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Abstract—Research on a new solution supporting low latency,
high reliability, and scalability is required to deal with ever-
increasing demand for wireless communication. However, it is
often restricted due to the fact that setting up experiments
needs a considerable amount of effort and cost. To alleviate
such difficulties, the WiSHFUL project has been established,
which proposes an architecture for flexible and unified control of
the wireless systems and platforms. The WiSHFUL architecture
enables exploiting existing control knobs in a unified manner
by offering platform-independent programming interfaces on
top of heterogeneous hardware platforms. To illustrate the
strength of the WiSHFUL architecture, we implement the existing
wireless local area network (WLAN) performance enhancement
algorithm, called STRALE, which adapts PHY rates and frame
aggregation length for performance enhancement in mobile
environments, using unified programming interfaces (UPIs) on
the open-source software platform of WiSHFUL. Accordingly,
STRALE is extended to be available on all devices compatible
with WiSHFUL, showing the convenience and benefit of using
the WiSHFUL platform.

I. INTRODUCTION

The ever-increasing demand for wireless communication
pushes researchers to devise novel solutions that support low
latency, high reliability, and scalability. Experimental evalu-
ation of these solutions on testbed infrastructure is required
to validate their performance. However, setting up such ex-
periments requires a considerable amount of effort and cost.
For example, while research efforts based on software defined
radios (SDRs), such as USRP, WARP, and Sora, have been
carried out recently [1–3], a considerable portion of spent time
and cost is consumed for auxiliary work since each platform
provides different interfaces.

To alleviate such difficulties, the WiSHFUL project has
been established [4] that proposes an architecture for flexible
and unified control of wireless systems and platforms.1 The
WiSHFUL architecture enables exploiting existing control
knobs in a unified manner by offering platform-independent
programming interfaces on top of heterogeneous hardware
platforms. Ultimately, WiSHFUL aims to reduce the threshold
for implementation and experimentation in view of stimulating
wireless innovation, and increases the realism of experimen-
tation.

1WiSHFUL stands for Wireless Software and Hardware platform for
Flexible and Unified radio and network controL.

An open source implementation of the WiSHFUL archi-
tecture is available online [5]. The implementation offers
unified programming interfaces (UPIs) for radio and network
control [6] so that experiments could be staged and conducted
easily based on different platforms. Since the UPIs are device-
independent, it is possible to devise an algorithm for a specific
set of devices and then reuse the same algorithm on a
different set of devices. Moreover, due to the modular nature
of the architecture, supporting a new type of device only
requires to create a device module that implements the defined
UPIs. WiSHFUL currently supports multiple widely used
technologies (e.g., IEEE 802.11, IEEE 802.15.4, and LTE),
operating systems (e.g., Linux, Windows, and Contiki) and
radio platforms (e.g., Atheros, Broadcom, CC2520, and Xylink
Zynq), as well as advanced reconfigurable radio systems (e.g.,
IRIS, GNURadio, WMP, and TAISC) [7–10].

To illustrate the convenience and benefit of the WiSHFUL
architecture, we have implemented STRALE [11], that is
proposed to enhance the performance of IEEE 802.11 wireless
local area network (WLAN) in mobile environments, using
UPIs. STRALE adapts the physical (PHY) rate and frame
aggregation length depending on the degree of mobility, and
it complies with the 802.11 medium access control (MAC)
without PHY layer modification. Originally, it had been fully
implemented in ath9k device driver [12] and, consequently,
can only be used on Atheros WLAN network interface cards
(NICs). By employing UPI functions to implement STRALE
on top of WiSHFUL, however, it becomes available to be used
on any device that is supported by WiSHFUL.

Porting STRALE to WiSHFUL only requires to add the
necessary UPI functions for controlling PHY rates and frame
aggregation, and to extend the device module for ath9k with
the new UPI functions. For this purpose, STRALE is refactored
by separating the adaptation part from the device driver and
implementing it within the WiSHFUL device module, where
the parameters between the device module and the device
driver are exchanged via debugfs [13]. To investigate the
impact of the delay caused by this redesign and debugfs, we
also evaluate the performance of STRALE newly ported to
WiSHFUL by using the original implementation as baseline
and comparing between the two. The result shows that there
is only a 3.1% difference in throughput, which is acceptable



given the increased flexibility.
The rest of the paper is organized as follows. Section II pro-

vides the preliminaries of IEEE 802.11 system and STRALE.
Section III introduces the WiSHFUL architecture. The imple-
mentation of STRALE in WiSHFUL is described in Section IV,
and Section V presents the performance evaluation and demon-
stration results. Finally, Section VI concludes the paper.

II. PRELIMINARIES

A. Aggregated MAC protocol data unit (A-MPDU)

In order to enhance MAC efficiency, IEEE 802.11n/ac
defines frame aggregation, called aggregate MAC protocol
data unit (A-MPDU), which enables aggregating multiple
MPDUs into a single frame [14, 15]. Using A-MPDU, a
station transmits several MPDUs in a single transmission
attempt, thus, PHY/MAC protocol overhead, such as the
time for PHY preamble transmission and contention including
several inter frame spaces, can be amortized over multiple
MPDUs. Additionally, the individual subframes (i.e., MPDUs)
can be positively and negatively acknowledged by using block
acknowledgement (BlockAck), and hence, the transmitter can
selectively retransmit the failed subframes in the next A-
MPDU transmission [14].

A-MPDU length is constrained for fair sharing of the
wireless medium among all stations. The maximum A-MPDU
length is 65,535 bytes and 1,048,575 bytes for the 802.11n
and 802.11ac, respectively. A-MPDU length is limited by the
transmission time as well. The maximum A-MPDU transmis-
sion time is 10 ms and 5.484 ms for the 802.11n and 802.11ac,
respectively.

B. STRALE: A standard-compliant and mobility-aware PHY
rate and A-MPDU length adaptation algorithm

A transmitted signal undergoes distortion such as pathloss,
fading, and noise. Therefore, in order to receive the signal
correctly, channel estimation needs to be conducted to obtain
current channel state information (CSI). In 802.11 system,
channel estimation is performed using training symbols in
the physical layer convergence protocol (PLCP) preamble at
the beginning of a frame [14, 15]. This channel estimation
is valid with an assumption that the CSI does not change
during the packet reception. However, if the transmitted frame
length is long compared with the channel coherence time, e.g.,
when A-MPDU is used, the CSI obtained at the beginning
of the frame may not be valid to decode the latter part of
the frame. Especially, when the A-MPDU is transmitted in
mobile environments since the CSI rapidly changes, the latter
subframes of the A-MPDU suffer from high subframe error
ratio (SFER), thus resulting in severe throughput degradation.
This phenomenon is referred to as caudal loss [11, 16, 17].

To resolve the caudal loss problem, STRALE, a mobility-
aware PHY rate and frame length adaptation algorithm, is
proposed [11]. STRALE is designed to comply with the 802.11
MAC standard, without any requirements for PHY layer
modification.
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Fig. 1. Implementation structure of STRALE. STRALE is implemented only
on ath9k device driver at one end of the wireless link (i.e., transmitter).

STRALE implements two major functions: 1) estimating
the degree of mobility and 2) PHY rate or A-MPDU length
adaptation. The degree of mobility of a station is estimated
based on a transmission result of an A-MPDU, i.e., BlockAck
content. STRALE computes the optimal A-MPDU length for
the previous A-MPDU transmission (t∗lim) using the received
BlockAck, and the time limit of the next A-MPDU (t′lim) is
obtained statistically. If the difference between t′lim and the
previous A-MPDU transmission time (tlim) is larger than the
transmission time of a single MPDU (Tmpdu), STRALE judges
that the degree of mobility is quite high and attempts to lower
PHY rate or A-MPDU length. In this case, STRALE decreases
PHY rate one level lower if TP (r−, tlim) > TP (r, t′lim),
where TP (r, tlim) is the estimated throughput using r and
tlim, and r− is the PHY rate one lever lower than r, respec-
tively. The lowered PHY rate by STRALE is tracked using
LowerMCS flag. If TP (r−, tlim) < TP (r, t′lim), however,
the A-MPDU length is decreased from tlim to t′lim. On
the other hand, if the difference between t′lim and tlim is
shorter than Tmpdu, it is considered that the current channel
condition is good enough to support a longer A-MPDU. In
this case, STRALE increases PHY rate one level higher, only
if the PHY rate was already lowered previously, as tracked
by LowerMCS. If not, t′lim is recalculated (larger than tlim)
and the length of the next A-MPDU is increased.

Fig. 1 depicts the operation of STRALE with a blueprint.2

Although STRALE can be applicable to any existing hard-
ware by simply modifying the accompanying device driver,
prototype of STRALE is implemented only on ath9k device
driver [12], while the source code of STRALE is opened to the
public [18]. Moving forward, in this paper, we have extended
STRALE to be available on top of any device supported by
WiSHFUL by separating the adaptation algorithm from the
device driver.

III. WISHFUL ARCHITECTURE

The WiSHFUL architecture enables flexible and unified
control for wireless systems and platforms [4] by exposing

2In the original STRALE, adaptive request-to-send (A-RTS) is also proposed
in order to resolve hidden node problem. In this work, however, the A-RTS
part is omitted due to ease of implementation.
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Fig. 2. Overview of the WiSHFUL architecture. The solid line and the dashed
line represent local and remote mode, respectively. The dotted line indicates
hierarchical control.

platform-independent programming interfaces over heteroge-
neous hardware platforms. In this regard, it significantly re-
duces the threshold for implementation and experimentation
in view of stimulating wireless innovation.

A. Overview

Fig. 2 illustrates the WiSHFUL architecture. The device-
independent control programs (CPs) implement the control
logic for an experiment. They can operate on a single node
(i.e., local control) or on a group of nodes (i.e., global
control). The CPs control the networking behaviour by means
of UPI calls, either local or remote mode. The UPI calls are
delegated by the local or global monitoring & configuration
engine (MCEs). The MCEs implement the core services of the
framework device-independently. The device modules, which
are device-dependent, translate the device-independent UPI
calls to device specific application programming interface
(API) calls. The WiSHFUL architecture also enables user-
defined control flows between global and local CPs, i.e.,
hierarchical control (UPIHC). Beside additional flexibility,
hierarchical control allows experimenters to delegate time-
sensitive operations to the local level, closer to the hardware,
while maintaining a network-wide view on the global level.

B. Context-aware UPI execution

An open source implementation of the WiSHFUL objectives
and architectures, discussed in Section III-A, is available on-
line [5], called WiSHFUL Framework. WiSHFUL Framework
is a software platform offering UPIs for radio and network
control of wireless communication platforms.3 WiSHFUL

3The framework is implemented based on Python, and the implemented
code is split into Python modules for modularity.
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Fig. 3. Context-aware execution of UPI calls. The figure depicts a local
control program executing a UPI call locally.

Framework offers: 1) flexibility of controlling configuration
and operation of wireless communication networks, 2) sim-
plified way for programming different devices and protocols,
and 3) unified interfaces to hide hardware implementation
specifics.

One of the main features of WiSHFUL Framework is the
ability to attach a context to a UPI call. The context of the
UPI call allows experimenters to exactly define where, when,
and how the UPI function is executed:

• Where: on which devices and/or wireless interfaces does
the UPI function need to be executed.

• When: at which time (absolute time reference or relative
to the beginning of the procedure) does the UPI call need
to be passed to the device module.

• How: is the UPI call blocking or non-blocking for the
CP. In the latter case, a callback mechanism is used to
receive the response.

Fig. 3 depicts how a control program delegates the UPI
function together with a call context to the local MCE. The
local MCE then passes the UPI function to the device module,
taking into account the call context. The device module
translates the generic UPI call to an API call in the native
device’s programming interface.

Note that the definition of UPIs is independent of the
native device interfaces, thus reducing the complexity for an
experimenter, because control logic can be created without
requiring detailed information about the specific operation of
the native device interfaces. For example, in consideration
of changing the transmission power, a specific command
to control the transmission power of a wireless networking
interface is device-dependent, e.g., iwconfig command needed
for Linux-based device and GNURadio control needed for
USRP device. Thanks to the UPIs, however, the same function
can be used to change the transmission power on both types
of devices.
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Fig. 4. STRALE implementation on WiSHFUL Framework. The control program commands a context through WiSHFUL agent using the UPIs, and the
device module then receives and translates the UPIs for ath9k device driver. Additionally, the parameters between the device module and the device driver
are exchanged via debugfs.

IV. STRALE IMPLEMENTATION ON WISHFUL
FRAMEWORK

In this section, we describe the detailed implementation
of STRALE integrated into WiSHFUL Framework. At first,
we newly define additional UPIs for STRALE operation to
the existing set of UPI functions. The new UPIs contain the
context of STRALE such as PHY rate and A-MPDU length
update functions, and turning on/off STRALE algorithm. We
then extend the device module which is responsible to translate
the new UPIs to the native device programming interface calls.

Note that the original STRALE is fully implemented on
ath9k device driver at one end of the wireless link, (i.e., trans-
mitter). Specifically, after receiving BlockAck, the transmitter
immediately determines A-MPDU length and PHY rate for the
next A-MPDU transmission. Therefore, STRALE is basically
per A-MPDU adaptation algorithm. However, since WiSHFUL
Framework cannot obtain BlockAck information from PHY
layer directly, an alternative way needs to be considered for
the device module implementation.

Accordingly, we reform the structure of STRALE such that
it can be implemented on WiSHFUL Framework. As a result,
the time-critical operations such as t∗lim calculation module
remains at the device driver, but the adaptation algorithm is
migrated to device module. To be specific, after receiving
BlockAck, t∗lim, tlim, and the used LowerMCS flag are sent
from the device driver to the device module. Subsequently,
a calculation of the next LowerMCS and t′lim is con-
ducted in the device module, and then, the device driver uses
LowerMCS and t′lim for the next A-MPDU transmission,
updated from the device module.

We use debugfs [13] for exchanging parameters between
the device module (user space) and the device driver (kernel
space). Using debugfs allows to read/overwrite variables de-
fined in the device driver, without source-code modification
during run-time. Therefore, we register three parameters (i.e.,
t∗lim, tlim, and the used LowerMCS) as the input to the
device module, and two parameters (i.e., t′lim and the next
LowerMCS) as the adaptation output, so that 1) the device
module can read and write them directly, and simultaneously,
2) the device driver can use t′lim and LowerMCS for the next
transmission.

Fig. 4 illustrates the detailed operation of STRALE on
WiSHFUL Framework. The UPI and parameter flows via
debugfs are demonstrated in Fig. 4(a). Red and green arrows
indicate UPI and debugfs flows, respectively. The control
program commands a context through WiSHFUL agent using
the UPIs. The device module then receives and translates the
UPIs for ath9k device driver. The operation on the device
module is depicted in Fig. 4(b). The STRALE implementation
can be divided into two blocks, i.e., WiSHFUL Framework
and the device driver at the transmitter, where the parameter
flows are drawn with red-dotted arrows.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of STRALE,
newly implemented on WiSHFUL Framework. We use Qual-
comm Atheros AR9380 NIC along with HostAP [19] to build
an AP on a Ubuntu 14.04 based machine. The AP employs
ath9k device driver as a local device module, and WiSHFUL
Framework is installed on top of the AP. As an associated
station, we use commercial off-the-shelf table PC, Samsung
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Galaxy Tab S 10.5. Note that STRALE is operated only on the
transmitter, i.e., the AP, as explained in Section II-B.

A. Delay measurement

STRALE originally determines PHY rate and A-MPDU
length for every individual A-MPDU. WiSHFUL Framework,
however, is built in Python, such that the execution and
processing speed might be slower than C-based ath9k device
driver. Moreover, exchanging parameters between the device
module and the device driver also causes an additional delay.
To investigate the impact of the delay, we measure the entire
delay from the time when BlockAck feedback is updated, to
the moment when newly calculated PHY rate and A-MPDU
length is actually used for the next A-MPDU transmission.
The AP transmits saturated UDP traffic to the station, which
moves around the AP at an average speed of 1 m/s, and the
results are averaged over 30 s.

The measured delay is 2.769 ms with a standard deviation
of 2.625 ms, while the average A-MPDU length is 3.082 ms.
Unfortunately, after receiving BlockAck, PHY rate and A-
MPDU length determined by STRALE cannot be used directly
since the AP should immediately create an A-MPDU for the
next transmission. Instead, they can be adopted after transmit-
ting one or two A-MPDUs, which results in one-step behind
PHY rate and A-MPDU length adaptation. Accordingly, the
performance of STRALE newly implemented on WiSHFUL
Framework might be degraded due to late response to the
mobility fluctuation. An investigation of throughput reduction
caused by one-step behind adaptation is presented in the
following.

B. Performance evaluation of STRALE on WiSHFUL Frame-
work

We conduct experiments to verify the successful implemen-
tation of STRALE on WiSHFUL Framework, and to investigate
the impact of one-step behind PHY rate and A-MPDU length
adaptation. Saturated UDP downlink traffic is generated from
the AP to the station, where the average moving speed of the
station is given to 1 m/s. The station is deployed in proximity
to the AP, to minimize MPDU losses caused by the fading.

Fig. 6. A scene of demo presentation. The laptop is deployed as an AP, and
the tablet PC is deployed as a station. The throughput and A-MPDU length
are displayed using the visualization tool on the screen.

For comparison, we fix the A-MPDU length to 10 ms as a
baseline 802.11n. All results are averaged over 5 runs, where
each run lasts for 30 s.

Fig. 5 shows the throughput according to the degree of
the mobility. When the station does not move (Avg. 0 m/s),
there is almost no difference in throughput for all scenarios,
because the maximum A-MPDU length can be successfully
used. However, when the station is moving (Avg. 1 m/s),
the baseline 802.11n provides the worst performance due to
caudal loss. The original STRALE shows the highest through-
put of 42.74 Mb/s in the mobile environment, while the
WiSHFUL enabled variant provides slightly lower through-
put performance than the original implementation. However,
the throughput difference is only 3.1%, which allows us to
conclude that the performance is not seriously affected by
the delay explained in Section V-A. Consequently, STRALE
operates well even in WiSHFUL Framework integrated variant
implementation.

C. Demonstration

Now, we demonstrate our implementation with a time-
lined scenario. We firstly move the station without activating
STRALE, observing the performance degradation. Then we
activate STRALE to cope with the caudal loss problem. In order
to show the operation of STRALE on WiSHFUL Framework in
real-time, we develop a Python-based program, which displays
real-time application-level throughput from Iperf [20] as well
as the A-MPDU length averaged over the last one second.
Fig. 6 portrays a scene from a demo presentation.

The throughput and A-MPDU length results of the demon-
stration are presented in Fig. 7(a) and Fig. 7(b), respectively,
which are redrawn from the graphs shown in the Python-
based program for better visibility. At first, the station does
not move, and the PHY rate and the A-MPDU length are
fixed to 65 Mb/s and 10 ms, respectively. The station begins
to move at an average speed of 1 m/s at 11 s. Since STRALE is
not activated yet, the caudal loss problem becomes intensified,
severely degrading the achieved throughput under 22 Mb/s. On
the other hand, when STRALE is activated at 25 s, we observe
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that the throughput becomes about 40 Mb/s, by adaptively
reducing A-MPDU length as shown in Fig. 7(b).

VI. CONCLUSION

WiSHFUL proposes an architecture for flexible and unified
control of wireless systems and platforms. The WiSHFUL
architecture is implemented in WiSHFUL Framework, which
offers UPIs for experiments on various platforms. In this
paper, in order to illustrate the convenience and benefit of
the WiSHFUL architecture, we have implemented STRALE on
WiSHFUL Framework. We add UPI functions for STRALE,
and extend the device module for ath9k with the new UPI
functions by redesigning the structure of STRALE. We evaluate
the performance of the newly ported to WiSHFUL STRALE
by comparing with the original implementation. We also
demonstrate STRALE on WiSHFUL Framework by employing
our own Python-based visualization tool.

STRALE can be extended to all WiSHFUL supported de-
vices by developing a new device module for the specific
device. Furthermore, any proposed control algorithm can be
added to WiSHFUL Framework by defining required UPIs and
developing/updating the corresponding device module, follow-
ing the paradigm of our approach to integrate STRALE into
WiSHFUL. Overall, the porting of STRALE into WiSHFUL
can be considered an example application of the framework
to enable control algorithm implementation over UPIs.
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