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Abstract

The asymptotic normality of the Maximum Likelihood Estimator (MLE) is a corner-
stone of statistical theory. In the present paper, we provide sharp explicit upper bounds
on Zolotarev-type distances between the exact, unknown distribution of the MLE and its
limiting normal distribution. Our approach to this fundamental issue is based on a sound
combination of the Delta method, Stein’s method, Taylor expansions and conditional expec-
tations, for the classical situations where the MLE can be expressed as a function of a sum
of independent and identically distributed terms. This encompasses in particular the broad
exponential family of distributions.

Key words: Delta method, Maximum likelihood estimator, Normal approximation, Stein’s
method

1 Introduction

The asymptotic normality of maximum likelihood estimators (MLEs) is one of the best-known
and most fundamental results in mathematical statistics. Under certain regularity conditions
(given later in this section), we have the following classical theorem, first discussed in Fisher
(1925).

Theorem 1.1 (Asymptotic Normality of the MLE). Let X1, . . . ,Xn be i.i.d. random variables
with probability density (or mass) function f(xi|θ), where θ is a scalar parameter. Its true value
is denoted as θ0. Assume that the MLE exists and it is unique and conditions (R1)-(R4), see
below, are satisfied. Then

√

ni(θ0)
(

θ̂n(X)− θ0

)

d−−−→
n→∞

N (0, 1)

where i(θ0) is the expected Fisher information quantity and
d→ means convergence in distribution.

The aim of the present paper is to complement this qualitative result with a quantitative
statement, in other words, to find the best possible approximation for the distance, at finite

sample size n, between the distribution of
√

ni(θ0)
(

θ̂n(X) − θ0

)

on the one hand and N (0, 1)

on the other hand. In mathematical terms, for Z ∼ N (0, 1), we are interested in the quantity

dH

(

√

ni(θ0)
(

θ̂n(X)− θ0

)

, Z
)

= sup
h∈H

∣

∣

∣
E
[

h
(

√

ni(θ0)
(

θ̂n(X)− θ0

))]

− E [h (Z)]
∣

∣

∣
(1.1)
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with
H = {h : R → R, absolutely continuous and bounded} . (1.2)

Distances of this type are called Zolotarev-type distances. Our main focus will lie on the classical
situations where the MLE can be expressed as a function of a sum of independent and identically
distributed terms.

Consider an i.i.d. sample of observations X = (X1, . . . ,Xn). Writing θ̂n(X) the MLE of
the scalar parameter of interest θ ∈ Θ ⊆ R, we are interested in settings where there exists a
one-to-one twice differentiable mapping q : Θ → R such that

q
(

θ̂n(X)
)

=
1

n

n
∑

i=1

g(Xi) (1.3)

for some g : R → R. Situations of this kind are all but rare; with f(x|θ) the probability density
(or mass) function, classical examples include

• the normal distribution with density f(x|µ, σ2) = 1
σ
√
2π

exp
(

− 1
2σ2 (x− µ)2

)

, x ∈ R, for

which µ ∈ R is our unknown parameter, whereas σ > 0 is considered to be known. The
MLE for θ = µ is

θ̂n(X) =
1

n

n
∑

i=1

Xi;

• the normal distribution, where now the mean µ is known and θ = σ2 represents the
unknown parameter, with

θ̂n(X) =
1

n

n
∑

i=1

(Xi − µ)2;

• the Weibull distribution with density f(x|α, σ) = α
σ

(

x
σ

)α−1
exp

(

−
(

x
σ

)α)
, x ≥ 0, where σ

is the unknown scale parameter and α > 0 is fixed. The MLE for θ = σ is defined through

(

θ̂n(X)
)α

=
1

n

n
∑

i=1

Xα
i ;

• the Laplace scale model with density f(x|σ) = 1
2σ exp(−|x|/σ), θ = σ > 0, over R, for

which

θ̂n(X) =
1

n

n
∑

i=1

|Xi|.

Moreover, the broad one-parameter exponential families do satisfy condition (1.3); see Proposi-
tion 3.1 for details. Hence, our results do apply to most of the well-known distributions.

We now present in detail the notation and general assumptions made throughout the paper.
We write Eθ[] the expectation under the specific value θ of the parameter. In line with the
notation used above, the joint density or probability mass function of X is written f(x|θ). The
true, unknown value of the parameter is θ0 and Θ denotes the parameter space. For Xi = xi
some observed values, the likelihood function is denoted by L(θ;x) = f(x|θ) and we denote
its natural logarithm, called the log-likelihood function, by l(θ;x). The derivatives of the log-
likelihood function with respect to θ are l′(θ;x), l′′(θ;x), . . . , l(j)(θ;x), for j any integer greater
than 2, and i(θ) denotes the expected Fisher information number for one random variable.
Whenever the MLE exists and is also unique, we will write it as before under the form θ̂n(X).
For Θ being an open interval, we use the results in Makelainen et al. (1981) to secure the
existence and uniqueness of the MLE. Thus, it suffices to assume that:
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(A1) The log-likelihood function l(θ;x) is a twice continuously differentiable function with re-
spect to θ and the parameter varies in an open interval (a, b), where a, b ∈ R ∪ {−∞,∞}
and a < b;

(A2) lim
θ→a,b

l(θ;x) = −∞;

(A3) l′′(θ;x) < 0 at every point θ ∈ (a, b) for which l′(θ;x) = 0.

Note that we tacitly assume those conditions in Theorem 1.1 when requiring existence and
uniqueness of the MLE. Asymptotic normality further requires the following sufficient regularity
conditions:

(R1) the parameter is identifiable, which means that if θ 6= θ′, then ∃x : f(x|θ) 6= f(x|θ′);

(R2) the density f(x|θ) is three times differentiable with respect to θ, the third derivative is
continuous in θ and

∫

f(x|θ) dx can be differentiated three times under the integral sign;

(R3) for any θ0 ∈ Θ and for X denoting the support of f(x|θ), there exists a positive number ǫ
and a function M(x) (both of which may depend on θ0) such that

∣

∣

∣

∣

d3

dθ3
log f(x|θ)

∣

∣

∣

∣

≤ M(x) ∀x ∈ X, θ0 − ǫ < θ < θ0 + ǫ,

with Eθ0 [M(X)] < ∞;

(R4) i(θ) > 0, ∀θ ∈ Θ.

These conditions, in particular (R2), ensure that, provided the respective expressions exist,
Eθ[l

′(θ;X)] = 0 and Varθ[l
′(θ;X)] = ni(θ). These conditions form the basis of Theorem 1.1

above; see page 472 of Casella and Berger (2002) for a basic sketch of the proof.
The first paper to address the problem of assessing the accuracy of the asymptotic normal

approximation for MLE is Anastasiou and Reinert (2015). After deriving general bounds on
Zolotarev-type distances, they use the bounded Wasserstein distance dbW , which is also known as
Fortet-Mourier distance (see, e.g., Nourdin and Peccati (2012)) and is linked to the Kolmogorov
distance (H is the class of indicator functions of half-spaces) via dK(·, ·) ≤ 2

√

dbW (·, ·). We state
in Theorem 2.4 of Section 2 the bound obtained in that paper. For the broad class of distributions
satisfying (1.3), our bound is better than, or at least as good as, the Anastasiou and Reinert
(2015) bound (hereafter referred to as AR-bound) both in terms of sharpness and simplicity. The
tools we use to reach this result are the Delta method, Stein’s method for normal approximation,
Taylor expansions and conditional expectations.

The paper is organised as follows. Our new upper bound is described, proved and compared
to the AR-bound in Section 2. In Section 3 we then apply our results to the class of one-
parameter exponential family distributions and treat some specific examples in detail.

2 New bounds on the distance to the normal distribution for

the MLE

In order to obtain bounds on the aforementioned distance, we partly employ the following lemma.
From now on, unless otherwise stated, || · || denotes the infinity norm || · ||∞.
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Lemma 2.1 (Reinert (1998)). Let Y1, . . . , Yn be independent random variables with E(Yi) = 0,

Var(Yi) = σ2 > 0 and E
[

|Yi|3
]

< ∞. Let W = 1√
n

∑n
i=1 Yi, with E(W ) = 0, Var(W ) = σ2 and

let K ∼ N (0, σ2). Then for any function h ∈ H, with H given in (1.2), one has

|E[h(W )]− E[h(K)]| ≤ ‖h′‖√
n

(

2 +
1

σ3
E
[

|Y1|3
]

)

.

As we shall see below, our strategy consists in benefiting from the special form of q(θ̂n(X)),
which is a sum of random variables and thus allows us to use the sharp bound of this lemma. It is
precisely at this point that the Delta method comes into play: abusing notations and language,
instead of comparing θ̂n(X) to Z ∼ N (0, 1) we rather compare q(θ̂n(X)) to Z, and then bound
the distance between θ̂n(X) and q(θ̂n(X)). The outcome of this approach is the next theorem,
the main result of the present paper.

Theorem 2.2. Let X1, . . . ,Xn be i.i.d. random variables with probability density (or mass)
function f(xi|θ) and let Z ∼ N (0, 1). Assume that (A1)-(A3) and the regularity conditions (R1)-
(R4) are satisfied, and hence the MLE θ̂n(X) exists and is unique. Furthermore let q : Θ → R

be a one-to-one twice differentiable function with q′(θ) 6= 0 ∀θ ∈ Θ and such that q
(

θ̂n(X)
)

=

1
n

∑n
i=1 g(Xi), where the mapping g : R → R is such that E

[

|g(X1)− q(θ0)|3
]

< ∞ for θ0 ∈ Θ

the true value of the parameter. Also, there exists a positive constant 0 < ǫ = ǫ(θ0) as in (R3)
with (θ0 − ǫ, θ0 + ǫ) ⊂ Θ. Then, for any h ∈ H as in (1.2) we have

∣

∣

∣E
[

h
(

√

n i(θ0)
(

θ̂n(X)− θ0

))]

− E [h(Z)]
∣

∣

∣

≤ ‖h′‖√
n

(

2 +
[i(θ0)]

3

2

|q′(θ0)|3
E
[

|g(X1)− q(θ0)|3
]

)

+ E

[

(

θ̂n(X)− θ0

)2
]

(

2
‖h‖
ǫ2

1 {∃θ ∈ Θ : q(θ) 6= θ}+ ‖h′‖
√

n i(θ0)

2 |q′(θ0)|
sup

θ:|θ−θ0|≤ǫ

∣

∣q′′(θ)
∣

∣

)

. (2.1)

Proof. The asymptotic normality of the MLE is explicitly stated in Theorem 1.1. Applying the
widely known Delta method to this result in combination with the requirement q′(θ0) 6= 0 we
obtain

√

n i(θ0)

q′(θ0)

(

q
(

θ̂n(X)
)

− q (θ0)
)

d−−−→
n→∞

N (0, 1), (2.2)

with q
(

θ̂n(X)
)

= 1
n

∑n
i=1 g(Xi). Using the triangle inequality we get that

∣

∣

∣
E
[

h
(

√

n i(θ0)
(

θ̂n(X)− θ0

))]

− E[h(Z)]
∣

∣

∣

≤
∣

∣

∣

∣

∣

E

[

h

(

√

n i(θ0)

q′(θ0)

(

q
(

θ̂n(X)
)

− q (θ0)
)

)]

− E[h(Z)]

∣

∣

∣

∣

∣

(2.3)

+

∣

∣

∣

∣

∣

E

[

h
(

√

n i(θ0)
(

θ̂n(X)− θ0

))

− h

(

√

n i(θ0)

q′(θ0)

(

q
(

θ̂n(X)
)

− q (θ0)
)

)]∣

∣

∣

∣

∣

. (2.4)
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We first start to obtain an upper bound for (2.3) using (indirectly) Stein’s method via Lemma 2.1.
Some simple rewriting yields

√

n i(θ0)

q′(θ0)

(

q
(

θ̂n(X)
)

− q (θ0)
)

=

√

n i(θ0)

q′ (θ0)

(

1

n

n
∑

i=1

g (Xi)− q (θ0)

)

=
1√
n

n
∑

i=1

{

√

i (θ0)

q′(θ0)
(g(Xi)− q(θ0))

}

=
1√
n

n
∑

i=1

Yi,

where Yi =

√
i(θ0)

q′(θ0)
(g(Xi)− q(θ0)) , i = 1, 2, . . . , n and, obviously, the Yi’s are independent and

identically distributed random variables. The Central Limit Theorem applied to 1√
n

∑n
i=1 Yi im-

plies 1√
n

∑n
i=1(Yi − E(Y1))

d→ N (0,Var(Y1)). From (2.2) we know however that 1√
n

∑n
i=1 Yi

d→
N (0, 1); comparing the two asymptotic results reveals that, necessarily (since two normal dis-
tributions can only be equal if their expectations and variances are the same), we have

E [g(X1)] = q(θ0) and Var [g(X1)] =
(q′(θ0))2

i(θ0)
,

where condition (R4) allows to divide by i(θ0). Hence, E[Yi] = 0 and Var[Yi] = 1 (as Lemma
2.1 requires). Applying the result of the lemma we get

∣

∣

∣

∣

∣

E

[

h

(

√

n i(θ0)

q′(θ0)

(

q
(

θ̂n(X)
)

− q (θ0)
)

)]

− E[h(Z)]

∣

∣

∣

∣

∣

≤ ‖h′‖√
n

(

2 +
[i(θ0)]

3

2

|q′(θ0)|3
E
[

|g(X1)− q(θ0)|3
]

)

. (2.5)

Now we are searching for an upper bound on (2.4). Since the case q(θ) = θ is obvious, we from
here on assume that q(θ) 6= θ. To do so, we denote by

A := A(q, θ0,X) :=h
(

√

n i(θ0)
(

θ̂n(X)− θ0

))

− h

(

√

n i(θ0)

q′(θ0)

(

q
(

θ̂n(X)
)

− q (θ0)
)

)

and our scope is to find an upper bound for |E [A]|. Using the law of total expectation related

to conditioning on
∣

∣

∣θ̂n(X)− θ0

∣

∣

∣ > ǫ or
∣

∣

∣θ̂n(X)− θ0

∣

∣

∣ ≤ ǫ and the triangle inequality we obtain

|E[A]| =
∣

∣

∣E
[

A
∣

∣

∣

∣

∣

∣θ̂n(X)− θ0

∣

∣

∣ > ǫ
]

P

(∣

∣

∣θ̂n(X)− θ0

∣

∣

∣ > ǫ
)

+E
[

A
∣

∣

∣

∣

∣

∣θ̂n(X)− θ0

∣

∣

∣ ≤ ǫ
]

P

(∣

∣

∣θ̂n(X)− θ0

∣

∣

∣ ≤ ǫ
)∣

∣

∣

≤
∣

∣

∣E
[

A
∣

∣

∣

∣

∣

∣θ̂n(X)− θ0

∣

∣

∣ > ǫ
]∣

∣

∣P

(∣

∣

∣θ̂n(X)− θ0

∣

∣

∣ > ǫ
)

+
∣

∣

∣
E
[

A
∣

∣

∣

∣

∣

∣
θ̂n(X]− θ0

∣

∣

∣
≤ ǫ
]∣

∣

∣
P

(∣

∣

∣
θ̂n(X)− θ0

∣

∣

∣
≤ ǫ
)

≤ E
[

|A|
∣

∣

∣

∣

∣

∣
θ̂n(X)− θ0

∣

∣

∣
> ǫ
]

P

(∣

∣

∣
θ̂n(X)− θ0

∣

∣

∣
> ǫ
)

+ E
[

|A|
∣

∣

∣

∣

∣

∣
θ̂n(X)− θ0

∣

∣

∣
≤ ǫ
]

P

(∣

∣

∣
θ̂n(X)− θ0

∣

∣

∣
≤ ǫ
)

.
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Markov’s inequality and the elementary results of P
(∣

∣

∣θ̂n(X)− θ0

∣

∣

∣ ≤ ǫ
)

≤ 1 and |A| ≤ 2‖h‖
further yield

|E[A]| ≤ 2‖h‖
E

[

(

θ̂n(X)− θ0

)2
]

ǫ2
+E

[

|A|
∣

∣

∣

∣

∣

∣
θ̂n(X)− θ0

∣

∣

∣
≤ ǫ
]

. (2.6)

We now focus on the conditional expectation on the right-hand side of (2.6). A second-order

Taylor expansion of q
(

θ̂n(x)
)

about θ0 gives

q
(

θ̂n(x)
)

= q(θ0) +
(

θ̂n(x)− θ0

)

q′(θ0) +
1

2

(

θ̂n(x)− θ0

)2
q′′(θ∗), (2.7)

for θ∗ between θ̂n(x) and θ0. Since we assume that q′(θ) 6= 0 ∀θ ∈ Θ, we can multiply both sides

in (2.7) with

√
n i(θ0)

q′(θ0)
. Rearranging the terms, we obtain

√

n i(θ0)
(

q
(

θ̂n(x)
)

− q(θ0)
)

q′(θ0)
=
√

n i(θ0)
(

θ̂n(x)− θ0

)

+

√

n i(θ0)

2q′(θ0)
q′′ (θ∗)

(

θ̂n(x)− θ0

)2
.

Using the above result along with another first-order Taylor expansion (recall that
√
n
(

θ̂n(X) − θ0

)2
= oP(1) as n → ∞) gives

h
(

√

n i(θ0)
(

θ̂n(x)− θ0

))

− h

(

√

n i(θ0)

q′(θ0)

(

q
(

θ̂n(x)
)

− q(θ0)
)

)

= −
√

n i(θ0)

2q′(θ0)
q′′(θ∗)

(

θ̂n(x)− θ0

)2
h′(t(x)),

(2.8)

where t(x) is between
√

n i(θ0)
(

θ̂n(x)− θ0

)

and

√
n i(θ0)

q′(θ0)

(

q
(

θ̂n(x)
)

− q(θ0)
)

. Equality (2.8)

combined with Lemma 2.1 in Anastasiou and Reinert (2015) related to conditional expectations
yields

E
[

|A|
∣

∣

∣

∣

∣

∣θ̂n(X)− θ0

∣

∣

∣ ≤ ǫ
]

= E

[∣

∣

∣

∣

∣

−
√

n i(θ0)

2q′(θ0)
q′′(θ∗)

(

θ̂n(X)− θ0

)2
h′(t(X))

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
θ̂n(X)− θ0

∣

∣

∣
≤ ǫ

]

≤ ‖h′‖
√

n i(θ0)

2 |q′(θ0)|
E

[

∣

∣q′′(θ∗)
∣

∣

(

θ̂n(X)− θ0

)2
∣

∣

∣

∣

∣

∣

∣
θ̂n(X)− θ0

∣

∣

∣
≤ ǫ

]

≤ ‖h′‖
√

n i(θ0)

2 |q′(θ0)|
sup

θ:|θ−θ0|≤ǫ

∣

∣q′′(θ)
∣

∣E

[

(

θ̂n(X)− θ0

)2
∣

∣

∣

∣

∣

∣

∣
θ̂n(X)− θ0

∣

∣

∣
≤ ǫ

]

≤ ‖h′‖
√

n i(θ0)

2 |q′(θ0)|
sup

θ:|θ−θ0|≤ǫ

∣

∣q′′(θ)
∣

∣E

[

(

θ̂n(X)− θ0

)2
]

. (2.9)

Combining the bounds in (2.5), (2.6) and (2.9) gives the result of the theorem.
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Remark 2.3. (1) The convergence of the second and third terms is governed by the asymptotic

behaviour of E

[

(

θ̂n(X)− θ0

)2
]

, whose rate of convergence is O
(

1
n

)

. This result is obtained

using the decomposition

E
[

(θ̂n(X)− θ0)
2
]

= Var[θ̂n(X)] + bias2[θ̂n(X)]. (2.10)

Under the standard asymptotics (from the regularity conditions (R1)-(R4)) the MLE is asymp-
totically efficient, meaning that

nVar[θ̂n(X)] −−−→
n→∞

[i(θ0)]
−1,

and hence the variance of the MLE is of order 1
n . In addition, from Theorem 1.1 the bias of

the MLE is of order 1√
n
; see also Cox and Snell (1968), where no explicit conditions are given.

Combining these two results and using (2.10) shows that the mean squared error of the MLE is
of order 1

n .

(2) In the simplest possible situation where θ̂n(X) is already a sum of i.i.d. terms, q(x) = x and
hence our upper bound simplifies to

∣

∣

∣
E
[

h
(

√

n i(θ0)
(

θ̂n(X)− θ0

))]

− E [h(Z)]
∣

∣

∣
≤ ‖h′‖√

n

(

2 + [i(θ0)]
3

2E
[

|g(X1)− θ0|3
])

,

which is equivalent to Lemma 2.1.

In order to appreciate the sharpness and simplicity of our bound (2.1), we compare it to the
AR-bound. To this end, we now state the main result of Anastasiou and Reinert (2015).

Theorem 2.4 (Anastasiou and Reinert (2015)). Let X1,X2, . . . ,Xn be i.i.d. random variables
with density or frequency function f(xi|θ) such that the regularity conditions (R1)-(R4) are satis-

fied and that the MLE, θ̂n(X), exists and it is unique. Assume that E

[

∣

∣

∣

(

d
dθ logf(X1|θ)

)

θ=θ0

∣

∣

∣

3
]

<

∞ and that E

[

(

θ̂n(X)− θ0

)4
]

< ∞. Let 0 < ǫ = ǫ(θ0) be such that (θ0 − ǫ, θ0 + ǫ) ⊂ Θ as in

(R3) and let Z ∼ N (0, 1). Then for any function h that is absolutely continuous and bounded,

∣

∣

∣E
[

h
(

√

n i(θ0)
(

θ̂n(X)− θ0

))]

− E [h(Z)]
∣

∣

∣

≤ ‖h′‖√
n



2 +
1

[i(θ0)]
3

2

E





∣

∣

∣

∣

∣

(

d

dθ
logf(X1|θ)

)

θ=θ0

∣

∣

∣

∣

∣

3








+ 2‖h‖
E

[

(

θ̂n(X)− θ0

)2
]

ǫ2
+

‖h′‖
√

n i(θ0)







E
[

|R2(θ0;X)|
∣

∣

∣
|θ̂n(X)− θ0| ≤ ǫ

]

+
1

2



E





(

sup
θ:|θ−θ0|≤ǫ

∣

∣

∣
l(3)(θ;X)

∣

∣

∣

)2
∣

∣

∣

∣

∣

∣

|θ̂n(X) − θ0| ≤ ǫ









1

2
[

E

[

(

θ̂n(X)− θ0

)4
]]1

2











,

where
R2(θ0;x) = (θ̂n(x)− θ0)

(

l′′(θ0;x) + n i(θ0)
)

. (2.11)
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Obvious observations are that the AR-bound requires finiteness of the fourth moment of
θ̂n(X) − θ0 and that this bound is more complicated than ours. Let us now comment on the
bounds term by term.

• In the first term of the bounds, the different positioning of the expected Fisher information
number is explained by the fact that we apply Lemma 2.1 to the standardised version of

g(X1), g(X2), . . . , g(Xn), which have variance [q′(θ0)]2

i(θ0)
, while Anastasiou and Reinert (2015)

obtain the result by applying the lemma after standardising l′(θ0;X1), l
′(θ0;X2), . . . , l

′(θ0;Xn),
which have variance equal to i(θ0).

• The second and third terms vanish in our bound when q(θ) = θ ∀θ ∈ Θ, while the AR-
bound does not take this simplification into account. In addition, when q(θ) 6= θ the
second term is the same in both bounds, whereas the third term in our bound reads

E

[

(

θ̂n(X)− θ0

)2
] ‖h′‖

√

n i(θ0)

2 |q′(θ0)|
sup

θ:|θ−θ0|≤ǫ

∣

∣q′′(θ)
∣

∣ (2.12)

and is to be compared to

‖h′‖
2
√

ni(θ0)



E





(

sup
θ:|θ−θ0|≤ǫ

∣

∣

∣l(3)(θ;X)
∣

∣

∣

)2
∣

∣

∣

∣

∣

∣

|θ̂n(X)− θ0| ≤ ǫ









1

2
[

E

[

(

θ̂n(X)− θ0

)4
]] 1

2

+
‖h′‖

√

n i(θ0)
E
[

|R2(θ0;X)|
∣

∣

∣
|θ̂n(X)− θ0| ≤ ǫ

]

(2.13)

where R2(θ0;x) = (θ̂n(x) − θ0) (l
′′(θ0;x) + n i(θ0)). The second derivative, q′′(θ), plays

in our bound the role of l(3)(θ;X), up to an important difference: l(3)(θ;X) is a sum.
Consequently, the first term in (2.13) has

√
n in its numerator, exactly as in (2.12). The

distinct positioning of the information quantity i(θ0) has the same reason as explained
above. Besides the obvious additional term in the AR bound (the second term in (2.13)),
our bound is also clearly sharper at the level of moments of θ̂n(X)− θ0 since

E

[

(

θ̂n(X)− θ0

)2
]

≤
[

E

[

(

θ̂n(X)− θ0

)4
]]

1

2

by the Cauchy-Schwarz inequality.

From this comparison one sees that our new bound is simpler and, moreover, has one term less.
This is particularly striking in the simplest possible setting where θ̂n(X) is a sum of i.i.d. terms,
where our bound clearly improves on the AR-bound. An advantage of the AR-bound is its wider
applicability as it works for all MLE settings, even when an analytic expression of the MLE is
not known.

3 Calculation of the bound in different scenarios

In this section we shall consider different examples for which we explicitly calculate our upper
bound from Theorem 2.2 and compare it to the AR-bound. To further assess its accuracy, we
simulate data from various distributions and compare our bound to the actual distance between
the unknown exact law of the MLE and its asymptotic normal law, for distinct values of the
sample size n.
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3.1 Bounds for one-parameter exponential families

The probability density (or mass) function for one-parameter exponential families is given by

f(x|θ) = exp {k(θ)T (x)−A(θ) + S(x)}1{x∈B}, (3.1)

where the set B = {x : f(x|θ) > 0} is the support of the density and does not depend on θ;
k(θ) and A(θ) are functions of the parameter; T (x) and S(x) are functions only of the data.
Whenever k(θ) = θ we have the so-called canonical case, where θ and T (X) are called the natural
parameter and natural observation (Casella and Berger, 2002). The identifiability constraint in
(R1) entails that k′(θ) 6= 0 (Geyer, 2013), an important detail for the following investigation.

Proposition 3.1. Suppose X1, . . . ,Xn are i.i.d. with probability density (or mass) function
that can be expressed in the form of (3.1). Assume that (A1)-(A3) and the regularity conditions

(R1)-(R4) are satisfied, and hence the MLE θ̂n(X) exists and is unique. Let θ 7→ D(θ) = A′(θ)
k′(θ)

be invertible. Then q(·) = D(·), with q : Θ → R as in Theorem 2.2.

Proof. Using (3.1), we have that

L(θ;x) =
n
∏

i=1

f(xi|θ) = exp

{

k(θ)
n
∑

i=1

T (xi)− nA(θ) +
n
∑

i=1

S(xi)

}

,

l(θ;x) = k(θ)

n
∑

i=1

T (xi)− nA(θ) +

n
∑

i=1

S(xi),

and hence

l′(θ;x) = k′(θ)
n
∑

i=1

T (xi)− nA′(θ) = 0 ⇐⇒ D(θ) =
1

n

n
∑

i=1

T (xi),

which means that θ̂n(X) = D−1
(

1
n

∑n
i=1 T (Xi)

)

under the invertibility assumption for D(θ).
The claim readily follows.

This result hence shows that, as announced in the Introduction, the broad one-parameter ex-
ponential families do satisfy (1.3). Consequently, Theorem 2.2 can be applied to (3.1), resulting
in

Corollary 3.2. Let X1, . . . ,Xn be i.i.d. random variables with the probability density (or mass)
function of a single-parameter exponential family. Assume that (A1)-(A3) and (R1)-(R4) are
satisfied, and hence the MLE θ̂n(X) exists and is unique. With Z ∼ N (0, 1), h ∈ H as defined
in (1.2) and 0 < ǫ = ǫ(θ0) : (θ0 − ǫ, θ0 + ǫ) ⊂ Θ as in (R3), we obtain

∣

∣

∣E
[

h
(

√

n i(θ0)
(

θ̂n(X)− θ0

))]

− E [h(Z)]
∣

∣

∣

≤ ‖h′‖√
n



2 +
|k′(θ0)|3E

[

|T (X1)−D(θ0)|3
]

|A′′(θ0)− k′′(θ0)D(θ0)|
3

2





+ E

[

(

θ̂n(X)− θ0

)2
]



2
‖h‖
ǫ2

1 {∃θ ∈ Θ : D(θ) 6= θ}

+
‖h′‖√n|k′(θ0)|

2
√

|A′′(θ0)− k′′(θ0)D(θ0)|
sup

θ:|θ−θ0|≤ǫ

∣

∣D′′(θ)
∣

∣



 .
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Proof. We readily have

i(θ0) = E
[

−l′′(θ0;X1)
]

= A′′(θ0)− k′′(θ0)E[T (X1)] =
A′′(θ0)k′(θ0)− k′′(θ0)A′(θ0)

k′(θ0)

and q′(θ0) =
A′′(θ0)k′(θ0)−k′′(θ0)A′(θ0)

[k′(θ0)]
2 . Combining these two results,

√

i(θ0)

|q′(θ0)|
=

|k′(θ0)|
3

2

√

|A′′(θ0)k′(θ0)− k′′(θ0)A′(θ0)|
=

|k′(θ0)|
√

|A′′(θ0)− k′′(θ0)D(θ0)|
.

This result, along with the fact that g(x) = T (x) and q(θ) = D(θ) by Proposition 3.1, allows to
deduce the announced upper bound from Theorem 2.2.

Remark 3.3. It is particularly interesting to spell out this bound in the canonical case k(θ) = θ.
Since then k′(θ) = 1, D(θ) = A′(θ), we find

∣

∣

∣
E
[

h
(

√

n i(θ0)
(

θ̂n(X)− θ0

))]

− E [h(Z)]
∣

∣

∣
≤ ‖h′‖√

n



2 +
E
[

|T (X1)−A′(θ0)|3
]

|A′′(θ0)|
3

2





+ E

[

(

θ̂n(X)− θ0

)2
](

2
‖h‖
ǫ2

1

{

∃θ ∈ Θ : A′(θ) 6= θ
}

+
‖h′‖√n

2
√

|A′′(θ0)|
sup

θ:|θ−θ0|≤ǫ

∣

∣A′′′(θ)
∣

∣

)

.

As i(θ) = A′′(θ) and l′′(θ;X) = −nA′′(θ), R2(θ;x) = 0 and straightforward manipulations show

that all terms in the AR-bound coincide with those in our bound, except for

[

E

[

(

θ̂n(X)− θ0

)4
]] 1

2

,

making the AR-bound less sharp than ours. However, Anastasiou and Reinert (2015) have

shown that, in the canonical exponential setting, their bound can actually have an E

[

(

θ̂n(X)− θ0

)2
]

factor, implying that both bounds are exactly the same in the canonical case. In order to get
an idea of how our bound improves on the AR-bound in non-canonical cases, we treat the
exponential distribution under a non-canonical parametrisation in Subsection 3.3.

3.2 Bounds for the Generalised Gamma distribution

Let us consider X1, . . . ,Xn i.i.d. random variables from the Generalized Gamma GG(θ, d, p)
distribution, where the shape parameters d, p > 0 are considered to be known and the scale
parameter θ is the unknown parameter of interest. The Generalised Gamma distribution includes
many other known distributions as special cases: the Weibull for d = p, the Gamma when p = 1,
and the negative exponential when p = d = 1. Indeed, with Γ(·) denoting the Gamma function,
the probability density function for x > 0 is

f(x|θ) = pxd−1

θd
exp

{

−
(

x
θ

)p}

Γ
(

d
p

)

= exp

{

−xp

θp
+ log p− d log θ + (d− 1) log x− log

(

Γ

(

d

p

))}
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where, in the terminology of one-parameter exponential families, B = (0,∞), Θ = (0,∞),

T (x) = xp, k(θ) = − 1
θp , A(θ) = d log θ and S(x) = log p + (d − 1) log x − log

(

Γ
(

d
p

))

. Simple

steps yield

l(θ0;x) = − 1

θp0

n
∑

i=1

xpi + n log p− nd log θ0 + (d− 1) log

(

n
∏

i=1

xi

)

− n log

(

Γ

(

d

p

))

l′(θ0;x) =
p

θp+1
0

n
∑

i=1

xpi − n
d

θ0
= 0 ⇔ θ̂n(x) =

(

p

nd

n
∑

i=1

xpi

)
1

p

.

It is easy to verify that indeed l′′(θ̂n(x);x) = −n pd

[θ̂n(x)]2
< 0, which shows that the MLE exists

and is unique. The regularity conditions (R1)-(R4) are also satisfied and using Corollary 3.2 for
ǫ = θ0

2 we obtain

∣

∣

∣
E
[

h
(

√

n i(θ0)
(

θ̂n(X)− θ0

))]

− E [h(Z)]
∣

∣

∣
≤ ‖h′‖√

n

(

2 +
(

3 + 6
p

d

) 3

4

)

+



1− 2
( p

nd

)
1

p
Γ
(

nd+1
p

)

Γ
(

nd
p

) +
( p

nd

)
2

p
Γ
(

nd+2
p

)

Γ
(

nd
p

)





1 {{d 6= 1} ∪ {p 6= 1}}

×
[

8‖h‖ + ‖h′‖√ndp|p− 1|
2

(

1

2p−2
1{p < 2}+

(

3

2

)p−2

1{p ≥ 2}
)]

. (3.2)

Let us briefly show how to obtain this bound. For the Generalised Gamma distribution,

D(θ0) = q(θ0) = d
pθ

p
0 and thus E

[

|T (X)−D(θ0)|3
]

= E

[

∣

∣

∣Xp − d
pθ

p
0

∣

∣

∣

3
]

. This third absolute

moment is very complicated to calculate. Therefore, we use Hölder’s inequality and the fact

X ∼ GG(θ0, d, p) ⇒ Xp ∼ Gamma
(

d
p ,

1
θp
0

)

to get

E

[

∣

∣

∣

∣

Xp − d

p
θp0

∣

∣

∣

∣

3
]

≤
[

E

[

(

Xp − d

p
θp0

)4
]] 3

4

=

[

E
[

X4p
]

+

(

dθp0
p

)4

+ 6

(

dθp0
p

)2

E
[

X2p
]

− 4

(

dθp0
p

)3

E [Xp]− 4
d

p
θp0E

[

X3p
]

] 3

4

=

[

θ4p0
d

p

(

6 + 3
d

p

)] 3

4

= θ3p0

(

d

p

) 3

4
(

6 + 3
d

p

) 3

4

. (3.3)

Simpler calculations yield

|k′(θ0)|
√

|A′′(θ0)− k′′(θ0)D(θ0)|
=

√
p√
dθp0

. (3.4)
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Using that Xp
i ∼ Gamma

(

d
p ,

1
θp
0

)

⇒∑n
i=1 X

p
i ∼ Gamma

(

nd
p ,

1
θp
0

)

, we get

E

[

(

θ̂n(X)− θ0

)2
]

=
( p

nd

) 2

p
E





(

n
∑

i=1

Xp
i

)
2

p



+ θ20 − 2
( p

nd

) 1

p
θ0E





(

n
∑

i=1

Xp
i

)
1

p





= θ20

( p

nd

)
2

p
Γ
(

nd+2
p

)

Γ
(

nd
p

) + θ20 − 2θ20

( p

nd

)
1

p
Γ
(

nd+1
p

)

Γ
(

nd
p

)

= θ20



1− 2
( p

nd

)
1

p
Γ
(

nd+1
p

)

Γ
(

nd
p

) +
( p

nd

)
2

p
Γ
(

nd+2
p

)

Γ
(

nd
p

)



 . (3.5)

Regarding sup
θ:|θ−θ0|≤ǫ

|D′′(θ)|, one has to be careful as the supremum depends on the value of p:

sup
θ:|θ−θ0|≤ǫ

∣

∣d(p− 1)θp−2
∣

∣ = d|p − 1| sup
θ:|θ−θ0|≤ǫ

∣

∣θp−2
∣

∣

= d|p − 1|











(θ0 − ǫ)p−2, if 0 < p < 2

(θ0 + ǫ)p−2, if p ≥ 2.

(3.6)

Thus, applying now the results of (3.3), (3.4), (3.5) and (3.6) on the general expression for the
upper bound in Corollary 3.2, we obtain the result in (3.2).

Remark 3.4. (1) The bound in (3.2) is O
(

1√
n

)

. This is not obvious as we need to comment

on the order of the term

(

1− 2
( p
nd

) 1

p
Γ
(

nd+1

p

)

Γ
(

nd
p

) +
( p
nd

) 2

p
Γ
(

nd+2

p

)

Γ
(

nd
p

)

)

. Using the following Taylor

expansion for a ratio of Gamma functions (see Tricomi and Erdélyi (1951))

Γ(z + a)

Γ(z + b)
= za−b

(

1 +
(a− b)(a+ b− 1)

2z
+O

(

|z|−2
)

)

for large z (here, nd/p) and bounded a and b, we can see that this term is of order 1
n , leading

to the overall order of 1√
n
.

(2) The indicator function in (3.2) comes from the fact that q(θ) = θ ∀θ ∈ Θ ⇐⇒ d, p = 1.

3.3 Bounds for the (negative) exponential distribution

In this subsection, we consider the most famous special case of the Generalised Gamma dis-
tribution: the (negative) exponential distribution. First we will treat the canonical form of
the distribution and then we will change the parameterisation to discuss the more interesting
non-canonical setting.

3.3.1 The canonical case: Exp(θ)

We start with X1, . . . ,Xn exponentially distributed i.i.d. random variables with scale parameter
θ > 0 and probability density function f(x|θ) = θexp{−θx} = exp{log θ − θx} for x > 0, which

12



we write Exp(θ). In terms of (3.1), this means B = (0,∞), Θ = (0,∞), T (x) = −x, k(θ) = θ,
A(θ) = − log θ and S(x) = 0. Further we have that

l′(θ;x) =
n

θ
−

n
∑

i=1

xi, l′′(θ;x) = − n

θ2
,

the unique MLE is given by θ̂n(X) = 1/X̄ with X̄ = 1
n

∑n
i=1 Xi and (R1)-(R4) are satisfied.

With this in hand, we can easily see that D(θ0) = q(θ0) =
A′(θ0)
k′(θ0)

= − 1
θ0

and

|k′(θ0)|
√

|A′′(θ0)− k′′(θ0)D(θ0)|
= θ0. (3.7)

Simple calculations allow us here to bypass the Hölder inequality used for the Generalized

Gamma case and to obtain E
[

|T (X)−D(θ0)|3
]

= E

[

∣

∣

∣

1
θ0

−X
∣

∣

∣

3
]

≤ 2.41456
θ3
0

. Since Xi ∼
Exp(θ), ∀i ∈ {1, 2, . . . , n} then X̄ ∼ Gam(n, nθ), with Gam(α, β) being the Gamma distri-
bution with shape parameter α and rate parameter β. Consequently,

E[(θ̂n(X)− θ0)
2] =

(nθ0)
2

(n− 1)(n − 2)
− 2nθ20

n− 1
+ θ20 =

(n+ 2)θ20
(n− 1)(n − 2)

.

Moreover, for ǫ > 0 such that 0 < ǫ < θ0, we obtain sup
θ:|θ−θ0|≤ǫ

|D′′(θ)| = 2
(θ0−ǫ)3

. Choosing ǫ = θ0
2 ,

we get sup
θ:|θ−θ0|≤ǫ

|D′′(θ)| = 16
θ3
0

. Using this result and (3.7), Corollary 3.2 gives

∣

∣

∣E
[

h
(

√

n i(θ0)
(

θ̂n(X)− θ0

))]

− E [h(Z)]
∣

∣

∣ ≤4.41456
‖h′‖√

n
+ 8‖h‖ (n+ 2)

(n − 1)(n − 2)

+ 8‖h′‖
√
n(n+ 2)

(n − 1)(n − 2)
. (3.8)

This bound is of order O
(

1√
n

)

and coincides, as discussed in Remark 3.3, with the AR-bound.

3.3.2 The non-canonical case: Exp
(

1
θ

)

We now proceed to examine the more interesting case where X1, . . . ,Xn are i.i.d. random
variables from Exp

(

1
θ

)

. The probability density function is

f(x|θ) = 1

θ
exp

{

−1

θ
x

}

= exp

{

−logθ − 1

θ
x

}

corresponding to B = (0,∞), Θ = (0,∞), T (x) = x, k(θ) = −1
θ , A(θ) = logθ and S(x) = 0.

As before, simple steps give that the MLE exists, it is unique and equal to θ̂n(X) = X̄. The
regularity conditions are satisfied and for ǫ = θ0

2 we obtain using Corollary 3.2 that

∣

∣

∣
E
[

h
(

√

n i(θ0)
(

θ̂n(X)− θ0

))]

− E [h(Z)]
∣

∣

∣
≤4.41456

‖h′‖√
n
. (3.9)

Indeed, D(θ0) = q(θ0) = θ0, making the last two terms of the bound in Corollary 3.2 vanish.

The result then follows from E
[

|T (X)−D(θ0)|3
]

= E
[

|X − θ0|3
]

≤ 2.41456θ30 and

|k′(θ0)|
√

|A′′(θ0)− k′′(θ0)D(θ0)|
=

1

θ0
.
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Remark 3.5. (1) The order of the bound in terms of the sample size is, as expected, 1√
n
,

corresponding to the order obtained for the Generalized Gamma distribution. The constant
here is better than the one inherited from (3.2) for p = d = 1, thanks to a sharper bound for

E
[

|T (X)−D(θ0)|3
]

.

(2) The AR-bound is given by

4.41456
‖h′‖√

n
+ 8

‖h‖
n

+ 2
‖h′‖√

n
+ 80

‖h′‖√
n

(

6

n
+ 3

)1/2

,

showing that our new bound is an improvement.

3.3.3 Empirical results

For a more complete picture, we also assess the accuracy of our results using simulation-based
data. The process we follow is quite simple. We generate 10000 trials of n = 10, 100, 1000, 10000
and 100000 random i.i.d. observations from the exponential distribution Exp

(

1
2

)

(non-canonical

case). As function h we choose h(x) = 1
x2+2 with h ∈ H, ‖h‖ = 0.5 and ‖h′‖ = 3

√
1.5

16 .

Simple calculations yield E[h(Z)] = 0.379 and each trial gives an MLE θ̂n(X), hence we have

10000 empirical values of h
(

√

n i(θ0)
(

θ̂n(X)− θ0

))

to compare to 0.379. Taking the average

hence provides a simulated estimation of
∣

∣

∣
E
[

h
(

√

n i(θ0)
(

θ̂n(X)− θ0

))]

− E[h(Z)]
∣

∣

∣
, which we

compare to the upper bound given in (3.9). Our bound provides a very strong improvement
on the AR-bound (see Table 3.1). Of course, this estimated distance is only a lower bound to
the true distance, as we have chosen a particular function h instead of the supremum over all
functions h ∈ H, but its calculation still provides an idea of the accuracy of our bounds. This
closeness logically increases with the sample size and becomes quite sharp for n ≥ 100.

Table 3.1: Simulation results for the Exp
(

1
2

)

distribution treated as a non-canonical exponential
family

n
∣

∣

∣Ê
[

h
(

√

n i(θ0)(θ̂n(X)− θ0)
)]

− E[h(Z)]
∣

∣

∣ New Bound AR-bound

10 0.0034 0.321 11.888

100 0.0022 0.101 3.401

1000 0.0012 0.032 1.058

10000 0.0008 0.010 0.333

100000 0.0004 0.003 0.105

ACKNOWLEDGMENTS

The authors would like to thank Gesine Reinert for various insightful comments and suggestions.

References

A. Anastasiou and G. Reinert. Bounds for the normal approximation of the maximum likelihood
estimator. Bernoulli, forthcoming (2015).

G. Casella and R. L. Berger. Statistical Inference. Brooks/Cole, Cengage Learning, second
edition (2002).

14



D. R. Cox and E. J. Snell. A general definiton of residuals. Journal of the Royal Statistical
Society Series B 30, 248–275 (1968).

R. A. Fisher. Theory of Statistical Estimation. Mathematical Proceedings of the Cambridge
Philosophical Society 22, 700–725 (1925).

C. J. Geyer. Asymptotics of maximum likelihood without the LLN or CLT or sample size going
to infinity. In Advances in Modern Statistical Theory and Applications: A Festschrift in honor
of Morris L. Eaton, pages 1–24. Eds.: G. Jones and X. Shen, Beachwood, OH: Institute of
Mathematical Statistics (2013).

T. Makelainen, K. Schmidt and G. P. H. Styan. On the existence and uniqueness of the maximum
likelihood estimate of a vector-valued parameter in fixed-size samples. Annals of Statistics 9,
758–767 (1981).

I. Nourdin and G. Peccati. Normal Approximations with Malliavin Calculus. Cambridge Tracts
in Mathematics, No.192. Cambridge University Press (2012).

G. Reinert. Couplings for normal approximations with Stein’s method. In Microsurveys in
Discrete Probability, pages 193–207. Eds.: D. Aldous, J. Propp, Dimacs series. AMS (1998).
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