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Abstract 1 

Human observers can readily extract the mean emotion from multiple faces shown briefly. However, 2 

it remains currently debated whether this ability depends on attention or not. To address this 3 

question, in this study, we recorded lateralized event-related brain potentials (i.e., N2pc and SPCN) 4 

to track covert shifts of spatial attention, while healthy adult participants discriminated the mean 5 

emotion of four faces shown in the periphery at an attended or unattended spatial location, using a 6 

cueing technique. As a control condition, they were asked to discriminate the emotional expression 7 

of a single face shown in the periphery. Analyses of saccade-free data showed that the mean 8 

emotion discrimination ability was above chance level but statistically undistinguishable between 9 

the attended and unattended location, suggesting that attention was not a pre-requisite for averaging. 10 

Interestingly, at the ERP level, covert shifts of spatial attention were captured by the N2pc and 11 

SPCN components. All together, these novel findings suggest that averaging multiple facial 12 

expressions shown in the periphery can operate with limited attention.  13 

 14 
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Mean emotion from multiple facial expressions can be extracted with limited attention: Evidence 1 

from visual ERPs 2 

 3 

Facial expressions carry important social and emotional information which can be used to 4 

guide and optimize communication between people. In many natural settings and environments, 5 

humans usually interact with multiple other individuals simultaneously. For example, in an 6 

auditorium, some of the students’ faces may seem pleased while some others may display some 7 

signs of disapproval or concerns, leading in turn the instructor to experience a rather mixed 8 

feeling regarding the disposition of his/her audience. Growing evidence in experimental 9 

psychology suggests that human observers can rapidly and rather precisely extract mean emotion 10 

from mixed valences in multiple faces presented concurrently (e.g., Haberman & Whitney, 2007, 11 

2009; Li et al., 2016). The perceived average emotion provides a rather accurate summary 12 

statistic of the complex scene or display composed of multiple emotional faces, usually referred 13 

to as ensemble representation (Alvarez, 2011; Whitney & Leib, 2018). As such, this averaging 14 

allows collapsing or combining multiple individual facial expressions into a coherent and 15 

integrated emotion percept that carries the information of mean intensity and/or valence of the 16 

scene. This remarkable ability of establishing ensemble representation is thought to provide an 17 

efficient way to cope with the bottlenecks in visual processing (Alvarez, 2011; Chong & 18 

Treisman, 2003; Whitney, Haberman, & Sweeny, 2014) and to reconcile the subjective 19 

impression of a rich visual world with the limited perceptual and attention capacities (Cohen, & 20 

Dennett, & Kanwisher, 2016). However, the mechanism underlying ensemble representation is 21 

still largely unclear, and discrepant results have been reported in the past.  22 

Some earlier research argued that extracting mean information from multiple items is best 23 

conceived as a capacity-limited perceptual process (Attarha, Moore, & Vecera, 2014; Florey, 24 
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Clifford, Dakin, & Mareschal, 2016; Jacoby, Kamke, & Mattingley, 2013; Ji, Chen, Loeys, & 1 

Pourtois, submitted). In a recent study (Ji et al., submitted), we used the extended simultaneous-2 

sequential paradigm (Scharff, Palmer, & Moore, 2011) to examine the processing capacity for 3 

extracting mean emotion from multiple facial expressions (with variations along the valence 4 

dimension; the faces being either happy or angry). The results showed that performance in the 5 

sequential condition (where two successive displays each containing 8 faces were shown) was 6 

better than that in the simultaneous condition (where the 16 individual faces were presented at the 7 

same time), which was consistent with the limited-capacity model assuming that all items in an 8 

ensemble could not be processed independently or without interference. In addition, a previous 9 

study using the attentional blink (AB) paradigm found a clear AB effect when estimating the 10 

average emotion from four faces (target 2) that followed, after a short lag, a first face whose 11 

gender had to be discriminated (target 1), indicating that average emotion processing suffers from 12 

the temporal limits of attention deployment (McNaire, Goodbourn, Shone, & Harris, 2016). 13 

Although extracting the mean emotion from a set of individual facial expressions seems to 14 

obey to capacity limitations, it is not known yet whether an ensemble representation for multiple 15 

facial expressions could be established with no attention or limited attention. Earlier 16 

psychophysical studies on low-level features showed that mean representation can be formed 17 

outside the focus of attention or with reduced spatial attention allocated to its actual content 18 

(Alveraz & Oliva, 2008, 2009; Demeyere, Rzeskiewicz, Humphreys, & Humphreys, 2008; Leib, 19 

Landau, Baek, Chong, & Robertson, 2012; but cf. Huang, 2015; Jackson-Nielsen, Cohen, & Pitts, 20 

2017). The goal of the current study was twofold. (i) First, we examined whether the average 21 

emotion could be extracted with limited attention. For this purpose, we combined a  spatial-22 

cueing procedure (Posner, 1980; Mangun & Hillyard, 1991) with an average emotion task where 23 

we manipulated the average emotion of a face set by systematically varying across trials the ratio 24 
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of positive and negative faces contained in the set. In short, in every trial, observers were required 1 

to judge the average emotion (either positive or negative) of a target set composed of four faces 2 

conveying a variable amount of happy and angry expressions and the target set was presented in a 3 

valid (75%) or invalid (25%) peripheral location, while distractor faces were presented in the 4 

opposite location. At the behavioral level, we compared performance between the valid and 5 

invalid condition. We reasoned that if performance in the invalid condition was above chance 6 

level (and/or similar to that in the valid condition), then this could be interpreted as evidence in 7 

favor of the possibility to extract the mean emotion from the set with limited attention. 8 

Conversely, if participants could not discriminate above chance level the mean emotion in the 9 

invalid condition, then this could be taken as evidence that the ensemble representation could not 10 

be established with limited attention. The presence of a significant validity effect (i.e., better 11 

performance in the valid compared to the invalid condition) would accord with a classical 12 

attention gating effect whereby a more accurate mean representation could be achieved when 13 

selective attention is allocated to this complex stimulus (Hillyard, Vogel, & Luck, 1998). (ii) 14 

Additionally, we also investigated whether averaging multiple facial expressions could be 15 

dissociated from recognizing a single emotional facial expression. To this aim, we compared 16 

behavioral performance of the same subjects between two tasks. Either participants had to 17 

discriminate the emotional expression of a single face (single emotion task) or they performed the 18 

average emotion task, as described here above. 19 

Noteworthy, visual event-related brain potentials (ERPs) were recorded concurrently and 20 

used to gain insight into the time-course of establishing an ensemble representation for multiple 21 

facial expressions. More specifically, we capitalized on two well-known lateralized ERP 22 

components that are sensitive to spatial attention (and short term visual memory) manipulations, 23 

namely the N2pc (N2 posterior contralateral) and the SPCN (sustained posterior contralateral 24 
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negativity). 1 

The N2pc is a lateralized component, characterized by a larger negativity at posterior 2 

(occipito-temporal) electrodes sites contralateral versus ipsilateral to the attended location, and is 3 

usually observed approximately 200-300 ms after stimulus onset at lateral occipital leads (Luck 4 

& Hillyard, 1994). This ERP component is usually found in visual search tasks, and thought to 5 

reflect spatially selective attention to target stimuli (Eimer, 1996; Woodman & Luck, 1999). The 6 

N2pc was also observed previously during a spatial cueing task (Kiss, van Velzen, Eimer, 2008; 7 

Woodman, Arita, & Luck, 2009). For example, following an informative (100% valid) arrow cue 8 

in the center, an N2pc in response to targets was still reliably elicited (Kiss, et al., 2008; 9 

Praamstra, 2006). More importantly, the N2pc also provides a neural index of individuation, or in 10 

other words, forming distinct representations of each individual item at the same time. In line 11 

with this assumption, the amplitude of N2pc usually increases with the number of to-be-selected 12 

items within the attended hemifield (Drew & Vogel, 2008; Ester, Drew, Klee, Vogel, & Awh, 13 

2012; Mazza & Caramazza, 2011; Pagano & Mazza, 2012). For example, the more items need to 14 

be enumerated or to be tracked, the larger the amplitude of the N2pc, reaching a plateau usually 15 

at a set size over four items, indicating a limitation in simultaneously selecting or individuating 16 

these items (Drew & Vogel, 2008; Mazza, Pagano, Caramazza, 2013). However, the relationship 17 

between the amplitude of the N2pc and set size is best evidenced when the individuation of 18 

multiple stimuli is required. When observers had only to detect the presence of a specific color 19 

within the set for example, the N2pc amplitude was not influenced any more by the number of 20 

items therein (Mazza & Caramazza, 2011). The SPCN often follows the N2pc when more 21 

detailed processing and/or memory for the lateralized target is required (Brisson & Jolicœur, 22 

2007; Jolicœur, Brisson, Robitaille, 2008; Mazza, Turatto, Umiltà, & Eimer, 2007). The SPCN 23 

(also called contralateral delay activity - CDA sometimes in the extant literature) has a strong link 24 
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with visual short-term memory (Eimer & Kiss, 2010; Klaver, Talsma, Wijers, Heinze, & Mulder, 1 

1999; McCollough, Machizawa, & Vogel, 2007; Vogel & Machizawa, 2004). The amplitude of 2 

the SPCN usually increases as the number of items held in visual short-term memory increases, 3 

up to the observer’s memory capacity (MaCollough et al., 2007; Vogel & Machizawa, 2004).  4 

Using these specific electrophysiological markers of attention selection (N2pc) and visual 5 

short-term memory (SPCN), we first hypothesized that the N2pc would be observed in the valid 6 

condition, indicating allocation of attention to the target face stimuli. In the invalid condition, we 7 

surmised that the N2pc would be strongly reduced, if not fully absent. With regard to our second 8 

research question, we conjectured that the N2pc could be larger in the average emotion task (four 9 

target faces) compared with the single emotion task (one target face), assuming that extracting the 10 

mean emotion from multiple facial expressions requires individuating/computing individual 11 

faces. On the other hand, if establishing a mean emotion representation does not require 12 

individuating but can be computed based on a so-called “total activation map” (Šetić, Švegar, & 13 

Domijan, 2006), or alternatively participants use a subsampling strategy (selecting one face out of 14 

the four available in the average emotion task), then the amplitude of the N2pc should be similar 15 

for the two tasks. Although the current study was not designed a priori to explore visual short 16 

term memory, we nevertheless assessed whether a SPCN could be elicited following the N2pc in 17 

this experiment. As a matter of fact, it may be the case that the emotional information extracted 18 

from the target stimulus first needs to be shortly retained in a visual buffer (“short-term 19 

memory”) after visual presentation for further processing and elaboration (e.g., discrimination), 20 

leading in turn to the generation of a SPCN. In this scenario, if the four facial expressions are 21 

collapsed or compressed into one summary statistic (i.e., mean) (Alvarez, 2001; Brady & 22 

Alvarez, 2011), then this memory load (or buffer information) would be comparable for the two 23 

tasks, leading thereby to a similar SPCN for them. On the other hand, if the individual 24 
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representations are maintained along with the summary estimate, or the mean representation 1 

retained in visual short-term memory consisted of low compressed or less structured features 2 

(Baijal, Nakatani, van Leeuwen, & Srinivasan, 2013; Treisman, 2006), then a larger SPCN would 3 

be observed primarily in the average emotion task compared with the single emotion task. 4 

 5 

Method 6 

Participants 7 

Thirty-six volunteers (age: M = 22.6 years, SD = 2.4; 24 females) from Ghent University 8 

participated in this study after giving written informed consent and were compensated €30. All 9 

participants reported to be right-handed and have normal or corrected-to-normal vision. The study 10 

protocol was conducted in accordance with the Declaration of Helsinki and approved by the local 11 

ethics committee.  12 

Stimuli and design 13 

Four male and four female face identities were selected from NimStim database 14 

(Tottenham et al., 2009). Each face identity shows happy, angry and neutral expressions, all with 15 

closed mouths. The hair, ears, neck and other external information were cropped by an oval 16 

frame. All images were converted to greyscale, and scaled to the same mean luminance and root-17 

mean-square contrast (Bex & Makous, 2002).   18 

In the average emotion task, the target set of four faces conveying a variable amount of 19 

happy and angry expressions was presented in either the left or the right visual field. The ratio of 20 

happy faces in the set was 0.25, 0.5 or 0.75. On the opposite side, there was another set 21 

containing four neutral faces, hence yielding bilateral stimulus presentations (Figure 1).  22 

In the single emotion task, there was either one happy or one angry face flanked by three 23 

scrambled faces in the target set (Figure 1). The distractor set (shown in the opposite visual field, 24 
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similarly to the average emotion condition) included one neutral face flanked by three scrambled 1 

faces. For scrambling, we used Adobe Photoshop (Adobe Systems Corporation, San Jose, CA) to 2 

crop and rearrange the key internal features (eyes, nose, mouth, and forehead) of the original 3 

happy and angry faces, thus the scrambled images were still face-like to some degree, and the 4 

low-level features were maintained while the emotional information could no longer be extracted 5 

from them. The emotion of the three scrambled faces in each set was randomly selected.  6 

For both tasks, face identities in each set were randomly selected with two specific 7 

constraints: 1) an equal number of male and female faces were presented; 2) the same identity 8 

was never repeated in the pair of two sets. 9 

The pair of one target and one distractor set was presented in the left and the right visual 10 

field 3.52° lateral to the fixation. The four faces (or one face with three scrambled ones) in each 11 

set were shown in a 2 × 2 invisible grid, on a homogenous black background (Figure 1). The 12 

position of these four faces was randomly selected. In the single emotion task, the single intact 13 

face in the two sets was presented in mirror symmetry. A white fixation point was continuously 14 

present on the center of the screen. The two inner faces (i.e., being closer to the fixation, 3.28° × 15 

2.15°) subtended a visual angle of 2.38° × 2.38°. The two outer faces (6.35° × 2.15°) were scaled 16 

to 3.42° × 3.45° to compensate for differences in V1 cortical representation/magnification 17 

(Rousselet, Husk, Bennett, & Sekuler, 2005) following a standard formula1 (Dougherty, Koch, 18 

Brewer, Fischer, Modersitzki, & Wandell, 2003; Horton & Hoyt, 1991). The outline of the outer 19 

grid (3 pixels) was also always visible on the screen, to help the participants to attend to the part 20 

                                                               
1 Mlinear = A/(E+e2), with E the eccentricity in degrees, A the cortical scaling factor in mm, and e2 the eccentricity in 
degrees at which a stimulus subtends half the cortical distance that it subtends at the fovea. We used A = 29.2mm and 
e2 = 3.67° based on a recent report of the cortical magnification factor in V1 (Dougherty et al., 2003), similarly to 
Rousselet et al., 2005.  The face image at 3.28° stimulates a cortical surface area that is (6.35+3.67)/(3.28+3.67) = 
1.44 times larger than the surface stimulated by the same image when it is presented at 6.35°. 
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of the visual field where the faces were actually presented. At the onset of the two face sets (one 1 

target and one distractor), the outline was converted from white to either blue or green, indicating 2 

the target or the distractor respectively (this color/validity mapping was counterbalanced across 3 

participants), and these two colors remained when the masks appeared. The masks had the same 4 

size and appeared at the same location as the faces in the target and distractor set (Figure 1C). We 5 

used MATLAB (Mathworks, Natick, MA) to divide neutral faces into a 10 × 12 matrix of 6 

randomly arranged squares and trimmed them with an oval frame against the black background. 7 

Before the presentation of the two face sets, there was a centrally located arrow cue (1.61° × 8 

1.28°), which had the same color as the outline of the target set.  9 

(insert Figure 1 about here, single-column) 10 

Procedure   11 

Participants seated at 75 cm in front of a 19" CRT screen (resolution of 1024 × 768 pixels, 12 

refresh rate 100 Hz) in a dimly lit cabin. To minimize head movements, a chinrest was used 13 

during both tasks. While fixating at the central cross, participants were required to discriminate 14 

(with peripheral vision) whether the (average) emotion of the target face set was positive or 15 

negative, by pressing one out of two pre-defined buttons with their right hand (“2” or “8” using a 16 

standard number keyboard; this mapping being counterbalanced across participants) as accurate 17 

and as fast as possible. A trial began with a fixation cross for 500 ms, followed by an arrow cue 18 

superimposed on the fixation cross for 200 ms, both of which were presented on the center of the 19 

screen. After an ISI randomly varying between 500-700 ms, the pair of two face sets was shown 20 

for 150 ms. The target face set mostly (p = .75) appeared at the spatial position indicated by the 21 

preceding arrow, and equally likely in the left or the right visual field. Then, the face sets were 22 

masked and the masks were presented for 1000 ms or terminated by response (Figure 1). The 23 

next trial automatically began (randomly varying between) 1000 ms-1200 ms after participant 24 
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responded. Participants were informed about target validity and probability, and they were 1 

encouraged to rely on their first impression and not to think extensively. 2 

The two tasks, either judging the average emotion from multiple faces (average emotion 3 

task) or identifying the emotion from the single face (single emotion task), were blocked, and the 4 

order of blocks was counterbalanced across participants. The ratio of happy faces (0.25, 0.5, 0.75) 5 

in the average emotion task or the valence of one emotional face (happy, angry) in the single 6 

emotion task was randomized within blocks. Every trial had a unique face set to minimize the 7 

visual statistical regularity between trials. Participants performed 12 experimental blocks of 48 8 

trials each (36 valid, 12 invalid) for the average task, and 6 blocks of 64 trials each (48 valid, 16 9 

invalid) for the single task. Before starting the experiment, participants got acquainted with the 10 

two emotion judgment tasks with 20 practice trials each. Practice trials were excluded from all 11 

subsequent analyses. In order to encourage participants to focus on the center of the screen 12 

(fixation point) and only use peripheral vision to process face sets, the procedure also 13 

incorporated four catch trials each block, where a white dot (0.60°) unexpectedly replaced the 14 

fixation cross. Participants were asked to press the spacebar with their left hand when they 15 

detected the dot. They did not need to judge the emotion when a dot appeared.   16 

After the average and single emotion tasks, participants rated the valence and emotion 17 

intensity of each face previously presented. To this aim, one face appeared at a time in the center 18 

and had the same size as that in the previous task. Participants judged on a Visual Analogue Scale 19 

(VAS). The two anchors of the VAS for emotion valence and intensity were labeled Extremely 20 

positive and Extremely negative. Additionally, we also asked participants to rate their arousal 21 

level to each individual face. The two anchors of VAS for arousal were labeled Extremely calm 22 

and Extremely excited. The labels on the left and right side of both VASes were counterbalanced 23 

across participants. The main goal of these post-experiment ratings was to confirm that the happy, 24 
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angry and neutral faces used in the main experiment were perceived as such and hence showed 1 

differences in terms of valence and arousal. Moreover, following the procedure adopted in our 2 

previous study (Ji et al., submitted), we directly used these post-experiment ratings to compute 3 

subject-specific mean emotions for the different face sets used in the main experiment and 4 

assessed if (objective) changes in the ratio of happy faces in these sets were related to the 5 

(subjective) estimates (see Supplementary materials section for details). 6 

All the tasks were programmed and controlled using the E-Prime Version 2 software 7 

(Psychology Software Tools, Inc., 2001). The experiment lasted about 90 minutes. 8 

Electrophysiological recording and preprocessing   9 

The electroencephalographic (EEG) activity was continuously recorded from 64 active 10 

Ag/AgCl electrodes positioned according to the extended 10-20 system in an elastic cap 11 

(BioSemi ActiveTwo system) during the average and single emotion tasks. The EEG signals were 12 

referenced online to the CMS-DRL electrodes and sampled at 512 Hz. Additional bipolar 13 

electrodes were placed above and below the left eye, and the voltage difference between them 14 

was recorded as vertical electro-oculogram (EOG). The voltage difference between the electrodes 15 

at the left and the right outer canthus was recorded as horizontal EOG (HEOG).  16 

The preprocessing was performed using EEGLAB (Delorme & Makeig, 2004) and 17 

ERPLAB (Lopez-Calderon & Luck, 2014). A high-pass filter of 0.05 Hz and a low-pass filter of 18 

80 Hz was firstly applied. Data were then referenced offline to the averaged reference after the 19 

noisy channels were interpolated by a spherical splines procedure. In order to exclude potential 20 

saccades to the peripheral face sets during the cue-target interval, EEG and EOG were first 21 

segmented into long epochs beginning 200 ms before cue onset and up to 2250 ms following it, 22 

baseline-corrected using the 200 ms pre-cue interval. Epochs containing horizontal eye 23 

movements (as identified using HEOG) within 900 ms after cue onset were automatically 24 
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detected by the step-like artifact function (searching for step-shaped segments of data on the 1 

channel of HEOG, with window step set as 10 ms, moving windows full width as 400 ms, and 2 

voltage threshold as 15 µV), as implemented in ERPLAB.  3 

A total of 41% of trials was marked to be excluded due to the step-like HEOG artifacts 4 

occurring during the cue-target interval. The number of trials detected was similar for all the 5 

experimental conditions (valid left, valid right, invalid left, invalid right). The large number of 6 

trials with HEOG during the cue-target interval indicated that for a large amount of trials, 7 

participants already moved their eyes following the cue, or had produced saccades towards the 8 

target location before its actual onset. Supplementary Figure 3 shows representative examples of 9 

HEOG traces obtained for two subjects (one with no saccades and one with clear saccades) 10 

recorded during the cue-target interval. Out of 36 participants, we could actually retain only 19 11 

who had more than half of the trials left without saccades (after analysis of the HEOG) and 12 

subsequent artifact rejections in both tasks, as well as no clear residual eye movements (less than 13 

5 µV, deviated less than 0.3°, Lins, Picton, Berg, & Scherg, 1993). These 19 participants were 14 

used in the following EEG analyses. For this no-clear-saccade group, on average 23% of trials 15 

were rejected in the HEOG rejection procedure2. The original saccade-free long epochs were 16 

segmented into shorter epochs (-200 ms to 800 ms) time-locked to the onset of the target face 17 

sets. Independent component analysis (EEGLAB’s runica algorithm) was adopted to remove 18 

components related to eye blinks. Epochs containing activity exceeding ± 80 μV in the scalp EEG 19 

electrodes were automatically rejected (on average 7% trials, a number which was not different 20 

between task and validity conditions). The artifact-free data were then baseline-corrected using 21 

                                                               
2 For this no-clear-saccade group, the number of trials rejected based on the HEOG rejection procedure was larger in 
the average task (25 ± 10%, the Ratio0.5 condition was dropped to match the total number of trials with the single 
task) compared with the single task (21 ± 10%), p = .016; however no significant difference was found between valid 
(22 ± 10%) vs. invalid (23 ± 10%) conditions, nor the interaction between task type and validity reached 
significance, ps > .34.  
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the 200 ms pre-stimulus interval. We averaged only the correct trials (thus the Ratio0.5 condition 1 

in the average task was not included) separately for each type of task (average, single), validity 2 

(valid, invalid), and target location (left, right)3. Grand average ERPs were computed by 3 

averaging mean ERPs of these19 participants for each condition separately. For the other 17 4 

participants, a large amount of residual eye movements during the cue-target interval (more than 5 

5 µV) after HEOG rejection was observed and/or not enough trials were left after artifact 6 

rejection4. The results obtained for this clear-saccade group (where trials with clear saccades only 7 

were eventually retained, based on the HEOG channel analysis) are presented in the 8 

Supplementary materials section for comparison purposes. 9 

Data analyses    10 

For the average and the single emotion tasks, the accuracy of catch trials was first 11 

calculated. The subsequent analyses were based on trials without catch trials. For the average 12 

task, the proportion of “positive” responses as a function of the ratio of happy faces in the sets 13 

was first computed to confirm that participants’ average emotion judgments were sensitive to the 14 

variable amount of happy vs angry expressions contained in the sets. Next, the discrimination 15 

ability (d prime) was calculated. Importantly, the statistical analysis of behavioral data was 16 

aligned to the EEG data analysis: accuracy and reaction time (RT) for the saccade-free trials only 17 

                                                               
3 On average, there were 120 (SD = 27, Min = 79), 118 (SD = 25, Min = 81), 38 (SD = 9, Min = 24) and 36 (SD = 9, 
Min = 23) trials included in the ERP average of the average-valid, single-valid, average-invalid, and single-invalid 
condition, respectively. As expected, trial count in the valid condition (239 ± 48) was larger than in the invalid 
condition (75 ± 15), F (1, 18) = 362.71, p <.001,  ߟ௣ଶ = .95, while the number of trials in the average task (159 ± 34) 
did not differ significantly compared with the single task (155 ± 32), F (1, 18) <1, p =.51,  ߟ௣ଶ = .024. In addition, 
two-ways and the three-way interactions were all non-significant, ps >.087.   
4 Eleven of them still had substantial residual eye movements (over 5 µV) in at least one task after the HEOG 
rejection procedure (on average 61% trials were rejected; nine among them had less than 50% of trials left, and for 
the two other ones, less than half of the trials could be retained when more strict criteria were used to keep the 
residual deviance below 5 µV); another six who had no clear deviance of eye movements after HEOG rejection had 
no more than half of the trials remaining after subsequent artifact rejection steps however (on average 51% trials 
were rejected due to HEOG artifacts) in at least one task. 
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were computed (hence trials contaminated by eye movements were first removed). To compute d 1 

prime scores, hits and false alarms were defined as follows. The positive face sets, containing 2 

three happy faces in the average emotion task or one happy face in the single emotion task were 3 

considered as target. The negative sets, which contained three angry faces (average emotion task) 4 

or one angry face (single emotion task), were considered as noise. Hits corresponded to judging 5 

the positive face sets as positive, and false alarms corresponded to judging the negative sets as 6 

positive. The sets composed of  50% happy (n=2) and 50% angry (n=2) faces in the average 7 

emotion task were not included in calculating d prime scores or RTs for correct responses. For 8 

each dependent variable separately (d prime and RT for correct trials), a two-way repeated-9 

measures ANOVAs was carried out with the factors Task and Validity. As a control analysis, we 10 

also examined whether emotional faces shown close to fixation (two inner positions) had a larger 11 

impact on performance compared to faces shown further away from it (two outer faces; see 12 

Supplementary materials section). 13 

For the face rating task, the actual positions participants clicked on the VASes were 14 

converted to data ranging from 0 to 100. After conversion, the larger the value, the stronger the 15 

emotion intensity or more aroused the participants judged the emotion of the face to be. For the 16 

no-clear saccade group, paired sample t tests between angry and happy faces, or between 17 

emotional and neutral faces were conducted on emotion intensity and arousal scores using 18 

individual faces (as opposed to participants) as degrees of freedom in these analyses.   19 

ERP mean amplitudes were computed at the lateral posterior electrodes PO7/PO8, during 20 

the 200-300 ms (N2pc) or 400-600 ms (SPCN) post-stimulus onset interval. The N2pc and SPCN 21 

were quantified by subtracting the mean amplitude recorded at the ipsilateral electrodes (relative 22 

to the location of the target faces) from that at the contralateral electrodes. Data were then 23 

submitted to repeated-measures ANOVAs with Task and Validity as factors. Greenhouse-Geisser 24 
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correction was applied when assumptions of sphericity were violated. A Bonferroni correction 1 

was used when multiple comparisons were performed. We also examined the face-specific N170 2 

component time-locked to target onset, as it was previously found to be modulated by the number 3 

of faces shown in the set (Puce, McNeely, Berrebi, Thompson, Hardee, & Brefczynski-Lewis, 4 

2013). Details of these complementing analyses and results for the N170 are provided in the 5 

Supplementary materials section. 6 

Results 7 

Behavioral results   8 

Catch trials.  Accuracy was high in both the average and the single emotion tasks 9 

(average: M = .90, SD = .15; single: M = .91, SD = .10). Interestingly, when collapsing data 10 

across all the 36 participants, the accuracy for the catch trials negatively correlated with the 11 

overall amount of saccades, r = -.39, p = .019. It indicated that while these catch trials enforced 12 

central fixation to some degree, they did not however fully prevent the generation of saccades 13 

towards peripheral target locations. 14 

Average and single emotion judgment.  For the average task, the proportion of 15 

“positive” responses was sensitive to the ratio of happy faces contained in the sets, F (1.29, 16 

23.15) = 42.70, p < .001, ߟ௣ଶ = .70, confirming that participants’ judgments were influenced by 17 

this manipulation (Figure 2). There was also a significant main effect of Validity in this analysis, 18 

F (1, 18) =5.89, p = .026, ߟ௣ଶ = .25. As can be seen from Figure 2, the proportion of “positive” 19 

responses was larger in the valid compared to the invalid condition. Tentatively, this effect could 20 

be explained by a response bias, namely being inclined to judge the face sets as positive in the 21 

valid condition of the average task (see also Yang, Yoon, Chong, & Oh, 2013 for a similar effect); 22 
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while no such response bias was present in the invalid condition5. However, the interaction 1 

between Ratio and Validity was not significant, F (1.97, 35.45) <1, ߟ௣ଶ = .04, suggesting that in 2 

these two conditions (valid and invalid), participants’ judgements were similarly influenced by 3 

the ratio of happy faces contained in the sets.  4 

(insert Figure 2 about here, single-column) 5 

Table 1 shows the hit rate, the false alarm rate, and the corresponding d prime score for 6 

each condition separately. The discrimination ability (d prime) in the average and the single 7 

emotion task was generally not high (i.e. lower than one). However, in all four main conditions 8 

(average-valid, single-valid, average-invalid, and single-invalid), it was significantly above 9 

chance level (higher than zero, ps < .001, Figure 3). The ANOVA on the d prime scores revealed 10 

no significant main effect of Task, F (1, 18) = 1.82, p = .19,  ߟ௣ଶ = .09, however a marginally 11 

significant main effect of Validity, F (1, 18) = 3.28, p = .087,  ߟ௣ଶ = .15. The interaction between 12 

Task and Validity was also marginally significant, F (1, 18) = 3.29, p = .086,  ߟ௣ଶ = .16. Simple 13 

effect analysis revealed that for the average task, there was no significant difference between the 14 

valid and the invalid condition, F (1, 18) <1,  ߟ௣ଶ = .01; while for the single task, the performance 15 

was significantly better in the valid compared with the invalid condition, F (1, 18) = 6.23, p 16 

 ௣ଶ = .26. The performance in the valid condition of the average task did not differ 17ߟ  ,023. =

significantly from that of the single task, F (1, 18) <1,  ߟ௣ଶ = .02; whereas for the invalid 18 

condition, the performance was slightly better in the average task relative to the single task, F (1, 19 

18) = 3.03, p = .099,  ߟ௣ଶ = .14.  The ANOVA performed on the RTs revealed a significant main 20 

                                                               
5 The c score, an index of response bias (Stanislaw & Todorov, 1999), confirmed these observations. The c score in 
the valid condition of the average task (M = -.17, SD = .36) was smaller than zero, indicating a positive response 
bias, t (18) = -2.09, p = .051; while it did not differ significantly from zero in the invalid condition of the average 
task (M = .01, SD = .44), indicating no response bias, t (18) = .05, p = .96.   
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effect of Validity, F (1, 18) = 16.93, p = .001, ߟ௣ଶ = .49. The RTs were significantly shorter in the 1 

valid (M = 669.48, SD = 107.69) compared to the invalid condition (M = 716.78, SD = 136.13). 2 

The main effect of Task, or the interaction between Task and Validity was not significant, ps > .19 3 

(Figure 3).  4 

(insert Table 1 about here) 5 

(insert Figure 3 about here, single-column) 6 

Face emotion ratings.  Paired sample t tests showed that the perceived emotion intensity 7 

of angry faces (M = 81.12, SD = 7.79) was overall stronger than that of happy faces (M = 73.51, 8 

SD = 5.52), t (7) = 2.61, p = .035. Angry faces (M = 53.07, SD = 3.70) were rated as equally 9 

aroused as happy faces (M = 54.03, SD = 7.34), t (7) = -.40, p = .70. Neutral faces were perceived 10 

as negative, since the comparison (based on a one-sample t test) showed that their ratings were 11 

significantly lower than 50 (the smaller the value, the more negative the faces were perceived; M 12 

= 42.12, SD = 3.46), t (7) = -6.44, p < .001. In addition, neutral faces were rated as less aroused 13 

(M = 31.92, SD = 4.26) than both happy and angry faces, t (7) = -9.86, t (7) = -9.54, ps < .001. 14 

ERP results   15 

As can be seen from Figure 4A, in the valid condition, a reliable amplitude difference 16 

between the contralateral and ipsilateral waveforms in both the average and single emotion tasks 17 

started at around 200 ms after face set onset, corresponding to the N2pc. Later in time, these two 18 

waveforms converged and were then followed by another contralateral negativity emerging at 19 

around 400 ms post stimulus, corresponding to the SPCN. By comparison, no clear N2pc and 20 

SPCN were observed in the invalid condition, especially for the average emotion task. These two 21 

successive validity effects on the N2pc and the SPCN could also be revealed when computing the 22 

difference waves (see Figure 4B), for which ERP at the ipsilateral electrodes were subtracted 23 
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from that at the contralateral ones. 1 

(insert Figure 4 about here, single-column) 2 

(insert Figure 5 about here, single-column) 3 

The presence of an N2pc was confirmed by one-sample t tests against zero for the valid 4 

condition of both the average (-1.22 ± 1.64 µV) and single emotion tasks (-.63 ± .88 µV), t (18) = 5 

-3.25, p = .004, t (18) = -3.14, p = .006 (see Figure 4). No reliable N2pc was elicited in the 6 

invalid condition of the two tasks (average: -.01 ± 2.02 µV, single: -.64 ± 2.01 µV), t (18) = -.02, 7 

p = .98, t (18) = -1.38, p = .18.  The ANOVA performed on the N2pc revealed no significant main 8 

effect of Task, F (1, 18) = 1.58, p = .23, ߟ௣ଶ = .08, or main effect of Validity, F (1, 18) <1, ߟ௣ଶ 9 

< .001, but a significant interaction between Task and Validity, F (1, 18) = 6.59, p = .019, ߟ௣ଶ 10 

= .27. The validity effect on the N2pc was pronounced in the average emotion task, F (1, 18) = 11 

4.55, p = .047, ߟ௣ଶ = .20, but very weak in the single emotion task, F (1, 18) <1, ߟ௣ଶ < .001. 12 

Examining the N2pc for the valid and the invalid condition separately, we found that the N2pc 13 

was numerically larger in the average task than in the single task for the valid condition, F (1, 18) 14 

= 2.52, p = .13, ߟ௣ଶ = .12; while the comparison of N2pc between the two tasks showed the 15 

opposite pattern in the invalid condition, F (1, 18) = 1.35, p = .36, ߟ௣ଶ = .07, but this difference 16 

did not reach significance either. On the other hand, during this N2pc time window (200-300 ms 17 

after the onset of face sets), the mean amplitude was found to be bilaterally more negative in the 18 

average emotion task (2.32 ± 3.57 µV) compared with the single emotion task (3.44 ± 3.26 µV) 19 

in both the valid and the invalid conditions, regardless of the electrodes being considered, either 20 

contralateral or ipsilateral to the location of target faces, F (1, 18) = 5.83, p = .027, ߟ௣ଶ = .25. We 21 

also analyzed the early N2pc in a narrower time window (i.e., 200-250 ms post-stimulus onset) to 22 

investigate whether spatial attention was first directed to the distractor locations (being opposite 23 
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to the target location) following the invalid cue leading to a reversed N2pc. The early N2pc was 1 

numerically above zero in the invalid condition of the average task (.31 ± 1.84 µV, the mean 2 

amplitude in the ipsilateral electrode to the target was more negative than in the contralateral 3 

one), however not significantly so, t (18) = .73, p = .47. The early N2pc in the invalid condition 4 

of the single task (-.76 ± 2.63 µV) did not significantly differ from zero either, t (18) = -1.26, p 5 

= .23, confirming no reliable early N2pc elicited in the invalid condition of both tasks. The 6 

absence of a N2pc in the invalid condition might be imputed to the fact that this component could 7 

possibly be delayed in this condition compared to the valid condition. To test this hypothesis, we 8 

ran a control analysis and extracted the mean amplitude of the N2pc during the 250-350 ms 9 

interval post-target onset at the same electrode positions. However, no reliable N2pc (average: 10 

-.32 ± 2.36 µV; single: -.65 ± 1.61 µV) was detectable in this later time frame either, t (18) = -11 

0.59, p = .56, t (18) = -1.76, p = .10.   12 

The ANOVA performed on the SPCN6 revealed no significant main effect of Task, F (1, 13 

 ௣ଶ = .04, nor significant 14ߟ ,௣ଶ = .05, or main effect of Validity, F (1, 18) <1, p = .40ߟ ,1> (18

interaction between the two factors, F (1, 18) = 2.42, p = .14, ߟ௣ଶ = .12. The SPCN was observed 15 

in the valid condition of both the average (-.95 ± 2.20 µV) and the single task (-.88 ± 1.36 µV), t 16 

(18) = -1.89, p = .075, t (18) = -2.83, p = .011, however they did not differ significantly between 17 

the two tasks, F (1, 18) <1, p = .90, ߟ௣ଶ = .002 (see Figure 4). The SPCN was also present in the 18 

invalid condition of the single task (-.89 ± 1.88 µV), t (18) = -2.08, p = .052, but not of the 19 

average task (-.05 ± 2.79 µV), t (18) = -.08, p = .94. In addition, the mean amplitude in the 400-20 

600 ms post-stimulus time window was generally more negative in the average emotion task 21 

                                                               
6 It might be argued that the mean amplitudes of the SPCN (as well as the preceding N2pc) could artificially be 
reduced due to the use of a 0.05 Hz high-pass filter during EEG data pre-processing. We re-analyzed the EEG data 
without any high-pass filter, but the SPCN (and N2pc) results remained unchanged. 
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(2.26 ± 2.92 µV) compared with the single emotion task (3.58 ± 3.26 µV), regardless of cue 1 

validity or contralaterality of the recording electrodes to the target location, F (1, 18) = 9.31, p 2 

 ௣ଶ = .34. 3ߟ ,007. =

Discussion 4 

The main aim of this study was to assess, using a Posner cueing paradigm, whether 5 

establishing an ensemble representation for multiple facial expressions is attention dependent or 6 

not. More specifically, we sought to investigate whether performance was still above chance level 7 

when the four individual faces to be averaged into a mean representation were presented outside 8 

the focus of attention (i.e., at an invalid location), suggesting in turn that this process could 9 

operate without the need to engage covert attention to some extent. Further, we also compared the 10 

processing of multiple faces (and computing the mean emotion thereof) to the processing of a 11 

single emotional face, while keeping low-level features and task demands as similar as possible 12 

between these two experimental conditions. At the ERP level, we recorded the N2pc and SPCN 13 

to explore possible differences in attention and short-term memory, respectively, as a function of 14 

task requirements (i.e., extracting the average emotion of four faces or discriminating the emotion 15 

from a single one). A number of important new results emerge from this study, as explained here 16 

after.  17 

The first main result obtained in this study pertains to the observation, as evidenced based 18 

on a careful analysis of the HEOG channel, of an unexpectedly high number of cue-related 19 

saccades (towards the upcoming target location) in both tasks, despite the use of task demands 20 

requiring central fixation, as well as catch trials at fixation used to promote it. As the results 21 

obtained for the HEOG channel clearly showed, out of the 36 subjects included in the 22 

experiment, only 19 could eventually be retained in the subsequent analyses with saccade-free 23 
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epochs/trials, enabling us to explore the averaging of multiple faces (vs. a single face) when 1 

covert attention was putatively used to carry out the two tasks. This first result, albeit unexpected, 2 

suggests indirectly that it was probably hard for participants in general to prevent gazing at the 3 

target location to carry out the emotion discrimination task, indicating thereby that the use of 4 

peripheral vision only was very challenging in the present case.  5 

Interestingly, based on these “clean” data, we found that the performance of participants 6 

was reliably above chance level for the invalid condition in both tasks, suggesting that they could 7 

well discriminate the emotion (based either on the mean of the four faces shown, or a single face 8 

alone) with (very) limited attention engaged at the target location. Covert shifts of spatial 9 

attention in both tasks were evidenced at the behavioral level, with faster RTs for valid than 10 

invalid trials, yet regardless of task demands. They were also corroborated by the ERP results, 11 

showing that the N2pc and SPCN were clearly elicited in the valid condition, but not in the 12 

invalid one.   13 

Averaging emotion from multiple faces with limited attention   14 

To the best of our knowledge, our study is the first to show an above chance level 15 

performance to discriminate the mean emotion of four faces shown at an invalid location in the 16 

visual field. The precision was not very high though (d prime scores remained below 1), 17 

indicating a rather coarse perception. Importantly, the performance in the invalid condition was 18 

statistically undistinguishable from the performance in the valid condition, suggesting a 19 

dissociation between covert shifts of spatial attention on the one hand (as evidenced by the N2pc) 20 

and the ability to compute the ensemble representation for multiple faces on the other. Hence, as 21 

these results suggest, the average emotion could be extracted with limited attention. We explicitly 22 

use “limited attention” here, as opposed to “no attention” for example, because with the spatial 23 

cueing paradigm used here and in the attention literature in experimental psychology (Posner, 24 
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1980, 2014), we cannot formally rule out the possibility that a certain amount of attention (e.g., 1 

diffuse/distributed attention, Chong & Treisman, 2005) actually spread to the invalid location, or 2 

some residual resources were used to process this specific location. Noteworthy, this conclusion 3 

does not necessarily contradict previous results (including from our group; see Ji et al., 4 

submitted) suggesting that extracting mean information actually requires attention (Huang, 2015; 5 

Jackson-Neilsen et al., 2017; McNair et al., 2017). The results obtained for the saccade-group 6 

(see Supplementary Materials) also showed that directing overt attention, indicated by the 7 

presence of a clear saccade following the cue (as well as no N2pc or SPCN elicited in response to 8 

the valid target faces set), increased the averaging performance at the valid location. On the other 9 

hand, although attention can boost this complex perceptual process and increase accuracy or 10 

precision (at the behavioral level), when only limited attentional resources were available to 11 

process the visual input (e.g., because the stimulus presentation was short and the display 12 

contained many different faces; see simultaneous condition in Ji et al., submitted), behavioral 13 

performance was found to be still reliably influenced by the actual proportion of happy/angry 14 

faces included in the face set, suggesting that full or focused attention was not a pre-requisite for 15 

it. 16 

The ability to extract the average emotion from multiple faces (and compute in turn a sort 17 

of affective gist) with limited attention, as our results here suggest, is deemed remarkable. One 18 

reason accounting for this phenomenon might be that similar to natural scene perception (Geisler, 19 

2008; Peelen & Kastner, 2014), the face sets used as stimuli in our experiment always included 20 

some internal structure and carried statistical regularities (Alvarez, 2011). With different ratios of 21 

happy and angry faces, there was necessarily some redundant information in the set. As suggested 22 

by the co-activation model (Miller, 1982), neural signals from multiple redundant stimuli are 23 

summed up, which might enhance the robustness of the representation for them. Additionally, 24 
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collapsing or averaging across noisy individual representations also contributes to obtain an 1 

estimate with relatively higher precision (Alvarez, 2011; Cohen et al., 2016).  2 

At first sight, the lack of a reliable N2pc (or SPCN) in the invalid condition in our study 3 

contradicts earlier ERP results reported by Brisson & Jolicoeur (2008), who found a N2pc and 4 

(delayed) SPCN in the invalid as well as the valid condition. A number of methodological 5 

differences between this earlier and the current study might explain this apparent discrepancy. 6 

These authors explored primarily effects of exogenous cueing (as opposed to endogenous here) 7 

and did not use masks after the target display, as we did here. Additionally, Brisson & Jolicœur 8 

(2008) had many more trials than we had in the invalid condition (although clear visual ERP 9 

components were generated for this condition in our study, see Figure 4). Last but not least, the 10 

accuracy in their task (Brisson & Jolicœur, 2008) was on average very high (and close to ceiling), 11 

including in the invalid condition (94% of correct responses), while the averaging task used here 12 

appeared much more challenging for participants (60% of correct responses, which was above 13 

chance level), suggesting probably the involvement of different attention and perceptual 14 

processes between these two studies. More generally, the lack of a N2pc and SPCN in the invalid 15 

condition in our study might suggest that swift, unidirectional and covert shifts of attention 16 

towards the target location (re-orienting) were not carried out, possibly due to the short 17 

presentation of the face sets, and the use of a mask shown at their offset. Presumably, diffuse 18 

attention was perhaps used to perform the task in this condition. Moreover, unlike the valid 19 

condition where the two inner faces (relative to fixation) contributed more than the two outer 20 

faces to the averaging  performance, no such differential effect of face position was found in the 21 

invalid condition (see Supplementary materials). This auxiliary result also suggests indirectly that 22 

different attention mechanisms were probably involved in the valid and invalid conditions. 23 

Interestingly, a similar dissociation between EEG brain activity and behavioral performance was 24 
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reported recently by Trübutschek et al. (2017). These authors failed to evidence a sustained brain 1 

activity at the scalp level although accuracy for target detection was well above chance level in 2 

this condition (Trübutschek et al., 2017). 3 

Dissociation between mean emotion and single emotion processing 4 

The single face condition we used in this experiment actually shared similarities with a 5 

visual search task to some extent. In this condition, participants had to find the face among four 6 

items/objects and rapidly discriminate his/her emotional expression. In the valid condition, 7 

performance was similar for the single and average emotion tasks. However, for the invalid 8 

condition, discriminating emotion from a single face became worse than performance in the 9 

average emotion task. Hence, the lack of covert attention was clearly more detrimental to 10 

performance in the former compared to the latter task. This gain for the average emotion task 11 

could also be explained by the fact that multiple items have to be collapsed somehow, and noise 12 

reduction could take place, leading in turn to an advantage over the single face presentation 13 

(“visual search”), especially when the attentional resources are limited (Alvarez, 2011; Fischer & 14 

Whitney, 2011; Haberman & Whitney, 2009; Li et al., 2016).  15 

At the ERP level, multiple faces (in the average emotion task) generally elicited increased 16 

neural activity compared with a single face (in the single emotion task), regardless of cue validity. 17 

Similar to Puce et al., (2013), we found that the N170 was (trend significantly) larger in the 18 

average task than in the single task (see Supplementary results). It was also evident in the later 19 

time window of N2pc (200-300 ms) and SPCN (400-600 ms). This amplification might be 20 

explained by the fact that compared with the single emotion task, there were obviously more 21 

(emotional) faces in the average emotion task, hence summation and/or a stronger emotion was 22 

elicited in this condition. Alternatively, when the average emotion task was required, it may be 23 

the case that the deviant emotional expression contained in the sets (i.e. the angry face in the 24 
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Ratio0.75 condition, or the happy face in the Ratio0.25 condition) contributed to boosting early 1 

sensory processing and hence the amplitude of these early ERP components (Luck & Hillyard, 2 

1994; Ritter, Simson, Vaughan, & Macht, 1982). 3 

Noteworthy, in the valid condition, we found that the mean amplitude of the N2pc in the 4 

average task was numerically larger than that in the single task. The N2pc was previously related 5 

to “individuation”, and has been found to be modulated in amplitude by set size manipulations in 6 

the multiple objects tracking and enumeration tasks (Drew & Vogel, 2008; Ester et al., 2012; 7 

Mazza & Caramazza, 2011; Pagano & Mazza, 2012). These two tasks require early individuation, 8 

providing a coarse representation of the objects in the visual field, and then allowing the visual 9 

system to individuate each object as being separate from other ones. Using this framework, it 10 

could be argued therefore that the larger N2pc found in our study for the average emotion task 11 

compared to the singe one could reflect the fact that averaging emotion required individuating 12 

each facial expression, instead of using a “total activation map” (Šetić et al., 2006). This 13 

interpretation is consistent with a recent study showing that averaging face identities is not 14 

independent of processing individual identities (Neumann, Ng, Rhodes, & Palermo, 2017).  15 

Interestingly, the results obtained for the SPCN component in the valid condition 16 

supplemented the N2pc and suggest that short-term memory effects (as captured by this later 17 

ERP component, see Jolicœur et al., 2008) were balanced between the two tasks. This could 18 

tentatively be explained by the fact that the different emotional facial expressions extracted from 19 

the four faces shown concurrently were perhaps highly compressed into one summary statistic 20 

(i.e., mean), leaving one object or the mean information to be stored in short term memory and as 21 

such, being comparable to the single emotion condition. Alternatively, the four individual 22 

representations, even if computed, were perhaps rapidly lost and thus not encoded as such, or 23 

severely impoverished in visual short-term memory (Alvarez, 2001; Brady & Alvarez, 2011; 24 
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McNair et al., 2016). Notwithstanding this possibility, Baijal et al. (2013) previously used a 1 

working memory (WM) paradigm and found that the amplitude of the CDA component (elicited 2 

300-700 ms after target onset, and sharing similarities with the SPCN) was actually larger when a 3 

mean size of two circles versus two individual sizes had to be maintained in WM, suggesting that 4 

mean representation maintained in WM may not be compressed, but rather, be primarily feature-5 

based and “under-structured”. This apparent discrepancy between these earlier results and our 6 

new ERP findings could stem from a number of methodological factors, including the focus on 7 

low-level (such as size) versus high-level (such as facial expressions) visual properties, bearing in 8 

mind that establishing mean representations for high-level objects (such as faces) could very well 9 

be qualitatively different than for low-level features (Haberman, Brady, & Alvarez, 2015; 10 

Haberman & Whitney, 2012). Hence, future studies using the same paradigm (and ERP 11 

methodology) but comparing the averaging of low-level vs. high-level features are needed to try 12 

to reconcile some of these inconsistent results.     13 

Limitations 14 

Some methodological limitations warrant comment. As the analysis of eye movements 15 

(based on the HEOG channel) and behavioral results (see d prime scores) clearly showed, the 16 

emotion discrimination task used in this experiment (bilaterally stimulus presentation for target 17 

and distractor in the periphery) turned out to be quite difficult and challenging on average for 18 

participants, for the two tasks alike. As a matter of fact, at target onset, participants had first to 19 

discriminate each time color information in the periphery (in order to separate the target’s 20 

location from the distractor’s one), before either processing the single or averaging the four 21 

emotional faces at this specific (and presumably attended) location. We had to use this “second” 22 

cue (at target onset) as we used bilateral stimulus presentations, and distractors also included 23 

faces. Without this second cue, it would have been extremely difficult to separate the contribution 24 



28 
 

of target from distractor to the behavioral or ERP results. The use of a double cueing technique 1 

(whereby the cue carried color and spatial location information concurrently) however may have 2 

actually hindered the use of rapid and covert shifts of spatial attention towards target location by 3 

participants across successive trials. Accordingly, we have to acknowledge that some of the ERP 4 

results reported in this study (e.g. N2pc) may also have been contaminated in part by this double 5 

cueing effect. To overcome this limitation, unilateral stimulus sets (combined with a shorter 6 

duration) could be used in future studies, as they would not require using such a double cueing 7 

(i.e., discrimination of target from distractor would not be required first; the target would always 8 

be shown alone in the peripheral visual field, either at an attended or unattended spatial location, 9 

as inferred from the preceding symbolic cue).      10 

Conclusions 11 

The current ERP study provides novel insights into the actual processes underlying the 12 

extraordinary human perceptual ability to rapidly extract the average emotion from a complex 13 

scene composed of multiple facial expressions shown concurrently. Strikingly, when attention 14 

was kept low and minimal (i.e., in the invalid condition for which no reliable N2pc was elicited 15 

and RTs were slower than in the valid condition), participants could still discriminate the mean 16 

emotion from the face set above chance level, suggesting that this process could well operate 17 

(albeit without a high precision or accuracy) under these impoverished conditions. Further, ERP 18 

results for the SPCN component show indirectly that the four individual faces were likely 19 

compressed and stored as one “single” object into visual short-term memory, suggesting in turn 20 

that averaging multiple faces likely operates by means of “contraction”. This compression likely 21 

followed an earlier process where items individuation probably took place, at the N2pc level. 22 



29 
 

Acknowledgements 

This work is supported by a China Scholarship Council (CSC) grant ([2014]3026) and a 

cofounding grant from Ghent University, both awarded to LJ.   



30 
 

References 

Alvarez, G. A. (2011). Representing multiple objects as an ensemble enhances visual 

cognition. Trends in Cognitive Sciences, 15(3), 122-131. 

Alvarez, G. A., & Oliva, A. (2008). The representation of simple ensemble visual features outside 

the focus of attention. Psychological Science, 19(4), 392-398. 

Alvarez, G. A., & Oliva, A. (2009). Spatial ensemble statistics are efficient codes that can be 

represented with reduced attention. Proceedings of the National Academy of 

Sciences, 106(18), 7345-7350. 

Attarha, M., Moore, C. M., & Vecera, S. P. (2014). Summary statistics of size: Fixed processing 

capacity for multiple ensembles but unlimited processing capacity for single ensembles. 

Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1440-

1449. 

Baijal, S., Nakatani, C., van Leeuwen, C., & Srinivasan, N. (2013). Processing statistics: An 

examination of focused and distributed attention using event related potentials. Vision 

Research, 85, 20-25. 

Bex, P. J., & Makous, W. (2002). Spatial frequency, phase, and the contrast of natural 

images. Journal of the Optical Society of America A, 19(6), 1096-1106. 

Brady, T. F., & Alvarez, G. A. (2011). Hierarchical encoding in visual working memory: 

Ensemble statistics bias memory for individual items. Psychological Science, 22(3), 384-392. 

Brisson, B., & Jolicœur, P. (2007). A psychological refractory period in access to visual short‐

term memory and the deployment of visual–spatial attention: Multitasking processing 

deficits revealed by event‐related potentials. Psychophysiology, 44(2), 323-333. 

Brisson, B., & Jolicœur, P. (2008). Express attentional re-engagement but delayed entry into 

consciousness following invalid spatial cues in visual search. PLoS ONE, 3(12), e3967. 



31 
 

Chong, S. C., & Treisman, A. (2003). Representation of statistical properties. Vision Research, 

43, 393–404. 

Chong, S. C., & Treisman, A. (2005). Attentional spread in the statistical processing of visual 

displays. Attention, Perception, & Psychophysics, 67(1), 1-13. 

Cohen, M. A., Dennett, D. C., & Kanwisher, N. (2016). What is the bandwidth of perceptual 

experience?. Trends in Cognitive Sciences, 20(5), 324-335. 

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial 

EEG dynamics including independent component analysis. Journal of Neuroscience 

Methods, 134(1), 9-21. 

Demeyere, N., Rzeskiewicz, A., Humphreys, K. A., & Humphreys, G. W. (2008). Automatic 

statistical processing of visual properties in simultanagnosia. Neuropsychologia, 46(11), 

2861-2864. 

Dougherty, R. F., Koch, V. M., Brewer, A. A., Fischer, B., Modersitzki, J., & Wandell, B. A. 

(2003). Visual field representations and locations of visual areas V1/2/3 in human visual 

cortex. Journal of vision, 3(10), 1-1. 

Drew, T., & Vogel, E. K. (2008). Neural measures of individual differences in selecting and 

tracking multiple moving objects. The Journal of Neuroscience, 28(16), 4183–4191.  

Eimer, M. (1996). The N2pc component as an indicator of attentional 

selectivity. Electroencephalography and Clinical Neurophysiology, 99(3), 225-234. 

Eimer, M., & Kiss, M. (2010). An electrophysiological measure of access to representations in 

visual working memory. Psychophysiology, 47(1), 197–200.  



32 
 

Ester, E. F., Drew, T., Klee, D., Vogel, E. K., & Awh, E. (2012). Neural Measures Reveal a 

Fixed Item Limit in Subitizing. Journal of Neuroscience, 32(21), 7169–7177.  

Florey, J., Clifford, C. W., Dakin, S., & Mareschal, I. (2016). Spatial limitations in averaging 

social cues. Scientific Reports, 6. 

Fischer, J., & Whitney, D. (2011). Object-level visual information gets through the bottleneck of 

crowding. Journal of Neurophysiology, 106(3), 1389-1398. 

Geisler, W. S. (2008). Visual perception and the statistical properties of natural scenes. Annual 

Review of Psychology, 59, 167-192. 

Haberman, J., Brady, T. F., & Alvarez, G. A. (2015). Individual differences in ensemble perception 

reveal multiple, independent levels of ensemble representation. Journal of Experimental 

Psychology: General, 144(2), 432. 

Haberman, J., & Whitney, D. (2007). Rapid extraction of mean emotion and gender from sets of 

faces. Current Biology, 17(17), R751-R753. 

Haberman, J., & Whitney, D. (2009). Seeing the mean: ensemble coding for sets of faces. Journal 

of Experimental Psychology: Human Perception and Performance, 35(3), 718. 

Haberman, J., & Whitney, D. (2012). Ensemble perception: Summarizing the scene and broadening 

the limits of visual processing. From perception to consciousness: Searching with Anne 

Treisman, 339-349. 

Hillyard, S. A., Vogel, E. K., & Luck, S. J. (1998). Sensory gain control (amplification) as a 

mechanism of selective attention: electrophysiological and neuroimaging 

evidence. Philosophical Transactions of the Royal Society B: Biological 

Sciences, 353(1373), 1257. 

Horton, J. C., & Hoyt, W. F. (1991). The representation of the visual field in human striate cortex: 



33 
 

a revision of the classic Holmes map. Archives of Ophthalmology, 109(6), 816-824. 

Huang, L. (2015). Statistical properties demand as much attention as object features. PLoS ONE, 

10(8), 1–9.  

Jackson-Nielsen, M., Cohen, M. A., & Pitts, M. A. (2017). Perception of ensemble statistics 

requires attention. Consciousness and Cognition, 48, 149–160.  

Jacoby, O., Kamke, M. R., & Mattingley, J. B. (2013). Is the whole really more than the sum of 

its parts? Estimates of average size and orientation are susceptible to object substitution 

masking. Journal of Experimental Psychology: Human Perception and Performance, 39(1), 

233. 

Jolicœur, P., Brisson, B., & Robitaille, N. (2008). Dissociation of the N2pc and sustained 

posterior contralateral negativity in a choice response task. Brain research, 1215, 160-172. 

Klaver, P., Talsma, D., Wijers, A. A., Heinze, H. J., & Mulder, G. (1999). An event‐related brain 

potential correlate of visual short‐term memory. NeuroReport, 10(10), 2001-2005. 

Kiss, M., Van Velzen, J., & Eimer, M. (2008). The N2pc component and its links to attention 

shifts and spatially selective visual processing. Psychophysiology, 45(2), 240-249. 

Leib, A. Y., Landau, A. N., Baek, Y., Chong, S. C., & Robertson, L. (2012). Extracting the mean 

size across the visual field in patients with mild, chronic unilateral neglect. Frontiers in 

Human Neuroscience, 6, 267.  

Li, H., Ji, L., Tong, K., Ren, N., Chen, W., Liu, C. H., & Fu, X. (2016). Processing of individual 

items during ensemble coding of facial expressions. Frontiers in Psychology, 7. 



34 
 

Lins, O. G., Picton, T. W., Berg, P., & Scherg, M. (1993). Ocular artifacts in EEG and event-

related potentials I: Scalp topography. Brain Topography, 6(1), 51-63. 

Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: An open-source toolbox for the analysis of 

event-related potentials. Frontiers in Human Neuroscience, 8, 213. 

Luck, S. J., & Hillyard, S. A. (1994). Spatial filtering during visual search: evidence from human 

electrophysiology. Journal of Experimental Psychology: Human Perception and 

Performance, 20(5), 1000. 

Mangun, G. R., & Hillyard, S. A. (1991). Modulations of sensory-evoked brain potentials 

indicate changes in perceptual processing during visual-spatial priming. Journal of 

Experimental Psychology: Human Perception and Performance, 17(4), 1057. 

Mazza, V., & Caramazza, A. (2011). Temporal brain dynamics of multiple object processing: 

The flexibility of individuation. PLoS ONE, 6(2).  

Mazza, V., Pagano, S., & Caramazza, A. (2013). Multiple object individuation and extract 

enumeration. Journal of Cognitive Neuroscience, 25(5), 697–705.  

Mazza, V., Turatto, M., Umiltà, C., & Eimer, M. (2007). Attentional selection and identification 

of visual objects are reflected by distinct electrophysiological responses. Experimental Brain 

Research. 181(3), 531–536.  

McCollough, A. W., Machizawa, M. G., & Vogel, E. K. (2007). Electrophysiological measures of 

maintaining representations in visual working memory. Cortex, 43(1), 77-94. 

McNair, N. A., Goodbourn, P. T., Shone, L. T., & Harris, I. M. (2017). Summary statistics in the 

attentional blink. Attention, Perception, & Psychophysics, 79(1), 100-116. 

Miller, J. (1982). Divided attention: Evidence for coactivation with redundant signals. Cognitive 



35 
 

Psychology, 14(2), 247-279. 

Neumann, M., Ng, R., Rhodes, R., & Palermo, R. (in press). Ensemble coding of face identity is 

not independent of the coding of individual identity. Quarterly Journal of Experimental 

Psychology, 1-27. 

Pagano, S., & Mazza, V. (2012). Individuation of multiple targets during visual enumeration: 

New insights from electrophysiology. Neuropsychologia, 50(5), 754–761.  

Peelen, M. V., & Kastner, S. (2014). Attention in the real world: toward understanding its neural 

basis. Trends in Cognitive Sciences, 18(5), 242-250.  

Praamstra, P. (2006). Prior information of stimulus location: Effects on ERP measures of visual 

selection and response selection. Brain Research, 1072(1), 153-160. 

Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental 

Psychology, 32(1), 3-25. 

Posner, M. I. (2014). Orienting of attention: Then and now. Quarterly Journal of Experimental 

Psychology, 69(10), 1864-1875. 

Puce, A., McNeely, M. E., Berrebi, M. E., Thompson, J. C., Hardee, J., & Brefczynski-Lewis, J. 

(2013). Multiple faces elicit augmented neural activity. Frontiers in Human Neuroscience, 7. 

Ritter, W., Simson, R., Vaughan, H. G., & Macht, M. (1982). Manipulation of event-related 

potential manifestations of information processing stages. Science, 218(4575), 909-911. 

Rousselet, G. A., Husk, J. S., Bennett, P. J., & Sekuler, A. B. (2005). Spatial scaling factors 

explain eccentricity effects on face ERPs. Journal of Vision, 5(10), 1-1. 

Šetić, M., Švegar, D., & Domijan, D. (2007). Modelling the statistical processing of visual 

information. Neurocomputing, 70(10), 1808-1812. 



36 
 

Scharff, A., Palmer, J., & Moore, C. M. (2011). Extending the simultaneous-sequential paradigm 

to measure perceptual capacity for features and words. Journal of Experimental Psychology: 

Human Perception and Performance, 37(3), 813. 

Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior 

Research Methods, Instruments, & Computers, 31(1), 137–149.  

Tottenham, N., Tanaka, J. W., Leon, A. C., McCarry, T., Nurse, M., Hare, T. A., ... & Nelson, C. 

(2009). The NimStim set of facial expressions: judgments from untrained research 

participants. Psychiatry Research, 168(3), 242-249. 

Treisman, A. (2006). How the deployment of attention determines what we see. Visual 

Cognition, 14(4-8), 411-443. 

Trübutschek, D., Marti, S., Ojeda, A., King, J.-R., Mi, Y., Tsodyks, M., & Dehaene, S. (2017). A 

theory of working memory without consciousness or sustained activity. eLife, 6, 1–29.  

Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in 

visual working memory capacity. Nature, 428(6984), 748-751. 

Whitney, D., Haberman, J., & Sweeny, T. D. (2014). From textures to crowds: Multiple levels of 

summary statistical perception. In J.S. Werner and L.M. Chalupa (Eds.), The New Visual 

Neurosciences (pp.695-710). MIT Press. 

Whitney, D., & Leib, A. Y. (2018). Ensemble perception. Annual Review of Psychology, 69, 12.1-

12.25.  

Woodman, G. F., Arita, J. T., & Luck, S. J. (2009). A cuing study of the N2pc component: An 

index of attentional deployment to objects rather than spatial locations. Brain Research, 

10(1297), 101–111.  

Woodman, G. F., & Luck, S. J. (1999). Electrophysiological measurement of rapid shifts of 

attention during visual search. Nature, 400(6747), 867-869. 



37 
 

Yang, J. W., Yoon, K. L., Chong, S. C., & Oh, K. J. (2013). Accurate but pathological: Social 

anxiety and ensemble coding of emotion. Cognitive Therapy and Research, 37(3), 572–578.  

   



38 
 

Figure Legends 

Figure 1. Procedure of the average and the single emotion task. Participants were required to 

judge the valence (positive or negative) of the average emotion from four target faces (Left, 

average emotion task) or the emotion of the single face in the target set (Right, single emotion 

task), present either in the validly cued (75%) or the invalidly cued location (25%).The next trial 

automatically began (randomly varying between) 1000 ms-1200 ms after participant responded. 

The target emotion in this example was both positive in the average and the single tasks. The 

distractors (opposite side) were either four or one neutral face(s), respectively. 

Figure 2. Proportions of positive (happy) judgements shown as a function of the ratio of 

happy faces contained in the sets, as well as separately for the valid and invalid conditions. The 

error bar represents one standard error of mean. 

Figure 3. Discrimination ability (d prime, Left) and reaction time for correct responses 

(correct RT, Right) shown separately for the two tasks and two levels of validity. The error bar 

represents one standard error of mean. 

Figure 4. (A) Grand-averaged ERPs for the correct trials in response to face sets at PO7/8 

contralateral (solid lines) and ipsilateral (dashed lines) to the position of the target face(s). (B) 

Difference waveforms computed by subtracting ERP at PO7/8 ipsilateral to the target location 

from that at contralateral electrodes for the average and the single emotion tasks for the no-clear-

saccade group, shown separately for the valid cue (Left) and the invalid cue (Right) condition. 

The highlighted areas indicated the time-window of N2pc (200-300 ms) and SPCN (400-600 ms) 

after target onset. 

Figure 5. Topographic maps (back view) of the N2pc (200-300 ms) and SPCN (400-600 ms) 

components in the valid condition for the no-clear-saccade group, shown separately for the 

average emotion task (upper row) and the single emotion task (lower row). 
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Table 1 
 

 

 

 

Note. The hit rate, the false alarm rate, and the corresponding d-prime score are presented for each 

condition separately. Mean (and standard deviation) is provided. 

 

 

 Average_valid Average_invalid Single_valid Single_invalid 
Hit .67(.12) .60(.18) .58(.15) .55(.10) 
False alarm .45(.17) .40(.17) .38(.14) .41(.14)
d prime .61(.41) .58(.39) .54(.35) .35(.42) 
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Supplementary Materials 

Method 

Data analyses for the no-clear-saccade group 

 Mean emotion intensity of face sets. We computed the arithmetic mean emotion of the 

four faces in each set based on the subject-specific emotion intensity ratings obtained for these 

same faces (cf. post-experiment ratings). The larger the value, the more positive the computed 

mean emotion intensity was, while conversely, the smaller this value, the more negative the 

computed mean intensity was. A simple linear regression analysis was performed to assess if the 

computed mean intensity could be predicted by the ratio of happy faces in these sets. 

Contribution of inner vs outer faces in the sets. We examined the effect of emotional 

face location (either inner/close to fixation or outer/further away from it) for the single and the 

average task separately. For the single task, the performance (d prime) was compared when the 

target face was present in the inner vs. the outer position. For the average task, the performance 

was compared when the single deviant face (i.e. the happy face in the Ratio0.25 condition, or the 

angry face in the Ratio0.75 condition) was presented in the inner vs. the outer position. The d 

prime scores were computed similarly as in the main analyses. Hits corresponded to judging the 

positive face sets as positive, and false alarms corresponded to judging the negative face sets as 

positive. In this control analysis, the sets composed of 50% happy and 50% angry faces were not 

included. For the two tasks separately, a two-way repeated-measures ANOVA was carried out 

with the factors Validity and (target or deviance) Location. 

N170 component. The face-specific N170 component, measured from 150 to 190 ms 

post-stimulus onset (i.e., mean amplitude measurement) at lateral occipito-temporal electrodes 

(left cluster composed of P7, P9, PO7, and right cluster composed of P8, P10, PO8; same 



methods as Puce et al., 2013) for the no-clear-saccade group, was submitted to a repeated-

measures ANOVA with Task, Validity, Hemisphere, and target location as factors.   

EEG preprocessing for the clear-saccade group 

For the 17 participants of the clear-saccade group, we retained the trials with clear 

saccades only, based on the HEOG channel analysis. On average, 61% of trials were marked as 

contaminated by a horizontal saccade in the HEOG rejection procedure1. The same artifact 

rejection procedure (removing the blink-related component and rejecting activity exceeding ± 80 

μV in the scalp EEG electrodes; on average 8% trials were rejected which did not differ across 

conditions) used for the no-clear-saccade group was applied to the clear-saccade group on their 

saccade-only epochs (-200 ms to 800 ms) time-locked to the onset of the target face sets. We also 

averaged only the correct trials separately for each type of task, validity and target location, and 

computed grand average ERPs of each condition for these 17 participants separately2.    

Data analyses for the clear-saccade group  

The discrimination ability (d prime) and reaction time (RT) were computed for the clear- 

saccade group using the data aligned to the EEG data retained (i.e., only trials including clear eye 

movements were used; see here above). To further examine the role of saccade (and thus overt 

attention) on task performance, a three-way repeated-measure ANOVA was conducted on the d 

prime scores with Task (average, single) and Validity (valid, invalid) as two within-subject 

variables, and Group (no-clear-saccade, clear-saccade) as between-subjects variable. The N2pc 

and SPCN components were also computed similarly as for the no-clear-saccade group. 

                                                            
1 The amount of saccades detected by the HEOG rejection procedure did not differ significantly between the average 
task (63 ± 23%) and the single task (61 ± 21%), p = .36. In addition, no significant difference was found between 
valid (62 ± 21%) vs. invalid (61 ± 23%) trials, nor the interaction between task type and validity reached 
significance, ps > .30.  
2 Trial count in the valid condition (209 ± 84) was larger than in the invalid condition (55 ± 19), p <.001, but the 
average task (133 ± 57) did not contain a significantly different number of trials compared with the single task (132 ± 
55), p =.91.   



Results 

Behavioral results of the no-clear-saccade group 

Mean emotion intensity of face sets. As can be seen from the supplementary Figure 1, 

the mean emotion intensity calculated based on individual intensity ratings (post-experiment 

rating) showed a large variance, but importantly, it was clearly sensitive to the ratio of happy 

versus angry faces contained in the sets, F (1, 8241) = 24847, p <.001, adjusted  = .75, 

suggesting a reliable link between the (objective) ratio manipulation and the (subjective) subject-

specific perception of these individual faces.  

(insert Supplementary Figure 1 about here, single-column) 

            Contribution of inner vs. outer faces in the sets. In the single task, d prime scores were 

significantly above chance level (zero) in all conditions, except for the invalid-outer condition 

(i.e. the target face was presented in the outer position in the invalid condition). The ANOVA 

showed a significant main effect of Validity, F (1, 18) = 7.25, p = .015,  = .29. There was also 

a significant main effect of (target) Location, F (1, 18) = 17.46, p < .001,  = .49. When the 

target was in (one of the two) inner positions, the performance was better than when the target 

was in one of the two outer positions (Supplementary Figure 2). The interaction between Validity 

and Location was not significant, F (1, 18) <1,  = .03. In the average task, d prime scores were 

significantly above change level in all four conditions. The ANOVA revealed a significant 

interaction between (deviance) Location and Validity, F (1, 18) = 12.46, p = .002,  = .41. 

Simple effects analyses showed that in the valid condition, performance was reliably influenced 

when the deviant face was presented in the inner compared to the outer position, F (1, 18) = 

21.77, p < .001,  = .55. Accordingly, the deviant face shown close to fixation had a larger 



weight (and impact on the averaging process) than the same face shown further away from it, 

even though for this latter, we increased its size (and presumably salience, see Supplementary 

Figure 2). Interestingly, the different impact of inner vs. outer faces in the average task only 

occurred in the valid condition, but not in the invalid condition, providing an indirect 

manipulation check regarding the focus of attention (being on the target set of four faces for valid 

trials but presumably not for invalid trials).  

(insert Supplementary Figure 2 about here, single-column) 

N170 results of the no-clear-saccade group 

There was a trend significant main effect of task on the N170 component, with larger 

amplitude in the average task (-4.02 ± 2.29 µV) compared with the single task (-3.44 ± 2.78 µV), 

F (1, 18) = 3.15, p = .093,   = .15. None of the other main effects reached significance, nor was 

any interaction significant, ps > .15. 

Behavioral results of the clear-saccade group 

Average and single emotion judgment.  The ANOVA on the d prime scores showed no 

significant main effect of Task, F (1, 16) = 2.74, p = .12,   = .15, or interaction between Task 

and Validity, F (1, 16) = 2.10, p = .17,   = .12. However, there was a significant main effect of 

Validity, F (1, 16) = 14.27, p = .002,   = .47. The performance in the invalid condition (M 

= .28, SD = .45) significantly dropped compared with that in the valid condition (M = .77, SD 

= .32) (Supplementary Figure 4). For RTs (correct responses), there was a significant main effect 

of Task, F (1, 16) = 6.08, p = .025,   = .28. The average task (M = 615.63, SD = 120.64) was 

performed faster than the single task (M = 661.10, SD = 134.49). There was also a significant 



main effect of Validity, F (1, 16) = 32.12, p < .001,   = .67. The RTs were significantly shorter 

in the valid (M = 600.73, SD = 114.82) compared to the invalid condition (M = 676.00, SD = 

134.42). The interaction between the two factors was not significant, F (1, 16) <1,   = .67 

(Supplementary Figure 4). 

When adding Group as an additional factor in the omnibus ANOVA, we found a 

significant three-way interaction on discrimination ability (i.e., d prime scores), F (1, 34) = 4.84, 

p = .035,   = .13. Further, the two-way interaction between Task and Group, F (1, 34) = 4.26, p 

= .047,   = .11, and between Validity and Group, F (1, 34) = 7.71, p = .009,   = .19 were also 

significant. The discrimination ability was numerically larger in the average task (M = .59, SD 

= .37) compared with the single task (M = .45, SD = .35) for the no-clear-saccade group, p = .25, 

while an opposite trend was found for the clear-saccade group (average: M = .45, SD = .33; 

single: M = .60, SD = .35), p = .20. In addition, compared with the no-clear-saccade group (valid: 

M = .57, SD = .32; invalid: M = .46, SD = .29), the clear-saccade group performed better in the 

valid condition, p = .067, but worse in the invalid condition, p = .15.   

(insert Supplementary Figure 3 about here, single-column) 

(insert Supplementary Figure 4 about here, single-column) 

ERP results of the clear-saccade group 

There was no reliable N2pc for either the valid (-.38 ± 1.58 µV) or the invalid condition 

(.64 ± 3.35 µV) in the average emotion task, t (16) = -.99, p = .34, t (16) = .78, p = .45. It was the 

same for the single emotion task (valid: -.45 ± 1.06 µV; invalid: .24 ± 1.22 µV), t (16) = -1.77, p 

= .096, t (16) = .82, p = 43 (Supplementary Figure 5). No reliable SPCN was elicited in the valid 



(-.47 ± 1.85 µV) or the invalid condition (-.40 ± 3.78 µV) of the average emotion task either, t 

(16) = -1.06, p = .31, t (16) = -.44, p = .67. The SPCN was present in the valid (-1.06 ± 1.16 µV) 

but not the invalid condition (.13 ± 2.23 µV) of the single task, t (16) = -3.74, p = .002, t (16) = 

2.45, p = .81 (Supplementary Figure 5). These results therefore confirmed that no clear covert 

shifts of spatial attention were elicited in response to the target face sets onset in this group, 

because they had already overtly moved their eyes towards the expected target location in 

response to the cue (see Supplementary Figure 3).      

(insert Supplementary Figure 5 about here, single-column) 

 

  



Supplementary Figure Legends 

Supplementary Figure 1. The computed mean intensities for the different sets (as established 

using the post-experiment rating) shown as a function of the ratio of happy faces contained in 

them. The larger the value, the more positive the computed mean emotion intensity was, while 

conversely, the smaller this value, the more negative the computed mean intensity was. A 

significant linear effect was found between these two variables. 

Supplementary Figure 2. Discrimination ability (no-clear-saccade group) for the average 

emotion task (Left) and the single emotion task (Right) shown separately for the inner and outer 

conditions, as well as two levels of validity. The inner and outer locations correspond to the two 

possible positions relative to fixation where the target (single emotion task) or deviant face 

(average emotion task) was presented. The error bar represents one standard error of the mean. 

Supplementary Figure 3. Examples of horizontal eye movements during the cue-target 

interval recorded in the channel of HEOG for one representative participant with no clear saccade 

(Left) and one with clear saccades (Right). This subject had clear saccades even after running the 

HEOG rejection procedure based on a step-like artifact function, such as implemented in 

ERPLAB (see Method). The highlighted area indicated the time window of target onset (700-900 

ms after cue). 

Supplementary Figure 4. Discrimination ability (d prime, Left) and RT for correct responses 

(Right) shown separately for the two tasks and two levels of validity for the clear-saccade group. 

The error bar represents one standard error of mean. 

Supplementary Figure 5. (A) Grand-averaged ERPs (clear saccade group) time-locked to the 

onset of the bilateral face sets at PO7/8, separately for the valid and invalid condition. 



Contralateral (solid lines) and ipsilateral (dashed lines) ERP waveforms relative to the position of 

the target face(s) are presented. Note that these waveforms are computed for correct trials only. 

(B) Difference waveforms (computed by subtracting ERPs at PO7/8 ipsilateral to the target 

location from that at contralateral electrodes) are presented separately for the valid (Left) and 

invalid condition (Right). The two highlighted areas indicate the time-windows used for N2pc 

(200-300 ms) and SPCN (400-600 ms) amplitude measurements (after target onset). 
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