is the Software Product Label, X is the requirement type, SCOPE is

a three letter scope specification, and xxx is an identification number.

Each requirement is presented with its unique label and a number in the following

form:

LABEL-X -SCOPE -xxx Version Priority Status

Description

Parent

with:

LABEL-X -SCOPE -xxx

The unique identifier of the requirement (see above)

Version Version number of the requirement

Priority Priority of the requirement

Status Status identifier

Parent Higher level requirement or requirements, comma separated list
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D.1 General Description

D.1.1 Product Functions

PigmentsLab is in charge of:

• Storing and browsing existing items in the database, e.g. the reference spectra

from pigments

• Adding and updating reference spectra from pigments

• Providing, for each existing item in the database, information regarding:

– General description: pigment name, colour index, chemical class and usage

– Spectroscopic information: spectral plot (including the following spectro-

scopic techniques: Raman, SERS, XRF, IF and LIBS), band positions if

known, excitation source [nm], source power [mW], accumulations and ac-

quisition time [s]

• Allowing spectral amplitude adjustment (scaling and factoring, and intensity

normalisation)

• Providing band markers, modelling and localisers through different band profiles

(Lorentzian, Gaussian or Voigt)

• Providing pre-processing techniques such as spectral enhancement, noise filtering,

fluorescence’s baseline rejection and shot noise reduction

• Zooming in and out to interesting regions in spectral plots

• Recognising unknown spectra (whether single- or multi-component) through auto-

mated matching-based spectral identification methodologies

• Classifying unknown spectra by means of machine learning-based methodologies

trained through predefined categories of reference spectra from pigments

The system is expected to evolve over several releases, becoming, eventually, a useful

tool to manage and browse a complete spectral library from pigments, to apply sophist-

icated visualisation and pre-processing tools, and to perform advanced interpretation

techniques for identification and classification of spectra from pigments.
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D.1.2 User Features

Reference spectral database management: The reference spectral database

from artistic pigments shall be a powerful tool. That is, the spectroscopists may

obtain information regarding different features for each element in the database. In

this sense, the developing of a reference spectral database applied to artistic pigments

is an open issue: when new artistic materials appear, new spectra shall be added to the

existing reference spectra. Thus, spectroscopists need an robust interface to manage

the spectra for whichever analytical purpose.

Visualisation and enhancement of spectra from pigments: The visualisation

of spectroscopic measurements from art materials and the elemental data analysis such

as noise filtering or bands localisation shall support the spectroscopists in the tasks of

analysing spectra in a visual way.

Identification and classification of spectra from pigments: The automated

interpretation of spectra from art materials through matching and machine learning-

based methodologies for identification or classification of spectra from pigments shall

provide an advanced application for making breakthroughs in art works analysis,

providing a spectral characterization with no prior knowledge of the composition of

the analysed sample.

D.1.3 General Constraints

SDBE -T -CO-001 1.0 MAN Draft

The system’s design, code, and maintenance documentation shall conform to the

Development Standards.

Parent: None

SDBE -T -CO-002 1.0 MAN Draft

The system shall use the current corporate standard MySQL database engine.

Parent: None

D.1.4 Assumptions and Dependencies

SDBE -T -DE -001 1.0 MAN Draft

The operation of the system depends on changes being made in the system to

browse existing items in the database, to visualise spectral measurements apply-

ing pre-processing tools, or to characterise unknown spectra through automated

identification or classification methodologies.

Parent: SDBE -T -CO-001, SDBE -T -CO-002
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D.2 Specific Requirements

D.2.1 External Interface Requirements

None.

D.2.2 Functional Requirements

SDBE -T -STO-001 1.0 AUT Issued

SDBE shall store spectra from pigments and their corresponding information in the

database.

Parent: SDBE -T -CO-001, SDBE -T -CO-002

SDBE -T -ADD-001 1.0 AUT Issued

SDBE shall allow the user to add new spectra from pigments.

Parent: SDBE -T -CO-001, SDBE -T -CO-002

SDBE -T -ADD-002 1.0 AUT Issued

When adding new spectra from pigments SDBE shall ask for chemical class.

Parent: SDBE -T -CO-001, SDBE -T -CO-002, SDBE -T -ADD-001

SDBE -T -ADD-003 1.0 AUT Issued

When adding new spectra from pigments and chemical class being supplied SDBE

shall store all the information.

Parent: SDBE -T -CO-001, SDBE -T -CO-002, SDBE -T -ADD-001, SDBE -T -ADD-

002, SDBE -T -STO-001

SDBE -T -ADD-005 1.0 AUT Issued

When adding new spectra from pigments SDBE shall ask for colour index informa-

tion.

Parent: SDBE -T -CO-001, SDBE -T -CO-002, SDBE -T -ADD-001

SDBE -T -ADD-006 1.0 AUT Issued

When adding new spectra from pigments and colour index information being sup-

plied SDBE shall store all the information.

Parent: SDBE -T -CO-001, SDBE -T -CO-002, SDBE -T -ADD-001, SDBE -T -ADD-

005, SDBE -T -STO-001

SDBE -T -ADD-007 1.0 AUT Issued

When adding new spectra from pigments SDBE shall ask for art-historical inform-

ation.

Parent: SDBE -T -CO-001, SDBE -T -CO-002, SDBE -T -ADD-001
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SDBE -T -ADD-008 1.0 AUT Issued

When adding new spectra from pigments and art-historical information being sup-

plied SDBE shall store all the information.

Parent: SDBE -T -CO-001, SDBE -T -CO-002, SDBE -T -ADD-001, SDBE -T -ADD-

007, SDBE -T -STO-001

SDBE -T -ADD-009 1.0 AUT Issued

When adding new spectra from pigments SDBE shall ask for the corresponding spec-

troscopic information (excitation source [nm], source power [mW], accumulations,

acquisition time [s], and bands positions if known).

Parent: SDBE -T -CO-001, SDBE -T -CO-002, SDBE -T -ADD-001

SDBE -T -ADD-010 1.0 AUT Issued

When adding new spectra from pigments and the corresponding spectroscopic in-

formation (excitation source [nm], source power [mW], accumulations, acquisition

time [s], and bands positions if known) being supplied SDBE shall store all the

information.

Parent: SDBE -T -CO-001, SDBE -T -CO-002, SDBE -T -ADD-001, SDBE -T -ADD-

007, SDBE -T -STO-001

SDBE -T -ADD-011 1.0 AUT Issued

When adding new spectra from pigments, if key fields are left unfilled, the SDBE

shall show a warning message and wait for the fields to be filled by the user

Parent: SDBE -T -CO-001, SDBE -T -CO-002

SDBE -T -EXP -001 1.0 AUT Issued

If no spectra from pigments in the database SDBE shall show a message of empty

database.

Parent: SDBE -T -CO-001, SDBE -T -CO-002, SDBE -T -STO-001

SDBE -T -EXP -002 1.0 AUT Issued

SDBE shall allow the user to explore the existing database.

Parent: SDBE -T -CO-001, SDBE -T -CO-002, SDBE -T -STO-001

SDBE -T -EXP -003 1.0 AUT Issued

When an item is selected, SDBE shall provide the existing information, mainly

general description (pigment name, colour index, chemical class and usage) and

spectrosopic description (excitation source [nm], source power [mW], accumulations,

acquisition time [s], and bands positions if known) of the corresponding item.

Parent: SDBE -T -CO-001, SDBE -T -CO-002, SDBE -T -EXP -001, SDBE -T -STO-

001
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SDBE -T -EXP -004 1.0 AUT Issued

When an item is selected, SDBE shall provide a plot of the selected spectra from

pigments according to the selected spectroscopic technique used for measurement

(Raman, SERS, XRF, IF and LIBS).

Parent: SDBE -T -CO-001, SDBE -T -CO-002, SDBE -T -STO-001

SDBE -T -EXP -005 1.0 AUT Issued

When plotting a spectrum from a pigment, the spectral range shall be configurable

by the user.

Parent: SDBE -T -CO-001, SDBE -T -CO-002, SDBE -T -STO-001

SDBE -T -EXP -006 1.0 AUT Issued

When plotting a spectra from pigments, the samples shall be interpolated (linear

interpolation) to assure homogeneity.

Parent: SDBE -T -CO-001, SDBE -T -CO-002, SDBE -T -STO-001

SDBE -T -EXP -007 1.0 AUT Issued

When plotting a spectra from pigments, the intensity of the samples shall be nor-

malized (min-max normalisation) to assure homogeneity.

Parent: SDBE -T -CO-001, SDBE -T -CO-002, SDBE -T -STO-001

SDBE -T -EXP -008 1.0 AUT Issued

SDBE shall allow the user to update the information whether general or spectro-

scopic of an existing item in the database.

Parent: SDBE -T -CO-001, SDBE -T -CO-002, SDBE -T -EXP -001, SDBE -T -STO-

001, SDBE -T -EXP -001

SDBE -T -EXP -009 1.0 AUT Issued

When updating an item and adding new chemical class SDBE shall store it.

Parent: SDBE -T -CO-001, SDBE -T -CO-002, SDBE -T -EXP -001, SDBE -T -STO-

001

SDBE -T -EXP -010 1.0 AUT Issued

When updating an item and adding new colour index information SDBE shall store

it.

Parent: SDBE -T -CO-001, SDBE -T -CO-002, SDBE -T -EXP -001, SDBE -T -STO-

001

SDBE -T -EXP -011 1.0 AUT Issued

When updating an item and adding new art-historical information SDBE shall store

it.

Parent: SDBE -T -CO-001, SDBE -T -CO-002, SDBE -T -EXP -001, SDBE -T -STO-

001
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SDBE -T -EXP -012 1.0 AUT Issued

When updating an item and adding new spectrosopic information (excitation source

[nm], source power [mW], accumulations, acquisition time [s], and bands positions

if known) SDBE shall store them.

Parent: SDBE -T -CO-001, SDBE -T -CO-002, SDBE -T -EXP -001, SDBE -T -STO-

001

SDBE -T -EXP -013 1.0 AUT Issued

If no spectra from pigments is selected, the action of update a spectra from pigments

must be ignored by the SDBE showing a warning message.

Parent: SDBE -T -CO-001, SDBE -T -CO-002

SDBE -T -EID-001 1.0 AUT Issued

SDBE shall allow the user to export the existing database to a backup file. This is

mandatory for backing up and restoring. Also useful for data portability

Parent: SDBE -T -CO-001, SDBE -T -CO-002

SDBE -T -EID-002 1.0 AUT Issued

SDBE shall allow the user to import data to the database from a backup file. This

action allows restoring the data. Also useful for portability

Parent: SDBE -T -CO-001, SDBE -T -CO-002

SDBE -T -EID-003 1.0 AUT Issued

When the exporting/importing actions are requested SDBE must assure losslessness

of data.

Parent: SDBE -T -CO-001, SDBE -T -CO-002, SDBE -T -EID-001, SDBE -T -EID-

002

SDBE -T -EID-004 1.0 AUT Issued

If the file to be read when the importing action is required, the SDBE must ignore

the action, showing a warning message.

Parent: SDBE -T -CO-001, SDBE -T -CO-002

SDBE -T -EID-005 1.0 AUT Issued

If the file to be exported already exists when the exporting action is required, the

SDBE must ignore the action, showing a warning message.

Parent: SDBE -T -CO-001, SDBE -T -CO-002

SDBE -T -DEL-001 1.0 AUT Issued

SDBE shall allow the user to delete an existing spectra from pigments.

Parent: SDBE -T -CO-001, SDBE -T -CO-002
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SDBE -T -DEL-002 1.0 AUT Issued

When deleting an existing spectra from pigments all the corresponding information

shall be removed from the database.

Parent: SDBE -T -CO-001, SDBE -T -CO-002

SDBE -T -DEL-003 1.0 AUT Issued

When deleting an existing spectra from pigments the other spectra from pigments

must remain in the database.

Parent: SDBE -T -CO-001, SDBE -T -CO-002

SDBE -T -DEL-004 1.0 AUT Issued

When deleting an existing spectra from pigments the other spectra from pigments

must update their identification field. The rest of fields must remain untouched.

Parent: SDBE -T -CO-001, SDBE -T -CO-002

SDBE -T -DEL-005 1.0 AUT Issued

If no spectra from pigments is selected, the action of delete a spectra from pigments

must be ignored by the SDBE showing a warning message.

Parent: SDBE -T -CO-001, SDBE -T -CO-002

SDBE -T -DEL-006 1.0 AUT Issued

After deleting a spectra from pigments, the list of existing spectra from pigments

shall be refreshed.

Parent: SDBE -T -CO-001, SDBE -T -CO-002

SV -T -VIEW -001 1.0 AUT Issued

SpectralViewer shall read spectral files.

Parent: None

SV -T -VIEW -002 1.0 AUT Issued

If the loading of a spectral file is cancelled by the user, the action of loading must

be ignored by the SpectralViewer showing a warning message.

Parent: SV -T -VIEW -001

SV -T -VIEW -003 1.0 AUT Issued

When a spectral file is loaded, SpectralViewer show provide a graphical representa-

tion of the loaded spectrum.

Parent: SV -T -VIEW -001

SV -T -VIEW -004 1.0 AUT Issued

SpectralViewer shall allow spectral amplitude adjustment by a given scalar.

Parent: SV -T -VIEW -001
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SV -T -VIEW -005 1.0 AUT Issued

SpectralViewer shall allow spectral amplitude adjustment by a given factor.

Parent: SV -T -VIEW -001

SV -T -VIEW -006 1.0 AUT Issued

SpectralViewer shall allow spectral amplitude adjustment by the min-max normal-

isation.

Parent: SV -T -VIEW -001

SV -T -VIEW -007 1.0 AUT Issued

If no spectra is loaded and spectral amplitude adjustment is selected, the action

must be ignored by the SpectralViewer showing a warning message.

Parent: SV -T -VIEW -001

SV -T -VIEW -008 1.0 AUT Issued

SpectralViewer shall provide tools for band markers, and when a given coordinate

in the domain axis is clicked, a band marker should be placed in the plot.

Parent: SV -T -VIEW -001

SV -T -VIEW -009 1.0 AUT Issued

If no spectra is loaded and band markers option is selected, the action must be

ignored by the SpectralViewer showing a warning message.

Parent: SV -T -VIEW -001

SV -T -VIEW -010 1.0 AUT Issued

SpectralViewer shall provide tools for band modelling and localisation, automatically

recognising the bands present in the loaded spectrum through different profiles to

be chosen by the user: Lorentzian, Gaussian or Voigt.

Parent: SV -T -VIEW -001

SV -T -VIEW -011 1.0 AUT Issued

If no spectra is loaded and band modelling or localisation is selected, the action

must be ignored by the SpectralViewer showing a warning message.

Parent: SV -T -VIEW -001

SV -T -VIEW -012 1.0 AUT Issued

SpectralViewer shall provide tools for pre-processing techniques such as spectral en-

hancement, noise filtering, fluorescence’s baseline rejection and shot noise reduction.

Parent: SV -T -VIEW -001
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SV -T -VIEW -013 1.0 AUT Issued

If no spectra is loaded and any pre-processing techniques option is selected, the

action must be ignored by the SpectralViewer showing a warning message.

Parent: SV -T -VIEW -001

SV -T -VIEW -014 1.0 AUT Issued

SpectralViewer shall provide tools for zooming in and out to interesting regions in

spectral plots.

Parent: SV -T -VIEW -001

SV -T -VIEW -015 1.0 AUT Issued

If no spectra is any loaded and zooming in or out option is selected, the action must

be ignored by the SpectralViewer showing a warning message.

Parent: SV -T -VIEW -001

VS -T -INT -001 1.0 AUT Issued

VirtualSpectroscopist shall provide tools for recognising unknown spectra (whether

single- or multi-component) through automated matching-based spectral identifica-

tion methodologies.

Parent: None

VS -T -INT -002 1.0 AUT Issued

VirtualSpectroscopist shall provide tools for classifying unknown spectra by means

of machine learning-based methodologies trained through predefined categories of

reference spectra from pigments.

Parent: None

VS -T -FW -001 1.0 AUT Issued

VirtualSpectroscopist shall read spectral files from unknown spectra.

Parent: None

VS -T -FW -002 1.0 AUT Issued

If the loading of a spectral file is cancelled by the user, the action of loading must

be ignored by the VirtualSpectroscopist showing a warning message.

Parent: VS -T -FW -001

VS -T -FW -003 1.0 AUT Issued

VirtualSpectroscopist shall load image files from pictures of the art work being

analysed.

Parent: None
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VS -T -FW -004 1.0 AUT Issued

If the loading of a image file is cancelled by the user, the action of loading must be

ignored by the VirtualSpectroscopist showing a warning message.

Parent: VS -T -FW -003

VS -T -FW -005 1.0 AUT Issued

VirtualSpectroscopist shall provide tools for adding markers representing spectral

measurements

Parent: VS -T -FW -003

VS -T -FW -006 1.0 AUT Issued

VirtualSpectroscopist shall provide tools for generating a report with the outcome

of the interpretation of spectra from pigments

Parent: VS -T -INT -001, VS -T -INT -002

D.2.3 Non-Functional Requirements

SDBE -T -NFUN -001 1.0 MAN Issued

PigmentsLab shall be completely developed in Java language. This excludes scripts

or utilities for launching or monitoring the platform, which may be done in other

languages (bash or python preferably).

Parent: None
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Publications

Peer-reviewed articles published in international journals

J. J. González-Vidal, R. Pérez-Pueyo, M. J. Soneira, Automatic morphology-based

cubic p-spline fitting methodology for smoothing and baseline-removal of Raman spec-

tra, 2017, Journal of Raman Spectroscopy, DOI: 10.1002/jrs.5130

J. J. González-Vidal, R. Pérez-Pueyo, M. J. Soneira, Automatic classification system

of Raman spectra applied to pigments analysis, 2016, Journal of Raman Spectroscopy,

47(12), 1408

J. J. González-Vidal, R. Pérez-Pueyo, M. J. Soneira, S. Ruiz-Moreno, Independent

component analysis-based algorithm for automatic identification of Raman spectra

applied to artistic pigments and pigment mixtures, 2015, Applied Spectroscopy, 69(3),

314

J. J. González-Vidal, R. Pérez-Pueyo, M. J. Soneira, S. Ruiz-Moreno, Automatic

identification system of Raman spectra in binary mixtures of pigments, 2012, Journal

of Raman Spectroscopy, 43(11), 1707

Contributions to international conferences

J. J. González-Vidal, R. Pérez-Pueyo, M. J. Soneira, Raman characterisation of cop-

per phthalocyanine blue under solvents and cleaning agents, International Congress

on the Application of Raman Spectroscopy in Art and Archaeology, 2017, submitted

J. J. González-Vidal, R. Pérez-Pueyo, M. J. Soneira, A software platform proposal

for the automated interpretation of spectra in artworks analysis, International Con-

ference on Innotavion in Art Research and Technology, 2016, Book of Abstracts,

p.78, ISBN: 978-94-6197-367-2

J. J. González-Vidal, R. Pérez-Pueyo, M. J. Soneira, Proposal of a classification

system of Raman spectra applied to pigments analysis, International Congress on

the Application of Raman Spectroscopy in Art and Archaeology, 2015, Book of

Abstracts, p.78, ISBN: 978-83-60043-27-1
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J. J. González-Vidal, R. Pérez-Pueyo, M. J. Soneira, S. Ruiz-Moreno, Fully auto-

mated fluorescence background removal and shot noise filtering in Raman spectro-

scopy applied to pigments analysis, International Conference on Raman Spectroscopy

Applied to Earth Sciences, 2014, Book of Abstracts, p.69

J. J. González-Vidal, R. Pérez-Pueyo, M. J. Soneira, S. Ruiz-Moreno, Shot noise

reduction through principal components analysis, International Congress on the Ap-

plication of Raman Spectroscopy in Art and Archaeology, 2013, Book of Abstracts,

p.134, ISBN: 978-961-6902-38-0

J. J. González-Vidal, R. Pérez-Pueyo, M. J. Soneira, S. Ruiz-Moreno, ICA-based

algorithm for pigment mixtures identification, International Conference on Raman

Spectroscopy Applied to Earth Sciences, 2012, Book of Abstracts, p.145

J. J. González-Vidal, R. Pérez-Pueyo, M. J. Soneira, S. Ruiz-Moreno, Pattern re-

cognition based on principal component analysis in Raman spectroscopy applied to

pigments analysis, International Congress on the use of Multivariate Analysis and

Chemometrics in Cultural Heritage and Environment, 2012, Book of Abstracts, p.54,

ISBN: 978-887-5473-32-7

J. J. González-Vidal, R. Pérez-Pueyo, M. J. Soneira, S. Ruiz-Moreno, Automatic

identification system of Raman spectra of pigment mixtures, International Congress

on the Application of Raman Spectroscopy in Art and Archaeology, 2011, Book of

Abstracts, p.37, ISBN: 978-88-97162-20-9
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9. Domı́nguez-Vidal, A. & de la Torre-López, M. J. J. Raman Spectrosc. 45, 1006

(2014).

10. Guimet, J. B. Ann. Chim. 46, 431 (1831).

11. Duoma, M. Pigments through the Ages http://www.webexhibits.org/pigments.

Accessed: 2017-04-13.

12. Cariati, F. Raman Spectroscopy. Modern Analytical Methods in Art and Archae-

ology (John Wiley, Oxford, 2000).
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