

Beheer van heterogene opslagtechnologieën
voor snelle datatoegang in 'Big Data'-omgevingen

Management of Polyglot Persistent Environments
for Low Latency Data Access in Big Data

Thomas Vanhove

Promotoren: prof. dr. ir. F. De Turck, dr. G. Van Seghbroeck
Proefschrift ingediend tot het behalen van de graad van

Doctor in de ingenieurswetenschappen: computerwetenschappen

Vakgroep Informatietechnologie
Voorzitter: prof. dr. ir. B. Dhoedt

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2017 - 2018

ISBN 978-94-6355-084-0
NUR 988, 995
Wettelijk depot: D/2018/10.500/2

Promotoren: prof. dr. ir. F. De Turck, prof. dr. S. Latré
Proefschrift ingediend tot het behalen van de graden van

Doctor in de ingenieurswetenschappen: computerwetenschappen (Universiteit Gent) en
Doctor in de wetenschappen: informatica (Universiteit Antwerpen)

Vakgroep Informatietechnologie
Voorzitter: prof. dr. ir. D. De Zutter

Faculteit Ingenieurswetenschappen en Architectuur

QoE-beheer van HTTP-gebaseerde adaptieve videodiensten

QoE Management of HTTP Adaptive Streaming Services

Niels Bouten

Departement Wiskunde en Informatica
Voorzitter: prof. dr. C. Blondia

Faculteit Wetenschappen

Academiejaar 2016 - 2017

Universiteit Gent
Faculteit Ingenieurswetenschappen en Architectuur

Vakgroep Informatietechnologie

Leden van de examencommissie:
prof. dr. ir. Filip De Turck (promotor)

Universiteit Gent - imec
dr. Gregory Van Seghbroeck (promotor)

Universiteit Gent - imec

prof. dr. ir. Daniël De Zutter (voorzitter)
Universiteit Gent

prof. dr. ir. Frank Gielen
Universiteit Gent

prof. dr. Guy De Tré
Universiteit Gent

prof. dr. ing. Erik Mannens
Universiteit Gent - imec

ir. Werner Van Leekwijck
Universiteit Antwerpen

dr. Anthony Liekens
IO Lab

Proefschrift tot het behalen van de graad van
Doctor in de ingenieurswetenschappen:

Computerwetenschappen
Academiejaar 2017-2018

Dankwoord

Je zou denken dat 5,5 jaar een lange tijd is, maar nu ik hier de laatste woorden
van dit boek neerschrijf, lijkt het alsof augustus 2012 toch niet zo veraf is. Ik ben
dankbaar dat ik dit hoofdstuk mag afsluiten, maar tegelijk betekent dat ook dat ik
afscheid moet nemen van mensen die ik in de voorbije jaren mocht leren kennen.
Alvorens ik dat doe, wil ik iedereen bedanken die in mindere of meerdere mate een
invloed gehad heeft op dit boek of op mijn leven in het algemeen gedurende mijn
tijd aan de Universiteit Gent. Daarnaast zijn er een paar mensen die ik uitdrukkelijk
wens te bedanken:

De eerste personen die ik wil bedanken zijn mijn promotoren Filip De Turck
en Gregory Van Seghbroeck. Filip, bedankt om mij de mogelijkheid te geven om
aan een doctoraat te beginnen. Bedankt om keer op keer weer beschikbaar te zijn
voor een gesprek of feedback en om mij de flexibiliteit te geven om dit doctoraat
tot een goed einde te brengen. Gregory, bedankt om samen met mij vorm te geven
aan mijn doctoraat en om een klankbord te zijn voor mijn ideeën. Ik denk dat
het maar zelden voorkomt dat je ook samen met één van je promotoren een spin-
off kan oprichten en leiden. Bedankt om dit avontuur met mij te willen aangaan
en ik kijk uit naar wat de komende jaren met Qrama zullen brengen. Naast mijn
promotoren zijn er ook nog een paar mensen die niet kunnen ontbreken omdat
zonder hun dit werk en de voorbije 5 jaren er heel anders hadden uitgezien: Tim
Wauters en Bruno Volckaert. Bedankt om vanaf dag één klaar te staan voor mij,
om papers na te lezen, en mij tot op vandaag te ondersteunen. Mijn woordenschat
is te beperkt om uit te drukken hoe dankbaar ik ben voor jullie steun. Bruno, jouw
bizarre humor en de talrijke verhalen tijdens de autoritten van en naar Leuven zijn
legendarisch. Ik hoop er nog veel te mogen horen. En sorry voor de San Francisco
fietstocht!

Er zijn ook nog een paar iconen die op zich een vermelding verdienen. Onze
vakgroep Informatietechnologie en onderzoeksgroep IDLab Gent worden gerund
door de bewonderenswaardige Bart Dhoedt en Piet Demeester. Zij zijn de drijf-
veer die zorgen voor de constante vooruitgang en groei die onze groepen kennen.
Daarnaast zit je als doctoraatsstudent vaak met praktische vragen, zeker in die eer-
ste en laatste maanden van het doctoraat, maar ik kan mijn hand ervoor in het vuur
steken dat je het antwoord steeds bij Martine en Davinia kan vinden. Ik vraag mij
ten zeerste af wat iedereen zou doen moesten jullie niet elke dag paraat staan voor
iedereen met een kleine of grote vraag. Bedankt! Zonder een technisch team is
een internettechnologie-onderzoeksgroep maar weinig waard, dus ook veel dank
gaat uit naar Brecht, Joeri, Bert, Vicent en Simon van het A-team. Thanks guys!

ii

Bedankt aan Bernadette en Joke van de financiële administratie en, last but not
least, Sabrina om steeds onze werkplek proper te houden en voor de spontane ge-
sprekken in de wandelgangen.

Een dankwoord is niet compleet zonder de schijnwerper even op de bureaus
2.21 en 200.012 te zetten. Bram, Jerico, Jeroen, Kristof, Laurens, Leandro, Maxim,
Merlijn, Niels, Olivier, Philip, Piet, Sander, Stefano, Steven B, Steven VC, Thijs,
Tim en Wim ... dankjewel! Bedankt om het waard te maken om elke dag, goed of
slecht, naar de bureau te komen. Ik zal nog lang met een lach terugkijken op de
vele fijne bureau-momenten en de lunches waarbij we de een of andere existentiële
levensvraag van Merlijn in onze richting geslingerd kregen. Like, is this even real
life? Het is ook fijn om jouw thesisbegeleiders als collegas te leren kennen. Be-
dankt Femke en Femke voor jullie begeleiding in dat laatste masterjaar en voor de
verschillende gezellige board game momenten daarna. Soms was het noodzakelijk
om ook eens weg te stappen van de bureau en het is dan leuk om collega’s te heb-
ben waarbij je stoom kan aflaten bij het koffiemachien. Bedankt hiervoor Thomas
en Wannes. Bedankt ook aan alle andere collega’s om deze ervaring zo uniek te
maken!

Als we het dan toch over unieke ervaringen hebben, dan moet ik even stilstaan
bij het Tengu verhaal. Tengu is in de loop van mijn doctoraat zijn eigen leven
gaan leiden en dat is allemaal dankzij het Tengu-team en zijn supporters. Gregory,
Jeroen, Merlijn, Sander, Leandro, Tim, Bruno, Filip, bedankt om Tengu te maken
tot wat het vandaag al geworden is. Sinds oktober 2016 hebben ook Sebastien,
Mathijs, Dixan en Michiel hun steentje bijgedragen via Qrama. Bedankt om deel
uit te maken van dit avontuur en bedankt voor de schitterende sfeer die jullie elke
dag weer opnieuw maken. Het is een voorrecht om samen met jullie in de tech
start-up wereld aan Tengu te bouwen.

Soms was het gemakkelijk om te vergeten dat er nog een leven was buiten het
doctoraat en Qrama, maar gelukkig zijn er vrienden waar je beroep op kan doen
om alles eventjes achter te laten. Bros (Nicolas, Thibaut, Lino en Ewout), be-
dankt voor de maandelijkse hangouts, jaarlijkse oudejaarsavonden en vele andere
momenten die we mochten delen met of zonder onze wederhelften (Teresa, Elke,
Inne en Inge). De talrijke ontmaskeringen van wannabe dictators, het bestrijden
van virussen op wereldschaal en UNO met punten zijn ook momenten uit de vele
board game nights (aka REDACTED) die ik koester dankzij vrienden zoals Bart,
Melissa, Nicolas en Teresa. Allemaal heel oprecht bedankt! Ik voeg hier graag
een speciale vermelding voor Maxim toe, want het is buitengewoon om een col-
lega een vriend te kunnen noemen. Ik heb je leren kennen als de grappenmaker van
de bureau, maar daarachter schuilt iemand waar je echt op kan rekenen en die voor
zijn vrienden door het vuur zou gaan. Bedankt voor de Tomorrowlands, het door-
sturen van de templates voor vanalles en nog wat en alle schitterende momenten
die we mochten beleven.

Zonder mijn familie had dit verhaal waarschijnlijk ook een andere wending
gekend. Bedankt mama en papa om mij te stimuleren in alles wat ik onderneem en
om er te zijn als het soms niet volledig uitdraait zoals ik gedacht had. Ik kijk enorm
op naar jullie en alles wat jullie gerealiseerd hebben en kan alleen maar hopen om

iii

daar ooit een fractie van te bereiken. Nic, ik denk niet dat je beseft wat jij voor mij
betekend hebt in deze laatste jaren en ik denk ook niet dat ik het ooit in woorden
zal kunnen uitdrukken. Ik ben heel dankbaar om een broer en beste vriend zoals
jou te hebben. Bedankt ook aan Filip, Sabine, Mémé, Michiel en An-Sofie voor de
zovele gezellige momenten.

Tot slot wil ik nog een heel speciaal iemand in mijn leven bedanken: Stephanie.
Bollie, ik prijs mijzelf gelukkig dat ik jou al bijna 10 jaar in mijn leven heb. Dit
laatste jaar heeft veel van mijn tijd ingenomen, maar zonder klagen of zagen was
je er steeds om mij te ondersteunen in de moeilijke momenten en zo veel stress van
mij weg te nemen. Bedankt om mijn leven in deze voorbije 10 jaar beter te maken
en ik kan al niet wachten op wat de rest van ons leven in petto heeft. Ik hou van
jou!

Gent, januari 2018
Thomas Vanhove

Table of Contents

Dankwoord i

Samenvatting xxi

Summary xxv

1 Introduction 1
1.1 The Impact of Big Data . 1
1.2 Problem Statement . 5
1.3 Research Contributions . 6
1.4 Dissertation Outline . 8
1.5 Publications . 10

1.5.1 A1: Journal publications indexed by the ISI Web of Sci-
ence “Science Citation Index Expanded” 10

1.5.2 P1: Proceedings included in the ISI Web of Science “Con-
ference Proceedings Citation Index - Science” 11

1.5.3 C1: Other publications in international conferences 12
1.6 Spin-offs . 12
References . 13

2 Managing the Synchronization in the Lambda Architecture for Opti-
mized Big Data Analysis 15
2.1 Introduction . 16
2.2 Lambda architecture: overview and challenges 17
2.3 Synchronization . 20
2.4 Failure handling . 22

2.4.1 Batch layer failures . 22
2.4.2 Speed layer failures . 23
2.4.3 View failures . 23
2.4.4 Data and communication failures 24
2.4.5 Human failure . 24

2.5 Implementation details . 25
2.6 Evaluation results . 26

2.6.1 View failure . 27
2.6.2 Information transition from speed to batch views 29

vi

2.7 Aggregation . 30
2.8 Conclusion and future work . 31
References . 33

3 Data Transformation as a means towards Dynamic Data Storage and
Polyglot Persistence 37
3.1 Introduction . 38
3.2 Related Work . 39
3.3 Data transformation framework 42

3.3.1 Architecture . 42
3.3.2 Transformation approach 44
3.3.3 Workflow . 46

3.4 Transformation algorithm . 47
3.4.1 Schema queries . 47

3.4.1.1 SQL Transformations 47
3.4.1.2 Cassandra Transformations 48
3.4.1.3 MongoDB Transformations 49

3.4.2 Data insertion queries 52
3.4.3 Data retrieval queries . 53

3.5 Implementation details . 53
3.5.1 Technology choice and motivation 53
3.5.2 Transformation algorithm 54

3.6 Evaluation . 56
3.6.1 Experimental setup . 56
3.6.2 Use Case description . 56
3.6.3 Results . 57
3.6.4 Discussion . 60

3.7 Conclusion and future work . 61
References . 63

4 Sequential Pattern Mining for Data Storage Optimization in Polyglot
Persistent Environments 67
4.1 Introduction . 68
4.2 Data Schema Optimization in Polyglot Persistence 70

4.2.1 Query abstraction and outline 70
4.2.2 Canonical model . 73
4.2.3 Data schema optimization procedure 73
4.2.4 Detection of (cross-technology) relations 76
4.2.5 Data Schema Optimization Architecture 78

4.3 Abstraction Layer Implementation 79
4.3.1 Sequential pattern mining 79
4.3.2 Relation selection heuristic 81

4.4 Evaluation . 81
4.4.1 Experimental setup . 81
4.4.2 Results . 82

vii

4.4.2.1 Correctness 82
4.4.2.2 Window size 82
4.4.2.3 Suffix tree expansion 83

4.5 Discussion . 84
4.6 Related Work . 86
4.7 Conclusions and Future Work . 87
References . 89

5 City of Things: Smart Cities beyond Open Data 93
5.1 Introduction . 93
5.2 Open Big Data . 95
5.3 Beyond Open Data . 97
5.4 City of Things architecture . 98

5.4.1 Open data platform . 98
5.4.2 Analysis sandbox environment 99

5.5 Use cases . 100
5.5.1 REstore case . 101
5.5.2 New sensor case . 101
5.5.3 BPost case . 102

5.6 Next steps . 102
5.7 Conclusion . 103
References . 105

6 Conclusions and Perspectives 107
6.1 Lambda Architecture . 108
6.2 Canonical model . 109
6.3 Transformation algorithm . 109
6.4 Data schema optimization . 110
6.5 Future Work . 111

6.5.1 Zeta architecture . 111
6.5.2 Dynamic Data Storage 112
6.5.3 Data Schema Optimization 112

A Live Datastore Transformation for optimizing Big Data applications
in Cloud Environments 113
A.1 Introduction . 114
A.2 Architecture overview . 115
A.3 Transformation and workflow . 116

A.3.1 Approach . 116
A.3.2 Workflow . 117

A.4 Transformation algorithm . 118
A.4.1 SQL to canonical . 119
A.4.2 Canonical to Cassandra 121

A.5 Implementation details . 122
A.5.1 Technology choice and motivation 122

viii

A.6 Experimental setup . 124
A.7 Results . 125

A.7.1 Batch layer . 125
A.7.2 Speed layer . 127
A.7.3 Discussion . 128

A.8 Related work . 128
A.9 Conclusion . 130
References . 131

B Tengu: an Experimentation Platform for Big data Applications 135
B.1 Introduction . 136
B.2 Architecture . 137

B.2.1 Tengu core setup . 138
B.2.1.1 Lambda architecture 138
B.2.1.2 Tengu managed data stores 139
B.2.1.3 Application specific resource pool 140

B.2.2 Tengu front end . 140
B.3 Service Platform . 141

B.3.1 RESTful API . 141
B.3.2 RSpec generation and deployment 142
B.3.3 Deployment scripts . 142
B.3.4 Application deployment 143

B.4 Use case . 143
B.5 Demo . 144
B.6 Related work . 145
B.7 Conclusion and Future work . 147
References . 149

List of Figures

1.1 Technology overview of the big data landscape in 2017 [18]. . . . 4

2.1 Conceptual overview of the Lambda architecture 17
2.2 Synchronization timeline of the different layers. Two important

atomic points are identified: 1) batch view update - speed view
clearance 2) tag switching. 21

2.3 Batch layer failure handling . 23
2.4 Technology overview of the implemented Lambda architecture proof

of concept. 25
2.5 Normal progress of the active Lambda architecture implementation 27
2.6 Regenerative progress of the active Lambda architecture imple-

mentation with data loss in views 28
2.7 Regenerative progress of the active Lambda architecture imple-

mentation with data redundancy in views 29
2.8 The total data in the Lambda architecture in time with respect to

the different views . 30
2.9 Lambda architecture with a formal language for the aggregation of

information . 31

3.1 General overview of the described architecture with a batch layer
and parallel streaming layer . 43

3.2 Sequence diagram detailing the functionality of the architectural
components during the transformation 44

3.3 Canonical model for the structure of a data set. 45
3.4 Instantiation of the framework with all the implemented technolo-

gies. 54
3.5 Partial canonical model of the network logging data store. 56
3.6 Graph showing the transformation time of an SQL snapshot data

store to MongoDB for different Spark configuration parameters.
They express the amount of parallel executors that are used and
how much memory and how many cores are available to each ex-
ecutor. 57

3.7 Graph showing the transformation time of an SQL snapshot data
store to MongoDB, Cassandra (CQL) and SQL with 20 Spark ex-
ecutors each with 1GB of memory and 8 cores. 58

x

3.8 Query latency for JOIN-like query in different data stores: SQL,
Cassandra (CQL) and MongoDB. 59

4.1 Example of polyglot persistence in an e-commerce platform archi-
tecture [4]. 69

4.2 High-level overview of an abstraction layer approach to polyglot
persistence where the application query Q is split into several technology-
specific queries (Q1, Q2, Q3). Results (R1, R2, R3) are then ag-
gregated and returned to the application (R). 71

4.3 Layered canonical model for the schema and technology mapping
of a data set. 72

4.4 Storage cost per gigabyte between 1980 and 2014 [7]. 74
4.5 Architecture overview of the data schema optimization approach

for polyglot persistent environments. 79
4.6 Total time to build a suffix tree and retrieve the full set of patterns

as a function of the sliding window size. 82
4.7 Time to remove and add queries to an existing suffix tree as a result

of a window slide of 1000 queries. 83
4.8 Comparison of the execution time between adjusting the suffix tree

and building a suffix tree from scratch. 84

5.1 Online advocacy tool NYCommons showing an interactive map
built by 596 acres. 96

5.2 The open information architecture in the CoT project. 97
5.3 Detail of the analysis sandbox environment in the open informa-

tion architecture of CoT. 99
5.4 Subscription service use case for testing new sensors where data

is processed by a custom Apache Storm topology and sent to an
external visualization tool. 101

5.5 Air quality use case setup in the CoT project where data is stored in
HDFS, processed by Apache Spark, and visualized by a Zeppelin
dashboard. 101

5.6 Visual representation of two BPost delivery vans moving through
Antwerp, Belgium, with marked measuring points at certain inter-
vals on their route (pink dots). 103

6.1 Overview of the building blocks of the Zeta architecture as docu-
mented by Jim Scott. 111

A.1 General overview of the architecture with a batch layer and parallel
speed layer. 115

A.2 Canonical model for the structure of a dataset. 117
A.3 Instantiation of the framework with all the implemented technolo-

gies. 122
A.4 Setup of the implementation on the iLab.t Virtual Wall. 124

xi

A.5 Structure of the proof-of-concept datastore. 125
A.6 Average execution times and standard deviation for the transfor-

mation of the data of the datastore in Hadoop for increasing dataset
sizes. 126

A.7 Average execution times and standard deviation for the transfor-
mation of an entire query set in Storm for different query set sizes. 127

B.1 General overview of the Tengu architecture 137
B.2 Conceptual overview of the Lambda architecture 139
B.3 Screenshot of the JFed GUI showing an instantiation of Tengu . . 145
B.4 The iLab.t Virtual Wall facility 146

List of Tables

3.1 State of the art in the domain of migration, transformation and
alteration of application code as used at Amazon, Google and Mi-
crosoft. 41

3.2 Transformation schema from SQL to canonical model 48
3.3 Transformation schema from Cassandra to canonical model 48
3.4 Transformation schema from MongoDB to canonical model . . . 50
3.5 Transformation schema from canonical model to MongoDB . . . 51
3.6 Average execution time of different Storm bolts for the transfor-

mation of SQL queries, through the SQLMapBolt, into MongoDB,
Cassandra (CQL) and SQL. 60

4.1 Query latency for a JOIN query in MySQL with 5, 000, 000 records
and a similar query in Cassandra and MongoDB where the relation
is implemented with duplicated data [3]. 68

A.1 Average execution times for the transformation of the structure of
the datastore in Hadoop. 126

A.2 Average processing times per query in the Storm topology. 128

B.1 Special RESTful API calls to set up a specific cluster. All calls
have the same set of query parameters: nodes, testbed. The calls
will deploy a cluster of size {nodes} on the specified {testbed} . . 142

List of Acronyms

A

API Application Programming Interface

AWS Amazon Web Services

B

BSON Binary-encoded JSON

C

CEP Complex Event Processor

CoT City-of-Things

CPU Central Processing Unit

CQL Cassandra Query Language

E

(E)ER (Enhanced) Entity-Relationship

ESB Enterprise Service Bus

ETL Extract-Transform-Load

xvi

F

FIRE Future Internet Research and Experimentation

G

GB Gigabyte

GCE Google Cloud Environment

GENI Global Environment for Network Innovations

GHz Gigahertz

H

HDFS Hadoop Distributed File System

HPCC High Performance Computing Cluster

HQL Hibernate Query Language

I

IaaS Infrastructure-as-a-Service

ILP Integer Linear Programming

IoT Internet-of-Things

J

JSON JavaScript Object Notation

xvii

M

MB Message Broker

N

NCCS NASA Center for Climate Simulation

NoSQL Not-only SQL

O

OGM Object-Grid Mapping

ORM Object-Relational Mapping

OSGi Open Services Gateway initiative

OSN Online Social Network

P

PaaS Platform-as-a-Service

R

RAM Random-Access Memory

RDBMS Relational Database Management System

REST Representational State Transfer

xviii

S

SLA Service Level Agreement

SQL Structured Query Language

T

TB Terabyte

Z

ZB Zettabyte

Samenvatting
– Summary in Dutch –

Nu er meer en meer apparaten verbonden zijn met het Internet is de hoeveelheid
data die gegenereerd wordt in de laatste jaren drastisch toegenomen. Recente
schattingen tonen aan dat er elke minuut bijna 2MB aan data gecreëerd wordt voor
elke persoon op Aarde. Tegelijkertijd hebben de vooruitgang in cloudverwerking
en verlaagde opslagkosten ervoor gezorgd dat bedrijven op een goedkope manier
deze data kunnen verzamelen en opslaan. Dit heeft tot gevolg dat er tegen 2020
ongeveer 40 miljard TB aan data zal opgeslagen zijn. Om deze hoeveelheden data
binnen een redelijke termijn te verwerken zijn er nieuwe analysetechnologieën
nodig die gebruik maken van computerclusters. Het nadeel aan deze batch raam-
werken is dat de resultaten van de analyse pas beschikbaar zijn na de volledige
verwerking van alle input. Dit maakt deze systemen ongeschikt voor real time toe-
passingen. Een tweede generatie aan analysetechnologieën focust zich op stream
analyses die data verwerken van zodra deze in het systeem komt. De algoritmes
om inzichten te genereren in de data worden echter alsmaar complexer en sinds
kort is er een nood ontstaan voor hybride verwerkingsoplossingen die data zowel
in real time als in batch kunnen verwerken.

De Lambda architectuur is zo een hybride oplossing die een batch- en stream-
technologie combineert in een twee-lagige architectuur. Data wordt eerst verwerkt
door de online laag, ondersteund door een streamtechnologie, en op regelmatige
tijdstippen wordt dezelfde data verwerkt door de offline laag. Dit laat een sys-
teem toe om snel inzichten te verwerven op recente data, zonder de mogelijkheid
te verliezen om historische data te raadplegen. Het beheer van de synchronisatie
tussen de twee lagen is van cruciaal belang, zeker bij het bijwerken en vervangen
van de resultaten. Als dit niet goed beheerd wordt, dan kan er informatie verloren
gaan of kan er data meerdere keren opgeslagen worden in het systeem. Op dit
moment zijn er geen oplossingen beschikbaar die garanties kunnen bieden dat dit
niet zal gebeuren. Zelfs bij de oplossing die aangebracht wordt door de originele
bedenker van de Lambda architectuur, Nathan Marz, kan er redundante informatie
opgeslagen worden. Dit maakt de gehele oplossing ongeschikt voor applicaties die
precieze resultaten vereisen.

De eerste uitdaging die dit proefschrift aangaat, is het ontwerpen en imple-
menteren van een Lambda architectuur die zich nooit in een (tijdelijke) staat van
verlies of redundantie van informatie bevindt. Dit doel wordt bereikt door data een
label toe te kennen vooraleer deze verwerkt wordt. Dit label laat het systeem toe

xxii SAMENVATTING

om groepen data te volgen doorheen de verwerking en zo relevante resultaten bij
te werken en te vervangen. De voorgestelde implementatie is ook zelfherstellend:
wanneer redundantie of het verlies van informatie manueel wordt geı̈ntroduceerd
in het systeem, herstelt het zich altijd na een paar iteraties van de offline laag.

Los van deze beheersuitdagingen in hybride oplossingen, zijn verwerkings-
technologieën in het algemeen ook strengere eisen gaan stellen aan de opslagtech-
nologieën om zo sneller data te kunnen wegschrijven of uit te lezen. Er kon niet
meer aan deze eisen voldaan worden met een klassiek relationeel databasemana-
gementsysteem (RDBMS) en zo zag een nieuwe generatie opslagtechnologieën
het licht: NoSQL. Deze nieuwe technologieën zijn ontwikkeld om horizontaal te
schalen om zo betere prestaties te kunnen leveren. Nieuwe applicaties kunnen zo
ontwikkeld worden met deze nieuwe generatie in het achterhoofd, maar oudere
applicaties zijn gebonden aan hun RDBMS en kunnen dus niet onmiddellijk ge-
bruikmaken van deze nieuwe technologieën. Dit proefschrift stelt een systeem
voor dat oudere applicaties toelaat om de voordelen van NoSQL technologieën te
benutten. Het is wel belangrijk om op te merken dat veel van deze oudere appli-
caties in een productieomgeving draaien en zodoende moeten code-aanpassingen
en onderbrekingen vermeden worden. Het transformatiealgoritme dat wordt voor-
gesteld, maakt gebruik van de Lambda architectuur. In de offline laag wordt een
momentopname van de database getransformeerd aan de hand van een canonisch
model, terwijl updates van de momentopname via de online laag worden verwerkt.
Dit zorgt ervoor dat er geen onderbrekingen nodig zijn in de diensten die door de
applicatie geleverd worden. Daarboven kunnen ook code-aanpassingen in de ap-
plicatie vermeden worden door de applicatie nog steeds in originele query-taal
databewerkingen te laten uitvoeren. Deze queries worden dan door de online laag
vertaald naar de correcte nieuwe technologie. De resultaten tonen aan dat een
oudere applicatie baat kan hebben bij het overschakelen naar een NoSQL techno-
logie, maar ook dat de continue vertaling van de online laag voor een minimale
overheadkost zorgt die binnen de interactiviteitsgrenzen ligt.

De populariteit van de NoSQL oplossingen en de grote hoeveelheid aan op-
lossingen hebben ervoor gezorgd dat er een specialisatie is opgetreden binnen de
NoSQL technologieën. Ze kunnen onderverdeeld worden in vier categorieën (key-
value, document, column-oriented, graph) die elk beter of minder geschikt zijn in
bepaalde situaties. Meer dan ooit is het dus belangrijk om een juiste opslagtech-
nologie te kiezen. Recente applicaties maken steeds meer gebruik van verschil-
lende datatypes. Die verschillende datatypes kunnen dus beter elke ondergebracht
worden in een verschillende technologie in de plaats van allemaal tesamen in één
opslagtechnologie. Een applicatie die verschillende data types in verschillende
opslagtechnologieën opslaat wordt polyglot persistent genoemd. Natuurlijk wordt
het beheer van zo een polyglot persistente omgeving complexer naarmate het aan-
tal ondersteunde technologieën oploopt. Dit proefschrift brengt een oplossing aan
die een applicatie beschermt voor de complexiteit van polyglot persistence via een
abstractielaag. Daarenboven wordt het schema van de data stores geoptimaliseerd
om zo de overheadkost van de abstractielaag te mitigeren en maximale winst te
halen uit de polyglot persistente omgeving. De optimalisatie wordt gebaseerd op

SUMMARY IN DUTCH xxiii

de extractie van frequente query-patronen en past het schema zodanig aan dat deze
queries sneller kunnen uitgevoerd worden. Het toepassen van deze optimalisaties
gebeurt via het eerder vermelde transformatiealgoritme.

De bijdragen van dit proefschrift zijn ook toegepast op realistische gevallen-
studies van het smart city project City-of-Things (CoT). In CoT wordt er data
verzameld van verschillende sensoren die verspreid in een stad zijn opgesteld. Ge-
bruikers kunnen toegang krijgen tot deze data, maar ook tot een omgeving dat hun
toelaat om aangepaste analyses te doen op die data. Het transformatiealgoritme
wordt in deze context gebruikt worden om data aan te leveren in het aangevraagde
formaat, terwijl de backend van het CoT systeem geoptimaliseerd kan worden met
de eerder beschreven schema optimalisaties op basis van frequente queries van ge-
bruikers. De Lambda architectuur is de drijvende kracht achter de transformaties,
maar kan ook aan de gebruikers aangeboden worden om over de data te analyseren.

Aangezien het werk van dit proefschrift zich afspeelt in big data omgevingen,
zijn de hierboven beschreven oplossingen geëvalueerd in experimentele setups met
big data technologieën. Het manueel opzetten van deze omgevingen met geclus-
terde technologieën is een tijdrovende en complexe taak. De laatste contributie van
dit doctoraat is daarom het ontwerp en de implementatie van het Tengu platform.
Tengu laat onderzoekers toe om snel en geautomatiseerd big data omgevingen op
te zetten voor experimenten. Het Tengu platform is in de voorbije jaren in ver-
schillende projecten gebruikt geweest en, na een valorisatietraject, heeft dit ook
geleid tot een spin-off van de Universiteit Gent en imec.

Summary

Over the past decade, the amount of data that is being generated has increased
drastically as more and more devices are connected to the Internet. Estimates say
that close to 2MB of data is created per minute for every person on Earth. At
the same time, advances in cloud processing and decreasing storage costs have al-
lowed companies to capture and store this data in a cheap way. This has led to a
situation where, by 2020, worldwide data storage will take up 40 billion Terabytes.
Processing these large volumes of data requires new analysis frameworks that use
the computing power of clustered servers to generate insights within a reasonable
time. The drawback of these batch frameworks is that analysis results are only
available after the process for the entire batch of input data is completed, making
them unfit for systems with (near) real-time constraints. A second generation of
processing frameworks, centered around stream analysis, process data as soon as
it is captured and scale across clusters to cope with higher velocity streams. How-
ever, as algorithms for generating insights grow more complex, a need arises for
hybrid solutions that are able to process data in (near) real-time while also being
able to analyze historic data.

The Lambda architecture is a hybrid framework that combines a batch and
streaming technology in a two-layered architecture. Captured data is immediately
processed by an online layer, powered by a streaming technology, and at regular
intervals the data is processed more thoroughly by the offline layer. This allows
a system to quickly generate (near) real-time superficial insights, which are up-
dated over time by more precise results. Managing the synchronization between
the on- and offline layer, i.e., when results are updated or replaced, is critical. If
not managed well, the system is vulnerable to (temporary) states of information
redundancy and loss. Currently, there are no solutions that guarantee a loss-less
and non-redundant Lambda implementation. Even the proposed solution by the
creator of the Lambda architecture concept, Nathan Marz, condones a temporary
state of partial redundancy, making the solution unusable for applications that re-
quire correct results. The first challenge this dissertation tackles is the design
and implementation of a Lambda architecture without any (temporary) informa-
tion loss or redundancy. By tagging data as soon as it enters the system, it can be
traced throughout the on- and offline layers and storage. As the system is aware
which tags are currently being processed it can update or replace relevant informa-
tion in the on- and offline data stores in such a way that it eliminates the possibility
of redundant or lost information. The proposed solution is also fault-tolerant, i.e.,
when information loss or redundancy is introduced manually through human fault

xxvi SUMMARY

or otherwise, the stored information self-corrects after a couple of batch execution
runs.

Regardless of the management challenges in hybrid solutions, the processing
frameworks have put stringent demands on storage solutions requiring them to pro-
vide fast read and/or write access in order to keep up with the processing capabil-
ities. These demands have long exceeded the means of classic relational database
management systems (RDBMS) and therefore spawned a new generation of stor-
age solutions, commonly identified as NoSQL. These technologies are designed
to scale and provide better performance in doing so. While new applications can
be designed with this new generation of technologies in mind, legacy applications
that are tightly bound to their classic RDBMS cannot. A second challenge that
is addressed in this dissertation is the design of a system that would allow legacy
applications to benefit from the advantages of NoSQL data stores. The devised
solution must consider that many of these applications run in a production en-
vironment and as such, changes to the application’s code and downtime of the
application must be minimized or even eliminated completely. A transformation
algorithm is developed that uses the Lambda architecture to transform a snapshot
of the data store schema and data through a canonical model in an offline layer,
while updates after the snapshot are processed by the online layer. In other words,
the data store of the application can be transformed without any downtime. An
additional benefit is that, after the snapshot is transformed, the online layer can
continue to transform queries of the application in its original query language, i.e.,
no code changes are needed on the application’s side. Results show that the trans-
formation to a NoSQL data store can hugely benefit query latency, depending on
the chosen data store, but also that the continuous transformation can be done with
limited overhead, well within interactivity bounds.

The popularity of NoSQL data stores and the amount of possible solutions for
data storage led to a specialization of the NoSQL technologies. Divided into four
categories (key-value, document, column-oriented, graph), each is better or less
suited for certain data types or uses. Thus, the correct choice of a data store is is
the utmost importance for the query performance of an application. Considering
the amount of different data types one application handles has gone up as a di-
rect consequence of the increasing volumes of data generated, different data types
within one application would benefit from using different data store technologies.
An application that stores its data in different storage technologies is referred to
as being polyglot persistent. However, supporting a polyglot persistent storage
environment with different technologies, and their different query languages ac-
cordingly, quickly gains in complexity as the number of supported technologies
increases. In this dissertation a solution is proposed that shields the complexity
of polyglot persistence from the application through an abstraction layer. The
overhead of the abstraction layer is mitigated through the optimization of the data
schema in order to maximize the benefit of the polyglot persistent environment.
An algorithm is defined to mine frequent query patterns used by applications or
users and optimizing the schema to facilitate those queries. Enacting the changes
on the data schema is done by the transformation algorithm mentioned previously.

SUMMARY xxvii

The contributions of this dissertation are applied in real-life use cases as part of
the smart city project City-of-Things (CoT). As a smart city testbed, CoT gathers
data from a variety of sensors spread across a city environment. Users of the
testbed get access to the sensor data as well as an automated analytics environment.
The transformation algorithm is used to provide users with data in the correct
data format, while the schema optimization for polyglot persistent environments
is applied to the backend of CoT ensuring data delivery to users is optimized. The
Lambda implementation powers the transformation approaches, but can also be
applied to custom analytics by the users of the testbed.

As the work of this dissertation is set in big data environments, many experi-
mental setups were used for the evaluation of the proposed solutions. Setting up
these big data experimental environments manually is a time consuming and incon-
venient task. As many of the used technologies are clustered in nature, the setup
only becomes more complicated. A final contribution of this PhD is therefore the
design and implementation of a platform, Tengu, to facilitate the experimentation
of big data solutions. The platform provides automated setups of big data environ-
ments for researchers that are pre-configured to custom specifications. The Tengu
platform has contributed to several projects and, ensuing a valorisation process,
has led to a spin-off company of Ghent University and imec.

1
Introduction

“Success is a science; if you have the conditions, you get the result.”

–Oscar Wilde (1854 - 1900)

1.1 The Impact of Big Data
The cloud has gained a lot of popularity in these last years and is an ever growing
concept. One of the main reasons for companies to move or develop their appli-
cations in the cloud is the elastic scalability provided in a cloud setting. It allows
for applications to be scaled up or down (i.e., use more or less computational re-
sources) without any downtime. Additionally, this scalability is often delivered
on-demand resulting in a pay-per-use model allowing the companies to cut costs
instead of investing in their own hardware. Not only have computing costs gone
down drastically with this pay-per-use model, but storage costs as well. In 1980
1 GB of storage would have cost 700, 000$, but by 2014 this cost has been re-
duced to about 0.03 $/GB [1]. This means the cost of storage has fallen by over
99.99999% in just about 35 years. As these storage costs continue to decline while
more and more devices are connected to the internet, more data than ever is being
generated and captured by companies worldwide. Our digital universe, the collec-
tion of all data stored in the world, is continuously expanding at ever increasing
rates. By 2020 the digital universe is predicted to contain over 40 ZB (1 Zettabyte
= 1 billion Terabyte) of data [2]. That is over 5, 200 GB of data, or about 30 hours
of 4 K footage (4096 x 2160), per person alive in 2020.

2 CHAPTER 1

This new computing paradigm, trying to process all this data, has dawned the
age of big data analysis. There still remains some confusion over what makes a
data set big data and many definitions have tried to capture exactly what it encom-
passes. One definition considers a data set to be big data when traditional process-
ing and storage solutions no longer suffice, but require parallel software running in
clusters of tens, hundreds or even thousands of servers [3]. However, the concept
of big data is still evolving and definitions therefore become dated rather quickly.
A definition that is now gaining in general acceptance is the definition by means
of the 3 V’s by Gartner. It defines big data as a data set that adheres to at least two
of the following characteristics:

• Volume: a data set needs to be large enough. The threshold for a data set
to be large enough is also still growing as hardware for both storage and
processing is still improving. In general, a data set is large enough when a
cluster of computing power is needed to process it in a reasonable time.

• Velocity: the rate at which data is generated or arrives in the data set must
be significantly high, again so that a cluster is required to process it in (near)
real-time.

• Variety: the data in the data set is unstructured or is a combination of dif-
ferent data formats making it hard to process.

The benefit of this definition is that it can be extended with new V’s as the domain
evolves. For example, in recent years a new V, Veracity, has been introduced and
it indicates that incoming data cannot always be trusted. Examples of big data
projects in the academic domain can be found in the Human Genome Project [4]
and NASA Center for Climate Simulation (NCCS) [5], while social network sites,
such as Facebook and Twitter, internet retailer Amazon, and search engine Google,
are great examples of companies in the private sector dealing with big data.

In order to process these big data sets, many computational frameworks have
been developed. First came the batch frameworks, designed to process large data
sets in parallel (Volume). The best-known batch framework is MapReduce, origi-
nally developed by Google, but made popular by its open-source implementation
Apache Hadoop [6]. Another more recent and increasingly popular batch frame-
work is Spark [7]. Spark is proven to execute certain programs up to 100 times
faster than Hadoop in memory or 10 times on disk. However, as data sets started
growing faster because of higher arrival rates (Velocity), batch frameworks could
no longer provide insights within a reasonable time limit. Specific types of appli-
cations, such as sensor networks, social media, and network monitoring created
the need for (near) real-time or stream processing [8]. The most notable exam-
ples are Apache Storm [9] and Heron [10]. Storm provides a continuously running
topology made up of singular nodes, called bolts, thus creating custom analysis

INTRODUCTION 3

streams. Heron works in a very similar way and is considered to be the succes-
sor to Storm. Both were orginally developed at Twitter and later made available
under an open source license. A final category are the hybrid frameworks, which
do not introduce new computational frameworks but rather combine existing batch
and streaming technologies. An example of such a hybrid solution is the Lambda
architecture [11].

These computational frameworks, aimed at large scale processing, also have
put stringent demands (e.g., fast access) on the data storage solutions they use.
Over the past decade, these demands have exceeded the capabilities of classic
relational database management systems (RDBMS). Therefore, new storage sys-
tems have been designed to scale horizontally, providing read/write operations dis-
tributed over many servers [12]. Many of these new technologies can be catego-
rized as NoSQL, which stands for Not only SQL. Contrary to the classic relational
databases, they provide easy scaling and performance advantages in specific sce-
narios, depending on the chosen NoSQL data store [13]. Additionally, they pro-
vide a more flexible or even schema-less data model, allowing rapid changes in the
model. The popularity of these data stores can be measured by the sheer amount
of solutions available. However, this does not mean relational databases no longer
have a role to play in the big data domain [14]. An example is Google’s F1 hybrid
database [15] supporting their AdWords business, an ecosystem with hundreds of
concurrent applications and thousands of users sharing the database, over 100TB
in size in 2013.

The amount of possible solutions for data storage led to a specialization of
these data stores in order to distinguish themselves from each other. A NoSQL
data stores can be divided in one of 4 categories: key-value stores, document
stores, column-oriented stores, and graph databases, where each category is more
or less suitable for different types of data or for different applications [16]. Thus, a
correct choice in data store is paramount for the optimal performance of the appli-
cation. However, as previously mentioned, applications often work with different
types of data (Variety), e.g., e-commerce platforms. Combined with the plethora
of NoSQL solutions available it would be beneficial for an application to use mul-
tiple data stores simultaneously for the different data types it handles. This is
often referred to as polyglot persistence and is considered to be the most profound
consequence of the NoSQL domain [17].

The above paragraphs only provide a summary of the available technologies
for data processing and storage. Figure 1.1 gives a high-level overview of relevant
technologies and company solutions in the big data landscape for purposes such
as analysis, storage, but visualization and infrastructure among others as well. It
visualizes the impact the big data paradigm has had on data processing and storage
approaches: the way applications work with data has irrevocably changed allowing
them to create deeper insights faster onto data sets.

4 CHAPTER 1

Figure 1.1: Technology overview of the big data landscape in 2017 [18].

INTRODUCTION 5

1.2 Problem Statement
In the previous section polyglot persistence was introduced as a situation where an
application stores data in more than one data store technology based on data type,
usage, or other qualifying factors. The ultimate goal of polyglot persistence is to
optimize data access for applications through minimizing query latency by storing
data in the most optimized technology. However, this optimized data access does
come with a significantly higher complexity. For newly created applications, this
means that an application needs to support different query languages in order to
communicate with the different storage technologies. Additionally, each data store
technology needs to be managed for optimal configuration (e.g., scaling, replica-
tion). For legacy applications, there is an additional dimension to this complexity
as data is already stored in a, potentially sub-optimal, data store. In order to get a
legacy application into polyglot persistence, existing data needs to be transformed
and migrated to the new data stores on top of changing the application to support
the different querying languages, which is made even harder in a live environment
where no downtime of the application is allowed.

This dissertation aims to address the data management complexity in a polyglot
persistent environment for both new and legacy applications. More specifically,
answers to the following research questions are formulated:

1. How can the complexity of a polyglot persistent environment be miti-
gated for applications?

Applications should be able to benefit from lowered query latency provided by
polyglot persistence without the perceived complexity. In other words, this dis-
sertation aims to find a method to shield applications from the complexity of a
polyglot persistent environment while increasing data access speed.

2. How can data be transformed between data store technologies in an
automated and extensible way?

While the answer to Research Question 1 would aid new applications, applying it
to legacy applications with a, potentially sub-optimal, data store would still incur
a high impact on the stored data and the application itself. A solution for legacy
applications in polyglot persistence should therefore include a transformation of
data from the original, single data store towards other data store technologies. Fur-
thermore, this solution should be automated, i.e., require minimal user interaction,
and be extensible with new data store technologies as to be future-proof.

3. Can the impact of the transformation on the application changes be
eliminated?

When the data of an application is transformed and moved to another data store
technology this results in a necessary code change for the application to support the

6 CHAPTER 1

new data model, if any, and the new querying language. Eliminating this necessary
change would allow for a faster turnover towards polyglot persistence for legacy
applications.

4. Can the polyglot persistent data model be optimized based on how data
is retrieved by an application?

The data model of a data store is designed and built in such a way that it optimizes
data access for a specific application. This should also apply to a polyglot per-
sistent environment where parts of the data model are contained within disparate
storage technologies, as it could potentially further improve data accessing times
for an application. Therefore, the solution to Research Question 1 should also con-
tain a dynamic aspect where it takes into account information from the application
on how a data is retrieved to tailor the data model to the application.

1.3 Research Contributions

This section aims to provide an overview of the contributions of this dissertation
with regard to the research questions posed in Section 1.2.

A use case in big data where applications would touch upon the principles
of polyglot persistence are hybrid frameworks, such as the Lambda architecture.
The architecture was introduced by Nathan Marz as a hybrid solution for both off-
and online analysis [11]. The online analysis provides (near) real-time insights on
streaming data sets, while the offline component generates deeper insight over the
entire history of the data. The results from the layers are stored in disparate storage
solutions effectively putting an application, using the results, in a polyglot persis-
tent environment. However, managing this entire hybrid environment becomes
significantly more complex. As the same data is always processed twice, once in
the online and once in the offline layer, and stored in two different data stores, this
leaves the system vulnerable to (temporary) information loss and redundancy. The
original creator, Nathan Marz, acknowledges this challenge but never provides a
true solution to managing this synchronization complexity and tolerates a state of
temporary redundancy [11]. The first contribution of this dissertation therefore is:

1. A technology-independent framework of a true Lambda architecture
with no (temporary) information loss or redundancy.

While this contribution might not answer to any of the research questions directly,
it does provide a good use case for polyglot persistent applications and the basis
of an approach well-suited for the transformation of data.

The next contribution formulates an initial answer to Research Question 1 as
follows:

INTRODUCTION 7

2. Definition and design of a canonical model that acts as a generic repre-
sentation of a data schema, independent of underlying technologies.

The canonical model acts as a shielding layer between the application and the
data stores supplying the application with a technology-independent overview of
its data schema. As such, the heterogeneity of polyglot persistence is shielded
from the application. The question remains how an application is then able to
communicate with the different data sources to retrieve data. The answer can be
found in the third contribution of this dissertation:

3. An extensible transformation algorithm between data storage technolo-
gies supporting continuous transformation.

The architecture for the transformation of a data store’s schema and data combines
both the first and second contribution: it builds on the Lambda architecture, where
a snapshot of the data store is transformed offline and live queries in the online
layer, using the canonical model to map the data schema between data store tech-
nologies. Additionally, by keeping the online layer of the Lambda architecture ac-
tive, queries can be continuously transformed from the original query language to
the transformed data stores. In other words an application is able to communicate
with the polyglot persistent data storage with one query language. For a legacy ap-
plication this can be the query language of the single data store. This continuous
transformation provides an answer to Research Questions 1 and 3: applications
can communicate with a polyglot persistent environment, aided by the canonical
model, in a single query language, which for legacy applications eliminates need
for changes in the code.

The definition of the transformation algorithm answers Research Question 2

as it defines an extensible approach to transformation between data store technolo-
gies aided by the canonical model. The goal of the dissertation was not to build
an implementation of the transformation algorithm for all data store technologies
and all their features, but rather design an extensible approach for transformation
through a canonical model. This framework ought to give enough flexibility to
extend support to a majority of data storage solutions and their feature sets.

None of the aforementioned contributions consider input from the application
querying the data store, but rather build on information provided by data stores
themselves. As applications use, i.e., query, data stores in unique ways, this in-
formation could be used to optimize and tailor the canonical model. Specifically,
this dissertation looks into potential relations between data inside a data model
based on live queries by the application in an attempt to optimize or eliminate
complex queries. This yields the following and final contribution as a response to
Research Question 4:

4. A framework for the detection of potential relations between data through
sequential pattern mining on live queries.

8 CHAPTER 1

1.4 Dissertation Outline

This dissertation bundles several publications that have been written over the course
of this PhD. These publications were chosen as they represent a thread of research
topics that have shaped the work performed over the past years. This chapter serves
as an introduction to several of these topics. Other publications that have not been
included as a part of this dissertation are listed in Section 1.5. Aside from research
publications, this PhD has also lead to a spin-off company of Ghent University and
imec. More information on the company can be found in Section 1.6.

Chapter 2 presents a technology-independent implementation of the Lambda
architecture. It provides a solution to the synchronization issue between the off-
and online layer, and completely removes any state of temporary loss or redun-
dancy of information. By tagging data as soon as it enters the environment, it can
be traced throughout the on- and offline analysis and storage. As the system is
aware which tags are currently being processed it can clear relevant information in
the on- and offline data stores and manage the synchronization between those data
stores eliminating the possibility of redundant and lost information.

In Chapter 3 an approach for the transformation between two data store tech-
nologies is introduced. The big data paradigm introduced new technologies and
ways to store data, but many legacy applications are tightly bound to their current
storage solution and not equipped to deal with these new technologies. The solu-
tions provided in this chapter allow such applications to finally benefit from this
new generation of data stores. The chapter describes an extensible transforma-
tion algorithm between two data store technologies that is capable of transforming
both a data store schema and the actual data. A new canonical model is introduced
that abstracts specific data storage technologies and allows for the extensibility of
the proposed approach. Applying the transformation to legacy data stores results
show that the schema and data can be correctly transformed and, depending on the
choice of storage technology, significant gains can be made in query latency. Ad-
ditionally, by using the Lambda architecture implementation from Chapter 2, the
transformation solution in this chapter does not impose any changes to the legacy
application. The work is a continuation of the work described in Appendix A,
which has been added to this dissertation for completeness sake.

Chapter 4 builds on the advancements made in Chapter 3. Whereas Chapter 3
introduces direct transformation between two data store technologies, this chapter
tackles challenges in a polyglot persistent environment and assumptions that are
made in the previous chapter. The previously defined canonical model is extended
with a technology layer, effectively giving the model a notion of the concept of
polyglot persistence. It also allows the canonical model to act as an abstraction of
the complex polyglot storage environment. However, as with any abstraction layer,
it introduces an overhead to the general operations, so assurances are needed that

INTRODUCTION 9

the overhead is significantly smaller than the benefit gained of using it. First of all,
there is the benefit of using the correct technology, or set of technologies, which
was demonstrated in Chapter 3. Secondly, the transformation algorithm optimized
the transformed data store by relying on selective denormalization for defined rela-
tions in the data schema, ultimately benefiting the query latency. The assumption
was that these relations were correctly defined in the data schema, but in many real-
istic cases these relations are not or cannot be defined. This can be due to omission
when building the data schema for a data store, or because the data store technol-
ogy does not support the explicit expression of a relation in its data schema, which
is often the case in NoSQL data stores. This chapter introduces an optimization ap-
proach that learns these relations based on the queries from the applications. The
detected relations are then added to the canonical model after which the changes
are reflected in the storage environment. Combined the abstraction of polyglot
persistence provided by the new canonical model is leveraged to optimize the data
schemas of all involved data store technologies.

Finally, Chapter 5 combines the contributions from the previous chapters into
real-life use cases applied in the City-of-Things (CoT) project. City-of-Things is
a smart city testbed that gathers data from different sensors spread out across the
city of Antwerp (Belgium). This chapter describes the architecture of the CoT
platform and provides several use cases on how users are able to interact with
the platform. Users can get direct access to the sensor data but also to an analysis
environment in which they can build custom analysis components and applications
on the data. The contributions from Chapter 3 provides users access to data in
whichever format available. The transformation can be used to prepare the data
in the right format before it is sent to the users. Based on how users interact with
the data, the back-end of the CoT platform can also be optimized by the solutions
detailed in Chapter 4. As mentioned before, the solutions in Chapters 3 - 4 make
use of the generic implementation of the Lambda architecture defined in Chapter 2,
but the implementation can also be provided to users directly that wish to use it in
their analysis.

The work in Chapters 2 - 5 is set in big data environments. The setup of such
environments in practice is often cumbersome and manual task complicated by
the clustered nature of many of the technologies available. Early on in this PhD
the complexity of these environments put a strain on experiments because of the
discrepancy between the setup and the execution effort. As a result the Tengu ex-
perimentation platform was created to automatically set up big data environments
for researchers. Since its creation the Tengu platform has contributed to several
other dissertations, research publications, and different projects with Ghent Uni-
versity and its industry partners [19, 20]. Appendix B provides further insight into
the Tengu platform and its capabilities.

10 CHAPTER 1

1.5 Publications

The research results obtained during this PhD research have been published in
scientific journals and presented at a series of international conferences. The fol-
lowing list provides an overview of the publications during my PhD research.

1.5.1 A1: Journal publications indexed by the ISI Web of Sci-
ence “Science Citation Index Expanded”

1. Femke De Backere, Thomas Vanhove, Emanuel Dejonghe, Matthias Feys,
Tim Herinckx, Jeroen Vankelecom, Johan Decruyenaere, Filip De Turck.
Platform for Efficient Switching between Multiple Devices in the Intensive
Care Unit. Published in Methods of Information in Medicine, Schattauer,
Volume 54, Issue 1, Pages 5-15, January 2015. doi:10.3414/ME13-02-0021.

2. Thomas Vanhove, Gregory Van Seghbroeck, Tim Wauters, Bruno Volck-
aert, Filip De Turck. Managing the Synchronization in the Lambda Archi-
tecture for Optimized Big Data Analysis. Published in IEICE Transactions
on Communications (ToC), Volume 99, Issue 2, Pages 297-306, February
2016. doi:10.1587/transcom.2015ITI0001.

3. Femke Ongenae, Thomas Vanhove, Femke De Backere, Filip De Turck.
Intelligent task management platform for health care workers. Published in
Informatics for Health & Social Care, Taylor & Francis, Volume 42, Issue 2,
Pages 122-134, February 2017. doi:10.3109/17538157.2015.1113178.

4. Thomas Vanhove, Merlijn Sebrechts, Gregory Van Seghbroeck, Tim
Wauters, Bruno Volckaert, Filip De Turck. Data Transformation as a means
towards Dynamic Data Storage and Polyglot Persistence. Published in In-
ternational Journal of Network Management (IJNM), Wiley-Blackwell, Vol-
ume 27, Issue 4, July 2017. doi:10.1002/nem.1976.

5. Thomas Vanhove, Gregory Van Seghbroeck, Tim Wauters, Bruno Volck-
aert, Filip De Turck. Sequential Pattern Mining for Data Storage Opti-
mization in Polyglot Persistent Environments. Submitted to the Journal of
Network and Computer Applications, September 2017.

6. Thomas Vanhove, Merlijn Sebrechts Gregory Van Seghbroeck, Tim
Wauters, Philip Leroux, Filip De Turck. City of Things: Smart Cities be-
yond Open Data. Submitted to IEEE Communications Magazine, IEEE,
September 2017.

INTRODUCTION 11

1.5.2 P1: Proceedings included in the ISI Web of Science “Con-
ference Proceedings Citation Index - Science”

1. Thomas Vanhove, Philip Leroux, Tim Wauters, Filip De Turck. Towards
the Design of a Platform for Abuse Detection in OSNs using Multimedial
Data Analysis. In proceedings of the IFIP/IEEE Symposium on Integrated
Network Management (IM), Ghent, Belgium, Pages 1195-1198, May 2014.

2. Thomas Vanhove, Jeroen Vandensteen, Gregory Van Seghbroeck, Tim
Wauters, Filip De Turck. Kameleo: Design of a new Platform-as-a-Service
for Flexible Data Management. In proceedings of the IFIP/IEEE Network
Operations and Management Symposium (NOMS), Krakow, Poland, Pages
1-4, May 2014. doi:10.1109/NOMS.2014.6838331.

3. Thomas Vanhove, Gregory Van Seghbroeck, Tim Wauters, Filip De Turck.
Live Datastore Transformation for optimizing Big Data applications in
Cloud Environments. In proceedings of the IFIP/IEEE International Sym-
posium on Integrated Network Management (IM), Ottawa, Canada, Pages
1-8, May 2015. doi:10.1109/INM.2015.7140270.

4. Thomas Vanhove, Gregory Van Seghbroeck, Tim Wauters, Filip De Turck,
Brecht Vermeulen, Piet Demeester. Tengu: an Experimentation Platform for
Big data Applications. In proceedings of the IEEE International Conference
on Distributed Computing Systems Workshops (ICDCSW), Columbus, OH,
USA, Pages 42-47, June 2015. doi:10.1109/ICDCSW.2015.19.

5. Merlijn Sebrechts, Thomas Vanhove, Gregory Van Seghbroeck, Tim
Wauters, Bruno Volckaert, Filip De Turck. Distributed Service Or-
chestration: Eventually Consistent Cloud Operation and Integration.
In proceedings of the IEEE International Conference on Mobile Ser-
vices (MS), San Francisco, CA, USA, Pages 42-47, June 2016.
doi:10.1109/MobServ.2016.31.

6. Merlijn Sebrechts, Sander Borny, Thomas Vanhove, Gregory Van Segh-
broeck, Tim Wauters, Bruno Volckaert, Filip De Turck. Model-driven De-
ployment and Management of Workflows on Analytics Frameworks. In pro-
ceedings of the IEEE International Conference on Big Data (BIG DATA),
Washington, DC, USA, Pages 2819-2826, December 2016. 10.1109/Big-
Data.2016.7840930.

7. Leandro Ordonez-Ante, Thomas Vanhove, Gregory Van Seghbroeck,
Tim Wauters, Filip De Turck. Interactive Querying and Data Visual-
ization for Abuse Detection in Social Network Sites. In proceedings of

12 CHAPTER 1

the International Conference for Internet Technology and Secured Trans-
actions (ICITST), Barcelona, Spain, Pages 104-109, December 2016.
doi:10.1109/ICITST.2016.7856676.

8. Leandro Ordonez-Ante, Thomas Vanhove, Gregory Van Seghbroeck, Tim
Wauters, Bruno Volckaert, Filip De Turck. Dynamic Data Transformation
for Low Latency Querying in Big Data Systems. Submitted to CloudCom
2017, Hong Kong, December 2017.

1.5.3 C1: Other publications in international conferences

1. Pieter Bonte, Femke Ongenae, Jelle Nelis, Thomas Vanhove, Filip De
Turck. User-friendly and Scalable Platform for the Design of Intelligent
IoT Services: a Smart Office Use Case. In proceedings of the International
Semantic Web Conference (ISWC), Kobe, Japan, Pages 1-4, October 2016.

1.6 Spin-offs
A final contribution that is important to mention in the context of this dissertation
is Qrama. Qrama is a spin-off company of Ghent University and imec, founded
by Thomas Vanhove and Gregory Van Seghbroeck, that has commercialized the
Tengu platform. Tengu, detailed in Appendix B, was created as a toolset to auto-
mate big data experimentation for researchers. During the course of this PhD it
became clear that Tengu is an answer to a much larger problem outside the world
of academia. As a company Qrama brings a commercial version of Tengu to the
big data market.

1. Qrama, Besloten Vennootschap met Beperkte Aansprakelijkheid, Thomas
Vanhove, Gregory Van Seghbroeck. BE0660.556.043, July 2016.

INTRODUCTION 13

References

[1] M. Komorowski. A History of Storage Cost, March 2014. http://www.
mkomo.com/cost-per-gigabyte-update (Last Visited January 9, 2018).

[2] J. Gantz and D. Reinsel. The digital universe in 2020: Big data, bigger digital
shadows, and biggest growth in the far east. IDC iView: IDC Analyze the
Future, 2007:1–16, 2012.

[3] A. Jacobs. The Pathologies of Big Data. Commun. ACM, 52(8):36–44,
August 2009. Available from: http://doi.acm.org/10.1145/1536616.1536632,
doi:10.1145/1536616.1536632.

[4] F. S. Collins, M. Morgan, and A. Patrinos. The Human Genome Project:
Lessons from Large-Scale Biology. Science, 300(5617):286–290, April 2003.
doi:10.1126/science.1084564.

[5] J. L. Schnase, G. Tamkin, D. Fladung, S. Sinno, and R. Gill. Federated ob-
servational and simulation data in the NASA Center for Climate Simulation
Data Management System Project. In Proceedings of the iRODS User Group
Meeting 2011: Sustainable Policy-Based Data Management, Sharing, and
Preservation, pages 17–18, 2011.

[6] J. Dean and S. Ghemawat. MapReduce: Simplified Data Process-
ing on Large Clusters. Commun. ACM, 51(1):107–113, January
2008. Available from: http://doi.acm.org/10.1145/1327452.1327492,
doi:10.1145/1327452.1327492.

[7] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:
Cluster Computing with Working Sets. In Proceedings of the 2nd USENIX
Conference on Hot Topics in Cloud Computing, HotCloud’10, pages 10–
10, Berkeley, CA, USA, 2010. USENIX Association. Available from: http:
//dl.acm.org/citation.cfm?id=1863103.1863113.

[8] J. Gama. Knowledge Discovery from Data Streams. Chapman & Hall/CRC,
2010.

[9] Apache Storm. http://storm.apache.org/ (Last Visited January 9, 2018).

[10] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M.
Patel, K. Ramasamy, and S. Taneja. Twitter Heron: Stream processing at
scale. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, pages 239–250. ACM, 2015.

http://www.mkomo.com/cost-per-gigabyte-update
http://www.mkomo.com/cost-per-gigabyte-update
http://doi.acm.org/10.1145/1536616.1536632
http://doi.acm.org/10.1145/1327452.1327492
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://storm.apache.org/

14 CHAPTER 1

[11] N. Marz and J. Warren. Big Data: Principles and best practices of scalable
realtime data systems. Manning Publications Co., Greenwich, CT, USA,
2015.

[12] R. Cattell. Scalable SQL and NoSQL Data Stores. SIGMOD Rec.,
39(4):12–27, May 2011. Available from: http://doi.acm.org/10.1145/
1978915.1978919, doi:10.1145/1978915.1978919.

[13] Y. Li and S. Manoharan. A performance comparison of SQL and
NoSQL databases. In Communications, Computers and Signal Process-
ing (PACRIM), 2013 IEEE Pacific Rim Conference on, pages 15–19. IEEE,
2013.

[14] C. Nance, T. Losser, R. Iype, and G. Harmon. NoSQL vs RDBMS: Why there
is room for both. In SAIS 2013 Proceedings, 2013.

[15] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins,
M. Oancea, K. Littlefield, D. Menestrina, S. Ellner, J. Cieslewicz, I. Rae,
T. Stancescu, and H. Apte. F1: A Distributed SQL Database That Scales.
Proc. VLDB Endow., 6(11):1068–1079, August 2013. Available from: http:
//dx.doi.org/10.14778/2536222.2536232, doi:10.14778/2536222.2536232.

[16] A. Haseeb and G. Pattun. A review on NoSQL: Applications and chal-
lenges. International Journal of Advanced Research in Computer Science,
8(1), 2017.

[17] P. J. Sadalage and M. Fowler. NoSQL Distilled: A Brief Guide to the Emerg-
ing World of Polyglot Persistence. Addison-Wesley Professional, 1 edition,
August 2012.

[18] M. Turck. Firing on All Cylinders: The 2017 Big Data Landscape, April
2017. http://mattturck.com/bigdata2017/ (Last Visited January 9, 2018).

[19] S. Latre, P. Leroux, T. Coenen, B. Braem, P. Ballon, and P. Demeester. City of
things: An integrated and multi-technology testbed for IoT smart city exper-
iments. In Smart Cities Conference (ISC2), 2016 IEEE International, pages
1–8. IEEE, 2016.

[20] P. Bonte, F. Ongenae, J. Nelis, T. Vanhove, and F. De Turck. User-friendly
and scalable platform for the design of intelligent IoT services: a smart office
use case. In ISWC2016, the 15th International Semantic Web Conference,
pages 1–4, 2016.

http://doi.acm.org/10.1145/1978915.1978919
http://doi.acm.org/10.1145/1978915.1978919
http://dx.doi.org/10.14778/2536222.2536232
http://dx.doi.org/10.14778/2536222.2536232
http://mattturck.com/bigdata2017/

2
Managing the Synchronization in the
Lambda Architecture for Optimized

Big Data Analysis

T. Vanhove, G. Van Seghbroeck, T. Wauters, B. Volckaert, and
F. De Turck.

Published in IEICE Transactions on Communications, February 2016.
? ? ?

This chapter focuses on the implementation of the Lambda architecture. It was
originally created by Nathan Marz as a hybrid concept that combines both offline
and online analysis by processing data superficially in a fast speed layer first,
and more thorough in a slower batch layer later. The ultimate goal is to allow
applications faster access to insights on data without the loss of precision in the
calculations. However, as data is processed twice, a synchronization challenge is
introduced: once the data is analyzed by the batch layer, the corresponding infor-
mation needs to be removed in the speed layer without introducing redundancy or
loss of information. In this chapter we propose a new approach to implement the
Lambda architecture concept independent of the technologies used for offline and
online computing. A solution is provided to manage the complex synchronization
introduced by the Lambda architecture and techniques to provide fault tolerance.
The proposed solution is evaluated by means of detailed experimental results.

16 CHAPTER 2

2.1 Introduction

Our digital universe is continuously expanding and predicted to contain 40 ZB (1
Zettabyte = 1 billion Terabyte) of data by the year 2020 [1]. Retrieving valuable
information from these data sets through conventional methods becomes nearly
impossible if time constraints apply. Moreover, most of these data sets consist of
unstructured data, making the processing even more complex. A popular approach
in the big data domain is to precompute views with big data processing technolo-
gies and let applications or users query this view instead of the entire data set. An
important distinction is made in semantics: the entries in the original big data set
are referred to as data, whereas the entries in the precomputed views are referred
to as information [2]. Information is thus derived from data through the algorithms
implemented in big data processing technologies.

These technologies can be divided in two types: batch processing, and stream
processing. The best known batch processing approach is Map-Reduce, originally
developed by Google [3], but made popular by its open-source implementation in
Apache Hadoop [4]. Other popular solutions include Spark [5] and Flink [6]. The
stream processing on the other hand, satisfies the processing needs of applications
that generate data streams, such as sensor networks, social media, and network
monitoring tools [7]. While batch processing analyzes an entire data set, stream
processing does the analysis on a message to message basis. Important streaming
analysis frameworks are Storm [8], S4 [9], and Samza [10].

The power of batch processing comes from the ability to access an entire data
set during the computation, e.g., creating the opportunity for the detection of re-
lations in the data. The drawback of batch processing is that all resulting infor-
mation only becomes available after the execution is complete. This process can
take hours or even days during which recent data is not taken into account. While
stream processing lacks the overview of batch processing, it does allow for a (near)
real-time analysis of data as it arrives in the system. The Lambda architecture is
built upon a hybrid concept where during a batch analysis execution, in a batch
layer, newly arriving messages are analyzed by a stream analysis technology, or
speed layer [2]. This effectively harnesses the power of both approaches, giving
an application a complete historic informational overview through the batch layer,
stored in batch views, and (near) real-time information through its speed layer,
stored in speed views. As soon as data is processed in the batch layer, the informa-
tion is stored in a batch view and the corresponding information is removed from
the speed view.

The Lambda architecture is clearly a very powerful concept, but it does pose
several implementation challenges. First, as information is stored in two differ-
ent views, the synchronization between batch and speed layer is key to providing
applications and/or users with the correct information. If this is overlooked or

SYNCHRONIZATION IN THE LAMBDA ARCHITECTURE 17

Batch Layer

Speed Layer

Speed

view

Speed

view

Main data set

Batch

view

Batch

view

Serving

Layer
Query

Query

Figure 2.1: Conceptual overview of the Lambda architecture

ill-handled, information could be lost or redundantly stored for a period of time.
Second, storing information across different data stores leaves the system in a state
of polyglot persistence, creating the need for the aggregation of information from
both the batch and speed views every time a query is sent by the application or
users.

This chapter proposes a general implementation of the Lambda architecture
concept without dependencies on the technologies used in the batch/speed layers
or views. A proof of concept has been implemented as part of the Tengu platform,
formerly known as Kameleo [11]. The chapter focuses on providing a generic
solution for the synchronization challenges that arise during the implementation
of the concept, but also proposes a solution for the aggregation challenge.

The remainder of this chapter is structured as follows: Section 2.2 discusses
the Lambda architecture in depth. In Section 2.3 the synchronization challenge is
discussed in detail and a solution is proposed. Section 2.4 explains how the system
handles failures in the different layers. The implementation of the synchronization
solution is detailed in Section 2.5. The experimental setup and results are provided
in Section 2.6. In Section 2.7 initial steps are detailed towards a solution for the
aggregation of polyglot persistent views. Finally, the conclusions are presented in
Section 2.8.

2.2 Lambda architecture: overview and challenges

The aim of each data system is to answer queries for applications or users on the
entire data set. Mathematically, this can be represented as follows [2]:

query = function(all data)

While in the era of Relational Database Management Systems (RDBMS) it was
still possible to query the entire data set in real time, this is no longer the case

18 CHAPTER 2

with big data sets [12]. Therefore, in big data analysis systems queries are already
partially precomputed and stored in views to limit the applications’ query latency.
Expressed in terms of functions, this gives us the following:

view = function(all data)

query = function(view)

It is here that Marz also makes a distinction between data and information [2].
Data is the rawest information from which all other information is derived and is
perceived to be true within the system, in this case the main big data set. A big
data system thus becomes the function that analyzes data through a programmed
algorithm and stores the resulting information in a view. Queries thus no longer
access data, but information stored inside views. According to Marz, these big
data systems need to achieve several properties:

• Robustness and fault tolerance: a data system needs to behave correctly
even in the event of software, machine, but also human failures.

• Low latency reads and updates: data or information needs to be available
when an application or user needs it.

• Scalability: a data system needs to maintain a stable performance with in-
creasing or decreasing load.

• Generalization: a data system needs to be applicable to a wide range of
applications.

• Extensibility: the potential to add functionality with a minimal cost.

• Ad hoc queries: unanticipated information in a data set needs to be acces-
sible.

• Minimal maintenance: limit the implementation complexity of the com-
ponents.

• Debuggability: a data system needs to provide information allowing to trace
how output was construed.

The Lambda architecture is built in layers each satisfying a subset of these proper-
ties.

As stated before, a big data system precomputes views on a big data set to
reach reasonable latency query times. This is achieved by the first layer of the
Lambda architecture: the batch layer. The results of the batch layer are stored in
batch views, managed by the serving layer. Most of the above-stated properties

SYNCHRONIZATION IN THE LAMBDA ARCHITECTURE 19

are already fullfilled by these two layers. The final property, concerning the low-
latency reads and updates, is accomplished with the final layer: the speed layer 1.
It provides the analysis of data as soon as it enters the system and stores it in a
speed view. Queries by applications or users then combine the information that
is stored in the batch and speed view. A query on a big data set, analyzed by the
Lambda architecture, can thus be described as follows:

batch view = function(all data)

speed view = function(speed view, new data)

query = function(batch view, speed view)

Figure 2.1 gives a conceptual overview of all the above discussed layers of the
Lambda architecture.

The batch layer thus continuously recomputes the main big data set, which in
time grows, causing the execution time to increase accordingly. This execution
time can be limited by using an incremental function to compute the batch view:

batch view = function(batch view, new data)

However, in order to guarantee the robustness and fault tolerance, a recomputa-
tional algorithm needs to always exist.

As soon as data is processed by the batch layer, the derived information that
will be stored in a batch view has a duplicate in the speed view. The corresponding
information in the speed view thus needs to be removed to make sure no redundant
information is present in the system. While this keeps the data store for the speed
views relatively small, i.e., it only contains the most recent information of the
system, it does expose a critical part of the system. If the synchronization between
batch and speed layer is incorrect, the entire system is vulnerable to missing or
redundant information. Marz suggests to maintain two sets of speed views and
alternately clearing them, which introduces redundancy. This chapter proposes a
general solution in Section 2.3 without information redundancy.

A second challenge arises with the final function to answer a query:

query = function(batch view, speed view)

To answer a query, information from both the batch and speed view is needed. The
idea where applications store their information in a mix of data stores to take ad-
vantage of the fact that different data stores are suitable for storing different infor-
mation, is referred to as polyglot persistence [13]. Support for polyglot persistent
applications is still a very active research topic [14, 15]. Initial steps towards a

1This layer is called the real time layer by Marz, but in practice it is often more near real time than
true real time. To avoid confusion, in this chapter it is referred to as the speed layer.

20 CHAPTER 2

general solution for the aggregation challenge in the Tengu platform are disclosed
in Section 2.7.

While the Lambda architecture is regarded as a promising concept in both
academia [16, 17] and industry [18, 19], some critique is expressed as well [20].
Kreps points out that maintaining two code bases (for batch and speed layer) is a
complex and painful issue. While this is true in some form, their proposed alter-
native, the Kappa architecture, limits the information that can be retrieved from
the big data set. This new proposal eliminates the batch layer and only uses the
speed layer to analyze the entire data set message by message. However, this way
an algorithm can no longer benefit from an overview of the entire data set. For
example, suppose an application analyzes the chat messages between social net-
work users for the detection of cyber bullying [21]. In the speed layer a message is
analyzed on its own, but in the batch layer a more accurate analysis is possible be-
cause the algorithm has the context of the entire chat history. In the next sections
a solution for the synchronization challenge in the Lambda architecture is given
without compromising on the information stored in the views.

2.3 Synchronization

The most important aspect of the synchronization between the batch and speed
layer happens when the batch layer finishes its computation. A delicate opera-
tion follows where the soon to be redundant data needs to be removed from the
speed view before it is entered in the batch view. If too much information is
removed from the speed view, the system enters a temporary state with missing
information. If too little information is removed, the system enters a temporary
state where redundant data is processed in the queries. Both states are temporary,
because it is fixed after another execution of the batch layer algorithm, although
other information might then be missing or redundant.

Nathan Marz proposes a solution where two parallel speed views are used to
store the most recent information [2]. As he points out, this leaves the system in
a redundant state, but it is considered to be an acceptable price for a general solu-
tion. The goal of this chapter is to design a general solution without redundancy
or information loss. In order to do so, a precise answer is needed to the follow-
ing question: which information needs to be deleted once a batch layer run has
finished? The system thus needs to know which data was processed by the batch
layer and what the corresponding information is in the speed view.

The proposed approach is as follows: tagging data as soon as it enters the
system allows for this traceability of when the data entered the system, and thus
what corresponding information can be removed. As soon as data arrives, it is
tagged by a current tag Tn. The data is stored with the big data set, but still
marked with the tag Tn. It is also analyzed by the speed layer, which stores the

SYNCHRONIZATION IN THE LAMBDA ARCHITECTURE 21

Figure 2.2: Synchronization timeline of the different layers. Two important atomic points
are identified: 1) batch view update - speed view clearance 2) tag switching.

resulting information in a view specifically for all information with the tag Tn,
(speed view)Tn. As soon as the batch layer finishes its current execution, the
following happens: the system switches to a new tag T(n+1) for all new incoming
data. The information, resulting from the batch layer execution, is pushed into the
batch view. The corresponding information in the speed view can be easily cleared
with the tag that came before Tn, (speed view)T (n−1). Then the new batch data
set becomes the union of all data with the Tn tag, dataTn, and the previous batch
data set:

batch data = dataTn ∪ batch data (2.1)

At this point, the batch layer starts a new execution and the entire walkthrough
described above is repeated. Similar to the solution proposed by Marz, parallel
speed views are used, but now clearly marked with a tag that marks the information
that is contained within them as to avoid redundant or missing information. A
query now becomes:

query = function(batch view, (speed view)T (n), ...,

(speed view)T (n−i))

(2.2)

Figure 2.2 depicts the lifetime of different events and services in relation to
each other in a normal running Lambda architecture implementation. The direc-
tional line on top represents the time moving from left to right. The batch layer
execution time is portrayed by the dashed line. The dotted tagger line shows which
tag is given to a new message that enters the system at a given time. Finally, the
lifetime of the speed views is represented by solid lines and the name of the tag
it stores. The sequence clearly shows how a speed view exists for two batch runs
before being cleared.

22 CHAPTER 2

Figure 2.2 also shows two atomic points that will need to be addressed in the
implementation:

1. Batch view update - speed view clearance: during this operation the sys-
tem is vulnerable for responding to queries with redundant or missing infor-
mation. If a query were to enter the system between the update of the batch
view and the clearance of the corresponding information in the speed view,
the response of the query will contain redundant or missing information,
depending on the order of the previously mentioned operations.

2. Tag switch: a message cannot enter the system while no or multiple tags are
active. If a message is not tagged, the system will ignore it and data is lost.
If a message is tagged multiple times with different tags, redundant data is
introduced into the system.

Important to note is the difference in impact both points have: the tag switch con-
cerns data, while the update/clearance works in the context of information. Re-
covering a system from faulty information is possible through a complete recom-
putation of the data set. However, recovering from faulty data is a whole lot more
complex since all derived information is false as well.

Note that in this section no assumptions have been made as to which tech-
nologies are used to implement the proposed tagging solution. Tagging can be
implemented in different ways: a tag can be directly inserted into a message or it
can be indirectly associated with the message. The proof of concept of the tag-
ging solution for the synchronization challenge uses the indirect approach and is
presented in Section 2.5.

2.4 Failure handling
An important property of a big data system is its robustness and fault tolerance as
outlined in Section 2.2 above. In the following subsections failure scenarios of the
different parts of the platform are discussed and how they can be handled.

2.4.1 Batch layer failures

If the execution of the batch layer fails, there are several possibilities to handle the
failure. First, a simple restart of the execution can be done with the same data set as
before. The batch and speed view still contain the correct information for applica-
tions and users, and the current tag needn’t change. A repeatedly failing algorithm
does require human intervention as the cause might be a faulty implementation.

A second possibility is to handle the failure similar to a correct end of the
batch layer: a new tag is used to tag future incoming messages, but the previous
tags are not wiped from the speed view as they were not yet analyzed by the batch

SYNCHRONIZATION IN THE LAMBDA ARCHITECTURE 23

layer. Otherwise this would cause temporary information loss. Data tagged with
the previous tags is added to the data set that will be analyzed by the batch layer. In
other words, while the batch layer needs to restart, the data set is expanded to take
into account more recent data. This method is limited in the number of failures
it can handle due to the increasing number of concurrent tags and the possibility
of an overflow of the tag value. As with the previous method, the information in
the batch and speed views remains available for applications and users. Figure 2.3
depicts this method of failure handling for the batch layer. The proof of concept,
detailed in Section 2.5, handles a batch layer failure with a simple restart.

2.4.2 Speed layer failures

A failure of the speed layer has less impact on the entire data system compared to
a batch layer failure because the information displayed in the speed view is only
a fraction of the total data set. That being said, the goal is to eliminate redundant
and missing information completely.

Failure handling is mostly dependent on how a streaming big data analysis
platform handles the failures. If the analysis of one message fails, it is important
the chosen technology has guaranteed message processing or checkpointing, i.e.,
each data message is fully processed without fault. If an entire machine or cluster
fails, data in transit should be recovered or re-analyzed. For example, in an imple-
mentation with Kafka and Storm, Storm provides guaranteed message processing,
but it also needs to keep an offset of messages it already consumed from Kafka.
Both technologies combined can therefore recover from a variety of failures.

2.4.3 View failures

A view failure results in partial information not being available for applications
and users. A failure of the speed view has a limited impact as it only contains
the most recent information of the system, while a failure of the batch view would

Figure 2.3: Batch layer failure handling

24 CHAPTER 2

cause most of the historical information to be unavailable. Therefore, it is impor-
tant to use distributed and replicated data stores for the views of both layers. In
the NoSQL (Not Only SQL) domain most data stores are of a distributed nature
and support some form of replication. The amount of replicas depends on the crit-
ical nature of the application. A careful consideration is required in this trade-off
between storage cost and availability.

While a view failure can cause a temporary unavailability or redundancy of
information, the layered approach of the Lambda architecture allows the system
to recover without human intervention. A recomputational algorithm in the batch
layer always starts with the original main data set, meaning errors in a batch or
speed view are overruled in the next iteration. This property is shown extensively
in the results in Section 2.6.

2.4.4 Data and communication failures

Query latency In Section 2.3 it was mentioned that the operation updating the
batch view and deleting the corresponding information in the speed views needs to
be atomic. During this time a read lock needs to be enforced on the different views
as to insure no missing or redundant information is used to answer the query. If an
error occurs during one of the steps in the operation, a rollback can make sure the
views are not corrupted.

Equation 2.2 also defines a query in the Lambda architecture as a function that
aggregates data from different views. Both the read lock and the aggregation will
cause a certain query latency.
Tagging The impact of missing or redundant data compared to information was
already briefly discussed in Section 2.3. An error in the tagging or switch between
tags could cause this missing or redundant data. Recovery from such a failure
entails much more than an information failure and the system will be unable to
recover from this without manual intervention.
Data persistence Finally, data persistence is an important feature to make sure no
data or information is lost. For example, assume a message is the last message
to be tagged with tag Tn. All the dataTn needs to be merged with the previous
batch data set, as defined in Equation 2.1. There needs to be a guarantee that all
data with tag Tn is present in dataTn, i.e., even the last message to be tagged with
Tn needs to be present and not get lost in the network. This is closely related to
guaranteed message processing discussed in Section 2.4.2.

2.4.5 Human failure

A final important failure is the realistic possibility that a human error will occur in
the system. Here the importance of the main data set is again featured. The main
data set contains unaltered data and is expected to be true, within the Lambda

SYNCHRONIZATION IN THE LAMBDA ARCHITECTURE 25

architecture system. This assumption allows the system to recover from any hu-
man error in the different layers. For example, if a faulty implementation in any
layer causes faulty information to be stored in the views, a fix of the faulty code
allows the entire system to recover after a couple of iterations. This emphasizes
the need for a re-computational algorithm in the batch layer. While an incremental
batch algorithm can be used to limit the execution time of the batch layer, a re-
computational algorithm needs to exist to recover from human-introduced errors,
such as faulty implementations.

2.5 Implementation details

The proposed Lambda architecture implementation is implemented as part of the
Tengu platform, previously known as Kameleo [11]. The Tengu platform was orig-
inally developed for the automated setup of big data technologies on experimental
testbeds. Figure 2.4 shows an overview of all used technologies in the proof of
concept implementation and how they are chained together.

The first technology a message encounters when it enters the system is the
WSO2 Enterprise Service Bus (ESB). It allows for advanced communication be-
tween services by routing messages in a bus architecture using a vast array of
protocols. For this reason the ESB was favored over a Message Broker (MB) or
a Complex Event Processor (CEP) as those would limit the amount of control the
system had over the messages and services. The WSO2 ESB was chosen over
other candidates, such as UltraESB, Mule, and Talend, for its performance and
maturity [22–24]. It is the intelligent controller-like component that coordinates
the execution of the different services, i.e., the batch and speed layer, and their
views. The ESB also maintains the current active tag corresponding to an active
topic in Apache Kafka [25].

After retrieving the tag in the ESB, the message is sent to a Kafka topic corre-
sponding to the received tag. The tag is hence never attached to the incoming mes-
sage, but indirectly associated with the message through a topic in Kafka. From

Figure 2.4: Technology overview of the implemented Lambda architecture proof of con-
cept.

26 CHAPTER 2

this topic the message is ingested by a speed technology, analyzed and stored in
a speed view. In the proof of concept Storm [8] is used as a speed technology,
while the speed views are stored in MongoDB [26]. Storm contains a topology
that is responsible for a specific tag, i.e., a Kafka topic. This topology analyzes the
messages and stores them in the MongoDB collection related to the tag. The union
defined in Equation 2.1 is performed using all data in the Kafka topic as dataTn.
The batch layer, implemented with Hadoop [4] in this proof of concept, performs
an analysis and stores the information in a batch view, a specific collection in
MongoDB.

Important to note is that the implementation of the tagging system is done by
the WSO2 ESB and Kafka. While Hadoop, Storm and MongoDB are used in this
proof of concept, they are merely services of the ESB through which the messages
are analyzed and stored. As a consequence they can be replaced by similar tech-
nologies such as Spark, Samza and Cassandra. Additionally, many technologies
can already act as a consumer of Kafka messages, but if not, an extension of the
WSO2 ESB can still provide the necessary communication.

In Figure 2.2 two critical points were also identified concerning the update of
the batch view and simultaneous removal of the corresponding information in the
speed view, and the switch between active tags. Both operations are required to be
atomic to prevent data/information loss or redundancy.

The tag is stored local to and managed by the ESB, making every operation
transactional. For each message the ESB reads the value of the tag and sends the
message to the corresponding topic. If a call is made to change the tag, the value is
updated with an atomic operation. A message can therefore never continue without
a tag or with multiple tags.

The switch between views after a completed batch layer iteration is handled by
inserting a read lock on the views. This can cause somewhat of a query latency if
a query is on hold during the switch. A solution for this latency can be to cache
the information during the transition, but this is outside the scope of this chapter
and considered part of future work.

2.6 Evaluation results

The Tengu platform is deployed on the iLab.t Virtual Wall infrastructure [27].
These experimental testbeds consist of over 300 nodes spanning different gen-
erations of hardware setups. For the tests in this chapter generation 3 nodes were
used: 2x Hexacore Intel E5645 (2.4GHz) CPU, 24GB RAM, 1x250GB harddisk,
1-5 gigabit nics. Eight nodes were used in the following setup interconnected with
a 1 Gigabit connection:

• 2 hadoop nodes

SYNCHRONIZATION IN THE LAMBDA ARCHITECTURE 27

Figure 2.5: Normal progress of the active Lambda architecture implementation

• 2 storm nodes

• 1 WSO2 Enterprise Service Bus node

• 1 MongoDB node

• 1 Zookeeper node

• 1 Kafka node

In the following subsection the results are detailed to show the correctness and
regenerative capabilities of the Lambda architecture implementation, especially in
the context of information redundancy and information loss. Next, insight is given
as to where information is stored among the different views in a normal run of the
system.

2.6.1 View failure

The most important part of the synchronization challenge consists of eliminating
redundant information and information loss. The first results in Figure 2.5 show
the normal progress of data sizes in the Lambda architecture. For each tag 20
messages were injected into the system through a REST API, one every second,
where each message had a specific value. The WSO2 ESB supports a variety of
message formats but for this test JSON messages were used:

{
‘ va lue ’ : ‘5 ’

}

28 CHAPTER 2

Figure 2.6: Regenerative progress of the active Lambda architecture implementation with
data loss in views

The algorithm in the batch and speed layer were tasked with calculating the total
sum of the message values. The dashed line shows the sum of all message values
injected in the system at any given point. The solid line shows the aggregated sum
that is available in all the views, both batch and speed. The sum calculation in
the speed layer is slowed as to clearly differentiate the two graph-lines from each
other. As can be seen in Figure 2.5 the solid line can never drop down, as this
would indicate information loss, or be higher than the dashed line, as this would
indicate information redundancy.

Information loss in the views is introduced in the second graph, depicted in
Figure 2.6. Loss is introduced twice in the speed view at around 65 and 165 sec-
onds. The regenerative property of the Lambda architecture is shown at around
115 seconds and 215 seconds. This is when the batch layer has recomputed the
main data set and the lost information is restored in the batch view.

Figure 2.7 shows the regenerative measures of the implementation after re-
dundancy is introduced to the speed views. The solid line clearly surpasses the
dashed line in the graph, indicating the presence of information redundancy. The
redundancy is however not present in the main data set, meaning that after a batch
iteration the redundant information is deleted from the views, again displaying the
correct total sum.

Both graphs clearly show the regenerative capabilities of the implemented
Lambda architecture in situations with varying information inconsistencies. The
time in which the system returns to a consistent state depends on the execution
time of the batch layer. In Section 2.3, Figure 2.2 illustrates that speed views exist
for two batch layer runs before being cleared, meaning that in a worst case sce-
nario an inconsistent state is maintained during two batch layer runs before being

SYNCHRONIZATION IN THE LAMBDA ARCHITECTURE 29

Figure 2.7: Regenerative progress of the active Lambda architecture implementation with
data redundancy in views

resolved. The batch layer execution time can be shortened through use of an incre-
mental algorithm, but as mentioned in Section 2.2 a re-computational algorithm is
still required to achieve fault tolerance and robustness. An inconsistent state in the
batch view can be resolved after one batch run, but only with a re-computational
algorithm.

2.6.2 Information transition from speed to batch views

As information is moved between different views a lot in the Lambda architecture,
the graph displayed in Figure 2.8 shares some insight as to where information is
stored during a normal run of the Lambda architecture implementation. Important
to note is that messages are now continuously sent to the system and have ever
increasing values, hence the exponential curve of the total data sum. The speed
layer is also no longer slowed down in these tests. First, speed view 1, marked
by the dotted line, is filled with information until it reaches a plateau at around 25
seconds. This plateau occurs as the Storm topology is swapped for a new topology
to start processing the new tag, i.e., ingest the new topic from Kafka. Once the new
topology is active at around 50 seconds, it quickly catches up to the total expected
sum by filling up speed view 2, indicated by the small dashed line, until it reaches
the next plateau. Again the Storm topologies are switched, but speed view 1 is also
cleared as the information is now contained within the batch view, marked by the
dashed-dotted line. Now speed view 1 can again be used to store information and
the entire above described process repeats itself. A maximum of two concurrent
tags are thus active at any given time.

Based on the graph in Figure 2.8 some improvements can be made: the plateau

30 CHAPTER 2

Figure 2.8: The total data in the Lambda architecture in time with respect to the different
views

could be reduced by having two parallel Storm topologies, as with the speed views.
This has the additional benefit that the old topology can continue generating infor-
mation next to the new one. The single topology setup of this proof of concept
can cause additional delay because the system waits for the topology to be en-
tirely finished before swapping. For a simple task, like calculating a sum, Storm
is fast enough and no additional delay is caused, but with more complex algo-
rithms the time for data to be processed by the topology increases, heightening the
possibility of additional delay. In a production environment it is therefore highly
recommended to work with two parallel Storm topologies.

2.7 Aggregation
In Section 2.2 a query in the Lambda architecture is defined as a function over the
different views. An application that stores data or information in a mix of data
stores to take advantage of the fact that different data stores are suitable for storing
different data is referred to as a polyglot persistent application [13]. While the
work of Sadalage and Fowler focuses on dividing the data set based on data type
and/or model, the polyglot persistence in the Lambda architecture splits informa-
tion based on time, derived from the tag the data got when it entered the system.
Both Equation 2.2 and Figure 2.1 show the need for aggregation, as an answer
to a query consists of multiple queries to different data stores. The nature of the
aggregation depends on the nature of the information stored in the views and the
nature of the query. For example, two integers can be added in a sum, but could
equally well be concatenated.

SYNCHRONIZATION IN THE LAMBDA ARCHITECTURE 31

Batch Layer

Speed Layer

Speed

view

Speed

view

Main data set

Batch

view

Batch

view

Serving

Layer Query

Query

F
o

rm
a

l la
n

g
u

a
g

e
 e

n
g

in
e

Figure 2.9: Lambda architecture with a formal language for the aggregation of information

Data abstraction layers, such as Hibernate OGM [28], Kundera [29], and DataNu-
cleus [30], help applications with polyglot persistence by providing general access
to their data stores, usually through a unified querying language. Although these
data abstraction layers shield applications from underlying data storage technolo-
gies, they lack the ability to intelligently combine information from several data
stores and return it. The application is thus still responsible for combining in-
formation from the different views and not effectively protected from data model
changes.

If this responsibility is to be moved away from the application, it needs to be
re-introduced in a new layer between the application and the data stores. As men-
tioned before, the nature of the aggregation is specific to the query the application
sends, so user input is required. However, users often also lack the insight into the
different technologies to correctly write the code for information retrieval. A defi-
nition of the aggregation through a technology independent data flow could prove
to be a solution in this case.

A proposed approach is to define this data flow through a formal language. The
formal language would allow users, lacking any programming skills or technology
specific knowledge, to define an algorithm answering their query through a flow
of operations and other queries on the different underlying data stores. Once an
aggregation is created through the formal language, an engine can translate it into
code and technology-specific queries for different data stores. Figure 2.9 shows
how the formal language fits in with the Lambda architecture. Initial steps towards
a definition and implementation of this formal language are ongoing and will be
reported on in future work.

2.8 Conclusion and future work

The Lambda architecture is a powerful concept for big data systems. However,
it does pose several implementation challenges. This chapter proposes a general

32 CHAPTER 2

implementation of the concept, independent of the technologies used for different
layers and views. It focuses on a solution for the synchronization challenge be-
tween the batch and speed layer through a tagging system. A solution is proposed,
tagging messages when they enter the implemented Lambda architecture system,
and a proof of concept is implemented in the Tengu platform. Results show that
the proof of concept works correctly in regard to eliminating information loss and
redundancy, and that when manually introduced, it is able to recover automati-
cally. The information transition between batch and speed view also indicated
a delay where no new information was posted in the views during the transition
of topologies. A solution is suggested where two parallel topologies exist in the
Storm cluster.

Another challenge was identified as the aggregation of information from batch
and speed views to answer queries from applications or users. This chapter dis-
cusses the initial steps that have already been taken towards a general solution in
the Tengu platform. The implementation itself will be reported on in future publi-
cations.

Acknowledgement
This work was partly carried out with the support of the AMiCA (Automatic Mon-
itoring for Cyberspace Applications) project, funded by IWT (Institute for the Pro-
motion of Innovation through Science and Technology in Flanders) (120007).

SYNCHRONIZATION IN THE LAMBDA ARCHITECTURE 33

References
[1] J. Gantz and D. Reinsel. The digital universe in 2020: Big data, bigger digital

shadows, and biggest growth in the far east. IDC iView: IDC Analyze the
Future, 2007:1–16, 2012.

[2] N. Marz and J. Warren. Big Data: Principles and best practices of scalable
realtime data systems. Manning Publications Co., 2015.

[3] J. Dean and S. Ghemawat. MapReduce: Simplified Data Process-
ing on Large Clusters. Commun. ACM, 51(1):107–113, January
2008. Available from: http://doi.acm.org/10.1145/1327452.1327492,
doi:10.1145/1327452.1327492.

[4] T. White. Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.

[5] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:
Cluster Computing with Working Sets. In Proceedings of the 2Nd USENIX
Conference on Hot Topics in Cloud Computing, HotCloud’10, pages 10–
10, Berkeley, CA, USA, 2010. USENIX Association. Available from: http:
//dl.acm.org/citation.cfm?id=1863103.1863113.

[6] Apache Flink. http://flink.apache.org/ (Last Visited January 9, 2018).

[7] J. Gama. Knowledge Discovery from Data Streams. Chapman & Hall/CRC,
2010.

[8] Apache Storm. https://storm.apache.org/ (Last Visited January 9, 2018).

[9] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed
Stream Computing Platform. In Data Mining Workshops (ICDMW),
2010 IEEE International Conference on, pages 170–177, Dec 2010.
doi:10.1109/ICDMW.2010.172.

[10] Apache Samza. https://samza.apache.org/ (Last Visited January 9, 2018).

[11] T. Vanhove, J. Vandensteen, G. Van Seghbroeck, T. Wauters, and F. De Turck.
Kameleo: Design of a new Platform-as-a-Service for Flexible Data Man-
agement. In Proceedings of the 2014 IEEE/IFIP Network Operations and
Management Symposium (NOMS 2014), 2014.

[12] A. Jacobs. The Pathologies of Big Data. Commun. ACM, 52(8):36–44,
August 2009. Available from: http://doi.acm.org/10.1145/1536616.1536632,
doi:10.1145/1536616.1536632.

[13] P. J. Sadalage and M. Fowler. NoSQL Distilled: A Brief Guide to the Emerg-
ing World of Polyglot Persistence. Addison-Wesley, 2012.

http://doi.acm.org/10.1145/1327452.1327492
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://flink.apache.org/
https://storm.apache.org/
https://samza.apache.org/
http://doi.acm.org/10.1145/1536616.1536632

34 CHAPTER 2

[14] A. Maccioni, O. Cassano, Y. Luo, J. Castrejón, and G. Vargas-Solar. NoX-
peranto: Crowdsourced Polyglot Persistence. Polibits, 50:43–48, 2014.

[15] S. Prasad and S. Avinash. Application of polyglot persistence to enhance per-
formance of the energy data management systems. In Advances in Electron-
ics, Computers and Communications (ICAECC), 2014 International Confer-
ence on, pages 1–6. IEEE, 2014.

[16] W. Fan and A. Bifet. Mining big data: current status, and forecast to the
future. ACM sIGKDD Explorations Newsletter, 14(2):1–5, 2013.

[17] S. Perera and S. Suhothayan. Solution Patterns for Realtime Streaming An-
alytics. In Proceedings of the 9th ACM International Conference on Dis-
tributed Event-Based Systems, DEBS ’15, pages 247–255, New York, NY,
USA, 2015. ACM. Available from: http://doi.acm.org/10.1145/2675743.
2774214, doi:10.1145/2675743.2774214.

[18] HPCC Systems. Lambda Architecture and HPCC Systems. White Paper,
February 2014.

[19] MapR. https://goo.gl/SBdQEW (Last Visited January 9, 2018).

[20] J. Kreps. Questioning the Lambda Architecture. Online article, July
2014. http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.
html (Last Visited January 9, 2018).

[21] T. Vanhove, P. Leroux, T. Wauters, and F. De Turck. Towards the design of
a platform for abuse detection in OSNs using multimedial data analysis. In
Integrated Network Management (IM 2013), 2013 IFIP/IEEE International
Symposium on, pages 1195–1198. IEEE, 2013.

[22] D. Abeyruwan. ESB Performance Round 6.5. Technical report, WSO2, Jan-
uary 2013. http://wso2.com/library/articles/2013/01/esb-performance-65/.

[23] A. C. Perera and R. Linton. ESB Performance Round 7. Technical report,
AdroitLogic, October 2013. http://esbperformance.org/display/comparison/
ESB+Performance.

[24] S. Anfar. ESB Performance Round 7.5. Technical report, WSO2, February
2014. http://wso2.com/library/articles/2014/02/esb-performance-round-7.5/.

[25] N. Garg. Apache Kafka. Packt Publishing Ltd, 2013.

[26] K. Chodorow. MongoDB: the definitive guide. ” O’Reilly Media, Inc.”, 2013.

[27] iLab.t Virtual Wall. http://doc.ilabt.imec.be (Last Visited January 9, 2018).

http://doi.acm.org/10.1145/2675743.2774214
http://doi.acm.org/10.1145/2675743.2774214
https://goo.gl/SBdQEW
http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html
http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html
http://wso2.com/library/articles/2013/01/esb-performance-65/
http://esbperformance.org/display/comparison/ESB+Performance
http://esbperformance.org/display/comparison/ESB+Performance
http://wso2.com/library/articles/2014/02/esb-performance-round-7.5/
http://doc.ilabt.imec.be

SYNCHRONIZATION IN THE LAMBDA ARCHITECTURE 35

[28] Hibernate OGM. http://hibernate.org/ogm/ (Last Visited January 9, 2018).

[29] Impetus Kundera. https://github.com/impetus-opensource/Kundera (Last
Visited January 9, 2018).

[30] DataNucleus. http://www.datanucleus.org/ (Last Visited January 9, 2018).

http://hibernate.org/ogm/
https://github.com/impetus-opensource/Kundera
http://www.datanucleus.org/

3
Data Transformation as a means

towards Dynamic Data Storage and
Polyglot Persistence

T. Vanhove, M. Sebrechts, G. Van Seghbroeck, T. Wauters,
B. Volckaert, and F. De Turck.

Published in International Journal of Network Management, July 2017.
? ? ?

Legacy applications have been built around the concept of storing their data
in a relational data store. However, the new generation of storage solutions in
NoSQL provide better scaling and performance in a big data context. While the
data sets these applications have collected could benefit from these new technolo-
gies, schema and data transformations between data store technologies are needed
in order to get legacy applications into new storage technologies. This usually in-
fers downtime and code changes in the application to support the new data store
technology. This chapter details a transformation approach through a canonical
model. It makes use of the Lambda architecture, as detailed in Chapter 2, to ensure
no application downtime is needed during the transformation process, and after
the transformation the application can continue to query in the original query lan-
guage, thus requiring no application code changes.

38 CHAPTER 3

3.1 Introduction

Relational data stores are an important building brick for legacy applications in
their data storage strategy. However, with growing data sets in the age of big data
analytics, applications’ demands have exceeded the capabilities of classic rela-
tional database management systems (RDBMS). With this new paradigm for large
scale processing, fast access to the data is necessary. Many new systems have been
designed aimed to scale horizontally, providing read/write operations distributed
over many servers [1]. Many of these new systems can be categorized as NoSQL,
which stands for “Not only SQL”. Contrary to the classic relational databases,
they provide easy scaling and performance advantages in specific scenarios, de-
pending on the chosen NoSQL data store [2]. Additionally, they provide a more
flexible or even schema-less data model, allowing rapid changes in the model. The
popularity of these data stores can be measured by the sheer amount of solutions
available. However, this does not mean relational databases don not have a role
to play in the big data story [3]. An example is Google’s F1 hybrid database [4],
a scalable distributed SQL database built on top of their globally distributed and
synchronously replicated database, Spanner [5]. Google uses this database to sup-
port their AdWords business, an ecosystem with 100s of concurrent applications
and 1000s of users sharing the database, over 100TB in size in 2013.

The amount of possible solutions for data storage led to a specialization of
these data stores in order to distinguish themselves from each other, making dif-
ferent data stores more suitable for different types of data or for the different use of
data. Thus, a correct choice in data store is paramount for the optimal performance
of the application. However, as applications tend to evolve with frequent updates
and changing user numbers, the optimal choice of data store may change over the
course of the application’s lifespan. The concept of dynamic storage allows the
stored data to be stored in the optimal format for the application at all times, trans-
forming the format when necessary, i.e., when certain requirements are no longer
met. Along with this, applications often work with different types of data, e.g., e-
commerce platforms. Another interesting concept would therefore be to have the
application use multiple data stores simultaneously, instead of forcing all data into
one solution. This is often referred to as polyglot persistence [3, 6, 7]. In the case
of a network monitoring platform, device information can be stored in a classic
RDBMS, while logging data might be a better fit for a document data store or a
search server such as ElasticSearch.

Introducing dynamic storage and/or polyglot persistence in existing legacy ap-
plications requires a transformation of existing data stores or parts thereof. On the
one hand there is the cost of transforming the data format, but on the other hand
many application changes may be necessary as well to support the new format.
Additionally, with applications having to meet specific service-level agreements

DATA TRANSFORMATION 39

(SLA), this migration and/or transformation has to occur with as limited downtime
as possible, preferably eliminating the downtime entirely in a best case scenario.
This high migration and transformation cost discourages application developers to
change data stores in live applications.

Based on the previous paragraphs, three main obstacles can be defined that
currently hamper dynamic storage and polyglot persistence:

1. Migration of data to the cloud (or between clouds)

2. Transformation of data formats

3. Alteration of application code

This chapter reports on advances that have been made into overcoming these ob-
stacles as well as contributing to a new approach of data transformation in such a
way that the downtime of the applications is eliminated, without additional devel-
opment and implementation effort [8]. The proposed solution aims to tackle the
issues concerning polyglot persistence, i.e., enable applications to access and store
data in different data stores simultaneously, and allow for dynamic changeovers
between supported data stores based on monitoring information or the interven-
tion of the customer or administrator. The proposed solution makes use of a new
open-source Platform-as-a-Service (PaaS) called Tengu [9]. The Tengu platform
provides researchers a time-saving approach for building big data analysis frame-
works through automated installation, configuration and integration of big data
analysis and storage technologies [9, 10].

The remainder of this chapter is structured as follows: Section 3.2 reviews re-
lated work in the different domains that already contribute to the solution of the
previously stated obstacles. The approach and general workflow of the transfor-
mation are discussed in Section 3.3, while Section 3.4 describes the transformation
algorithm. In Section 3.5 the implementation of the algorithm and workflow on the
Tengu platform are detailed. Section 3.6 discusses the evaluation of the implemen-
tation through performance testing. Finally, the chapter is concluded in Section 3.7
and offers several leads towards future work.

3.2 Related Work

Early work on data transformation [11, 12] led into what are now called Extract-
Transform-Load (ETL) processes. These software processes are commonly used
in data warehouses where they extract data from often different data sources, trans-
form the data in the correct format, and load the transformed data into the data
warehouse. Research in ETL has focused on modeling, efficiency, and facilitation
of construction [12]. While the approach and algorithm described in this chapter

40 CHAPTER 3

show several similarities to ETL processes, they are vastly different. ETL facili-
tates data transformation between two data points, data source and data warehouse,
where both data schemas are known. If a change is made in the data schema of
the data source or the data warehouse, changes will need to be made in the ETL
process. The proposed transformation in this chapter works between two data
points where only one data schema is known, the source data store, which is then
transformed into a data schema representation of the new data store.

For each of the ETL subprocesses (extract, transform and load) a research do-
main exists. Extract and load have been heavily researched as part of data mi-
gration and has become even more apparent with the complexity introduced by
clouds and big data [13]. Data migration obstacles have been solved in several
ways using high-performance networks [13], workload-aware strategies [14], and
cost-minimizing approaches [15]. In this research domain, several solutions have
also been proposed for live data migration, i.e., a migration where a live appli-
cation needs to be supported without downtime [16, 17]. Other migration tools
allow data from an RDBMS to be analyzed by big data processing tools, such as
Hadoop. Apache Sqoop provides a framework to transfer data between an RDBMS
and Hadoop [18]. The RDBMS data can thus be used in a big data analysis process
after which the results can be migrated back to the RDBMS.

Another important research domain related to data transformation is that of
schema matching and mapping [19, 20]. It is a process that identifies if two data
schemas are semantically similar and describes the transformations for data to be
represented in the other schema. This research domain is closely related to ETL
as it aids in the creation of the transformation subprocess. This work leverages
the input of two data schema and maps the transformation between them, contrary
to the work in this chapter. Other work in the transformation research focuses
on data transformation, more specifically between SQL and NoSQL data stores.
However, compared to the work in this chapter, it is often limited in the support
of data store technologies (e.g., only supporting column data stores) [21, 22]. The
transformation approach and algorithm in the chapter is aimed towards flexibility
and extensibility, in theory able to support any data store technology.

Finally, direct transformation tools between two specific data store technolo-
gies exist as well, such as Mongify for SQL to MongoDB [23]. They are able to
transform data stores from one specific data technology to another. Compared to
the approach in this chapter these tools are limited as they only provide between
two specific data stores with no easy way of extending the support to other data
store technologies. Moreover, these tools are often built with custom code and
therefore do not scale well when working with legacy or production data stores
in general. Another example of a direct transformation tool is present in Cassan-
dra, using Apache Sqoop [24]. It capitalizes on the similarities between SQL and
CQL to import and export data between Cassandra and a classic RDBMS. While

DATA TRANSFORMATION 41

technically transforming data between two different technologies, this approach
provides data migration functionality. In contrast to the contributions in this chap-
ter, the Cassandra transformation tool also does not provide any optimizations in
its supported technologies to decrease query latencies.

Several of the previously mentioned research topics have already seen applica-
tions in the industry. Table 3.1 gives an overview of how the major cloud providers,
Amazon, Google and Microsoft, overcome the obstacles described in the previous
section: migration of data, transformation of data and if alteration is required in
the application code. The ’X’ marks that no tool is made available by the cloud
provider for a specific obstacle. At first sight all providers supply tools for the
migration of data from and towards their platform, both offline and online. On-
line tools allow for the migration of data over the internet while offline tools are
organized processes of sending physical disks to the providers. Amazon outper-
forms Google and Microsoft as it not only provides tools to overcome migration,
but transformation and alteration as well. However, when taking a closer look at
the schema conversion tool offered by Amazon it is mostly restricted to data stores
with SQL-like querying languages for both transformation and the alteration of
application code 1. The tool can tweak the SQL schema of a source data store and
alter the SQL query in the application code in order to reflect the changes made
to the schema. Compared to the work in this chapter the AWS schema conver-
sion tool is limited as it only supports SQL related data stores. Furthermore, this
transformation still requires changes in the application, although these are exe-
cuted automatically by the tool. While Google and Microsoft have no tools for a
full transformation and alteration, Microsoft Azure does provide a tool for schema
matching/mapping.

Table 3.1: State of the art in the domain of migration, transformation and alteration of ap-
plication code as used at Amazon, Google and Microsoft.

Amazon AWS Google Cloud Microsoft Azure
Migration
(Online)

Database
Migration Service

Storage
Transfer Service

Azure
Migration Wizard

Migration
(Offline)

Amazon Snowball -
AWS Import/Export Disk Third party support Import/Export service

Transformation Schema Conversion Tool X Limited
Alteration Schema Conversion Tool X X

One of the goals of transformation in this chapter is to support polyglot per-
sistence for legacy applications. A lot of research has gone into solutions that
shield the complexity of having to deal with multiple query languages through
abstract data layers, such as Hibernate ORM/OGM [25] and Apache Drill [26].

1https://aws.amazon.com/dms

https://aws.amazon.com/dms

42 CHAPTER 3

These abstract data layers provide access to different datastores without the need
for the application or developer to be aware of the complexities of the datastore.
Most of these provide only limited or no support for the migration of data between
supported datastores, but do allow applications to store data in different parallel
datastores depending on the type of data. Many of these abstract data layers how-
ever require applications to use the abstract data layer’s querying language, which
in some cases is the SQL standard, but in others a custom dialect (e.g., Hibernate
Query Language (HQL)). The abstract data layers effectively shield the data store
complexity of polyglot persistence, but only for new applications. Legacy appli-
cations with big data sets still have no out of the box solution to help them benefit
from these new paradigms.

3.3 Data transformation framework

This section describes the approach and workflow of the data transformation as a
means to achieve dynamic storage and polyglot persistence for applications. First
an architecture for the transformation is proposed that overcomes the aforemen-
tioned obstacles and avoids application downtime. Next, the approach of the ac-
tual transformation is discussed. Finally, the architectural principles for the data
transformation are applied in a practical workflow for the transformation process.

3.3.1 Architecture

A straightforward solution for the transformation would be to take a snapshot of
the source data store (Dsrc), transform the snapshot, and load it into the trans-
formed data store (Dtrans). No queries would be allowed during the transforma-
tion process, effectively shutting down any data store operations by applications.
However, in production environments it is important that any live application sup-
ported by the data store, encounters no or minimal impact on their operations.
Queries submitted by the application after the snapshot of Dsrc was taken, could
still be executed on Dsrc, but in order for Dtrans to contain the latest data and/or
reflect the latest changes to its data and structure, queries that insert new or mod-
ify existing data need to be transformed as well. The transformation process can
therefore be divided in two parts: the transformation of a snapshot of Dsrc and
the transformation of the data inserted or modified by queries arriving after the
snapshot of Dsrc was taken. The specific time when the snapshot of Dsrc is taken,
is indicated by Tsnap. Important to note is that all queries will still be executed on
Dsrc during the following transformation to support any live applications.

Transforming the Dsrc snapshot into Dtrans can be regarded as a batch job.
It has access to the entire data set, i.e., the snapshot of Dsrc, and processes the
transformation of this entire data set. Once this batch job is finished Dtrans still

DATA TRANSFORMATION 43

Figure 3.1: General overview of the described architecture with a batch layer and parallel
streaming layer

requires to be updated with the new and adjusted data that is contained within the
queries that arrived after Tsnap. An obvious choice would be to rerun the batch job
for these queries. However, during this second transformation new queries would
possibly still arrive as well, requiring yet another run of the batch job. Depend-
ing on the arrival rate of the queries, the batch job would run on an ever reducing
set of queries, decreasing the performance of th ese runs because of a static over-
head [27]. In a worst case scenario, it would never reach a consistent state. A better
solution would be to use a streaming analysis component, transforming the queries
in parallel to the batch transformation as soon as they arrive. The additional benefit
of this streaming layer is the continuous query transformation it can provide after
the changeover to Dtrans is complete. Continuous query transformation is a situ-
ation where the application would be able to query Dtrans in the query language
of Dsrc through the live transformation in the streaming layer. This effectively
eliminates any changes to the application.

Such a two-layered hybrid solution is often referred to as the Lambda archi-
tecture, a term coined by Nathan Marz [28]. The concept leverages the computing
power of batch processing with the responsiveness of a real time computation sys-
tem. However, the solution described in this chapter defers from this concept in an
important way. In the original Lambda architecture the batch layer continuously
reanalyzes an increasing big data set, whereas the proposed solution uses the batch
layer for one iteration only, i.e., the transformation of the snapshot of Dsrc. The
Tengu platform provides a generic implementation of the Lambda architecture, in-
dependent from the technologies used for the different layers [10]. The solution
described in this chapter will therefore be deployed on the Tengu platform.

Figure 3.1 shows a general overview of the proposed architecture. The batch
layer uses a snapshot to transform the structure and data present in Dsrc at Tsnap,
while the streaming layer transforms queries that add new data or transform ex-
isting data or structure. The latter transformations are stored in sequence until the
batch layer is finished, after which the queries are executed on the newly created

44 CHAPTER 3

Dtrans. Again, all queries arriving after Tsnap are still being executed on Dsrc as
well, since the latest data needs to be readily available for the application during
the transformation. Once the batch layer is finished and while the stored queries
from the streaming layer are executing on Dtrans, a changeover process is started.
This changeover process stops all queries from being sent to Dsrc and completes
the changeover to Dtrans. Figure 3.2 shows the sequence diagram of all the archi-
tectural components.

Figure 3.2: Sequence diagram detailing the functionality of the architectural components
during the transformation

3.3.2 Transformation approach

Two main approaches can be identified when looking at the actual transformation
of a data store: direct transformation and transformation through a centralized data
model. The first is fairly straightforward as one data store is directly mapped onto
another. Unique properties of a certain data store can be mapped onto specific
traits of the other entirely. However, for each new supported data model, this ap-
proach would require a new implementation for transforming the new data model
into each of the already supported models. For example, when a transformation is
needed between SQL and Cassandra, a direct transformation can be implemented
in both directions, but when support for MongoDB is required, a transformation
also needs to be implemented for both SQL and Cassandra. The amount of effort to
support new data store technologies would only grow exponentially. Using a cen-
tralized data model would solve this issue by first transforming the structure and
data of each data store to the data model, after which it is transformed into the new
data store. Supporting new data stores would then only require a transformation

DATA TRANSFORMATION 45

Figure 3.3: Canonical model for the structure of a data set.

towards and from the centralized data model. While this solution does support the
extensibility of additional data stores being added, it also has several drawbacks.
Firstly, the solution requires an extra transformation for every conversion between
data stores introducing additional overhead. Secondly, while transforming to the
centralized data model, it is not possible to assume anything about the unique char-
acteristics of Dtrans as the destination data store is not yet known at that point.

Within the centralized data model, two possibilities exist: an abstract or a
canonical model. An abstract model can represent the most common character-
istics shared by several data stores, while the canonical model aims to support
every specific characteristic of each supported data store. Although the abstract
data model allows a general representation of the data store’s structure and data,
not all unique characteristics of the data stores can be supported and any related
advantages are also lost. With this in mind, the approach with a canonical model
is preferred. The complexity in developing such a solution is mostly contained
in the first stage. Once the canonical model is in place, adding support for new
data stores is significantly easier. Even if this approach performs worse time-wise,
compared to a direct transformation, the architecture proposed in Section 3.3.1
still allows for the application to operate with minimal impact. That is, during
the transformation, Dsrc is still the main data store, i.e., it still processes all the
queries from the application, while the streaming layer transforms any queries that
update or insert data in the data store.

The canonical model can be represented through a directional graph, clearly
showing the relations between elements of the data model. This graph representa-
tion also allows reasoning on the data model as it mimics the properties of an on-
tology, a model describing a domain in classes with properties and relations [29].
The domain in this case is the data model of Dsrc and the reasoning allows for
insights as the data model of Dtrans is built. Figure 3.3 represents an example of a
canonical model for the structure of a data set. The central element in this canoni-

46 CHAPTER 3

cal model is the Entity. It represents a subject and is built up by different Attributes.
An Entity also keeps information about its identifiers and Attributes through a re-
lation HAS ATTRIBUTE. Another type of relation, EQUALS, indicates that
two attributes contain the same information. Relations between Entities can also be
represented with a specific type, such as ONE TO ONE, MANY TO ONE,
and MANY TO MANY . While the data is not mentioned in Figure 3.3, it can
be regarded as a combination of singular pieces of information, related to attributes
as part of an entity (e.g., a row in an SQL table, or a document in MongoDB).

In a previous publication the canonical model was represented in an EER-like
model [8, 30]. This approach was however later found to be too constricting for
the canonical model. The current representation of the canonical model as a di-
rectional graph allows for extensive reasoning similar to ontologies which was not
possible with the EER-like model. This will aid in the detection of relationships
in the data schema and the transformation from the canonical model to Dtrans.
Moreover, while there is no way to prove the soundness and completeness of this
representation, it is based on the relational algebra and is much easier to extend if
a new type of relationship would be needed.

3.3.3 Workflow

This section summarizes the typical workflow of a transformation by the frame-
work. The transformation process can be described in four steps:

1. Initiate transformation: the transformation is initiated, based on monitor-
ing data or by request. A snapshot is taken from Dsrc and passed on to the
batch layer. Until the handover, the final step, Dsrc acts as the main data
store for the application(s), i.e., all queries are still passed on to this data
store. However, all queries that insert or update data in the data store are
also forwarded to the streaming layer as soon as the snapshot is initiated.
Currently, queries that alter the schema of Dsrc are not allowed during the
transformation process.

2. Transform schema: before the data can be transformed, the batch layer
transforms the structure or schema of Dsrc. The streaming layer is only
collecting queries, but not yet transforming them, as information is needed
about the transformed schema of the data store.

3. Transform data: based on the transformed schema of Dsrc, a new data
store, Dtrans, is set up. Data from the Dsrc is transformed in the batch layer,
while recent queries that were collected in the streaming layer are trans-
formed as well. However, resulting transformed queries from the streaming
layer are only inserted in Dtrans after the transformed data from the batch
layer has been inserted into Dtrans.

DATA TRANSFORMATION 47

4. Handover: as soon as the data from the snapshot is transformed and put into
Dtrans, the handover is initiated. All queries are then redirected to Dtrans

with respect to any queries still in queue at the streaming layer.

At this point, the application still queries in the language of Dsrc which leads to
the following possible scenarios:

• The application maintains the original language and every query is trans-
lated by the streaming layer. The application thus remains dependant on the
proposed architecture with a minimal overhead introduced by the continuous
transformation.

• The application was prepared for this transformation and changes its query-
ing language to that of Dtrans.

• The application communicates to the data store through an abstract data
layer, such as Hibernate ORM/OGM, PlayORM or Apache Drill.

It is clear that in order to eliminate the need for the application to change, the
continuous transformation of the queries is required. In practice, this translates to
the transformation of data retrieval queries, such as SELECT-queries in SQL. Sec-
tion 3.4.3 details the transformation of data retrieval queries in order to eliminate
the need for applications’ redesigns.

3.4 Transformation algorithm

3.4.1 Schema queries

An overview of the transformations to and from MySQL, Cassandra and Mon-
goDB is given below. The transformations of MySQL and Cassandra have been
detailed in a previous publication [8], but since the canonical model has changed
from an EER-like model to graph representation, the implementation has been
completely redone. However, the transformation rules below are still valid and
similar to the ones described in [8], therefore only a summary of the transforma-
tions for MySQL and Cassandra is given.

3.4.1.1 SQL Transformations

The Structured Query Language (SQL) [31] is a language for managing relational
databases based on relational algebra. SQL is a standard of both the American Na-
tional Standards Institute (ANSI) and the International Organization for Standard-
ization (ISO) [31]. The popularity of SQL has spawned many dialects for its dif-
ferent implementations, such as MySQL, Microsoft SQL Server and PostgreSQL.
The transformation detailed below only uses elements from the SQL standard.

48 CHAPTER 3

To canonical The following schema shows how the different data structures
from SQL are mapped onto the canonical data model:

Table 3.2: Transformation schema from SQL to canonical model

SQL Canonical
Table Entity
Column Attribute
Foreign keys Relations

The first two transformations are straightforward: a table is a collection of
columns, similar to an entity with its attributes. In SQL the relationships are de-
fined through foreign keys, primary keys, and table use. Three types of relation-
ships exist: one-to-one, many-to-one and many-to-many. The canonical model
has an explicit representation of these relationships, therefore the objective of the
transformation is detecting the context of the foreign keys as defined by the SQL
standard [31] and translating to the correct relation type.

From canonical Similar to the transformation towards the canonical model, en-
tities are translated into tables with columns based on the attributes. These trans-
formations are the exact opposite of those listed in Table 3.2. The relations are
implemented using the foreign keys according to the SQL standard [31].

3.4.1.2 Cassandra Transformations

Cassandra is a column-oriented data store originally developed at Facebook [32].
While showing many similarities with classic databases, it does not support a full
relational data model. It is aimed at large-scale implementations across hundreds
of physical servers with high-availability services.

To canonical Columns, grouped in column families, are the building blocks of a
Cassandra data store, similar to columns and tables in SQL respectively. This sim-
ilarity is continued in the translation towards the canonical model, where column
families become entities and columns become attributes.

Table 3.3: Transformation schema from Cassandra to canonical model

Cassandra Canonical
Column family Entity
Column Attribute
Index column families Relations

DATA TRANSFORMATION 49

Important to note is that there is no explicit way to infer relations from the Cas-
sandra data model, due to the lack of support for a relational data model. There are
however several indicators that relations are present in the Cassandra data model:
index column families. These column families contain duplicate columns from
two or more column families involved in the relationship and are identified by
a primary key that spans multiple columns, also referred to as a composite key,
containing the primary key data of the related column families. This denormal-
ization eliminates the need for join-like queries (cfr. SQL) optimizing the data
store for read performance. While their presence is a good indicator, composite
keys are also used for other purposes, such as column family sorting. This makes
it significantly difficult to define a generally automated way of detecting relations
in Cassandra. Currently, the automated detection of relations from Cassandra is
not supported unless the following naming is used for the index column family
”< entity x > < entity y > index”.

From canonical Translating into Cassandra from the canonical data model, en-
tities are transformed into column families with columns defined by the attributes.
As mentioned before, the Cassandra data model does not allow for the explicit rep-
resentation of relations, but it is possible to represent them through index column
families with composite keys. Relations in the canonical model trigger the cre-
ation of these additional index column families containing data from the entities
involved when translating into Cassandra. The transformations in Table 3.3 are the
exact reverse.

3.4.1.3 MongoDB Transformations

An additional NoSQL data store was added to the list of supported data stores:
MongoDB is a document-based data store [33]. It stores data as a key paired
with a document containing key-value pairs, key-array pairs, or even nested docu-
ments. MongoDB accepts JSON documents as data for its collections, represented
as binary-encoded JSON (BSON) behind the scenes.

Listing 3.1: Example of a document in JSON

{
"id": 00001,
"device_id": 00023,
"device":
{"device_id": "00023", "platform": "cisco", "name

": "router"},
"network_info":[00001, 00002, 00003, 00004]
}

50 CHAPTER 3

Listing 3.1 shows an example of a JSON document with several different el-
ements. First and foremost, a document has fields linked to values. A field can
have a single value with familiar data types, such as integers and strings, but also
contain an array of values (e.g., ”network info” in Listing 3.1) or even embedded
documents (e.g., ”device” in Listing 3.1). MongoDB is praised for its flexibility
as collections do not impose any data model on the stored JSON documents. This
lack of data model has some significant effects on the complexity of the transfor-
mation.

To canonical In SQL and Cassandra a dump of the data store includes the schema
or model, i.e., every tuple (or row) of data is defined by a certain amount of at-
tributes (or columns). This means the structure of the data is known without even
looking at the data itself. MongoDB has a flexible data schema in its collections,
i.e., collections do not enforce document structure. It is therefore impossible to
know all the attributes of the documents without looking at the documents them-
selves. In order to derive the canonical model from a MongoDB data store all data
in the collections needs to be checked. For each document in each collection a list
of all the keys needs to be made that represent the attributes of the entity in the
canonical model. It is clear that checking only one document for each collection
does not suffice as documents may also include different keys within the same col-
lection. It is to be expected that iterating over the entire data set in MongoDB as to
acquire the canonical model will have negative impact on the transformation time
compared to SQL or CQL. The schema in Table 3.4 details the transformation to
the canonical model.

Table 3.4: Transformation schema from MongoDB to canonical model

MongoDB Canonical
Collection Entity
Document field Attribute

Embedded Document One-to-one relation
Many-to-one relation

Document referral array One-to-many relation
Embedded document array Many-to-many relation

The flexible schema also limits the possibility of accurately defining relations
between documents and/or entities. References to other documents can be made
through document referral, but this is not explicitly mentioned in the document as
is the case with foreign keys in SQL. Therefore there is no way to automatically
detect a relation based on a singular document reference in a field. Another way of
defining relations between collections however is through embedded documents.
If a field in a document contains an embedded document this can be indicative of a

DATA TRANSFORMATION 51

one-to-one or a many-to-one relationship. Additionally, arrays in documents con-
taining multiple references to other documents or containing embedded documents
can indicate one-to-many or many-to-many relations. Note that both many-to-one
as one-to-many relations are mentioned here. The flexibility of the data model al-
lows us to represent this relationship in two ways: denormalized with redundant
data stored for low read query latency, or through the array data structure for hier-
archical data sets. It also becomes clear that a many-to-many relation actually is
two one-to-many relations between two entities directly. Thanks to the array data
structure in MongoDB, no additional entity is needed to represent the relationship
as is the case in SQL.

From canonical As for the transformation towards MongoDB, the flexible data
schema simplifies the process. Documents contain keys based on a subset of the
attributes defined in the canonical model and are added to their collection based
on the entity. If a collection does not yet exist, one is made automatically in Mon-
goDB. No schema transformation is therefore needed as all information is derived
from the data. The data is transformed in JSON documents and pushed in Mon-
goDB.

Table 3.5: Transformation schema from canonical model to MongoDB

Canonical MongoDB
Entity Collection
Attribute Document field
One-to-one relation Document integration
One-to-one relation Document referral
Many-to-one relation Embedded document
One-to-many relation Document referral array
Many-to-many relation Embedded document array

As mentioned before, relations between documents and collections can not
be explicitly expressed in MongoDB. Similar to Cassandra, a denormalization of
the canonical model can be used to indicate these relations, or similar to SQL,
references can indicate a relation based on an id. Depending on the applica-
tion requirements a choice can be made to either normalize or denormalize the
MongoDB data store. For example, in a hierarchical data set it would be wise to
normalize the data store and work with references, but, if read performance is a
non-functional requirement, embedding sub-document information in documents
yields less queries. The schema in Table 3.5 details the transformation from the
canonical model.

It is important to note that previous subsections describe the transformation to
and from the canonical model for three specific technologies, but that the algorithm

52 CHAPTER 3

is inherently technology-independent. If a new technology were to be supported,
a transformation similar to the ones above should be implemented. Once this is
done, transformations to and from each already supported technology are possible.

3.4.2 Data insertion queries

The previous section discusses the transformation of the schema of a data store,
but the data in the snapshot of Dsrc and new data received after Tsnap needs to
be transformed as well based on the created canonical model. In order to maintain
the flexibility and extensibility of the implementation, data insertion queries are
transformed to an intermediate state called tuples. These tuples contain all the
key-value pairs contained within the insertion queries. From these key-value pairs
queries are made up for Dtrans. Below is an example for an INSERT query from
SQL (Dsrc) in Listing 3.2 transformed into MongoDB (Dtrans) in Listing 3.3:

Listing 3.2: Example of an INSERT query in SQL

INSERT INTO l o g (l i d , r e g i s t r a t i o n t i m e , e v e n t c o u n t , d e v i c e i d)
VALUES (” 2583301 ” , ” 2 0 1 0 / 1 0 / 2 8 2 0 : 2 2 : 1 0 ” , ” 1 ” , 3 0 6 0 1) ;

Listing 3.3: Example of an INSERT query in MongoDB

db.log.insert({l_id: "2583301", registrationtime:
"2010/10/28 20:22:10", eventcount: "1" ,
device_id: 30601})

The data that is now injected into MongoDB may not yet complete. The col-
umn ”device id” in SQL, and corresponding document field in MongoDB, has
been defined as a foreign key as part of a many-to-one relationship. On the one
hand, if the goal is to create a hierarchical data store, a document reference would
be sufficient. On the other hand, if query performance is the goal, a more thorough
solution would be to store the ”device” information as an embedded document.
Listing 3.4 shows the query that updates the document in the ”log” collection with
an embedded document.

Listing 3.4: Example of embedding a document in MongoDB

db.log.update({device_id: 30601}, { $set: {device: {
id: 30601,platform: "Cisco",location: "Brisbane
",customer: "Thomas"}}})

As the aim of this chapter is to decrease query latency for legacy applications
and data stores, the implementation of the algorithm uses the embedding of docu-
ments instead of document referral.

DATA TRANSFORMATION 53

3.4.3 Data retrieval queries

As mentioned in Section 3.3.3, once the handover to Dtrans is complete the ap-
plication is still querying in the language of Dsrc. There are several solutions to
resolve this, but this chapter’s premise is to eliminate application redesign. This
means continuous transformation needs to be implemented, i.e., the continuous
translations of queries in the query language of Dsrc into queries of Dtrans. The
data insertion queries have been handled in Section 3.4.2 and in this section the
data retrieval queries will be detailed. Listing 3.5 shows a standard SELECT query
in SQL.

Listing 3.5: Example of a SELECT query in SQL

SELECT l o g . l i d , d e v i c e . l o c a t i o n FROM l o g INNER JOIN d e v i c e
ON l o g . d e v i c e i d = d e v i c e . i d

Similar to all queries, a transformation is made towards a generic representa-
tion. From this generic representation a data retrieval query is made for Dtrans

(e.g., MongoDB). The complexity in these selections comes from the joins of dif-
ferent entities, but Section 3.4.2 detailed that embedded documents were used for
the representation of relations. The corresponding MongoDB query is written in
Listing 3.6.

Listing 3.6: Example of a SELECT query in MongoDB

db.log.find({ },{ l_id: 1, device.location: 1 })

Since the document is embedded, it is clear that less calculations are needed to
reach the same results. Section 3.6 shows the impact of the simplified querying.

3.5 Implementation details

3.5.1 Technology choice and motivation

As mentioned in Section 3.3.1, an implementation of the Lambda architecture is
used as part of the Tengu platform [10]. As this implementation is technology-
independent concerning the different layers, a decision needs to be made as to
which technologies are used.

The technology used for the batch layer needs to be able to transform a data
store from a legacy application efficiently. The MapReduce model, introduced by
Google [34], is one of the best known programming models for Big Data analysis
with Hadoop as the implemented open-source framework. In the previous imple-
mentation of the transformation algorithm MapReduce on Hadoop was used [8].
However, Spark is considered to be the successor of Hadoop MapReduce with
execution times 10 up to 100 times faster through in-memory computing [35].

54 CHAPTER 3

Figure 3.4: Instantiation of the framework with all the implemented technologies.

For the streaming layer, many of the previously mentioned technologies for
the batch layer have (near) real-time streaming variants. Although many support
streaming, for as many this has never been the sole focus. Storm on the other hand,
is an analysis framework entirely built around the idea of (near) real-time analysis
of streams. It was originally developed at Twitter R© and is now part of the Apache
project. This aside, implementing Storm as part of this proof-of-concept clearly
shows both layers can be entirely different and independent technologies. Both
Spark and Storm use Java, which means code is reusable across both layers.

An overview of all the integrated technologies is shown in Figure 3.4. Aside
from the aforementioned analysis technologies, several supporting technologies
are mentioned as well. The LimeDS framework allows for wiring different data-
driven services together in an easy way [36]. In this implementation it is responsi-
ble for directing queries to Dsrc and the streaming layer. It also manages the syn-
chronization between the batch and streaming layers. A second supporting tech-
nology integrated in the implementation is Apache Kafka [37]. Kafka is a publish-
subscribe messaging system implemented as a distributed commit log. Storm and
Kafka naturally work well together as both have strong guarantees on message
processing. Finally, the canonical model is stored in a graph data store. In this
particular implementation Neo4j was chosen for its maturity, extensive documen-
tation, solid performance, and supporting community [38].

3.5.2 Transformation algorithm

The pseudo code in in Algorithm 3.1 can be clearly divided in two parts: the
schema transformation and the data transformation. During the schema transfor-
mation, schema queries from the Dsrc snapshot are translated into the canoni-
cal model and stored in Neo4j. From this representation, the schema is built for
Dtrans. Once the Dtrans schema is ready, the transformation of the data in the
Dsrc snapshot is started. All data queries are first translated to a generic tuple rep-
resentation based on the canonical model, and then matched on the Dtrans schema.

DATA TRANSFORMATION 55

read snapshot Dsrc

for each schema query in the snapshot do
transform to canonical model

end for
store schema in canonical model
detect relations in canonical model
for each entity in canonical model do

transform to Dtrans

end for
load schema in Dtrans

for each data query in the snapshot do
transform to tuple in canonical model representation

end for
for each tuple do

transform to Dtrans

end for
load data in Dtrans

Algorithm 3.1: Pseudo code describing the schema and data transformation in the batch
layer

The additional step of translating to a generic representation is necessary for the
data as well as to maintain code independence between data store technologies.

The code also contains several for-loops, but these loops are distributed and ex-
ecuted across the entire Spark cluster in parallel. This is especially important for
the transformation of the data contained within the snapshot, as the schema infor-
mation in a snapshot is negligibly small in most cases compared to the data. Each
slave in the cluster gets a small subset of the Dsrc snapshot and transforms this
subset towards the canonical model, and on from the canonical model to Dtrans.

Parsing the query language of Dsrc in the transformation to the canonical
model is done through ANTLR [39]. ANTLR generates a parser/lexer in Java,
based on a grammar file containing a description of the structure of the language
to be parsed. In this chapter grammar files were used for MySQL and the Cas-
sandra Querying Language (CQL). There is no grammar for MongoDB as it uses
JSON to store the documents in its collections and no data model is forced upon
the documents.

56 CHAPTER 3

Figure 3.5: Partial canonical model of the network logging data store.

3.6 Evaluation

3.6.1 Experimental setup

The implemented instantiation of the architecture was deployed on the Virtual
Wall. The iLab.t Virtual Wall facility 2 is a generic test environment for advanced
network, distributed software and service evaluation, and supports scalability re-
search. The Virtual Wall contains 300 nodes with varying hardware specifications.
The server specifications in these experiments were as follows: Dual CPU (Quad
core) with 12GB of RAM and 1x225GB disk. Four physical nodes were used for
a dedicated 3-worker Spark cluster, two nodes for the Apache Storm cluster, and
single-node instances for MySQL, MongoDB, Neo4j and a Cassandra data store.

3.6.2 Use Case description

This use case shows the application of the transformation algorithm on a data
store containing network logging information. Currently, the network monitor-
ing platform uses a relational data store in MySQL to save information, but the
query performance is no longer sufficient for real-time querying and feedback as
responses take several minutes. The aim is to lower query latency by transforming
the MySQL relational datastore (Dsrc) into one of the supported data store tech-
nologies, whichever yields better results. As a reference Figure 3.5 shows a partial
canonical model after the transformation from MySQL. Three entities can be iden-
tified: device, network info and log. Device contains information about a certain
network device, such as a router, while network info stores information about the
logged package, containing amongst others a source/destination ip and port, and a

2http://ilabt.iminds.be/

http://ilabt.iminds.be/

DATA TRANSFORMATION 57

Figure 3.6: Graph showing the transformation time of an SQL snapshot data store to Mon-
goDB for different Spark configuration parameters. They express the amount
of parallel executors that are used and how much memory and how many cores
are available to each executor.

protocol. An example of the log can be seen in Listing 3.1. The sizes of the data
sets used for the evaluation contain 100.000, 5 million, 10 million and 15 million
logs.

3.6.3 Results

Spark resource tuning Spark has a large number of configuration parameters
that influence resource utilization with drastic results on execution performance.
Figure 3.6 shows the execution times for the transformation of the SQL snapshot
described in Section 3.6.2 with varying data set sizes expressed as a number of
logs and for different configuration parameters. The impact of the configuration
parameters can be clearly seen in the graph. For example, a snapshot containing
5 million logs is transformed in around 2 hours (129 minutes) with 2 executors,
each having access to 6 GB of memory and 8 cores, while the same snapshot only
requires around 27 minutes of execution time with 20 executors with 1 GB and 8
cores. Both executions do however use the maximum memory resources available
in the entire cluster, taking into account the standard limitations defined by the
Spark cluster, but the distribution of the resources also factors in. Spark thrives on
in-memory computing, but for the computation of the transformation algorithm it
clearly does not require 6 GB of memory per executor. One GB is enough for 20
parallel executors to outperform the previous configuration given the size of the
snapshot. Allocating too much memory to an executor often results in excessive
garbage collection delays which can be clearly seen in these results. Moreover,
when working with a larger number of executors the standard deviation remains
smaller because delays in a specific executor can be easily caught by the other

58 CHAPTER 3

Figure 3.7: Graph showing the transformation time of an SQL snapshot data store to Mon-
goDB, Cassandra (CQL) and SQL with 20 Spark executors each with 1GB of
memory and 8 cores.

remaining executors.

Additionally, the amount of cores also influences the parallelism in Spark.
When using HDFS with Spark it is recommended to not use more than 5 cores
per executor as HDFS does not deal well with excessive amounts of concurrent
threads [40]. Limiting the amount of cores per executor to 5 keeps the execution
time at an average of around 27 minutes. So even though the parallelism is de-
creased, the execution time remains the same. However when a larger number of
logs is considered, e.g., 15 million, the 8 cores execution outperforms the 5 cores
configuration. For this data set size it seems HDFS is still able to scale, but with
growing data sets it is important to take account of this parameter.

Decreasing the number of cores even further to only 1 core per executor, in-
creases the transformation time back to around 1 hour (64 minutes) for 5 million
logs as only a limited amount of tasks are allowed to execute in parallel. Fig-
ure 3.6 clearly shows the impact of Spark resource tuning on the transformation
time. The influence of these parameters on memory management in Spark has also
been extensively researched in previous publications [40, 41]. In general, increas-
ing memory size in a Spark cluster will lower the execution time linearly until the
entire data set is able to be loaded in memory. Increasing the memory size further
will introduce garbage collection delays as seen in Figure 3.6. For the algorithm in
this chapter with the described use case a solid configuration was found for 20 ex-
ecutors each with 1 GB of memory and 8 cores. However, when scaling to larger
data stores these parameters need to be optimized continuously in order to achieve
the best performance.

DATA TRANSFORMATION 59

Figure 3.8: Query latency for JOIN-like query in different data stores: SQL, Cassandra
(CQL) and MongoDB.

Snapshot transformation performance Figure 3.7 shows the execution times
for the transformation of the SQL snapshot described in Section 3.6.2 to Mon-
goDB, Cassandra (CQL) and SQL with varying data set sizes expressed as a num-
ber of logs. The transformation towards SQL is used to check the correctness of
the algorithm as we expect to get an exact copy of the snapshot. All execution
times show a linear trend with the increasing data set size, but the execution time
of a transformation towards to MongoDB is significantly smaller compared to SQL
and CQL. As described in Section 3.4.1.3, MongoDB is praised for its flexibility
because collections do not impose any data model on the stored documents. While
in a generic transformation, information from the canonical model is used to con-
struct a data model for Dtrans and to make sure data adheres to this data model,
this is less so for MongoDB as no strict data model is required. The canonical
model is stored in Neo4j, so in order to retrieve this information a connection to
this data store is needed. MongoDB limits the number of connections that are re-
quired during its transformation from the canonical model, therefore lowering the
total execution time. Moreover, the amount of queries generated while transform-
ing to CQL is higher compared to MongoDB and SQL because of the denormal-
ization of data stored in the index column families representing the many-to-one
relations as mentioned in Section 3.4.1.

Query latency performance The ultimate goal of the transformation is to re-
duce query latency by transforming schema and data to a different data store tech-
nology. Figure 3.8 shows the average query latency for a JOIN query in SQL
requesting all the logs joined with the information from the devices. This is a very
expensive operation in SQL causing an exponential growth of the execution time
with growing data sets. The JOIN query in SQL can however be translated into
a selection query in MongoDB, still returning the same data, as all data from the

60 CHAPTER 3

Table 3.6: Average execution time of different Storm bolts for the transformation of SQL
queries, through the SQLMapBolt, into MongoDB, Cassandra (CQL) and SQL.

SQLMapBolt MongoReduceBolt CQLReduceBolt SQLReduceBolt
Time 37.568 ms 14.458 ms 80.133 ms 79.112 ms

many-to-one relation is embedded in the documents. The denormalization that was
introduced by the transformation pays off in query latency as only one entity of a
data store technology needs to be consulted to retrieve the same data. Similarly,
in Cassandra the same data can be retrieved by querying the index column family
that represents the many-to-one relationship. However, not using a partition key to
retrieve data from a column family is a heavy operation in Cassandra, eliminating
it from consideration for this use case.

Continuous transformation performance After the transformation of the snap-
shot and the handover, the application still queries in the language of Dsrc. Con-
sidering the use case, while there is a significant time gain transforming the data
store to MongoDB or Cassandra, the overhead of transforming queries from the
application needs to be limited in order to benefit from this transformation. The
evaluation of the continuous transformation was performed on a two node Apache
Storm cluster with standard configuration where each bolt was assigned a single
worker in the cluster. Table 3.6 shows the average transformation time of a single
query in every step of the transformation. For example, in a transformation from
SQL to MongoDB, a query would pass through the SQLMapBolt, mapping the
query onto the canonical model, after which it will be reduced towards MongoDB
by the MongoReduceBolt. This yields a total overhead of 52.026 ms (37 ms and
14 ms respectively). Considering the query performance from Figure 3.8, it is clear
the results of the transformation approach in this chapter benefits the application’s
query latency, increasing the general performance.

3.6.4 Discussion

The results in Section 3.6.3 clearly show the ability of the proposed algorithm
to transform schema and data of a data store into a technology that yields better
query latency performance as well as support for continuous transformation of
application queries within a reasonable time frame. While several limitations to the
current system exist, this section discusses those limitations and provides possible
solutions on how to mitigate them.

The approach of the proposed algorithm in this chapter, detailed in Section 3.3.2,
is theoretically slower than the direct approach as it requires one additional trans-
formation to or from the canonical model. Direct transformations are however less

DATA TRANSFORMATION 61

extensible towards future technologies as support for a new data store technology
requires an entirely new implementation to transform to and from each existing
technology. The Schema Conversion Tool provided by Amazon, discussed in Sec-
tion 3.2, can be regarded as a bundle of direct transformations between dialects of
SQL. This tool may achieve a faster performance compared to the approach de-
scribed in this chapter, but contrary to the proposed approached only SQL dialects
are currently supported and extending the tool would require an entirely new code
base. Moreover, the additional latency introduced by the described approach in
this chapter is alleviated by the use of the Spark platform. Spark allows for in-
memory computing yielding faster execution times but its clustered architecture
also allows for scaling towards specific time constraints with minimal effort [41].

A second limitation is that relations between entities in the canonical model
are determined by the explicit and implicit use of certain data structures in the data
schema (e.g., foreign keys in SQL, composite keys in Cassandra, arrays in Mon-
goDB). However, it is conceivable that the implicit use of these data structures
may not always be found, especially in NoSQL data stores such as Cassandra and
MongoDB. Given that specific situation the algorithm would currently only detect
the entities for its canonical model with no relations between them. While still
being able to transform these entities to another data store technology, it might
not yield a better query latency performance. An interesting extension of the al-
gorithm would therefore be an automated detection of relations in the canonical
model based on the read queries effectively optimizing the data schema based on
its use. For example, SQL retrieval queries with JOIN operations indicate a rela-
tionship even if foreign keys were not defined. For NoSQL stores this needs to be
derived from the sequence of queries that are often requested in succession. These
chains of queries indicate the potential existence of a relationship between the en-
tities. The extension of the algorithm to automatically detect relationships in the
canonical model based on querying behavior is deferred to future work.

Finally, the current algorithm is not equipped to deal with queries that alter
the data schema of Dsrc while the transformation process is in progress. While
creating the data schema of Dtrans any changes to the schema of Dsrc would
potentially create inconsistencies while adding the data to Dtrans. It was therefore
decided to deny any queries that alter the schema until the handover is completed.
The continuous transformation could then deal with the schema altering queries
which will reflect in both Dtrans as in the canonical model.

3.7 Conclusion and future work

This chapter introduces an approach and algorithm for schema and data trans-
formation as a means to support dynamic data storage and polyglot persistence.
The approach uses an intermediate canonical model to ensure the flexibility and

62 CHAPTER 3

extensibility of the implementation towards future supported technologies. In or-
der to support a new data store technology, one only needs to implement a trans-
formation towards and from the canonical model. In previous work, support for
SQL and CQL were already discussed, but the implementation has been revised
as part of the newly changed canonical model. The chapter also introduces sup-
port for MongoDB, a NoSQL document data store. The transformation algorithm
is implemented as a Lambda architecture with a batch and speed layer in order
to support live applications without downtime and the need for code changes. A
network monitoring platform is considered as a use case and shows a significant
performance increase after the transformations to both CQL and MongoDB. The
overhead introduced for the continuous transformation is limited to a maximum of
around 100 ms. The time to transform a snapshot heavily depends on Dsrc and the
chosen Dtrans and is influenced by the strictness of the data models.

For future work, now a transformation algorithm has been defined and imple-
mented, an interesting application would be to fully support dynamic data storage
with regard to supported implementations, i.e., an automated system that stores
data in the most optimal format at any given time. Additionally, while data rela-
tions are now inferred from defined uses of structures in a data store technology
(e.g., foreign keys, composite keys, arrays), the best way to learn the relations in
a data set is through its use. Future work will also focus on detecting relations in
the canonical model based on reading queries. These changes will be reflected in
the transformed data store with the ultimate goal of increasing query performance
even further.

Acknowledgment
The work in this chapter has partly been funded by the iMinds SEQUOIA research
project.

DATA TRANSFORMATION 63

References

[1] R. Cattell. Scalable SQL and NoSQL Data Stores. SIGMOD Rec.,
39(4):12–27, May 2011. Available from: http://doi.acm.org/10.1145/
1978915.1978919, doi:10.1145/1978915.1978919.

[2] Y. Li and S. Manoharan. A performance comparison of SQL and
NoSQL databases. In Communications, Computers and Signal Process-
ing (PACRIM), 2013 IEEE Pacific Rim Conference on, pages 15–19. IEEE,
2013.

[3] C. Nance, T. Losser, R. Iype, and G. Harmon. NoSQL vs RDBMS: Why there
is room for both. In SAIS 2013 Proceedings, 2013.

[4] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins,
M. Oancea, K. Littlefield, D. Menestrina, S. Ellner, J. Cieslewicz, I. Rae,
T. Stancescu, and H. Apte. F1: A Distributed SQL Database That Scales.
Proc. VLDB Endow., 6(11):1068–1079, August 2013. Available from: http:
//dx.doi.org/10.14778/2536222.2536232, doi:10.14778/2536222.2536232.

[5] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghe-
mawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Ko-
gan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao,
L. Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang, and D. Wood-
ford. Spanner: Google&Rsquo;s Globally Distributed Database. ACM
Trans. Comput. Syst., 31(3):8:1–8:22, August 2013. Available from: http:
//doi.acm.org/10.1145/2491245, doi:10.1145/2491245.

[6] P. J. Sadalage and M. Fowler. NoSQL Distilled: A Brief Guide to the Emerg-
ing World of Polyglot Persistence. Addison-Wesley Professional, 1 edition,
August 2012.

[7] R. Sellami and B. Defude. Using Multiple Data Stores in the Cloud: Chal-
lenges and Solutions. In A. Hameurlain, W. Rahayu, and D. Taniar, edi-
tors, Data Management in Cloud, Grid and P2P Systems, volume 8059 of
Lecture Notes in Computer Science, pages 87–98. Springer Berlin Heidel-
berg, 2013. Available from: http://dx.doi.org/10.1007/978-3-642-40053-
7 8, doi:10.1007/978-3-642-40053-7 8.

[8] T. Vanhove, G. Van Seghbroeck, T. Wauters, and F. De Turck. Live datastore
transformation for optimizing big data applications in cloud environments. In
Integrated Network Management (IM), 2015 IFIP/IEEE International Sym-
posium on, pages 1–8. IEEE, 2015.

http://doi.acm.org/10.1145/1978915.1978919
http://doi.acm.org/10.1145/1978915.1978919
http://dx.doi.org/10.14778/2536222.2536232
http://dx.doi.org/10.14778/2536222.2536232
http://doi.acm.org/10.1145/2491245
http://doi.acm.org/10.1145/2491245
http://dx.doi.org/10.1007/978-3-642-40053-7_8
http://dx.doi.org/10.1007/978-3-642-40053-7_8

64 CHAPTER 3

[9] T. Vanhove, G. Van Seghbroeck, T. Wauters, F. De Turck, B. Vermeulen, and
P. Demeester. Tengu: An Experimentation Platform for Big Data Applica-
tions. In ICDCS Workshops, pages 42–47. IEEE, 2015.

[10] T. Vanhove, G. Van Seghbroeck, T. Wauters, B. Volckaert, and F. De Turck.
Managing the Synchronization in the Lambda Architecture for Optimized Big
Data Analysis. IEICE Transactions, 99-B(2):297–306, 2016.

[11] N. C. Shu, B. C. Housel, R. W. Taylor, S. P. Ghosh, and V. Y. Lum. EX-
PRESS: a data extraction, processing, and restructuring system. ACM Trans-
actions on Database Systems (TODS), 2(2):134–174, 1977.

[12] P. Vassiliadis. A survey of Extract–transform–Load technology. International
Journal of Data Warehousing and Mining (IJDWM), 5(3):1–27, 2009.

[13] B. W. Settlemyer, J. D. Dobson, S. W. Hodson, J. A. Kuehn, S. W.
Poole, and T. M. Ruwart. A Technique for Moving Large Data Sets over
High-performance Long Distance Networks. In Proceedings of the 2011
IEEE 27th Symposium on Mass Storage Systems and Technologies, MSST
’11, pages 1–6, Washington, DC, USA, 2011. IEEE Computer Society.
doi:10.1109/MSST.2011.5937236.

[14] J. Zheng, T. S. E. Ng, and K. Sripanidkulchai. Workload-aware
Live Storage Migration for Clouds. SIGPLAN Not., 46(7):133–144,
March 2011. Available from: http://doi.acm.org/10.1145/2007477.1952700,
doi:10.1145/2007477.1952700.

[15] L. Zhang, C. Wu, Z. Li, C. Guo, M. Chen, and F. Lau. Moving Big
Data to The Cloud: An Online Cost-Minimizing Approach. Selected Areas
in Communications, IEEE Journal on, 31(12):2710–2721, December 2013.
doi:10.1109/JSAC.2013.131211.

[16] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi. Albatross: Lightweight
Elasticity in Shared Storage Databases for the Cloud Using Live Data Mi-
gration. Proc. VLDB Endow., 4(8):494–505, May 2011. Available from:
http://dl.acm.org/citation.cfm?id=2002974.2002977.

[17] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi. Zephyr: Live Mi-
gration in Shared Nothing Databases for Elastic Cloud Platforms. In Pro-
ceedings of the 2011 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’11, pages 301–312, New York, NY, USA,
2011. ACM. Available from: http://doi.acm.org/10.1145/1989323.1989356,
doi:10.1145/1989323.1989356.

[18] K. Ting and J. J. Cecho. Apache Sqoop Cookbook. ” O’Reilly Media, Inc.”,
2013.

http://doi.acm.org/10.1145/2007477.1952700
http://dl.acm.org/citation.cfm?id=2002974.2002977
http://doi.acm.org/10.1145/1989323.1989356

DATA TRANSFORMATION 65

[19] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema
matching. the VLDB Journal, 10(4):334–350, 2001.

[20] Z. Bellahsene, A. Bonifati, E. Rahm, et al. Schema matching and mapping,
volume 57. Springer, 2011.

[21] J. Schildgen, T. Lottermann, and S. Dessloch. Cross-system NoSQL Data
Transformations with NotaQL. In Proceedings of the 3rd ACM SIG-
MOD Workshop on Algorithms and Systems for MapReduce and Be-
yond, BeyondMR ’16, pages 5:1–5:10, New York, NY, USA, 2016.
ACM. Available from: http://doi.acm.org/10.1145/2926534.2926535,
doi:10.1145/2926534.2926535.

[22] Y.-T. Liao, J. Zhou, C.-H. Lu, S.-C. Chen, C.-H. Hsu, W. Chen, M.-
F. Jiang, and Y.-C. Chung. Data adapter for querying and transfor-
mation between SQL and NoSQL database. Future Generation Com-
puter Systems, 65:111 – 121, 2016. Special Issue on Big Data in the
Cloud. Available from: http://www.sciencedirect.com/science/article/pii/
S0167739X16300085, doi:http://dx.doi.org/10.1016/j.future.2016.02.002.

[23] Mongify. http://mongify.com/ (Last Visited January 9, 2018).

[24] Apache Sqoop. http://sqoop.apache.org/ (Last Visited January 9, 2018).

[25] A. Leonard. Hibernate OGM at Work. In Pro Hibernate and MongoDB,
pages 51–120. Springer, 2013.

[26] M. Hausenblas and J. Nadeau. Apache drill: interactive ad-hoc analysis at
scale. Big Data, 1(2):100–104, 2013.

[27] N. Marz. The Mathematics behind Hadoop-based systems, December
2009. http://nathanmarz.com/blog/the-mathematics-behind-hadoop-based-
systems.html (Last Visited January 9, 2018).

[28] N. Marz and J. Warren. Big Data: Principles and best practices of scalable
realtime data systems. Manning Publications Co., Greenwich, CT, USA,
2015.

[29] T. R. Gruber. A translation approach to portable ontology specifications.
Knowledge acquisition, 5(2):199–220, 1993.

[30] P. P.-S. Chen. The Entity-relationship Model - Toward a Unified View of
Data. ACM Trans. Database Syst., 1(1):9–36, March 1976. Available from:
http://doi.acm.org/10.1145/320434.320440, doi:10.1145/320434.320440.

http://doi.acm.org/10.1145/2926534.2926535
http://www.sciencedirect.com/science/article/pii/S0167739X16300085
http://www.sciencedirect.com/science/article/pii/S0167739X16300085
http://mongify.com/
http://sqoop.apache.org/
http://nathanmarz.com/blog/the-mathematics-behind-hadoop-based-systems.html
http://nathanmarz.com/blog/the-mathematics-behind-hadoop-based-systems.html
http://doi.acm.org/10.1145/320434.320440

66 CHAPTER 3

[31] ISO/IEC 9075-1:2011 Information technology – Database languages –
SQL – Part 1: Framework (SQL/Framework). Technical report, ISO/IEC,
2011. http://www.iso.org/iso/iso catalogue/catalogue tc/catalogue detail.
htm?csnumber=53681.

[32] A. Lakshman and P. Malik. Cassandra: a decentralized structured storage
system. ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[33] K. Chodorow. MongoDB: the definitive guide. ” O’Reilly Media, Inc.”, 2013.

[34] J. Dean and S. Ghemawat. MapReduce: Simplified Data Process-
ing on Large Clusters. Commun. ACM, 51(1):107–113, January
2008. Available from: http://doi.acm.org/10.1145/1327452.1327492,
doi:10.1145/1327452.1327492.

[35] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:
Cluster Computing with Working Sets. In Proceedings of the 2nd USENIX
Conference on Hot Topics in Cloud Computing, HotCloud’10, pages 10–
10, Berkeley, CA, USA, 2010. USENIX Association. Available from: http:
//dl.acm.org/citation.cfm?id=1863103.1863113.

[36] LimeDS. https://hub.docker.com/r/ibcndevs/limeds/ (Last Visited January 9,
2018).

[37] J. Kreps, N. Narkhede, J. Rao, et al. Kafka: A distributed messaging system
for log processing. NetDB, 2011.

[38] J. Webber. A programmatic introduction to Neo4j. In Proceedings of the 3rd
annual conference on Systems, programming, and applications: software for
humanity, pages 217–218. ACM, 2012.

[39] T. Parr and R. Quong. ANTLR: A Predicated-LL(k) Parser Generator. Soft-
ware - Practice and Experience, 25(7):789–810, 1995.

[40] S. Ryza. How-to: Tune Your Apache Spark Jobs (Part 2), March
2015. http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-
spark-jobs-part-2/ (Last Visited January 9, 2018).

[41] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing. In Proceedings of the
9th USENIX conference on Networked Systems Design and Implementation,
pages 2–2. USENIX Association, 2012.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=53681
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=53681
http://doi.acm.org/10.1145/1327452.1327492
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113
https://hub.docker.com/r/ibcndevs/limeds/
http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/
http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/

4
Sequential Pattern Mining for Data

Storage Optimization in Polyglot
Persistent Environments

T. Vanhove, G. Van Seghbroeck, T. Wauters, B. Volckaert, and
F. De Turck.

Submitted to the Journal of Network and Computer Applications,
September 2017.

? ? ?

The transformation algorithm from Chapter 3 proposes an approach for data
stores from legacy applications to be transformed into modern data store tech-
nologies without any downtime or changes required for the application itself. This
chapter builds on that idea by introducing the concept of polyglot persistence into
the canonical model of the transformation approach. In this way the canonical
model acts as an abstraction of the complex polyglot persistent environment. How-
ever, abstractions always introduce an overhead cost which needs to be mitigated.
In order to minimize the impact of this overhead, this chapter details an approach
that uses the transformation and canonical model to optimize the storage environ-
ment. By detecting relations between data, based on queries sent by an applica-
tion, the canonical model is optimized specifically to eliminate complex queries
across different storage entities. The described approach is limited to basic re-
trieval queries, such as ‘select-from-(join)-where’-queries in MySQL and equiva-

68 CHAPTER 4

Table 4.1: Query latency for a JOIN query in MySQL with 5, 000, 000 records and a sim-
ilar query in Cassandra and MongoDB where the relation is implemented with
duplicated data [3].

MySQL Cassandra MongoDB
Average query latency (s) 26.109 126.458 4.734

lents in CQL and MongoDB. Experiments with a MySQL host language show that
the canonical model can be optimized in real-time.

4.1 Introduction

The introduction of the Not-only SQL (NoSQL) domain caused a paradigm shift
in the data storage domain [1]. NoSQL is an encompassing term for all storage
technologies that differ from the classic relational database management systems
(RDBMS) in such a way that they no longer require data to adhere to a strict data
model at all times. Additionally, they often relax the traditional ACID (Atomic-
ity, Consistency, Isolation, Durability) properties on which RDBMS are designed
into BASE (Basically Available, Soft state, Eventual consistency) properties. This
allows these technologies to often better scale horizontally compared to RDBMS
solutions, which makes them suitable for use in a big data environment which often
stores data in a clustered way, i.e., across multiple physical servers.

The popularity of the NoSQL movement can be measured by the sheer amount
of storage technologies available. Most of these technologies can be divided into
four major categories [2]: key-value stores, document stores, column-oriented
stores, and graph databases. Each category is tailored to certain data types and
uses. For example, Cassandra is a column-oriented data store optimized for writes,
but it relinquishes the responsibility of fast reads to the creators of the data model.
This usually entails a highly denormalized data model and duplicated data, con-
trary to the beliefs in RDBMS. Therefore, Cassandra is often used in heavy write-
systems, such as monitoring and social media analytics, where the amount of
writes is significantly larger than the amount of reads.

It is clear that the popularity of the domain has also increased the complexity
of data storage in general. In the RDBMS era storage planning involved the cre-
ation of a relational data model, whereas now, before a data model even needs to
be created, a technology needs to be chosen based on how the data will effectively
be used. The choice of technology has therefore become crucial in building the
applications of today as it influences the performance of data access for these ap-
plications. Table 4.1 shows the impact of a technology choice on the latency of a
complex JOIN-query in SQL and similar queries in Cassandra and MongoDB.

SEQUENTIAL PATTERN MINING 69

Figure 4.1: Example of polyglot persistence in an e-commerce platform architecture [4].

One of the current challenges in the big data domain is that there is a high
variety of data types to be processed. An example of such an application is an
e-commerce platform [4]. It contains data about products, purchases, and finances
but also stores information on recommendations and advertisements. Not only is
this data presented in different formats, it is also used in different ways. For exam-
ple, product data does not change very often and therefore does not require a lot
of writes, but it is being read a lot. To store all e-commerce data into one database
technology would be detrimental to the application performance as the data is used
in different circumstances [4]. A better approach is to store specific parts of the ap-
plication data in different database technologies optimized for their use. Figure 4.1
shows an e-commerce platform supporting various data store technologies where
the product catalog data is stored in a document store and the product inventory in
a classic RDBMS. The state where one application stores its data or information
in different database technologies is referred to as polyglot persistence [5]. It is
considered to be one of the most important novelties of the NoSQL domain as it
inherently changes the way applications handle data.

Although a polyglot persistent application benefits from better data access per-
formance, assuming the choice for the underlying technology was done meticu-
lously, managing this application becomes significantly more complex. The ap-
plication communicates with several database technologies, each with different
underlying data models (if any) and varying query languages. Additionally, as
data is distributed across different technologies, aggregations need to be made
to access related data. New applications can be built specifically for a polyglot
persistent data environment, but, while legacy applications would clearly also ben-
efit from this new paradigm, introducing polyglot persistence would require pro-
found changes to the application. An abstraction layer, shielding applications from
the technology-specific data stores, would lower the complexity, but should do so
without introducing too much overhead in order not the diminish the gains brought
by polyglot persistence. Secondly, specific functionality and characteristics should

70 CHAPTER 4

remain intact as to not limit the expressiveness of the querying language of the ap-
plication.

This chapter proposes an approach for an optimized polyglot persistent envi-
ronment for both new and legacy applications. A canonical model acts as a part
of an abstraction layer that shields applications from the intricacies of polyglot
persistence. Additionally, an algorithm is detailed to detect relations between data
based on usage independent of the different database technologies. The relational
information is stored in the canonical model and serves the purpose of optimizing
the data model across database technologies, for example through data duplica-
tion. The goal is to increase data access performance for applications by allowing
access to a polyglot persistent environment and optimizing the data model specif-
ically for the considered applications in order to mitigate the overhead introduced
by the abstraction layer.

The work described in this chapter is complimentary to previously published
work by the authors in which a transformation approach for data stores was defined
based on a custom designed canonical model [3]. The transformation approach
allows legacy applications to communicate with the canonical model without re-
quiring any changes to the code or query language. The novel contributions of
this chapter are threefold: the concept of the canonical model is extended to rep-
resent the polyglot persistent environment, a sequential pattern mining approach
is introduced and implemented to automatically detect relations between data, and
a data schema optimization algorithm for polyglot persistence is presented. Com-
bining previous work and the new contributions in this chapter allows both new
and legacy applications to benefit from a polyglot persistent environment albeit
shielded from the inherent complexity.

The chapter is structured as follows: in Section 4.2 a motivation for the pro-
posed approach is formulated together with details on the architecture. Section 4.3
presents the implementation of several components of the architecture. The eval-
uation of the sequential pattern mining approach is detailed in Section 4.4 while
a discussion of the obtained results can be found in Section 4.5. Section 4.6 dis-
cusses related work on polyglot persistence and data store optimization techniques.
Finally, in Section 4.7 the conclusions are formulated as well as planned future
work.

4.2 Data Schema Optimization in Polyglot Persistence

4.2.1 Query abstraction and outline

An abstraction layer allows applications to remain unaware of the intricacies of
their polyglot persistent storage. The abstraction layer ideally translates queries
from applications into technology-specific query languages, aggregates results if

SEQUENTIAL PATTERN MINING 71

Figure 4.2: High-level overview of an abstraction layer approach to polyglot persistence
where the application query Q is split into several technology-specific queries
(Q1, Q2, Q3). Results (R1, R2, R3) are then aggregated and returned to the
application (R).

needed, and returns them to the application in the expected format. Figure 4.2
shows a high-level overview of such an abstraction layer. A query is split up into
technology-specific queries after which the results from those different queries is
aggregated and returned to the user. The aggregation of query results is outside
of the scope of this chapter. A very important property of this abstraction layer is
the overhead it introduces on querying performance. If xAs is the average query
time of application A with a single data store, xAp is the average query time of
the application A in a polyglot persistent environment, and OA is the overhead
introduced by the abstraction layer for application A, then the following should
apply:

OA < ∆x (4.1)

where ∆x = xAs − xAp

If Equation 4.1 does not hold true, the query performance benefit of having the
application use polyglot persistent storage is negated. Therefore, it is important
that the most appropriate technologies are chosen for the different data formats and
that the data schemas of all the chosen data stores are optimized and tailored to-
wards the queries of the application, as to yield a maximal value for ∆x. Previous
work of the authors already covered the selection of the most appropriate technol-
ogy for certain data formats and defined a transformation that allowed applications
to switch between storage technologies without any required changes to the ap-
plication [3]. The scope of this chapter focuses on database schema optimization
in polyglot persistence. Specifically, it presents algorithms for data schema opti-
mization based on relations between several entities within or across multiple data
store technologies.

While relations are less explicitly defined inside data models as a result of the

72 CHAPTER 4

Figure 4.3: Layered canonical model for the schema and technology mapping of a data set.

NoSQL domain, it is indisputable that often data is still related. For example, in
the e-commerce platform in Figure 4.1 the inventory data and product catalog are
stored in different data stores, but several use cases exist where data from both
stores is required. An application, or the abstraction layer, would then need to
query both data stores and aggregate data from both technologies. Performance-
wise it would be best to avoid these types of queries if the data store technology is
not equipped to efficiently deal with them. In other words, the data store schema
needs to be optimized by modeling relations in such a way that they limit the
amount of entities that need to be consulted, ultimately limiting the amount of
aggregation that needs to be performed.

However, as relations are less explicitly defined in NoSQL, discovering them
is an important step before the schema optimization can be applied. Even in
RDBMS, relations are often forgotten or not correctly defined in the data model
(e.g., through foreign keys). Therefore, relations between data will need to be de-
rived from context. One way to discover relations is to monitor incoming queries
from the applications, learn the way the application uses the data stores and opti-
mize the data schema to that specific use.

In the following sections an extension is defined for the canonical model from [3]
to support a polyglot persistent environment. Next, based on the relations defined
in the canonical model, an approach is detailed in Section 4.2.3 to select which
relations need to be denormalized in the storage environment when certain con-
straints apply. Finally, as relations can or may not be explicitly defined in the data
schema, Section 4.2.4 presents a relation detection system based on query use.

SEQUENTIAL PATTERN MINING 73

4.2.2 Canonical model

The canonical model described in [3] is designed to represent a technology-independent
data model and and used in the abstraction layer during the transformation of one
data store technology to another. The schema of the original data store is trans-
formed to the canonical model and from there transformed to the destination tech-
nology. A live transformation process allows the application to continue querying
in the original query language even though another data store technology is being
used. The canonical model holds information on Entities who are defined by At-
tributes. Relations can be defined between Entities which are used to optimize the
schema for the destination technology according to a set of rules. Relations can be
of the type ONE-TO-ONE, MANY -TO-ONE or MANY -TO-MANY and
are currently derived from data schema implementations based on the characteris-
tics of specific data store technologies (e.g., foreign keys).

In previous work, the canonical model has had no knowledge of the concept of
a specific data store technology. However, in polyglot persistence it is imperative
that a query is directed to the most appropriate data store technologies. Figure 4.3
shows a new layer, the data store tech layer, in the canonical model representing
the different technologies available in a polystore. It maps Entities in the data
model layer unto specific data stores in the tech layer. The lowest granularity is
the Entity, i.e., different entities can be stored in the same storage technology, but
one entity can only be stored in one technology.

4.2.3 Data schema optimization procedure

Relation implementations in databases have been extensively researched by Mit-
oma et al. [6]. In the article, different ways are described to implement relations
in data stores between an EntityX and an EntityY , where a relation implementa-
tion is defined as a structured collection of data item occurrences that establish a
relation in the data store. Twelve defined implementations are divided into three
categories of four implementations each: duplications, aggregations, and associ-
ations. Duplications store duplicate copies of all values in EntityY (or EntityX)
that are related to values in EntityX (or EntityY) within the same vector. This can
be done through vectors with fixed length, and the associated null value padding,
or variable length vectors. The second category implements the relation as an ag-
gregation, which again stores all values of EntityY (or EntityX) that are related
to values in EntityX (or EntityY) within the same vector, but without duplication.
The vectors can again be of fixed or variable length. In the final category, associa-
tion, a relation is implemented by storing all related values in EntityX and EntityY
in separate records, referring to each other using mechanisms provided by the data
store technologies, or pointers. Many of the defined implementations were not
allowed at the time because of restrictions or a non-redundancy objective in the

74 CHAPTER 4

Figure 4.4: Storage cost per gigabyte between 1980 and 2014 [7].

RDBMS. However, in a NoSQL domain these implementations can be considered
as many of these restrictions have been lifted through flexible data schemas.

In a virtually limitless storage environment the access cost can be minimized
by duplicating all the data for all the relations. However, in a realistic storage en-
vironment choices need to be made as to which relation implementations yield the
biggest benefit. To that end Mitoma et al. [6] also provided an integer program-
ming solution to decide the best implementation for a relation, minimizing total
access cost in such a way that total storage cost does not exceed a defined schema
storage space capacity. It provides an interesting base for deciding which relation
implementation needs to be chosen, but it has some assumptions that do no longer
hold up in the current domain. For example, while storage in 1975 was a signif-
icant cost to deal with, in 2017 it has become almost negligible in comparison.
Figure 4.4 shows a flow of the storage cost per gigabyte between 1980 and 2014
based on data retrieved by Komorowski [7]. It shows that the cost per gigabyte
has decreased from over 700.000 $/GB to about 0.03 $/GB. However, even though
data schemas in NoSQL no longer prohibit duplicate data and storage cost has de-
creased dramatically, it would still not be a good idea to duplicate data for each
existing relation in the data schema since there is still a writing cost to be taken
into account. When data is written to the data store, it needs to be propagated to all
the replications making write and update operations more expensive. In order to
limit the cost of writing operations to the data store, replicated data must be kept
in bounds. Instead of limiting the optimization by storage space, the solution is
adjusted to be bounded by a replication factor. However, a difference is made be-
tween explicit and implicit replication. Implicit replication is replication with the
purpose of fault-tolerance and high-availability. Explicit replication is replication
introduced to increase performance and simplify access to data. Implicit replica-

SEQUENTIAL PATTERN MINING 75

tion is often linked to the inner working of data store technologies and, aside from
some configuration parameters, is not highly customizable. Explicit replication on
the other hand is customizable and in control of an application or user. There-
fore, in this chapter the integer programming formulation only considers explicit
replication.

Another extension that was made to the work of Mitoma et al. is the addition
of a new dimension: the technologies in the polyglot persistent environment. The
access cost for similar queries in different NoSQL technologies can be vastly dif-
ferent and therefore needs to be taken into account when optimizing the schema.
This can be done by adding a new dimension to the variables representing all the
supported technologies of the polyglot persistent environment.

Combining the extensions listed above, the integer programming formulation
becomes the following:

Given:

R = number of relations in the data schema to be implemented

(i.e., number of sequences detected)

T = number of technologies supported by the polyglot persistent

environment

Fj = frequency of occurrence for relation j

Aj = number of alternative implementations for relation j

ACijt = access cost of implementation i in technology t for relation j

ERCijt = explicit replication cost of implementation i in technology t for

relation j

ERmax = maximum number of explicit replications allowed for data

dijt =

{
1, if implementation i in technology t for relation j is chosen.
0, otherwise.

Minimize
R∑

j=1

Aj∑
i=1

T∑
t=1

dijt · Fj ·ACijt

Subject to
R∑

j=1

Aj∑
i=1

T∑
t=1

dijt · ERCijt ≤ ERmax

Aj∑
i=1

T∑
t=1

dijt = 1 (for all j = 1, 2, ..., R)

One final difference compared to the work of Mitoma et al. is that the fre-
quency of occurrence of a certain relation is enclosed within the access cost. How-

76 CHAPTER 4

ever, this frequency is a constant for a certain relationship within this Integer Lin-
ear Program (ILP) formulation as it is not influenced by a certain implementation
of that relation. In order to represent the solution in a clear way, the frequency
has therefore been extracted from the access cost AC and is shown as Fj for any
relation j.

4.2.4 Detection of (cross-technology) relations

The procedure detailed in Section 4.2.3 optimizes a data schema based on rela-
tional information between Entities from the canonical model, but, as previously
mentioned, relations may not have been implemented into the data schema of a
specific data store technology. Therefore relations need to be detected based on
the actual use by the application.

There are two types of relations that need to be detected. The first type is
explicitly defined as is the case with classic RDBMS. This definition can already
be stated in the data model (e.g., foreign keys in SQL), but it can also be a part of
the actual query through operations such as JOIN in SQL. In this section only the
latter is considered as in the former case the relation would already be present in the
canonical model [3]. The second type is implicitly defined as in query languages
that do not support explicit definitions of relations, but do so by aggregating the
results of a series of queries. For example, in the e-commerce example data on
product inventory and product catalog is stored in two different technologies, but
is often needed together to inform a customer of the specifications of a certain
product and how many of it are still in stock. If enough customers come to the
website on a daily basis, these two subsequent queries, one to the product inventory
and the other to the product catalog, are often fired to the data stores. It is clear
that the second type, implicit relations, are much more difficult to detect compared
to the explicitly defined relations. It would require an approach where patterns are
detected in subsequent queries over time.

Applying such an approach to support each individual query language requires
a tremendous amount of effort tailoring it to the specifics of each language. The
representation of queries in the canonical model, a technology-independent repre-
sentation of the data model, allows for a generalist approach. Retrieval of data in
the canonical model is represented as a GET-query. Listing 4.1 details an example
of such a GET-query.

Listing 4.1: Example of a generic GET-query in the canonical representation

{GET,E,P,S}

It consists of the word GET to denote that it represents a GET-query, followed by
a two arrays and a map. The first array (E) refers to one or more entities involved

SEQUENTIAL PATTERN MINING 77

in the query and in the second array (P) the projection of the query detailed. The
final component is a selection map (S) that stores tuples of an attribute and another
attribute or value. Currently, this displays and is limited to the required equality
between the two for the proof-of-concept that is developed in this chapter. In a
full implementation it would be advisable to expand this tuple to a triple, where
the third element represents the logical comparison between the two previous ele-
ments.

Explicit relation The detection of explicit relations in the canonical representa-
tion of queries is straightforward. If a GET-query contains multiple entities in E,
there is a clear indication that those entities contain data that is related. As soon as
a certain threshold occurrence is detected for a certain combination of entities, it
would be beneficial for the performance to add this relation to the canonical model
and optimize the schema towards these type of queries. The evaluation in Sec-
tion 4.4 will decide upon a specific threshold when this optimization step should
be triggered. Listing 4.2 shows an example of a query where two entities, EntityX
and EntityY , are explicitly mentioned. Attributes also contain an extra reference
to clearly mark the Entity they belong to.

Listing 4.2: Example of a GET-query in the canonical representation with a possible explicit
relation

{GET,[entityX, entityY],[entityX.attributeA],
[(entityY.attributeB,entityX.attributeC)]}

Implicit relation Implicit relations can not be discovered through one single
GET-query, but can only be derived from a sequence of two or more GET-queries.
In Listing 4.3 an example of a sequence of GET-queries is detailed. The first GET-
query is designed to retrieve one or several values from one entity (e.g., a referal
ID). In subsequent queries the value(s) retrieved from the first query, e.g., ValueX,
are used to retrieve additional related data.

Listing 4.3: Example of a sequence of GET-queries in the canonical representation with a
possible implicit relation

{GET,[entityX],[attributeA,attributeB],[]}
{GET,[entityY],[attributeM,attributeN,attributeP],

[(attributeM,ValueX)]}

A single occurrence of this sequence has no value, but when this sequence is fre-
quent, it indicates that query results are possibly combined by the application. The
only way to be absolutely certain is to compare the returned values as a result of
the first query with ValueX in the next query. This would however increase the

78 CHAPTER 4

overhead of the abstraction layer (OA) immensely. In order to keep OA as low
as possible, this comparison is not performed, which might lead to several false
positives, but it is expected that the relative frequency of these false positives will
be significantly lower than actual relations, allowing them to be filtered out by the
optimization procedure described in Section 4.2.3.

Another possibility is a sequence of queries which all refer to a same ID in
the selection array. Listing 4.4 shows an example of such a sequence of queries
applied to the e-commerce example where information is required from both the
product catalog and the product inventory.

Listing 4.4: Example of a sequence of GET-queries in the canonical representation with a
possible implicit relation applied to the e-commerce example

{GET,[productCatalog],[name,weight,category],[(
productID,ValueX)]}

{GET,[productInventory],[stock,supplier],[(productID
,ValueX)]}

Based on these examples of implicit relations, the task of detecting implicit rela-
tions can be translated into discovering recurring sequences of queries. The prob-
lem of detecting the frequent occurrences of sequences (in this case entities) is de-
fined as discovering all subsequences appearing frequently in a set of sequences.
First proposed by Agrawal [8] and Srikant [9], it is often referred to as sequential
pattern mining or frequent sequence mining. In this chapter, suffix trees are used to
detect frequent entity sequences in order to optimize the data schema for queries
using these entities in a polyglot persistent environment. Section 4.3 details the
implementation of these suffix trees.

4.2.5 Data Schema Optimization Architecture

Figure 4.5 depicts the architecture for the proposed data schema optimization for
polyglot persistent environments. The solid arrow considers a workflow for queries
from users and applications, transforms them into the canonical representation,
and then to the specific technology in which the data is stored. The contributions
mentioned in Sections 4.2.2 - 4.2.4 are clearly marked with the numbers in black
circles:

1. The canonical model is extended with a new layer that represents the differ-
ent technologies in the polyglot persistent environment to map Entities onto
specific storage technologies (detailed in Section 4.2.2).

2. A schema optimization module that uses the relations from the canonical
model to optimize the storage environment (described in Section 4.2.3).

SEQUENTIAL PATTERN MINING 79

Figure 4.5: Architecture overview of the data schema optimization approach for polyglot
persistent environments.

3. A sequential pattern mining component to detect potential relationships be-
tween entities in the canonical model based on incoming queries from users
and applications (detailed in Section 4.2.4).

With these new components, queries from the users and applications are trans-
lated to their canonical representation in the stream transformation layer. While the
queries still continue to retrieve data from the storage environment, a copy of the
canonical queries is stored as well. This copy is then mined for sequential patterns
of queries to deduce potential relations between entities in the canonical model.
The results are stored in the canonical model and used in the schema optimization
module to improve the schema by duplicating the data of the most frequent rela-
tionships. This module relays this information back to the canonical model, which
in turn updates the polyglot persistent environment.

The next section focuses on the detection of relations in queries sent by appli-
cations through sequential pattern mining with suffix trees.

4.3 Abstraction Layer Implementation

4.3.1 Sequential pattern mining

A subdomain of sequential pattern mining is the domain of string mining. String
mining typically works with very long sequences expressed in a limited alpha-
bet. A well-known example of the string mining problem is the analysis of DNA
sequences in bio-informatics [10]. The mining approach involves storing the se-
quence in an efficient data structure, which can be used for different operations,
such as retrieving patterns and their occurrence frequency. One such data structure
is the suffix tree [11]: a compressed tree that stores all the suffixes of a text in such
a way that they can be efficiently searched.

80 CHAPTER 4

A suffix tree is often used and most efficient in a context where the strings are
built from a limited alphabet. For example, in DNA analysis patterns are searched
in strings that are built out of the alphabet ’A’, ’G’, ’C’ and ’T’. In the suffix tree
used in this chapter one query, as for example in Listing 4.1, is considered to be
a letter of our alphabet. Since our query is represented in a defined language in
our canonical model, the alphabet is limited for a certain storage environment, but
can still be significantly large. It is therefore interesting to limit the alphabet by
eliminating variations that have no influence on the meaning of the query.

Listing 4.5: Example of a two sequences of GET-queries with different projections but sim-
ilar indication for a relation

{GET,[productCatalog],[name,weight,category],
[(productID,ValueX)]}

{GET,[productInventory],[stock,supplier],
[(productID,ValueX)]}

{GET,[productCatalog],[name,description,category],
[(productID,ValueY)]}

{GET,[productInventory],[warehouse],
[(productID,ValueY)]}

For example, in Listing 4.5 two sequences are detailed that indicate a similar po-
tential relationship between the productCatalog and the productInventory entities
but will be detected as two different sequences as part of the suffix tree. While the
projection is important to limit the results for the application, it currently serves no
interest of the sequential pattern mining approach. Moreover, it negatively impacts
the efforts as indicated relations can be potentially missed since the frequency of
the entire relation is spread out across different sequences.

Three main algorithms have been defined in previous work for building a suf-
fix tree: a baseline longest-to-shortest suffix approach [11], an offline algorithm
detailed by McCreight [12], and a storage-optimized live algorithm identified by
Ukkonen [13]. The baseline approach has a O(n2) complexity while both the Mc-
Creight’s and Ukkonen’s approaches are O(n). The difference between Ukkonen
and McCreight is that Ukkonen’s algorithm is online, while McCreight requires
the entire string from the beginning.

Before a decision is made on which algorithm should be used, it is important
to consider the context in which it will be applied. A live application will con-
tinuously query its data sources at varying rates. It is also expected that the way
an application queries its data stores could change over time because the nature
of the application changes or the usage by its users evolves. Therefore, it is im-
portant that once an initial suffix tree is built for an application, it is extended,
continuously or at regular intervals, with the most recent queries as to match the

SEQUENTIAL PATTERN MINING 81

application’s current use of the data stores. However, if the initial suffix tree is
only extended it can become a very complex data structure where new patterns
might not be detected because of their low relative frequency compared to all the
irrelevant historical patterns. The suffix thus needs to be both extended with the
most recent queries and cleaned of the oldest queries. This should be translated to
a suffix tree built on a sliding window that moves through the list of queries.

Based on this sliding window requirement, the Ukkonen algorithm is chosen
for its online approach. The suffix tree built with Ukkonen’s algorithm can be
easily and efficiently extended. On the other hand, the indexed approach allows to
easily delete branches of the tree that contain the old patterns. Section 4.4.2 details
results on building the suffix tree and retrieving the query patterns as a function of
the sliding window sizes.

4.3.2 Relation selection heuristic

Since solving an ILP problem can be time-consuming, an additional heuristic al-
gorithm is useful to calculate a solution within in a reasonable time frame. Many
methods exist to implement heuristics for ILP problems. A possible fast approach
for the ILP defined in Section 4.2.3 is to list all detected sequences from the suffix
tree in descending frequency order. Starting with the sequence that most frequently
occurs, a view is created for that relation in the polyglot environment until the max-
imum number of explicit replication, ERmax, has been reached. When frequen-
cies are widely separated, it is expected that this heuristic can reach a near-optimal
solution. This can be explained because of the weight of the frequency factor in
the minimization function in the ILP. However, when frequencies are close to each
other, this heuristic might not at all reach a near-optimal solution since it does not
take into account the access cost of a specific implementation.

Combining all the building blocks from the previous sections, the following
process is built: a window of a specific size is set and filled up with canonical
GET queries. Based on this window of GET queries a suffix tree is built and
the recurring patterns are identified. The heuristic decides which relations are
optimized in the data model and this optimization is executed. The following
section evaluates the detection of relations based on a suffix tree and the execution
time of the entire optimization process.

4.4 Evaluation

4.4.1 Experimental setup

The Ukkonen algorithm for building a suffix tree is implemented in Python 3.6.2.
along with the methods to extend an existing tree and delete the oldest branches
without impacting the characteristics of the suffix tree. All results in Section 4.4.2

82 CHAPTER 4

Figure 4.6: Total time to build a suffix tree and retrieve the full set of patterns as a function
of the sliding window size.

are from execution on Intel i5-4200U CPU @ 1.60GHz with 8GB of RAM and
show the average and standard deviation for 25 iterations. The GET-queries used
in the evaluation are derived from ‘select-from-(join)-where’-queries that indicate
both explicit (e.g., JOIN-query) and implicit relations.

4.4.2 Results

4.4.2.1 Correctness

The implementation of Ukkonen’s algorithm was validated by building a suffix
tree from a randomly generated list of queries injected with specific pre-known
patterns. The absolute frequencies retrieved from the suffix tree were then com-
pared to these pre-known patterns and should to exactly represent all the possible
patterns present in the list of queries. This was achieved for varying window sizes
of randomly generated queries.

4.4.2.2 Window size

Figure 4.6 depicts the time it takes to build a suffix tree and retrieve the patterns
from that tree for varying window sizes. Important to note is that the y-axis is
in a logarithmic scale because there is a significant difference between the build
and the pattern-retrieval time. For example, for a window size of 50, 000 queries
it takes 6.95 seconds on average to build the suffix tree, while retrieving all the
frequent sequential query patterns only takes around 0.28ms (0.00028 seconds) on

SEQUENTIAL PATTERN MINING 83

Figure 4.7: Time to remove and add queries to an existing suffix tree as a result of a window
slide of 1000 queries.

average. As expected, the build time shows an overall linear trend in line with the
O(n) complexity of Ukkonen’s algorithm [13].

The graph also shows an interactivity threshold at 500 ms [14]. The only
window sizes that achieve a time below that interactivity threshold for both build
and retrieval time are 5, 000 and 10, 000 with a combined time of 181.57ms and
432.91ms respectively. This means that for a window size up until 10, 000 query
patterns can be retrieved from a newly-built suffix tree within a real-time setting.

4.4.2.3 Suffix tree expansion

As mentioned in Section 4.3.1 the benefit of working with Ukkonen’s algorithm is
its online approach and this is clearly reflected in the flexibility of the suffix tree.
The algorithm can be used to extend the tree with new strings and because of the
characteristics of the tree it is easy to identify and delete the oldest branches of
the tree. Through these additional methods the sliding window is reflected in the
suffix tree.

Figure 4.7 shows the execution time in milliseconds for both deleting old
branches of and adding new queries to a suffix tree with a varying window size.
The results are based on a situation where the windows slide 1, 000 queries. This
means that the 1, 000-oldest branches of the suffix tree are deleted and 1, 000 new
queries are added to the suffix tree. Adding the queries to the suffix tree takes less
time than the removal of the oldest branches. The Ukkonen algorithm is an online
algorithm that is highly optimized to add new input to the suffix tree, but it does

84 CHAPTER 4

Figure 4.8: Comparison of the execution time between adjusting the suffix tree and building
a suffix tree from scratch.

not provide any insight into the removal of branches in the tree, which explains the
difference in speed. However, the total time for executing a sliding window is still
far below the interactivity threshold of 500 ms.

Figure 4.8 compares the results of adjusting a suffix tree to building it from
scratch with Ukkonen’s algorithm. While for smaller window sizes the difference
is minimal, for larger window sizes it is significant. Non-interactive window sizes,
i.e., larger than 11, 000 in Figure 4.8, become interactive in the context of an ad-
justing suffix tree based on a sliding window. Larger window sizes can thus be
used in an interactive setting only after building it in a non-interactive way or after
gradually increasing the window size whenever a window slide is enacted until the
desired size has been reached.

4.5 Discussion

Equation 4.1 defines that an abstraction layer for a polyglot persistent environment
is beneficial when the overhead introduced by the abstraction layer (OA) does not
nullify the gains made by moving from a single storage solution into polyglot per-
sistence (∆x). The gains are calculated by subtracting the average query time in
polyglot persistence (xAp) from the average query time in a single storage envi-
ronment (xAs). There are two ways of positively influencing this equation: lower
the overhead of the abstraction layer (↘ OA) or increase the gains made (↗ ∆x).
Previous work by the authors has already actively reduced the overhead of the

SEQUENTIAL PATTERN MINING 85

abstraction through the stream transformation layer [3]. The work described in
this chapter focuses on increasing the gains that are made by moving into polyglot
persistence and, since xAs is considered to be a constant outside of the influence
of this approach. This means the goal is to lower the average querying time in
polyglot storage even further (↘ xAp).

Again, going back to Table 4.1 showing the latency for a JOIN query in MySQL
for 5, 000, 000 records and the same query for MongoDB where the relation be-
tween the Entities used in the JOIN query is implemented with duplication in the
collection. These results show that choosing an optimal technology and optimiz-
ing the schema based on relations can yield gains upwards of 120s for this specific
schema. The contributions of this chapter allow to reach such improvements even
when relations are not explicitly defined within a data schema.

The time in which these improvements can be implemented are clearly indi-
cated by the results in Section 4.4.2. The entire process to update the canonical
model with relations consists of first building/adjusting the suffix tree and, sec-
ondly, selecting the relations to be implemented. Building the suffix tree from
scratch can be done in real-time up to a size of 10, 000 queries. If a larger window
size is desired, the suffix tree can initially be built with a window size of 10, 000

and over time increased to the desired size (e.g., increase in steps of 1, 000 queries
taking 67 ms each on average). When the sliding window is moved, the suffix
tree can be updated efficiently in less than 250 ms for window sizes below 15, 000

queries (cfr. Figure 4.7). All the frequent query patterns can be retrieved within 1

ms (cfr. Figure 4.6). Now only a choice needs to be made as to which relations will
be implemented. The current baseline heuristic defined in Section 4.3.2 sorts the
patterns based on frequencies and selects the top ERmax queries to implement.
This gives the following total time if a 5, 000 query window size is considered:

Build + Retrieve + Select

181.61ms + 0.04ms + 2.48ms

The choice for a window size of 5, 000 queries for this example was made as
this can be executed the fastest, but as previously mentioned the window size can
be extended over time. Selecting the relations to be implemented with our baseline
heuristic takes 2.48 ms as this only encompasses sorting a list and retrieving the
first ERmax elements. Sorting a list of 5, 000 elements, which is far more than the
number of relations that could be potentially detected, and retrieving any number
of sequential elements is thus negligible.

Finally, important to note is that the evaluation in Section 4.4.2 only took one
application or user sending queries to the data stores into account. If multiple ap-
plications would be sending queries, fewer or incorrect relations would be detected
as actual string sequences would be potentially interlaced with queries from other
applications or users. A simple solution would be to create suffix trees for each

86 CHAPTER 4

distinct application and user. A more advanced solution would be to allow for a
limited gap between queries and still consider them to be a sequence in the suffix
tree. This solution would however increase the complexity of building the suffix
tree. Further optimization for supporting multiple applications and users is part of
future work.

4.6 Related Work

Polyglot persistence and its benefits and disadvantages for applications have been
heavily researched [4, 15, 16]. Even before the actual term was coined, solu-
tions were introduced to reduce the complexity of accessing heterogeneous data
sources [17]. Both current and legacy solutions often introduce a single gen-
eral model encompassing the different data models of the heterogeneous data
stores [15]. This is an effective way to shield the applications from the complexity
of a polyglot persistent environment, but they do often introduce a new type of
query language to which the application needs to adapt. For example, Sellami and
Defude [15] propose an approach with a virtual data store where SQL-like queries
are sent in a JSON format and then translated to API’s communicating with the
various data store technologies. While new applications could easily benefit from
this approach, legacy applications would require code changes to adopt the new
query language. Currently, research on legacy applications has mostly focused on
the modernization of the application itself, but not the data [18, 19]. The approach
described in this chapter also introduces a canonical model, but, together with the
work of the authors concerning a transformation algorithm [3], does not require
any application code changes. It enables data stores of legacy applications to be
migrated and transformed into a polyglot persistent environment, while the data
schema is optimized based on usage.

The use of a generalized data model shields applications from the complexity
of a heterogeneous data store environment, but also introduces an overhead as
queries need to be translated towards the different data store technologies. It is
important to note that this overhead needs to remain smaller than the actual query
performance gain that was created by moving into a polyglot persistent solution. In
order to achieve maximum gain, two additional optimizations can be implemented:
data schema optimization and query optimization.

Data schema optimization can be traced back to E.F. Codd and his article on
the relational database model [20]. He describes a normalization process to reduce
data redundancy, which can be regarded as a form of schema optimization. A lot
of research since then has sought to find different solutions for achieving highly
optimized schemas in different contexts [6, 21]. One of these contexts is based
on the actual use of the data store, i.e., optimizing the storage specifically for the
application using it. Soon after the paper by E.F. Codd, Mitoma et al. proposed

SEQUENTIAL PATTERN MINING 87

an optimization based on relative frequency of relational queries [6]. Relational
queries were optimized as they usually incur the highest access cost. With the
introduction of NoSQL, schema optimization became much more complicated as
data models became less stringent or were removed completely in these new tech-
nologies. However, similar to RDBMS, tools were introduced to automatically
create highly optimized data schemas for NoSQL data stores. For example, Mior
et al. [22] built a prototype of the NoSQL Schema Evaluator (NoSE), a recommen-
dation system for NoSQL data schemas, more specifically, the Cassandra column
data store. While data schema optimization has made the transition into NoSQL,
it has yet to do so for polyglot persistence. The solution in this chapter applies
the concept of data schema optimization onto a canonical model equipped with
the concept of polyglot persistence. It acknowledges the existence of relations be-
tween data, even in NoSQL technologies, and detects them through pattern mining
in (near-)sequential queries. Discovered relations are represented in the canonical
model which then allows an algorithm to optimize the data schema as described
above.

Compared to schema optimization, query optimization is less invasive as the
internals of both the application and data store remain untouched. Query optimiza-
tion can be achieved by reformulating the received queries before passing them on
to the data store [15, 23]. While the chapter has less explicitly focused on query
optimization in favor of schema optimization, it is encompassed within the pro-
posed architecture. The stream transformation layer transforms queries from one
technology into another. During this transformation several steps are taken to opti-
mize the query for the specific technologies. This is not in the scope of this chapter
and is deferred to future work.

4.7 Conclusions and Future Work

The new paradigm introduced by the NoSQL domain sees applications store data
and information in polyglot persistence. This method where different data formats
are stored in different database technologies promises a better query performance,
but also introduces a higher complexity for the application. An application can be
shielded from this complexity through an abstraction layer, but this impacts the
performance gain as an overhead is introduced. Therefore, it becomes imperative
that data schemas of the data stores are optimized for the application’s use. This
chapter introduces an approach to data schema optimization based on data rela-
tions. Relations are first discovered through sequential pattern mining and then an
relation selection algorithm can decide which relations are implemented based on
the frequency of the occurrence and replication limitations. This information is
used to update the canonical model that represents the polyglot persistent environ-
ment. An implementation is provided for sequential pattern mining on incoming

88 CHAPTER 4

queries through a suffix tree. Results show that building the suffix tree and retriev-
ing the frequent query patterns can be done in real-time for up to 10, 000 queries.
When applying a sliding window approach, updating an existing suffix tree with
1, 000 queries and deleting the 1, 000 oldest branches can be done even more ef-
ficiently. The resulting optimizations allow query latency improvements of up to
two orders of magnitude for a realistic scenario.

Future work will look into advanced heuristics for the schema optimization
module, query optimization during the stream transformation and applying this
approach to an environment with more than one application. Finally, work also
remains to aggregate the different results in an automated way.

SEQUENTIAL PATTERN MINING 89

References

[1] M. A. Mohamed, O. G. Altrafi, and M. O. Ismail. Relational vs. nosql
databases: A survey. International Journal of Computer and Information
Technology, 3(03):598–601, 2014.

[2] A. Haseeb and G. Pattun. A review on NoSQL: Applications and chal-
lenges. International Journal of Advanced Research in Computer Science,
8(1), 2017.

[3] T. Vanhove, M. Sebrechts, G. Van Seghbroeck, T. Wauters, B. Volckaert, and
F. De Turck. Data transformation as a means towards dynamic data storage
and polyglot persistence. International Journal of Network Management,
27(4):e1976–n/a, 2017. e1976 nem.1976. Available from: http://dx.doi.org/
10.1002/nem.1976, doi:10.1002/nem.1976.

[4] K. Srivastava and N. Shekokar. A Polyglot Persistence approach for E-
Commerce business model. In Information Science (ICIS), International Con-
ference on, pages 7–11. IEEE, 2016.

[5] P. J. Sadalage and M. Fowler. NoSQL Distilled: A Brief Guide to the Emerg-
ing World of Polyglot Persistence. Addison-Wesley Professional, 1 edition,
August 2012.

[6] M. F. Mitoma and K. B. Irani. Automatic Data Base Schema Design
and Optimization. In Proceedings of the 1st International Conference on
Very Large Data Bases, VLDB ’75, pages 286–321, New York, NY, USA,
1975. ACM. Available from: http://doi.acm.org/10.1145/1282480.1282503,
doi:10.1145/1282480.1282503.

[7] M. Komorowski. A History of Storage Cost, March 2014. http://www.
mkomo.com/cost-per-gigabyte-update (Last Visited January 9, 2018).

[8] R. Agrawal and R. Srikant. Mining sequential patterns. In Data Engineering,
1995. Proceedings of the Eleventh International Conference on, pages 3–14.
IEEE, 1995.

[9] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and
performance improvements. Advances in Database TechnologyEDBT’96,
pages 1–17, 1996.

[10] P. P. Panigrahi and T. R. Singh. Data Mining, Big Data, Data Analytics: Big
Data Analytics in Bioinformatics. In Library and Information Services for
Bioinformatics Education and Research, pages 91–111. IGI Global, 2017.

http://dx.doi.org/10.1002/nem.1976
http://dx.doi.org/10.1002/nem.1976
http://doi.acm.org/10.1145/1282480.1282503
http://www.mkomo.com/cost-per-gigabyte-update
http://www.mkomo.com/cost-per-gigabyte-update

90 CHAPTER 4

[11] P. Weiner. Linear pattern matching algorithms. In Switching and Automata
Theory, 1973. SWAT’08. IEEE Conference Record of 14th Annual Sympo-
sium on, pages 1–11. IEEE, 1973.

[12] E. M. McCreight. A space-economical suffix tree construction algorithm.
Journal of the ACM (JACM), 23(2):262–272, 1976.

[13] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–
260, 1995.

[14] Z. Liu and J. Heer. The effects of interactive latency on exploratory vi-
sual analysis. IEEE transactions on visualization and computer graphics,
20(12):2122–2131, 2014.

[15] R. Sellami and B. Defude. Complex Queries Optimization And Evaluation
Over Relational And NoSQL Data Stores In Cloud Environments. IEEE
Transactions on Big Data, 2017.

[16] F. R. Oliveira and L. del Val Cura. Performance Evaluation of NoSQL Multi-
Model Data Stores in Polyglot Persistence Applications. In Proceedings of
the 20th International Database Engineering & Applications Symposium,
pages 230–235. ACM, 2016.

[17] A. Rajaraman, A. Y. Levy, and J. O. Joann. Querying heterogeneous infor-
mation sources using source descriptions. In Proceedings of the 22nd In-
ternational Conference on Very Large Databases, VLDB-96, Bombay, India,
1996.

[18] T. C. Fanelli, S. C. Simons, and S. Banerjee. A Systematic Framework for
Modernizing Legacy Application Systems. In Software Analysis, Evolution,
and Reengineering (SANER), 2016 IEEE 23rd International Conference on,
volume 1, pages 678–682. IEEE, 2016.

[19] P. V. Beserra, A. Camara, R. Ximenes, A. B. Albuquerque, and N. C.
Mendonça. Cloudstep: A step-by-step decision process to support legacy
application migration to the cloud. In Maintenance and Evolution of Service-
Oriented and Cloud-Based Systems (MESOCA), 2012 IEEE 6th Interna-
tional Workshop on the, pages 7–16. IEEE, 2012.

[20] E. F. Codd. A relational model of data for large shared data banks. Commu-
nications of the ACM, 13(6):377–387, 1970.

[21] T. A. Halpin and H. A. Proper. Database schema transformation and op-
timization. In M. P. Papazoglou, editor, OOER ’95: Object-Oriented and
Entity-Relationship Modeling: 14th International Conference Gold Coast,

SEQUENTIAL PATTERN MINING 91

Australia, December 13–15, 1995 Proceedings, pages 191–203. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1995. Available from: http://dx.doi.
org/10.1007/BFb0020532, doi:10.1007/BFb0020532.

[22] M. J. Mior, K. Salem, A. Aboulnaga, and R. Liu. NoSE: Schema design for
NoSQL applications. In Data Engineering (ICDE), 2016 IEEE 32nd Interna-
tional Conference on, pages 181–192. IEEE, 2016.

[23] M. Jarke and J. Koch. Query Optimization in Database Systems. ACM
Comput. Surv., 16(2):111–152, June 1984. Available from: http://doi.acm.
org/10.1145/356924.356928, doi:10.1145/356924.356928.

http://dx.doi.org/10.1007/BFb0020532
http://dx.doi.org/10.1007/BFb0020532
http://doi.acm.org/10.1145/356924.356928
http://doi.acm.org/10.1145/356924.356928

5
City of Things: Smart Cities beyond

Open Data

T. Vanhove, M. Sebrechts, G. Van Seghbroeck, T. Wauters,
P. Leroux, and F. De Turck.

Submitted to IEEE Communications Magazine, September 2017.
? ? ?

This chapter describes real-life use cases as a part of the City-of-Things
project in which the work of Chapters 2, 3, and 4 is applied. City-of-Things is
a smart city testbed in Antwerp (Belgium) that allows stakeholders not only ac-
cess to sensor data but to an automated analytics environment as well. Sensor
data from gateways spread out across the city is gathered on a central platform
and can be used in user-created applications. The transformation algorithm from
Chapter 3 can be used to facilitate access to this sensor data, while the schema
optimization approach detailed in Chapter 4 is used for the storage environment
in the back-end to optimize the data delivery to the different users.

5.1 Introduction

In recent years increasingly more connected devices have become part of the in-
ternet, birthing what is now referred to as the Internet-of-Things (IoT). In IoT live
device and sensor information is used to create novel applications and services in

94 CHAPTER 5

different domains. Well-known applications of IoT can be found in home automa-
tion, eCare, and Industry 4.0.

The latest developments in IoT have seen applications on a much larger scale
in so-called smart cities. Smart cities strive to improve the quality of urban life
through use of new technologies and innovative IT solutions [1]. While the term
has been in use since the early 90s, the actual creation of smart cities has only
boomed more recently because of the meteoric rise of IoT devices. Although it
is arguable that true smart cities already exist, many cities around the world have
taken important steps towards such a smart city environment by deploying devices
and sensors all over the urban area. These cities are used as testbeds to facilitate the
development of applications and services towards a truly smart city. An example
of such a smart city testbed can be found in the Spanish city of Santander [2]. It
currently houses over 3.000 IoT devices in the city with future plans extending the
number of devices and sensors to 12.000.

With that amount of devices deployed in only a single city, it is clear that large
amounts of data from these sensors become available for processing. These large
amounts of data can be defined as big data, meaning that they have become so
large that they are no longer able to be processed through conventional means. In
order to be defined as big data, a data set needs to be large (volume), it needs to
be growing at a fast rate (velocity), and different types of data, potentially from
different sources, need to be part of a data set (variety). Therefore, data generated
by smart cities is definitely big data as a lot of data is generated by the sensors, it
constantly continues growing, and it is generated by a variety of sensors. More-
over, this data comes on top of the more traditional data that is kept on a city level
such as event data, road constructions, and emergency plans.

A lot of the data provided by the smart city testbeds is part of an open data
program, i.e., data is openly accessible for everyone. This follows a trend where
governments have made many data sets publicly available through e-gov portals 1.
These include, but are not limited to, data on population growth, location of edu-
cational institutions, and statistics about the justice system. The reasoning behind
opening up access to this data is to facilitate the creation of new applications and
services by not only large companies, but SMEs and even citizens as well. How-
ever, as established in the previous paragraph, the data in smart cities and smart
city testbeds can be considered as big data, which requires significant infrastruc-
ture and resources to process. Aside from wealthy institutions and companies,
one does not generally have access to these kind of resources. This means the
open data provided by the smart city testbed could be left untapped because of
technical barriers [3]. An example of the impact of this complexity can be found
in companies such as VITO 2, a European independent research and technology

1http://data.gov.be/en
2https://vito.be/en

http://data.gov.be/en
https://vito.be/en

CITY OF THINGS 95

organisation tackling large societal challenges in sustainable chemistry, energy,
health, materials management and land use. Their solutions in land use constantly
receive satellite images which are then used for analysis purposes. In order to
grant their customers access to their large data set they have built virtual instances
that have been pre-installed and pre-configured with all their available tools be-
cause otherwise it would be too complex to access the data. This approach clearly
compromises on the flexibility of the users working with the tools. The proposed
approach in this chapter lowers the complexity significantly without giving in on
the flexibility of use.

This chapter introduces a smart city environment where not only open data is
provided to stakeholders but an analytics sandbox as well. The City of Things
(CoT) project is a smart city testbed [4] in Antwerp, Belgium, and a first proof-of-
concept for this specific approach. Built on the Tengu platform [5], CoT eliminates
the threshold for all stakeholders to access and effectively process open data pro-
vided by a smart city which in turn can lead to new applications and services for
the smart city ecosystem. By eliminating technical barriers the project paves the
way for open information, beyond open data.

5.2 Open Big Data

Big data and the Internet-of-Things have inherently been connected as IoT frame-
works often generate a steady stream of data from various sources. This definition
of IoT data sets clearly covers the commonly agreed upon definition of the 3 Vs
of a big data set: the data set is a of a certain volume, and it grows at a signif-
icant velocity, while the data originates from a variety of sources. With all the
complexity in the multi-billion dollar big data market it is no wonder that most of
the issues in building IoT frameworks are similar to those of a general big data
framework [3, 6]. We list the most important issues below.

1. Access to infrastructure For big data sets the traditional processing and
storage solutions no longer suffice, but require parallel software running in
clusters of tens, hundreds or even thousands of servers instead [7]. While
large companies and institutions have the funds required to host such an
infrastructure, this is not the case for individuals and/or smaller companies.
Infrastructure-as-a-Service (IaaS) providers such as Google, Amazon, and
Microsoft have already partly bridged this gap by providing infrastructure
on a pay-per-use basis. However, as the data sets continue to grow, these
costs might still prove too big for some stakeholders.

2. Complex technology decisions In order to support the new paradigm of
cluster-based processing, new technologies were invented for the analysis

96 CHAPTER 5

Figure 5.1: Online advocacy tool NYCommons showing an interactive map built by 596
acres.

and storage of these sizes of data sets. Analysis frameworks have been
divided in two categories: batch analysis where a dataset is processed as
a whole and streaming analysis where data is analyzed on message-by-
message basis in real-time. Well known open-source analysis frameworks
are Apache Hadoop, based on the MapReduce computational framework
originally developed by Google [8], Apache Spark, Apache Storm, and
Apache Nifi. Where analysis frameworks have been divided in two cate-
gories, the storage solutions are dispersed over the Not-only SQL (NoSQL)
domain. NoSQL data stores offer a flexible or entirely schema-less data
model, contrary to classical relational database management systems. Some
important technologies in the NoSQL domain are MongoDB, Cassandra,
Elastic Search, and Accumulo. Because of this plethora of technologies,
issues arise where stakeholders need to make choices on which technology
best fits their solution. Without up-to-date know-how or experience this be-
comes a complicated decision.

3. Manual big data operations Finally, when computational and storage in-
frastructure is available and the technologies are chosen, there is one final
issue: deploying the chosen technologies, algorithms, and code on the in-
frastructure. In a cluster-based environment the installation and configura-
tion of technologies is not a trivial task as it requires a thorough level of
know-how and a lot of manual work.

These issues impede the creation of IoT frameworks to process the data pro-
duced by sensors. Despite the fact that in smart city environments this sensor data
is made available as open data, the yield is extremely limited as the data can only
used by a select group of companies or institutions that have enough knowledge,
know-how and resources to overcome the above listed issues. In this chapter we
tackle these issues to facilitate the creation of new applications and services on the

CITY OF THINGS 97

Figure 5.2: The open information architecture in the CoT project.

open data sets in a smart city environment, more specifically the CoT.

5.3 Beyond Open Data
Open data allows communities to set up great projects, such as 596 acres 3. The
project started when the founder discovered a spreadsheet marking all vacant land
in Brooklyn, NY. Based on the data a map, as shown in Figure 5.1, was made
to bring citizens in contact with these public pieces of land, eventually spawning
a community advocating the need for public access to public land in New York
City. While this is a great example of how open data can involve citizens in the
city planning, the data that started the community was fairly manageable, i.e., a
spreadsheet. In a smart city the amount of data originating from the sensors and
devices deployed in the city would be less so.

CoT is such a large-scale testing ground for smart city experiments in the city
of Antwerp, Belgium. Instead of carrying out experiments within research envi-
ronments, the CoT smart city testbed offers researchers a city-wide sandbox to take
the first important steps towards a truly smart city. It is different from other smart
city testbeds as it not only provides access to open data from sensors in the urban
area, but to actuators as well. For example, smart boilers that can be steered to
optimize energy consumption and smooth out spikes in the energy grid. Currently
over 100 sensors are deployed in the city with a thousand more planned in the near
future.

The project aims for three important goals:

1. Testing new network technologies By rolling out the Internet-of-Things
across the entire city, CoT provides an ideal and realistic testing environment
for new network technologies.

3http://596acres.org

http://596acres.org

98 CHAPTER 5

2. Big data mining The project provides an open data platform for monitoring
life in Antwerp in real time. It aims to turn these data streams into valuable
information to be used by new applications.

3. Citizen engagement CoT leverages interactive user research allowing cit-
izens to give feedback on applications, but also be able to co-create new
applications from scratch.

In order to achieve these goals it is clear that the CoT smart city testbed needs
to create an environment in which researchers and users alike can really use the
open data sets. We refer to this situation as access to open information. This is
derived from a distinction made in big data analysis where the analysis process
turns raw data into information. Only with open information can we be assured
that the data will be applied in real use cases. The following section explains how
the CoT architecture removes the barriers to reach this goal.

5.4 City of Things architecture

Figure 5.2 illustrates the architecture of the CoT smart city testbed. It can be
divided in two main parts which will be discussed further in the following subsec-
tions: the open data platform and the analysis sandbox environment.

5.4.1 Open data platform

On the leftmost side of Figure 5.2 the interoperability framework is detailed that
receives data from the different types of sensors and devices deployed in the city.
All this data is forwarded to a data ingestion module or a processing module. The
data ingestion module handles pre-processing of the data and then routes data to
persistent storage. Specifically the data is formatted and routed to the best fitting
storage technology in order to make responses to API requests as easy as possi-
ble. The processing module on the other hand provides advanced analysis modules
for the incoming data after which the processed data can also be routed to persis-
tent storage. Examples of these advanced analysis modules are trend analysis and
prediction algorithms.

There are two different types of storage in the platform: main persistent stor-
age, which contains events, meta-data, and context, and a specific storage solution
for time series. Both storage types are used for two different endpoints. The first
endpoint is the internal querying and visualization tool. It is used to monitor the
environments and provide insights for city services on potentially restricted data.
The second endpoint is the CoT dynamic runtime environment. This environment
is the access point for all stakeholders. They communicate with this environment
through an API that stipulates the commands to access the available open data.

CITY OF THINGS 99

Figure 5.3: Detail of the analysis sandbox environment in the open information architecture
of CoT.

The CoT dynamic runtime environment can retrieve data for stakeholders out of
the open data sets, or closed sets they have access to, but also engage with the ac-
tuators in the urban environment. Additionally, the runtime environment can also
be used by researchers to deploy experiments on devices in the smart city testbed
in order to test new sensors or new sensor functionality.

The API that relays the commands to the digital runtime environment has four
entry points: sources, types, locations, and labels. The first entry point, sources,
holds all the data on the available sensors, their details and the actual events of
these sensors. The types-API grants access to data on the different types of sensors
and which of the sources are of which type. Based on locational data and source
type the locations-API can provide the events that originated at a certain location.
The final entry point, labels, is a simple grouping for all types/sources that are part
of a certain experiment or use case. If it resolves in a type, the types-API can
be used further on, and similarly if a source is returned, the sources-API is used.
A conscious decision was also made to only allow polling on the API, contrary
to the subscriber-based streaming support in the smart city testbed of Santander.
The benefit of the polling-only approach is that the API becomes scalable because
the unilateral urls to the different entry points allow for better caching strategies.
Moreover, even though the API only allows polling, this apparent restriction will
be mitigated by the analysis sandbox environment.

5.4.2 Analysis sandbox environment

Figure 5.3 shows a more detailed view of the analysis sandbox environment. This
entire environment is managed by the Tengu platform. Tengu is a Platform-as-a-
Service developed at Ghent University to orchestrate the setup of big data frame-
works [5]. This means that Tengu automatically installs and configures custom big

100 CHAPTER 5

data environments. Currently, Tengu manages the entire data backend of the CoT
project, including the open data platform detailed in Section 5.4.1. For the sand-
box environment Tengu provides the necessary flexibility to quickly set up custom
big data frameworks, for example for the development of proof-of-concepts.

Stakeholders connect to the analysis sandbox environment through a graphi-
cal user interface from which they are able to build their custom big data solu-
tion. They have a wide selection of open source technologies for both analysis
and storage which can be chained together. Components can also be added that
retrieve data from the open data sets from the smart city environment, allowing for
a smooth integration between the analysis sandbox and the open data platform.

As soon as their custom big data framework is designed, resources are allo-
cated by the Tengu platform. These resources can originate from public cloud
providers such as Google, Amazon, and Microsoft, or can be part of a private
infrastructure. On these resources the technologies defined by the creating stake-
holder are installed and configured correctly. The data feeding from the open data
platform is realised through an advanced data connector, supported by LimeDS [9].
Starting as an OSGi abstraction layer, LimeDS grew to a visual toolset to quickly
wire data-driven services together. LimeDS supports the creation of new data flows
and changes to existing ones at runtime which allows Tengu to configure custom
flows for the analysis sandbox. LimeDS communicates with the CoT dynamic
runtime environment to retrieve data from the open data platform or to send com-
mands to the actuators in the smart city.

The addition of this analysis sandbox environment to the smart city testbed
of CoT enables it to overcome the challenges listed in Section 5.2. Infrastructure
is made available by the IT department of the city, University of Antwerp and
Ghent University. Tengu uses this infrastructure as a resource pool for the cus-
tom created big data frameworks which is automatically allocated when needed.
As for the choice of technologies, Tengu provides predefined bundles for specific
architectures that guide users in choosing relevant technologies for their custom
solutions. Finally, the big data operations are completely automated by Tengu so
no know-how or manual interaction are required during the setup process.

5.5 Use cases

The architecture detailled in Figure 5.2 and Figure 5.3 is able to overcome the
issues detailed in Section 5.2 and achieving the goals of the CoT project. How-
ever, in order to make the contributions of the open information architecture more
tangible, we present three use cases in the following subsections.

CITY OF THINGS 101

Figure 5.4: Subscription service use case for testing new sensors where data is processed
by a custom Apache Storm topology and sent to an external visualization tool.

Figure 5.5: Air quality use case setup in the CoT project where data is stored in HDFS,
processed by Apache Spark, and visualized by a Zeppelin dashboard.

5.5.1 REstore case

The standard API to access the open data platform follows strict unilateral URLs
in order to support caching for scalability. However, this means that some applica-
tions will sometimes need to form several requests and combine the returned data
events themselves in order to get the information they want. These applications
can also opt to offload this complexity to the analysis sandbox. In the sandbox
LimeDS can perform several requests and combine the returning data events. Ad-
ditionally, it creates a new custom API that is accessible for the applications that
need to retrieve these combined results. An example of a custom API built with
the analytics sandbox is for REstore 4. The custom API contains prepared data for
the highly specialized REstore analytics platform towards smart power control.

5.5.2 New sensor case

As mentioned in Section 5.4.1 the analysis sandbox environment is able to mitigate
the polling-only restriction on the open data platform API. This use case shows a
subscription-like service set up with the streaming technologies available in the
sandbox, which can be relevant for researchers and companies testing new sensors
in the smart city environment. A streaming solution allows them to quickly follow
up on early data events from the sensors and intervene, if necessary.

Figure 5.4 illustrates such a solution designed in the sandbox. Data events
from the new sensors are sent to the interoperability framework that routes the data

4https://www.restore.eu

https://www.restore.eu

102 CHAPTER 5

events through the data ingestion module into InfluxDB, a time series data store.
Meanwhile, after the design of our streaming solution was completed, LimeDS
requested the runtime environment to be kept up to date on data events of the new
sensors. Therefore, as soon as data events arrive in InfluxDB, LimeDS also sends
this data event to Storm, a streaming technology that performs pre-processing on
the data events before sending them back to LimeDS. Finally, LimeDS connects
to an external data sink and sends the data over. In this case the external data sink
is a custom visualization tool from the company or researchers that are performing
the sensor tests.

5.5.3 BPost case

As part of the CoT project, BPost, Belgium’s leading postal operator, had air qual-
ity sensors installed on their delivery vans in the Antwerp area. At regular intervals
the air quality sensors report on their current values together with their location.
With these data points available in the open data platform it is interesting to create
a trend analysis on the evolution of air quality in the city. Figure 5.5 details the
complete setup of this specific use case. Data from the air quality sensors is sent to
the CoT platform through the interoperability framework. Via the data ingestion
module the measuring events are stored in InfluxDB. The process up until now is
similar to the previous use case.

In order to calculate the evolution of air quality in a specific location for a cer-
tain time frame, a big data framework for batch analysis has been instantiated with
Spark. On top of Spark Zeppelin has been integrated which allows to visualize the
results. When executing, LimeDS will request the relevant data events in the given
timeframe from the runtime environment. These data events are then transferred to
the Hadoop Distributed FileSystem (HDFS) where they become available for the
algorithms executed in Spark. Once Spark is finished the results are visualized in
Zeppelin.

Aside from these air quality calculations, the movement of the BPost delivery
vans can also be tracked in real-time based on the location data. Figure 5.6 shows
an interactive map that was built for this use case. It shows real-time informa-
tion on the location of two different BPost vans in Antwerp during their delivery
rounds. The map also marks the data points where air quality data was measured
and sent to the data backend of CoT.

5.6 Next steps

While the proposed open information architecture for the smart city testbed in
CoT enables access to open data, several steps can still be taken to further lower
the threshold to unlock open information.

CITY OF THINGS 103

Figure 5.6: Visual representation of two BPost delivery vans moving through Antwerp, Bel-
gium, with marked measuring points at certain intervals on their route (pink
dots).

A first important aspect that has not been mentioned so far is the structure of
the data accessible through the CoT platform. Currently, the data is delivered as
is to the external APIs and the analysis sandbox. However, application develop-
ers might want to make use of specific data store technologies with characteristics
matching the requirements of their use cases. Given the dispersion of storage
technologies in the NoSQL domain, it is currently left to the responsibility of the
developer to transform the data into the preferred format. Research has been per-
formed towards the automated transformation of both schema and data between
data store technologies. The algorithm proposed in [10] detects the format of the
data from the original data store and transforms it in such a way that it can benefit
from the characteristics of the target data store technology, allowing the data to be
presented to application builders in any supported technology of their choice.

A second extension to the analysis sandbox functionality allows CoT to even
offer more than just open information. Where big data analysis allows to generate
information from raw data, additional tools for pattern detection and visualization
can extract and present knowledge from this information. For such tools to deliver
insights from large data sets in near real-time, query pre-processing and caching
components are being studied to avoid large latencies in visualizing the informa-
tion in a dashboard.

5.7 Conclusion

In recent years the Internet-of-Things has seen applications in different domains,
among which the smart cities. The goal of IoT in smart cities is to create new
applications and services based on real time data retrieved from sensors and de-

104 CHAPTER 5

vices placed all around the urban area. While this data is often openly accessible
to everyone to engage local citizens, several barriers prevent open data to be truly
accessible by everyone. We identified the most important challenges: access to
infrastructure, complex technology decisions and manual big data operations. The
chapter presents the open information architecture of the CoT project, a smart city
testbed environment in which stakeholders are able to access open data as well as a
sandbox analysis environment. The sandbox is driven by Tengu, an automated or-
chestration service for designing big data frameworks. This sandbox environment
lowers the threshold for accessing, analyzing, and processing the open data which
in turn allows the involvement of citizens and SMEs in the design of new appli-
cations and services. We referred to this situation as access to open information.
Several use cases were presented showing tangible examples of the applicability
in the smart city environment. Finally, some next steps were identified towards a
further ease-of-use of open data.

Acknowledgment
The work presented in this article was partly funded by the City of Things project
(Antwerp, Belgium) by imec.

CITY OF THINGS 105

References
[1] A. Cocchia. Smart and digital city: A systematic literature review. In Smart

city, pages 13–43. Springer, 2014.

[2] L. Sanchez, L. Muñoz, J. A. Galache, P. Sotres, J. R. Santana, V. Gutierrez,
R. Ramdhany, A. Gluhak, S. Krco, and E. Theodoridis. SmartSantander: IoT
experimentation over a smart city testbed. Computer Networks, 61:217–238,
2014.

[3] A. Zuiderwijk and M. Janssen. Barriers and development directions for the
publication and usage of open data: A socio-technical view. In Open gov-
ernment, pages 115–135. Springer, 2014.

[4] S. Latre, P. Leroux, T. Coenen, B. Braem, P. Ballon, and P. Demeester. City of
things: An integrated and multi-technology testbed for IoT smart city exper-
iments. In Smart Cities Conference (ISC2), 2016 IEEE International, pages
1–8. IEEE, 2016.

[5] T. Vanhove, G. Van Seghbroeck, T. Wauters, F. De Turck, B. Vermeulen, and
P. Demeester. Tengu: An Experimentation Platform for Big Data Applica-
tions. In ICDCS Workshops, pages 42–47. IEEE, 2015.

[6] A. Alharthi, V. Krotov, and M. Bowman. Addressing barriers to big data.
Business Horizons, 2017.

[7] A. Jacobs. The Pathologies of Big Data. Commun. ACM, 52(8):36–44,
August 2009. Available from: http://doi.acm.org/10.1145/1536616.1536632,
doi:10.1145/1536616.1536632.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified Data Process-
ing on Large Clusters. Commun. ACM, 51(1):107–113, January
2008. Available from: http://doi.acm.org/10.1145/1327452.1327492,
doi:10.1145/1327452.1327492.

[9] S. Verstichel, W. Kerckhove, T. Dupont, B. Volckaert, F. Ongenae,
F. De Turck, and P. Demeester. LimeDS and the TraPIST project: a case
study. In 7e International Joint Conference on Knowledge Discovery, Knowl-
edge Engineering, and Knowledge Management (IC3K 2015), volume 2,
pages 501–508, 2015.

[10] T. Vanhove, M. Sebrechts, G. Van Seghbroeck, T. Wauters, B. Volckaert, and
F. De Turck. Data transformation as a means towards dynamic data storage
and polyglot persistence. International Journal of Network Management,
27(4):e1976–n/a, 2017. e1976 nem.1976. Available from: http://dx.doi.org/
10.1002/nem.1976, doi:10.1002/nem.1976.

http://doi.acm.org/10.1145/1536616.1536632
http://doi.acm.org/10.1145/1327452.1327492
http://dx.doi.org/10.1002/nem.1976
http://dx.doi.org/10.1002/nem.1976

6
Conclusions and Perspectives

“Beliefs do not change facts. Facts, if one is rational, should change beliefs.”

–Ricky Gervais (1984 - now)

The big data paradigm has had an enormous impact on the way applications in-
teract with data not in the least by the emergence of NoSQL. Polyglot persistence
is considered to be one of the most important consequences of the NoSQL domain
where applications are no longer bound to a single data store technology, optimiz-
ing data access. However, this comes with the drawback of a higher management
complexity for applications, especially for legacy applications that need to trans-
form existing data from a single storage solution. In this dissertation 4 research
questions were defined:

1. How can the complexity of a polyglot persistent environment be miti-
gated for applications?

2. How can data be transformed between data store technologies in an
automated and extensible way?

3. Can the impact of the transformation on the application changes be
eliminated?

4. Can the polyglot persistent data model be optimized based on how data
is retrieved by an application?

108 CHAPTER 6

The following contributions detailed in this dissertation provide a response to
the above questions:

1. A technology-independent framework of a true Lambda architecture
with no (temporary) information loss or redundancy.

2. Definition and design of a canonical model that acts as a generic repre-
sentation of a data schema, independent of underlying technologies.

3. An extensible transformation algorithm between data storage technolo-
gies supporting continuous transformation.

4. A framework for the detection of potential relations between data through
sequential pattern mining on live queries.

In the following sections these contributions are summarized.

6.1 Lambda Architecture
The Lambda architecture is a hybrid approach to data processing that combines
batch and stream analysis frameworks, conceptualized by Nathan Marz. How-
ever, as data is processed in both the on- and offline layer, any implementation
of the architecture is susceptible to potential (temporary) information loss and/or
redundancy. In Chapter 2 a technology-independent framework for the Lambda
architecture is presented, proven to eliminate information loss and redundancy at
any given time. As soon as data enters the system, it is tagged which allows a
centralized controller to track grouped data throughout the Lambda framework.
An implementation is provided with Apache Hadoop and Apache Storm as the
off- and online layers respectively. Results show that the implementation func-
tions correctly without any (temporary) state of information loss or redundancy.
Moreover, when redundancy or loss is manually introduced into the environment,
the Lambda implementation is able to recover within a couple of batch execution
runs.

This contribution of the dissertation does not directly answer any of the posed
research questions but acts as a great use case of how big data and NoSQL leverage
polyglot persistence for applications as results of the different layers are stored
in disparate technologies. Moreover, the Lambda architecture proves to be an
extremely suitable framework for the transformation described in Chapters 3 and 4
and therefore indirectly contributes to the answer of Research Question 2.

Over the past years the Lambda architecture has been under fire because of
its high maintenance. Especially the necessity of maintaining two separate code
bases for the on- and offline layer has provoked heavy criticism. As a reaction
to this criticism the Kappa architecture was introduced where the offline batch

CONCLUSIONS AND PERSPECTIVES 109

layer is completely removed and all data is processed as a stream. However, this
does not mean that all Lambda architecture use cases can now be transferred to
the Kappa architecture. While the Kappa architecture effectively simplifies code
base maintenance, it loses the capability of accessing all historical data as a whole.
Some processing challenges can use this access to highly optimize batch algorithm
performance. Choosing between the Lambda and Kappa architecture therefore
becomes a trade-off between algorithm performance and code base complexity.

6.2 Canonical model

In Chapter 3 a canonical model is introduced representing a technology-independent
data schema. It is built up around Entities that represent subjects, which in turn are
a combination of Attributes. Using this centralized model as a part of the transfor-
mation algorithm allows the algorithm to be easily extended with support for new
data stores. Additionally, Chapter 4 extends the canonical model with a technology
layer that maps Entities onto data stores. Together with the stream transformation
this effectively forms an abstraction layer of the polyglot persistent environment.
The canonical model itself provides a clear overview of how the data model is
built up in the heterogeneous storage, while the continuous transformation allows
queries to query their polyglot persistent data as if it was stored in one technology.

This dissertation also provided a proof-of-concept implementation of the canon-
ical model as direct graph in a graph data store, Neo4j, with support for transfor-
mations from and to MySQL, Cassandra, and MongoDB. This implementation of
the canonical model also stores limited additional information on attributes, such
as the primary key or identifier, and even foreign keys from MySQL. In a full im-
plementation the goal would be to store all metadata, representing functionality,
from the original data store to match it as closely as possible. The graph represen-
tation

6.3 Transformation algorithm

Chapter 3 defines an extensible transformation algorithm between two data store
technologies (SQL and NoSQL). The algorithm is able to derive the data schema
from the original data store and through the canonical model both the schema
and data are transformed into a new technology, making sure that the loss of spe-
cific characteristics from the original data store is minimized. Using the Lambda
architecture from Chapter 2, the entire transformation can be executed in the back-
ground of a live application, even providing a seamless changeover and a continu-
ous transformation in the online layer. This allows an application to still query in
the original query language with a total overhead of less than 100 ms in the proof-

110 CHAPTER 6

of-concept implementation. In other words, the transformation procedure requires
no changes to the application’s code and introduces only a limited impact on query
latency.

In a production environment it can be argued that the amount of layers between
an application and the actual data store(s) should be limited. Considering a one-to-
one transformation between data store technologies, the continuous transformation
only serves as an intermediate between the old and new querying language. The
continuous transformation could then be regarded as a temporary state until the
application is rewritten to support the new query language. This allows the appli-
cation to benefit from the full expressiveness of the new query language without
the intermediate layer, further improving data access latency. As for bringing a
legacy application into polyglot persistence, i.e., a one-to-many transformation,
the continuous transformation is more than just an intermediate between querying
languages since it also acts as a shield for the complexity of the heterogeneous
data stores together with the canonical model.

As mentioned in Section 6.2, this dissertation provides a proof-of-concept im-
plementation of the transformation algorithm and support in the canonical model
for MySQL, Cassandra, and MongoDB and a basic working feature set. The batch
transformation allows for the creation of new Entities and the insertion and updat-
ing of data. In the continuous transformation retrieval of data was also considered
with support for basic queries, such as the ‘select-from-(join)-where’-queries in
MySQL and equivalents in CQL and MongoDB. The goal is not to provide a full
implementation of all features of many storage technologies, but rather prove that
the chosen approach with the canonical model allows for extensibility through
supporting new data store technologies, as well as expanding the feature sets of
already supported technologies.

6.4 Data schema optimization

The final contribution of this dissertation aims to use information from the applica-
tion to tailor and optimize the canonical model and underlying data schema(s) cor-
respondingly. Specifically, this dissertation looks into potential relations between
data inside a data model based on live queries by the application in an attempt to
optimize or eliminate complex queries (e.g., JOIN queries). Chapter 4 defines a
sequential pattern mining approach with suffix trees that is able to retrieve frequent
query patterns used by the applications or users. Based on these patterns, relations
between Entities can be defined in the canonical model, which in turn can be used
to optimize the data schema of the polyglot storage environment.

The sequential pattern mining is applied to technology-independent GET-queries
in the canonical model, allowing relations to be defined across data store technolo-
gies. The GET-queries currently support multiple entities per query (e.g., JOIN

CONCLUSIONS AND PERSPECTIVES 111

Figure 6.1: Overview of the building blocks of the Zeta architecture as documented by
Jim Scott.

queries), projection of attributes, and selection of the attributes based on equality
with values or other attributes. These queries are then sequentially put into a suffix
tree, built with Ukkonen’s algorithm, to determine frequent patterns. The decision
of which frequent patterns are implemented as relations is derived from an ILP.
In the implementation a very simplistic heuristic was used which ranked frequent
patterns in descending order of occurrence. The information is then used to opti-
mize the polyglot persistent data schema which can then be used by the continuous
transformation layer for the recurring complex queries.

6.5 Future Work

This dissertation has made several contributions to the domain of big data and
storage in polyglot persistent environments. In the following sections further chal-
lenges are identified for the research community.

6.5.1 Zeta architecture

The Lambda architecture in Chapter 2 is only the first of several hybrid frameworks
that have been released during the time of this PhD. A more recent framework is
the Zeta architecture. The Zeta architecture is a new enterprise architecture that
consists of 6 building blocks around a global resource management system. The
building blocks are depicted in Figure 6.1. Similar challenges can be identified for
the Zeta architecture concerning the synchronization of different components that
function within the architecture, such as the real-time data storage, the distributed
file system, and the execution engine. It would be interesting to provide a similar
implementation approach for the Zeta architecture managing the synchronization
of its building blocks.

112 CHAPTER 6

6.5.2 Dynamic Data Storage

Chapter 3 shows that the correct choice of a data store technology is of prime im-
portance for an application. However, since new technologies become available
on a weekly basis, it is not inconceivable to think that one of these new tech-
nologies might be more beneficial for an existing application. Moreover, as the
(non-)functional requirements of applications might change over time because the
number of users changes, or new functionality is supported in the application itself,
the current supported data store might no longer suffice. At such a time it would be
interesting to autonomously transform the data store, or data stores, of an applica-
tion in the newly most appropriate storage technology. A (self-learning) decision-
making algorithm would need to be designed that can identify such change-over
points in an application’s lifetime. At first this could be done for a single storage
environment, but this work could also be extended into polyglot persistence.

6.5.3 Data Schema Optimization

The schema optimization in Chapter 4 optimizes the storage environment based
on the detected relations in the data schema, but other approaches exist to increase
the read performance. Automated indexing would add indexes to entities elimi-
nating costly full entity scans to retrieve data. Another approach can precompute
the result of frequent single queries allowing results to be returned much faster.
However, indexing is only useful in when queries request a small subset of an En-
tity and query precomputing yields the highest gains when used with aggregate
functions (e.g., COUNT, SUM, and AVG). Therefore, an optimization algorithm
would need to decide, based on used queries and their results, which approaches
could be beneficial for the data schema.

A
Live Datastore Transformation for

optimizing Big Data applications in
Cloud Environments

T. Vanhove, G. Van Seghbroeck, T. Wauters, F. De Turck.

Published in Proceedings of the IFIP/IEEE International Symposium on
Integrated Network Management (IM), May 2015.

? ? ?

This appendix describes research on the transformation algorithm that pre-
cedes the work detailed in Chapter 3. While the general approach in this appendix
is similar to the final version, certain components, such as the canonical model,
have been extended and optimized. This appendix is added to the dissertation
for completeness sake as Chapter 3 refers to specific sections in this work. It
contains a framework for the live transformation of the schema and data of data-
stores, using a previous version of the canonical data model. A transformation is
given between MySQL and Cassandra as a proof-of-concept with no support for
continuous transformation and limited SQL/CQL features. The correctness of the
transformation is shown and performance results, in terms of transformation times
and overhead, are provided.

114 APPENDIX A

A.1 Introduction

Vendor lock-in and interoperability issues are still considered to be top inhibitors to
cloud adoption, according to a survey by North Bridge among 855 respondents [1].
The choice between cloud providers is in most cases difficult as there are several
large players such as Google, Microsoft, and Amazon, but even more smaller play-
ers. Comparing these public cloud providers is a tedious task and in order to help
future customers decide which cloud provider is best suited for them, tools have
been created for the automated comparison of providers based on different re-
quirements [2, 3]. For example, Ruiz-Alvarez and Humphrey have an automated
approach of selecting the best storage service for a given dataset of a particu-
lar application [3]. Once such a choice is made, the migration to the cloud is a
complex process. Firstly, because of the size of current data sets, traditional pro-
cessing and storage solutions no longer suffice. Working with these big data sets
requires parellel software running in clusters of tens, hundreds or even thousands
of servers [4]. Secondly, this process usually involves changes to the application,
extensive (re)configuration, and/or downtime. But as applications tend to evolve
with frequent updates and feature requests on the one hand, and increasing user
numbers on the other, their requirements change and scalability issues arise. This
leads to a situation where the original, optimal choice of datastore is no longer op-
timal, i.e., the performance of the applications suffers from this choice. This might
call for another migration, even potentially to another provider, again a costly op-
eration.

In this appendix, we propose a new framework for live datastore transformation
as part of a new Platform-as-a-Service Tengu, previously known as Kameleo [5].
The proposed framework aims to migrate and transform the schema and data of
any datastore without any necessary changes to or downtime of the application. It
introduces the concept of dynamic storage which allows the stored data to be stored
in the optimal format for the application, transforming the format when necessary,
i.e., when certain requirements are no longer met (e.g., query time exceeds a cer-
tain threshold). This appendix shows the extensible approach for transforming
datastores live and the architecture to support it. A proof-of-concept implementa-
tion is detailed showing the transformation between MySQL, a relational database,
and Cassandra, a NoSQL column-oriented datastore. The authors want to empha-
size that although datastore is a term often used within the NoSQL domain, while
RDBMS prefers the term database, this appendix uses datastore as a general term
for both.

The remainder of this appendix is structured as follows: the architecture of the
framework is described in Section A.2, while Section A.3 details the transforma-
tion principles and the corresponding workflow. The algorithm for the transfor-
mation is stipulated in Section A.4. In Section A.5, the implementation details of

DATASTORE TRANSFORMATION 115

Figure A.1: General overview of the architecture with a batch layer and parallel speed layer.

the framework are provided. Section A.6 details the experimental setup, whereas
results can be found in Section A.7. The discussion of the results in regard to fu-
ture work can be found in Section A.7.3. Section A.8 gives an overview of related
work in the field of migration and transformation of datastores. Finally, the main
conclusions are presented in Section A.9.

A.2 Architecture overview

When applying a transformation on a datastore, it is important that the live appli-
cation it supports, encounters no or minimal impact on it’s operations. Secondly,
the faster a transformation can be completed, the better, as the data is highly sus-
ceptible to redundancy and loss in this state. It can be reasonably assumed queries
will continue to arrive while the transformation is in progress, considering a live
application. Reading information from the datastore during the transformation is
straightforward as these queries can be handled by the original or source datas-
tore (Dsrc), but queries inserting new or modifying existing data also need to be
transformed, otherwise the transformed datastore (Dtrans) will not contain the lat-
est data and/or reflect the latest changes to its data and structure. A simple solution
would be to store these queries and transform them as soon as the first transforma-
tion is finished. However, during this second transformation new queries would
possibly still arrive as well, yielding an almost infinite loop. Introducing a real
time transformation for these queries, parallel to the batch transformation, solves
this issue.

For the sake of completeness, we mention that the Tengu platform already
provides a batch and speed layer architecture as a service, the Lambda architec-
ture [5, 6]. It is a specific approach for Big Data analysis leveraging the computing
power of batch processing with the responsiveness of a real-time computation sys-
tem.

116 APPENDIX A

Figure A.1 shows a general overview of the proposed architecture. The batch
layer uses a snapshot to transform the structure and data present in Dsrc at that
time, while the speed layer transforms queries that add new data or transform ex-
isting data or structure. The latter transformations are stored in sequence until the
batch layer is finished, after which the queries are executed on the newly created
Dtrans. It is important to note that all queries arriving after the snapshot are still
being executed on Dsrc as well, since it is still being used for reads. Once the
batch layer is finished and while the stored queries from the speed layer are exe-
cuting on Dtrans, a changeover process will be started. This stops all queries from
being sent to Dsrc and completes the changeover to Dtrans.

A.3 Transformation and workflow

A.3.1 Approach

Two main approaches can be identified when looking at the actual transformation
of a datastore: direct transformation and transformation through a centralized data
model. The first approach is fairly straightforward as one datastore is directly
mapped onto another. Unique properties of a certain datastore can be mapped onto
specific traits of the other entirely. However, for each new supported data model,
this approach would require a new implementation for transforming the new data
model into each of the already supported models. Using a centralized data model
would solve this issue by first transforming the structure and data of each datastore
to the data model, after which it is transformed into the new datastore. Supporting
new datastores would then only require a transformation towards and from the
abstract or canonical model. While this solution does support the extensibility
of additional datastores being added, it also has several drawbacks. Firstly, the
solution requires an extra transformation for every conversion between datastores
introducing additional overhead. Secondly, while transforming to the centralized
data model, it is not possible to assume anything about the unique characteristics
of Dtrans as the destination datastore is not yet known at that point.

Within the centralized data model, two possibilities exist: an abstract and a
canonical model. An abstract model can represent the most common characteris-
tics shared by several datastores, while the canonical model aims to support ev-
ery specific characteristic of each supported datastore. Although the abstract data
model allows a general representation of the datastore’s structure and data, not all
unique characteristics of the datastores are supported and any related advantages
are also lost. With this in mind, the approach with a canonical model is preferred.
The complexity in developing such a solution will be mostly contained in the first
stage. Once the canonical model is in place, adding support for new datastores is
significantly easier. Even if this approach performs worse time-wise, compared to

DATASTORE TRANSFORMATION 117

Figure A.2: Canonical model for the structure of a dataset.

a direct transformation, the architecture proposed in Section A.2 still allows for
the application to operate with minimal impact. That is, during the transformation,
Dsrc is still the main datastore, i.e., it still processes all the queries from the ap-
plication, while the speed layer transforms any queries that update or insert data in
the datastore.

Figure A.2 represents a diagram of a proposed canonical model, based on the
Entity-Relationship (ER) model [7], for the structure of a dataset. The central el-
ement in this canonical model is the Entity. It represents a subject and is built
up by different Attributes. It can be compared to a table in SQL, but, as demon-
strated in Section A.5, not every table in SQL can be mapped onto an Entity. An
Entity also keeps information about its primary keys and Attributes. Relations
between Entities can also be represented with a specific type, such as many-to-
one, many-to-many and one-to-one. Additional information about relationships,
such as cascading, can be stored here too. Finally, a Collection combines several
Entities, much like the keyspace combines column families in Cassandra. While
the tuples (i.e., the actual representation of the data in the datastore) are not men-
tioned in Figure A.2, a tuple can be regarded as a combination of singular pieces
of information, related to attributes as part of an entity (e.g., a row in a SQL table).

A.3.2 Workflow

This section summarizes the typical workflow of a transformation by the frame-
work. The transformation process can be described in four steps:

1. Initiate transformation: the transformation is initiated, based on monitor-
ing data or by request. A snapshot is taken from Dsrc and passed on to
the batch layer. Until the handover, the final step, Dsrc acts as the main
datastore for the application(s), i.e., all queries are still passed on to this

118 APPENDIX A

datastore. However, all queries that insert or update data in the datastore are
also forwarded to the speed layer as soon as the snapshot is initiated.

2. Transform structure: before the data can be transformed, the batch layer
transforms the structure or schema of Dsrc. The speed layer is only collect-
ing queries, but not yet transforming them, as information is needed about
the transformed schema of the datastore.

3. Transform data: based on the transformed shema of Dsrc, a new datastore,
Dtrans, is set up. Both batch and speed layer start transforming the data
from the snapshot and queries respectively.

4. Handover: as soon as the data from the snapshot is transformed and put into
Dtrans, the handover is initiated. All queries are then redirected to Dtrans

with respect to any queries still in queue at the speed layer.

At this point, the application still queries in the language of Dsrc which leads to
the following possible scenarios:

• The application maintains the original language and every query is trans-
lated by the speed layer. The application thus remains dependant on the
proposed architecture with a minimal overhead introduced by the continu-
ous transformation.

• The application was prepared for this transformation and changes its query-
ing language to that of Dtrans.

• The application communicates to the datastore through an abstract data layer,
such as Hibernate ORM/OGM or PlayORM

It is clear that in order to eliminate the need for the application to change, the
first option, continuous transformation of the queries, is required. Although we
mention the different possibilities here, the further evaluation of these scenarios is
outside the scope of this appendix and part of Chapter 2.

A.4 Transformation algorithm

As discussed in Section A.3, based on the canonical model approach, the trans-
formation is divided into two parts: the first part transforms Dsrc into a canonical
model and in a second phase from the canonical model into Dtrans. To clarify the
entire process, the transformation is drawn up for two specific datastores. In the
context of companies migrating to the cloud and issues like vendor lock-in, an in-
teresting use case is that of a company with a classic RDBMS wanting to migrate
to a NoSQL datastore. MySQL, one of the most popular open-source RDBMS

DATASTORE TRANSFORMATION 119

solutions, and Cassandra, a popular NoSQL column store, are selected for the
proof-of-concept as Dsrc and Dtrans, respectively. It is important to note that all
concepts used in MySQL are part of the ANSI SQL standard and can therefore be
applied to any ANSI SQL standard supporting implementation.

A.4.1 SQL to canonical

The following schema shows how the different datastructures from SQL are mapped
onto the canonical data model:

Database⇒ Collection

Table⇒ Entity

Column⇒ Attribute

Foreign keys⇒ Relationships

The first three structures are trivial: a database is a collection of tables and thus
entities. The tables have columns, which are represented by the attributes of en-
tities. Relationships between tables in SQL and between entities in our canoni-
cal model are however more complicated. In SQL the relationships are defined
through foreign keys, primary keys, and table use. Three types of relationships
exist: one-to-one, many-to-one and many-to-many. For each type of relationship
the use of foreign keys are detailed below:

• One-to-One: a relationship where a record of a table is connected to at
most one record of the other table. In MySQL this is usually defined be two
tables having the same primary key. In one of the tables, this primary key
is also the foreign key referring to the primary key of the other table. For
example, a table ”Customer” has a one-to-one relationship with the table
”Address”. The primary key of ”Address” is also its foreign key and refers
to the primary key of ”Customer”. Both tables thus have the same primary
key. Another possibility is to have a foreign key in both tables referring to
the other table’s primary key. One-to-one relationships can also be used for
the inheritance between tables, but this specific kind of relationship was not
considered at this point.

• Many-to-One: a relationship where one record of a table can be connected
to multiple records of another table, while the latter are only used in one
relation at most. To express this relationship, a foreign key is used in the
records on the ”many”-side. An example is the relationship between a table
”Order” and a table ”Customer” where one customer can have many orders,
but an order is only related to one customer. In the ”Order” table therefore a
foreign key is held, referring to the primary key of ”Customer”.

120 APPENDIX A

• Many-to-Many: a relationship where records from both tables can be in
multiple relations between each other. In MySQL it is not possible to ex-
press this relationship with only foreign keys. A new table is therefore
introduced with only two foreign keys mapping records of the two tables,
sometimes identified by a single primary key if needed. This map-table has
a many-to-one relationship with each of the other two tables. For example,
the relation between a table ”Orders” and a table ”Products”. Orders can
contain several products, but products can also be in more than one order.

When a foreign key in a table is recognized during the transformation to the canon-
ical model, without any additional information the only correct assumption that
can be made is that there exists some kind of relationship with this other table.
Therefore, in a first step this general relationship will be translated into the canon-
ical model and, after all tables have been mapped onto entities, the specific types
of relationships can be defined in the canonical model as follows:

• A one-to-one relationship is thus detected if the local attribute in the en-
tity is also the primary key of that entity or if the related entity also has a
relationship referencing the entity.

• The many-to-many relationship is more complicated because of an addi-
tional table (i.e., entity) introduced by MySQL. This map entity is only used
as an aid to represent the many-to-many relationship between two ”true” en-
tities and therefore it will be referred to as a ”false” entity. As mentioned
before, it is reasonable to assume this false entity only has two attributes,
representing the many-to-one relationships with the two true entities, with
the exception of a possible extra attribute serving as an id. The false entity
is now marked for deletion, but not effectively removed as data stored in the
original table still needs to be transformed afterwards. Finally, a many-to-
many relationship is added to both true entities.

• Many-to-one relationships are the relationships that remain and do not sat-
isfy the previous conditions.

The entire datastore schema has now been transformed into the proposed canonical
model.

DATASTORE TRANSFORMATION 121

A.4.2 Canonical to Cassandra

The following schema shows how the canonical data structures are mapped on
Cassandra:

Collection⇒ Keyspace

Entity⇒ Column family

⇒ Composite column

⇒ Super column

Attribute⇒ Column

Relationships⇒ ...

The analogy between collection and keyspace on the one hand, and attribute and
column on the other, is straightforward. For the entities and their relationships
this is less so. An entity can be any of the following data structures: a column
family, a composite column and a super column. Although super columns are no
longer favoured as a result of their bad performance, they are only mentioned here
for completeness. While relationships are not enforced in Cassandra, they can be
represented when present in the canonical model in order to :

• All (true) entities are temporarily considered to be column families

• One-to-one relationships are eliminated through inclusion of one entity in
the other as a composite column. Which entity is included in the other is
decided as follows:

1. If one of the entities still has other relationships, or more relationships
compared to the other, this entity includes the other.

2. If both entities have no or the same amount of relationships, the entity
with most attributes includes the one with less attributes.

3. If both entities have the same amount of attributes, one of the entities
is randomly chosen to be included in the other.

• Many-to-one relationships are represented by adding an additional col-
umn family to the keyspace. This so called ”index” column family maps
the ”one”-side column family on the ”many”-side column family. For ex-
ample, the column family ”Order” has a many-to-one relationship with the
column family ”Customer”. It is easy to determine the customer related to
a certain order as this is saved in the column family. A harder query would
be to get all the orders for a certain customer. As Cassandra strives towards
fast lookup times, joining column families is not an option and therefore
an index column family is added allowing these kind of fast lookups. The

122 APPENDIX A

Figure A.3: Instantiation of the framework with all the implemented technologies.

first consequence of this approach is that more writes are needed to add a
record to the ”many” side column family (e.g., ”Order”), but Cassandra is
optimized to handle these concurrent writes [8]. Secondly, the datastore is
denormalized and data is redundantly stored, which is important to remem-
ber when querying or updating the store.

• Many-to-many relationships can be similarly addressed as the many-to-
one relationships, but from both sides. Therefore two index column families
are created to again ensure a fast lookup time. For example, the column
families ”Order” and ”Products” with a many-to-many relationship. It is
important to have easy access to all the products that are related to an order,
but also to all the orders where a specific product is included.

The entire datastore schema has been transformed into a Cassandra datastore and
now the data can be transformed from Dsrc to Dtrans based on the created canon-
ical model. This is done in a similar fashion by mapping the data from MySQL
onto the canonical model and then transforming it from the canonical model to
Cassandra. The speed layer also performs this transformation in parallel to the
batch layer for all the INSERT or UPDATE queries that have been received during
the transformation of the structure.

A.5 Implementation details

A.5.1 Technology choice and motivation

The proposed architecture in Section A.2 requires an intelligent controller-like
component responsible for the communication between the batch/speed layer and

DATASTORE TRANSFORMATION 123

handling input/output for those respective layers. Several possibilities were con-
sidered, such as a Message Broker (MB), an Enterprise Service Bus (ESB) and a
Complex Event Processor (CEP).

A CEP takes actions based on certain events that occur in the system, while a
MB allows for the asynchronous communication between applications. The ESB
also allows for the communication between applications, but takes a routing ap-
proach based on a bus architecture. The CEP may not be as suitable for the pro-
posed architecture as we would have limited control over the messages sent and
received. While a MB may suffice for the simple exchange of information between
several applications, an ESB allows for more control on the routing, mediation and
transformation of the processed messages.

Based on these considerations, the ESB was chosen as central component. The
most-used open source ESBs are UltraESB, WSO2 ESB, Mule ESB and Talend
ESB. All have an active community with sufficient documentation provided for
new users. Performance testing of these open source ESBs shows that on average
both the WSO2 ESB and UltraESB have the best performance compared to Mule
and Talend [9–11]. However, the UltraESB is less mature than the WSO2 ESB,
having less iterations, and therefore the WSO2 ESB was chosen for the implemen-
tation.

A choice also needs to be made regarding the batch layer technologies. In order
to achieve such a transformation of a big data set, powerful computing frameworks
are needed. One of the best-known batch frameworks is MapReduce [12], origi-
nally developed by Google, but made popular by its open-source implementation
Apache Hadoop. Another increasingly popular batch framework is Spark [13].
Spark is proven to execute certain programs up to 100 times faster than Hadoop
in memory or 10 times on disk. MapReduce is also not the only approach to
Big Data analysis. Solutions like the HPCC Systems platform and PowerGraph
leverage other programming models to achieve this. However, considering the
proposed transformation, there is a distinct similarity with the MapReduce model.
The transformation to the canonical model can be considered as a map task, while
the conversion from the canonical model can be seen as a reduce task. Based on
these findings the batch layer in this proof-of-concept was implemented in Hadoop
MapReduce. A scalable workflow management system, Oozie [14], was also in-
stalled on top of Hadoop. Oozie also provides a REST API which can be used by
the ESB, allowing it to send commands to the Hadoop cluster.

For the speed layer, the most notable candidates are Storm and S4 [15]. Storm,
recently introduced in the Apache Incubator project, provides a continuously run-
ning topology made up of singular nodes, called bolts, thus creating custom analy-
sis streams. S4 was released by Yahoo in 2010 and also became an Apache Incuba-
tor project in 2011. It consists of processing elements, interconnected by streams
and bundled in apps. These apps are then deployed and run on nodes. This and

124 APPENDIX A

Figure A.4: Setup of the implementation on the iLab.t Virtual Wall.

a publish/subscribe system of messages makes the framework modular in such a
way that apps can interconnect and be assembled in larger systems. Based on the
ability of Storm to guarantee processing of the queries and the active community
surrounding the project, it was chosen for the proof-of-concept implementation.
Both Hadoop and Storm also use Java, which means code is reusable accross both
layers. The connection between the ESB and Storm is handled by Java Message
Service (JMS) and ActiveMQ [16]. An overview of all the chosen technologies
can be found in Figure A.3.

A.6 Experimental setup
The implemented instantiation of the architecture was deployed on the Virtual
Wall. The iLab.t Virtual Wall facility 1 is a generic test environment for advanced
network, distributed software and service evaluation, and supports scalability re-
search. The Virtual Wall contains 100 nodes with Dual CPU (Quad core) with
12GB of RAM and 1x160GB disk.

Figure A.4 details the deployment of our implementation on the Virtual Wall.
The setup of every node is done through a combination of the JFed software 2 and
the configuration management tool Chef [17]. Once the experiment is deployed,
scripts are started on all nodes for the installation of Chef. One node is installed
with a Chef server, while all other nodes are installed as a Chef client. Through
cookbooks and recipes on the Chef server, the clients are then put into their roles
of ESB, Hadoop master, Hadoop slaves, Storm nimbus, and Storm slaves. Oozie

1http://ilabt.iminds.be/
2http://jfed.iminds.be/

http://ilabt.iminds.be/
http://jfed.iminds.be/

DATASTORE TRANSFORMATION 125

Figure A.5: Structure of the proof-of-concept datastore.

is installed on the Hadoop master, while ActiveMQ is installed on the ESB node.
Although a choice was made to use Hadoop and Storm for the batch and speed
layer respectively, the ESB can support different technologies and a new test envi-
ronment can be deployed swiftly using JFed, and Chef and its cookbooks.

The structure of the proof-of-concept datastore needs to show the transforma-
tion can handle the different types of relationships between entities. With this in
mind the structure in Figure A.5 is created to serve as a proof-of-concept datastore.
It shows a datastore with information concerning a company selling products, pro-
vided by a supplier and part of a category. Orders map these products to customers
and are handled by an employee. The address of a customer is saved in a separate
table.

The original dataset contains 50 tuples in each of the following tables: ”Ad-
dress”, ”Category”, and ”Customer”. Tables ”Employee” and ”Product” both con-
tain 100 tuples, while tables ”Order” and ”Supplier” contain 200 and 10 tuples,
respectively. The table that maps the many-to-many relationship between ”Order”
and ”Product” saves 300 tuples. This original setup is then extended linearly to
match datasizes of 5, 10, 15, and 20 Gigabytes (GB), where 1 GB of tuples equals
11.5 million tuples. A 20 GB file is therefore equivalent to over 230 million tuples.

A.7 Results

A.7.1 Batch layer

The batch layer is responsible for the transformation of the structure of Dsrc to
Dtrans and the data contained in the snapshot. Table A.1 details the average ex-
ecution times for the transformation of the structure of Dsrc in Hadoop. The first
job contains the map and reduce function responsible for the initial transformation
from MySQL to the canonical model and the optimization step (cfr. Section A.5).
In the second job, the reduce step transforms the canonical representation into Cas-
sandra. Note that the execution times of map and reduce do not add up to the total
of each job because of overhead introduced by Hadoop for sorting and routing the
data. The execution time of both jobs is also not dependent on the size of the
dataset as the structure remains the same.

Figure A.6 shows the average execution times for the transformation of the

126 APPENDIX A

Figure A.6: Average execution times and standard deviation for the transformation of the
data of the datastore in Hadoop for increasing dataset sizes.

data in Hadoop for increasing dataset sizes. As expected, increasing the dataset
size also increases the time needed to transform the data. This increase follows
a linear trend. In Hadoop it is also possible to configure the number of parallel
reduce tasks in a job. Increasing the number of parallel reducers decreases the
execution time, however doubling the number of reducers from 1 to 2 does not
halve the execution time. The time gain is even less when increasing the reducers
from 2 to 4. This is the result of a Hadoop overhead as it needs to route and
copy the data to the correct nodes of the cluster. This becomes more complicated
when more reducers are used, and thus the time gain is lowered. The number of
map tasks can not be configured directly as Hadoop divides large files in smaller
chunks automatically to provide them to a mapper and thus largely decides this
autonomously. The number of parallel map tasks in these tests is 4.

Table A.1: Average execution times for the transformation of the structure of the datastore
in Hadoop.

Job 1 Job 2
Map Reduce Total Map Reduce Total

Avg (s) 1.1818 7.0909 14.1818 1.3636 8.2727 15.2727
Std dev 0.6030 0.3015 0.7508 0.5045 0.4671 0.4671

DATASTORE TRANSFORMATION 127

Figure A.7: Average execution times and standard deviation for the transformation of an
entire query set in Storm for different query set sizes.

A.7.2 Speed layer

The speed layer, implemented in Storm, is responsible for transforming INSERT
and UPDATE queries for Dsrc into queries for Dtrans. While we mention IN-
SERT and UPDATE queries as specific query types in ANSI SQL, it is clear that
this translates to any query type that inserts new or updates data in any datastore.
This process is identical to the data transformation in the batch layer, but with the
map and reduce functions accommodated in bolts. Figure A.7 depicts the total
time for the Storm topology to process the entire set of queries for different query
set sizes. In a first stage, every bolt in the topology is limited to 1 executor/task,
i.e., no parallel execution of the bolts. A linear increase of the query set yields a
linear increase in execution time. This linear trend is confirmed when observing
the average overhead for one query passing through the entire Storm topology in
Table A.2. The average processing time of a query remains constant at around
52ms for increasing query set sizes.

In a second test the number of executors and tasks per bolt was doubled, allow-
ing for parallelism in the bolts. The total execution time in Figure A.7 set shows a
small gain for all query set sizes. As with Hadoop, Storm also accounts for some
overhead for routing the queries through the topology. In Storm, it is also possible
to highly tune the parallelism of every bolt in the topology independently. This is
necessary because of the varying tasks each bolt has to perform. Execution times
may vary between bolts and might lead to bottlenecks in the topology. Simply
doubling the capacity of each bolt may therefore not halve the execution time. The
results in Figure A.7 can thus be seen as an upper limit for the execution times.

128 APPENDIX A

Table A.2: Average processing times per query in the Storm topology.

1 executor/task 2 executors/tasks

5000 Avg (ms) 52.170 51.817
Std dev 0.140 0.093

10000 Avg (ms) 51.997 51.705
Std dev 0.119 0.078

15000 Avg (ms) 51.979 51.670
Std dev 0.137 0.059

The average processing time per query remains unchanged (cfr. Table A.2).

A.7.3 Discussion

While increasing the number of reducers in the batch layer yields a decreasing ex-
ecution time until a certain point, a direct approach will almost always be faster
as there is no additional transformation to and from a canonical model. However,
this approach was chosen for the needed extensibility of the platform in the het-
erogeneous storage environment. Additionally, at this point in the transformation
workflow, after the batch layer transformed the schema of Dsrc, the speed layer is
running in parallel to catch up Dtrans to the most recent state of Dsrc. The pos-
sible negative influence of this approach on the live application(s) is also limited
as Dsrc is still the main datastore for all reads and writes during these transforma-
tions and the only additional stress on Dsrc will have been the moment where a
snapshot of the datastore was taken.

After the transformation, and handover, the speed layer may also be respon-
sible for the continuous transformation of queries, including search and range
queries. Although this scenario is outside of the scope of this appendix, it is part of
the next step towards a system where application changes are no longer required.
The results, shown in Figure A.7, bode well in this regard with a limited overhead
of around 52ms per query.

A.8 Related work

This section discusses related work in the field of migration and transformation of
datasets.

The Extract Transform Load (ETL) principle is a process, frequently used in
data warehousing, where data is extracted from an outside source, transformed
according to several rules into a predefined format and loaded into an operational
datastore or data warehouse. The proposed framework can be considered as a type
of ETL framework: the structure and data are extracted from a source datastore,

DATASTORE TRANSFORMATION 129

they are transformed and loaded into a new datastore. While ETL processes focus
on data alone and are often part of a long term solution [18, 19], the proposed
framework transforms both structure and data and loads it into a newly created
datastore instead of an already operational store. However, as the process shows a
large resemblance with any data transformation, this section follows the different
steps in the process, i.e., extract, transform and load.

Before any transformation can be performed, the schema and data of Dsrc

needs to be extracted and migrated to the framework. The migration of big data
sets has already been researched thoroughly. The obstacles posed by migration
have been approached in numerous ways, such as using high-performance net-
works [20], having a workload-aware strategy [21], or through a cost-minimizing
approach [22]. Considering the cloud context, an additional obstacle arises as
many applications have to meet strict service-level agreements (SLA), therefore
the downtime of the applications needs to be limited or eliminated entirely. Per-
forming a data migration with no downtime of the application is called a live mi-
gration. With the growing popularity of the cloud, extensive research has been
done in this sub-domain of data migration [21, 23, 24]. The Albatross technique
for shared storage, developed by Das et al. [23], uses an iterative technique where
a snapshot of the source datastore at the destination tries to catch up by iteratively
copying the changes. Elmore et al. propose a technique for shared nothing datas-
tores where pages of the store are pulled on-demand by the destination [24]. Both
proposals do however assume several characteristics of their respective datastores.
As this framework aims to support any datastore and therefore to be easily extensi-
ble, assuming anything about possible datastores would limit the flexibility of the
framework significantly. While they perform no or limited changes to a datastore’s
structure or data, they also provide some interesting insights into the ”live” aspect
for the proposed framework.

A domain directly related to transformation of schemas and data, is schema
matching and mapping [25]. Schema matching is the task of finding semantic cor-
respondences between elements of two datastore schemas, while schema mapping
aims to find a query or set of queries to map a source datastore into a destina-
tion datastore. Challenges in the automation of this process have been largely
related to the heterogeneity, e.g., different technologies or semantics. The advent
of NoSQL datastores has not eased these issues due to their own heterogeneity and
flexible, or even schemaless, datamodels. Ontologies have provided a solution to
the semantic heterogeneity in the form of ontology matching [26], but many other
challenges exist. While this entire domain provides many solutions for transform-
ing data, it differs from the problem this appendix solves in the sense that both
the data schemas are known in advance in schema matching and mapping. In this
framework the schema of Dtrans is not known in advance, but is derived from the
information in Dsrc.

130 APPENDIX A

A.9 Conclusion
This appendix proposes an approach for the live transformation of datastores through
a canonical model. A new framework is introduced, based on the concept of the
Lambda architecture with a parallel batch and speed layer. The framework is im-
plemented as an Enterprise Service Bus with Hadoop and Storm as services for
the batch and speed layer, respectively. This prototype showcases an implemen-
tation of the transformation between a MySQL database and a Cassandra NoSQL
store. Results show a linear trend in execution times for increasing dataset sizes
in the batch layer. Hadoop overhead also limits the time gain when increasing the
number of parallel reducers. In the speed layer, Storm allows for a quick catch-up
by Dtrans after the batch layer has finished it’s schema transformation and before
the changeover from Dsrc. These results are also promising for a situation where
a continuous transformation is necessary to avoid the application changes. While
the impact of this continuous transformation needs to be evaluated further, these
initial results prove that the speed layer is able to limit the introduced overhead.

Other future work will focus on the integration of this new framework into the
Tengu platform for dynamic changeovers between data models. Here, monitoring
data will be used to identify turning points in the performance of applications
using specific datastores in order to autonomously decide when a transformation
is needed.

Acknowledgment
This work has partly been funded by the IWT TWIRL project (110580) and the
iMinds (DMS)2 project (120442).

DATASTORE TRANSFORMATION 131

References
[1] M. J. Skok. The 3rd Annual Future of Cloud Computing. Technical report,

North Bridge and GigaOM, 2013. http://www.northbridge.com/2013-
future-cloud-computing-survey-reveals-business-driving-cloud-adoption-
everything-service-era-it.

[2] A. Li, X. Yang, S. Kandula, and M. Zhang. CloudCmp: comparing public
cloud providers. In Proceedings of the 10th ACM SIGCOMM conference on
Internet measurement, pages 1–14. ACM, 2010.

[3] A. Ruiz-Alvarez and M. Humphrey. An Automated Approach to Cloud Stor-
age Service Selection. In Proceedings of the 2Nd International Workshop
on Scientific Cloud Computing, ScienceCloud ’11, pages 39–48, New York,
NY, USA, 2011. ACM. Available from: http://doi.acm.org/10.1145/1996109.
1996117, doi:10.1145/1996109.1996117.

[4] A. Jacobs. The Pathologies of Big Data. Commun. ACM, 52(8):36–44,
August 2009. Available from: http://doi.acm.org/10.1145/1536616.1536632,
doi:10.1145/1536616.1536632.

[5] T. Vanhove, J. Vandensteen, G. Van Seghbroeck, T. Wauters, and F. De Turck.
Kameleo: Design of a new Platform-as-a-Service for Flexible Data Man-
agement. In Proceedings of the 2014 IEEE/IFIP Network Operations and
Management Symposium (NOMS 2014), 2014.

[6] N. Marz and J. Warren. Big Data: Principles and best practices of scalable
realtime data systems. Manning Publications Co., Greenwich, CT, USA,
2015.

[7] P. P.-S. Chen. The Entity-relationship Model - Toward a Unified View of
Data. ACM Trans. Database Syst., 1(1):9–36, March 1976. Available from:
http://doi.acm.org/10.1145/320434.320440, doi:10.1145/320434.320440.

[8] P. McFadin. The Data Model is dead, long live the Data Model. DataStax
Webinar, May 2013.

[9] D. Abeyruwan. ESB Performance Round 6.5. Technical report, WSO2, Jan-
uary 2013. http://wso2.com/library/articles/2013/01/esb-performance-65/.

[10] A. C. Perera and R. Linton. ESB Performance Round 7. Technical report,
AdroitLogic, October 2013. http://esbperformance.org/display/comparison/
ESB+Performance.

[11] S. Anfar. ESB Performance Round 7.5. Technical report, WSO2, February
2014. http://wso2.com/library/articles/2014/02/esb-performance-round-7.5/.

http://www.northbridge.com/2013-future-cloud-computing-survey-reveals-business-driving-cloud-adoption-everything-service-era-it
http://www.northbridge.com/2013-future-cloud-computing-survey-reveals-business-driving-cloud-adoption-everything-service-era-it
http://www.northbridge.com/2013-future-cloud-computing-survey-reveals-business-driving-cloud-adoption-everything-service-era-it
http://doi.acm.org/10.1145/1996109.1996117
http://doi.acm.org/10.1145/1996109.1996117
http://doi.acm.org/10.1145/1536616.1536632
http://doi.acm.org/10.1145/320434.320440
http://wso2.com/library/articles/2013/01/esb-performance-65/
http://esbperformance.org/display/comparison/ESB+Performance
http://esbperformance.org/display/comparison/ESB+Performance
http://wso2.com/library/articles/2014/02/esb-performance-round-7.5/

132 APPENDIX A

[12] J. Dean and S. Ghemawat. MapReduce: Simplified Data Process-
ing on Large Clusters. Commun. ACM, 51(1):107–113, January
2008. Available from: http://doi.acm.org/10.1145/1327452.1327492,
doi:10.1145/1327452.1327492.

[13] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:
Cluster Computing with Working Sets. In Proceedings of the 2nd USENIX
Conference on Hot Topics in Cloud Computing, HotCloud’10, pages 10–
10, Berkeley, CA, USA, 2010. USENIX Association. Available from: http:
//dl.acm.org/citation.cfm?id=1863103.1863113.

[14] M. Islam, A. K. Huang, M. Battisha, M. Chiang, S. Srinivasan, C. Peters,
A. Neumann, and A. Abdelnur. Oozie: towards a scalable workflow manage-
ment system for hadoop. In Proceedings of the 1st ACM SIGMOD Workshop
on Scalable Workflow Execution Engines and Technologies, page 4. ACM,
2012.

[15] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed
Stream Computing Platform. In Data Mining Workshops (ICDMW),
2010 IEEE International Conference on, pages 170–177, Dec 2010.
doi:10.1109/ICDMW.2010.172.

[16] B. Snyder, D. Bosnanac, and R. Davies. ActiveMQ in action. Manning, 2011.

[17] M. Marschall. Chef Infrastructure Automation Cookbook. Packt Publishing,
2013.

[18] S. Henry, S. Hoon, M. Hwang, D. Lee, and M. D. DeVore. Engineering
trade study: extract, transform, load tools for data migration. In Systems
and Information Engineering Design Symposium, 2005 IEEE, pages 1–8.
IEEE, 2005.

[19] H. Agrawal, G. Chafle, S. Goyal, S. Mittal, and S. Mukherjea. An en-
hanced extract-transform-load system for migrating data in Telecom billing.
In IEEE 24th International Conference on Data Engineering (ICDE 2008),
pages 1277–1286. IEEE, 2008.

[20] B. W. Settlemyer, J. D. Dobson, S. W. Hodson, J. A. Kuehn, S. W.
Poole, and T. M. Ruwart. A Technique for Moving Large Data Sets over
High-performance Long Distance Networks. In Proceedings of the 2011
IEEE 27th Symposium on Mass Storage Systems and Technologies, MSST
’11, pages 1–6, Washington, DC, USA, 2011. IEEE Computer Society.
doi:10.1109/MSST.2011.5937236.

http://doi.acm.org/10.1145/1327452.1327492
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113

DATASTORE TRANSFORMATION 133

[21] J. Zheng, T. S. E. Ng, and K. Sripanidkulchai. Workload-aware
Live Storage Migration for Clouds. SIGPLAN Not., 46(7):133–144,
March 2011. Available from: http://doi.acm.org/10.1145/2007477.1952700,
doi:10.1145/2007477.1952700.

[22] L. Zhang, C. Wu, Z. Li, C. Guo, M. Chen, and F. Lau. Moving Big
Data to The Cloud: An Online Cost-Minimizing Approach. Selected Areas
in Communications, IEEE Journal on, 31(12):2710–2721, December 2013.
doi:10.1109/JSAC.2013.131211.

[23] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi. Albatross: Lightweight
Elasticity in Shared Storage Databases for the Cloud Using Live Data Mi-
gration. Proc. VLDB Endow., 4(8):494–505, May 2011. Available from:
http://dl.acm.org/citation.cfm?id=2002974.2002977.

[24] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi. Zephyr: Live Mi-
gration in Shared Nothing Databases for Elastic Cloud Platforms. In Pro-
ceedings of the 2011 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’11, pages 301–312, New York, NY, USA,
2011. ACM. Available from: http://doi.acm.org/10.1145/1989323.1989356,
doi:10.1145/1989323.1989356.

[25] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema
matching. the VLDB Journal, 10(4):334–350, 2001.

[26] J. Euzenat and P. Shvaiko. Ontology Matching. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2007.

http://doi.acm.org/10.1145/2007477.1952700
http://dl.acm.org/citation.cfm?id=2002974.2002977
http://doi.acm.org/10.1145/1989323.1989356

B
Tengu: an Experimentation Platform

for Big data Applications

T. Vanhove, G. Van Seghbroeck, T. Wauters, F. De Turck,
B. Vermeulen, and P. Demeester.

Published in Proceedings of the IEEE International Conference on
Distributed Computing Systems Workshops (ICDCSW), June 2015.

? ? ?

The work detailed in this dissertation is evaluated in big data environments
with a plethora of technologies for both data processing and storage. Setting up
such environments is a manual task that requires a lot of time and knowledge on
technologies to be set up. Moreover, the entire task is complicated by the clustered
nature of many of the used technologies. In this appendix the Tengu platform is
presented. It allows researchers to quickly set up custom big data environments
without any manual interaction. This drastically reduces the experimenting time
compared to a manual approach. For the work in this dissertation, the Tengu
platform is used to set up the Lambda architecture implementation detailed in
Chapter 2 as well as the transformation used in Chapter 3 and 4. Additionally, the
Tengu platform has proven its use in other dissertations, publications, and different
projects with Ghent University and industry partners.

136 APPENDIX B

B.1 Introduction

Big data applications require scalable and fault-tolerant frameworks to handle the
high volumes of data and guarantee high processing speeds. A plethora of tech-
nologies have been invented to support efficient analysis, processing and storage
of big data sets for many different scenarios [1–4]. Nevertheless, these technolo-
gies are often cluster-based in order to meet the scalability and fault-tolerance re-
quirements of the applications. Testing these applications therefore requires large
experimentation facilities. These setups are expensive in resource cost, but the
clustered setup of the majority of these technologies complicates and increases the
configuration time.

We propose Tengu, a new experimentation platform deployed on the Virtual
Wall. The iLab.t Virtual Wall facility1, based on the Emulab2/GENI platform, is
a generic test environment for advanced network, distributed software and service
evaluation, and supports scalability research. Tengu provides an automatic setup
and deployment of big data analysis frameworks (e.g., Hadoop and Storm), SQL
data bases (e.g., MySQL), data stores (e.g., Cassandra and ElasticSearch) and other
cloud technologies, such as OpenStack. Furthermore, the platform offers several
unique features: the Lambda architecture [5], which combines batch and stream
big data analysis frameworks, and live data store transformations [6].

Many ground-breaking novel applications and services cover multiple innova-
tion areas. Therefore, the need for these solutions to be tested on cross-domain
experimentation facilities with both novel infrastructure technologies and newly
emerging service platforms is rising. The Fed4FIRE project3 aims at federating
otherwise isolated experimentation facilities from the FIRE4 community in order
to foster synergies between research areas [7]. As the Virtual Wall facility is part
of this federation, the Tengu platform is interconnected with other testbeds offer-
ing wired, wireless and sensor networks, SDN and OpenFlow technologies, cloud
computing and smart city services, which ensures that researchers can perform
experiments across the boundaries of the big data area.

Fed4FIRE offers various forms of federation. While testbeds can be merely
associated with the federation (i.e., listed on the website with links to contact
information, documentation and tutorials), the primary options are to be integrated
through advanced or light federation.

• Light: access to the testbeds services is realized by exposing a Web-based
API. This option does not allow full control over the individual testbed re-
sources, but ensures unified access to experimenters.

1http://ilabt.iminds.be
2https://www.emulab.net
3http://www.fed4fire.eu
4http://www.ict-fire.eu

http://ilabt.iminds.be
https://www.emulab.net
http://www.fed4fire.eu
http://www.ict-fire.eu

TENGU 137

Figure B.1: General overview of the Tengu architecture

• Advanced: the testbed is fully integrated in the federation so that experi-
menters can interact with their experiment during all stages of the experi-
ments life cycle (resource selection, instantiation, control, monitoring, etc.).
This option requires the implementation of the Federation Aggregate Man-
ager (AM) API on top of the testbed.

Tengu is federated through the light option. Its RESTful API for example al-
lows for the instantiation of the platform through simple HTTP POST commands.
Tengu in its turn relies on the same client tools offered by Fed4FIRE. The POST
command to instantiate the platform creates an RSpec (a description of the re-
quested resources), which is then deployed using the jFed client tool. As a conse-
quence, the same tools can be used to for example visualize the setup through the
jFed GUI 5 and interact with the underlying resources, if required.

The remainder of this appendix is organized as follows: Section B.2 illustrates
the architecture of the Tengu platform, consisting of the core platform and its front
end. The service platform, containing the RESTful API, is detailed in Section B.3.
Section B.4 lays out a use case of the Tengu platform related to social network
monitoring, followed by a description of the demo in Section B.5. Finally, related
work is discussed in Section B.6, while Section B.7 concludes this appendix and
offers several insights towards future work.

B.2 Architecture

The overall Tengu architecture has two distinct stages as illustrated in Figure B.1.
The first stage consists of the front end which translates RESTful method calls

5http://jfed.iminds.be/

http://jfed.iminds.be/

138 APPENDIX B

from the experimenters into an RSpec of a new Tengu core instantiation. Depend-
ing on the types of nodes defined in the RSpec, it can then be deployed by jFed
on several testbeds of the Fed4FIRE federation. Once the deployment is finished,
the second stage starts. The configuration management software makes sure all
different components are correctly configured and interconnected, resulting in a
new full-featured Tengu core setup.

In the following subsections we will dive deeper into the different stages and
the involved architectural components.

B.2.1 Tengu core setup

The core setup of Tengu can again be divided into three main parts: a computa-
tional unit, data stores managed by Tengu and the application specific resource
pool. An Enterprise Service Bus manages the communication between these dif-
ferent parts. It acts as a middleware software shielding the different components
from each others specific implementation and routes data and messages between
them.

B.2.1.1 Lambda architecture

The computational unit that is provided to all users of the Tengu platform is based
on the concept of the Lambda architecture [5]. This concept, coined by Nathan
Marz, combines two current approaches to big data analysis: batch and real-time
or stream data processing. Batch data analysis frameworks analyze entire big data
sets and create a view on this data set based on the implemented algorithms. How-
ever, specific types of applications, processing and analyzing data from sensor net-
works, social media, and network monitoring applications, generate data streams,
causing results provided by a batch analysis to be always out of sync with the
real-life application as new data is continuously created during the batch analysis
run. This cultivated the need for (near) real-time or stream processing [3]. These
stream processing technologies provide incremental updates to their results when-
ever new data is received, but in doing so they lack a general overview of the entire
data set.

The Lambda architecture, depicted in Figure B.2, thus is a specific hybrid ap-
proach for big data analysis leveraging the computing power of batch processing
in a batch layer with the responsiveness of real-time computing system in a speed
layer. The batch layer provides a batch view on the entire data set, while new
data is instantly analyzed by the speed layer, yielding a speed view on the most
recent data. Additionally, new data is also added to the data set so it can be ana-
lyzed by the batch layer in a subsequent run. Once this run is completed, the batch
view is updated while any redundant information is removed from the speed view.

TENGU 139

Figure B.2: Conceptual overview of the Lambda architecture

Querying the views of an applications big data set will therefore always include
the aggregation of information in both the batch and speed view.

This entire computational unit is provided as a service to the applications on
the Tengu platform. However, it is important to note that while the entire Lambda
architecture can be provided, both batch and speed layer can also be used separate
of each other. In this context the ESB manages the coordination between both
layers, routing messages to the correct layer and data stores.

B.2.1.2 Tengu managed data stores

In the big data domain, technologies for storing data are designed aimed to scale
horizontally, providing read/write operations distributed over many servers. This
yields a new category of storage systems called NoSQL data stores [4]. As many
different data stores exist today, each with their own (dis)advantages in specific
scenarios, the Tengu platform offers many different data store solutions. This al-
lows applications to use the optimal data store or even multiple data stores for their
data.

Long-term experimental applications tend to evolve with frequent updates and
changing user numbers, rendering the once optimal data store no longer optimal.
Hence Tengu provides additional features for data stores managed by the platform,
such as a live transformation between two data stores [6]. This transformation is
executed using the same Lambda architecture provided to the applications. A snap-
shot (schema and data) of the original data store is transformed in the batch layer,
while the speed layer transforms any new queries that arrive after the snapshot is
taken. Once the batch layer is finished, a new data store is set up with the trans-
formed schema and data, then updated with the queries that were transformed by

140 APPENDIX B

the speed layer, after which a turnover is initiated to use the new transformed data
store. During this entire process, the application still queries the original data store
as to eliminate any downtime.

Normally this process would also require some form of change in the appli-
cation code, using the new query language. However, the ESB shields the appli-
cation from its data store and through the continuous transformation of queries in
the speed layer, an application can still query in the language of the original data
store, even though it has been transformed [6].

B.2.1.3 Application specific resource pool

This resource pool contains several servers for the deployment of the applications
on the Tengu platform. For example, while an application takes advantage of the
computational unit of the Tengu platform, it can still manage its own data store
outside of the Tengu environment. Additionally, applications might require spe-
cific resources such as a Tomcat server. These can also be provided in this pool.
To better utilize the available infrastructure, the application specific resource pool
is set up as a private cloud.

B.2.2 Tengu front end

The Tengu front end consists of a RESTful API component and jFed. The RESTful
API component transforms incoming user requests for platform instantiations to an
RSpec that can be deployed by jFed on testbeds in the Fed4FIRE federation. A
user in this context is an experimenter who either wants to experiment with Tengu
as a Platform-as-a-Service for big data applications or who wants to use Tengu
to experiment with an application for big data analysis. The RESTful API has
POST methods to create and deploy new Tengu core instances and GET methods
to receive important information about a particular instance. It is discussed in more
detail in the next section.

Deployment of the Tengu core instances is handled by jFed, as is retriev-
ing the state information of the deployment (both general state as for example
the used nodes). Using jFed has many advantages over using the underlying
Fed4FIRE APIs (Aggregate Manager, User and Slice API). jFed validates the pro-
vided RSpec, not only in formatting errors, but for example also the used slice
identifiers. The tool also combines many individual API calls into a single opera-
tion, e.g., requesting user information, access control checks, allocating resources
and state handling. The only drawback of working with jFed, is that it does not
come with an easy RESTful interface (or any other remote interface). To make the
interaction with the Tengu RESTful API easier a RESTful wrapper was created
around the different jFed commands.

TENGU 141

B.3 Service Platform

B.3.1 RESTful API

RESTful API 1. POST /tengu/core

This API call allows to asynchronously create and deploy a new Tengu core
instance. It has three mandatory query parameters: testbed, snodes and
hnodes. The testbed parameter is to specify on which Fed4FIRE testbed the
Tengu core instance has to be deployed. The snodes and hnodes parameters
define the size of the Storm cluster and Hadoop cluster, respectively. The response
of this POST includes a unique identifier, more specifically a UUID. This identifier
can be used to retrieve the information about the Tengu core instance that is being
deployed.

Listing B.1: The message format of a response to a POST call

< t e n : t e n g u . . . >
< t e n : p l a t f o r m>
< t e n : i d>{ uu id}< / t e n : i d>
< l n k : l i n k method=” g e t ” h r e f =” / t e n g u /{ uu id}” />

< / t e n : p l a t f o r m>
< / t e n : t e n g u>

Listing B.1 shows response’s message format. Notice the usage of XHTML
links, this to easily show how an experimenter can proceed next.

RESTful API 2. GET /tengu/{uuid}

To retrieve information about an individual Tengu core instance, a user can
perform this RESTful method call. The only thing that has to be provided, is the
unique identifier (uuid) of the instance. The content of the response depends on
the current state of the instance. At the moment we have three states: unknown (the
deployment is not finished yet), ready (deployment is done and all components are
correctly configured) and failed. If the Tengu core instance is fully deployed, the
response also includes links to the important Tengu components (e.g., the Hadoop
Job history, the HDFS namenode, the Storm web UI, the OpenStack horizon web
front end, etc.)

Listing B.2: The message format of the response for a GET call

< t e n : t e n g u . . . >
< t e n : p l a t f o r m>
< t e n : i d>{ uu id}< / t e n : i d>
< t e n : i d>{UNKNOWN|READY|FAILED}< / t e n : i d>
< l n k : l i n k method=” . . . ” r e l =” . . . ” h r e f =” . . . ” /> ∗
< / t e n : p l a t f o r m>

< / t e n : t e n g u>

142 APPENDIX B

Table B.1: Special RESTful API calls to set up a specific cluster. All calls have the same
set of query parameters: nodes, testbed. The calls will deploy a cluster of size
{nodes} on the specified {testbed}

RESTful API calls Description
POST /tengu/hadoop deploy a Hadoop cluster
POST /tengu/storm deploy a Storm cluster
POST /tengu/openstack deploy an OpenStack cluster

The Tengu core setup already includes a wide variety of technologies (e.g.,
Hadoop, Storm and OpenStack). By using the already available RSpec generation
process, deployment with jFed and configuration with Chef, it is very straightfor-
ward to also provide separate API calls to set up these individual environments.
This allows the user to deploy for example only an OpenStack environment or a
ready to use Hadoop cluster. The extra API calls are presented in Table B.1 to-
gether with the necessary query parameters. The response to such a call is the
same as shown in Listing B.2. Information requests for these specialized environ-
ments also use the GET request (RESTful API 2), the responses will of course
show a different set of links, depending on the deployed environment.

B.3.2 RSpec generation and deployment

The RESTful API is implemented as part of an Enterprise Service Bus (ESB),
more particularly the WSO2 ESB 6. The main reason for choosing this software
component is not only its straightforward manner to define RESTful APIs, but
its routing capabilities. It is easy to configure the ESB so it, provided certain
parameters, execute a particular workflow. During this workflow it is also possible
to change the incoming and outgoing messages. It is exactly this process that is
used to construct the RSpec.

The first step in the RSpec creation process, starts with a templated version of
the RSpec. The parameters provided with the POST RESTful call are integrated in
this template. For the variable clusters (currently Hadoop, Storm, OpenStack), the
template has included a placeholder. Using XSLT transformations this placeholder
is changed into correct RSpec node information.

B.3.3 Deployment scripts

The RSpec refers to a script that will install a Chef server and workstation on a
separate node. Chef is a configuration management software automating the build,
deployment and management of the Tengu infrastructure. All technologies in the
Tengu platform are defined through cookbooks and recipes, which are basically

6http://wso2.com/products/enterprise-service-bus

http://wso2.com/products/enterprise-service-bus

TENGU 143

idempotent step-by-step installation scripts. Multiple executions of these scripts
will therefore never change the outcome; in most cases a running framework or
service.

Based on the nodes defined in the RSpec, the script deploys the cookbooks
for the corresponding technologies and executes them on the correct nodes. For
example, if a master node is requested in the setup, together with one or several
Hadoop slave nodes (hnode), a Hadoop cluster will be deployed on these nodes.
If these nodes are not present, the Hadoop cookbook will not be deployed. This
modular approach to building and deploying the Tengu platform, together with
Chef, allows for a flexible setup of the platform, tailored to the requirements of the
experimenter.

Current available technologies include Hadoop and Storm for batch and speed
layer respectively. Three data stores are already supported: MySQL, Cassandra
and ElasticSearch. Other supported technologies include Tomcat, Zookeeper and
Kafka. Nonetheless, the chosen approach with Chef and the ESB allows an easy
integration of new technologies for the batch/speed layer and data stores.

B.3.4 Application deployment

Applications for the Tengu platform typically exist of several combinations of
batch jobs and speed jobs, more specifically in the current setup of the Tengu
platform, these are Hadoop MapReduce jobs and Storm topologies. For the ap-
plication’s UI, Tengu currently provides an Apache Tomcat Server and the appli-
cation’s specific meta data can be stored in a separate data store. Exactly which
components are required is application specific, but to ease the setup of the ac-
tual application components, Tengu uses Chef to assist the experimenter. Conse-
quently, the platform can be easily extended with all software components already
provided through Chef’s Supermarket 7.

The actual resources that are used by Chef to deploy the necessary application
specific software components are part of the OpenStack private cloud set up in
Tengu. This means that Chef will create a new virtual machine on the OpenStack
cluster and also deploys the correct cookbooks and recipes on this virtual machine.
The method of using a virtual environment for application specific resources opens
up a lot of possibilities towards multi-tenancy, resource management and optimiza-
tion, resource isolation, and automation.

B.4 Use case

The AMiCA (Automatic Monitoring for Cyberspace Applications) project aims to
mine relevant social media (blogs, chat rooms, and social networking sites) and

7https://supermarket.chef.io/

https://supermarket.chef.io/

144 APPENDIX B

collect, analyse, and integrate large amounts of information using text and image
analysis. The ultimate goal is to trace harmful content, contact, or conduct in an
automatic way. Essentially, a cross-media mining approach is taken that allows to
detect risks ”on-the-fly”. When critical situations are detected (e.g., a very violent
communication), alerts can be issued to moderators of the social networking sites.

The AMiCA project leverages the Lambda architecture using the speed layer
to get near real-time feedback on developing situations on the Social Network Site
(SNS), while the batch layer provides specific views on the entire history of the
site. In this use case an example chat conversation between two generic users of a
generic SNS is used.

The big data set of the SNS contains the entire history of the relationship of
these two users, including their chat conversations. During the execution of the
batch layer, the speed layer provides an analysis of the most recent incoming chat
messages since the batch layer started its execution. It is clear that the speed
layer does not have access to any other messages of the conversation other than
the message provided at that specific moment in time. This limits the analytical
power of the speed layer, but it can still provide some valuable feedback in terms
of language used, picture or video/audio analysis [8, 9]. The information retrieved
from this limited analysis is used in two ways. Firstly, querying the results requires
an intelligent aggregation of the information in both the batch and speed view. For
example, a single aggressive comment might not mean anything if the relationship
has not shown any or limited signs of aggression in the past. However, when this
fits into a relationship of repeated aggression, additional steps need to be taken
(e.g., blocking the account of the aggressor). Secondly, in extreme cases (e.g.,
very violent language or graphics) the information immediately triggers an alert
for the moderators of the SNS.

The other partners in this project provide components for text, image or video
analysis and do not need a thorough knowledge of the setup and deployment of big
data analysis frameworks. The Tengu service platform allows them to set up these
frameworks for their short and long term experimenting needs.

B.5 Demo

The demo of the Tengu platform illustrates the ease of use for the setup of the
platform and a comparison of the use case application running on a Tengu setup
with varying cluster sizes. Figure B.3 shows the JFed GUI which allows for an
easy interaction with all the resources of the Tengu platform once it has been in-
stantiated. JFed is also responsible for the authentication and of experimenters on
the different testbeds in the Fed4FIRE federation. The Tengu platform deployed
in Figure B.3 utilizes resources from the Virtual Wall, depicted in Figure B.4.

In the demo Tengu setups with different cluster sizes of both batch and speed

TENGU 145

Figure B.3: Screenshot of the JFed GUI showing an instantiation of Tengu

layer are deployed on the Virtual Wall. With experiments running on these differ-
ent setups, several key points of interest are highlighted, such as number of mes-
sages processed per minute in the batch and speed layer, and number of queries
handled per minute. A clear seperation is made between queries on batch views
and speed views. The demo also clearly shows the possibility of experiment re-
peatability and reproducibility even though in between tests the nodes of the Vir-
tual Wall are released for other experiments.

The next step is to dynamically increase the cluster size of any depending tech-
nology. While some preliminary tests have already been conducted dynamically
increasing the size of the Hadoop cluster, this functionality has yet to be integrated
into the Tengu platform and is therefore part of future work. This requires a mon-
itoring framework within the platform, which could also provide statistics about
application performance to the experimenters. Additionally, these performance
statistics could also contain valuable information regarding the views and/or data
stores: if a certain view/data store is no longer performing well relative to certain
performance constraints, a transformed as described in Section B.2.1.2 could be
automatically initiated.

B.6 Related work

This Section discusses related work, similar setups and their main differences with
the Tengu platform.

Many big data analysis frameworks are already offered as a service by the large

146 APPENDIX B

Figure B.4: The iLab.t Virtual Wall facility

cloud providers such as Amazon 8, Google 9 and Microsoft 10. These frameworks
are tightly integrated within their platform environment giving customers access
to many other services as well for storage, networking, and elastic scaling among
others. They do however often require application developers to adopt the in-house
technologies, creating a vendor lock-in. Once embedded in the ecosystem, moving
to another provider would require a large investment of time and resources. Tengu
eliminates this vendor lock-in by using open source technologies that are already
available in both research and industry. Moreover, the ESB middleware, shielding
an application from its data store(s), and the live data store transformation limit
application changes altogether.

HPPC Systems [10] offers a massive open source parallel computing platform
that is also built around the principles of the Lambda architecture. They have
a dedicated batch and serving layer, called Thor and Roxie respectively. Their
speed layer is built up from several components from Thor and Roxie combined
with an Apache Kafka consumer plugin. They furthermore allow for incremental
updates of views through a concept of superfiles and superkeys. While HPCC
Systems provides an interesting approach to big data analysis through the Lambda
architecture, the Tengu platform aims to bundle existing technologies, integrated
in research and industry, while every the specific combination of technologies is
tailored to every application. The WSO2 ESB is the core of the Tengu platform
and a necessary part of every setup, but in doing so technologies for batch/speed

8http://aws.amazon.com/elasticmapreduce/
9https://cloud.google.com/appengine/docs/python/dataprocessing/

10http://azure.microsoft.com/en-us/documentation/services/hdinsight/

http://aws.amazon.com/elasticmapreduce/
https://cloud.google.com/appengine/docs/python/dataprocessing/
http://azure.microsoft.com/en-us/documentation/services/hdinsight/

TENGU 147

layer, data stores or other cloud technologies are not fixed. This also preserves the
platform-agnostic idea of the Lambda architecture.

With the large amount of SQL and NoSQL data stores, persistence frameworks
are trying to eliminate the complexity of these different technologies by creating an
abstract layer on top of the data stores. Examples like Hibernate ORM/OGM 11,
PlayORM 12 and Kundera 13 have already found their way into many projects.
Through a unified querying language and schema all supported data stores can
be queried. The application is shielded from the complexity of the different data
stores but in most cases the querying and schema language are newly introduced
languages by the developers of the persistence framework. Tengu again introduces
no new querying language for the communication with the data stores as many
developers are already familiar with one or more data stores. The application can
use the querying language and schema representation it is most familiar with, the
continuous transformation in the speed layer will transform these queries into the
querying language of the actual data store. This also allows for experimenters to
easily try out new data stores and evaluate what this could mean for their applica-
tions.

B.7 Conclusion and Future work

This appendix presented the Tengu platform, a new experimentation platform part
of the Fed4FIRE federation. It allows for the automatic setup and deployment of
different big data analysis frameworks, SQL/NoSQL data stores and other cloud
technologies.

As mentioned in Section B.4, the Tengu platform still requires a service that
can autonomously decide to rescale the clusters of the different technologies (anal-
ysis frameworks and data stores). This requires a monitoring system tracking the
performance of all the clusters. The monitoring information could also prove valu-
able for deciding when to transform between data stores: when the query response
time in a certain data store no longer meets the requirements, a transformation to a
more appropriate data store. Finally, this monitoring information could be relayed
to the users directly as well, providing them with detailed information about the
performance of their entire application.

While the RESTful API currently returns all important links to the different
technologies, in the future it would be interesting to include an automated ap-
plication deployment. Users would then be able to pass a bundle of their entire
application to the service, which would then be deployed on the various parts of
the Tengu core platform.

11http://hibernate.org/
12http://buffalosw.com/wiki/playorm-documentation/
13https://github.com/impetus-opensource/Kundera

http://hibernate.org/
http://buffalosw.com/wiki/playorm-documentation/
https://github.com/impetus-opensource/Kundera

148 APPENDIX B

Acknowledgment
This work was partly carried out with the support of the Fed4FIRE project (”Fed-
eration for FIRE”), an integrated project funded by the European Commission
through the 7th ICT Framework Programme (318389), and the AMiCA (Auto-
matic Monitoring for Cyberspace Applications) project, funded by IWT (Insti-
tute for the Promotion of Innovation through Science and Technology in Flanders)
(120007).

TENGU 149

References
[1] J. Dean and S. Ghemawat. MapReduce: Simplified Data Process-

ing on Large Clusters. Commun. ACM, 51(1):107–113, January
2008. Available from: http://doi.acm.org/10.1145/1327452.1327492,
doi:10.1145/1327452.1327492.

[2] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:
Cluster Computing with Working Sets. In Proceedings of the 2nd USENIX
Conference on Hot Topics in Cloud Computing, HotCloud’10, pages 10–
10, Berkeley, CA, USA, 2010. USENIX Association. Available from: http:
//dl.acm.org/citation.cfm?id=1863103.1863113.

[3] J. Gama. Knowledge Discovery from Data Streams. Chapman & Hall/CRC,
2010.

[4] R. Cattell. Scalable SQL and NoSQL Data Stores. SIGMOD Rec.,
39(4):12–27, May 2011. Available from: http://doi.acm.org/10.1145/
1978915.1978919, doi:10.1145/1978915.1978919.

[5] N. Marz and J. Warren. Big Data: Principles and best practices of scalable
realtime data systems. Manning Publications Co., Greenwich, CT, USA,
2015.

[6] T. Vanhove, G. Van Seghbroeck, T. Wauters, F. De Turck, B. Vermeulen, and
P. Demeester. Tengu: An Experimentation Platform for Big Data Applica-
tions. In ICDCS Workshops, pages 42–47. IEEE, 2015.

[7] T. Wauters, B. Vermeulen, W. Vandenberghe, P. Demeester, S. Taylor,
L. Baron, M. Smirnov, Y. Al-Hazmi, A. Willner, M. Sawyer, et al. Federa-
tion of Internet experimentation facilities: architecture and implementation.
In European Conference on Networks and Communications (EuCNC 2014),
pages 1–5, 2014.

[8] B. Desmet and V. Hoste. Recognising Suicidal Messages in Dutch Social
Media. In Proceedings of the Ninth International Conference on Language
Resources and Evaluation (LREC’14), Reykjavik, Iceland, may 2014. Euro-
pean Language Resources Association (ELRA).

[9] B. Verhoeven, J. Soler Company, and W. Daelemans. Evaluating
Content-Independent Features for Personality Recognition. In Proceed-
ings of the 2014 ACM Multi Media on Workshop on Computational Per-
sonality Recognition, WCPR ’14, pages 7–10, New York, NY, USA,
2014. ACM. Available from: http://doi.acm.org/10.1145/2659522.2659527,
doi:10.1145/2659522.2659527.

http://doi.acm.org/10.1145/1327452.1327492
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://doi.acm.org/10.1145/1978915.1978919
http://doi.acm.org/10.1145/1978915.1978919
http://doi.acm.org/10.1145/2659522.2659527

150 APPENDIX B

[10] A. M. Middleton. Introduction to HPCC (High-Performance Computing
Cluster). White Paper, May 2011.

	Front cover
	Title page
	Dankwoord
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Samenvatting
	Summary
	Introduction
	The Impact of Big Data
	Problem Statement
	Research Contributions
	Dissertation Outline
	Publications
	A1: Journal publications indexed by the ISI Web of Science ``Science Citation Index Expanded''
	P1: Proceedings included in the ISI Web of Science ``Conference Proceedings Citation Index - Science''
	C1: Other publications in international conferences

	Spin-offs
	References

	Managing the Synchronization in the Lambda Architecture for Optimized Big Data Analysis
	Introduction
	Lambda architecture: overview and challenges
	Synchronization
	Failure handling
	Batch layer failures
	Speed layer failures
	View failures
	Data and communication failures
	Human failure

	Implementation details
	Evaluation results
	View failure
	Information transition from speed to batch views

	Aggregation
	Conclusion and future work
	References

	Data Transformation as a means towards Dynamic Data Storage and Polyglot Persistence
	Introduction
	Related Work
	Data transformation framework
	Architecture
	Transformation approach
	Workflow

	Transformation algorithm
	Schema queries
	SQL Transformations
	Cassandra Transformations
	MongoDB Transformations

	Data insertion queries
	Data retrieval queries

	Implementation details
	Technology choice and motivation
	Transformation algorithm

	Evaluation
	Experimental setup
	Use Case description
	Results
	Discussion

	Conclusion and future work
	References

	Sequential Pattern Mining for Data Storage Optimization in Polyglot Persistent Environments
	Introduction
	Data Schema Optimization in Polyglot Persistence
	Query abstraction and outline
	Canonical model
	Data schema optimization procedure
	Detection of (cross-technology) relations
	Data Schema Optimization Architecture

	Abstraction Layer Implementation
	Sequential pattern mining
	Relation selection heuristic

	Evaluation
	Experimental setup
	Results
	Correctness
	Window size
	Suffix tree expansion

	Discussion
	Related Work
	Conclusions and Future Work
	References

	City of Things: Smart Cities beyond Open Data
	Introduction
	Open Big Data
	Beyond Open Data
	City of Things architecture
	Open data platform
	Analysis sandbox environment

	Use cases
	REstore case
	New sensor case
	BPost case

	Next steps
	Conclusion
	References

	Conclusions and Perspectives
	Lambda Architecture
	Canonical model
	Transformation algorithm
	Data schema optimization
	Future Work
	Zeta architecture
	Dynamic Data Storage
	Data Schema Optimization

	Live Datastore Transformation for optimizing Big Data applications in Cloud Environments
	Introduction
	Architecture overview
	Transformation and workflow
	Approach
	Workflow

	Transformation algorithm
	SQL to canonical
	Canonical to Cassandra

	Implementation details
	Technology choice and motivation

	Experimental setup
	Results
	Batch layer
	Speed layer
	Discussion

	Related work
	Conclusion
	References

	Tengu: an Experimentation Platform for Big data Applications
	Introduction
	Architecture
	Tengu core setup
	Lambda architecture
	Tengu managed data stores
	Application specific resource pool

	Tengu front end

	Service Platform
	RESTful API
	RSpec generation and deployment
	Deployment scripts
	Application deployment

	Use case
	Demo
	Related work
	Conclusion and Future work
	References

